1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * ipmi_msghandler.c
4 *
5 * Incoming and outgoing message routing for an IPMI interface.
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
12 */
13
14 #define pr_fmt(fmt) "IPMI message handler: " fmt
15 #define dev_fmt(fmt) pr_fmt(fmt)
16
17 #include <linux/module.h>
18 #include <linux/errno.h>
19 #include <linux/panic_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/sched.h>
22 #include <linux/seq_file.h>
23 #include <linux/spinlock.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/ipmi.h>
27 #include <linux/ipmi_smi.h>
28 #include <linux/notifier.h>
29 #include <linux/init.h>
30 #include <linux/rcupdate.h>
31 #include <linux/interrupt.h>
32 #include <linux/moduleparam.h>
33 #include <linux/workqueue.h>
34 #include <linux/uuid.h>
35 #include <linux/nospec.h>
36 #include <linux/vmalloc.h>
37 #include <linux/delay.h>
38
39 #define IPMI_DRIVER_VERSION "39.2"
40
41 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(struct ipmi_user *user);
42 static void ipmi_set_recv_msg_user(struct ipmi_recv_msg *msg,
43 struct ipmi_user *user);
44 static int ipmi_init_msghandler(void);
45 static void smi_work(struct work_struct *t);
46 static void handle_new_recv_msgs(struct ipmi_smi *intf);
47 static void need_waiter(struct ipmi_smi *intf);
48 static int handle_one_recv_msg(struct ipmi_smi *intf,
49 struct ipmi_smi_msg *msg);
50 static void intf_free(struct kref *ref);
51
52 static bool initialized;
53 static bool drvregistered;
54
55 static struct timer_list ipmi_timer;
56
57 /* Numbers in this enumerator should be mapped to ipmi_panic_event_str */
58 enum ipmi_panic_event_op {
59 IPMI_SEND_PANIC_EVENT_NONE,
60 IPMI_SEND_PANIC_EVENT,
61 IPMI_SEND_PANIC_EVENT_STRING,
62 IPMI_SEND_PANIC_EVENT_MAX
63 };
64
65 /* Indices in this array should be mapped to enum ipmi_panic_event_op */
66 static const char *const ipmi_panic_event_str[] = { "none", "event", "string", NULL };
67
68 #ifdef CONFIG_IPMI_PANIC_STRING
69 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_STRING
70 #elif defined(CONFIG_IPMI_PANIC_EVENT)
71 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT
72 #else
73 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_NONE
74 #endif
75
76 static enum ipmi_panic_event_op ipmi_send_panic_event = IPMI_PANIC_DEFAULT;
77
panic_op_write_handler(const char * val,const struct kernel_param * kp)78 static int panic_op_write_handler(const char *val,
79 const struct kernel_param *kp)
80 {
81 char valcp[16];
82 int e;
83
84 strscpy(valcp, val, sizeof(valcp));
85 e = match_string(ipmi_panic_event_str, -1, strstrip(valcp));
86 if (e < 0)
87 return e;
88
89 ipmi_send_panic_event = e;
90 return 0;
91 }
92
panic_op_read_handler(char * buffer,const struct kernel_param * kp)93 static int panic_op_read_handler(char *buffer, const struct kernel_param *kp)
94 {
95 const char *event_str;
96
97 if (ipmi_send_panic_event >= IPMI_SEND_PANIC_EVENT_MAX)
98 event_str = "???";
99 else
100 event_str = ipmi_panic_event_str[ipmi_send_panic_event];
101
102 return sprintf(buffer, "%s\n", event_str);
103 }
104
105 static const struct kernel_param_ops panic_op_ops = {
106 .set = panic_op_write_handler,
107 .get = panic_op_read_handler
108 };
109 module_param_cb(panic_op, &panic_op_ops, NULL, 0600);
110 MODULE_PARM_DESC(panic_op, "Sets if the IPMI driver will attempt to store panic information in the event log in the event of a panic. Set to 'none' for no, 'event' for a single event, or 'string' for a generic event and the panic string in IPMI OEM events.");
111
112
113 #define MAX_EVENTS_IN_QUEUE 25
114
115 /* Remain in auto-maintenance mode for this amount of time (in ms). */
116 static unsigned long maintenance_mode_timeout_ms = 30000;
117 module_param(maintenance_mode_timeout_ms, ulong, 0644);
118 MODULE_PARM_DESC(maintenance_mode_timeout_ms,
119 "The time (milliseconds) after the last maintenance message that the connection stays in maintenance mode.");
120
121 /*
122 * Don't let a message sit in a queue forever, always time it with at lest
123 * the max message timer. This is in milliseconds.
124 */
125 #define MAX_MSG_TIMEOUT 60000
126
127 /*
128 * Timeout times below are in milliseconds, and are done off a 1
129 * second timer. So setting the value to 1000 would mean anything
130 * between 0 and 1000ms. So really the only reasonable minimum
131 * setting it 2000ms, which is between 1 and 2 seconds.
132 */
133
134 /* The default timeout for message retries. */
135 static unsigned long default_retry_ms = 2000;
136 module_param(default_retry_ms, ulong, 0644);
137 MODULE_PARM_DESC(default_retry_ms,
138 "The time (milliseconds) between retry sends");
139
140 /* The default timeout for maintenance mode message retries. */
141 static unsigned long default_maintenance_retry_ms = 3000;
142 module_param(default_maintenance_retry_ms, ulong, 0644);
143 MODULE_PARM_DESC(default_maintenance_retry_ms,
144 "The time (milliseconds) between retry sends in maintenance mode");
145
146 /* The default maximum number of retries */
147 static unsigned int default_max_retries = 4;
148 module_param(default_max_retries, uint, 0644);
149 MODULE_PARM_DESC(default_max_retries,
150 "The time (milliseconds) between retry sends in maintenance mode");
151
152 /* The default maximum number of users that may register. */
153 static unsigned int max_users = 30;
154 module_param(max_users, uint, 0644);
155 MODULE_PARM_DESC(max_users,
156 "The most users that may use the IPMI stack at one time.");
157
158 /* The default maximum number of message a user may have outstanding. */
159 static unsigned int max_msgs_per_user = 100;
160 module_param(max_msgs_per_user, uint, 0644);
161 MODULE_PARM_DESC(max_msgs_per_user,
162 "The most message a user may have outstanding.");
163
164 /* Call every ~1000 ms. */
165 #define IPMI_TIMEOUT_TIME 1000
166
167 /* How many jiffies does it take to get to the timeout time. */
168 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000)
169
170 /*
171 * Request events from the queue every second (this is the number of
172 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the
173 * future, IPMI will add a way to know immediately if an event is in
174 * the queue and this silliness can go away.
175 */
176 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME))
177
178 /* How long should we cache dynamic device IDs? */
179 #define IPMI_DYN_DEV_ID_EXPIRY (10 * HZ)
180
181 /*
182 * The main "user" data structure.
183 */
184 struct ipmi_user {
185 struct list_head link;
186
187 struct kref refcount;
188 refcount_t destroyed;
189
190 /* The upper layer that handles receive messages. */
191 const struct ipmi_user_hndl *handler;
192 void *handler_data;
193
194 /* The interface this user is bound to. */
195 struct ipmi_smi *intf;
196
197 /* Does this interface receive IPMI events? */
198 bool gets_events;
199
200 atomic_t nr_msgs;
201 };
202
203 struct cmd_rcvr {
204 struct list_head link;
205
206 struct ipmi_user *user;
207 unsigned char netfn;
208 unsigned char cmd;
209 unsigned int chans;
210
211 /*
212 * This is used to form a linked lised during mass deletion.
213 * Since this is in an RCU list, we cannot use the link above
214 * or change any data until the RCU period completes. So we
215 * use this next variable during mass deletion so we can have
216 * a list and don't have to wait and restart the search on
217 * every individual deletion of a command.
218 */
219 struct cmd_rcvr *next;
220 };
221
222 struct seq_table {
223 unsigned int inuse : 1;
224 unsigned int broadcast : 1;
225
226 unsigned long timeout;
227 unsigned long orig_timeout;
228 unsigned int retries_left;
229
230 /*
231 * To verify on an incoming send message response that this is
232 * the message that the response is for, we keep a sequence id
233 * and increment it every time we send a message.
234 */
235 long seqid;
236
237 /*
238 * This is held so we can properly respond to the message on a
239 * timeout, and it is used to hold the temporary data for
240 * retransmission, too.
241 */
242 struct ipmi_recv_msg *recv_msg;
243 };
244
245 /*
246 * Store the information in a msgid (long) to allow us to find a
247 * sequence table entry from the msgid.
248 */
249 #define STORE_SEQ_IN_MSGID(seq, seqid) \
250 ((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff))
251
252 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
253 do { \
254 seq = (((msgid) >> 26) & 0x3f); \
255 seqid = ((msgid) & 0x3ffffff); \
256 } while (0)
257
258 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff)
259
260 #define IPMI_MAX_CHANNELS 16
261 struct ipmi_channel {
262 unsigned char medium;
263 unsigned char protocol;
264 };
265
266 struct ipmi_channel_set {
267 struct ipmi_channel c[IPMI_MAX_CHANNELS];
268 };
269
270 struct ipmi_my_addrinfo {
271 /*
272 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR,
273 * but may be changed by the user.
274 */
275 unsigned char address;
276
277 /*
278 * My LUN. This should generally stay the SMS LUN, but just in
279 * case...
280 */
281 unsigned char lun;
282 };
283
284 /*
285 * Note that the product id, manufacturer id, guid, and device id are
286 * immutable in this structure, so dyn_mutex is not required for
287 * accessing those. If those change on a BMC, a new BMC is allocated.
288 */
289 struct bmc_device {
290 struct platform_device pdev;
291 struct list_head intfs; /* Interfaces on this BMC. */
292 struct ipmi_device_id id;
293 struct ipmi_device_id fetch_id;
294 int dyn_id_set;
295 unsigned long dyn_id_expiry;
296 struct mutex dyn_mutex; /* Protects id, intfs, & dyn* */
297 guid_t guid;
298 guid_t fetch_guid;
299 int dyn_guid_set;
300 struct kref usecount;
301 struct work_struct remove_work;
302 unsigned char cc; /* completion code */
303 };
304 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
305
306 static struct workqueue_struct *bmc_remove_work_wq;
307
308 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
309 struct ipmi_device_id *id,
310 bool *guid_set, guid_t *guid);
311
312 /*
313 * Various statistics for IPMI, these index stats[] in the ipmi_smi
314 * structure.
315 */
316 enum ipmi_stat_indexes {
317 /* Commands we got from the user that were invalid. */
318 IPMI_STAT_sent_invalid_commands = 0,
319
320 /* Commands we sent to the MC. */
321 IPMI_STAT_sent_local_commands,
322
323 /* Responses from the MC that were delivered to a user. */
324 IPMI_STAT_handled_local_responses,
325
326 /* Responses from the MC that were not delivered to a user. */
327 IPMI_STAT_unhandled_local_responses,
328
329 /* Commands we sent out to the IPMB bus. */
330 IPMI_STAT_sent_ipmb_commands,
331
332 /* Commands sent on the IPMB that had errors on the SEND CMD */
333 IPMI_STAT_sent_ipmb_command_errs,
334
335 /* Each retransmit increments this count. */
336 IPMI_STAT_retransmitted_ipmb_commands,
337
338 /*
339 * When a message times out (runs out of retransmits) this is
340 * incremented.
341 */
342 IPMI_STAT_timed_out_ipmb_commands,
343
344 /*
345 * This is like above, but for broadcasts. Broadcasts are
346 * *not* included in the above count (they are expected to
347 * time out).
348 */
349 IPMI_STAT_timed_out_ipmb_broadcasts,
350
351 /* Responses I have sent to the IPMB bus. */
352 IPMI_STAT_sent_ipmb_responses,
353
354 /* The response was delivered to the user. */
355 IPMI_STAT_handled_ipmb_responses,
356
357 /* The response had invalid data in it. */
358 IPMI_STAT_invalid_ipmb_responses,
359
360 /* The response didn't have anyone waiting for it. */
361 IPMI_STAT_unhandled_ipmb_responses,
362
363 /* Commands we sent out to the IPMB bus. */
364 IPMI_STAT_sent_lan_commands,
365
366 /* Commands sent on the IPMB that had errors on the SEND CMD */
367 IPMI_STAT_sent_lan_command_errs,
368
369 /* Each retransmit increments this count. */
370 IPMI_STAT_retransmitted_lan_commands,
371
372 /*
373 * When a message times out (runs out of retransmits) this is
374 * incremented.
375 */
376 IPMI_STAT_timed_out_lan_commands,
377
378 /* Responses I have sent to the IPMB bus. */
379 IPMI_STAT_sent_lan_responses,
380
381 /* The response was delivered to the user. */
382 IPMI_STAT_handled_lan_responses,
383
384 /* The response had invalid data in it. */
385 IPMI_STAT_invalid_lan_responses,
386
387 /* The response didn't have anyone waiting for it. */
388 IPMI_STAT_unhandled_lan_responses,
389
390 /* The command was delivered to the user. */
391 IPMI_STAT_handled_commands,
392
393 /* The command had invalid data in it. */
394 IPMI_STAT_invalid_commands,
395
396 /* The command didn't have anyone waiting for it. */
397 IPMI_STAT_unhandled_commands,
398
399 /* Invalid data in an event. */
400 IPMI_STAT_invalid_events,
401
402 /* Events that were received with the proper format. */
403 IPMI_STAT_events,
404
405 /* Retransmissions on IPMB that failed. */
406 IPMI_STAT_dropped_rexmit_ipmb_commands,
407
408 /* Retransmissions on LAN that failed. */
409 IPMI_STAT_dropped_rexmit_lan_commands,
410
411 /* This *must* remain last, add new values above this. */
412 IPMI_NUM_STATS
413 };
414
415
416 #define IPMI_IPMB_NUM_SEQ 64
417 struct ipmi_smi {
418 struct module *owner;
419
420 /* What interface number are we? */
421 int intf_num;
422
423 struct kref refcount;
424
425 /* Set when the interface is being unregistered. */
426 bool in_shutdown;
427
428 /* Used for a list of interfaces. */
429 struct list_head link;
430
431 /*
432 * The list of upper layers that are using me.
433 */
434 struct list_head users;
435 struct mutex users_mutex;
436 atomic_t nr_users;
437 struct device_attribute nr_users_devattr;
438 struct device_attribute nr_msgs_devattr;
439 struct device_attribute maintenance_mode_devattr;
440
441
442 /* Used for wake ups at startup. */
443 wait_queue_head_t waitq;
444
445 /*
446 * Prevents the interface from being unregistered when the
447 * interface is used by being looked up through the BMC
448 * structure.
449 */
450 struct mutex bmc_reg_mutex;
451
452 struct bmc_device tmp_bmc;
453 struct bmc_device *bmc;
454 bool bmc_registered;
455 struct list_head bmc_link;
456 char *my_dev_name;
457 bool in_bmc_register; /* Handle recursive situations. Yuck. */
458 struct work_struct bmc_reg_work;
459
460 const struct ipmi_smi_handlers *handlers;
461 void *send_info;
462
463 /* Driver-model device for the system interface. */
464 struct device *si_dev;
465
466 /*
467 * A table of sequence numbers for this interface. We use the
468 * sequence numbers for IPMB messages that go out of the
469 * interface to match them up with their responses. A routine
470 * is called periodically to time the items in this list.
471 */
472 struct mutex seq_lock;
473 struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
474 int curr_seq;
475
476 /*
477 * Messages queued for deliver to the user.
478 */
479 struct mutex user_msgs_mutex;
480 struct list_head user_msgs;
481
482 /*
483 * Messages queued for processing. If processing fails (out
484 * of memory for instance), They will stay in here to be
485 * processed later in a periodic timer interrupt. The
486 * workqueue is for handling received messages directly from
487 * the handler.
488 */
489 spinlock_t waiting_rcv_msgs_lock;
490 struct list_head waiting_rcv_msgs;
491 atomic_t watchdog_pretimeouts_to_deliver;
492 struct work_struct smi_work;
493
494 spinlock_t xmit_msgs_lock;
495 struct list_head xmit_msgs;
496 struct ipmi_smi_msg *curr_msg;
497 struct list_head hp_xmit_msgs;
498
499 /*
500 * The list of command receivers that are registered for commands
501 * on this interface.
502 */
503 struct mutex cmd_rcvrs_mutex;
504 struct list_head cmd_rcvrs;
505
506 /*
507 * Events that were queues because no one was there to receive
508 * them.
509 */
510 struct mutex events_mutex; /* For dealing with event stuff. */
511 struct list_head waiting_events;
512 unsigned int waiting_events_count; /* How many events in queue? */
513 char event_msg_printed;
514
515 /* How many users are waiting for events? */
516 atomic_t event_waiters;
517 unsigned int ticks_to_req_ev;
518
519 spinlock_t watch_lock; /* For dealing with watch stuff below. */
520
521 /* How many users are waiting for commands? */
522 unsigned int command_waiters;
523
524 /* How many users are waiting for watchdogs? */
525 unsigned int watchdog_waiters;
526
527 /* How many users are waiting for message responses? */
528 unsigned int response_waiters;
529
530 /*
531 * Tells what the lower layer has last been asked to watch for,
532 * messages and/or watchdogs. Protected by watch_lock.
533 */
534 unsigned int last_watch_mask;
535
536 /*
537 * The event receiver for my BMC, only really used at panic
538 * shutdown as a place to store this.
539 */
540 unsigned char event_receiver;
541 unsigned char event_receiver_lun;
542 unsigned char local_sel_device;
543 unsigned char local_event_generator;
544
545 /* For handling of maintenance mode. */
546 int maintenance_mode;
547
548 #define IPMI_MAINTENANCE_MODE_STATE_OFF 0
549 #define IPMI_MAINTENANCE_MODE_STATE_FIRMWARE 1
550 #define IPMI_MAINTENANCE_MODE_STATE_RESET 2
551 int maintenance_mode_state;
552 int auto_maintenance_timeout;
553 spinlock_t maintenance_mode_lock; /* Used in a timer... */
554
555 /*
556 * If we are doing maintenance on something on IPMB, extend
557 * the timeout time to avoid timeouts writing firmware and
558 * such.
559 */
560 int ipmb_maintenance_mode_timeout;
561
562 /*
563 * A cheap hack, if this is non-null and a message to an
564 * interface comes in with a NULL user, call this routine with
565 * it. Note that the message will still be freed by the
566 * caller. This only works on the system interface.
567 *
568 * Protected by bmc_reg_mutex.
569 */
570 void (*null_user_handler)(struct ipmi_smi *intf,
571 struct ipmi_recv_msg *msg);
572
573 /*
574 * When we are scanning the channels for an SMI, this will
575 * tell which channel we are scanning.
576 */
577 int curr_channel;
578
579 /* Channel information */
580 struct ipmi_channel_set *channel_list;
581 unsigned int curr_working_cset; /* First index into the following. */
582 struct ipmi_channel_set wchannels[2];
583 struct ipmi_my_addrinfo addrinfo[IPMI_MAX_CHANNELS];
584 bool channels_ready;
585
586 atomic_t stats[IPMI_NUM_STATS];
587
588 /*
589 * run_to_completion duplicate of smb_info, smi_info
590 * and ipmi_serial_info structures. Used to decrease numbers of
591 * parameters passed by "low" level IPMI code.
592 */
593 int run_to_completion;
594 };
595 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
596
597 static void __get_guid(struct ipmi_smi *intf);
598 static void __ipmi_bmc_unregister(struct ipmi_smi *intf);
599 static int __ipmi_bmc_register(struct ipmi_smi *intf,
600 struct ipmi_device_id *id,
601 bool guid_set, guid_t *guid, int intf_num);
602 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id);
603
free_ipmi_user(struct kref * ref)604 static void free_ipmi_user(struct kref *ref)
605 {
606 struct ipmi_user *user = container_of(ref, struct ipmi_user, refcount);
607 struct module *owner;
608
609 owner = user->intf->owner;
610 kref_put(&user->intf->refcount, intf_free);
611 module_put(owner);
612 vfree(user);
613 }
614
release_ipmi_user(struct ipmi_user * user)615 static void release_ipmi_user(struct ipmi_user *user)
616 {
617 kref_put(&user->refcount, free_ipmi_user);
618 }
619
acquire_ipmi_user(struct ipmi_user * user)620 static struct ipmi_user *acquire_ipmi_user(struct ipmi_user *user)
621 {
622 if (!kref_get_unless_zero(&user->refcount))
623 return NULL;
624 return user;
625 }
626
627 /*
628 * The driver model view of the IPMI messaging driver.
629 */
630 static struct platform_driver ipmidriver = {
631 .driver = {
632 .name = "ipmi",
633 .bus = &platform_bus_type
634 }
635 };
636 /*
637 * This mutex keeps us from adding the same BMC twice.
638 */
639 static DEFINE_MUTEX(ipmidriver_mutex);
640
641 static LIST_HEAD(ipmi_interfaces);
642 static DEFINE_MUTEX(ipmi_interfaces_mutex);
643
644 /*
645 * List of watchers that want to know when smi's are added and deleted.
646 */
647 static LIST_HEAD(smi_watchers);
648 static DEFINE_MUTEX(smi_watchers_mutex);
649
650 #define ipmi_inc_stat(intf, stat) \
651 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
652 #define ipmi_get_stat(intf, stat) \
653 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
654
655 static const char * const addr_src_to_str[] = {
656 "invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
657 "device-tree", "platform"
658 };
659
ipmi_addr_src_to_str(enum ipmi_addr_src src)660 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
661 {
662 if (src >= SI_LAST)
663 src = 0; /* Invalid */
664 return addr_src_to_str[src];
665 }
666 EXPORT_SYMBOL(ipmi_addr_src_to_str);
667
is_lan_addr(struct ipmi_addr * addr)668 static int is_lan_addr(struct ipmi_addr *addr)
669 {
670 return addr->addr_type == IPMI_LAN_ADDR_TYPE;
671 }
672
is_ipmb_addr(struct ipmi_addr * addr)673 static int is_ipmb_addr(struct ipmi_addr *addr)
674 {
675 return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
676 }
677
is_ipmb_bcast_addr(struct ipmi_addr * addr)678 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
679 {
680 return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
681 }
682
is_ipmb_direct_addr(struct ipmi_addr * addr)683 static int is_ipmb_direct_addr(struct ipmi_addr *addr)
684 {
685 return addr->addr_type == IPMI_IPMB_DIRECT_ADDR_TYPE;
686 }
687
free_recv_msg_list(struct list_head * q)688 static void free_recv_msg_list(struct list_head *q)
689 {
690 struct ipmi_recv_msg *msg, *msg2;
691
692 list_for_each_entry_safe(msg, msg2, q, link) {
693 list_del(&msg->link);
694 ipmi_free_recv_msg(msg);
695 }
696 }
697
free_smi_msg_list(struct list_head * q)698 static void free_smi_msg_list(struct list_head *q)
699 {
700 struct ipmi_smi_msg *msg, *msg2;
701
702 list_for_each_entry_safe(msg, msg2, q, link) {
703 list_del(&msg->link);
704 ipmi_free_smi_msg(msg);
705 }
706 }
707
intf_free(struct kref * ref)708 static void intf_free(struct kref *ref)
709 {
710 struct ipmi_smi *intf = container_of(ref, struct ipmi_smi, refcount);
711 int i;
712 struct cmd_rcvr *rcvr, *rcvr2;
713
714 free_smi_msg_list(&intf->waiting_rcv_msgs);
715 free_recv_msg_list(&intf->waiting_events);
716
717 /*
718 * Wholesale remove all the entries from the list in the
719 * interface. No need for locks, this is single-threaded.
720 */
721 list_for_each_entry_safe(rcvr, rcvr2, &intf->cmd_rcvrs, link)
722 kfree(rcvr);
723
724 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
725 if ((intf->seq_table[i].inuse)
726 && (intf->seq_table[i].recv_msg))
727 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
728 }
729
730 kfree(intf);
731 }
732
ipmi_smi_watcher_register(struct ipmi_smi_watcher * watcher)733 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
734 {
735 struct ipmi_smi *intf;
736 unsigned int count = 0, i;
737 int *interfaces = NULL;
738 struct device **devices = NULL;
739 int rv = 0;
740
741 /*
742 * Make sure the driver is actually initialized, this handles
743 * problems with initialization order.
744 */
745 rv = ipmi_init_msghandler();
746 if (rv)
747 return rv;
748
749 mutex_lock(&smi_watchers_mutex);
750
751 list_add(&watcher->link, &smi_watchers);
752
753 /*
754 * Build an array of ipmi interfaces and fill it in, and
755 * another array of the devices. We can't call the callback
756 * with ipmi_interfaces_mutex held. smi_watchers_mutex will
757 * keep things in order for the user.
758 */
759 mutex_lock(&ipmi_interfaces_mutex);
760 list_for_each_entry(intf, &ipmi_interfaces, link)
761 count++;
762 if (count > 0) {
763 interfaces = kmalloc_array(count, sizeof(*interfaces),
764 GFP_KERNEL);
765 if (!interfaces) {
766 rv = -ENOMEM;
767 } else {
768 devices = kmalloc_array(count, sizeof(*devices),
769 GFP_KERNEL);
770 if (!devices) {
771 kfree(interfaces);
772 interfaces = NULL;
773 rv = -ENOMEM;
774 }
775 }
776 count = 0;
777 }
778 if (interfaces) {
779 list_for_each_entry(intf, &ipmi_interfaces, link) {
780 int intf_num = READ_ONCE(intf->intf_num);
781
782 if (intf_num == -1)
783 continue;
784 devices[count] = intf->si_dev;
785 interfaces[count++] = intf_num;
786 }
787 }
788 mutex_unlock(&ipmi_interfaces_mutex);
789
790 if (interfaces) {
791 for (i = 0; i < count; i++)
792 watcher->new_smi(interfaces[i], devices[i]);
793 kfree(interfaces);
794 kfree(devices);
795 }
796
797 mutex_unlock(&smi_watchers_mutex);
798
799 return rv;
800 }
801 EXPORT_SYMBOL(ipmi_smi_watcher_register);
802
ipmi_smi_watcher_unregister(struct ipmi_smi_watcher * watcher)803 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
804 {
805 mutex_lock(&smi_watchers_mutex);
806 list_del(&watcher->link);
807 mutex_unlock(&smi_watchers_mutex);
808 return 0;
809 }
810 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
811
812 static void
call_smi_watchers(int i,struct device * dev)813 call_smi_watchers(int i, struct device *dev)
814 {
815 struct ipmi_smi_watcher *w;
816
817 list_for_each_entry(w, &smi_watchers, link) {
818 if (try_module_get(w->owner)) {
819 w->new_smi(i, dev);
820 module_put(w->owner);
821 }
822 }
823 }
824
825 static int
ipmi_addr_equal(struct ipmi_addr * addr1,struct ipmi_addr * addr2)826 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
827 {
828 if (addr1->addr_type != addr2->addr_type)
829 return 0;
830
831 if (addr1->channel != addr2->channel)
832 return 0;
833
834 if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
835 struct ipmi_system_interface_addr *smi_addr1
836 = (struct ipmi_system_interface_addr *) addr1;
837 struct ipmi_system_interface_addr *smi_addr2
838 = (struct ipmi_system_interface_addr *) addr2;
839 return (smi_addr1->lun == smi_addr2->lun);
840 }
841
842 if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
843 struct ipmi_ipmb_addr *ipmb_addr1
844 = (struct ipmi_ipmb_addr *) addr1;
845 struct ipmi_ipmb_addr *ipmb_addr2
846 = (struct ipmi_ipmb_addr *) addr2;
847
848 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
849 && (ipmb_addr1->lun == ipmb_addr2->lun));
850 }
851
852 if (is_ipmb_direct_addr(addr1)) {
853 struct ipmi_ipmb_direct_addr *daddr1
854 = (struct ipmi_ipmb_direct_addr *) addr1;
855 struct ipmi_ipmb_direct_addr *daddr2
856 = (struct ipmi_ipmb_direct_addr *) addr2;
857
858 return daddr1->slave_addr == daddr2->slave_addr &&
859 daddr1->rq_lun == daddr2->rq_lun &&
860 daddr1->rs_lun == daddr2->rs_lun;
861 }
862
863 if (is_lan_addr(addr1)) {
864 struct ipmi_lan_addr *lan_addr1
865 = (struct ipmi_lan_addr *) addr1;
866 struct ipmi_lan_addr *lan_addr2
867 = (struct ipmi_lan_addr *) addr2;
868
869 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
870 && (lan_addr1->local_SWID == lan_addr2->local_SWID)
871 && (lan_addr1->session_handle
872 == lan_addr2->session_handle)
873 && (lan_addr1->lun == lan_addr2->lun));
874 }
875
876 return 1;
877 }
878
ipmi_validate_addr(struct ipmi_addr * addr,int len)879 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
880 {
881 if (len < sizeof(struct ipmi_system_interface_addr))
882 return -EINVAL;
883
884 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
885 if (addr->channel != IPMI_BMC_CHANNEL)
886 return -EINVAL;
887 return 0;
888 }
889
890 if ((addr->channel == IPMI_BMC_CHANNEL)
891 || (addr->channel >= IPMI_MAX_CHANNELS)
892 || (addr->channel < 0))
893 return -EINVAL;
894
895 if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
896 if (len < sizeof(struct ipmi_ipmb_addr))
897 return -EINVAL;
898 return 0;
899 }
900
901 if (is_ipmb_direct_addr(addr)) {
902 struct ipmi_ipmb_direct_addr *daddr = (void *) addr;
903
904 if (addr->channel != 0)
905 return -EINVAL;
906 if (len < sizeof(struct ipmi_ipmb_direct_addr))
907 return -EINVAL;
908
909 if (daddr->slave_addr & 0x01)
910 return -EINVAL;
911 if (daddr->rq_lun >= 4)
912 return -EINVAL;
913 if (daddr->rs_lun >= 4)
914 return -EINVAL;
915 return 0;
916 }
917
918 if (is_lan_addr(addr)) {
919 if (len < sizeof(struct ipmi_lan_addr))
920 return -EINVAL;
921 return 0;
922 }
923
924 return -EINVAL;
925 }
926 EXPORT_SYMBOL(ipmi_validate_addr);
927
ipmi_addr_length(int addr_type)928 unsigned int ipmi_addr_length(int addr_type)
929 {
930 if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
931 return sizeof(struct ipmi_system_interface_addr);
932
933 if ((addr_type == IPMI_IPMB_ADDR_TYPE)
934 || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
935 return sizeof(struct ipmi_ipmb_addr);
936
937 if (addr_type == IPMI_IPMB_DIRECT_ADDR_TYPE)
938 return sizeof(struct ipmi_ipmb_direct_addr);
939
940 if (addr_type == IPMI_LAN_ADDR_TYPE)
941 return sizeof(struct ipmi_lan_addr);
942
943 return 0;
944 }
945 EXPORT_SYMBOL(ipmi_addr_length);
946
deliver_response(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)947 static int deliver_response(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
948 {
949 int rv = 0;
950
951 if (!msg->user) {
952 /* Special handling for NULL users. */
953 if (intf->null_user_handler) {
954 intf->null_user_handler(intf, msg);
955 } else {
956 /* No handler, so give up. */
957 rv = -EINVAL;
958 }
959 ipmi_free_recv_msg(msg);
960 } else if (oops_in_progress) {
961 /*
962 * If we are running in the panic context, calling the
963 * receive handler doesn't much meaning and has a deadlock
964 * risk. At this moment, simply skip it in that case.
965 */
966 ipmi_free_recv_msg(msg);
967 } else {
968 /*
969 * Deliver it in smi_work. The message will hold a
970 * refcount to the user.
971 */
972 mutex_lock(&intf->user_msgs_mutex);
973 list_add_tail(&msg->link, &intf->user_msgs);
974 mutex_unlock(&intf->user_msgs_mutex);
975 queue_work(system_wq, &intf->smi_work);
976 }
977
978 return rv;
979 }
980
deliver_local_response(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)981 static void deliver_local_response(struct ipmi_smi *intf,
982 struct ipmi_recv_msg *msg)
983 {
984 if (deliver_response(intf, msg))
985 ipmi_inc_stat(intf, unhandled_local_responses);
986 else
987 ipmi_inc_stat(intf, handled_local_responses);
988 }
989
deliver_err_response(struct ipmi_smi * intf,struct ipmi_recv_msg * msg,int err)990 static void deliver_err_response(struct ipmi_smi *intf,
991 struct ipmi_recv_msg *msg, int err)
992 {
993 msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
994 msg->msg_data[0] = err;
995 msg->msg.netfn |= 1; /* Convert to a response. */
996 msg->msg.data_len = 1;
997 msg->msg.data = msg->msg_data;
998 deliver_local_response(intf, msg);
999 }
1000
smi_add_watch(struct ipmi_smi * intf,unsigned int flags)1001 static void smi_add_watch(struct ipmi_smi *intf, unsigned int flags)
1002 {
1003 unsigned long iflags;
1004
1005 if (!intf->handlers->set_need_watch)
1006 return;
1007
1008 spin_lock_irqsave(&intf->watch_lock, iflags);
1009 if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
1010 intf->response_waiters++;
1011
1012 if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
1013 intf->watchdog_waiters++;
1014
1015 if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
1016 intf->command_waiters++;
1017
1018 if ((intf->last_watch_mask & flags) != flags) {
1019 intf->last_watch_mask |= flags;
1020 intf->handlers->set_need_watch(intf->send_info,
1021 intf->last_watch_mask);
1022 }
1023 spin_unlock_irqrestore(&intf->watch_lock, iflags);
1024 }
1025
smi_remove_watch(struct ipmi_smi * intf,unsigned int flags)1026 static void smi_remove_watch(struct ipmi_smi *intf, unsigned int flags)
1027 {
1028 unsigned long iflags;
1029
1030 if (!intf->handlers->set_need_watch)
1031 return;
1032
1033 spin_lock_irqsave(&intf->watch_lock, iflags);
1034 if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
1035 intf->response_waiters--;
1036
1037 if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
1038 intf->watchdog_waiters--;
1039
1040 if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
1041 intf->command_waiters--;
1042
1043 flags = 0;
1044 if (intf->response_waiters)
1045 flags |= IPMI_WATCH_MASK_CHECK_MESSAGES;
1046 if (intf->watchdog_waiters)
1047 flags |= IPMI_WATCH_MASK_CHECK_WATCHDOG;
1048 if (intf->command_waiters)
1049 flags |= IPMI_WATCH_MASK_CHECK_COMMANDS;
1050
1051 if (intf->last_watch_mask != flags) {
1052 intf->last_watch_mask = flags;
1053 intf->handlers->set_need_watch(intf->send_info,
1054 intf->last_watch_mask);
1055 }
1056 spin_unlock_irqrestore(&intf->watch_lock, iflags);
1057 }
1058
1059 /*
1060 * Find the next sequence number not being used and add the given
1061 * message with the given timeout to the sequence table. This must be
1062 * called with the interface's seq_lock held.
1063 */
intf_next_seq(struct ipmi_smi * intf,struct ipmi_recv_msg * recv_msg,unsigned long timeout,int retries,int broadcast,unsigned char * seq,long * seqid)1064 static int intf_next_seq(struct ipmi_smi *intf,
1065 struct ipmi_recv_msg *recv_msg,
1066 unsigned long timeout,
1067 int retries,
1068 int broadcast,
1069 unsigned char *seq,
1070 long *seqid)
1071 {
1072 int rv = 0;
1073 unsigned int i;
1074
1075 if (timeout == 0)
1076 timeout = default_retry_ms;
1077 if (retries < 0)
1078 retries = default_max_retries;
1079
1080 for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
1081 i = (i+1)%IPMI_IPMB_NUM_SEQ) {
1082 if (!intf->seq_table[i].inuse)
1083 break;
1084 }
1085
1086 if (!intf->seq_table[i].inuse) {
1087 intf->seq_table[i].recv_msg = recv_msg;
1088
1089 /*
1090 * Start with the maximum timeout, when the send response
1091 * comes in we will start the real timer.
1092 */
1093 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
1094 intf->seq_table[i].orig_timeout = timeout;
1095 intf->seq_table[i].retries_left = retries;
1096 intf->seq_table[i].broadcast = broadcast;
1097 intf->seq_table[i].inuse = 1;
1098 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
1099 *seq = i;
1100 *seqid = intf->seq_table[i].seqid;
1101 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
1102 smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1103 need_waiter(intf);
1104 } else {
1105 rv = -EAGAIN;
1106 }
1107
1108 return rv;
1109 }
1110
1111 /*
1112 * Return the receive message for the given sequence number and
1113 * release the sequence number so it can be reused. Some other data
1114 * is passed in to be sure the message matches up correctly (to help
1115 * guard against message coming in after their timeout and the
1116 * sequence number being reused).
1117 */
intf_find_seq(struct ipmi_smi * intf,unsigned char seq,short channel,unsigned char cmd,unsigned char netfn,struct ipmi_addr * addr,struct ipmi_recv_msg ** recv_msg)1118 static int intf_find_seq(struct ipmi_smi *intf,
1119 unsigned char seq,
1120 short channel,
1121 unsigned char cmd,
1122 unsigned char netfn,
1123 struct ipmi_addr *addr,
1124 struct ipmi_recv_msg **recv_msg)
1125 {
1126 int rv = -ENODEV;
1127
1128 if (seq >= IPMI_IPMB_NUM_SEQ)
1129 return -EINVAL;
1130
1131 mutex_lock(&intf->seq_lock);
1132 if (intf->seq_table[seq].inuse) {
1133 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
1134
1135 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
1136 && (msg->msg.netfn == netfn)
1137 && (ipmi_addr_equal(addr, &msg->addr))) {
1138 *recv_msg = msg;
1139 intf->seq_table[seq].inuse = 0;
1140 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1141 rv = 0;
1142 }
1143 }
1144 mutex_unlock(&intf->seq_lock);
1145
1146 return rv;
1147 }
1148
1149
1150 /* Start the timer for a specific sequence table entry. */
intf_start_seq_timer(struct ipmi_smi * intf,long msgid)1151 static int intf_start_seq_timer(struct ipmi_smi *intf,
1152 long msgid)
1153 {
1154 int rv = -ENODEV;
1155 unsigned char seq;
1156 unsigned long seqid;
1157
1158
1159 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1160
1161 mutex_lock(&intf->seq_lock);
1162 /*
1163 * We do this verification because the user can be deleted
1164 * while a message is outstanding.
1165 */
1166 if ((intf->seq_table[seq].inuse)
1167 && (intf->seq_table[seq].seqid == seqid)) {
1168 struct seq_table *ent = &intf->seq_table[seq];
1169 ent->timeout = ent->orig_timeout;
1170 rv = 0;
1171 }
1172 mutex_unlock(&intf->seq_lock);
1173
1174 return rv;
1175 }
1176
1177 /* Got an error for the send message for a specific sequence number. */
intf_err_seq(struct ipmi_smi * intf,long msgid,unsigned int err)1178 static int intf_err_seq(struct ipmi_smi *intf,
1179 long msgid,
1180 unsigned int err)
1181 {
1182 int rv = -ENODEV;
1183 unsigned char seq;
1184 unsigned long seqid;
1185 struct ipmi_recv_msg *msg = NULL;
1186
1187
1188 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1189
1190 mutex_lock(&intf->seq_lock);
1191 /*
1192 * We do this verification because the user can be deleted
1193 * while a message is outstanding.
1194 */
1195 if ((intf->seq_table[seq].inuse)
1196 && (intf->seq_table[seq].seqid == seqid)) {
1197 struct seq_table *ent = &intf->seq_table[seq];
1198
1199 ent->inuse = 0;
1200 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1201 msg = ent->recv_msg;
1202 rv = 0;
1203 }
1204 mutex_unlock(&intf->seq_lock);
1205
1206 if (msg)
1207 deliver_err_response(intf, msg, err);
1208
1209 return rv;
1210 }
1211
ipmi_create_user(unsigned int if_num,const struct ipmi_user_hndl * handler,void * handler_data,struct ipmi_user ** user)1212 int ipmi_create_user(unsigned int if_num,
1213 const struct ipmi_user_hndl *handler,
1214 void *handler_data,
1215 struct ipmi_user **user)
1216 {
1217 struct ipmi_user *new_user = NULL;
1218 int rv = 0;
1219 struct ipmi_smi *intf;
1220
1221 /*
1222 * There is no module usecount here, because it's not
1223 * required. Since this can only be used by and called from
1224 * other modules, they will implicitly use this module, and
1225 * thus this can't be removed unless the other modules are
1226 * removed.
1227 */
1228
1229 if (handler == NULL)
1230 return -EINVAL;
1231
1232 /*
1233 * Make sure the driver is actually initialized, this handles
1234 * problems with initialization order.
1235 */
1236 rv = ipmi_init_msghandler();
1237 if (rv)
1238 return rv;
1239
1240 mutex_lock(&ipmi_interfaces_mutex);
1241 list_for_each_entry(intf, &ipmi_interfaces, link) {
1242 if (intf->intf_num == if_num)
1243 goto found;
1244 }
1245 /* Not found, return an error */
1246 rv = -EINVAL;
1247 goto out_unlock;
1248
1249 found:
1250 if (intf->in_shutdown) {
1251 rv = -ENODEV;
1252 goto out_unlock;
1253 }
1254
1255 if (atomic_add_return(1, &intf->nr_users) > max_users) {
1256 rv = -EBUSY;
1257 goto out_kfree;
1258 }
1259
1260 new_user = vzalloc(sizeof(*new_user));
1261 if (!new_user) {
1262 rv = -ENOMEM;
1263 goto out_kfree;
1264 }
1265
1266 if (!try_module_get(intf->owner)) {
1267 rv = -ENODEV;
1268 goto out_kfree;
1269 }
1270
1271 /* Note that each existing user holds a refcount to the interface. */
1272 kref_get(&intf->refcount);
1273
1274 atomic_set(&new_user->nr_msgs, 0);
1275 kref_init(&new_user->refcount);
1276 refcount_set(&new_user->destroyed, 1);
1277 kref_get(&new_user->refcount); /* Destroy owns a refcount. */
1278 new_user->handler = handler;
1279 new_user->handler_data = handler_data;
1280 new_user->intf = intf;
1281 new_user->gets_events = false;
1282
1283 mutex_lock(&intf->users_mutex);
1284 mutex_lock(&intf->seq_lock);
1285 list_add(&new_user->link, &intf->users);
1286 mutex_unlock(&intf->seq_lock);
1287 mutex_unlock(&intf->users_mutex);
1288
1289 if (handler->ipmi_watchdog_pretimeout)
1290 /* User wants pretimeouts, so make sure to watch for them. */
1291 smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1292
1293 out_kfree:
1294 if (rv) {
1295 atomic_dec(&intf->nr_users);
1296 vfree(new_user);
1297 } else {
1298 *user = new_user;
1299 }
1300 out_unlock:
1301 mutex_unlock(&ipmi_interfaces_mutex);
1302 return rv;
1303 }
1304 EXPORT_SYMBOL(ipmi_create_user);
1305
ipmi_get_smi_info(int if_num,struct ipmi_smi_info * data)1306 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1307 {
1308 int rv = -EINVAL;
1309 struct ipmi_smi *intf;
1310
1311 mutex_lock(&ipmi_interfaces_mutex);
1312 list_for_each_entry(intf, &ipmi_interfaces, link) {
1313 if (intf->intf_num == if_num) {
1314 if (!intf->handlers->get_smi_info)
1315 rv = -ENOTTY;
1316 else
1317 rv = intf->handlers->get_smi_info(intf->send_info, data);
1318 break;
1319 }
1320 }
1321 mutex_unlock(&ipmi_interfaces_mutex);
1322
1323 return rv;
1324 }
1325 EXPORT_SYMBOL(ipmi_get_smi_info);
1326
1327 /* Must be called with intf->users_mutex held. */
_ipmi_destroy_user(struct ipmi_user * user)1328 static void _ipmi_destroy_user(struct ipmi_user *user)
1329 {
1330 struct ipmi_smi *intf = user->intf;
1331 int i;
1332 struct cmd_rcvr *rcvr;
1333 struct cmd_rcvr *rcvrs = NULL;
1334 struct ipmi_recv_msg *msg, *msg2;
1335
1336 if (!refcount_dec_if_one(&user->destroyed))
1337 return;
1338
1339 if (user->handler->shutdown)
1340 user->handler->shutdown(user->handler_data);
1341
1342 if (user->handler->ipmi_watchdog_pretimeout)
1343 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1344
1345 if (user->gets_events)
1346 atomic_dec(&intf->event_waiters);
1347
1348 /* Remove the user from the interface's list and sequence table. */
1349 list_del(&user->link);
1350 atomic_dec(&intf->nr_users);
1351
1352 mutex_lock(&intf->seq_lock);
1353 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1354 if (intf->seq_table[i].inuse
1355 && (intf->seq_table[i].recv_msg->user == user)) {
1356 intf->seq_table[i].inuse = 0;
1357 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1358 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1359 }
1360 }
1361 mutex_unlock(&intf->seq_lock);
1362
1363 /*
1364 * Remove the user from the command receiver's table. First
1365 * we build a list of everything (not using the standard link,
1366 * since other things may be using it till we do
1367 * synchronize_rcu()) then free everything in that list.
1368 */
1369 mutex_lock(&intf->cmd_rcvrs_mutex);
1370 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1371 lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1372 if (rcvr->user == user) {
1373 list_del_rcu(&rcvr->link);
1374 rcvr->next = rcvrs;
1375 rcvrs = rcvr;
1376 }
1377 }
1378 mutex_unlock(&intf->cmd_rcvrs_mutex);
1379 while (rcvrs) {
1380 rcvr = rcvrs;
1381 rcvrs = rcvr->next;
1382 kfree(rcvr);
1383 }
1384
1385 mutex_lock(&intf->user_msgs_mutex);
1386 list_for_each_entry_safe(msg, msg2, &intf->user_msgs, link) {
1387 if (msg->user != user)
1388 continue;
1389 list_del(&msg->link);
1390 ipmi_free_recv_msg(msg);
1391 }
1392 mutex_unlock(&intf->user_msgs_mutex);
1393
1394 release_ipmi_user(user);
1395 }
1396
ipmi_destroy_user(struct ipmi_user * user)1397 void ipmi_destroy_user(struct ipmi_user *user)
1398 {
1399 struct ipmi_smi *intf = user->intf;
1400
1401 mutex_lock(&intf->users_mutex);
1402 _ipmi_destroy_user(user);
1403 mutex_unlock(&intf->users_mutex);
1404
1405 kref_put(&user->refcount, free_ipmi_user);
1406 }
1407 EXPORT_SYMBOL(ipmi_destroy_user);
1408
ipmi_get_version(struct ipmi_user * user,unsigned char * major,unsigned char * minor)1409 int ipmi_get_version(struct ipmi_user *user,
1410 unsigned char *major,
1411 unsigned char *minor)
1412 {
1413 struct ipmi_device_id id;
1414 int rv;
1415
1416 user = acquire_ipmi_user(user);
1417 if (!user)
1418 return -ENODEV;
1419
1420 rv = bmc_get_device_id(user->intf, NULL, &id, NULL, NULL);
1421 if (!rv) {
1422 *major = ipmi_version_major(&id);
1423 *minor = ipmi_version_minor(&id);
1424 }
1425 release_ipmi_user(user);
1426
1427 return rv;
1428 }
1429 EXPORT_SYMBOL(ipmi_get_version);
1430
ipmi_set_my_address(struct ipmi_user * user,unsigned int channel,unsigned char address)1431 int ipmi_set_my_address(struct ipmi_user *user,
1432 unsigned int channel,
1433 unsigned char address)
1434 {
1435 int rv = 0;
1436
1437 user = acquire_ipmi_user(user);
1438 if (!user)
1439 return -ENODEV;
1440
1441 if (channel >= IPMI_MAX_CHANNELS) {
1442 rv = -EINVAL;
1443 } else {
1444 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1445 user->intf->addrinfo[channel].address = address;
1446 }
1447 release_ipmi_user(user);
1448
1449 return rv;
1450 }
1451 EXPORT_SYMBOL(ipmi_set_my_address);
1452
ipmi_get_my_address(struct ipmi_user * user,unsigned int channel,unsigned char * address)1453 int ipmi_get_my_address(struct ipmi_user *user,
1454 unsigned int channel,
1455 unsigned char *address)
1456 {
1457 int rv = 0;
1458
1459 user = acquire_ipmi_user(user);
1460 if (!user)
1461 return -ENODEV;
1462
1463 if (channel >= IPMI_MAX_CHANNELS) {
1464 rv = -EINVAL;
1465 } else {
1466 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1467 *address = user->intf->addrinfo[channel].address;
1468 }
1469 release_ipmi_user(user);
1470
1471 return rv;
1472 }
1473 EXPORT_SYMBOL(ipmi_get_my_address);
1474
ipmi_set_my_LUN(struct ipmi_user * user,unsigned int channel,unsigned char LUN)1475 int ipmi_set_my_LUN(struct ipmi_user *user,
1476 unsigned int channel,
1477 unsigned char LUN)
1478 {
1479 int rv = 0;
1480
1481 user = acquire_ipmi_user(user);
1482 if (!user)
1483 return -ENODEV;
1484
1485 if (channel >= IPMI_MAX_CHANNELS) {
1486 rv = -EINVAL;
1487 } else {
1488 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1489 user->intf->addrinfo[channel].lun = LUN & 0x3;
1490 }
1491 release_ipmi_user(user);
1492
1493 return rv;
1494 }
1495 EXPORT_SYMBOL(ipmi_set_my_LUN);
1496
ipmi_get_my_LUN(struct ipmi_user * user,unsigned int channel,unsigned char * address)1497 int ipmi_get_my_LUN(struct ipmi_user *user,
1498 unsigned int channel,
1499 unsigned char *address)
1500 {
1501 int rv = 0;
1502
1503 user = acquire_ipmi_user(user);
1504 if (!user)
1505 return -ENODEV;
1506
1507 if (channel >= IPMI_MAX_CHANNELS) {
1508 rv = -EINVAL;
1509 } else {
1510 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1511 *address = user->intf->addrinfo[channel].lun;
1512 }
1513 release_ipmi_user(user);
1514
1515 return rv;
1516 }
1517 EXPORT_SYMBOL(ipmi_get_my_LUN);
1518
ipmi_get_maintenance_mode(struct ipmi_user * user)1519 int ipmi_get_maintenance_mode(struct ipmi_user *user)
1520 {
1521 int mode;
1522 unsigned long flags;
1523
1524 user = acquire_ipmi_user(user);
1525 if (!user)
1526 return -ENODEV;
1527
1528 spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1529 mode = user->intf->maintenance_mode;
1530 spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1531 release_ipmi_user(user);
1532
1533 return mode;
1534 }
1535 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1536
maintenance_mode_update(struct ipmi_smi * intf)1537 static void maintenance_mode_update(struct ipmi_smi *intf)
1538 {
1539 if (intf->handlers->set_maintenance_mode)
1540 /*
1541 * Lower level drivers only care about firmware mode
1542 * as it affects their timing. They don't care about
1543 * reset, which disables all commands for a while.
1544 */
1545 intf->handlers->set_maintenance_mode(
1546 intf->send_info,
1547 (intf->maintenance_mode_state ==
1548 IPMI_MAINTENANCE_MODE_STATE_FIRMWARE));
1549 }
1550
ipmi_set_maintenance_mode(struct ipmi_user * user,int mode)1551 int ipmi_set_maintenance_mode(struct ipmi_user *user, int mode)
1552 {
1553 int rv = 0;
1554 unsigned long flags;
1555 struct ipmi_smi *intf = user->intf;
1556
1557 user = acquire_ipmi_user(user);
1558 if (!user)
1559 return -ENODEV;
1560
1561 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1562 if (intf->maintenance_mode != mode) {
1563 switch (mode) {
1564 case IPMI_MAINTENANCE_MODE_AUTO:
1565 /* Just leave it alone. */
1566 break;
1567
1568 case IPMI_MAINTENANCE_MODE_OFF:
1569 intf->maintenance_mode_state =
1570 IPMI_MAINTENANCE_MODE_STATE_OFF;
1571 break;
1572
1573 case IPMI_MAINTENANCE_MODE_ON:
1574 intf->maintenance_mode_state =
1575 IPMI_MAINTENANCE_MODE_STATE_FIRMWARE;
1576 break;
1577
1578 default:
1579 rv = -EINVAL;
1580 goto out_unlock;
1581 }
1582 intf->maintenance_mode = mode;
1583
1584 maintenance_mode_update(intf);
1585 }
1586 out_unlock:
1587 spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1588 release_ipmi_user(user);
1589
1590 return rv;
1591 }
1592 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1593
ipmi_set_gets_events(struct ipmi_user * user,bool val)1594 int ipmi_set_gets_events(struct ipmi_user *user, bool val)
1595 {
1596 struct ipmi_smi *intf = user->intf;
1597 struct ipmi_recv_msg *msg, *msg2;
1598 struct list_head msgs;
1599
1600 user = acquire_ipmi_user(user);
1601 if (!user)
1602 return -ENODEV;
1603
1604 INIT_LIST_HEAD(&msgs);
1605
1606 mutex_lock(&intf->events_mutex);
1607 if (user->gets_events == val)
1608 goto out;
1609
1610 user->gets_events = val;
1611
1612 if (val) {
1613 if (atomic_inc_return(&intf->event_waiters) == 1)
1614 need_waiter(intf);
1615 } else {
1616 atomic_dec(&intf->event_waiters);
1617 }
1618
1619 /* Deliver any queued events. */
1620 while (user->gets_events && !list_empty(&intf->waiting_events)) {
1621 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1622 list_move_tail(&msg->link, &msgs);
1623 intf->waiting_events_count = 0;
1624 if (intf->event_msg_printed) {
1625 dev_warn(intf->si_dev, "Event queue no longer full\n");
1626 intf->event_msg_printed = 0;
1627 }
1628
1629 list_for_each_entry_safe(msg, msg2, &msgs, link) {
1630 ipmi_set_recv_msg_user(msg, user);
1631 deliver_local_response(intf, msg);
1632 }
1633 }
1634
1635 out:
1636 mutex_unlock(&intf->events_mutex);
1637 release_ipmi_user(user);
1638
1639 return 0;
1640 }
1641 EXPORT_SYMBOL(ipmi_set_gets_events);
1642
find_cmd_rcvr(struct ipmi_smi * intf,unsigned char netfn,unsigned char cmd,unsigned char chan)1643 static struct cmd_rcvr *find_cmd_rcvr(struct ipmi_smi *intf,
1644 unsigned char netfn,
1645 unsigned char cmd,
1646 unsigned char chan)
1647 {
1648 struct cmd_rcvr *rcvr;
1649
1650 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1651 lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1652 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1653 && (rcvr->chans & (1 << chan)))
1654 return rcvr;
1655 }
1656 return NULL;
1657 }
1658
is_cmd_rcvr_exclusive(struct ipmi_smi * intf,unsigned char netfn,unsigned char cmd,unsigned int chans)1659 static int is_cmd_rcvr_exclusive(struct ipmi_smi *intf,
1660 unsigned char netfn,
1661 unsigned char cmd,
1662 unsigned int chans)
1663 {
1664 struct cmd_rcvr *rcvr;
1665
1666 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1667 lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1668 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1669 && (rcvr->chans & chans))
1670 return 0;
1671 }
1672 return 1;
1673 }
1674
ipmi_register_for_cmd(struct ipmi_user * user,unsigned char netfn,unsigned char cmd,unsigned int chans)1675 int ipmi_register_for_cmd(struct ipmi_user *user,
1676 unsigned char netfn,
1677 unsigned char cmd,
1678 unsigned int chans)
1679 {
1680 struct ipmi_smi *intf = user->intf;
1681 struct cmd_rcvr *rcvr;
1682 int rv = 0;
1683
1684 user = acquire_ipmi_user(user);
1685 if (!user)
1686 return -ENODEV;
1687
1688 rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1689 if (!rcvr) {
1690 rv = -ENOMEM;
1691 goto out_release;
1692 }
1693 rcvr->cmd = cmd;
1694 rcvr->netfn = netfn;
1695 rcvr->chans = chans;
1696 rcvr->user = user;
1697
1698 mutex_lock(&intf->cmd_rcvrs_mutex);
1699 /* Make sure the command/netfn is not already registered. */
1700 if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1701 rv = -EBUSY;
1702 goto out_unlock;
1703 }
1704
1705 smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1706
1707 list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1708
1709 out_unlock:
1710 mutex_unlock(&intf->cmd_rcvrs_mutex);
1711 if (rv)
1712 kfree(rcvr);
1713 out_release:
1714 release_ipmi_user(user);
1715
1716 return rv;
1717 }
1718 EXPORT_SYMBOL(ipmi_register_for_cmd);
1719
ipmi_unregister_for_cmd(struct ipmi_user * user,unsigned char netfn,unsigned char cmd,unsigned int chans)1720 int ipmi_unregister_for_cmd(struct ipmi_user *user,
1721 unsigned char netfn,
1722 unsigned char cmd,
1723 unsigned int chans)
1724 {
1725 struct ipmi_smi *intf = user->intf;
1726 struct cmd_rcvr *rcvr;
1727 struct cmd_rcvr *rcvrs = NULL;
1728 int i, rv = -ENOENT;
1729
1730 user = acquire_ipmi_user(user);
1731 if (!user)
1732 return -ENODEV;
1733
1734 mutex_lock(&intf->cmd_rcvrs_mutex);
1735 for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1736 if (((1 << i) & chans) == 0)
1737 continue;
1738 rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1739 if (rcvr == NULL)
1740 continue;
1741 if (rcvr->user == user) {
1742 rv = 0;
1743 rcvr->chans &= ~chans;
1744 if (rcvr->chans == 0) {
1745 list_del_rcu(&rcvr->link);
1746 rcvr->next = rcvrs;
1747 rcvrs = rcvr;
1748 }
1749 }
1750 }
1751 mutex_unlock(&intf->cmd_rcvrs_mutex);
1752 synchronize_rcu();
1753 release_ipmi_user(user);
1754 while (rcvrs) {
1755 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1756 rcvr = rcvrs;
1757 rcvrs = rcvr->next;
1758 kfree(rcvr);
1759 }
1760
1761 return rv;
1762 }
1763 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1764
1765 unsigned char
ipmb_checksum(unsigned char * data,int size)1766 ipmb_checksum(unsigned char *data, int size)
1767 {
1768 unsigned char csum = 0;
1769
1770 for (; size > 0; size--, data++)
1771 csum += *data;
1772
1773 return -csum;
1774 }
1775 EXPORT_SYMBOL(ipmb_checksum);
1776
format_ipmb_msg(struct ipmi_smi_msg * smi_msg,struct kernel_ipmi_msg * msg,struct ipmi_ipmb_addr * ipmb_addr,long msgid,unsigned char ipmb_seq,int broadcast,unsigned char source_address,unsigned char source_lun)1777 static inline void format_ipmb_msg(struct ipmi_smi_msg *smi_msg,
1778 struct kernel_ipmi_msg *msg,
1779 struct ipmi_ipmb_addr *ipmb_addr,
1780 long msgid,
1781 unsigned char ipmb_seq,
1782 int broadcast,
1783 unsigned char source_address,
1784 unsigned char source_lun)
1785 {
1786 int i = broadcast;
1787
1788 /* Format the IPMB header data. */
1789 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1790 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1791 smi_msg->data[2] = ipmb_addr->channel;
1792 if (broadcast)
1793 smi_msg->data[3] = 0;
1794 smi_msg->data[i+3] = ipmb_addr->slave_addr;
1795 smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1796 smi_msg->data[i+5] = ipmb_checksum(&smi_msg->data[i + 3], 2);
1797 smi_msg->data[i+6] = source_address;
1798 smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1799 smi_msg->data[i+8] = msg->cmd;
1800
1801 /* Now tack on the data to the message. */
1802 if (msg->data_len > 0)
1803 memcpy(&smi_msg->data[i + 9], msg->data, msg->data_len);
1804 smi_msg->data_size = msg->data_len + 9;
1805
1806 /* Now calculate the checksum and tack it on. */
1807 smi_msg->data[i+smi_msg->data_size]
1808 = ipmb_checksum(&smi_msg->data[i + 6], smi_msg->data_size - 6);
1809
1810 /*
1811 * Add on the checksum size and the offset from the
1812 * broadcast.
1813 */
1814 smi_msg->data_size += 1 + i;
1815
1816 smi_msg->msgid = msgid;
1817 }
1818
format_lan_msg(struct ipmi_smi_msg * smi_msg,struct kernel_ipmi_msg * msg,struct ipmi_lan_addr * lan_addr,long msgid,unsigned char ipmb_seq,unsigned char source_lun)1819 static inline void format_lan_msg(struct ipmi_smi_msg *smi_msg,
1820 struct kernel_ipmi_msg *msg,
1821 struct ipmi_lan_addr *lan_addr,
1822 long msgid,
1823 unsigned char ipmb_seq,
1824 unsigned char source_lun)
1825 {
1826 /* Format the IPMB header data. */
1827 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1828 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1829 smi_msg->data[2] = lan_addr->channel;
1830 smi_msg->data[3] = lan_addr->session_handle;
1831 smi_msg->data[4] = lan_addr->remote_SWID;
1832 smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1833 smi_msg->data[6] = ipmb_checksum(&smi_msg->data[4], 2);
1834 smi_msg->data[7] = lan_addr->local_SWID;
1835 smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1836 smi_msg->data[9] = msg->cmd;
1837
1838 /* Now tack on the data to the message. */
1839 if (msg->data_len > 0)
1840 memcpy(&smi_msg->data[10], msg->data, msg->data_len);
1841 smi_msg->data_size = msg->data_len + 10;
1842
1843 /* Now calculate the checksum and tack it on. */
1844 smi_msg->data[smi_msg->data_size]
1845 = ipmb_checksum(&smi_msg->data[7], smi_msg->data_size - 7);
1846
1847 /*
1848 * Add on the checksum size and the offset from the
1849 * broadcast.
1850 */
1851 smi_msg->data_size += 1;
1852
1853 smi_msg->msgid = msgid;
1854 }
1855
smi_add_send_msg(struct ipmi_smi * intf,struct ipmi_smi_msg * smi_msg,int priority)1856 static struct ipmi_smi_msg *smi_add_send_msg(struct ipmi_smi *intf,
1857 struct ipmi_smi_msg *smi_msg,
1858 int priority)
1859 {
1860 if (intf->curr_msg) {
1861 if (priority > 0)
1862 list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1863 else
1864 list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1865 smi_msg = NULL;
1866 } else {
1867 intf->curr_msg = smi_msg;
1868 }
1869
1870 return smi_msg;
1871 }
1872
smi_send(struct ipmi_smi * intf,const struct ipmi_smi_handlers * handlers,struct ipmi_smi_msg * smi_msg,int priority)1873 static void smi_send(struct ipmi_smi *intf,
1874 const struct ipmi_smi_handlers *handlers,
1875 struct ipmi_smi_msg *smi_msg, int priority)
1876 {
1877 int run_to_completion = READ_ONCE(intf->run_to_completion);
1878 unsigned long flags = 0;
1879
1880 if (!run_to_completion)
1881 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1882 smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1883 if (!run_to_completion)
1884 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1885
1886 if (smi_msg)
1887 handlers->sender(intf->send_info, smi_msg);
1888 }
1889
is_maintenance_mode_cmd(struct kernel_ipmi_msg * msg)1890 static bool is_maintenance_mode_cmd(struct kernel_ipmi_msg *msg)
1891 {
1892 return (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1893 && ((msg->cmd == IPMI_COLD_RESET_CMD)
1894 || (msg->cmd == IPMI_WARM_RESET_CMD)))
1895 || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST));
1896 }
1897
i_ipmi_req_sysintf(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,int retries,unsigned int retry_time_ms)1898 static int i_ipmi_req_sysintf(struct ipmi_smi *intf,
1899 struct ipmi_addr *addr,
1900 long msgid,
1901 struct kernel_ipmi_msg *msg,
1902 struct ipmi_smi_msg *smi_msg,
1903 struct ipmi_recv_msg *recv_msg,
1904 int retries,
1905 unsigned int retry_time_ms)
1906 {
1907 struct ipmi_system_interface_addr *smi_addr;
1908
1909 if (msg->netfn & 1)
1910 /* Responses are not allowed to the SMI. */
1911 return -EINVAL;
1912
1913 smi_addr = (struct ipmi_system_interface_addr *) addr;
1914 if (smi_addr->lun > 3) {
1915 ipmi_inc_stat(intf, sent_invalid_commands);
1916 return -EINVAL;
1917 }
1918
1919 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1920
1921 if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1922 && ((msg->cmd == IPMI_SEND_MSG_CMD)
1923 || (msg->cmd == IPMI_GET_MSG_CMD)
1924 || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1925 /*
1926 * We don't let the user do these, since we manage
1927 * the sequence numbers.
1928 */
1929 ipmi_inc_stat(intf, sent_invalid_commands);
1930 return -EINVAL;
1931 }
1932
1933 if (is_maintenance_mode_cmd(msg)) {
1934 unsigned long flags;
1935 int newst;
1936
1937 if (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)
1938 newst = IPMI_MAINTENANCE_MODE_STATE_FIRMWARE;
1939 else
1940 newst = IPMI_MAINTENANCE_MODE_STATE_RESET;
1941
1942 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1943 intf->auto_maintenance_timeout = maintenance_mode_timeout_ms;
1944 if (!intf->maintenance_mode
1945 && intf->maintenance_mode_state < newst) {
1946 intf->maintenance_mode_state = newst;
1947 maintenance_mode_update(intf);
1948 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
1949 }
1950 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1951 flags);
1952 }
1953
1954 if (msg->data_len + 2 > IPMI_MAX_MSG_LENGTH) {
1955 ipmi_inc_stat(intf, sent_invalid_commands);
1956 return -EMSGSIZE;
1957 }
1958
1959 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1960 smi_msg->data[1] = msg->cmd;
1961 smi_msg->msgid = msgid;
1962 smi_msg->recv_msg = recv_msg;
1963 if (msg->data_len > 0)
1964 memcpy(&smi_msg->data[2], msg->data, msg->data_len);
1965 smi_msg->data_size = msg->data_len + 2;
1966 ipmi_inc_stat(intf, sent_local_commands);
1967
1968 return 0;
1969 }
1970
i_ipmi_req_ipmb(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,unsigned char source_address,unsigned char source_lun,int retries,unsigned int retry_time_ms)1971 static int i_ipmi_req_ipmb(struct ipmi_smi *intf,
1972 struct ipmi_addr *addr,
1973 long msgid,
1974 struct kernel_ipmi_msg *msg,
1975 struct ipmi_smi_msg *smi_msg,
1976 struct ipmi_recv_msg *recv_msg,
1977 unsigned char source_address,
1978 unsigned char source_lun,
1979 int retries,
1980 unsigned int retry_time_ms)
1981 {
1982 struct ipmi_ipmb_addr *ipmb_addr;
1983 unsigned char ipmb_seq;
1984 long seqid;
1985 int broadcast = 0;
1986 struct ipmi_channel *chans;
1987 int rv = 0;
1988
1989 if (addr->channel >= IPMI_MAX_CHANNELS) {
1990 ipmi_inc_stat(intf, sent_invalid_commands);
1991 return -EINVAL;
1992 }
1993
1994 chans = READ_ONCE(intf->channel_list)->c;
1995
1996 if (chans[addr->channel].medium != IPMI_CHANNEL_MEDIUM_IPMB) {
1997 ipmi_inc_stat(intf, sent_invalid_commands);
1998 return -EINVAL;
1999 }
2000
2001 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
2002 /*
2003 * Broadcasts add a zero at the beginning of the
2004 * message, but otherwise is the same as an IPMB
2005 * address.
2006 */
2007 addr->addr_type = IPMI_IPMB_ADDR_TYPE;
2008 broadcast = 1;
2009 retries = 0; /* Don't retry broadcasts. */
2010 }
2011
2012 /*
2013 * 9 for the header and 1 for the checksum, plus
2014 * possibly one for the broadcast.
2015 */
2016 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
2017 ipmi_inc_stat(intf, sent_invalid_commands);
2018 return -EMSGSIZE;
2019 }
2020
2021 ipmb_addr = (struct ipmi_ipmb_addr *) addr;
2022 if (ipmb_addr->lun > 3) {
2023 ipmi_inc_stat(intf, sent_invalid_commands);
2024 return -EINVAL;
2025 }
2026
2027 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
2028
2029 if (recv_msg->msg.netfn & 0x1) {
2030 /*
2031 * It's a response, so use the user's sequence
2032 * from msgid.
2033 */
2034 ipmi_inc_stat(intf, sent_ipmb_responses);
2035 format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
2036 msgid, broadcast,
2037 source_address, source_lun);
2038
2039 /*
2040 * Save the receive message so we can use it
2041 * to deliver the response.
2042 */
2043 smi_msg->recv_msg = recv_msg;
2044 } else {
2045 mutex_lock(&intf->seq_lock);
2046
2047 if (is_maintenance_mode_cmd(msg))
2048 intf->ipmb_maintenance_mode_timeout =
2049 maintenance_mode_timeout_ms;
2050
2051 if (intf->ipmb_maintenance_mode_timeout && retry_time_ms == 0)
2052 /* Different default in maintenance mode */
2053 retry_time_ms = default_maintenance_retry_ms;
2054
2055 /*
2056 * Create a sequence number with a 1 second
2057 * timeout and 4 retries.
2058 */
2059 rv = intf_next_seq(intf,
2060 recv_msg,
2061 retry_time_ms,
2062 retries,
2063 broadcast,
2064 &ipmb_seq,
2065 &seqid);
2066 if (rv)
2067 /*
2068 * We have used up all the sequence numbers,
2069 * probably, so abort.
2070 */
2071 goto out_err;
2072
2073 ipmi_inc_stat(intf, sent_ipmb_commands);
2074
2075 /*
2076 * Store the sequence number in the message,
2077 * so that when the send message response
2078 * comes back we can start the timer.
2079 */
2080 format_ipmb_msg(smi_msg, msg, ipmb_addr,
2081 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2082 ipmb_seq, broadcast,
2083 source_address, source_lun);
2084
2085 /*
2086 * Copy the message into the recv message data, so we
2087 * can retransmit it later if necessary.
2088 */
2089 memcpy(recv_msg->msg_data, smi_msg->data,
2090 smi_msg->data_size);
2091 recv_msg->msg.data = recv_msg->msg_data;
2092 recv_msg->msg.data_len = smi_msg->data_size;
2093
2094 /*
2095 * We don't unlock until here, because we need
2096 * to copy the completed message into the
2097 * recv_msg before we release the lock.
2098 * Otherwise, race conditions may bite us. I
2099 * know that's pretty paranoid, but I prefer
2100 * to be correct.
2101 */
2102 out_err:
2103 mutex_unlock(&intf->seq_lock);
2104 }
2105
2106 return rv;
2107 }
2108
i_ipmi_req_ipmb_direct(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,unsigned char source_lun)2109 static int i_ipmi_req_ipmb_direct(struct ipmi_smi *intf,
2110 struct ipmi_addr *addr,
2111 long msgid,
2112 struct kernel_ipmi_msg *msg,
2113 struct ipmi_smi_msg *smi_msg,
2114 struct ipmi_recv_msg *recv_msg,
2115 unsigned char source_lun)
2116 {
2117 struct ipmi_ipmb_direct_addr *daddr;
2118 bool is_cmd = !(recv_msg->msg.netfn & 0x1);
2119
2120 if (!(intf->handlers->flags & IPMI_SMI_CAN_HANDLE_IPMB_DIRECT))
2121 return -EAFNOSUPPORT;
2122
2123 /* Responses must have a completion code. */
2124 if (!is_cmd && msg->data_len < 1) {
2125 ipmi_inc_stat(intf, sent_invalid_commands);
2126 return -EINVAL;
2127 }
2128
2129 if ((msg->data_len + 4) > IPMI_MAX_MSG_LENGTH) {
2130 ipmi_inc_stat(intf, sent_invalid_commands);
2131 return -EMSGSIZE;
2132 }
2133
2134 daddr = (struct ipmi_ipmb_direct_addr *) addr;
2135 if (daddr->rq_lun > 3 || daddr->rs_lun > 3) {
2136 ipmi_inc_stat(intf, sent_invalid_commands);
2137 return -EINVAL;
2138 }
2139
2140 smi_msg->type = IPMI_SMI_MSG_TYPE_IPMB_DIRECT;
2141 smi_msg->msgid = msgid;
2142
2143 if (is_cmd) {
2144 smi_msg->data[0] = msg->netfn << 2 | daddr->rs_lun;
2145 smi_msg->data[2] = recv_msg->msgid << 2 | daddr->rq_lun;
2146 } else {
2147 smi_msg->data[0] = msg->netfn << 2 | daddr->rq_lun;
2148 smi_msg->data[2] = recv_msg->msgid << 2 | daddr->rs_lun;
2149 }
2150 smi_msg->data[1] = daddr->slave_addr;
2151 smi_msg->data[3] = msg->cmd;
2152
2153 memcpy(smi_msg->data + 4, msg->data, msg->data_len);
2154 smi_msg->data_size = msg->data_len + 4;
2155
2156 smi_msg->recv_msg = recv_msg;
2157
2158 return 0;
2159 }
2160
i_ipmi_req_lan(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,unsigned char source_lun,int retries,unsigned int retry_time_ms)2161 static int i_ipmi_req_lan(struct ipmi_smi *intf,
2162 struct ipmi_addr *addr,
2163 long msgid,
2164 struct kernel_ipmi_msg *msg,
2165 struct ipmi_smi_msg *smi_msg,
2166 struct ipmi_recv_msg *recv_msg,
2167 unsigned char source_lun,
2168 int retries,
2169 unsigned int retry_time_ms)
2170 {
2171 struct ipmi_lan_addr *lan_addr;
2172 unsigned char ipmb_seq;
2173 long seqid;
2174 struct ipmi_channel *chans;
2175 int rv = 0;
2176
2177 if (addr->channel >= IPMI_MAX_CHANNELS) {
2178 ipmi_inc_stat(intf, sent_invalid_commands);
2179 return -EINVAL;
2180 }
2181
2182 chans = READ_ONCE(intf->channel_list)->c;
2183
2184 if ((chans[addr->channel].medium
2185 != IPMI_CHANNEL_MEDIUM_8023LAN)
2186 && (chans[addr->channel].medium
2187 != IPMI_CHANNEL_MEDIUM_ASYNC)) {
2188 ipmi_inc_stat(intf, sent_invalid_commands);
2189 return -EINVAL;
2190 }
2191
2192 /* 11 for the header and 1 for the checksum. */
2193 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
2194 ipmi_inc_stat(intf, sent_invalid_commands);
2195 return -EMSGSIZE;
2196 }
2197
2198 lan_addr = (struct ipmi_lan_addr *) addr;
2199 if (lan_addr->lun > 3) {
2200 ipmi_inc_stat(intf, sent_invalid_commands);
2201 return -EINVAL;
2202 }
2203
2204 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
2205
2206 if (recv_msg->msg.netfn & 0x1) {
2207 /*
2208 * It's a response, so use the user's sequence
2209 * from msgid.
2210 */
2211 ipmi_inc_stat(intf, sent_lan_responses);
2212 format_lan_msg(smi_msg, msg, lan_addr, msgid,
2213 msgid, source_lun);
2214
2215 /*
2216 * Save the receive message so we can use it
2217 * to deliver the response.
2218 */
2219 smi_msg->recv_msg = recv_msg;
2220 } else {
2221 mutex_lock(&intf->seq_lock);
2222
2223 /*
2224 * Create a sequence number with a 1 second
2225 * timeout and 4 retries.
2226 */
2227 rv = intf_next_seq(intf,
2228 recv_msg,
2229 retry_time_ms,
2230 retries,
2231 0,
2232 &ipmb_seq,
2233 &seqid);
2234 if (rv)
2235 /*
2236 * We have used up all the sequence numbers,
2237 * probably, so abort.
2238 */
2239 goto out_err;
2240
2241 ipmi_inc_stat(intf, sent_lan_commands);
2242
2243 /*
2244 * Store the sequence number in the message,
2245 * so that when the send message response
2246 * comes back we can start the timer.
2247 */
2248 format_lan_msg(smi_msg, msg, lan_addr,
2249 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2250 ipmb_seq, source_lun);
2251
2252 /*
2253 * Copy the message into the recv message data, so we
2254 * can retransmit it later if necessary.
2255 */
2256 memcpy(recv_msg->msg_data, smi_msg->data,
2257 smi_msg->data_size);
2258 recv_msg->msg.data = recv_msg->msg_data;
2259 recv_msg->msg.data_len = smi_msg->data_size;
2260
2261 /*
2262 * We don't unlock until here, because we need
2263 * to copy the completed message into the
2264 * recv_msg before we release the lock.
2265 * Otherwise, race conditions may bite us. I
2266 * know that's pretty paranoid, but I prefer
2267 * to be correct.
2268 */
2269 out_err:
2270 mutex_unlock(&intf->seq_lock);
2271 }
2272
2273 return rv;
2274 }
2275
2276 /*
2277 * Separate from ipmi_request so that the user does not have to be
2278 * supplied in certain circumstances (mainly at panic time). If
2279 * messages are supplied, they will be freed, even if an error
2280 * occurs.
2281 */
i_ipmi_request(struct ipmi_user * user,struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,void * user_msg_data,void * supplied_smi,struct ipmi_recv_msg * supplied_recv,int priority,unsigned char source_address,unsigned char source_lun,int retries,unsigned int retry_time_ms)2282 static int i_ipmi_request(struct ipmi_user *user,
2283 struct ipmi_smi *intf,
2284 struct ipmi_addr *addr,
2285 long msgid,
2286 struct kernel_ipmi_msg *msg,
2287 void *user_msg_data,
2288 void *supplied_smi,
2289 struct ipmi_recv_msg *supplied_recv,
2290 int priority,
2291 unsigned char source_address,
2292 unsigned char source_lun,
2293 int retries,
2294 unsigned int retry_time_ms)
2295 {
2296 struct ipmi_smi_msg *smi_msg;
2297 struct ipmi_recv_msg *recv_msg;
2298 int run_to_completion = READ_ONCE(intf->run_to_completion);
2299 int rv = 0;
2300
2301 if (supplied_recv) {
2302 recv_msg = supplied_recv;
2303 recv_msg->user = user;
2304 if (user) {
2305 atomic_inc(&user->nr_msgs);
2306 /* The put happens when the message is freed. */
2307 kref_get(&user->refcount);
2308 }
2309 } else {
2310 recv_msg = ipmi_alloc_recv_msg(user);
2311 if (IS_ERR(recv_msg))
2312 return PTR_ERR(recv_msg);
2313 }
2314 recv_msg->user_msg_data = user_msg_data;
2315
2316 if (supplied_smi)
2317 smi_msg = supplied_smi;
2318 else {
2319 smi_msg = ipmi_alloc_smi_msg();
2320 if (smi_msg == NULL) {
2321 if (!supplied_recv)
2322 ipmi_free_recv_msg(recv_msg);
2323 return -ENOMEM;
2324 }
2325 }
2326
2327 if (!run_to_completion)
2328 mutex_lock(&intf->users_mutex);
2329 if (intf->maintenance_mode_state == IPMI_MAINTENANCE_MODE_STATE_RESET) {
2330 /* No messages while the BMC is in reset. */
2331 rv = -EBUSY;
2332 goto out_err;
2333 }
2334 if (intf->in_shutdown) {
2335 rv = -ENODEV;
2336 goto out_err;
2337 }
2338
2339 recv_msg->msgid = msgid;
2340 /*
2341 * Store the message to send in the receive message so timeout
2342 * responses can get the proper response data.
2343 */
2344 recv_msg->msg = *msg;
2345
2346 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
2347 rv = i_ipmi_req_sysintf(intf, addr, msgid, msg, smi_msg,
2348 recv_msg, retries, retry_time_ms);
2349 } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
2350 rv = i_ipmi_req_ipmb(intf, addr, msgid, msg, smi_msg, recv_msg,
2351 source_address, source_lun,
2352 retries, retry_time_ms);
2353 } else if (is_ipmb_direct_addr(addr)) {
2354 rv = i_ipmi_req_ipmb_direct(intf, addr, msgid, msg, smi_msg,
2355 recv_msg, source_lun);
2356 } else if (is_lan_addr(addr)) {
2357 rv = i_ipmi_req_lan(intf, addr, msgid, msg, smi_msg, recv_msg,
2358 source_lun, retries, retry_time_ms);
2359 } else {
2360 /* Unknown address type. */
2361 ipmi_inc_stat(intf, sent_invalid_commands);
2362 rv = -EINVAL;
2363 }
2364
2365 if (rv) {
2366 out_err:
2367 if (!supplied_smi)
2368 ipmi_free_smi_msg(smi_msg);
2369 if (!supplied_recv)
2370 ipmi_free_recv_msg(recv_msg);
2371 } else {
2372 dev_dbg(intf->si_dev, "Send: %*ph\n",
2373 smi_msg->data_size, smi_msg->data);
2374
2375 smi_send(intf, intf->handlers, smi_msg, priority);
2376 }
2377 if (!run_to_completion)
2378 mutex_unlock(&intf->users_mutex);
2379
2380 return rv;
2381 }
2382
check_addr(struct ipmi_smi * intf,struct ipmi_addr * addr,unsigned char * saddr,unsigned char * lun)2383 static int check_addr(struct ipmi_smi *intf,
2384 struct ipmi_addr *addr,
2385 unsigned char *saddr,
2386 unsigned char *lun)
2387 {
2388 if (addr->channel >= IPMI_MAX_CHANNELS)
2389 return -EINVAL;
2390 addr->channel = array_index_nospec(addr->channel, IPMI_MAX_CHANNELS);
2391 *lun = intf->addrinfo[addr->channel].lun;
2392 *saddr = intf->addrinfo[addr->channel].address;
2393 return 0;
2394 }
2395
ipmi_request_settime(struct ipmi_user * user,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,void * user_msg_data,int priority,int retries,unsigned int retry_time_ms)2396 int ipmi_request_settime(struct ipmi_user *user,
2397 struct ipmi_addr *addr,
2398 long msgid,
2399 struct kernel_ipmi_msg *msg,
2400 void *user_msg_data,
2401 int priority,
2402 int retries,
2403 unsigned int retry_time_ms)
2404 {
2405 unsigned char saddr = 0, lun = 0;
2406 int rv;
2407
2408 if (!user)
2409 return -EINVAL;
2410
2411 user = acquire_ipmi_user(user);
2412 if (!user)
2413 return -ENODEV;
2414
2415 rv = check_addr(user->intf, addr, &saddr, &lun);
2416 if (!rv)
2417 rv = i_ipmi_request(user,
2418 user->intf,
2419 addr,
2420 msgid,
2421 msg,
2422 user_msg_data,
2423 NULL, NULL,
2424 priority,
2425 saddr,
2426 lun,
2427 retries,
2428 retry_time_ms);
2429
2430 release_ipmi_user(user);
2431 return rv;
2432 }
2433 EXPORT_SYMBOL(ipmi_request_settime);
2434
ipmi_request_supply_msgs(struct ipmi_user * user,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,void * user_msg_data,void * supplied_smi,struct ipmi_recv_msg * supplied_recv,int priority)2435 int ipmi_request_supply_msgs(struct ipmi_user *user,
2436 struct ipmi_addr *addr,
2437 long msgid,
2438 struct kernel_ipmi_msg *msg,
2439 void *user_msg_data,
2440 void *supplied_smi,
2441 struct ipmi_recv_msg *supplied_recv,
2442 int priority)
2443 {
2444 unsigned char saddr = 0, lun = 0;
2445 int rv;
2446
2447 if (!user)
2448 return -EINVAL;
2449
2450 user = acquire_ipmi_user(user);
2451 if (!user)
2452 return -ENODEV;
2453
2454 rv = check_addr(user->intf, addr, &saddr, &lun);
2455 if (!rv)
2456 rv = i_ipmi_request(user,
2457 user->intf,
2458 addr,
2459 msgid,
2460 msg,
2461 user_msg_data,
2462 supplied_smi,
2463 supplied_recv,
2464 priority,
2465 saddr,
2466 lun,
2467 -1, 0);
2468
2469 release_ipmi_user(user);
2470 return rv;
2471 }
2472 EXPORT_SYMBOL(ipmi_request_supply_msgs);
2473
bmc_device_id_handler(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)2474 static void bmc_device_id_handler(struct ipmi_smi *intf,
2475 struct ipmi_recv_msg *msg)
2476 {
2477 int rv;
2478
2479 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2480 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2481 || (msg->msg.cmd != IPMI_GET_DEVICE_ID_CMD)) {
2482 dev_warn(intf->si_dev,
2483 "invalid device_id msg: addr_type=%d netfn=%x cmd=%x\n",
2484 msg->addr.addr_type, msg->msg.netfn, msg->msg.cmd);
2485 return;
2486 }
2487
2488 if (msg->msg.data[0]) {
2489 dev_warn(intf->si_dev, "device id fetch failed: 0x%2.2x\n",
2490 msg->msg.data[0]);
2491 intf->bmc->dyn_id_set = 0;
2492 goto out;
2493 }
2494
2495 rv = ipmi_demangle_device_id(msg->msg.netfn, msg->msg.cmd,
2496 msg->msg.data, msg->msg.data_len, &intf->bmc->fetch_id);
2497 if (rv) {
2498 dev_warn(intf->si_dev, "device id demangle failed: %d\n", rv);
2499 /* record completion code when error */
2500 intf->bmc->cc = msg->msg.data[0];
2501 intf->bmc->dyn_id_set = 0;
2502 } else {
2503 /*
2504 * Make sure the id data is available before setting
2505 * dyn_id_set.
2506 */
2507 smp_wmb();
2508 intf->bmc->dyn_id_set = 1;
2509 }
2510 out:
2511 wake_up(&intf->waitq);
2512 }
2513
2514 static int
send_get_device_id_cmd(struct ipmi_smi * intf)2515 send_get_device_id_cmd(struct ipmi_smi *intf)
2516 {
2517 struct ipmi_system_interface_addr si;
2518 struct kernel_ipmi_msg msg;
2519
2520 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2521 si.channel = IPMI_BMC_CHANNEL;
2522 si.lun = 0;
2523
2524 msg.netfn = IPMI_NETFN_APP_REQUEST;
2525 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
2526 msg.data = NULL;
2527 msg.data_len = 0;
2528
2529 return i_ipmi_request(NULL,
2530 intf,
2531 (struct ipmi_addr *) &si,
2532 0,
2533 &msg,
2534 intf,
2535 NULL,
2536 NULL,
2537 0,
2538 intf->addrinfo[0].address,
2539 intf->addrinfo[0].lun,
2540 -1, 0);
2541 }
2542
__get_device_id(struct ipmi_smi * intf,struct bmc_device * bmc)2543 static int __get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc)
2544 {
2545 int rv;
2546 unsigned int retry_count = 0;
2547
2548 intf->null_user_handler = bmc_device_id_handler;
2549
2550 retry:
2551 bmc->cc = 0;
2552 bmc->dyn_id_set = 2;
2553
2554 rv = send_get_device_id_cmd(intf);
2555 if (rv)
2556 goto out_reset_handler;
2557
2558 wait_event(intf->waitq, bmc->dyn_id_set != 2);
2559
2560 if (!bmc->dyn_id_set) {
2561 if (bmc->cc != IPMI_CC_NO_ERROR &&
2562 ++retry_count <= GET_DEVICE_ID_MAX_RETRY) {
2563 msleep(500);
2564 dev_warn(intf->si_dev,
2565 "BMC returned 0x%2.2x, retry get bmc device id\n",
2566 bmc->cc);
2567 goto retry;
2568 }
2569
2570 rv = -EIO; /* Something went wrong in the fetch. */
2571 }
2572
2573 /* dyn_id_set makes the id data available. */
2574 smp_rmb();
2575
2576 out_reset_handler:
2577 intf->null_user_handler = NULL;
2578
2579 return rv;
2580 }
2581
2582 /*
2583 * Fetch the device id for the bmc/interface. You must pass in either
2584 * bmc or intf, this code will get the other one. If the data has
2585 * been recently fetched, this will just use the cached data. Otherwise
2586 * it will run a new fetch.
2587 *
2588 * Except for the first time this is called (in ipmi_add_smi()),
2589 * this will always return good data;
2590 */
__bmc_get_device_id(struct ipmi_smi * intf,struct bmc_device * bmc,struct ipmi_device_id * id,bool * guid_set,guid_t * guid,int intf_num)2591 static int __bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2592 struct ipmi_device_id *id,
2593 bool *guid_set, guid_t *guid, int intf_num)
2594 {
2595 int rv = 0;
2596 int prev_dyn_id_set, prev_guid_set;
2597 bool intf_set = intf != NULL;
2598
2599 if (!intf) {
2600 mutex_lock(&bmc->dyn_mutex);
2601 retry_bmc_lock:
2602 if (list_empty(&bmc->intfs)) {
2603 mutex_unlock(&bmc->dyn_mutex);
2604 return -ENOENT;
2605 }
2606 intf = list_first_entry(&bmc->intfs, struct ipmi_smi,
2607 bmc_link);
2608 kref_get(&intf->refcount);
2609 mutex_unlock(&bmc->dyn_mutex);
2610 mutex_lock(&intf->bmc_reg_mutex);
2611 mutex_lock(&bmc->dyn_mutex);
2612 if (intf != list_first_entry(&bmc->intfs, struct ipmi_smi,
2613 bmc_link)) {
2614 mutex_unlock(&intf->bmc_reg_mutex);
2615 kref_put(&intf->refcount, intf_free);
2616 goto retry_bmc_lock;
2617 }
2618 } else {
2619 mutex_lock(&intf->bmc_reg_mutex);
2620 bmc = intf->bmc;
2621 mutex_lock(&bmc->dyn_mutex);
2622 kref_get(&intf->refcount);
2623 }
2624
2625 /* If we have a valid and current ID, just return that. */
2626 if (intf->in_bmc_register ||
2627 (bmc->dyn_id_set && time_is_after_jiffies(bmc->dyn_id_expiry)))
2628 goto out_noprocessing;
2629
2630 /* Don't allow sysfs access when in maintenance mode. */
2631 if (intf->maintenance_mode_state) {
2632 rv = -EBUSY;
2633 goto out_noprocessing;
2634 }
2635
2636 prev_guid_set = bmc->dyn_guid_set;
2637 __get_guid(intf);
2638
2639 prev_dyn_id_set = bmc->dyn_id_set;
2640 rv = __get_device_id(intf, bmc);
2641 if (rv)
2642 goto out;
2643
2644 /*
2645 * The guid, device id, manufacturer id, and product id should
2646 * not change on a BMC. If it does we have to do some dancing.
2647 */
2648 if (!intf->bmc_registered
2649 || (!prev_guid_set && bmc->dyn_guid_set)
2650 || (!prev_dyn_id_set && bmc->dyn_id_set)
2651 || (prev_guid_set && bmc->dyn_guid_set
2652 && !guid_equal(&bmc->guid, &bmc->fetch_guid))
2653 || bmc->id.device_id != bmc->fetch_id.device_id
2654 || bmc->id.manufacturer_id != bmc->fetch_id.manufacturer_id
2655 || bmc->id.product_id != bmc->fetch_id.product_id) {
2656 struct ipmi_device_id id = bmc->fetch_id;
2657 int guid_set = bmc->dyn_guid_set;
2658 guid_t guid;
2659
2660 guid = bmc->fetch_guid;
2661 mutex_unlock(&bmc->dyn_mutex);
2662
2663 __ipmi_bmc_unregister(intf);
2664 /* Fill in the temporary BMC for good measure. */
2665 intf->bmc->id = id;
2666 intf->bmc->dyn_guid_set = guid_set;
2667 intf->bmc->guid = guid;
2668 if (__ipmi_bmc_register(intf, &id, guid_set, &guid, intf_num))
2669 need_waiter(intf); /* Retry later on an error. */
2670 else
2671 __scan_channels(intf, &id);
2672
2673
2674 if (!intf_set) {
2675 /*
2676 * We weren't given the interface on the
2677 * command line, so restart the operation on
2678 * the next interface for the BMC.
2679 */
2680 mutex_unlock(&intf->bmc_reg_mutex);
2681 mutex_lock(&bmc->dyn_mutex);
2682 goto retry_bmc_lock;
2683 }
2684
2685 /* We have a new BMC, set it up. */
2686 bmc = intf->bmc;
2687 mutex_lock(&bmc->dyn_mutex);
2688 goto out_noprocessing;
2689 } else if (memcmp(&bmc->fetch_id, &bmc->id, sizeof(bmc->id)))
2690 /* Version info changes, scan the channels again. */
2691 __scan_channels(intf, &bmc->fetch_id);
2692
2693 bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
2694
2695 out:
2696 if (rv && prev_dyn_id_set) {
2697 rv = 0; /* Ignore failures if we have previous data. */
2698 bmc->dyn_id_set = prev_dyn_id_set;
2699 }
2700 if (!rv) {
2701 bmc->id = bmc->fetch_id;
2702 if (bmc->dyn_guid_set)
2703 bmc->guid = bmc->fetch_guid;
2704 else if (prev_guid_set)
2705 /*
2706 * The guid used to be valid and it failed to fetch,
2707 * just use the cached value.
2708 */
2709 bmc->dyn_guid_set = prev_guid_set;
2710 }
2711 out_noprocessing:
2712 if (!rv) {
2713 if (id)
2714 *id = bmc->id;
2715
2716 if (guid_set)
2717 *guid_set = bmc->dyn_guid_set;
2718
2719 if (guid && bmc->dyn_guid_set)
2720 *guid = bmc->guid;
2721 }
2722
2723 mutex_unlock(&bmc->dyn_mutex);
2724 mutex_unlock(&intf->bmc_reg_mutex);
2725
2726 kref_put(&intf->refcount, intf_free);
2727 return rv;
2728 }
2729
bmc_get_device_id(struct ipmi_smi * intf,struct bmc_device * bmc,struct ipmi_device_id * id,bool * guid_set,guid_t * guid)2730 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2731 struct ipmi_device_id *id,
2732 bool *guid_set, guid_t *guid)
2733 {
2734 return __bmc_get_device_id(intf, bmc, id, guid_set, guid, -1);
2735 }
2736
device_id_show(struct device * dev,struct device_attribute * attr,char * buf)2737 static ssize_t device_id_show(struct device *dev,
2738 struct device_attribute *attr,
2739 char *buf)
2740 {
2741 struct bmc_device *bmc = to_bmc_device(dev);
2742 struct ipmi_device_id id;
2743 int rv;
2744
2745 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2746 if (rv)
2747 return rv;
2748
2749 return sysfs_emit(buf, "%u\n", id.device_id);
2750 }
2751 static DEVICE_ATTR_RO(device_id);
2752
provides_device_sdrs_show(struct device * dev,struct device_attribute * attr,char * buf)2753 static ssize_t provides_device_sdrs_show(struct device *dev,
2754 struct device_attribute *attr,
2755 char *buf)
2756 {
2757 struct bmc_device *bmc = to_bmc_device(dev);
2758 struct ipmi_device_id id;
2759 int rv;
2760
2761 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2762 if (rv)
2763 return rv;
2764
2765 return sysfs_emit(buf, "%u\n", (id.device_revision & 0x80) >> 7);
2766 }
2767 static DEVICE_ATTR_RO(provides_device_sdrs);
2768
revision_show(struct device * dev,struct device_attribute * attr,char * buf)2769 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2770 char *buf)
2771 {
2772 struct bmc_device *bmc = to_bmc_device(dev);
2773 struct ipmi_device_id id;
2774 int rv;
2775
2776 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2777 if (rv)
2778 return rv;
2779
2780 return sysfs_emit(buf, "%u\n", id.device_revision & 0x0F);
2781 }
2782 static DEVICE_ATTR_RO(revision);
2783
firmware_revision_show(struct device * dev,struct device_attribute * attr,char * buf)2784 static ssize_t firmware_revision_show(struct device *dev,
2785 struct device_attribute *attr,
2786 char *buf)
2787 {
2788 struct bmc_device *bmc = to_bmc_device(dev);
2789 struct ipmi_device_id id;
2790 int rv;
2791
2792 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2793 if (rv)
2794 return rv;
2795
2796 return sysfs_emit(buf, "%u.%x\n", id.firmware_revision_1,
2797 id.firmware_revision_2);
2798 }
2799 static DEVICE_ATTR_RO(firmware_revision);
2800
ipmi_version_show(struct device * dev,struct device_attribute * attr,char * buf)2801 static ssize_t ipmi_version_show(struct device *dev,
2802 struct device_attribute *attr,
2803 char *buf)
2804 {
2805 struct bmc_device *bmc = to_bmc_device(dev);
2806 struct ipmi_device_id id;
2807 int rv;
2808
2809 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2810 if (rv)
2811 return rv;
2812
2813 return sysfs_emit(buf, "%u.%u\n",
2814 ipmi_version_major(&id),
2815 ipmi_version_minor(&id));
2816 }
2817 static DEVICE_ATTR_RO(ipmi_version);
2818
add_dev_support_show(struct device * dev,struct device_attribute * attr,char * buf)2819 static ssize_t add_dev_support_show(struct device *dev,
2820 struct device_attribute *attr,
2821 char *buf)
2822 {
2823 struct bmc_device *bmc = to_bmc_device(dev);
2824 struct ipmi_device_id id;
2825 int rv;
2826
2827 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2828 if (rv)
2829 return rv;
2830
2831 return sysfs_emit(buf, "0x%02x\n", id.additional_device_support);
2832 }
2833 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2834 NULL);
2835
manufacturer_id_show(struct device * dev,struct device_attribute * attr,char * buf)2836 static ssize_t manufacturer_id_show(struct device *dev,
2837 struct device_attribute *attr,
2838 char *buf)
2839 {
2840 struct bmc_device *bmc = to_bmc_device(dev);
2841 struct ipmi_device_id id;
2842 int rv;
2843
2844 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2845 if (rv)
2846 return rv;
2847
2848 return sysfs_emit(buf, "0x%6.6x\n", id.manufacturer_id);
2849 }
2850 static DEVICE_ATTR_RO(manufacturer_id);
2851
product_id_show(struct device * dev,struct device_attribute * attr,char * buf)2852 static ssize_t product_id_show(struct device *dev,
2853 struct device_attribute *attr,
2854 char *buf)
2855 {
2856 struct bmc_device *bmc = to_bmc_device(dev);
2857 struct ipmi_device_id id;
2858 int rv;
2859
2860 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2861 if (rv)
2862 return rv;
2863
2864 return sysfs_emit(buf, "0x%4.4x\n", id.product_id);
2865 }
2866 static DEVICE_ATTR_RO(product_id);
2867
aux_firmware_rev_show(struct device * dev,struct device_attribute * attr,char * buf)2868 static ssize_t aux_firmware_rev_show(struct device *dev,
2869 struct device_attribute *attr,
2870 char *buf)
2871 {
2872 struct bmc_device *bmc = to_bmc_device(dev);
2873 struct ipmi_device_id id;
2874 int rv;
2875
2876 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2877 if (rv)
2878 return rv;
2879
2880 return sysfs_emit(buf, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2881 id.aux_firmware_revision[3],
2882 id.aux_firmware_revision[2],
2883 id.aux_firmware_revision[1],
2884 id.aux_firmware_revision[0]);
2885 }
2886 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2887
guid_show(struct device * dev,struct device_attribute * attr,char * buf)2888 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2889 char *buf)
2890 {
2891 struct bmc_device *bmc = to_bmc_device(dev);
2892 bool guid_set;
2893 guid_t guid;
2894 int rv;
2895
2896 rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, &guid);
2897 if (rv)
2898 return rv;
2899 if (!guid_set)
2900 return -ENOENT;
2901
2902 return sysfs_emit(buf, "%pUl\n", &guid);
2903 }
2904 static DEVICE_ATTR_RO(guid);
2905
2906 static struct attribute *bmc_dev_attrs[] = {
2907 &dev_attr_device_id.attr,
2908 &dev_attr_provides_device_sdrs.attr,
2909 &dev_attr_revision.attr,
2910 &dev_attr_firmware_revision.attr,
2911 &dev_attr_ipmi_version.attr,
2912 &dev_attr_additional_device_support.attr,
2913 &dev_attr_manufacturer_id.attr,
2914 &dev_attr_product_id.attr,
2915 &dev_attr_aux_firmware_revision.attr,
2916 &dev_attr_guid.attr,
2917 NULL
2918 };
2919
bmc_dev_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)2920 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2921 struct attribute *attr, int idx)
2922 {
2923 struct device *dev = kobj_to_dev(kobj);
2924 struct bmc_device *bmc = to_bmc_device(dev);
2925 umode_t mode = attr->mode;
2926 int rv;
2927
2928 if (attr == &dev_attr_aux_firmware_revision.attr) {
2929 struct ipmi_device_id id;
2930
2931 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2932 return (!rv && id.aux_firmware_revision_set) ? mode : 0;
2933 }
2934 if (attr == &dev_attr_guid.attr) {
2935 bool guid_set;
2936
2937 rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, NULL);
2938 return (!rv && guid_set) ? mode : 0;
2939 }
2940 return mode;
2941 }
2942
2943 static const struct attribute_group bmc_dev_attr_group = {
2944 .attrs = bmc_dev_attrs,
2945 .is_visible = bmc_dev_attr_is_visible,
2946 };
2947
2948 static const struct attribute_group *bmc_dev_attr_groups[] = {
2949 &bmc_dev_attr_group,
2950 NULL
2951 };
2952
2953 static const struct device_type bmc_device_type = {
2954 .groups = bmc_dev_attr_groups,
2955 };
2956
__find_bmc_guid(struct device * dev,const void * data)2957 static int __find_bmc_guid(struct device *dev, const void *data)
2958 {
2959 const guid_t *guid = data;
2960 struct bmc_device *bmc;
2961 int rv;
2962
2963 if (dev->type != &bmc_device_type)
2964 return 0;
2965
2966 bmc = to_bmc_device(dev);
2967 rv = bmc->dyn_guid_set && guid_equal(&bmc->guid, guid);
2968 if (rv)
2969 rv = kref_get_unless_zero(&bmc->usecount);
2970 return rv;
2971 }
2972
2973 /*
2974 * Returns with the bmc's usecount incremented, if it is non-NULL.
2975 */
ipmi_find_bmc_guid(struct device_driver * drv,guid_t * guid)2976 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2977 guid_t *guid)
2978 {
2979 struct device *dev;
2980 struct bmc_device *bmc = NULL;
2981
2982 dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2983 if (dev) {
2984 bmc = to_bmc_device(dev);
2985 put_device(dev);
2986 }
2987 return bmc;
2988 }
2989
2990 struct prod_dev_id {
2991 unsigned int product_id;
2992 unsigned char device_id;
2993 };
2994
__find_bmc_prod_dev_id(struct device * dev,const void * data)2995 static int __find_bmc_prod_dev_id(struct device *dev, const void *data)
2996 {
2997 const struct prod_dev_id *cid = data;
2998 struct bmc_device *bmc;
2999 int rv;
3000
3001 if (dev->type != &bmc_device_type)
3002 return 0;
3003
3004 bmc = to_bmc_device(dev);
3005 rv = (bmc->id.product_id == cid->product_id
3006 && bmc->id.device_id == cid->device_id);
3007 if (rv)
3008 rv = kref_get_unless_zero(&bmc->usecount);
3009 return rv;
3010 }
3011
3012 /*
3013 * Returns with the bmc's usecount incremented, if it is non-NULL.
3014 */
ipmi_find_bmc_prod_dev_id(struct device_driver * drv,unsigned int product_id,unsigned char device_id)3015 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
3016 struct device_driver *drv,
3017 unsigned int product_id, unsigned char device_id)
3018 {
3019 struct prod_dev_id id = {
3020 .product_id = product_id,
3021 .device_id = device_id,
3022 };
3023 struct device *dev;
3024 struct bmc_device *bmc = NULL;
3025
3026 dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
3027 if (dev) {
3028 bmc = to_bmc_device(dev);
3029 put_device(dev);
3030 }
3031 return bmc;
3032 }
3033
3034 static DEFINE_IDA(ipmi_bmc_ida);
3035
3036 static void
release_bmc_device(struct device * dev)3037 release_bmc_device(struct device *dev)
3038 {
3039 kfree(to_bmc_device(dev));
3040 }
3041
cleanup_bmc_work(struct work_struct * work)3042 static void cleanup_bmc_work(struct work_struct *work)
3043 {
3044 struct bmc_device *bmc = container_of(work, struct bmc_device,
3045 remove_work);
3046 int id = bmc->pdev.id; /* Unregister overwrites id */
3047
3048 platform_device_unregister(&bmc->pdev);
3049 ida_free(&ipmi_bmc_ida, id);
3050 }
3051
3052 static void
cleanup_bmc_device(struct kref * ref)3053 cleanup_bmc_device(struct kref *ref)
3054 {
3055 struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
3056
3057 /*
3058 * Remove the platform device in a work queue to avoid issues
3059 * with removing the device attributes while reading a device
3060 * attribute.
3061 */
3062 queue_work(bmc_remove_work_wq, &bmc->remove_work);
3063 }
3064
3065 /*
3066 * Must be called with intf->bmc_reg_mutex held.
3067 */
__ipmi_bmc_unregister(struct ipmi_smi * intf)3068 static void __ipmi_bmc_unregister(struct ipmi_smi *intf)
3069 {
3070 struct bmc_device *bmc = intf->bmc;
3071
3072 if (!intf->bmc_registered)
3073 return;
3074
3075 sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3076 sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
3077 kfree(intf->my_dev_name);
3078 intf->my_dev_name = NULL;
3079
3080 mutex_lock(&bmc->dyn_mutex);
3081 list_del(&intf->bmc_link);
3082 mutex_unlock(&bmc->dyn_mutex);
3083 intf->bmc = &intf->tmp_bmc;
3084 kref_put(&bmc->usecount, cleanup_bmc_device);
3085 intf->bmc_registered = false;
3086 }
3087
ipmi_bmc_unregister(struct ipmi_smi * intf)3088 static void ipmi_bmc_unregister(struct ipmi_smi *intf)
3089 {
3090 mutex_lock(&intf->bmc_reg_mutex);
3091 __ipmi_bmc_unregister(intf);
3092 mutex_unlock(&intf->bmc_reg_mutex);
3093 }
3094
3095 /*
3096 * Must be called with intf->bmc_reg_mutex held.
3097 */
__ipmi_bmc_register(struct ipmi_smi * intf,struct ipmi_device_id * id,bool guid_set,guid_t * guid,int intf_num)3098 static int __ipmi_bmc_register(struct ipmi_smi *intf,
3099 struct ipmi_device_id *id,
3100 bool guid_set, guid_t *guid, int intf_num)
3101 {
3102 int rv;
3103 struct bmc_device *bmc;
3104 struct bmc_device *old_bmc;
3105
3106 /*
3107 * platform_device_register() can cause bmc_reg_mutex to
3108 * be claimed because of the is_visible functions of
3109 * the attributes. Eliminate possible recursion and
3110 * release the lock.
3111 */
3112 intf->in_bmc_register = true;
3113 mutex_unlock(&intf->bmc_reg_mutex);
3114
3115 /*
3116 * Try to find if there is an bmc_device struct
3117 * representing the interfaced BMC already
3118 */
3119 mutex_lock(&ipmidriver_mutex);
3120 if (guid_set)
3121 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, guid);
3122 else
3123 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
3124 id->product_id,
3125 id->device_id);
3126
3127 /*
3128 * If there is already an bmc_device, free the new one,
3129 * otherwise register the new BMC device
3130 */
3131 if (old_bmc) {
3132 bmc = old_bmc;
3133 /*
3134 * Note: old_bmc already has usecount incremented by
3135 * the BMC find functions.
3136 */
3137 intf->bmc = old_bmc;
3138 mutex_lock(&bmc->dyn_mutex);
3139 list_add_tail(&intf->bmc_link, &bmc->intfs);
3140 mutex_unlock(&bmc->dyn_mutex);
3141
3142 dev_info(intf->si_dev,
3143 "interfacing existing BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3144 bmc->id.manufacturer_id,
3145 bmc->id.product_id,
3146 bmc->id.device_id);
3147 } else {
3148 bmc = kzalloc(sizeof(*bmc), GFP_KERNEL);
3149 if (!bmc) {
3150 rv = -ENOMEM;
3151 goto out;
3152 }
3153 INIT_LIST_HEAD(&bmc->intfs);
3154 mutex_init(&bmc->dyn_mutex);
3155 INIT_WORK(&bmc->remove_work, cleanup_bmc_work);
3156
3157 bmc->id = *id;
3158 bmc->dyn_id_set = 1;
3159 bmc->dyn_guid_set = guid_set;
3160 bmc->guid = *guid;
3161 bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
3162
3163 bmc->pdev.name = "ipmi_bmc";
3164
3165 rv = ida_alloc(&ipmi_bmc_ida, GFP_KERNEL);
3166 if (rv < 0) {
3167 kfree(bmc);
3168 goto out;
3169 }
3170
3171 bmc->pdev.dev.driver = &ipmidriver.driver;
3172 bmc->pdev.id = rv;
3173 bmc->pdev.dev.release = release_bmc_device;
3174 bmc->pdev.dev.type = &bmc_device_type;
3175 kref_init(&bmc->usecount);
3176
3177 intf->bmc = bmc;
3178 mutex_lock(&bmc->dyn_mutex);
3179 list_add_tail(&intf->bmc_link, &bmc->intfs);
3180 mutex_unlock(&bmc->dyn_mutex);
3181
3182 rv = platform_device_register(&bmc->pdev);
3183 if (rv) {
3184 dev_err(intf->si_dev,
3185 "Unable to register bmc device: %d\n",
3186 rv);
3187 goto out_list_del;
3188 }
3189
3190 dev_info(intf->si_dev,
3191 "Found new BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3192 bmc->id.manufacturer_id,
3193 bmc->id.product_id,
3194 bmc->id.device_id);
3195 }
3196
3197 /*
3198 * create symlink from system interface device to bmc device
3199 * and back.
3200 */
3201 rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
3202 if (rv) {
3203 dev_err(intf->si_dev, "Unable to create bmc symlink: %d\n", rv);
3204 goto out_put_bmc;
3205 }
3206
3207 if (intf_num == -1)
3208 intf_num = intf->intf_num;
3209 intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", intf_num);
3210 if (!intf->my_dev_name) {
3211 rv = -ENOMEM;
3212 dev_err(intf->si_dev, "Unable to allocate link from BMC: %d\n",
3213 rv);
3214 goto out_unlink1;
3215 }
3216
3217 rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
3218 intf->my_dev_name);
3219 if (rv) {
3220 dev_err(intf->si_dev, "Unable to create symlink to bmc: %d\n",
3221 rv);
3222 goto out_free_my_dev_name;
3223 }
3224
3225 intf->bmc_registered = true;
3226
3227 out:
3228 mutex_unlock(&ipmidriver_mutex);
3229 mutex_lock(&intf->bmc_reg_mutex);
3230 intf->in_bmc_register = false;
3231 return rv;
3232
3233
3234 out_free_my_dev_name:
3235 kfree(intf->my_dev_name);
3236 intf->my_dev_name = NULL;
3237
3238 out_unlink1:
3239 sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3240
3241 out_put_bmc:
3242 mutex_lock(&bmc->dyn_mutex);
3243 list_del(&intf->bmc_link);
3244 mutex_unlock(&bmc->dyn_mutex);
3245 intf->bmc = &intf->tmp_bmc;
3246 kref_put(&bmc->usecount, cleanup_bmc_device);
3247 goto out;
3248
3249 out_list_del:
3250 mutex_lock(&bmc->dyn_mutex);
3251 list_del(&intf->bmc_link);
3252 mutex_unlock(&bmc->dyn_mutex);
3253 intf->bmc = &intf->tmp_bmc;
3254 put_device(&bmc->pdev.dev);
3255 goto out;
3256 }
3257
3258 static int
send_guid_cmd(struct ipmi_smi * intf,int chan)3259 send_guid_cmd(struct ipmi_smi *intf, int chan)
3260 {
3261 struct kernel_ipmi_msg msg;
3262 struct ipmi_system_interface_addr si;
3263
3264 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3265 si.channel = IPMI_BMC_CHANNEL;
3266 si.lun = 0;
3267
3268 msg.netfn = IPMI_NETFN_APP_REQUEST;
3269 msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
3270 msg.data = NULL;
3271 msg.data_len = 0;
3272 return i_ipmi_request(NULL,
3273 intf,
3274 (struct ipmi_addr *) &si,
3275 0,
3276 &msg,
3277 intf,
3278 NULL,
3279 NULL,
3280 0,
3281 intf->addrinfo[0].address,
3282 intf->addrinfo[0].lun,
3283 -1, 0);
3284 }
3285
guid_handler(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)3286 static void guid_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3287 {
3288 struct bmc_device *bmc = intf->bmc;
3289
3290 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3291 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
3292 || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
3293 /* Not for me */
3294 return;
3295
3296 if (msg->msg.data[0] != 0) {
3297 /* Error from getting the GUID, the BMC doesn't have one. */
3298 bmc->dyn_guid_set = 0;
3299 goto out;
3300 }
3301
3302 if (msg->msg.data_len < UUID_SIZE + 1) {
3303 bmc->dyn_guid_set = 0;
3304 dev_warn(intf->si_dev,
3305 "The GUID response from the BMC was too short, it was %d but should have been %d. Assuming GUID is not available.\n",
3306 msg->msg.data_len, UUID_SIZE + 1);
3307 goto out;
3308 }
3309
3310 import_guid(&bmc->fetch_guid, msg->msg.data + 1);
3311 /*
3312 * Make sure the guid data is available before setting
3313 * dyn_guid_set.
3314 */
3315 smp_wmb();
3316 bmc->dyn_guid_set = 1;
3317 out:
3318 wake_up(&intf->waitq);
3319 }
3320
__get_guid(struct ipmi_smi * intf)3321 static void __get_guid(struct ipmi_smi *intf)
3322 {
3323 int rv;
3324 struct bmc_device *bmc = intf->bmc;
3325
3326 bmc->dyn_guid_set = 2;
3327 intf->null_user_handler = guid_handler;
3328 rv = send_guid_cmd(intf, 0);
3329 if (rv)
3330 /* Send failed, no GUID available. */
3331 bmc->dyn_guid_set = 0;
3332 else
3333 wait_event(intf->waitq, bmc->dyn_guid_set != 2);
3334
3335 /* dyn_guid_set makes the guid data available. */
3336 smp_rmb();
3337
3338 intf->null_user_handler = NULL;
3339 }
3340
3341 static int
send_channel_info_cmd(struct ipmi_smi * intf,int chan)3342 send_channel_info_cmd(struct ipmi_smi *intf, int chan)
3343 {
3344 struct kernel_ipmi_msg msg;
3345 unsigned char data[1];
3346 struct ipmi_system_interface_addr si;
3347
3348 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3349 si.channel = IPMI_BMC_CHANNEL;
3350 si.lun = 0;
3351
3352 msg.netfn = IPMI_NETFN_APP_REQUEST;
3353 msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
3354 msg.data = data;
3355 msg.data_len = 1;
3356 data[0] = chan;
3357 return i_ipmi_request(NULL,
3358 intf,
3359 (struct ipmi_addr *) &si,
3360 0,
3361 &msg,
3362 intf,
3363 NULL,
3364 NULL,
3365 0,
3366 intf->addrinfo[0].address,
3367 intf->addrinfo[0].lun,
3368 -1, 0);
3369 }
3370
3371 static void
channel_handler(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)3372 channel_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3373 {
3374 int rv = 0;
3375 int ch;
3376 unsigned int set = intf->curr_working_cset;
3377 struct ipmi_channel *chans;
3378
3379 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3380 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
3381 && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
3382 /* It's the one we want */
3383 if (msg->msg.data[0] != 0) {
3384 /* Got an error from the channel, just go on. */
3385 if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
3386 /*
3387 * If the MC does not support this
3388 * command, that is legal. We just
3389 * assume it has one IPMB at channel
3390 * zero.
3391 */
3392 intf->wchannels[set].c[0].medium
3393 = IPMI_CHANNEL_MEDIUM_IPMB;
3394 intf->wchannels[set].c[0].protocol
3395 = IPMI_CHANNEL_PROTOCOL_IPMB;
3396
3397 intf->channel_list = intf->wchannels + set;
3398 intf->channels_ready = true;
3399 wake_up(&intf->waitq);
3400 goto out;
3401 }
3402 goto next_channel;
3403 }
3404 if (msg->msg.data_len < 4) {
3405 /* Message not big enough, just go on. */
3406 goto next_channel;
3407 }
3408 ch = intf->curr_channel;
3409 chans = intf->wchannels[set].c;
3410 chans[ch].medium = msg->msg.data[2] & 0x7f;
3411 chans[ch].protocol = msg->msg.data[3] & 0x1f;
3412
3413 next_channel:
3414 intf->curr_channel++;
3415 if (intf->curr_channel >= IPMI_MAX_CHANNELS) {
3416 intf->channel_list = intf->wchannels + set;
3417 intf->channels_ready = true;
3418 wake_up(&intf->waitq);
3419 } else {
3420 intf->channel_list = intf->wchannels + set;
3421 intf->channels_ready = true;
3422 rv = send_channel_info_cmd(intf, intf->curr_channel);
3423 }
3424
3425 if (rv) {
3426 /* Got an error somehow, just give up. */
3427 dev_warn(intf->si_dev,
3428 "Error sending channel information for channel %d: %d\n",
3429 intf->curr_channel, rv);
3430
3431 intf->channel_list = intf->wchannels + set;
3432 intf->channels_ready = true;
3433 wake_up(&intf->waitq);
3434 }
3435 }
3436 out:
3437 return;
3438 }
3439
3440 /*
3441 * Must be holding intf->bmc_reg_mutex to call this.
3442 */
__scan_channels(struct ipmi_smi * intf,struct ipmi_device_id * id)3443 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id)
3444 {
3445 int rv;
3446
3447 if (ipmi_version_major(id) > 1
3448 || (ipmi_version_major(id) == 1
3449 && ipmi_version_minor(id) >= 5)) {
3450 unsigned int set;
3451
3452 /*
3453 * Start scanning the channels to see what is
3454 * available.
3455 */
3456 set = !intf->curr_working_cset;
3457 intf->curr_working_cset = set;
3458 memset(&intf->wchannels[set], 0,
3459 sizeof(struct ipmi_channel_set));
3460
3461 intf->null_user_handler = channel_handler;
3462 intf->curr_channel = 0;
3463 rv = send_channel_info_cmd(intf, 0);
3464 if (rv) {
3465 dev_warn(intf->si_dev,
3466 "Error sending channel information for channel 0, %d\n",
3467 rv);
3468 intf->null_user_handler = NULL;
3469 return -EIO;
3470 }
3471
3472 /* Wait for the channel info to be read. */
3473 wait_event(intf->waitq, intf->channels_ready);
3474 intf->null_user_handler = NULL;
3475 } else {
3476 unsigned int set = intf->curr_working_cset;
3477
3478 /* Assume a single IPMB channel at zero. */
3479 intf->wchannels[set].c[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
3480 intf->wchannels[set].c[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
3481 intf->channel_list = intf->wchannels + set;
3482 intf->channels_ready = true;
3483 }
3484
3485 return 0;
3486 }
3487
ipmi_poll(struct ipmi_smi * intf)3488 static void ipmi_poll(struct ipmi_smi *intf)
3489 {
3490 if (intf->handlers->poll)
3491 intf->handlers->poll(intf->send_info);
3492 /* In case something came in */
3493 handle_new_recv_msgs(intf);
3494 }
3495
ipmi_poll_interface(struct ipmi_user * user)3496 void ipmi_poll_interface(struct ipmi_user *user)
3497 {
3498 ipmi_poll(user->intf);
3499 }
3500 EXPORT_SYMBOL(ipmi_poll_interface);
3501
nr_users_show(struct device * dev,struct device_attribute * attr,char * buf)3502 static ssize_t nr_users_show(struct device *dev,
3503 struct device_attribute *attr,
3504 char *buf)
3505 {
3506 struct ipmi_smi *intf = container_of(attr,
3507 struct ipmi_smi, nr_users_devattr);
3508
3509 return sysfs_emit(buf, "%d\n", atomic_read(&intf->nr_users));
3510 }
3511 static DEVICE_ATTR_RO(nr_users);
3512
nr_msgs_show(struct device * dev,struct device_attribute * attr,char * buf)3513 static ssize_t nr_msgs_show(struct device *dev,
3514 struct device_attribute *attr,
3515 char *buf)
3516 {
3517 struct ipmi_smi *intf = container_of(attr,
3518 struct ipmi_smi, nr_msgs_devattr);
3519 struct ipmi_user *user;
3520 unsigned int count = 0;
3521
3522 mutex_lock(&intf->users_mutex);
3523 list_for_each_entry(user, &intf->users, link)
3524 count += atomic_read(&user->nr_msgs);
3525 mutex_unlock(&intf->users_mutex);
3526
3527 return sysfs_emit(buf, "%u\n", count);
3528 }
3529 static DEVICE_ATTR_RO(nr_msgs);
3530
maintenance_mode_show(struct device * dev,struct device_attribute * attr,char * buf)3531 static ssize_t maintenance_mode_show(struct device *dev,
3532 struct device_attribute *attr,
3533 char *buf)
3534 {
3535 struct ipmi_smi *intf = container_of(attr,
3536 struct ipmi_smi,
3537 maintenance_mode_devattr);
3538
3539 return sysfs_emit(buf, "%u %d\n", intf->maintenance_mode_state,
3540 intf->auto_maintenance_timeout);
3541 }
3542 static DEVICE_ATTR_RO(maintenance_mode);
3543
redo_bmc_reg(struct work_struct * work)3544 static void redo_bmc_reg(struct work_struct *work)
3545 {
3546 struct ipmi_smi *intf = container_of(work, struct ipmi_smi,
3547 bmc_reg_work);
3548
3549 if (!intf->in_shutdown)
3550 bmc_get_device_id(intf, NULL, NULL, NULL, NULL);
3551
3552 kref_put(&intf->refcount, intf_free);
3553 }
3554
ipmi_add_smi(struct module * owner,const struct ipmi_smi_handlers * handlers,void * send_info,struct device * si_dev,unsigned char slave_addr)3555 int ipmi_add_smi(struct module *owner,
3556 const struct ipmi_smi_handlers *handlers,
3557 void *send_info,
3558 struct device *si_dev,
3559 unsigned char slave_addr)
3560 {
3561 int i, j;
3562 int rv;
3563 struct ipmi_smi *intf, *tintf;
3564 struct list_head *link;
3565 struct ipmi_device_id id;
3566
3567 /*
3568 * Make sure the driver is actually initialized, this handles
3569 * problems with initialization order.
3570 */
3571 rv = ipmi_init_msghandler();
3572 if (rv)
3573 return rv;
3574
3575 intf = kzalloc(sizeof(*intf), GFP_KERNEL);
3576 if (!intf)
3577 return -ENOMEM;
3578
3579 intf->owner = owner;
3580 intf->bmc = &intf->tmp_bmc;
3581 INIT_LIST_HEAD(&intf->bmc->intfs);
3582 mutex_init(&intf->bmc->dyn_mutex);
3583 INIT_LIST_HEAD(&intf->bmc_link);
3584 mutex_init(&intf->bmc_reg_mutex);
3585 intf->intf_num = -1; /* Mark it invalid for now. */
3586 kref_init(&intf->refcount);
3587 INIT_WORK(&intf->bmc_reg_work, redo_bmc_reg);
3588 intf->si_dev = si_dev;
3589 for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
3590 intf->addrinfo[j].address = IPMI_BMC_SLAVE_ADDR;
3591 intf->addrinfo[j].lun = 2;
3592 }
3593 if (slave_addr != 0)
3594 intf->addrinfo[0].address = slave_addr;
3595 INIT_LIST_HEAD(&intf->user_msgs);
3596 mutex_init(&intf->user_msgs_mutex);
3597 INIT_LIST_HEAD(&intf->users);
3598 mutex_init(&intf->users_mutex);
3599 atomic_set(&intf->nr_users, 0);
3600 intf->handlers = handlers;
3601 intf->send_info = send_info;
3602 mutex_init(&intf->seq_lock);
3603 for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
3604 intf->seq_table[j].inuse = 0;
3605 intf->seq_table[j].seqid = 0;
3606 }
3607 intf->curr_seq = 0;
3608 spin_lock_init(&intf->waiting_rcv_msgs_lock);
3609 INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
3610 INIT_WORK(&intf->smi_work, smi_work);
3611 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
3612 spin_lock_init(&intf->xmit_msgs_lock);
3613 INIT_LIST_HEAD(&intf->xmit_msgs);
3614 INIT_LIST_HEAD(&intf->hp_xmit_msgs);
3615 mutex_init(&intf->events_mutex);
3616 spin_lock_init(&intf->watch_lock);
3617 atomic_set(&intf->event_waiters, 0);
3618 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3619 INIT_LIST_HEAD(&intf->waiting_events);
3620 intf->waiting_events_count = 0;
3621 mutex_init(&intf->cmd_rcvrs_mutex);
3622 spin_lock_init(&intf->maintenance_mode_lock);
3623 INIT_LIST_HEAD(&intf->cmd_rcvrs);
3624 init_waitqueue_head(&intf->waitq);
3625 for (i = 0; i < IPMI_NUM_STATS; i++)
3626 atomic_set(&intf->stats[i], 0);
3627
3628 /*
3629 * Grab the watchers mutex so we can deliver the new interface
3630 * without races.
3631 */
3632 mutex_lock(&smi_watchers_mutex);
3633 mutex_lock(&ipmi_interfaces_mutex);
3634 /* Look for a hole in the numbers. */
3635 i = 0;
3636 link = &ipmi_interfaces;
3637 list_for_each_entry(tintf, &ipmi_interfaces, link) {
3638 if (tintf->intf_num != i) {
3639 link = &tintf->link;
3640 break;
3641 }
3642 i++;
3643 }
3644 /* Add the new interface in numeric order. */
3645 if (i == 0)
3646 list_add(&intf->link, &ipmi_interfaces);
3647 else
3648 list_add_tail(&intf->link, link);
3649
3650 rv = handlers->start_processing(send_info, intf);
3651 if (rv)
3652 goto out_err;
3653
3654 rv = __bmc_get_device_id(intf, NULL, &id, NULL, NULL, i);
3655 if (rv) {
3656 dev_err(si_dev, "Unable to get the device id: %d\n", rv);
3657 goto out_err_started;
3658 }
3659
3660 mutex_lock(&intf->bmc_reg_mutex);
3661 rv = __scan_channels(intf, &id);
3662 mutex_unlock(&intf->bmc_reg_mutex);
3663 if (rv)
3664 goto out_err_bmc_reg;
3665
3666 intf->nr_users_devattr = dev_attr_nr_users;
3667 sysfs_attr_init(&intf->nr_users_devattr.attr);
3668 rv = device_create_file(intf->si_dev, &intf->nr_users_devattr);
3669 if (rv)
3670 goto out_err_bmc_reg;
3671
3672 intf->nr_msgs_devattr = dev_attr_nr_msgs;
3673 sysfs_attr_init(&intf->nr_msgs_devattr.attr);
3674 rv = device_create_file(intf->si_dev, &intf->nr_msgs_devattr);
3675 if (rv) {
3676 device_remove_file(intf->si_dev, &intf->nr_users_devattr);
3677 goto out_err_bmc_reg;
3678 }
3679
3680 intf->maintenance_mode_devattr = dev_attr_maintenance_mode;
3681 sysfs_attr_init(&intf->maintenance_mode_devattr.attr);
3682 rv = device_create_file(intf->si_dev, &intf->maintenance_mode_devattr);
3683 if (rv) {
3684 device_remove_file(intf->si_dev, &intf->nr_users_devattr);
3685 goto out_err_bmc_reg;
3686 }
3687
3688 intf->intf_num = i;
3689 mutex_unlock(&ipmi_interfaces_mutex);
3690
3691 /* After this point the interface is legal to use. */
3692 call_smi_watchers(i, intf->si_dev);
3693
3694 mutex_unlock(&smi_watchers_mutex);
3695
3696 return 0;
3697
3698 out_err_bmc_reg:
3699 ipmi_bmc_unregister(intf);
3700 out_err_started:
3701 if (intf->handlers->shutdown)
3702 intf->handlers->shutdown(intf->send_info);
3703 out_err:
3704 list_del(&intf->link);
3705 mutex_unlock(&ipmi_interfaces_mutex);
3706 mutex_unlock(&smi_watchers_mutex);
3707 kref_put(&intf->refcount, intf_free);
3708
3709 return rv;
3710 }
3711 EXPORT_SYMBOL(ipmi_add_smi);
3712
deliver_smi_err_response(struct ipmi_smi * intf,struct ipmi_smi_msg * msg,unsigned char err)3713 static void deliver_smi_err_response(struct ipmi_smi *intf,
3714 struct ipmi_smi_msg *msg,
3715 unsigned char err)
3716 {
3717 int rv;
3718 msg->rsp[0] = msg->data[0] | 4;
3719 msg->rsp[1] = msg->data[1];
3720 msg->rsp[2] = err;
3721 msg->rsp_size = 3;
3722
3723 /* This will never requeue, but it may ask us to free the message. */
3724 rv = handle_one_recv_msg(intf, msg);
3725 if (rv == 0)
3726 ipmi_free_smi_msg(msg);
3727 }
3728
cleanup_smi_msgs(struct ipmi_smi * intf)3729 static void cleanup_smi_msgs(struct ipmi_smi *intf)
3730 {
3731 int i;
3732 struct seq_table *ent;
3733 struct ipmi_smi_msg *msg;
3734 struct list_head *entry;
3735 struct list_head tmplist;
3736
3737 /* Clear out our transmit queues and hold the messages. */
3738 INIT_LIST_HEAD(&tmplist);
3739 list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
3740 list_splice_tail(&intf->xmit_msgs, &tmplist);
3741
3742 /* Current message first, to preserve order */
3743 while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
3744 /* Wait for the message to clear out. */
3745 schedule_timeout(1);
3746 }
3747
3748 /* No need for locks, the interface is down. */
3749
3750 /*
3751 * Return errors for all pending messages in queue and in the
3752 * tables waiting for remote responses.
3753 */
3754 while (!list_empty(&tmplist)) {
3755 entry = tmplist.next;
3756 list_del(entry);
3757 msg = list_entry(entry, struct ipmi_smi_msg, link);
3758 deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
3759 }
3760
3761 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
3762 ent = &intf->seq_table[i];
3763 if (!ent->inuse)
3764 continue;
3765 deliver_err_response(intf, ent->recv_msg, IPMI_ERR_UNSPECIFIED);
3766 }
3767 }
3768
ipmi_unregister_smi(struct ipmi_smi * intf)3769 void ipmi_unregister_smi(struct ipmi_smi *intf)
3770 {
3771 struct ipmi_smi_watcher *w;
3772 int intf_num;
3773
3774 if (!intf)
3775 return;
3776
3777 intf_num = intf->intf_num;
3778 mutex_lock(&ipmi_interfaces_mutex);
3779 cancel_work_sync(&intf->smi_work);
3780 /* smi_work() can no longer be in progress after this. */
3781
3782 intf->intf_num = -1;
3783 intf->in_shutdown = true;
3784 list_del(&intf->link);
3785 mutex_unlock(&ipmi_interfaces_mutex);
3786
3787 /*
3788 * At this point no users can be added to the interface and no
3789 * new messages can be sent.
3790 */
3791
3792 if (intf->handlers->shutdown)
3793 intf->handlers->shutdown(intf->send_info);
3794
3795 device_remove_file(intf->si_dev, &intf->maintenance_mode_devattr);
3796 device_remove_file(intf->si_dev, &intf->nr_msgs_devattr);
3797 device_remove_file(intf->si_dev, &intf->nr_users_devattr);
3798
3799 /*
3800 * Call all the watcher interfaces to tell them that
3801 * an interface is going away.
3802 */
3803 mutex_lock(&smi_watchers_mutex);
3804 list_for_each_entry(w, &smi_watchers, link)
3805 w->smi_gone(intf_num);
3806 mutex_unlock(&smi_watchers_mutex);
3807
3808 mutex_lock(&intf->users_mutex);
3809 while (!list_empty(&intf->users)) {
3810 struct ipmi_user *user = list_first_entry(&intf->users,
3811 struct ipmi_user, link);
3812
3813 _ipmi_destroy_user(user);
3814 }
3815 mutex_unlock(&intf->users_mutex);
3816
3817 cleanup_smi_msgs(intf);
3818
3819 ipmi_bmc_unregister(intf);
3820
3821 kref_put(&intf->refcount, intf_free);
3822 }
3823 EXPORT_SYMBOL(ipmi_unregister_smi);
3824
handle_ipmb_get_msg_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3825 static int handle_ipmb_get_msg_rsp(struct ipmi_smi *intf,
3826 struct ipmi_smi_msg *msg)
3827 {
3828 struct ipmi_ipmb_addr ipmb_addr;
3829 struct ipmi_recv_msg *recv_msg;
3830
3831 /*
3832 * This is 11, not 10, because the response must contain a
3833 * completion code.
3834 */
3835 if (msg->rsp_size < 11) {
3836 /* Message not big enough, just ignore it. */
3837 ipmi_inc_stat(intf, invalid_ipmb_responses);
3838 return 0;
3839 }
3840
3841 if (msg->rsp[2] != 0) {
3842 /* An error getting the response, just ignore it. */
3843 return 0;
3844 }
3845
3846 ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3847 ipmb_addr.slave_addr = msg->rsp[6];
3848 ipmb_addr.channel = msg->rsp[3] & 0x0f;
3849 ipmb_addr.lun = msg->rsp[7] & 3;
3850
3851 /*
3852 * It's a response from a remote entity. Look up the sequence
3853 * number and handle the response.
3854 */
3855 if (intf_find_seq(intf,
3856 msg->rsp[7] >> 2,
3857 msg->rsp[3] & 0x0f,
3858 msg->rsp[8],
3859 (msg->rsp[4] >> 2) & (~1),
3860 (struct ipmi_addr *) &ipmb_addr,
3861 &recv_msg)) {
3862 /*
3863 * We were unable to find the sequence number,
3864 * so just nuke the message.
3865 */
3866 ipmi_inc_stat(intf, unhandled_ipmb_responses);
3867 return 0;
3868 }
3869
3870 memcpy(recv_msg->msg_data, &msg->rsp[9], msg->rsp_size - 9);
3871 /*
3872 * The other fields matched, so no need to set them, except
3873 * for netfn, which needs to be the response that was
3874 * returned, not the request value.
3875 */
3876 recv_msg->msg.netfn = msg->rsp[4] >> 2;
3877 recv_msg->msg.data = recv_msg->msg_data;
3878 recv_msg->msg.data_len = msg->rsp_size - 10;
3879 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3880 if (deliver_response(intf, recv_msg))
3881 ipmi_inc_stat(intf, unhandled_ipmb_responses);
3882 else
3883 ipmi_inc_stat(intf, handled_ipmb_responses);
3884
3885 return 0;
3886 }
3887
handle_ipmb_get_msg_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3888 static int handle_ipmb_get_msg_cmd(struct ipmi_smi *intf,
3889 struct ipmi_smi_msg *msg)
3890 {
3891 struct cmd_rcvr *rcvr;
3892 int rv = 0;
3893 unsigned char netfn;
3894 unsigned char cmd;
3895 unsigned char chan;
3896 struct ipmi_user *user = NULL;
3897 struct ipmi_ipmb_addr *ipmb_addr;
3898 struct ipmi_recv_msg *recv_msg = NULL;
3899
3900 if (msg->rsp_size < 10) {
3901 /* Message not big enough, just ignore it. */
3902 ipmi_inc_stat(intf, invalid_commands);
3903 return 0;
3904 }
3905
3906 if (msg->rsp[2] != 0) {
3907 /* An error getting the response, just ignore it. */
3908 return 0;
3909 }
3910
3911 netfn = msg->rsp[4] >> 2;
3912 cmd = msg->rsp[8];
3913 chan = msg->rsp[3] & 0xf;
3914
3915 rcu_read_lock();
3916 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3917 if (rcvr) {
3918 user = rcvr->user;
3919 recv_msg = ipmi_alloc_recv_msg(user);
3920 }
3921 rcu_read_unlock();
3922
3923 if (user == NULL) {
3924 /* We didn't find a user, deliver an error response. */
3925 ipmi_inc_stat(intf, unhandled_commands);
3926
3927 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3928 msg->data[1] = IPMI_SEND_MSG_CMD;
3929 msg->data[2] = msg->rsp[3];
3930 msg->data[3] = msg->rsp[6];
3931 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3932 msg->data[5] = ipmb_checksum(&msg->data[3], 2);
3933 msg->data[6] = intf->addrinfo[msg->rsp[3] & 0xf].address;
3934 /* rqseq/lun */
3935 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3936 msg->data[8] = msg->rsp[8]; /* cmd */
3937 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3938 msg->data[10] = ipmb_checksum(&msg->data[6], 4);
3939 msg->data_size = 11;
3940
3941 dev_dbg(intf->si_dev, "Invalid command: %*ph\n",
3942 msg->data_size, msg->data);
3943
3944 smi_send(intf, intf->handlers, msg, 0);
3945 /*
3946 * We used the message, so return the value that
3947 * causes it to not be freed or queued.
3948 */
3949 rv = -1;
3950 } else if (!IS_ERR(recv_msg)) {
3951 /* Extract the source address from the data. */
3952 ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3953 ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3954 ipmb_addr->slave_addr = msg->rsp[6];
3955 ipmb_addr->lun = msg->rsp[7] & 3;
3956 ipmb_addr->channel = msg->rsp[3] & 0xf;
3957
3958 /*
3959 * Extract the rest of the message information
3960 * from the IPMB header.
3961 */
3962 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3963 recv_msg->msgid = msg->rsp[7] >> 2;
3964 recv_msg->msg.netfn = msg->rsp[4] >> 2;
3965 recv_msg->msg.cmd = msg->rsp[8];
3966 recv_msg->msg.data = recv_msg->msg_data;
3967
3968 /*
3969 * We chop off 10, not 9 bytes because the checksum
3970 * at the end also needs to be removed.
3971 */
3972 recv_msg->msg.data_len = msg->rsp_size - 10;
3973 memcpy(recv_msg->msg_data, &msg->rsp[9],
3974 msg->rsp_size - 10);
3975 if (deliver_response(intf, recv_msg))
3976 ipmi_inc_stat(intf, unhandled_commands);
3977 else
3978 ipmi_inc_stat(intf, handled_commands);
3979 } else {
3980 /*
3981 * We couldn't allocate memory for the message, so
3982 * requeue it for handling later.
3983 */
3984 rv = 1;
3985 }
3986
3987 return rv;
3988 }
3989
handle_ipmb_direct_rcv_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3990 static int handle_ipmb_direct_rcv_cmd(struct ipmi_smi *intf,
3991 struct ipmi_smi_msg *msg)
3992 {
3993 struct cmd_rcvr *rcvr;
3994 int rv = 0;
3995 struct ipmi_user *user = NULL;
3996 struct ipmi_ipmb_direct_addr *daddr;
3997 struct ipmi_recv_msg *recv_msg = NULL;
3998 unsigned char netfn = msg->rsp[0] >> 2;
3999 unsigned char cmd = msg->rsp[3];
4000
4001 rcu_read_lock();
4002 /* We always use channel 0 for direct messages. */
4003 rcvr = find_cmd_rcvr(intf, netfn, cmd, 0);
4004 if (rcvr) {
4005 user = rcvr->user;
4006 recv_msg = ipmi_alloc_recv_msg(user);
4007 }
4008 rcu_read_unlock();
4009
4010 if (user == NULL) {
4011 /* We didn't find a user, deliver an error response. */
4012 ipmi_inc_stat(intf, unhandled_commands);
4013
4014 msg->data[0] = (netfn + 1) << 2;
4015 msg->data[0] |= msg->rsp[2] & 0x3; /* rqLUN */
4016 msg->data[1] = msg->rsp[1]; /* Addr */
4017 msg->data[2] = msg->rsp[2] & ~0x3; /* rqSeq */
4018 msg->data[2] |= msg->rsp[0] & 0x3; /* rsLUN */
4019 msg->data[3] = cmd;
4020 msg->data[4] = IPMI_INVALID_CMD_COMPLETION_CODE;
4021 msg->data_size = 5;
4022
4023 smi_send(intf, intf->handlers, msg, 0);
4024 /*
4025 * We used the message, so return the value that
4026 * causes it to not be freed or queued.
4027 */
4028 rv = -1;
4029 } else if (!IS_ERR(recv_msg)) {
4030 /* Extract the source address from the data. */
4031 daddr = (struct ipmi_ipmb_direct_addr *)&recv_msg->addr;
4032 daddr->addr_type = IPMI_IPMB_DIRECT_ADDR_TYPE;
4033 daddr->channel = 0;
4034 daddr->slave_addr = msg->rsp[1];
4035 daddr->rs_lun = msg->rsp[0] & 3;
4036 daddr->rq_lun = msg->rsp[2] & 3;
4037
4038 /*
4039 * Extract the rest of the message information
4040 * from the IPMB header.
4041 */
4042 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
4043 recv_msg->msgid = (msg->rsp[2] >> 2);
4044 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4045 recv_msg->msg.cmd = msg->rsp[3];
4046 recv_msg->msg.data = recv_msg->msg_data;
4047
4048 recv_msg->msg.data_len = msg->rsp_size - 4;
4049 memcpy(recv_msg->msg_data, msg->rsp + 4,
4050 msg->rsp_size - 4);
4051 if (deliver_response(intf, recv_msg))
4052 ipmi_inc_stat(intf, unhandled_commands);
4053 else
4054 ipmi_inc_stat(intf, handled_commands);
4055 } else {
4056 /*
4057 * We couldn't allocate memory for the message, so
4058 * requeue it for handling later.
4059 */
4060 rv = 1;
4061 }
4062
4063 return rv;
4064 }
4065
handle_ipmb_direct_rcv_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4066 static int handle_ipmb_direct_rcv_rsp(struct ipmi_smi *intf,
4067 struct ipmi_smi_msg *msg)
4068 {
4069 struct ipmi_recv_msg *recv_msg;
4070 struct ipmi_ipmb_direct_addr *daddr;
4071
4072 recv_msg = msg->recv_msg;
4073 if (recv_msg == NULL) {
4074 dev_warn(intf->si_dev,
4075 "IPMI direct message received with no owner. This could be because of a malformed message, or because of a hardware error. Contact your hardware vendor for assistance.\n");
4076 return 0;
4077 }
4078
4079 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4080 recv_msg->msgid = msg->msgid;
4081 daddr = (struct ipmi_ipmb_direct_addr *) &recv_msg->addr;
4082 daddr->addr_type = IPMI_IPMB_DIRECT_ADDR_TYPE;
4083 daddr->channel = 0;
4084 daddr->slave_addr = msg->rsp[1];
4085 daddr->rq_lun = msg->rsp[0] & 3;
4086 daddr->rs_lun = msg->rsp[2] & 3;
4087 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4088 recv_msg->msg.cmd = msg->rsp[3];
4089 memcpy(recv_msg->msg_data, &msg->rsp[4], msg->rsp_size - 4);
4090 recv_msg->msg.data = recv_msg->msg_data;
4091 recv_msg->msg.data_len = msg->rsp_size - 4;
4092 deliver_local_response(intf, recv_msg);
4093
4094 return 0;
4095 }
4096
handle_lan_get_msg_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4097 static int handle_lan_get_msg_rsp(struct ipmi_smi *intf,
4098 struct ipmi_smi_msg *msg)
4099 {
4100 struct ipmi_lan_addr lan_addr;
4101 struct ipmi_recv_msg *recv_msg;
4102
4103
4104 /*
4105 * This is 13, not 12, because the response must contain a
4106 * completion code.
4107 */
4108 if (msg->rsp_size < 13) {
4109 /* Message not big enough, just ignore it. */
4110 ipmi_inc_stat(intf, invalid_lan_responses);
4111 return 0;
4112 }
4113
4114 if (msg->rsp[2] != 0) {
4115 /* An error getting the response, just ignore it. */
4116 return 0;
4117 }
4118
4119 lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
4120 lan_addr.session_handle = msg->rsp[4];
4121 lan_addr.remote_SWID = msg->rsp[8];
4122 lan_addr.local_SWID = msg->rsp[5];
4123 lan_addr.channel = msg->rsp[3] & 0x0f;
4124 lan_addr.privilege = msg->rsp[3] >> 4;
4125 lan_addr.lun = msg->rsp[9] & 3;
4126
4127 /*
4128 * It's a response from a remote entity. Look up the sequence
4129 * number and handle the response.
4130 */
4131 if (intf_find_seq(intf,
4132 msg->rsp[9] >> 2,
4133 msg->rsp[3] & 0x0f,
4134 msg->rsp[10],
4135 (msg->rsp[6] >> 2) & (~1),
4136 (struct ipmi_addr *) &lan_addr,
4137 &recv_msg)) {
4138 /*
4139 * We were unable to find the sequence number,
4140 * so just nuke the message.
4141 */
4142 ipmi_inc_stat(intf, unhandled_lan_responses);
4143 return 0;
4144 }
4145
4146 memcpy(recv_msg->msg_data, &msg->rsp[11], msg->rsp_size - 11);
4147 /*
4148 * The other fields matched, so no need to set them, except
4149 * for netfn, which needs to be the response that was
4150 * returned, not the request value.
4151 */
4152 recv_msg->msg.netfn = msg->rsp[6] >> 2;
4153 recv_msg->msg.data = recv_msg->msg_data;
4154 recv_msg->msg.data_len = msg->rsp_size - 12;
4155 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4156 if (deliver_response(intf, recv_msg))
4157 ipmi_inc_stat(intf, unhandled_lan_responses);
4158 else
4159 ipmi_inc_stat(intf, handled_lan_responses);
4160
4161 return 0;
4162 }
4163
handle_lan_get_msg_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4164 static int handle_lan_get_msg_cmd(struct ipmi_smi *intf,
4165 struct ipmi_smi_msg *msg)
4166 {
4167 struct cmd_rcvr *rcvr;
4168 int rv = 0;
4169 unsigned char netfn;
4170 unsigned char cmd;
4171 unsigned char chan;
4172 struct ipmi_user *user = NULL;
4173 struct ipmi_lan_addr *lan_addr;
4174 struct ipmi_recv_msg *recv_msg = NULL;
4175
4176 if (msg->rsp_size < 12) {
4177 /* Message not big enough, just ignore it. */
4178 ipmi_inc_stat(intf, invalid_commands);
4179 return 0;
4180 }
4181
4182 if (msg->rsp[2] != 0) {
4183 /* An error getting the response, just ignore it. */
4184 return 0;
4185 }
4186
4187 netfn = msg->rsp[6] >> 2;
4188 cmd = msg->rsp[10];
4189 chan = msg->rsp[3] & 0xf;
4190
4191 rcu_read_lock();
4192 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
4193 if (rcvr) {
4194 user = rcvr->user;
4195 recv_msg = ipmi_alloc_recv_msg(user);
4196 }
4197 rcu_read_unlock();
4198
4199 if (user == NULL) {
4200 /* We didn't find a user, just give up and return an error. */
4201 ipmi_inc_stat(intf, unhandled_commands);
4202
4203 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
4204 msg->data[1] = IPMI_SEND_MSG_CMD;
4205 msg->data[2] = chan;
4206 msg->data[3] = msg->rsp[4]; /* handle */
4207 msg->data[4] = msg->rsp[8]; /* rsSWID */
4208 msg->data[5] = ((netfn + 1) << 2) | (msg->rsp[9] & 0x3);
4209 msg->data[6] = ipmb_checksum(&msg->data[3], 3);
4210 msg->data[7] = msg->rsp[5]; /* rqSWID */
4211 /* rqseq/lun */
4212 msg->data[8] = (msg->rsp[9] & 0xfc) | (msg->rsp[6] & 0x3);
4213 msg->data[9] = cmd;
4214 msg->data[10] = IPMI_INVALID_CMD_COMPLETION_CODE;
4215 msg->data[11] = ipmb_checksum(&msg->data[7], 4);
4216 msg->data_size = 12;
4217
4218 dev_dbg(intf->si_dev, "Invalid command: %*ph\n",
4219 msg->data_size, msg->data);
4220
4221 smi_send(intf, intf->handlers, msg, 0);
4222 /*
4223 * We used the message, so return the value that
4224 * causes it to not be freed or queued.
4225 */
4226 rv = -1;
4227 } else if (!IS_ERR(recv_msg)) {
4228 /* Extract the source address from the data. */
4229 lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
4230 lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
4231 lan_addr->session_handle = msg->rsp[4];
4232 lan_addr->remote_SWID = msg->rsp[8];
4233 lan_addr->local_SWID = msg->rsp[5];
4234 lan_addr->lun = msg->rsp[9] & 3;
4235 lan_addr->channel = msg->rsp[3] & 0xf;
4236 lan_addr->privilege = msg->rsp[3] >> 4;
4237
4238 /*
4239 * Extract the rest of the message information
4240 * from the IPMB header.
4241 */
4242 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
4243 recv_msg->msgid = msg->rsp[9] >> 2;
4244 recv_msg->msg.netfn = msg->rsp[6] >> 2;
4245 recv_msg->msg.cmd = msg->rsp[10];
4246 recv_msg->msg.data = recv_msg->msg_data;
4247
4248 /*
4249 * We chop off 12, not 11 bytes because the checksum
4250 * at the end also needs to be removed.
4251 */
4252 recv_msg->msg.data_len = msg->rsp_size - 12;
4253 memcpy(recv_msg->msg_data, &msg->rsp[11],
4254 msg->rsp_size - 12);
4255 if (deliver_response(intf, recv_msg))
4256 ipmi_inc_stat(intf, unhandled_commands);
4257 else
4258 ipmi_inc_stat(intf, handled_commands);
4259 } else {
4260 /*
4261 * We couldn't allocate memory for the message, so
4262 * requeue it for handling later.
4263 */
4264 rv = 1;
4265 }
4266
4267 return rv;
4268 }
4269
4270 /*
4271 * This routine will handle "Get Message" command responses with
4272 * channels that use an OEM Medium. The message format belongs to
4273 * the OEM. See IPMI 2.0 specification, Chapter 6 and
4274 * Chapter 22, sections 22.6 and 22.24 for more details.
4275 */
handle_oem_get_msg_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4276 static int handle_oem_get_msg_cmd(struct ipmi_smi *intf,
4277 struct ipmi_smi_msg *msg)
4278 {
4279 struct cmd_rcvr *rcvr;
4280 int rv = 0;
4281 unsigned char netfn;
4282 unsigned char cmd;
4283 unsigned char chan;
4284 struct ipmi_user *user = NULL;
4285 struct ipmi_system_interface_addr *smi_addr;
4286 struct ipmi_recv_msg *recv_msg = NULL;
4287
4288 /*
4289 * We expect the OEM SW to perform error checking
4290 * so we just do some basic sanity checks
4291 */
4292 if (msg->rsp_size < 4) {
4293 /* Message not big enough, just ignore it. */
4294 ipmi_inc_stat(intf, invalid_commands);
4295 return 0;
4296 }
4297
4298 if (msg->rsp[2] != 0) {
4299 /* An error getting the response, just ignore it. */
4300 return 0;
4301 }
4302
4303 /*
4304 * This is an OEM Message so the OEM needs to know how
4305 * handle the message. We do no interpretation.
4306 */
4307 netfn = msg->rsp[0] >> 2;
4308 cmd = msg->rsp[1];
4309 chan = msg->rsp[3] & 0xf;
4310
4311 rcu_read_lock();
4312 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
4313 if (rcvr) {
4314 user = rcvr->user;
4315 recv_msg = ipmi_alloc_recv_msg(user);
4316 }
4317 rcu_read_unlock();
4318
4319 if (user == NULL) {
4320 /* We didn't find a user, just give up. */
4321 ipmi_inc_stat(intf, unhandled_commands);
4322
4323 /*
4324 * Don't do anything with these messages, just allow
4325 * them to be freed.
4326 */
4327
4328 rv = 0;
4329 } else if (!IS_ERR(recv_msg)) {
4330 /*
4331 * OEM Messages are expected to be delivered via
4332 * the system interface to SMS software. We might
4333 * need to visit this again depending on OEM
4334 * requirements
4335 */
4336 smi_addr = ((struct ipmi_system_interface_addr *)
4337 &recv_msg->addr);
4338 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4339 smi_addr->channel = IPMI_BMC_CHANNEL;
4340 smi_addr->lun = msg->rsp[0] & 3;
4341
4342 recv_msg->user_msg_data = NULL;
4343 recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
4344 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4345 recv_msg->msg.cmd = msg->rsp[1];
4346 recv_msg->msg.data = recv_msg->msg_data;
4347
4348 /*
4349 * The message starts at byte 4 which follows the
4350 * Channel Byte in the "GET MESSAGE" command
4351 */
4352 recv_msg->msg.data_len = msg->rsp_size - 4;
4353 memcpy(recv_msg->msg_data, &msg->rsp[4],
4354 msg->rsp_size - 4);
4355 if (deliver_response(intf, recv_msg))
4356 ipmi_inc_stat(intf, unhandled_commands);
4357 else
4358 ipmi_inc_stat(intf, handled_commands);
4359 } else {
4360 /*
4361 * We couldn't allocate memory for the message, so
4362 * requeue it for handling later.
4363 */
4364 rv = 1;
4365 }
4366
4367 return rv;
4368 }
4369
copy_event_into_recv_msg(struct ipmi_recv_msg * recv_msg,struct ipmi_smi_msg * msg)4370 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
4371 struct ipmi_smi_msg *msg)
4372 {
4373 struct ipmi_system_interface_addr *smi_addr;
4374
4375 recv_msg->msgid = 0;
4376 smi_addr = (struct ipmi_system_interface_addr *) &recv_msg->addr;
4377 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4378 smi_addr->channel = IPMI_BMC_CHANNEL;
4379 smi_addr->lun = msg->rsp[0] & 3;
4380 recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
4381 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4382 recv_msg->msg.cmd = msg->rsp[1];
4383 memcpy(recv_msg->msg_data, &msg->rsp[3], msg->rsp_size - 3);
4384 recv_msg->msg.data = recv_msg->msg_data;
4385 recv_msg->msg.data_len = msg->rsp_size - 3;
4386 }
4387
handle_read_event_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4388 static int handle_read_event_rsp(struct ipmi_smi *intf,
4389 struct ipmi_smi_msg *msg)
4390 {
4391 struct ipmi_recv_msg *recv_msg, *recv_msg2;
4392 struct list_head msgs;
4393 struct ipmi_user *user;
4394 int rv = 0, deliver_count = 0;
4395
4396 if (msg->rsp_size < 19) {
4397 /* Message is too small to be an IPMB event. */
4398 ipmi_inc_stat(intf, invalid_events);
4399 return 0;
4400 }
4401
4402 if (msg->rsp[2] != 0) {
4403 /* An error getting the event, just ignore it. */
4404 return 0;
4405 }
4406
4407 INIT_LIST_HEAD(&msgs);
4408
4409 mutex_lock(&intf->events_mutex);
4410
4411 ipmi_inc_stat(intf, events);
4412
4413 /*
4414 * Allocate and fill in one message for every user that is
4415 * getting events.
4416 */
4417 mutex_lock(&intf->users_mutex);
4418 list_for_each_entry(user, &intf->users, link) {
4419 if (!user->gets_events)
4420 continue;
4421
4422 recv_msg = ipmi_alloc_recv_msg(user);
4423 if (IS_ERR(recv_msg)) {
4424 mutex_unlock(&intf->users_mutex);
4425 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
4426 link) {
4427 user = recv_msg->user;
4428 list_del(&recv_msg->link);
4429 ipmi_free_recv_msg(recv_msg);
4430 kref_put(&user->refcount, free_ipmi_user);
4431 }
4432 /*
4433 * We couldn't allocate memory for the
4434 * message, so requeue it for handling
4435 * later.
4436 */
4437 rv = 1;
4438 goto out;
4439 }
4440
4441 deliver_count++;
4442
4443 copy_event_into_recv_msg(recv_msg, msg);
4444 list_add_tail(&recv_msg->link, &msgs);
4445 }
4446 mutex_unlock(&intf->users_mutex);
4447
4448 if (deliver_count) {
4449 /* Now deliver all the messages. */
4450 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
4451 list_del(&recv_msg->link);
4452 deliver_local_response(intf, recv_msg);
4453 }
4454 } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
4455 /*
4456 * No one to receive the message, put it in queue if there's
4457 * not already too many things in the queue.
4458 */
4459 recv_msg = ipmi_alloc_recv_msg(NULL);
4460 if (IS_ERR(recv_msg)) {
4461 /*
4462 * We couldn't allocate memory for the
4463 * message, so requeue it for handling
4464 * later.
4465 */
4466 rv = 1;
4467 goto out;
4468 }
4469
4470 copy_event_into_recv_msg(recv_msg, msg);
4471 list_add_tail(&recv_msg->link, &intf->waiting_events);
4472 intf->waiting_events_count++;
4473 } else if (!intf->event_msg_printed) {
4474 /*
4475 * There's too many things in the queue, discard this
4476 * message.
4477 */
4478 dev_warn(intf->si_dev,
4479 "Event queue full, discarding incoming events\n");
4480 intf->event_msg_printed = 1;
4481 }
4482
4483 out:
4484 mutex_unlock(&intf->events_mutex);
4485
4486 return rv;
4487 }
4488
handle_bmc_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4489 static int handle_bmc_rsp(struct ipmi_smi *intf,
4490 struct ipmi_smi_msg *msg)
4491 {
4492 struct ipmi_recv_msg *recv_msg;
4493 struct ipmi_system_interface_addr *smi_addr;
4494
4495 recv_msg = msg->recv_msg;
4496 if (recv_msg == NULL) {
4497 dev_warn(intf->si_dev,
4498 "IPMI SMI message received with no owner. This could be because of a malformed message, or because of a hardware error. Contact your hardware vendor for assistance.\n");
4499 return 0;
4500 }
4501
4502 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4503 recv_msg->msgid = msg->msgid;
4504 smi_addr = ((struct ipmi_system_interface_addr *)
4505 &recv_msg->addr);
4506 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4507 smi_addr->channel = IPMI_BMC_CHANNEL;
4508 smi_addr->lun = msg->rsp[0] & 3;
4509 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4510 recv_msg->msg.cmd = msg->rsp[1];
4511 memcpy(recv_msg->msg_data, &msg->rsp[2], msg->rsp_size - 2);
4512 recv_msg->msg.data = recv_msg->msg_data;
4513 recv_msg->msg.data_len = msg->rsp_size - 2;
4514 deliver_local_response(intf, recv_msg);
4515
4516 return 0;
4517 }
4518
4519 /*
4520 * Handle a received message. Return 1 if the message should be requeued,
4521 * 0 if the message should be freed, or -1 if the message should not
4522 * be freed or requeued.
4523 */
handle_one_recv_msg(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4524 static int handle_one_recv_msg(struct ipmi_smi *intf,
4525 struct ipmi_smi_msg *msg)
4526 {
4527 int requeue = 0;
4528 int chan;
4529 unsigned char cc;
4530 bool is_cmd = !((msg->rsp[0] >> 2) & 1);
4531
4532 dev_dbg(intf->si_dev, "Recv: %*ph\n", msg->rsp_size, msg->rsp);
4533
4534 if (msg->rsp_size < 2) {
4535 /* Message is too small to be correct. */
4536 dev_warn_ratelimited(intf->si_dev,
4537 "BMC returned too small a message for netfn %x cmd %x, got %d bytes\n",
4538 (msg->data[0] >> 2) | 1,
4539 msg->data[1], msg->rsp_size);
4540
4541 return_unspecified:
4542 /* Generate an error response for the message. */
4543 msg->rsp[0] = msg->data[0] | (1 << 2);
4544 msg->rsp[1] = msg->data[1];
4545 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4546 msg->rsp_size = 3;
4547 } else if (msg->type == IPMI_SMI_MSG_TYPE_IPMB_DIRECT) {
4548 /* commands must have at least 4 bytes, responses 5. */
4549 if (is_cmd && (msg->rsp_size < 4)) {
4550 ipmi_inc_stat(intf, invalid_commands);
4551 goto out;
4552 }
4553 if (!is_cmd && (msg->rsp_size < 5)) {
4554 ipmi_inc_stat(intf, invalid_ipmb_responses);
4555 /* Construct a valid error response. */
4556 msg->rsp[0] = msg->data[0] & 0xfc; /* NetFN */
4557 msg->rsp[0] |= (1 << 2); /* Make it a response */
4558 msg->rsp[0] |= msg->data[2] & 3; /* rqLUN */
4559 msg->rsp[1] = msg->data[1]; /* Addr */
4560 msg->rsp[2] = msg->data[2] & 0xfc; /* rqSeq */
4561 msg->rsp[2] |= msg->data[0] & 0x3; /* rsLUN */
4562 msg->rsp[3] = msg->data[3]; /* Cmd */
4563 msg->rsp[4] = IPMI_ERR_UNSPECIFIED;
4564 msg->rsp_size = 5;
4565 }
4566 } else if ((msg->data_size >= 2)
4567 && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
4568 && (msg->data[1] == IPMI_SEND_MSG_CMD)
4569 && (msg->recv_msg == NULL)) {
4570
4571 if (intf->in_shutdown || intf->run_to_completion)
4572 goto out;
4573
4574 /*
4575 * This is the local response to a command send, start
4576 * the timer for these. The recv_msg will not be
4577 * NULL if this is a response send, and we will let
4578 * response sends just go through.
4579 */
4580
4581 /*
4582 * Check for errors, if we get certain errors (ones
4583 * that mean basically we can try again later), we
4584 * ignore them and start the timer. Otherwise we
4585 * report the error immediately.
4586 */
4587 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
4588 && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
4589 && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
4590 && (msg->rsp[2] != IPMI_BUS_ERR)
4591 && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
4592 int ch = msg->rsp[3] & 0xf;
4593 struct ipmi_channel *chans;
4594
4595 /* Got an error sending the message, handle it. */
4596
4597 chans = READ_ONCE(intf->channel_list)->c;
4598 if ((chans[ch].medium == IPMI_CHANNEL_MEDIUM_8023LAN)
4599 || (chans[ch].medium == IPMI_CHANNEL_MEDIUM_ASYNC))
4600 ipmi_inc_stat(intf, sent_lan_command_errs);
4601 else
4602 ipmi_inc_stat(intf, sent_ipmb_command_errs);
4603 intf_err_seq(intf, msg->msgid, msg->rsp[2]);
4604 } else
4605 /* The message was sent, start the timer. */
4606 intf_start_seq_timer(intf, msg->msgid);
4607 requeue = 0;
4608 goto out;
4609 } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
4610 || (msg->rsp[1] != msg->data[1])) {
4611 /*
4612 * The NetFN and Command in the response is not even
4613 * marginally correct.
4614 */
4615 dev_warn_ratelimited(intf->si_dev,
4616 "BMC returned incorrect response, expected netfn %x cmd %x, got netfn %x cmd %x\n",
4617 (msg->data[0] >> 2) | 1, msg->data[1],
4618 msg->rsp[0] >> 2, msg->rsp[1]);
4619
4620 goto return_unspecified;
4621 }
4622
4623 if (msg->type == IPMI_SMI_MSG_TYPE_IPMB_DIRECT) {
4624 if ((msg->data[0] >> 2) & 1) {
4625 /* It's a response to a sent response. */
4626 chan = 0;
4627 cc = msg->rsp[4];
4628 goto process_response_response;
4629 }
4630 if (is_cmd)
4631 requeue = handle_ipmb_direct_rcv_cmd(intf, msg);
4632 else
4633 requeue = handle_ipmb_direct_rcv_rsp(intf, msg);
4634 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4635 && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
4636 && (msg->recv_msg != NULL)) {
4637 /*
4638 * It's a response to a response we sent. For this we
4639 * deliver a send message response to the user.
4640 */
4641 struct ipmi_recv_msg *recv_msg;
4642
4643 if (intf->run_to_completion)
4644 goto out;
4645
4646 chan = msg->data[2] & 0x0f;
4647 if (chan >= IPMI_MAX_CHANNELS)
4648 /* Invalid channel number */
4649 goto out;
4650 cc = msg->rsp[2];
4651
4652 process_response_response:
4653 recv_msg = msg->recv_msg;
4654
4655 requeue = 0;
4656 if (!recv_msg)
4657 goto out;
4658
4659 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
4660 recv_msg->msg.data = recv_msg->msg_data;
4661 recv_msg->msg_data[0] = cc;
4662 recv_msg->msg.data_len = 1;
4663 deliver_local_response(intf, recv_msg);
4664 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4665 && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
4666 struct ipmi_channel *chans;
4667
4668 if (intf->run_to_completion)
4669 goto out;
4670
4671 /* It's from the receive queue. */
4672 chan = msg->rsp[3] & 0xf;
4673 if (chan >= IPMI_MAX_CHANNELS) {
4674 /* Invalid channel number */
4675 requeue = 0;
4676 goto out;
4677 }
4678
4679 /*
4680 * We need to make sure the channels have been initialized.
4681 * The channel_handler routine will set the "curr_channel"
4682 * equal to or greater than IPMI_MAX_CHANNELS when all the
4683 * channels for this interface have been initialized.
4684 */
4685 if (!intf->channels_ready) {
4686 requeue = 0; /* Throw the message away */
4687 goto out;
4688 }
4689
4690 chans = READ_ONCE(intf->channel_list)->c;
4691
4692 switch (chans[chan].medium) {
4693 case IPMI_CHANNEL_MEDIUM_IPMB:
4694 if (msg->rsp[4] & 0x04) {
4695 /*
4696 * It's a response, so find the
4697 * requesting message and send it up.
4698 */
4699 requeue = handle_ipmb_get_msg_rsp(intf, msg);
4700 } else {
4701 /*
4702 * It's a command to the SMS from some other
4703 * entity. Handle that.
4704 */
4705 requeue = handle_ipmb_get_msg_cmd(intf, msg);
4706 }
4707 break;
4708
4709 case IPMI_CHANNEL_MEDIUM_8023LAN:
4710 case IPMI_CHANNEL_MEDIUM_ASYNC:
4711 if (msg->rsp[6] & 0x04) {
4712 /*
4713 * It's a response, so find the
4714 * requesting message and send it up.
4715 */
4716 requeue = handle_lan_get_msg_rsp(intf, msg);
4717 } else {
4718 /*
4719 * It's a command to the SMS from some other
4720 * entity. Handle that.
4721 */
4722 requeue = handle_lan_get_msg_cmd(intf, msg);
4723 }
4724 break;
4725
4726 default:
4727 /* Check for OEM Channels. Clients had better
4728 register for these commands. */
4729 if ((chans[chan].medium >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
4730 && (chans[chan].medium
4731 <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
4732 requeue = handle_oem_get_msg_cmd(intf, msg);
4733 } else {
4734 /*
4735 * We don't handle the channel type, so just
4736 * free the message.
4737 */
4738 requeue = 0;
4739 }
4740 }
4741
4742 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4743 && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
4744 /* It's an asynchronous event. */
4745 if (intf->run_to_completion)
4746 goto out;
4747
4748 requeue = handle_read_event_rsp(intf, msg);
4749 } else {
4750 /* It's a response from the local BMC. */
4751 requeue = handle_bmc_rsp(intf, msg);
4752 }
4753
4754 out:
4755 return requeue;
4756 }
4757
4758 /*
4759 * If there are messages in the queue or pretimeouts, handle them.
4760 */
handle_new_recv_msgs(struct ipmi_smi * intf)4761 static void handle_new_recv_msgs(struct ipmi_smi *intf)
4762 {
4763 struct ipmi_smi_msg *smi_msg;
4764 unsigned long flags = 0;
4765 int rv;
4766 int run_to_completion = READ_ONCE(intf->run_to_completion);
4767
4768 /* See if any waiting messages need to be processed. */
4769 if (!run_to_completion)
4770 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4771 while (!list_empty(&intf->waiting_rcv_msgs)) {
4772 smi_msg = list_entry(intf->waiting_rcv_msgs.next,
4773 struct ipmi_smi_msg, link);
4774 list_del(&smi_msg->link);
4775 if (!run_to_completion)
4776 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4777 flags);
4778 rv = handle_one_recv_msg(intf, smi_msg);
4779 if (!run_to_completion)
4780 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4781 if (rv > 0) {
4782 /*
4783 * To preserve message order, quit if we
4784 * can't handle a message. Add the message
4785 * back at the head, this is safe because this
4786 * workqueue is the only thing that pulls the
4787 * messages.
4788 */
4789 list_add(&smi_msg->link, &intf->waiting_rcv_msgs);
4790 break;
4791 } else {
4792 if (rv == 0)
4793 /* Message handled */
4794 ipmi_free_smi_msg(smi_msg);
4795 /* If rv < 0, fatal error, del but don't free. */
4796 }
4797 }
4798 if (!run_to_completion)
4799 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
4800 }
4801
smi_work(struct work_struct * t)4802 static void smi_work(struct work_struct *t)
4803 {
4804 unsigned long flags = 0; /* keep us warning-free. */
4805 struct ipmi_smi *intf = from_work(intf, t, smi_work);
4806 int run_to_completion = READ_ONCE(intf->run_to_completion);
4807 struct ipmi_smi_msg *newmsg = NULL;
4808 struct ipmi_recv_msg *msg, *msg2;
4809 int cc;
4810
4811 /*
4812 * Start the next message if available.
4813 *
4814 * Do this here, not in the actual receiver, because we may deadlock
4815 * because the lower layer is allowed to hold locks while calling
4816 * message delivery.
4817 */
4818 restart:
4819 if (!run_to_completion)
4820 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4821 if (intf->curr_msg == NULL && !intf->in_shutdown) {
4822 struct list_head *entry = NULL;
4823
4824 /* Pick the high priority queue first. */
4825 if (!list_empty(&intf->hp_xmit_msgs))
4826 entry = intf->hp_xmit_msgs.next;
4827 else if (!list_empty(&intf->xmit_msgs))
4828 entry = intf->xmit_msgs.next;
4829
4830 if (entry) {
4831 list_del(entry);
4832 newmsg = list_entry(entry, struct ipmi_smi_msg, link);
4833 intf->curr_msg = newmsg;
4834 }
4835 }
4836 if (!run_to_completion)
4837 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4838
4839 if (newmsg) {
4840 cc = intf->handlers->sender(intf->send_info, newmsg);
4841 if (cc) {
4842 if (newmsg->recv_msg)
4843 deliver_err_response(intf,
4844 newmsg->recv_msg, cc);
4845 else
4846 ipmi_free_smi_msg(newmsg);
4847 goto restart;
4848 }
4849 }
4850
4851 handle_new_recv_msgs(intf);
4852
4853 /* Nothing below applies during panic time. */
4854 if (run_to_completion)
4855 return;
4856
4857 /*
4858 * If the pretimout count is non-zero, decrement one from it and
4859 * deliver pretimeouts to all the users.
4860 */
4861 if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
4862 struct ipmi_user *user;
4863
4864 mutex_lock(&intf->users_mutex);
4865 list_for_each_entry(user, &intf->users, link) {
4866 if (user->handler->ipmi_watchdog_pretimeout)
4867 user->handler->ipmi_watchdog_pretimeout(
4868 user->handler_data);
4869 }
4870 mutex_unlock(&intf->users_mutex);
4871 }
4872
4873 /*
4874 * Freeing the message can cause a user to be released, which
4875 * can then cause the interface to be freed. Make sure that
4876 * doesn't happen until we are ready.
4877 */
4878 kref_get(&intf->refcount);
4879
4880 mutex_lock(&intf->user_msgs_mutex);
4881 list_for_each_entry_safe(msg, msg2, &intf->user_msgs, link) {
4882 struct ipmi_user *user = msg->user;
4883
4884 list_del(&msg->link);
4885
4886 if (refcount_read(&user->destroyed) == 0)
4887 ipmi_free_recv_msg(msg);
4888 else
4889 user->handler->ipmi_recv_hndl(msg, user->handler_data);
4890 }
4891 mutex_unlock(&intf->user_msgs_mutex);
4892
4893 kref_put(&intf->refcount, intf_free);
4894 }
4895
4896 /* Handle a new message from the lower layer. */
ipmi_smi_msg_received(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4897 void ipmi_smi_msg_received(struct ipmi_smi *intf,
4898 struct ipmi_smi_msg *msg)
4899 {
4900 unsigned long flags = 0; /* keep us warning-free. */
4901 int run_to_completion = READ_ONCE(intf->run_to_completion);
4902
4903 /*
4904 * To preserve message order, we keep a queue and deliver from
4905 * a workqueue.
4906 */
4907 if (!run_to_completion)
4908 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4909 list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
4910 if (!run_to_completion)
4911 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4912 flags);
4913
4914 if (!run_to_completion)
4915 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4916 /*
4917 * We can get an asynchronous event or receive message in addition
4918 * to commands we send.
4919 */
4920 if (msg == intf->curr_msg)
4921 intf->curr_msg = NULL;
4922 if (!run_to_completion)
4923 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4924
4925 if (run_to_completion)
4926 smi_work(&intf->smi_work);
4927 else
4928 queue_work(system_wq, &intf->smi_work);
4929 }
4930 EXPORT_SYMBOL(ipmi_smi_msg_received);
4931
ipmi_smi_watchdog_pretimeout(struct ipmi_smi * intf)4932 void ipmi_smi_watchdog_pretimeout(struct ipmi_smi *intf)
4933 {
4934 if (intf->in_shutdown)
4935 return;
4936
4937 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
4938 queue_work(system_wq, &intf->smi_work);
4939 }
4940 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
4941
4942 static struct ipmi_smi_msg *
smi_from_recv_msg(struct ipmi_smi * intf,struct ipmi_recv_msg * recv_msg,unsigned char seq,long seqid)4943 smi_from_recv_msg(struct ipmi_smi *intf, struct ipmi_recv_msg *recv_msg,
4944 unsigned char seq, long seqid)
4945 {
4946 struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
4947 if (!smi_msg)
4948 /*
4949 * If we can't allocate the message, then just return, we
4950 * get 4 retries, so this should be ok.
4951 */
4952 return NULL;
4953
4954 memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4955 smi_msg->data_size = recv_msg->msg.data_len;
4956 smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4957
4958 dev_dbg(intf->si_dev, "Resend: %*ph\n",
4959 smi_msg->data_size, smi_msg->data);
4960
4961 return smi_msg;
4962 }
4963
check_msg_timeout(struct ipmi_smi * intf,struct seq_table * ent,struct list_head * timeouts,unsigned long timeout_period,int slot,bool * need_timer)4964 static void check_msg_timeout(struct ipmi_smi *intf, struct seq_table *ent,
4965 struct list_head *timeouts,
4966 unsigned long timeout_period,
4967 int slot, bool *need_timer)
4968 {
4969 struct ipmi_recv_msg *msg;
4970
4971 if (intf->in_shutdown)
4972 return;
4973
4974 if (!ent->inuse)
4975 return;
4976
4977 if (timeout_period < ent->timeout) {
4978 ent->timeout -= timeout_period;
4979 *need_timer = true;
4980 return;
4981 }
4982
4983 if (ent->retries_left == 0) {
4984 /* The message has used all its retries. */
4985 ent->inuse = 0;
4986 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
4987 msg = ent->recv_msg;
4988 list_add_tail(&msg->link, timeouts);
4989 if (ent->broadcast)
4990 ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4991 else if (is_lan_addr(&ent->recv_msg->addr))
4992 ipmi_inc_stat(intf, timed_out_lan_commands);
4993 else
4994 ipmi_inc_stat(intf, timed_out_ipmb_commands);
4995 } else {
4996 struct ipmi_smi_msg *smi_msg;
4997 /* More retries, send again. */
4998
4999 *need_timer = true;
5000
5001 /*
5002 * Start with the max timer, set to normal timer after
5003 * the message is sent.
5004 */
5005 ent->timeout = MAX_MSG_TIMEOUT;
5006 ent->retries_left--;
5007 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
5008 ent->seqid);
5009 if (!smi_msg) {
5010 if (is_lan_addr(&ent->recv_msg->addr))
5011 ipmi_inc_stat(intf,
5012 dropped_rexmit_lan_commands);
5013 else
5014 ipmi_inc_stat(intf,
5015 dropped_rexmit_ipmb_commands);
5016 return;
5017 }
5018
5019 mutex_unlock(&intf->seq_lock);
5020
5021 /*
5022 * Send the new message. We send with a zero
5023 * priority. It timed out, I doubt time is that
5024 * critical now, and high priority messages are really
5025 * only for messages to the local MC, which don't get
5026 * resent.
5027 */
5028 if (intf->handlers) {
5029 if (is_lan_addr(&ent->recv_msg->addr))
5030 ipmi_inc_stat(intf,
5031 retransmitted_lan_commands);
5032 else
5033 ipmi_inc_stat(intf,
5034 retransmitted_ipmb_commands);
5035
5036 smi_send(intf, intf->handlers, smi_msg, 0);
5037 } else
5038 ipmi_free_smi_msg(smi_msg);
5039
5040 mutex_lock(&intf->seq_lock);
5041 }
5042 }
5043
ipmi_timeout_handler(struct ipmi_smi * intf,unsigned long timeout_period)5044 static bool ipmi_timeout_handler(struct ipmi_smi *intf,
5045 unsigned long timeout_period)
5046 {
5047 struct list_head timeouts;
5048 struct ipmi_recv_msg *msg, *msg2;
5049 unsigned long flags;
5050 int i;
5051 bool need_timer = false;
5052
5053 if (!intf->bmc_registered) {
5054 kref_get(&intf->refcount);
5055 if (!schedule_work(&intf->bmc_reg_work)) {
5056 kref_put(&intf->refcount, intf_free);
5057 need_timer = true;
5058 }
5059 }
5060
5061 /*
5062 * Go through the seq table and find any messages that
5063 * have timed out, putting them in the timeouts
5064 * list.
5065 */
5066 INIT_LIST_HEAD(&timeouts);
5067 mutex_lock(&intf->seq_lock);
5068 if (intf->ipmb_maintenance_mode_timeout) {
5069 if (intf->ipmb_maintenance_mode_timeout <= timeout_period)
5070 intf->ipmb_maintenance_mode_timeout = 0;
5071 else
5072 intf->ipmb_maintenance_mode_timeout -= timeout_period;
5073 }
5074 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
5075 check_msg_timeout(intf, &intf->seq_table[i],
5076 &timeouts, timeout_period, i,
5077 &need_timer);
5078 mutex_unlock(&intf->seq_lock);
5079
5080 list_for_each_entry_safe(msg, msg2, &timeouts, link)
5081 deliver_err_response(intf, msg, IPMI_TIMEOUT_COMPLETION_CODE);
5082
5083 /*
5084 * Maintenance mode handling. Check the timeout
5085 * optimistically before we claim the lock. It may
5086 * mean a timeout gets missed occasionally, but that
5087 * only means the timeout gets extended by one period
5088 * in that case. No big deal, and it avoids the lock
5089 * most of the time.
5090 */
5091 if (intf->auto_maintenance_timeout > 0) {
5092 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
5093 if (intf->auto_maintenance_timeout > 0) {
5094 intf->auto_maintenance_timeout
5095 -= timeout_period;
5096 if (!intf->maintenance_mode
5097 && (intf->auto_maintenance_timeout <= 0)) {
5098 intf->maintenance_mode_state =
5099 IPMI_MAINTENANCE_MODE_STATE_OFF;
5100 intf->auto_maintenance_timeout = 0;
5101 maintenance_mode_update(intf);
5102 }
5103 }
5104 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
5105 flags);
5106 }
5107
5108 queue_work(system_wq, &intf->smi_work);
5109
5110 return need_timer;
5111 }
5112
ipmi_request_event(struct ipmi_smi * intf)5113 static void ipmi_request_event(struct ipmi_smi *intf)
5114 {
5115 /* No event requests when in maintenance mode. */
5116 if (intf->maintenance_mode_state)
5117 return;
5118
5119 if (!intf->in_shutdown)
5120 intf->handlers->request_events(intf->send_info);
5121 }
5122
5123 static atomic_t stop_operation;
5124
ipmi_timeout_work(struct work_struct * work)5125 static void ipmi_timeout_work(struct work_struct *work)
5126 {
5127 if (atomic_read(&stop_operation))
5128 return;
5129
5130 struct ipmi_smi *intf;
5131 bool need_timer = false;
5132
5133 if (atomic_read(&stop_operation))
5134 return;
5135
5136 mutex_lock(&ipmi_interfaces_mutex);
5137 list_for_each_entry(intf, &ipmi_interfaces, link) {
5138 if (atomic_read(&intf->event_waiters)) {
5139 intf->ticks_to_req_ev--;
5140 if (intf->ticks_to_req_ev == 0) {
5141 ipmi_request_event(intf);
5142 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
5143 }
5144 need_timer = true;
5145 }
5146 if (intf->maintenance_mode_state)
5147 need_timer = true;
5148
5149 need_timer |= ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
5150 }
5151 mutex_unlock(&ipmi_interfaces_mutex);
5152
5153 if (need_timer)
5154 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5155 }
5156
5157 static DECLARE_WORK(ipmi_timer_work, ipmi_timeout_work);
5158
ipmi_timeout(struct timer_list * unused)5159 static void ipmi_timeout(struct timer_list *unused)
5160 {
5161 if (atomic_read(&stop_operation))
5162 return;
5163
5164 queue_work(system_wq, &ipmi_timer_work);
5165 }
5166
need_waiter(struct ipmi_smi * intf)5167 static void need_waiter(struct ipmi_smi *intf)
5168 {
5169 /* Racy, but worst case we start the timer twice. */
5170 if (!timer_pending(&ipmi_timer))
5171 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5172 }
5173
5174 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
5175 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
5176
free_smi_msg(struct ipmi_smi_msg * msg)5177 static void free_smi_msg(struct ipmi_smi_msg *msg)
5178 {
5179 atomic_dec(&smi_msg_inuse_count);
5180 /* Try to keep as much stuff out of the panic path as possible. */
5181 if (!oops_in_progress)
5182 kfree(msg);
5183 }
5184
ipmi_alloc_smi_msg(void)5185 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
5186 {
5187 struct ipmi_smi_msg *rv;
5188 rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
5189 if (rv) {
5190 rv->done = free_smi_msg;
5191 rv->recv_msg = NULL;
5192 rv->type = IPMI_SMI_MSG_TYPE_NORMAL;
5193 atomic_inc(&smi_msg_inuse_count);
5194 }
5195 return rv;
5196 }
5197 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
5198
free_recv_msg(struct ipmi_recv_msg * msg)5199 static void free_recv_msg(struct ipmi_recv_msg *msg)
5200 {
5201 atomic_dec(&recv_msg_inuse_count);
5202 /* Try to keep as much stuff out of the panic path as possible. */
5203 if (!oops_in_progress)
5204 kfree(msg);
5205 }
5206
ipmi_alloc_recv_msg(struct ipmi_user * user)5207 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(struct ipmi_user *user)
5208 {
5209 struct ipmi_recv_msg *rv;
5210
5211 if (user) {
5212 if (atomic_add_return(1, &user->nr_msgs) > max_msgs_per_user) {
5213 atomic_dec(&user->nr_msgs);
5214 return ERR_PTR(-EBUSY);
5215 }
5216 }
5217
5218 rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
5219 if (!rv) {
5220 if (user)
5221 atomic_dec(&user->nr_msgs);
5222 return ERR_PTR(-ENOMEM);
5223 }
5224
5225 rv->user = user;
5226 rv->done = free_recv_msg;
5227 if (user)
5228 kref_get(&user->refcount);
5229 atomic_inc(&recv_msg_inuse_count);
5230 return rv;
5231 }
5232
ipmi_free_recv_msg(struct ipmi_recv_msg * msg)5233 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
5234 {
5235 if (msg->user && !oops_in_progress) {
5236 atomic_dec(&msg->user->nr_msgs);
5237 kref_put(&msg->user->refcount, free_ipmi_user);
5238 }
5239 msg->done(msg);
5240 }
5241 EXPORT_SYMBOL(ipmi_free_recv_msg);
5242
ipmi_set_recv_msg_user(struct ipmi_recv_msg * msg,struct ipmi_user * user)5243 static void ipmi_set_recv_msg_user(struct ipmi_recv_msg *msg,
5244 struct ipmi_user *user)
5245 {
5246 WARN_ON_ONCE(msg->user); /* User should not be set. */
5247 msg->user = user;
5248 atomic_inc(&user->nr_msgs);
5249 kref_get(&user->refcount);
5250 }
5251
5252 static atomic_t panic_done_count = ATOMIC_INIT(0);
5253
dummy_smi_done_handler(struct ipmi_smi_msg * msg)5254 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
5255 {
5256 atomic_dec(&panic_done_count);
5257 }
5258
dummy_recv_done_handler(struct ipmi_recv_msg * msg)5259 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
5260 {
5261 atomic_dec(&panic_done_count);
5262 }
5263
5264 /*
5265 * Inside a panic, send a message and wait for a response.
5266 */
_ipmi_panic_request_and_wait(struct ipmi_smi * intf,struct ipmi_addr * addr,struct kernel_ipmi_msg * msg)5267 static void _ipmi_panic_request_and_wait(struct ipmi_smi *intf,
5268 struct ipmi_addr *addr,
5269 struct kernel_ipmi_msg *msg)
5270 {
5271 struct ipmi_smi_msg smi_msg;
5272 struct ipmi_recv_msg recv_msg;
5273 int rv;
5274
5275 smi_msg.done = dummy_smi_done_handler;
5276 recv_msg.done = dummy_recv_done_handler;
5277 atomic_add(2, &panic_done_count);
5278 rv = i_ipmi_request(NULL,
5279 intf,
5280 addr,
5281 0,
5282 msg,
5283 intf,
5284 &smi_msg,
5285 &recv_msg,
5286 0,
5287 intf->addrinfo[0].address,
5288 intf->addrinfo[0].lun,
5289 0, 1); /* Don't retry, and don't wait. */
5290 if (rv)
5291 atomic_sub(2, &panic_done_count);
5292 else if (intf->handlers->flush_messages)
5293 intf->handlers->flush_messages(intf->send_info);
5294
5295 while (atomic_read(&panic_done_count) != 0)
5296 ipmi_poll(intf);
5297 }
5298
ipmi_panic_request_and_wait(struct ipmi_user * user,struct ipmi_addr * addr,struct kernel_ipmi_msg * msg)5299 void ipmi_panic_request_and_wait(struct ipmi_user *user,
5300 struct ipmi_addr *addr,
5301 struct kernel_ipmi_msg *msg)
5302 {
5303 user->intf->run_to_completion = 1;
5304 _ipmi_panic_request_and_wait(user->intf, addr, msg);
5305 }
5306 EXPORT_SYMBOL(ipmi_panic_request_and_wait);
5307
event_receiver_fetcher(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)5308 static void event_receiver_fetcher(struct ipmi_smi *intf,
5309 struct ipmi_recv_msg *msg)
5310 {
5311 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
5312 && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
5313 && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
5314 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
5315 /* A get event receiver command, save it. */
5316 intf->event_receiver = msg->msg.data[1];
5317 intf->event_receiver_lun = msg->msg.data[2] & 0x3;
5318 }
5319 }
5320
device_id_fetcher(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)5321 static void device_id_fetcher(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
5322 {
5323 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
5324 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
5325 && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
5326 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
5327 /*
5328 * A get device id command, save if we are an event
5329 * receiver or generator.
5330 */
5331 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
5332 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
5333 }
5334 }
5335
send_panic_events(struct ipmi_smi * intf,char * str)5336 static void send_panic_events(struct ipmi_smi *intf, char *str)
5337 {
5338 struct kernel_ipmi_msg msg;
5339 unsigned char data[16];
5340 struct ipmi_system_interface_addr *si;
5341 struct ipmi_addr addr;
5342 char *p = str;
5343 struct ipmi_ipmb_addr *ipmb;
5344 int j;
5345
5346 if (ipmi_send_panic_event == IPMI_SEND_PANIC_EVENT_NONE)
5347 return;
5348
5349 si = (struct ipmi_system_interface_addr *) &addr;
5350 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
5351 si->channel = IPMI_BMC_CHANNEL;
5352 si->lun = 0;
5353
5354 /* Fill in an event telling that we have failed. */
5355 msg.netfn = 0x04; /* Sensor or Event. */
5356 msg.cmd = 2; /* Platform event command. */
5357 msg.data = data;
5358 msg.data_len = 8;
5359 data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
5360 data[1] = 0x03; /* This is for IPMI 1.0. */
5361 data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
5362 data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
5363 data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
5364
5365 /*
5366 * Put a few breadcrumbs in. Hopefully later we can add more things
5367 * to make the panic events more useful.
5368 */
5369 if (str) {
5370 data[3] = str[0];
5371 data[6] = str[1];
5372 data[7] = str[2];
5373 }
5374
5375 /* Send the event announcing the panic. */
5376 _ipmi_panic_request_and_wait(intf, &addr, &msg);
5377
5378 /*
5379 * On every interface, dump a bunch of OEM event holding the
5380 * string.
5381 */
5382 if (ipmi_send_panic_event != IPMI_SEND_PANIC_EVENT_STRING || !str)
5383 return;
5384
5385 /*
5386 * intf_num is used as an marker to tell if the
5387 * interface is valid. Thus we need a read barrier to
5388 * make sure data fetched before checking intf_num
5389 * won't be used.
5390 */
5391 smp_rmb();
5392
5393 /*
5394 * First job here is to figure out where to send the
5395 * OEM events. There's no way in IPMI to send OEM
5396 * events using an event send command, so we have to
5397 * find the SEL to put them in and stick them in
5398 * there.
5399 */
5400
5401 /* Get capabilities from the get device id. */
5402 intf->local_sel_device = 0;
5403 intf->local_event_generator = 0;
5404 intf->event_receiver = 0;
5405
5406 /* Request the device info from the local MC. */
5407 msg.netfn = IPMI_NETFN_APP_REQUEST;
5408 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
5409 msg.data = NULL;
5410 msg.data_len = 0;
5411 intf->null_user_handler = device_id_fetcher;
5412 _ipmi_panic_request_and_wait(intf, &addr, &msg);
5413
5414 if (intf->local_event_generator) {
5415 /* Request the event receiver from the local MC. */
5416 msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
5417 msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
5418 msg.data = NULL;
5419 msg.data_len = 0;
5420 intf->null_user_handler = event_receiver_fetcher;
5421 _ipmi_panic_request_and_wait(intf, &addr, &msg);
5422 }
5423 intf->null_user_handler = NULL;
5424
5425 /*
5426 * Validate the event receiver. The low bit must not
5427 * be 1 (it must be a valid IPMB address), it cannot
5428 * be zero, and it must not be my address.
5429 */
5430 if (((intf->event_receiver & 1) == 0)
5431 && (intf->event_receiver != 0)
5432 && (intf->event_receiver != intf->addrinfo[0].address)) {
5433 /*
5434 * The event receiver is valid, send an IPMB
5435 * message.
5436 */
5437 ipmb = (struct ipmi_ipmb_addr *) &addr;
5438 ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
5439 ipmb->channel = 0; /* FIXME - is this right? */
5440 ipmb->lun = intf->event_receiver_lun;
5441 ipmb->slave_addr = intf->event_receiver;
5442 } else if (intf->local_sel_device) {
5443 /*
5444 * The event receiver was not valid (or was
5445 * me), but I am an SEL device, just dump it
5446 * in my SEL.
5447 */
5448 si = (struct ipmi_system_interface_addr *) &addr;
5449 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
5450 si->channel = IPMI_BMC_CHANNEL;
5451 si->lun = 0;
5452 } else
5453 return; /* No where to send the event. */
5454
5455 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
5456 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
5457 msg.data = data;
5458 msg.data_len = 16;
5459
5460 j = 0;
5461 while (*p) {
5462 int size = strnlen(p, 11);
5463
5464 data[0] = 0;
5465 data[1] = 0;
5466 data[2] = 0xf0; /* OEM event without timestamp. */
5467 data[3] = intf->addrinfo[0].address;
5468 data[4] = j++; /* sequence # */
5469
5470 memcpy_and_pad(data+5, 11, p, size, '\0');
5471 p += size;
5472
5473 _ipmi_panic_request_and_wait(intf, &addr, &msg);
5474 }
5475 }
5476
5477 static int has_panicked;
5478
panic_event(struct notifier_block * this,unsigned long event,void * ptr)5479 static int panic_event(struct notifier_block *this,
5480 unsigned long event,
5481 void *ptr)
5482 {
5483 struct ipmi_smi *intf;
5484 struct ipmi_user *user;
5485
5486 if (has_panicked)
5487 return NOTIFY_DONE;
5488 has_panicked = 1;
5489
5490 /* For every registered interface, set it to run to completion. */
5491 list_for_each_entry(intf, &ipmi_interfaces, link) {
5492 if (!intf->handlers || intf->intf_num == -1)
5493 /* Interface is not ready. */
5494 continue;
5495
5496 if (!intf->handlers->poll)
5497 continue;
5498
5499 /*
5500 * If we were interrupted while locking xmit_msgs_lock or
5501 * waiting_rcv_msgs_lock, the corresponding list may be
5502 * corrupted. In this case, drop items on the list for
5503 * the safety.
5504 */
5505 if (!spin_trylock(&intf->xmit_msgs_lock)) {
5506 INIT_LIST_HEAD(&intf->xmit_msgs);
5507 INIT_LIST_HEAD(&intf->hp_xmit_msgs);
5508 } else
5509 spin_unlock(&intf->xmit_msgs_lock);
5510
5511 if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
5512 INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
5513 else
5514 spin_unlock(&intf->waiting_rcv_msgs_lock);
5515
5516 intf->run_to_completion = 1;
5517 if (intf->handlers->set_run_to_completion)
5518 intf->handlers->set_run_to_completion(intf->send_info,
5519 1);
5520
5521 list_for_each_entry(user, &intf->users, link) {
5522 if (user->handler->ipmi_panic_handler)
5523 user->handler->ipmi_panic_handler(
5524 user->handler_data);
5525 }
5526
5527 send_panic_events(intf, ptr);
5528 }
5529
5530 return NOTIFY_DONE;
5531 }
5532
5533 /* Must be called with ipmi_interfaces_mutex held. */
ipmi_register_driver(void)5534 static int ipmi_register_driver(void)
5535 {
5536 int rv;
5537
5538 if (drvregistered)
5539 return 0;
5540
5541 rv = driver_register(&ipmidriver.driver);
5542 if (rv)
5543 pr_err("Could not register IPMI driver\n");
5544 else
5545 drvregistered = true;
5546 return rv;
5547 }
5548
5549 static struct notifier_block panic_block = {
5550 .notifier_call = panic_event,
5551 .next = NULL,
5552 .priority = 200 /* priority: INT_MAX >= x >= 0 */
5553 };
5554
ipmi_init_msghandler(void)5555 static int ipmi_init_msghandler(void)
5556 {
5557 int rv;
5558
5559 mutex_lock(&ipmi_interfaces_mutex);
5560 rv = ipmi_register_driver();
5561 if (rv)
5562 goto out;
5563 if (initialized)
5564 goto out;
5565
5566 bmc_remove_work_wq = create_singlethread_workqueue("ipmi-msghandler-remove-wq");
5567 if (!bmc_remove_work_wq) {
5568 pr_err("unable to create ipmi-msghandler-remove-wq workqueue");
5569 rv = -ENOMEM;
5570 goto out;
5571 }
5572
5573 timer_setup(&ipmi_timer, ipmi_timeout, 0);
5574 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5575
5576 atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
5577
5578 initialized = true;
5579
5580 out:
5581 mutex_unlock(&ipmi_interfaces_mutex);
5582 return rv;
5583 }
5584
ipmi_init_msghandler_mod(void)5585 static int __init ipmi_init_msghandler_mod(void)
5586 {
5587 int rv;
5588
5589 pr_info("version " IPMI_DRIVER_VERSION "\n");
5590
5591 mutex_lock(&ipmi_interfaces_mutex);
5592 rv = ipmi_register_driver();
5593 mutex_unlock(&ipmi_interfaces_mutex);
5594
5595 return rv;
5596 }
5597
cleanup_ipmi(void)5598 static void __exit cleanup_ipmi(void)
5599 {
5600 int count;
5601
5602 if (initialized) {
5603 destroy_workqueue(bmc_remove_work_wq);
5604
5605 atomic_notifier_chain_unregister(&panic_notifier_list,
5606 &panic_block);
5607
5608 /*
5609 * This can't be called if any interfaces exist, so no worry
5610 * about shutting down the interfaces.
5611 */
5612
5613 /*
5614 * Tell the timer to stop, then wait for it to stop. This
5615 * avoids problems with race conditions removing the timer
5616 * here.
5617 */
5618 atomic_set(&stop_operation, 1);
5619 timer_delete_sync(&ipmi_timer);
5620 cancel_work_sync(&ipmi_timer_work);
5621
5622 initialized = false;
5623
5624 /* Check for buffer leaks. */
5625 count = atomic_read(&smi_msg_inuse_count);
5626 if (count != 0)
5627 pr_warn("SMI message count %d at exit\n", count);
5628 count = atomic_read(&recv_msg_inuse_count);
5629 if (count != 0)
5630 pr_warn("recv message count %d at exit\n", count);
5631 }
5632 if (drvregistered)
5633 driver_unregister(&ipmidriver.driver);
5634 }
5635 module_exit(cleanup_ipmi);
5636
5637 module_init(ipmi_init_msghandler_mod);
5638 MODULE_LICENSE("GPL");
5639 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
5640 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI interface.");
5641 MODULE_VERSION(IPMI_DRIVER_VERSION);
5642 MODULE_SOFTDEP("post: ipmi_devintf");
5643