xref: /linux/drivers/pci/controller/vmd.c (revision 25046d5b005bddb927182df9780ef2e99bc19535)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Volume Management Device driver
4  * Copyright (c) 2015, Intel Corporation.
5  */
6 
7 #include <linux/device.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/irqchip/irq-msi-lib.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/msi.h>
14 #include <linux/pci.h>
15 #include <linux/pci-acpi.h>
16 #include <linux/pci-ecam.h>
17 #include <linux/srcu.h>
18 #include <linux/rculist.h>
19 #include <linux/rcupdate.h>
20 
21 #include <xen/xen.h>
22 
23 #include <asm/irqdomain.h>
24 
25 #define VMD_CFGBAR	0
26 #define VMD_MEMBAR1	2
27 #define VMD_MEMBAR2	4
28 
29 #define PCI_REG_VMCAP		0x40
30 #define BUS_RESTRICT_CAP(vmcap)	(vmcap & 0x1)
31 #define PCI_REG_VMCONFIG	0x44
32 #define BUS_RESTRICT_CFG(vmcfg)	((vmcfg >> 8) & 0x3)
33 #define VMCONFIG_MSI_REMAP	0x2
34 #define PCI_REG_VMLOCK		0x70
35 #define MB2_SHADOW_EN(vmlock)	(vmlock & 0x2)
36 
37 #define MB2_SHADOW_OFFSET	0x2000
38 #define MB2_SHADOW_SIZE		16
39 
40 enum vmd_features {
41 	/*
42 	 * Device may contain registers which hint the physical location of the
43 	 * membars, in order to allow proper address translation during
44 	 * resource assignment to enable guest virtualization
45 	 */
46 	VMD_FEAT_HAS_MEMBAR_SHADOW		= (1 << 0),
47 
48 	/*
49 	 * Device may provide root port configuration information which limits
50 	 * bus numbering
51 	 */
52 	VMD_FEAT_HAS_BUS_RESTRICTIONS		= (1 << 1),
53 
54 	/*
55 	 * Device contains physical location shadow registers in
56 	 * vendor-specific capability space
57 	 */
58 	VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP	= (1 << 2),
59 
60 	/*
61 	 * Device may use MSI-X vector 0 for software triggering and will not
62 	 * be used for MSI remapping
63 	 */
64 	VMD_FEAT_OFFSET_FIRST_VECTOR		= (1 << 3),
65 
66 	/*
67 	 * Device can bypass remapping MSI-X transactions into its MSI-X table,
68 	 * avoiding the requirement of a VMD MSI domain for child device
69 	 * interrupt handling.
70 	 */
71 	VMD_FEAT_CAN_BYPASS_MSI_REMAP		= (1 << 4),
72 
73 	/*
74 	 * Enable ASPM on the PCIE root ports and set the default LTR of the
75 	 * storage devices on platforms where these values are not configured by
76 	 * BIOS. This is needed for laptops, which require these settings for
77 	 * proper power management of the SoC.
78 	 */
79 	VMD_FEAT_BIOS_PM_QUIRK		= (1 << 5),
80 };
81 
82 #define VMD_BIOS_PM_QUIRK_LTR	0x1003	/* 3145728 ns */
83 
84 #define VMD_FEATS_CLIENT	(VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |	\
85 				 VMD_FEAT_HAS_BUS_RESTRICTIONS |	\
86 				 VMD_FEAT_OFFSET_FIRST_VECTOR |		\
87 				 VMD_FEAT_BIOS_PM_QUIRK)
88 
89 static DEFINE_IDA(vmd_instance_ida);
90 
91 /*
92  * Lock for manipulating VMD IRQ lists.
93  */
94 static DEFINE_RAW_SPINLOCK(list_lock);
95 
96 /**
97  * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
98  * @node:	list item for parent traversal.
99  * @irq:	back pointer to parent.
100  * @enabled:	true if driver enabled IRQ
101  * @virq:	the virtual IRQ value provided to the requesting driver.
102  *
103  * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
104  * a VMD IRQ using this structure.
105  */
106 struct vmd_irq {
107 	struct list_head	node;
108 	struct vmd_irq_list	*irq;
109 	bool			enabled;
110 	unsigned int		virq;
111 };
112 
113 /**
114  * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
115  * @irq_list:	the list of irq's the VMD one demuxes to.
116  * @srcu:	SRCU struct for local synchronization.
117  * @count:	number of child IRQs assigned to this vector; used to track
118  *		sharing.
119  * @virq:	The underlying VMD Linux interrupt number
120  */
121 struct vmd_irq_list {
122 	struct list_head	irq_list;
123 	struct srcu_struct	srcu;
124 	unsigned int		count;
125 	unsigned int		virq;
126 };
127 
128 struct vmd_dev {
129 	struct pci_dev		*dev;
130 
131 	raw_spinlock_t		cfg_lock;
132 	void __iomem		*cfgbar;
133 
134 	int msix_count;
135 	struct vmd_irq_list	*irqs;
136 
137 	struct pci_sysdata	sysdata;
138 	struct resource		resources[3];
139 	struct irq_domain	*irq_domain;
140 	struct pci_bus		*bus;
141 	u8			busn_start;
142 	u8			first_vec;
143 	char			*name;
144 	int			instance;
145 };
146 
vmd_from_bus(struct pci_bus * bus)147 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
148 {
149 	return container_of(bus->sysdata, struct vmd_dev, sysdata);
150 }
151 
index_from_irqs(struct vmd_dev * vmd,struct vmd_irq_list * irqs)152 static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
153 					   struct vmd_irq_list *irqs)
154 {
155 	return irqs - vmd->irqs;
156 }
157 
158 /*
159  * Drivers managing a device in a VMD domain allocate their own IRQs as before,
160  * but the MSI entry for the hardware it's driving will be programmed with a
161  * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
162  * domain into one of its own, and the VMD driver de-muxes these for the
163  * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
164  * and irq_chip to set this up.
165  */
vmd_compose_msi_msg(struct irq_data * data,struct msi_msg * msg)166 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
167 {
168 	struct vmd_irq *vmdirq = data->chip_data;
169 	struct vmd_irq_list *irq = vmdirq->irq;
170 	struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
171 
172 	memset(msg, 0, sizeof(*msg));
173 	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
174 	msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
175 	msg->arch_addr_lo.destid_0_7 = index_from_irqs(vmd, irq);
176 }
177 
vmd_irq_enable(struct irq_data * data)178 static void vmd_irq_enable(struct irq_data *data)
179 {
180 	struct vmd_irq *vmdirq = data->chip_data;
181 
182 	scoped_guard(raw_spinlock_irqsave, &list_lock) {
183 		WARN_ON(vmdirq->enabled);
184 		list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
185 		vmdirq->enabled = true;
186 	}
187 }
188 
vmd_pci_msi_enable(struct irq_data * data)189 static void vmd_pci_msi_enable(struct irq_data *data)
190 {
191 	vmd_irq_enable(data->parent_data);
192 	data->chip->irq_unmask(data);
193 }
194 
vmd_irq_disable(struct irq_data * data)195 static void vmd_irq_disable(struct irq_data *data)
196 {
197 	struct vmd_irq *vmdirq = data->chip_data;
198 
199 	scoped_guard(raw_spinlock_irqsave, &list_lock) {
200 		if (vmdirq->enabled) {
201 			list_del_rcu(&vmdirq->node);
202 			vmdirq->enabled = false;
203 		}
204 	}
205 }
206 
vmd_pci_msi_disable(struct irq_data * data)207 static void vmd_pci_msi_disable(struct irq_data *data)
208 {
209 	data->chip->irq_mask(data);
210 	vmd_irq_disable(data->parent_data);
211 }
212 
213 static struct irq_chip vmd_msi_controller = {
214 	.name			= "VMD-MSI",
215 	.irq_compose_msi_msg	= vmd_compose_msi_msg,
216 };
217 
218 /*
219  * XXX: We can be even smarter selecting the best IRQ once we solve the
220  * affinity problem.
221  */
vmd_next_irq(struct vmd_dev * vmd,struct msi_desc * desc)222 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
223 {
224 	int i, best;
225 
226 	if (vmd->msix_count == 1 + vmd->first_vec)
227 		return &vmd->irqs[vmd->first_vec];
228 
229 	/*
230 	 * White list for fast-interrupt handlers. All others will share the
231 	 * "slow" interrupt vector.
232 	 */
233 	switch (msi_desc_to_pci_dev(desc)->class) {
234 	case PCI_CLASS_STORAGE_EXPRESS:
235 		break;
236 	default:
237 		return &vmd->irqs[vmd->first_vec];
238 	}
239 
240 	scoped_guard(raw_spinlock_irq, &list_lock) {
241 		best = vmd->first_vec + 1;
242 		for (i = best; i < vmd->msix_count; i++)
243 			if (vmd->irqs[i].count < vmd->irqs[best].count)
244 				best = i;
245 		vmd->irqs[best].count++;
246 	}
247 
248 	return &vmd->irqs[best];
249 }
250 
251 static void vmd_msi_free(struct irq_domain *domain, unsigned int virq,
252 			 unsigned int nr_irqs);
253 
vmd_msi_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)254 static int vmd_msi_alloc(struct irq_domain *domain, unsigned int virq,
255 			 unsigned int nr_irqs, void *arg)
256 {
257 	struct msi_desc *desc = ((msi_alloc_info_t *)arg)->desc;
258 	struct vmd_dev *vmd = domain->host_data;
259 	struct vmd_irq *vmdirq;
260 
261 	for (int i = 0; i < nr_irqs; ++i) {
262 		vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
263 		if (!vmdirq) {
264 			vmd_msi_free(domain, virq, i);
265 			return -ENOMEM;
266 		}
267 
268 		INIT_LIST_HEAD(&vmdirq->node);
269 		vmdirq->irq = vmd_next_irq(vmd, desc);
270 		vmdirq->virq = virq + i;
271 
272 		irq_domain_set_info(domain, virq + i, vmdirq->irq->virq,
273 				    &vmd_msi_controller, vmdirq,
274 				    handle_untracked_irq, vmd, NULL);
275 	}
276 
277 	return 0;
278 }
279 
vmd_msi_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)280 static void vmd_msi_free(struct irq_domain *domain, unsigned int virq,
281 			 unsigned int nr_irqs)
282 {
283 	struct irq_data *irq_data;
284 	struct vmd_irq *vmdirq;
285 
286 	for (int i = 0; i < nr_irqs; ++i) {
287 		irq_data = irq_domain_get_irq_data(domain, virq + i);
288 		vmdirq = irq_data->chip_data;
289 
290 		synchronize_srcu(&vmdirq->irq->srcu);
291 
292 		/* XXX: Potential optimization to rebalance */
293 		scoped_guard(raw_spinlock_irq, &list_lock)
294 			vmdirq->irq->count--;
295 
296 		kfree(vmdirq);
297 	}
298 }
299 
300 static const struct irq_domain_ops vmd_msi_domain_ops = {
301 	.alloc		= vmd_msi_alloc,
302 	.free		= vmd_msi_free,
303 };
304 
vmd_init_dev_msi_info(struct device * dev,struct irq_domain * domain,struct irq_domain * real_parent,struct msi_domain_info * info)305 static bool vmd_init_dev_msi_info(struct device *dev, struct irq_domain *domain,
306 				  struct irq_domain *real_parent,
307 				  struct msi_domain_info *info)
308 {
309 	if (WARN_ON_ONCE(info->bus_token != DOMAIN_BUS_PCI_DEVICE_MSIX))
310 		return false;
311 
312 	if (!msi_lib_init_dev_msi_info(dev, domain, real_parent, info))
313 		return false;
314 
315 	info->chip->irq_enable		= vmd_pci_msi_enable;
316 	info->chip->irq_disable		= vmd_pci_msi_disable;
317 	return true;
318 }
319 
320 #define VMD_MSI_FLAGS_SUPPORTED	(MSI_GENERIC_FLAGS_MASK | MSI_FLAG_PCI_MSIX)
321 #define VMD_MSI_FLAGS_REQUIRED	(MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_NO_AFFINITY)
322 
323 static const struct msi_parent_ops vmd_msi_parent_ops = {
324 	.supported_flags	= VMD_MSI_FLAGS_SUPPORTED,
325 	.required_flags		= VMD_MSI_FLAGS_REQUIRED,
326 	.bus_select_token	= DOMAIN_BUS_VMD_MSI,
327 	.bus_select_mask	= MATCH_PCI_MSI,
328 	.prefix			= "VMD-",
329 	.init_dev_msi_info	= vmd_init_dev_msi_info,
330 };
331 
vmd_create_irq_domain(struct vmd_dev * vmd)332 static int vmd_create_irq_domain(struct vmd_dev *vmd)
333 {
334 	struct irq_domain_info info = {
335 		.size		= vmd->msix_count,
336 		.ops		= &vmd_msi_domain_ops,
337 		.host_data	= vmd,
338 	};
339 
340 	info.fwnode = irq_domain_alloc_named_id_fwnode("VMD-MSI",
341 						       vmd->sysdata.domain);
342 	if (!info.fwnode)
343 		return -ENODEV;
344 
345 	vmd->irq_domain = msi_create_parent_irq_domain(&info,
346 						       &vmd_msi_parent_ops);
347 	if (!vmd->irq_domain) {
348 		irq_domain_free_fwnode(info.fwnode);
349 		return -ENODEV;
350 	}
351 
352 	return 0;
353 }
354 
vmd_set_msi_remapping(struct vmd_dev * vmd,bool enable)355 static void vmd_set_msi_remapping(struct vmd_dev *vmd, bool enable)
356 {
357 	u16 reg;
358 
359 	pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG, &reg);
360 	reg = enable ? (reg & ~VMCONFIG_MSI_REMAP) :
361 		       (reg | VMCONFIG_MSI_REMAP);
362 	pci_write_config_word(vmd->dev, PCI_REG_VMCONFIG, reg);
363 }
364 
vmd_remove_irq_domain(struct vmd_dev * vmd)365 static void vmd_remove_irq_domain(struct vmd_dev *vmd)
366 {
367 	/*
368 	 * Some production BIOS won't enable remapping between soft reboots.
369 	 * Ensure remapping is restored before unloading the driver.
370 	 */
371 	if (!vmd->msix_count)
372 		vmd_set_msi_remapping(vmd, true);
373 
374 	if (vmd->irq_domain) {
375 		struct fwnode_handle *fn = vmd->irq_domain->fwnode;
376 
377 		irq_domain_remove(vmd->irq_domain);
378 		irq_domain_free_fwnode(fn);
379 	}
380 }
381 
vmd_cfg_addr(struct vmd_dev * vmd,struct pci_bus * bus,unsigned int devfn,int reg,int len)382 static void __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
383 				  unsigned int devfn, int reg, int len)
384 {
385 	unsigned int busnr_ecam = bus->number - vmd->busn_start;
386 	u32 offset = PCIE_ECAM_OFFSET(busnr_ecam, devfn, reg);
387 
388 	if (offset + len >= resource_size(&vmd->dev->resource[VMD_CFGBAR]))
389 		return NULL;
390 
391 	return vmd->cfgbar + offset;
392 }
393 
394 /*
395  * CPU may deadlock if config space is not serialized on some versions of this
396  * hardware, so all config space access is done under a spinlock.
397  */
vmd_pci_read(struct pci_bus * bus,unsigned int devfn,int reg,int len,u32 * value)398 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
399 			int len, u32 *value)
400 {
401 	struct vmd_dev *vmd = vmd_from_bus(bus);
402 	void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
403 
404 	if (!addr)
405 		return -EFAULT;
406 
407 	guard(raw_spinlock_irqsave)(&vmd->cfg_lock);
408 	switch (len) {
409 	case 1:
410 		*value = readb(addr);
411 		return 0;
412 	case 2:
413 		*value = readw(addr);
414 		return 0;
415 	case 4:
416 		*value = readl(addr);
417 		return 0;
418 	default:
419 		return -EINVAL;
420 	}
421 }
422 
423 /*
424  * VMD h/w converts non-posted config writes to posted memory writes. The
425  * read-back in this function forces the completion so it returns only after
426  * the config space was written, as expected.
427  */
vmd_pci_write(struct pci_bus * bus,unsigned int devfn,int reg,int len,u32 value)428 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
429 			 int len, u32 value)
430 {
431 	struct vmd_dev *vmd = vmd_from_bus(bus);
432 	void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
433 
434 	if (!addr)
435 		return -EFAULT;
436 
437 	guard(raw_spinlock_irqsave)(&vmd->cfg_lock);
438 	switch (len) {
439 	case 1:
440 		writeb(value, addr);
441 		readb(addr);
442 		return 0;
443 	case 2:
444 		writew(value, addr);
445 		readw(addr);
446 		return 0;
447 	case 4:
448 		writel(value, addr);
449 		readl(addr);
450 		return 0;
451 	default:
452 		return -EINVAL;
453 	}
454 }
455 
456 static struct pci_ops vmd_ops = {
457 	.read		= vmd_pci_read,
458 	.write		= vmd_pci_write,
459 };
460 
461 #ifdef CONFIG_ACPI
vmd_acpi_find_companion(struct pci_dev * pci_dev)462 static struct acpi_device *vmd_acpi_find_companion(struct pci_dev *pci_dev)
463 {
464 	struct pci_host_bridge *bridge;
465 	u32 busnr, addr;
466 
467 	if (pci_dev->bus->ops != &vmd_ops)
468 		return NULL;
469 
470 	bridge = pci_find_host_bridge(pci_dev->bus);
471 	busnr = pci_dev->bus->number - bridge->bus->number;
472 	/*
473 	 * The address computation below is only applicable to relative bus
474 	 * numbers below 32.
475 	 */
476 	if (busnr > 31)
477 		return NULL;
478 
479 	addr = (busnr << 24) | ((u32)pci_dev->devfn << 16) | 0x8000FFFFU;
480 
481 	dev_dbg(&pci_dev->dev, "Looking for ACPI companion (address 0x%x)\n",
482 		addr);
483 
484 	return acpi_find_child_device(ACPI_COMPANION(bridge->dev.parent), addr,
485 				      false);
486 }
487 
488 static bool hook_installed;
489 
vmd_acpi_begin(void)490 static void vmd_acpi_begin(void)
491 {
492 	if (pci_acpi_set_companion_lookup_hook(vmd_acpi_find_companion))
493 		return;
494 
495 	hook_installed = true;
496 }
497 
vmd_acpi_end(void)498 static void vmd_acpi_end(void)
499 {
500 	if (!hook_installed)
501 		return;
502 
503 	pci_acpi_clear_companion_lookup_hook();
504 	hook_installed = false;
505 }
506 #else
vmd_acpi_begin(void)507 static inline void vmd_acpi_begin(void) { }
vmd_acpi_end(void)508 static inline void vmd_acpi_end(void) { }
509 #endif /* CONFIG_ACPI */
510 
vmd_domain_reset(struct vmd_dev * vmd)511 static void vmd_domain_reset(struct vmd_dev *vmd)
512 {
513 	u16 bus, max_buses = resource_size(&vmd->resources[0]);
514 	u8 dev, functions, fn, hdr_type;
515 	char __iomem *base;
516 
517 	for (bus = 0; bus < max_buses; bus++) {
518 		for (dev = 0; dev < 32; dev++) {
519 			base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus,
520 						PCI_DEVFN(dev, 0), 0);
521 
522 			hdr_type = readb(base + PCI_HEADER_TYPE);
523 
524 			functions = (hdr_type & PCI_HEADER_TYPE_MFD) ? 8 : 1;
525 			for (fn = 0; fn < functions; fn++) {
526 				base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus,
527 						PCI_DEVFN(dev, fn), 0);
528 
529 				hdr_type = readb(base + PCI_HEADER_TYPE) &
530 						PCI_HEADER_TYPE_MASK;
531 
532 				if (hdr_type != PCI_HEADER_TYPE_BRIDGE ||
533 				    (readw(base + PCI_CLASS_DEVICE) !=
534 				     PCI_CLASS_BRIDGE_PCI))
535 					continue;
536 
537 				/*
538 				 * Temporarily disable the I/O range before updating
539 				 * PCI_IO_BASE.
540 				 */
541 				writel(0x0000ffff, base + PCI_IO_BASE_UPPER16);
542 				/* Update lower 16 bits of I/O base/limit */
543 				writew(0x00f0, base + PCI_IO_BASE);
544 				/* Update upper 16 bits of I/O base/limit */
545 				writel(0, base + PCI_IO_BASE_UPPER16);
546 
547 				/* MMIO Base/Limit */
548 				writel(0x0000fff0, base + PCI_MEMORY_BASE);
549 
550 				/* Prefetchable MMIO Base/Limit */
551 				writel(0, base + PCI_PREF_LIMIT_UPPER32);
552 				writel(0x0000fff0, base + PCI_PREF_MEMORY_BASE);
553 				writel(0xffffffff, base + PCI_PREF_BASE_UPPER32);
554 			}
555 		}
556 	}
557 }
558 
vmd_attach_resources(struct vmd_dev * vmd)559 static void vmd_attach_resources(struct vmd_dev *vmd)
560 {
561 	vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
562 	vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
563 }
564 
vmd_detach_resources(struct vmd_dev * vmd)565 static void vmd_detach_resources(struct vmd_dev *vmd)
566 {
567 	vmd->dev->resource[VMD_MEMBAR1].child = NULL;
568 	vmd->dev->resource[VMD_MEMBAR2].child = NULL;
569 }
570 
571 /*
572  * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
573  * Per ACPI r6.0, sec 6.5.6,  _SEG returns an integer, of which the lower
574  * 16 bits are the PCI Segment Group (domain) number.  Other bits are
575  * currently reserved.
576  */
vmd_find_free_domain(void)577 static int vmd_find_free_domain(void)
578 {
579 	int domain = 0xffff;
580 	struct pci_bus *bus = NULL;
581 
582 	while ((bus = pci_find_next_bus(bus)) != NULL)
583 		domain = max_t(int, domain, pci_domain_nr(bus));
584 	return domain + 1;
585 }
586 
vmd_get_phys_offsets(struct vmd_dev * vmd,bool native_hint,resource_size_t * offset1,resource_size_t * offset2)587 static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint,
588 				resource_size_t *offset1,
589 				resource_size_t *offset2)
590 {
591 	struct pci_dev *dev = vmd->dev;
592 	u64 phys1, phys2;
593 
594 	if (native_hint) {
595 		u32 vmlock;
596 		int ret;
597 
598 		ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock);
599 		if (ret || PCI_POSSIBLE_ERROR(vmlock))
600 			return -ENODEV;
601 
602 		if (MB2_SHADOW_EN(vmlock)) {
603 			void __iomem *membar2;
604 
605 			membar2 = pci_iomap(dev, VMD_MEMBAR2, 0);
606 			if (!membar2)
607 				return -ENOMEM;
608 			phys1 = readq(membar2 + MB2_SHADOW_OFFSET);
609 			phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8);
610 			pci_iounmap(dev, membar2);
611 		} else
612 			return 0;
613 	} else {
614 		/* Hypervisor-Emulated Vendor-Specific Capability */
615 		int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR);
616 		u32 reg, regu;
617 
618 		pci_read_config_dword(dev, pos + 4, &reg);
619 
620 		/* "SHDW" */
621 		if (pos && reg == 0x53484457) {
622 			pci_read_config_dword(dev, pos + 8, &reg);
623 			pci_read_config_dword(dev, pos + 12, &regu);
624 			phys1 = (u64) regu << 32 | reg;
625 
626 			pci_read_config_dword(dev, pos + 16, &reg);
627 			pci_read_config_dword(dev, pos + 20, &regu);
628 			phys2 = (u64) regu << 32 | reg;
629 		} else
630 			return 0;
631 	}
632 
633 	*offset1 = dev->resource[VMD_MEMBAR1].start -
634 			(phys1 & PCI_BASE_ADDRESS_MEM_MASK);
635 	*offset2 = dev->resource[VMD_MEMBAR2].start -
636 			(phys2 & PCI_BASE_ADDRESS_MEM_MASK);
637 
638 	return 0;
639 }
640 
vmd_get_bus_number_start(struct vmd_dev * vmd)641 static int vmd_get_bus_number_start(struct vmd_dev *vmd)
642 {
643 	struct pci_dev *dev = vmd->dev;
644 	u16 reg;
645 
646 	pci_read_config_word(dev, PCI_REG_VMCAP, &reg);
647 	if (BUS_RESTRICT_CAP(reg)) {
648 		pci_read_config_word(dev, PCI_REG_VMCONFIG, &reg);
649 
650 		switch (BUS_RESTRICT_CFG(reg)) {
651 		case 0:
652 			vmd->busn_start = 0;
653 			break;
654 		case 1:
655 			vmd->busn_start = 128;
656 			break;
657 		case 2:
658 			vmd->busn_start = 224;
659 			break;
660 		default:
661 			pci_err(dev, "Unknown Bus Offset Setting (%d)\n",
662 				BUS_RESTRICT_CFG(reg));
663 			return -ENODEV;
664 		}
665 	}
666 
667 	return 0;
668 }
669 
vmd_irq(int irq,void * data)670 static irqreturn_t vmd_irq(int irq, void *data)
671 {
672 	struct vmd_irq_list *irqs = data;
673 	struct vmd_irq *vmdirq;
674 	int idx;
675 
676 	idx = srcu_read_lock(&irqs->srcu);
677 	list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
678 		generic_handle_irq(vmdirq->virq);
679 	srcu_read_unlock(&irqs->srcu, idx);
680 
681 	return IRQ_HANDLED;
682 }
683 
vmd_alloc_irqs(struct vmd_dev * vmd)684 static int vmd_alloc_irqs(struct vmd_dev *vmd)
685 {
686 	struct pci_dev *dev = vmd->dev;
687 	int i, err;
688 
689 	vmd->msix_count = pci_msix_vec_count(dev);
690 	if (vmd->msix_count < 0)
691 		return -ENODEV;
692 
693 	vmd->msix_count = pci_alloc_irq_vectors(dev, vmd->first_vec + 1,
694 						vmd->msix_count, PCI_IRQ_MSIX);
695 	if (vmd->msix_count < 0)
696 		return vmd->msix_count;
697 
698 	vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
699 				 GFP_KERNEL);
700 	if (!vmd->irqs)
701 		return -ENOMEM;
702 
703 	for (i = 0; i < vmd->msix_count; i++) {
704 		err = init_srcu_struct(&vmd->irqs[i].srcu);
705 		if (err)
706 			return err;
707 
708 		INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
709 		vmd->irqs[i].virq = pci_irq_vector(dev, i);
710 		err = devm_request_irq(&dev->dev, vmd->irqs[i].virq,
711 				       vmd_irq, IRQF_NO_THREAD,
712 				       vmd->name, &vmd->irqs[i]);
713 		if (err)
714 			return err;
715 	}
716 
717 	return 0;
718 }
719 
720 /*
721  * Since VMD is an aperture to regular PCIe root ports, only allow it to
722  * control features that the OS is allowed to control on the physical PCI bus.
723  */
vmd_copy_host_bridge_flags(struct pci_host_bridge * root_bridge,struct pci_host_bridge * vmd_bridge)724 static void vmd_copy_host_bridge_flags(struct pci_host_bridge *root_bridge,
725 				       struct pci_host_bridge *vmd_bridge)
726 {
727 	vmd_bridge->native_pcie_hotplug = root_bridge->native_pcie_hotplug;
728 	vmd_bridge->native_shpc_hotplug = root_bridge->native_shpc_hotplug;
729 	vmd_bridge->native_aer = root_bridge->native_aer;
730 	vmd_bridge->native_pme = root_bridge->native_pme;
731 	vmd_bridge->native_ltr = root_bridge->native_ltr;
732 	vmd_bridge->native_dpc = root_bridge->native_dpc;
733 }
734 
735 /*
736  * Enable ASPM and LTR settings on devices that aren't configured by BIOS.
737  */
vmd_pm_enable_quirk(struct pci_dev * pdev,void * userdata)738 static int vmd_pm_enable_quirk(struct pci_dev *pdev, void *userdata)
739 {
740 	unsigned long features = *(unsigned long *)userdata;
741 	u16 ltr = VMD_BIOS_PM_QUIRK_LTR;
742 	u32 ltr_reg;
743 	int pos;
744 
745 	if (!(features & VMD_FEAT_BIOS_PM_QUIRK))
746 		return 0;
747 
748 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_LTR);
749 	if (!pos)
750 		goto out_state_change;
751 
752 	/*
753 	 * Skip if the max snoop LTR is non-zero, indicating BIOS has set it
754 	 * so the LTR quirk is not needed.
755 	 */
756 	pci_read_config_dword(pdev, pos + PCI_LTR_MAX_SNOOP_LAT, &ltr_reg);
757 	if (!!(ltr_reg & (PCI_LTR_VALUE_MASK | PCI_LTR_SCALE_MASK)))
758 		goto out_state_change;
759 
760 	/*
761 	 * Set the default values to the maximum required by the platform to
762 	 * allow the deepest power management savings. Write as a DWORD where
763 	 * the lower word is the max snoop latency and the upper word is the
764 	 * max non-snoop latency.
765 	 */
766 	ltr_reg = (ltr << 16) | ltr;
767 	pci_write_config_dword(pdev, pos + PCI_LTR_MAX_SNOOP_LAT, ltr_reg);
768 	pci_info(pdev, "VMD: Default LTR value set by driver\n");
769 
770 out_state_change:
771 	/*
772 	 * Ensure devices are in D0 before enabling PCI-PM L1 PM Substates, per
773 	 * PCIe r6.0, sec 5.5.4.
774 	 */
775 	pci_set_power_state_locked(pdev, PCI_D0);
776 	pci_enable_link_state_locked(pdev, PCIE_LINK_STATE_ALL);
777 	return 0;
778 }
779 
vmd_enable_domain(struct vmd_dev * vmd,unsigned long features)780 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
781 {
782 	struct pci_sysdata *sd = &vmd->sysdata;
783 	struct resource *res;
784 	u32 upper_bits;
785 	unsigned long flags;
786 	LIST_HEAD(resources);
787 	resource_size_t offset[2] = {0};
788 	resource_size_t membar2_offset = 0x2000;
789 	struct pci_bus *child;
790 	struct pci_dev *dev;
791 	int ret;
792 
793 	/*
794 	 * Shadow registers may exist in certain VMD device ids which allow
795 	 * guests to correctly assign host physical addresses to the root ports
796 	 * and child devices. These registers will either return the host value
797 	 * or 0, depending on an enable bit in the VMD device.
798 	 */
799 	if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
800 		membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
801 		ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]);
802 		if (ret)
803 			return ret;
804 	} else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) {
805 		ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]);
806 		if (ret)
807 			return ret;
808 	}
809 
810 	/*
811 	 * Certain VMD devices may have a root port configuration option which
812 	 * limits the bus range to between 0-127, 128-255, or 224-255
813 	 */
814 	if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
815 		ret = vmd_get_bus_number_start(vmd);
816 		if (ret)
817 			return ret;
818 	}
819 
820 	res = &vmd->dev->resource[VMD_CFGBAR];
821 	vmd->resources[0] = (struct resource) {
822 		.name  = "VMD CFGBAR",
823 		.start = vmd->busn_start,
824 		.end   = vmd->busn_start + (resource_size(res) >> 20) - 1,
825 		.flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
826 	};
827 
828 	/*
829 	 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
830 	 * put 32-bit resources in the window.
831 	 *
832 	 * There's no hardware reason why a 64-bit window *couldn't*
833 	 * contain a 32-bit resource, but pbus_size_mem() computes the
834 	 * bridge window size assuming a 64-bit window will contain no
835 	 * 32-bit resources.  __pci_assign_resource() enforces that
836 	 * artificial restriction to make sure everything will fit.
837 	 *
838 	 * The only way we could use a 64-bit non-prefetchable MEMBAR is
839 	 * if its address is <4GB so that we can convert it to a 32-bit
840 	 * resource.  To be visible to the host OS, all VMD endpoints must
841 	 * be initially configured by platform BIOS, which includes setting
842 	 * up these resources.  We can assume the device is configured
843 	 * according to the platform needs.
844 	 */
845 	res = &vmd->dev->resource[VMD_MEMBAR1];
846 	upper_bits = upper_32_bits(res->end);
847 	flags = res->flags & ~IORESOURCE_SIZEALIGN;
848 	if (!upper_bits)
849 		flags &= ~IORESOURCE_MEM_64;
850 	vmd->resources[1] = (struct resource) {
851 		.name  = "VMD MEMBAR1",
852 		.start = res->start,
853 		.end   = res->end,
854 		.flags = flags,
855 		.parent = res,
856 	};
857 
858 	res = &vmd->dev->resource[VMD_MEMBAR2];
859 	upper_bits = upper_32_bits(res->end);
860 	flags = res->flags & ~IORESOURCE_SIZEALIGN;
861 	if (!upper_bits)
862 		flags &= ~IORESOURCE_MEM_64;
863 	vmd->resources[2] = (struct resource) {
864 		.name  = "VMD MEMBAR2",
865 		.start = res->start + membar2_offset,
866 		.end   = res->end,
867 		.flags = flags,
868 		.parent = res,
869 	};
870 
871 	sd->vmd_dev = vmd->dev;
872 	sd->domain = vmd_find_free_domain();
873 	if (sd->domain < 0)
874 		return sd->domain;
875 
876 	sd->node = pcibus_to_node(vmd->dev->bus);
877 
878 	/*
879 	 * Currently MSI remapping must be enabled in guest passthrough mode
880 	 * due to some missing interrupt remapping plumbing. This is probably
881 	 * acceptable because the guest is usually CPU-limited and MSI
882 	 * remapping doesn't become a performance bottleneck.
883 	 */
884 	if (!(features & VMD_FEAT_CAN_BYPASS_MSI_REMAP) ||
885 	    offset[0] || offset[1]) {
886 		ret = vmd_alloc_irqs(vmd);
887 		if (ret)
888 			return ret;
889 
890 		vmd_set_msi_remapping(vmd, true);
891 
892 		ret = vmd_create_irq_domain(vmd);
893 		if (ret)
894 			return ret;
895 	} else {
896 		vmd_set_msi_remapping(vmd, false);
897 	}
898 
899 	pci_add_resource(&resources, &vmd->resources[0]);
900 	pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
901 	pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
902 
903 	vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
904 				       &vmd_ops, sd, &resources);
905 	if (!vmd->bus) {
906 		pci_free_resource_list(&resources);
907 		vmd_remove_irq_domain(vmd);
908 		return -ENODEV;
909 	}
910 
911 	vmd_copy_host_bridge_flags(pci_find_host_bridge(vmd->dev->bus),
912 				   to_pci_host_bridge(vmd->bus->bridge));
913 
914 	vmd_attach_resources(vmd);
915 	if (vmd->irq_domain)
916 		dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
917 	else
918 		dev_set_msi_domain(&vmd->bus->dev,
919 				   dev_get_msi_domain(&vmd->dev->dev));
920 
921 	WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
922 			       "domain"), "Can't create symlink to domain\n");
923 
924 	vmd_acpi_begin();
925 
926 	pci_scan_child_bus(vmd->bus);
927 	vmd_domain_reset(vmd);
928 
929 	/* When Intel VMD is enabled, the OS does not discover the Root Ports
930 	 * owned by Intel VMD within the MMCFG space. pci_reset_bus() applies
931 	 * a reset to the parent of the PCI device supplied as argument. This
932 	 * is why we pass a child device, so the reset can be triggered at
933 	 * the Intel bridge level and propagated to all the children in the
934 	 * hierarchy.
935 	 */
936 	list_for_each_entry(child, &vmd->bus->children, node) {
937 		if (!list_empty(&child->devices)) {
938 			dev = list_first_entry(&child->devices,
939 					       struct pci_dev, bus_list);
940 			ret = pci_reset_bus(dev);
941 			if (ret)
942 				pci_warn(dev, "can't reset device: %d\n", ret);
943 
944 			break;
945 		}
946 	}
947 
948 	pci_assign_unassigned_bus_resources(vmd->bus);
949 
950 	pci_walk_bus(vmd->bus, vmd_pm_enable_quirk, &features);
951 
952 	/*
953 	 * VMD root buses are virtual and don't return true on pci_is_pcie()
954 	 * and will fail pcie_bus_configure_settings() early. It can instead be
955 	 * run on each of the real root ports.
956 	 */
957 	list_for_each_entry(child, &vmd->bus->children, node)
958 		pcie_bus_configure_settings(child);
959 
960 	pci_bus_add_devices(vmd->bus);
961 
962 	vmd_acpi_end();
963 	return 0;
964 }
965 
vmd_probe(struct pci_dev * dev,const struct pci_device_id * id)966 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
967 {
968 	unsigned long features = (unsigned long) id->driver_data;
969 	struct vmd_dev *vmd;
970 	int err;
971 
972 	if (xen_domain()) {
973 		/*
974 		 * Xen doesn't have knowledge about devices in the VMD bus
975 		 * because the config space of devices behind the VMD bridge is
976 		 * not known to Xen, and hence Xen cannot discover or configure
977 		 * them in any way.
978 		 *
979 		 * Bypass of MSI remapping won't work in that case as direct
980 		 * write by Linux to the MSI entries won't result in functional
981 		 * interrupts, as Xen is the entity that manages the host
982 		 * interrupt controller and must configure interrupts.  However
983 		 * multiplexing of interrupts by the VMD bridge will work under
984 		 * Xen, so force the usage of that mode which must always be
985 		 * supported by VMD bridges.
986 		 */
987 		features &= ~VMD_FEAT_CAN_BYPASS_MSI_REMAP;
988 	}
989 
990 	if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
991 		return -ENOMEM;
992 
993 	vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
994 	if (!vmd)
995 		return -ENOMEM;
996 
997 	vmd->dev = dev;
998 	vmd->instance = ida_alloc(&vmd_instance_ida, GFP_KERNEL);
999 	if (vmd->instance < 0)
1000 		return vmd->instance;
1001 
1002 	vmd->name = devm_kasprintf(&dev->dev, GFP_KERNEL, "vmd%d",
1003 				   vmd->instance);
1004 	if (!vmd->name) {
1005 		err = -ENOMEM;
1006 		goto out_release_instance;
1007 	}
1008 
1009 	err = pcim_enable_device(dev);
1010 	if (err < 0)
1011 		goto out_release_instance;
1012 
1013 	vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
1014 	if (!vmd->cfgbar) {
1015 		err = -ENOMEM;
1016 		goto out_release_instance;
1017 	}
1018 
1019 	pci_set_master(dev);
1020 	if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
1021 	    dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32))) {
1022 		err = -ENODEV;
1023 		goto out_release_instance;
1024 	}
1025 
1026 	if (features & VMD_FEAT_OFFSET_FIRST_VECTOR)
1027 		vmd->first_vec = 1;
1028 
1029 	raw_spin_lock_init(&vmd->cfg_lock);
1030 	pci_set_drvdata(dev, vmd);
1031 	err = vmd_enable_domain(vmd, features);
1032 	if (err)
1033 		goto out_release_instance;
1034 
1035 	dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
1036 		 vmd->sysdata.domain);
1037 	return 0;
1038 
1039  out_release_instance:
1040 	ida_free(&vmd_instance_ida, vmd->instance);
1041 	return err;
1042 }
1043 
vmd_cleanup_srcu(struct vmd_dev * vmd)1044 static void vmd_cleanup_srcu(struct vmd_dev *vmd)
1045 {
1046 	int i;
1047 
1048 	for (i = 0; i < vmd->msix_count; i++)
1049 		cleanup_srcu_struct(&vmd->irqs[i].srcu);
1050 }
1051 
vmd_remove(struct pci_dev * dev)1052 static void vmd_remove(struct pci_dev *dev)
1053 {
1054 	struct vmd_dev *vmd = pci_get_drvdata(dev);
1055 
1056 	pci_stop_root_bus(vmd->bus);
1057 	sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
1058 	pci_remove_root_bus(vmd->bus);
1059 	vmd_cleanup_srcu(vmd);
1060 	vmd_detach_resources(vmd);
1061 	vmd_remove_irq_domain(vmd);
1062 	ida_free(&vmd_instance_ida, vmd->instance);
1063 }
1064 
vmd_shutdown(struct pci_dev * dev)1065 static void vmd_shutdown(struct pci_dev *dev)
1066 {
1067 	struct vmd_dev *vmd = pci_get_drvdata(dev);
1068 
1069 	vmd_remove_irq_domain(vmd);
1070 }
1071 
1072 #ifdef CONFIG_PM_SLEEP
vmd_suspend(struct device * dev)1073 static int vmd_suspend(struct device *dev)
1074 {
1075 	struct pci_dev *pdev = to_pci_dev(dev);
1076 	struct vmd_dev *vmd = pci_get_drvdata(pdev);
1077 	int i;
1078 
1079 	for (i = 0; i < vmd->msix_count; i++)
1080 		devm_free_irq(dev, vmd->irqs[i].virq, &vmd->irqs[i]);
1081 
1082 	return 0;
1083 }
1084 
vmd_resume(struct device * dev)1085 static int vmd_resume(struct device *dev)
1086 {
1087 	struct pci_dev *pdev = to_pci_dev(dev);
1088 	struct vmd_dev *vmd = pci_get_drvdata(pdev);
1089 	int err, i;
1090 
1091 	vmd_set_msi_remapping(vmd, !!vmd->irq_domain);
1092 
1093 	for (i = 0; i < vmd->msix_count; i++) {
1094 		err = devm_request_irq(dev, vmd->irqs[i].virq,
1095 				       vmd_irq, IRQF_NO_THREAD,
1096 				       vmd->name, &vmd->irqs[i]);
1097 		if (err)
1098 			return err;
1099 	}
1100 
1101 	return 0;
1102 }
1103 #endif
1104 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
1105 
1106 static const struct pci_device_id vmd_ids[] = {
1107 	{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),
1108 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,},
1109 	{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
1110 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
1111 				VMD_FEAT_HAS_BUS_RESTRICTIONS |
1112 				VMD_FEAT_CAN_BYPASS_MSI_REMAP,},
1113 	{PCI_VDEVICE(INTEL, 0x467f),
1114 		.driver_data = VMD_FEATS_CLIENT,},
1115 	{PCI_VDEVICE(INTEL, 0x4c3d),
1116 		.driver_data = VMD_FEATS_CLIENT,},
1117 	{PCI_VDEVICE(INTEL, 0xa77f),
1118 		.driver_data = VMD_FEATS_CLIENT,},
1119 	{PCI_VDEVICE(INTEL, 0x7d0b),
1120 		.driver_data = VMD_FEATS_CLIENT,},
1121 	{PCI_VDEVICE(INTEL, 0xad0b),
1122 		.driver_data = VMD_FEATS_CLIENT,},
1123 	{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B),
1124 		.driver_data = VMD_FEATS_CLIENT,},
1125 	{PCI_VDEVICE(INTEL, 0xb60b),
1126                 .driver_data = VMD_FEATS_CLIENT,},
1127 	{PCI_VDEVICE(INTEL, 0xb06f),
1128                 .driver_data = VMD_FEATS_CLIENT,},
1129 	{PCI_VDEVICE(INTEL, 0xb07f),
1130                 .driver_data = VMD_FEATS_CLIENT,},
1131 	{0,}
1132 };
1133 MODULE_DEVICE_TABLE(pci, vmd_ids);
1134 
1135 static struct pci_driver vmd_drv = {
1136 	.name		= "vmd",
1137 	.id_table	= vmd_ids,
1138 	.probe		= vmd_probe,
1139 	.remove		= vmd_remove,
1140 	.shutdown	= vmd_shutdown,
1141 	.driver		= {
1142 		.pm	= &vmd_dev_pm_ops,
1143 	},
1144 };
1145 module_pci_driver(vmd_drv);
1146 
1147 MODULE_AUTHOR("Intel Corporation");
1148 MODULE_DESCRIPTION("Volume Management Device driver");
1149 MODULE_LICENSE("GPL v2");
1150 MODULE_VERSION("0.6");
1151