1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/segment.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/blkdev.h>
9 #include <linux/backing-dev.h>
10
11 /* constant macro */
12 #define NULL_SEGNO ((unsigned int)(~0))
13 #define NULL_SECNO ((unsigned int)(~0))
14
15 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */
17
18 #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
19 #define F2FS_MIN_META_SEGMENTS 8 /* SB + 2 (CP + SIT + NAT) + SSA */
20
21 #define INVALID_MTIME ULLONG_MAX /* no valid blocks in a segment/section */
22
23 /* L: Logical segment # in volume, R: Relative segment # in main area */
24 #define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno)
25 #define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno)
26
27 #define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA)
28 #define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
29 #define SE_PAGETYPE(se) ((IS_NODESEG((se)->type) ? NODE : DATA))
30
sanity_check_seg_type(struct f2fs_sb_info * sbi,unsigned short seg_type)31 static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
32 unsigned short seg_type)
33 {
34 f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
35 }
36
37 #define MAIN_BLKADDR(sbi) \
38 (SM_I(sbi) ? SM_I(sbi)->main_blkaddr : \
39 le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
40 #define SEG0_BLKADDR(sbi) \
41 (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : \
42 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
43
44 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
45 #define MAIN_SECS(sbi) ((sbi)->total_sections)
46
47 #define TOTAL_SEGS(sbi) \
48 (SM_I(sbi) ? SM_I(sbi)->segment_count : \
49 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
50 #define TOTAL_BLKS(sbi) (SEGS_TO_BLKS(sbi, TOTAL_SEGS(sbi)))
51
52 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
53 #define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \
54 (sbi)->log_blocks_per_seg))
55
56 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
57 (SEGS_TO_BLKS(sbi, GET_R2L_SEGNO(FREE_I(sbi), segno))))
58
59 #define NEXT_FREE_BLKADDR(sbi, curseg) \
60 (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
61
62 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
63 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
64 (BLKS_TO_SEGS(sbi, GET_SEGOFF_FROM_SEG0(sbi, blk_addr)))
65 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
66 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (BLKS_PER_SEG(sbi) - 1))
67
68 #define GET_SEGNO(sbi, blk_addr) \
69 ((!__is_valid_data_blkaddr(blk_addr)) ? \
70 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
71 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
72 #define CAP_BLKS_PER_SEC(sbi) \
73 (BLKS_PER_SEC(sbi) - (sbi)->unusable_blocks_per_sec)
74 #define CAP_SEGS_PER_SEC(sbi) \
75 (SEGS_PER_SEC(sbi) - \
76 BLKS_TO_SEGS(sbi, (sbi)->unusable_blocks_per_sec))
77 #define GET_START_SEG_FROM_SEC(sbi, segno) \
78 (rounddown(segno, SEGS_PER_SEC(sbi)))
79 #define GET_SEC_FROM_SEG(sbi, segno) \
80 (((segno) == -1) ? -1 : (segno) / SEGS_PER_SEC(sbi))
81 #define GET_SEG_FROM_SEC(sbi, secno) \
82 ((secno) * SEGS_PER_SEC(sbi))
83 #define GET_ZONE_FROM_SEC(sbi, secno) \
84 (((secno) == -1) ? -1 : (secno) / (sbi)->secs_per_zone)
85 #define GET_ZONE_FROM_SEG(sbi, segno) \
86 GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
87
88 #define GET_SUM_BLOCK(sbi, segno) \
89 ((sbi)->sm_info->ssa_blkaddr + (segno))
90
91 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
92 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
93
94 #define SIT_ENTRY_OFFSET(sit_i, segno) \
95 ((segno) % (sit_i)->sents_per_block)
96 #define SIT_BLOCK_OFFSET(segno) \
97 ((segno) / SIT_ENTRY_PER_BLOCK)
98 #define START_SEGNO(segno) \
99 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
100 #define SIT_BLK_CNT(sbi) \
101 DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
102 #define f2fs_bitmap_size(nr) \
103 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
104
105 #define SECTOR_FROM_BLOCK(blk_addr) \
106 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
107 #define SECTOR_TO_BLOCK(sectors) \
108 ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
109
110 /*
111 * In the victim_sel_policy->alloc_mode, there are three block allocation modes.
112 * LFS writes data sequentially with cleaning operations.
113 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
114 * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
115 * fragmented segment which has similar aging degree.
116 */
117 enum {
118 LFS = 0,
119 SSR,
120 AT_SSR,
121 };
122
123 /*
124 * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes.
125 * GC_CB is based on cost-benefit algorithm.
126 * GC_GREEDY is based on greedy algorithm.
127 * GC_AT is based on age-threshold algorithm.
128 */
129 enum {
130 GC_CB = 0,
131 GC_GREEDY,
132 GC_AT,
133 ALLOC_NEXT,
134 FLUSH_DEVICE,
135 MAX_GC_POLICY,
136 };
137
138 /*
139 * BG_GC means the background cleaning job.
140 * FG_GC means the on-demand cleaning job.
141 */
142 enum {
143 BG_GC = 0,
144 FG_GC,
145 };
146
147 /* for a function parameter to select a victim segment */
148 struct victim_sel_policy {
149 int alloc_mode; /* LFS or SSR */
150 int gc_mode; /* GC_CB or GC_GREEDY */
151 unsigned long *dirty_bitmap; /* dirty segment/section bitmap */
152 unsigned int max_search; /*
153 * maximum # of segments/sections
154 * to search
155 */
156 unsigned int offset; /* last scanned bitmap offset */
157 unsigned int ofs_unit; /* bitmap search unit */
158 unsigned int min_cost; /* minimum cost */
159 unsigned long long oldest_age; /* oldest age of segments having the same min cost */
160 unsigned int min_segno; /* segment # having min. cost */
161 unsigned long long age; /* mtime of GCed section*/
162 unsigned long long age_threshold;/* age threshold */
163 bool one_time_gc; /* one time GC */
164 };
165
166 struct seg_entry {
167 unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */
168 unsigned int valid_blocks:10; /* # of valid blocks */
169 unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */
170 unsigned int padding:6; /* padding */
171 unsigned char *cur_valid_map; /* validity bitmap of blocks */
172 #ifdef CONFIG_F2FS_CHECK_FS
173 unsigned char *cur_valid_map_mir; /* mirror of current valid bitmap */
174 #endif
175 /*
176 * # of valid blocks and the validity bitmap stored in the last
177 * checkpoint pack. This information is used by the SSR mode.
178 */
179 unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */
180 unsigned char *discard_map;
181 unsigned long long mtime; /* modification time of the segment */
182 };
183
184 struct sec_entry {
185 unsigned int valid_blocks; /* # of valid blocks in a section */
186 unsigned int ckpt_valid_blocks; /* # of valid blocks last cp in a section */
187 };
188
189 #define MAX_SKIP_GC_COUNT 16
190
191 struct revoke_entry {
192 struct list_head list;
193 block_t old_addr; /* for revoking when fail to commit */
194 pgoff_t index;
195 };
196
197 struct sit_info {
198 block_t sit_base_addr; /* start block address of SIT area */
199 block_t sit_blocks; /* # of blocks used by SIT area */
200 block_t written_valid_blocks; /* # of valid blocks in main area */
201 char *bitmap; /* all bitmaps pointer */
202 char *sit_bitmap; /* SIT bitmap pointer */
203 #ifdef CONFIG_F2FS_CHECK_FS
204 char *sit_bitmap_mir; /* SIT bitmap mirror */
205
206 /* bitmap of segments to be ignored by GC in case of errors */
207 unsigned long *invalid_segmap;
208 #endif
209 unsigned int bitmap_size; /* SIT bitmap size */
210
211 unsigned long *tmp_map; /* bitmap for temporal use */
212 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
213 unsigned int dirty_sentries; /* # of dirty sentries */
214 unsigned int sents_per_block; /* # of SIT entries per block */
215 struct rw_semaphore sentry_lock; /* to protect SIT cache */
216 struct seg_entry *sentries; /* SIT segment-level cache */
217 struct sec_entry *sec_entries; /* SIT section-level cache */
218
219 /* for cost-benefit algorithm in cleaning procedure */
220 unsigned long long elapsed_time; /* elapsed time after mount */
221 unsigned long long mounted_time; /* mount time */
222 unsigned long long min_mtime; /* min. modification time */
223 unsigned long long max_mtime; /* max. modification time */
224 unsigned long long dirty_min_mtime; /* rerange candidates in GC_AT */
225 unsigned long long dirty_max_mtime; /* rerange candidates in GC_AT */
226
227 unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
228 };
229
230 struct free_segmap_info {
231 unsigned int start_segno; /* start segment number logically */
232 unsigned int free_segments; /* # of free segments */
233 unsigned int free_sections; /* # of free sections */
234 spinlock_t segmap_lock; /* free segmap lock */
235 unsigned long *free_segmap; /* free segment bitmap */
236 unsigned long *free_secmap; /* free section bitmap */
237 };
238
239 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
240 enum dirty_type {
241 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
242 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
243 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
244 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
245 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
246 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
247 DIRTY, /* to count # of dirty segments */
248 PRE, /* to count # of entirely obsolete segments */
249 NR_DIRTY_TYPE
250 };
251
252 struct dirty_seglist_info {
253 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
254 unsigned long *dirty_secmap;
255 struct mutex seglist_lock; /* lock for segment bitmaps */
256 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
257 unsigned long *victim_secmap; /* background GC victims */
258 unsigned long *pinned_secmap; /* pinned victims from foreground GC */
259 unsigned int pinned_secmap_cnt; /* count of victims which has pinned data */
260 bool enable_pin_section; /* enable pinning section */
261 };
262
263 /* for active log information */
264 struct curseg_info {
265 struct mutex curseg_mutex; /* lock for consistency */
266 struct f2fs_summary_block *sum_blk; /* cached summary block */
267 struct rw_semaphore journal_rwsem; /* protect journal area */
268 struct f2fs_journal *journal; /* cached journal info */
269 unsigned char alloc_type; /* current allocation type */
270 unsigned short seg_type; /* segment type like CURSEG_XXX_TYPE */
271 unsigned int segno; /* current segment number */
272 unsigned short next_blkoff; /* next block offset to write */
273 unsigned int zone; /* current zone number */
274 unsigned int next_segno; /* preallocated segment */
275 int fragment_remained_chunk; /* remained block size in a chunk for block fragmentation mode */
276 bool inited; /* indicate inmem log is inited */
277 };
278
279 struct sit_entry_set {
280 struct list_head set_list; /* link with all sit sets */
281 unsigned int start_segno; /* start segno of sits in set */
282 unsigned int entry_cnt; /* the # of sit entries in set */
283 };
284
285 /*
286 * inline functions
287 */
CURSEG_I(struct f2fs_sb_info * sbi,int type)288 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
289 {
290 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
291 }
292
is_curseg(struct f2fs_sb_info * sbi,unsigned int segno)293 static inline bool is_curseg(struct f2fs_sb_info *sbi, unsigned int segno)
294 {
295 int i;
296
297 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
298 if (segno == CURSEG_I(sbi, i)->segno)
299 return true;
300 }
301 return false;
302 }
303
is_cursec(struct f2fs_sb_info * sbi,unsigned int secno)304 static inline bool is_cursec(struct f2fs_sb_info *sbi, unsigned int secno)
305 {
306 int i;
307
308 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
309 if (secno == GET_SEC_FROM_SEG(sbi, CURSEG_I(sbi, i)->segno))
310 return true;
311 }
312 return false;
313 }
314
get_seg_entry(struct f2fs_sb_info * sbi,unsigned int segno)315 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
316 unsigned int segno)
317 {
318 struct sit_info *sit_i = SIT_I(sbi);
319 return &sit_i->sentries[segno];
320 }
321
get_sec_entry(struct f2fs_sb_info * sbi,unsigned int segno)322 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
323 unsigned int segno)
324 {
325 struct sit_info *sit_i = SIT_I(sbi);
326 return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
327 }
328
get_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno,bool use_section)329 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
330 unsigned int segno, bool use_section)
331 {
332 /*
333 * In order to get # of valid blocks in a section instantly from many
334 * segments, f2fs manages two counting structures separately.
335 */
336 if (use_section && __is_large_section(sbi))
337 return get_sec_entry(sbi, segno)->valid_blocks;
338 else
339 return get_seg_entry(sbi, segno)->valid_blocks;
340 }
341
get_ckpt_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno,bool use_section)342 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
343 unsigned int segno, bool use_section)
344 {
345 if (use_section && __is_large_section(sbi))
346 return get_sec_entry(sbi, segno)->ckpt_valid_blocks;
347 else
348 return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
349 }
350
set_ckpt_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno)351 static inline void set_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
352 unsigned int segno)
353 {
354 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
355 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
356 unsigned int blocks = 0;
357 int i;
358
359 for (i = 0; i < SEGS_PER_SEC(sbi); i++, start_segno++) {
360 struct seg_entry *se = get_seg_entry(sbi, start_segno);
361
362 blocks += se->ckpt_valid_blocks;
363 }
364 get_sec_entry(sbi, segno)->ckpt_valid_blocks = blocks;
365 }
366
367 #ifdef CONFIG_F2FS_CHECK_FS
sanity_check_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno)368 static inline void sanity_check_valid_blocks(struct f2fs_sb_info *sbi,
369 unsigned int segno)
370 {
371 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
372 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
373 unsigned int blocks = 0;
374 int i;
375
376 for (i = 0; i < SEGS_PER_SEC(sbi); i++, start_segno++) {
377 struct seg_entry *se = get_seg_entry(sbi, start_segno);
378
379 blocks += se->ckpt_valid_blocks;
380 }
381
382 if (blocks != get_sec_entry(sbi, segno)->ckpt_valid_blocks) {
383 f2fs_err(sbi,
384 "Inconsistent ckpt valid blocks: "
385 "seg entry(%d) vs sec entry(%d) at secno %d",
386 blocks, get_sec_entry(sbi, segno)->ckpt_valid_blocks, secno);
387 f2fs_bug_on(sbi, 1);
388 }
389 }
390 #else
sanity_check_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno)391 static inline void sanity_check_valid_blocks(struct f2fs_sb_info *sbi,
392 unsigned int segno)
393 {
394 }
395 #endif
seg_info_from_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)396 static inline void seg_info_from_raw_sit(struct seg_entry *se,
397 struct f2fs_sit_entry *rs)
398 {
399 se->valid_blocks = GET_SIT_VBLOCKS(rs);
400 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
401 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
402 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
403 #ifdef CONFIG_F2FS_CHECK_FS
404 memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
405 #endif
406 se->type = GET_SIT_TYPE(rs);
407 se->mtime = le64_to_cpu(rs->mtime);
408 }
409
__seg_info_to_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)410 static inline void __seg_info_to_raw_sit(struct seg_entry *se,
411 struct f2fs_sit_entry *rs)
412 {
413 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
414 se->valid_blocks;
415 rs->vblocks = cpu_to_le16(raw_vblocks);
416 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
417 rs->mtime = cpu_to_le64(se->mtime);
418 }
419
seg_info_to_sit_folio(struct f2fs_sb_info * sbi,struct folio * folio,unsigned int start)420 static inline void seg_info_to_sit_folio(struct f2fs_sb_info *sbi,
421 struct folio *folio, unsigned int start)
422 {
423 struct f2fs_sit_block *raw_sit;
424 struct seg_entry *se;
425 struct f2fs_sit_entry *rs;
426 unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
427 (unsigned long)MAIN_SEGS(sbi));
428 int i;
429
430 raw_sit = folio_address(folio);
431 memset(raw_sit, 0, PAGE_SIZE);
432 for (i = 0; i < end - start; i++) {
433 rs = &raw_sit->entries[i];
434 se = get_seg_entry(sbi, start + i);
435 __seg_info_to_raw_sit(se, rs);
436 }
437 }
438
seg_info_to_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)439 static inline void seg_info_to_raw_sit(struct seg_entry *se,
440 struct f2fs_sit_entry *rs)
441 {
442 __seg_info_to_raw_sit(se, rs);
443
444 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
445 se->ckpt_valid_blocks = se->valid_blocks;
446 }
447
find_next_inuse(struct free_segmap_info * free_i,unsigned int max,unsigned int segno)448 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
449 unsigned int max, unsigned int segno)
450 {
451 unsigned int ret;
452 spin_lock(&free_i->segmap_lock);
453 ret = find_next_bit(free_i->free_segmap, max, segno);
454 spin_unlock(&free_i->segmap_lock);
455 return ret;
456 }
457
__set_free(struct f2fs_sb_info * sbi,unsigned int segno)458 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
459 {
460 struct free_segmap_info *free_i = FREE_I(sbi);
461 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
462 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
463 unsigned int next;
464
465 spin_lock(&free_i->segmap_lock);
466 clear_bit(segno, free_i->free_segmap);
467 free_i->free_segments++;
468
469 next = find_next_bit(free_i->free_segmap,
470 start_segno + SEGS_PER_SEC(sbi), start_segno);
471 if (next >= start_segno + f2fs_usable_segs_in_sec(sbi)) {
472 clear_bit(secno, free_i->free_secmap);
473 free_i->free_sections++;
474 }
475 spin_unlock(&free_i->segmap_lock);
476 }
477
__set_inuse(struct f2fs_sb_info * sbi,unsigned int segno)478 static inline void __set_inuse(struct f2fs_sb_info *sbi,
479 unsigned int segno)
480 {
481 struct free_segmap_info *free_i = FREE_I(sbi);
482 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
483
484 set_bit(segno, free_i->free_segmap);
485 free_i->free_segments--;
486 if (!test_and_set_bit(secno, free_i->free_secmap))
487 free_i->free_sections--;
488 }
489
__set_test_and_free(struct f2fs_sb_info * sbi,unsigned int segno,bool inmem)490 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
491 unsigned int segno, bool inmem)
492 {
493 struct free_segmap_info *free_i = FREE_I(sbi);
494 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
495 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
496 unsigned int next;
497 bool ret;
498
499 spin_lock(&free_i->segmap_lock);
500 ret = test_and_clear_bit(segno, free_i->free_segmap);
501 if (!ret)
502 goto unlock_out;
503
504 free_i->free_segments++;
505
506 if (!inmem && is_cursec(sbi, secno))
507 goto unlock_out;
508
509 /* check large section */
510 next = find_next_bit(free_i->free_segmap,
511 start_segno + SEGS_PER_SEC(sbi), start_segno);
512 if (next < start_segno + f2fs_usable_segs_in_sec(sbi))
513 goto unlock_out;
514
515 ret = test_and_clear_bit(secno, free_i->free_secmap);
516 if (!ret)
517 goto unlock_out;
518
519 free_i->free_sections++;
520
521 if (GET_SEC_FROM_SEG(sbi, sbi->next_victim_seg[BG_GC]) == secno)
522 sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
523 if (GET_SEC_FROM_SEG(sbi, sbi->next_victim_seg[FG_GC]) == secno)
524 sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
525
526 unlock_out:
527 spin_unlock(&free_i->segmap_lock);
528 }
529
__set_test_and_inuse(struct f2fs_sb_info * sbi,unsigned int segno)530 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
531 unsigned int segno)
532 {
533 struct free_segmap_info *free_i = FREE_I(sbi);
534 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
535
536 spin_lock(&free_i->segmap_lock);
537 if (!test_and_set_bit(segno, free_i->free_segmap)) {
538 free_i->free_segments--;
539 if (!test_and_set_bit(secno, free_i->free_secmap))
540 free_i->free_sections--;
541 }
542 spin_unlock(&free_i->segmap_lock);
543 }
544
get_sit_bitmap(struct f2fs_sb_info * sbi,void * dst_addr)545 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
546 void *dst_addr)
547 {
548 struct sit_info *sit_i = SIT_I(sbi);
549
550 #ifdef CONFIG_F2FS_CHECK_FS
551 if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
552 sit_i->bitmap_size))
553 f2fs_bug_on(sbi, 1);
554 #endif
555 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
556 }
557
written_block_count(struct f2fs_sb_info * sbi)558 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
559 {
560 return SIT_I(sbi)->written_valid_blocks;
561 }
562
free_segments(struct f2fs_sb_info * sbi)563 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
564 {
565 return FREE_I(sbi)->free_segments;
566 }
567
reserved_segments(struct f2fs_sb_info * sbi)568 static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
569 {
570 return SM_I(sbi)->reserved_segments;
571 }
572
free_sections(struct f2fs_sb_info * sbi)573 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
574 {
575 return FREE_I(sbi)->free_sections;
576 }
577
prefree_segments(struct f2fs_sb_info * sbi)578 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
579 {
580 return DIRTY_I(sbi)->nr_dirty[PRE];
581 }
582
dirty_segments(struct f2fs_sb_info * sbi)583 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
584 {
585 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
586 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
587 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
588 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
589 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
590 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
591 }
592
overprovision_segments(struct f2fs_sb_info * sbi)593 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
594 {
595 return SM_I(sbi)->ovp_segments;
596 }
597
reserved_sections(struct f2fs_sb_info * sbi)598 static inline int reserved_sections(struct f2fs_sb_info *sbi)
599 {
600 return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
601 }
602
has_curseg_enough_space(struct f2fs_sb_info * sbi,unsigned int node_blocks,unsigned int data_blocks,unsigned int dent_blocks)603 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi,
604 unsigned int node_blocks, unsigned int data_blocks,
605 unsigned int dent_blocks)
606 {
607 unsigned int segno, left_blocks, blocks;
608 int i;
609
610 /* check current data/node sections in the worst case. */
611 for (i = CURSEG_HOT_DATA; i < NR_PERSISTENT_LOG; i++) {
612 segno = CURSEG_I(sbi, i)->segno;
613
614 if (unlikely(segno == NULL_SEGNO))
615 return false;
616
617 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi)) {
618 left_blocks = CAP_BLKS_PER_SEC(sbi) -
619 SEGS_TO_BLKS(sbi, (segno - GET_START_SEG_FROM_SEC(sbi, segno))) -
620 CURSEG_I(sbi, i)->next_blkoff;
621 } else {
622 left_blocks = CAP_BLKS_PER_SEC(sbi) -
623 get_ckpt_valid_blocks(sbi, segno, true);
624 }
625
626 blocks = i <= CURSEG_COLD_DATA ? data_blocks : node_blocks;
627 if (blocks > left_blocks)
628 return false;
629 }
630
631 /* check current data section for dentry blocks. */
632 segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
633
634 if (unlikely(segno == NULL_SEGNO))
635 return false;
636
637 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi)) {
638 left_blocks = CAP_BLKS_PER_SEC(sbi) -
639 SEGS_TO_BLKS(sbi, (segno - GET_START_SEG_FROM_SEC(sbi, segno))) -
640 CURSEG_I(sbi, CURSEG_HOT_DATA)->next_blkoff;
641 } else {
642 left_blocks = CAP_BLKS_PER_SEC(sbi) -
643 get_ckpt_valid_blocks(sbi, segno, true);
644 }
645
646 if (dent_blocks > left_blocks)
647 return false;
648 return true;
649 }
650
651 /*
652 * calculate needed sections for dirty node/dentry and call
653 * has_curseg_enough_space, please note that, it needs to account
654 * dirty data as well in lfs mode when checkpoint is disabled.
655 */
__get_secs_required(struct f2fs_sb_info * sbi,unsigned int * lower_p,unsigned int * upper_p,bool * curseg_p)656 static inline void __get_secs_required(struct f2fs_sb_info *sbi,
657 unsigned int *lower_p, unsigned int *upper_p, bool *curseg_p)
658 {
659 unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
660 get_pages(sbi, F2FS_DIRTY_DENTS) +
661 get_pages(sbi, F2FS_DIRTY_IMETA);
662 unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
663 unsigned int total_data_blocks = 0;
664 unsigned int node_secs = total_node_blocks / CAP_BLKS_PER_SEC(sbi);
665 unsigned int dent_secs = total_dent_blocks / CAP_BLKS_PER_SEC(sbi);
666 unsigned int data_secs = 0;
667 unsigned int node_blocks = total_node_blocks % CAP_BLKS_PER_SEC(sbi);
668 unsigned int dent_blocks = total_dent_blocks % CAP_BLKS_PER_SEC(sbi);
669 unsigned int data_blocks = 0;
670
671 if (f2fs_lfs_mode(sbi)) {
672 total_data_blocks = get_pages(sbi, F2FS_DIRTY_DATA);
673 data_secs = total_data_blocks / CAP_BLKS_PER_SEC(sbi);
674 data_blocks = total_data_blocks % CAP_BLKS_PER_SEC(sbi);
675 }
676
677 if (lower_p)
678 *lower_p = node_secs + dent_secs + data_secs;
679 if (upper_p)
680 *upper_p = node_secs + dent_secs + data_secs +
681 (node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0) +
682 (data_blocks ? 1 : 0);
683 if (curseg_p)
684 *curseg_p = has_curseg_enough_space(sbi,
685 node_blocks, data_blocks, dent_blocks);
686 }
687
has_not_enough_free_secs(struct f2fs_sb_info * sbi,int freed,int needed)688 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
689 int freed, int needed)
690 {
691 unsigned int free_secs, lower_secs, upper_secs;
692 bool curseg_space;
693
694 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
695 return false;
696
697 __get_secs_required(sbi, &lower_secs, &upper_secs, &curseg_space);
698
699 free_secs = free_sections(sbi) + freed;
700 lower_secs += needed + reserved_sections(sbi);
701 upper_secs += needed + reserved_sections(sbi);
702
703 if (free_secs > upper_secs)
704 return false;
705 if (free_secs <= lower_secs)
706 return true;
707 return !curseg_space;
708 }
709
has_enough_free_secs(struct f2fs_sb_info * sbi,int freed,int needed)710 static inline bool has_enough_free_secs(struct f2fs_sb_info *sbi,
711 int freed, int needed)
712 {
713 return !has_not_enough_free_secs(sbi, freed, needed);
714 }
715
has_enough_free_blks(struct f2fs_sb_info * sbi)716 static inline bool has_enough_free_blks(struct f2fs_sb_info *sbi)
717 {
718 unsigned int total_free_blocks = 0;
719 unsigned int avail_user_block_count;
720
721 spin_lock(&sbi->stat_lock);
722
723 avail_user_block_count = get_available_block_count(sbi, NULL, true);
724 total_free_blocks = avail_user_block_count - (unsigned int)valid_user_blocks(sbi);
725
726 spin_unlock(&sbi->stat_lock);
727
728 return total_free_blocks > 0;
729 }
730
f2fs_is_checkpoint_ready(struct f2fs_sb_info * sbi)731 static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
732 {
733 if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
734 return true;
735 if (likely(has_enough_free_secs(sbi, 0, 0)))
736 return true;
737 if (!f2fs_lfs_mode(sbi) &&
738 likely(has_enough_free_blks(sbi)))
739 return true;
740 return false;
741 }
742
excess_prefree_segs(struct f2fs_sb_info * sbi)743 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
744 {
745 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
746 }
747
utilization(struct f2fs_sb_info * sbi)748 static inline int utilization(struct f2fs_sb_info *sbi)
749 {
750 return div_u64((u64)valid_user_blocks(sbi) * 100,
751 sbi->user_block_count);
752 }
753
754 /*
755 * Sometimes f2fs may be better to drop out-of-place update policy.
756 * And, users can control the policy through sysfs entries.
757 * There are five policies with triggering conditions as follows.
758 * F2FS_IPU_FORCE - all the time,
759 * F2FS_IPU_SSR - if SSR mode is activated,
760 * F2FS_IPU_UTIL - if FS utilization is over threashold,
761 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
762 * threashold,
763 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
764 * storages. IPU will be triggered only if the # of dirty
765 * pages over min_fsync_blocks. (=default option)
766 * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
767 * F2FS_IPU_NOCACHE - disable IPU bio cache.
768 * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has
769 * FI_OPU_WRITE flag.
770 * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode)
771 */
772 #define DEF_MIN_IPU_UTIL 70
773 #define DEF_MIN_FSYNC_BLOCKS 8
774 #define DEF_MIN_HOT_BLOCKS 16
775
776 #define SMALL_VOLUME_SEGMENTS (16 * 512) /* 16GB */
777
778 #define F2FS_IPU_DISABLE 0
779
780 /* Modification on enum should be synchronized with ipu_mode_names array */
781 enum {
782 F2FS_IPU_FORCE,
783 F2FS_IPU_SSR,
784 F2FS_IPU_UTIL,
785 F2FS_IPU_SSR_UTIL,
786 F2FS_IPU_FSYNC,
787 F2FS_IPU_ASYNC,
788 F2FS_IPU_NOCACHE,
789 F2FS_IPU_HONOR_OPU_WRITE,
790 F2FS_IPU_MAX,
791 };
792
IS_F2FS_IPU_DISABLE(struct f2fs_sb_info * sbi)793 static inline bool IS_F2FS_IPU_DISABLE(struct f2fs_sb_info *sbi)
794 {
795 return SM_I(sbi)->ipu_policy == F2FS_IPU_DISABLE;
796 }
797
798 #define F2FS_IPU_POLICY(name) \
799 static inline bool IS_##name(struct f2fs_sb_info *sbi) \
800 { \
801 return SM_I(sbi)->ipu_policy & BIT(name); \
802 }
803
804 F2FS_IPU_POLICY(F2FS_IPU_FORCE);
805 F2FS_IPU_POLICY(F2FS_IPU_SSR);
806 F2FS_IPU_POLICY(F2FS_IPU_UTIL);
807 F2FS_IPU_POLICY(F2FS_IPU_SSR_UTIL);
808 F2FS_IPU_POLICY(F2FS_IPU_FSYNC);
809 F2FS_IPU_POLICY(F2FS_IPU_ASYNC);
810 F2FS_IPU_POLICY(F2FS_IPU_NOCACHE);
811 F2FS_IPU_POLICY(F2FS_IPU_HONOR_OPU_WRITE);
812
curseg_segno(struct f2fs_sb_info * sbi,int type)813 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
814 int type)
815 {
816 struct curseg_info *curseg = CURSEG_I(sbi, type);
817 return curseg->segno;
818 }
819
curseg_alloc_type(struct f2fs_sb_info * sbi,int type)820 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
821 int type)
822 {
823 struct curseg_info *curseg = CURSEG_I(sbi, type);
824 return curseg->alloc_type;
825 }
826
valid_main_segno(struct f2fs_sb_info * sbi,unsigned int segno)827 static inline bool valid_main_segno(struct f2fs_sb_info *sbi,
828 unsigned int segno)
829 {
830 return segno <= (MAIN_SEGS(sbi) - 1);
831 }
832
verify_fio_blkaddr(struct f2fs_io_info * fio)833 static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
834 {
835 struct f2fs_sb_info *sbi = fio->sbi;
836
837 if (__is_valid_data_blkaddr(fio->old_blkaddr))
838 verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
839 META_GENERIC : DATA_GENERIC);
840 verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
841 META_GENERIC : DATA_GENERIC_ENHANCE);
842 }
843
844 /*
845 * Summary block is always treated as an invalid block
846 */
check_block_count(struct f2fs_sb_info * sbi,int segno,struct f2fs_sit_entry * raw_sit)847 static inline int check_block_count(struct f2fs_sb_info *sbi,
848 int segno, struct f2fs_sit_entry *raw_sit)
849 {
850 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
851 int valid_blocks = 0;
852 int cur_pos = 0, next_pos;
853 unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
854
855 /* check bitmap with valid block count */
856 do {
857 if (is_valid) {
858 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
859 usable_blks_per_seg,
860 cur_pos);
861 valid_blocks += next_pos - cur_pos;
862 } else
863 next_pos = find_next_bit_le(&raw_sit->valid_map,
864 usable_blks_per_seg,
865 cur_pos);
866 cur_pos = next_pos;
867 is_valid = !is_valid;
868 } while (cur_pos < usable_blks_per_seg);
869
870 if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
871 f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
872 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
873 set_sbi_flag(sbi, SBI_NEED_FSCK);
874 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
875 return -EFSCORRUPTED;
876 }
877
878 if (usable_blks_per_seg < BLKS_PER_SEG(sbi))
879 f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
880 BLKS_PER_SEG(sbi),
881 usable_blks_per_seg) != BLKS_PER_SEG(sbi));
882
883 /* check segment usage, and check boundary of a given segment number */
884 if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
885 || !valid_main_segno(sbi, segno))) {
886 f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
887 GET_SIT_VBLOCKS(raw_sit), segno);
888 set_sbi_flag(sbi, SBI_NEED_FSCK);
889 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
890 return -EFSCORRUPTED;
891 }
892 return 0;
893 }
894
current_sit_addr(struct f2fs_sb_info * sbi,unsigned int start)895 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
896 unsigned int start)
897 {
898 struct sit_info *sit_i = SIT_I(sbi);
899 unsigned int offset = SIT_BLOCK_OFFSET(start);
900 block_t blk_addr = sit_i->sit_base_addr + offset;
901
902 f2fs_bug_on(sbi, !valid_main_segno(sbi, start));
903
904 #ifdef CONFIG_F2FS_CHECK_FS
905 if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
906 f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
907 f2fs_bug_on(sbi, 1);
908 #endif
909
910 /* calculate sit block address */
911 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
912 blk_addr += sit_i->sit_blocks;
913
914 return blk_addr;
915 }
916
next_sit_addr(struct f2fs_sb_info * sbi,pgoff_t block_addr)917 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
918 pgoff_t block_addr)
919 {
920 struct sit_info *sit_i = SIT_I(sbi);
921 block_addr -= sit_i->sit_base_addr;
922 if (block_addr < sit_i->sit_blocks)
923 block_addr += sit_i->sit_blocks;
924 else
925 block_addr -= sit_i->sit_blocks;
926
927 return block_addr + sit_i->sit_base_addr;
928 }
929
set_to_next_sit(struct sit_info * sit_i,unsigned int start)930 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
931 {
932 unsigned int block_off = SIT_BLOCK_OFFSET(start);
933
934 f2fs_change_bit(block_off, sit_i->sit_bitmap);
935 #ifdef CONFIG_F2FS_CHECK_FS
936 f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
937 #endif
938 }
939
get_mtime(struct f2fs_sb_info * sbi,bool base_time)940 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
941 bool base_time)
942 {
943 struct sit_info *sit_i = SIT_I(sbi);
944 time64_t diff, now = ktime_get_boottime_seconds();
945
946 if (now >= sit_i->mounted_time)
947 return sit_i->elapsed_time + now - sit_i->mounted_time;
948
949 /* system time is set to the past */
950 if (!base_time) {
951 diff = sit_i->mounted_time - now;
952 if (sit_i->elapsed_time >= diff)
953 return sit_i->elapsed_time - diff;
954 return 0;
955 }
956 return sit_i->elapsed_time;
957 }
958
set_summary(struct f2fs_summary * sum,nid_t nid,unsigned int ofs_in_node,unsigned char version)959 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
960 unsigned int ofs_in_node, unsigned char version)
961 {
962 sum->nid = cpu_to_le32(nid);
963 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
964 sum->version = version;
965 }
966
start_sum_block(struct f2fs_sb_info * sbi)967 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
968 {
969 return __start_cp_addr(sbi) +
970 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
971 }
972
sum_blk_addr(struct f2fs_sb_info * sbi,int base,int type)973 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
974 {
975 return __start_cp_addr(sbi) +
976 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
977 - (base + 1) + type;
978 }
979
sec_usage_check(struct f2fs_sb_info * sbi,unsigned int secno)980 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
981 {
982 if (is_cursec(sbi, secno) || (sbi->cur_victim_sec == secno))
983 return true;
984 return false;
985 }
986
987 /*
988 * It is very important to gather dirty pages and write at once, so that we can
989 * submit a big bio without interfering other data writes.
990 * By default, 512 pages for directory data,
991 * 512 pages (2MB) * 8 for nodes, and
992 * 256 pages * 8 for meta are set.
993 */
nr_pages_to_skip(struct f2fs_sb_info * sbi,int type)994 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
995 {
996 if (sbi->sb->s_bdi->wb.dirty_exceeded)
997 return 0;
998
999 if (type == DATA)
1000 return BLKS_PER_SEG(sbi);
1001 else if (type == NODE)
1002 return SEGS_TO_BLKS(sbi, 8);
1003 else if (type == META)
1004 return 8 * BIO_MAX_VECS;
1005 else
1006 return 0;
1007 }
1008
1009 /*
1010 * When writing pages, it'd better align nr_to_write for segment size.
1011 */
nr_pages_to_write(struct f2fs_sb_info * sbi,int type,struct writeback_control * wbc)1012 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
1013 struct writeback_control *wbc)
1014 {
1015 long nr_to_write, desired;
1016
1017 if (wbc->sync_mode != WB_SYNC_NONE)
1018 return 0;
1019
1020 nr_to_write = wbc->nr_to_write;
1021 desired = BIO_MAX_VECS;
1022 if (type == NODE)
1023 desired <<= 1;
1024
1025 wbc->nr_to_write = desired;
1026 return desired - nr_to_write;
1027 }
1028
wake_up_discard_thread(struct f2fs_sb_info * sbi,bool force)1029 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
1030 {
1031 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1032 bool wakeup = false;
1033 int i;
1034
1035 if (force)
1036 goto wake_up;
1037
1038 mutex_lock(&dcc->cmd_lock);
1039 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1040 if (i + 1 < dcc->discard_granularity)
1041 break;
1042 if (!list_empty(&dcc->pend_list[i])) {
1043 wakeup = true;
1044 break;
1045 }
1046 }
1047 mutex_unlock(&dcc->cmd_lock);
1048 if (!wakeup || !is_idle(sbi, DISCARD_TIME))
1049 return;
1050 wake_up:
1051 dcc->discard_wake = true;
1052 wake_up_interruptible_all(&dcc->discard_wait_queue);
1053 }
1054