1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * GICv3 ITS emulation
4 *
5 * Copyright (C) 2015,2016 ARM Ltd.
6 * Author: Andre Przywara <andre.przywara@arm.com>
7 */
8
9 #include <linux/cpu.h>
10 #include <linux/kvm.h>
11 #include <linux/kvm_host.h>
12 #include <linux/interrupt.h>
13 #include <linux/list.h>
14 #include <linux/uaccess.h>
15 #include <linux/list_sort.h>
16
17 #include <linux/irqchip/arm-gic-v3.h>
18
19 #include <asm/kvm_emulate.h>
20 #include <asm/kvm_arm.h>
21 #include <asm/kvm_mmu.h>
22
23 #include "vgic.h"
24 #include "vgic-mmio.h"
25
26 static struct kvm_device_ops kvm_arm_vgic_its_ops;
27
28 static int vgic_its_save_tables_v0(struct vgic_its *its);
29 static int vgic_its_restore_tables_v0(struct vgic_its *its);
30 static int vgic_its_commit_v0(struct vgic_its *its);
31 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
32 struct kvm_vcpu *filter_vcpu, bool needs_inv);
33
34 #define vgic_its_read_entry_lock(i, g, valp, t) \
35 ({ \
36 int __sz = vgic_its_get_abi(i)->t##_esz; \
37 struct kvm *__k = (i)->dev->kvm; \
38 int __ret; \
39 \
40 BUILD_BUG_ON(NR_ITS_ABIS == 1 && \
41 sizeof(*(valp)) != ABI_0_ESZ); \
42 if (NR_ITS_ABIS > 1 && \
43 KVM_BUG_ON(__sz != sizeof(*(valp)), __k)) \
44 __ret = -EINVAL; \
45 else \
46 __ret = kvm_read_guest_lock(__k, (g), \
47 valp, __sz); \
48 __ret; \
49 })
50
51 #define vgic_its_write_entry_lock(i, g, val, t) \
52 ({ \
53 int __sz = vgic_its_get_abi(i)->t##_esz; \
54 struct kvm *__k = (i)->dev->kvm; \
55 typeof(val) __v = (val); \
56 int __ret; \
57 \
58 BUILD_BUG_ON(NR_ITS_ABIS == 1 && \
59 sizeof(__v) != ABI_0_ESZ); \
60 if (NR_ITS_ABIS > 1 && \
61 KVM_BUG_ON(__sz != sizeof(__v), __k)) \
62 __ret = -EINVAL; \
63 else \
64 __ret = vgic_write_guest_lock(__k, (g), \
65 &__v, __sz); \
66 __ret; \
67 })
68
69 /*
70 * Creates a new (reference to a) struct vgic_irq for a given LPI.
71 * If this LPI is already mapped on another ITS, we increase its refcount
72 * and return a pointer to the existing structure.
73 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
74 * This function returns a pointer to the _unlocked_ structure.
75 */
vgic_add_lpi(struct kvm * kvm,u32 intid,struct kvm_vcpu * vcpu)76 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
77 struct kvm_vcpu *vcpu)
78 {
79 struct vgic_dist *dist = &kvm->arch.vgic;
80 struct vgic_irq *irq = vgic_get_irq(kvm, intid), *oldirq;
81 unsigned long flags;
82 int ret;
83
84 /* In this case there is no put, since we keep the reference. */
85 if (irq)
86 return irq;
87
88 irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL_ACCOUNT);
89 if (!irq)
90 return ERR_PTR(-ENOMEM);
91
92 ret = xa_reserve_irq(&dist->lpi_xa, intid, GFP_KERNEL_ACCOUNT);
93 if (ret) {
94 kfree(irq);
95 return ERR_PTR(ret);
96 }
97
98 INIT_LIST_HEAD(&irq->ap_list);
99 raw_spin_lock_init(&irq->irq_lock);
100
101 irq->config = VGIC_CONFIG_EDGE;
102 kref_init(&irq->refcount);
103 irq->intid = intid;
104 irq->target_vcpu = vcpu;
105 irq->group = 1;
106
107 xa_lock_irqsave(&dist->lpi_xa, flags);
108
109 /*
110 * There could be a race with another vgic_add_lpi(), so we need to
111 * check that we don't add a second list entry with the same LPI.
112 */
113 oldirq = xa_load(&dist->lpi_xa, intid);
114 if (vgic_try_get_irq_kref(oldirq)) {
115 /* Someone was faster with adding this LPI, lets use that. */
116 kfree(irq);
117 irq = oldirq;
118
119 goto out_unlock;
120 }
121
122 ret = xa_err(__xa_store(&dist->lpi_xa, intid, irq, 0));
123 if (ret) {
124 xa_release(&dist->lpi_xa, intid);
125 kfree(irq);
126 }
127
128 out_unlock:
129 xa_unlock_irqrestore(&dist->lpi_xa, flags);
130
131 if (ret)
132 return ERR_PTR(ret);
133
134 /*
135 * We "cache" the configuration table entries in our struct vgic_irq's.
136 * However we only have those structs for mapped IRQs, so we read in
137 * the respective config data from memory here upon mapping the LPI.
138 *
139 * Should any of these fail, behave as if we couldn't create the LPI
140 * by dropping the refcount and returning the error.
141 */
142 ret = update_lpi_config(kvm, irq, NULL, false);
143 if (ret) {
144 vgic_put_irq(kvm, irq);
145 return ERR_PTR(ret);
146 }
147
148 ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
149 if (ret) {
150 vgic_put_irq(kvm, irq);
151 return ERR_PTR(ret);
152 }
153
154 return irq;
155 }
156
157 /**
158 * struct vgic_its_abi - ITS abi ops and settings
159 * @cte_esz: collection table entry size
160 * @dte_esz: device table entry size
161 * @ite_esz: interrupt translation table entry size
162 * @save_tables: save the ITS tables into guest RAM
163 * @restore_tables: restore the ITS internal structs from tables
164 * stored in guest RAM
165 * @commit: initialize the registers which expose the ABI settings,
166 * especially the entry sizes
167 */
168 struct vgic_its_abi {
169 int cte_esz;
170 int dte_esz;
171 int ite_esz;
172 int (*save_tables)(struct vgic_its *its);
173 int (*restore_tables)(struct vgic_its *its);
174 int (*commit)(struct vgic_its *its);
175 };
176
177 #define ABI_0_ESZ 8
178 #define ESZ_MAX ABI_0_ESZ
179
180 static const struct vgic_its_abi its_table_abi_versions[] = {
181 [0] = {
182 .cte_esz = ABI_0_ESZ,
183 .dte_esz = ABI_0_ESZ,
184 .ite_esz = ABI_0_ESZ,
185 .save_tables = vgic_its_save_tables_v0,
186 .restore_tables = vgic_its_restore_tables_v0,
187 .commit = vgic_its_commit_v0,
188 },
189 };
190
191 #define NR_ITS_ABIS ARRAY_SIZE(its_table_abi_versions)
192
vgic_its_get_abi(struct vgic_its * its)193 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
194 {
195 return &its_table_abi_versions[its->abi_rev];
196 }
197
vgic_its_set_abi(struct vgic_its * its,u32 rev)198 static int vgic_its_set_abi(struct vgic_its *its, u32 rev)
199 {
200 const struct vgic_its_abi *abi;
201
202 its->abi_rev = rev;
203 abi = vgic_its_get_abi(its);
204 return abi->commit(its);
205 }
206
207 /*
208 * Find and returns a device in the device table for an ITS.
209 * Must be called with the its_lock mutex held.
210 */
find_its_device(struct vgic_its * its,u32 device_id)211 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
212 {
213 struct its_device *device;
214
215 list_for_each_entry(device, &its->device_list, dev_list)
216 if (device_id == device->device_id)
217 return device;
218
219 return NULL;
220 }
221
222 /*
223 * Find and returns an interrupt translation table entry (ITTE) for a given
224 * Device ID/Event ID pair on an ITS.
225 * Must be called with the its_lock mutex held.
226 */
find_ite(struct vgic_its * its,u32 device_id,u32 event_id)227 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
228 u32 event_id)
229 {
230 struct its_device *device;
231 struct its_ite *ite;
232
233 device = find_its_device(its, device_id);
234 if (device == NULL)
235 return NULL;
236
237 list_for_each_entry(ite, &device->itt_head, ite_list)
238 if (ite->event_id == event_id)
239 return ite;
240
241 return NULL;
242 }
243
244 /* To be used as an iterator this macro misses the enclosing parentheses */
245 #define for_each_lpi_its(dev, ite, its) \
246 list_for_each_entry(dev, &(its)->device_list, dev_list) \
247 list_for_each_entry(ite, &(dev)->itt_head, ite_list)
248
249 #define GIC_LPI_OFFSET 8192
250
251 #define VITS_TYPER_IDBITS 16
252 #define VITS_MAX_EVENTID (BIT(VITS_TYPER_IDBITS) - 1)
253 #define VITS_TYPER_DEVBITS 16
254 #define VITS_MAX_DEVID (BIT(VITS_TYPER_DEVBITS) - 1)
255 #define VITS_DTE_MAX_DEVID_OFFSET (BIT(14) - 1)
256 #define VITS_ITE_MAX_EVENTID_OFFSET (BIT(16) - 1)
257
258 /*
259 * Finds and returns a collection in the ITS collection table.
260 * Must be called with the its_lock mutex held.
261 */
find_collection(struct vgic_its * its,int coll_id)262 static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
263 {
264 struct its_collection *collection;
265
266 list_for_each_entry(collection, &its->collection_list, coll_list) {
267 if (coll_id == collection->collection_id)
268 return collection;
269 }
270
271 return NULL;
272 }
273
274 #define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED)
275 #define LPI_PROP_PRIORITY(p) ((p) & 0xfc)
276
277 /*
278 * Reads the configuration data for a given LPI from guest memory and
279 * updates the fields in struct vgic_irq.
280 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
281 * VCPU. Unconditionally applies if filter_vcpu is NULL.
282 */
update_lpi_config(struct kvm * kvm,struct vgic_irq * irq,struct kvm_vcpu * filter_vcpu,bool needs_inv)283 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
284 struct kvm_vcpu *filter_vcpu, bool needs_inv)
285 {
286 u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
287 u8 prop;
288 int ret;
289 unsigned long flags;
290
291 ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
292 &prop, 1);
293
294 if (ret)
295 return ret;
296
297 raw_spin_lock_irqsave(&irq->irq_lock, flags);
298
299 if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
300 irq->priority = LPI_PROP_PRIORITY(prop);
301 irq->enabled = LPI_PROP_ENABLE_BIT(prop);
302
303 if (!irq->hw) {
304 vgic_queue_irq_unlock(kvm, irq, flags);
305 return 0;
306 }
307 }
308
309 if (irq->hw)
310 ret = its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
311
312 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
313 return ret;
314 }
315
update_affinity(struct vgic_irq * irq,struct kvm_vcpu * vcpu)316 static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
317 {
318 struct its_vlpi_map map;
319 int ret;
320
321 guard(raw_spinlock_irqsave)(&irq->irq_lock);
322 irq->target_vcpu = vcpu;
323
324 if (!irq->hw)
325 return 0;
326
327 ret = its_get_vlpi(irq->host_irq, &map);
328 if (ret)
329 return ret;
330
331 if (map.vpe)
332 atomic_dec(&map.vpe->vlpi_count);
333
334 map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
335 atomic_inc(&map.vpe->vlpi_count);
336 return its_map_vlpi(irq->host_irq, &map);
337 }
338
collection_to_vcpu(struct kvm * kvm,struct its_collection * col)339 static struct kvm_vcpu *collection_to_vcpu(struct kvm *kvm,
340 struct its_collection *col)
341 {
342 return kvm_get_vcpu_by_id(kvm, col->target_addr);
343 }
344
345 /*
346 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
347 * is targeting) to the VGIC's view, which deals with target VCPUs.
348 * Needs to be called whenever either the collection for a LPIs has
349 * changed or the collection itself got retargeted.
350 */
update_affinity_ite(struct kvm * kvm,struct its_ite * ite)351 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
352 {
353 struct kvm_vcpu *vcpu;
354
355 if (!its_is_collection_mapped(ite->collection))
356 return;
357
358 vcpu = collection_to_vcpu(kvm, ite->collection);
359 update_affinity(ite->irq, vcpu);
360 }
361
362 /*
363 * Updates the target VCPU for every LPI targeting this collection.
364 * Must be called with the its_lock mutex held.
365 */
update_affinity_collection(struct kvm * kvm,struct vgic_its * its,struct its_collection * coll)366 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
367 struct its_collection *coll)
368 {
369 struct its_device *device;
370 struct its_ite *ite;
371
372 for_each_lpi_its(device, ite, its) {
373 if (ite->collection != coll)
374 continue;
375
376 update_affinity_ite(kvm, ite);
377 }
378 }
379
max_lpis_propbaser(u64 propbaser)380 static u32 max_lpis_propbaser(u64 propbaser)
381 {
382 int nr_idbits = (propbaser & 0x1f) + 1;
383
384 return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
385 }
386
387 /*
388 * Sync the pending table pending bit of LPIs targeting @vcpu
389 * with our own data structures. This relies on the LPI being
390 * mapped before.
391 */
its_sync_lpi_pending_table(struct kvm_vcpu * vcpu)392 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
393 {
394 gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
395 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
396 unsigned long intid, flags;
397 struct vgic_irq *irq;
398 int last_byte_offset = -1;
399 int ret = 0;
400 u8 pendmask;
401
402 xa_for_each(&dist->lpi_xa, intid, irq) {
403 int byte_offset, bit_nr;
404
405 byte_offset = intid / BITS_PER_BYTE;
406 bit_nr = intid % BITS_PER_BYTE;
407
408 /*
409 * For contiguously allocated LPIs chances are we just read
410 * this very same byte in the last iteration. Reuse that.
411 */
412 if (byte_offset != last_byte_offset) {
413 ret = kvm_read_guest_lock(vcpu->kvm,
414 pendbase + byte_offset,
415 &pendmask, 1);
416 if (ret)
417 return ret;
418
419 last_byte_offset = byte_offset;
420 }
421
422 irq = vgic_get_irq(vcpu->kvm, intid);
423 if (!irq)
424 continue;
425
426 raw_spin_lock_irqsave(&irq->irq_lock, flags);
427 if (irq->target_vcpu == vcpu)
428 irq->pending_latch = pendmask & (1U << bit_nr);
429 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
430 vgic_put_irq(vcpu->kvm, irq);
431 }
432
433 return ret;
434 }
435
vgic_mmio_read_its_typer(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)436 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
437 struct vgic_its *its,
438 gpa_t addr, unsigned int len)
439 {
440 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
441 u64 reg = GITS_TYPER_PLPIS;
442
443 /*
444 * We use linear CPU numbers for redistributor addressing,
445 * so GITS_TYPER.PTA is 0.
446 * Also we force all PROPBASER registers to be the same, so
447 * CommonLPIAff is 0 as well.
448 * To avoid memory waste in the guest, we keep the number of IDBits and
449 * DevBits low - as least for the time being.
450 */
451 reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
452 reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
453 reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
454
455 return extract_bytes(reg, addr & 7, len);
456 }
457
vgic_mmio_read_its_iidr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)458 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
459 struct vgic_its *its,
460 gpa_t addr, unsigned int len)
461 {
462 u32 val;
463
464 val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
465 val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
466 return val;
467 }
468
vgic_mmio_uaccess_write_its_iidr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)469 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
470 struct vgic_its *its,
471 gpa_t addr, unsigned int len,
472 unsigned long val)
473 {
474 u32 rev = GITS_IIDR_REV(val);
475
476 if (rev >= NR_ITS_ABIS)
477 return -EINVAL;
478 return vgic_its_set_abi(its, rev);
479 }
480
vgic_mmio_read_its_idregs(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)481 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
482 struct vgic_its *its,
483 gpa_t addr, unsigned int len)
484 {
485 switch (addr & 0xffff) {
486 case GITS_PIDR0:
487 return 0x92; /* part number, bits[7:0] */
488 case GITS_PIDR1:
489 return 0xb4; /* part number, bits[11:8] */
490 case GITS_PIDR2:
491 return GIC_PIDR2_ARCH_GICv3 | 0x0b;
492 case GITS_PIDR4:
493 return 0x40; /* This is a 64K software visible page */
494 /* The following are the ID registers for (any) GIC. */
495 case GITS_CIDR0:
496 return 0x0d;
497 case GITS_CIDR1:
498 return 0xf0;
499 case GITS_CIDR2:
500 return 0x05;
501 case GITS_CIDR3:
502 return 0xb1;
503 }
504
505 return 0;
506 }
507
__vgic_doorbell_to_its(struct kvm * kvm,gpa_t db)508 static struct vgic_its *__vgic_doorbell_to_its(struct kvm *kvm, gpa_t db)
509 {
510 struct kvm_io_device *kvm_io_dev;
511 struct vgic_io_device *iodev;
512
513 kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, db);
514 if (!kvm_io_dev)
515 return ERR_PTR(-EINVAL);
516
517 if (kvm_io_dev->ops != &kvm_io_gic_ops)
518 return ERR_PTR(-EINVAL);
519
520 iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
521 if (iodev->iodev_type != IODEV_ITS)
522 return ERR_PTR(-EINVAL);
523
524 return iodev->its;
525 }
526
vgic_its_cache_key(u32 devid,u32 eventid)527 static unsigned long vgic_its_cache_key(u32 devid, u32 eventid)
528 {
529 return (((unsigned long)devid) << VITS_TYPER_IDBITS) | eventid;
530
531 }
532
vgic_its_check_cache(struct kvm * kvm,phys_addr_t db,u32 devid,u32 eventid)533 static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db,
534 u32 devid, u32 eventid)
535 {
536 unsigned long cache_key = vgic_its_cache_key(devid, eventid);
537 struct vgic_its *its;
538 struct vgic_irq *irq;
539
540 if (devid > VITS_MAX_DEVID || eventid > VITS_MAX_EVENTID)
541 return NULL;
542
543 its = __vgic_doorbell_to_its(kvm, db);
544 if (IS_ERR(its))
545 return NULL;
546
547 rcu_read_lock();
548
549 irq = xa_load(&its->translation_cache, cache_key);
550 if (!vgic_try_get_irq_kref(irq))
551 irq = NULL;
552
553 rcu_read_unlock();
554
555 return irq;
556 }
557
vgic_its_cache_translation(struct kvm * kvm,struct vgic_its * its,u32 devid,u32 eventid,struct vgic_irq * irq)558 static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its,
559 u32 devid, u32 eventid,
560 struct vgic_irq *irq)
561 {
562 unsigned long cache_key = vgic_its_cache_key(devid, eventid);
563 struct vgic_irq *old;
564
565 /* Do not cache a directly injected interrupt */
566 if (irq->hw)
567 return;
568
569 /*
570 * The irq refcount is guaranteed to be nonzero while holding the
571 * its_lock, as the ITE (and the reference it holds) cannot be freed.
572 */
573 lockdep_assert_held(&its->its_lock);
574 vgic_get_irq_kref(irq);
575
576 old = xa_store(&its->translation_cache, cache_key, irq, GFP_KERNEL_ACCOUNT);
577
578 /*
579 * Put the reference taken on @irq if the store fails. Intentionally do
580 * not return the error as the translation cache is best effort.
581 */
582 if (xa_is_err(old)) {
583 vgic_put_irq(kvm, irq);
584 return;
585 }
586
587 /*
588 * We could have raced with another CPU caching the same
589 * translation behind our back, ensure we don't leak a
590 * reference if that is the case.
591 */
592 if (old)
593 vgic_put_irq(kvm, old);
594 }
595
vgic_its_invalidate_cache(struct vgic_its * its)596 static void vgic_its_invalidate_cache(struct vgic_its *its)
597 {
598 struct kvm *kvm = its->dev->kvm;
599 struct vgic_irq *irq;
600 unsigned long idx;
601
602 xa_for_each(&its->translation_cache, idx, irq) {
603 xa_erase(&its->translation_cache, idx);
604 vgic_put_irq(kvm, irq);
605 }
606 }
607
vgic_its_invalidate_all_caches(struct kvm * kvm)608 void vgic_its_invalidate_all_caches(struct kvm *kvm)
609 {
610 struct kvm_device *dev;
611 struct vgic_its *its;
612
613 rcu_read_lock();
614
615 list_for_each_entry_rcu(dev, &kvm->devices, vm_node) {
616 if (dev->ops != &kvm_arm_vgic_its_ops)
617 continue;
618
619 its = dev->private;
620 vgic_its_invalidate_cache(its);
621 }
622
623 rcu_read_unlock();
624 }
625
vgic_its_resolve_lpi(struct kvm * kvm,struct vgic_its * its,u32 devid,u32 eventid,struct vgic_irq ** irq)626 int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
627 u32 devid, u32 eventid, struct vgic_irq **irq)
628 {
629 struct kvm_vcpu *vcpu;
630 struct its_ite *ite;
631
632 if (!its->enabled)
633 return -EBUSY;
634
635 ite = find_ite(its, devid, eventid);
636 if (!ite || !its_is_collection_mapped(ite->collection))
637 return E_ITS_INT_UNMAPPED_INTERRUPT;
638
639 vcpu = collection_to_vcpu(kvm, ite->collection);
640 if (!vcpu)
641 return E_ITS_INT_UNMAPPED_INTERRUPT;
642
643 if (!vgic_lpis_enabled(vcpu))
644 return -EBUSY;
645
646 vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq);
647
648 *irq = ite->irq;
649 return 0;
650 }
651
vgic_msi_to_its(struct kvm * kvm,struct kvm_msi * msi)652 struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
653 {
654 u64 address;
655
656 if (!vgic_has_its(kvm))
657 return ERR_PTR(-ENODEV);
658
659 if (!(msi->flags & KVM_MSI_VALID_DEVID))
660 return ERR_PTR(-EINVAL);
661
662 address = (u64)msi->address_hi << 32 | msi->address_lo;
663
664 return __vgic_doorbell_to_its(kvm, address);
665 }
666
667 /*
668 * Find the target VCPU and the LPI number for a given devid/eventid pair
669 * and make this IRQ pending, possibly injecting it.
670 * Must be called with the its_lock mutex held.
671 * Returns 0 on success, a positive error value for any ITS mapping
672 * related errors and negative error values for generic errors.
673 */
vgic_its_trigger_msi(struct kvm * kvm,struct vgic_its * its,u32 devid,u32 eventid)674 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
675 u32 devid, u32 eventid)
676 {
677 struct vgic_irq *irq = NULL;
678 unsigned long flags;
679 int err;
680
681 err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
682 if (err)
683 return err;
684
685 if (irq->hw)
686 return irq_set_irqchip_state(irq->host_irq,
687 IRQCHIP_STATE_PENDING, true);
688
689 raw_spin_lock_irqsave(&irq->irq_lock, flags);
690 irq->pending_latch = true;
691 vgic_queue_irq_unlock(kvm, irq, flags);
692
693 return 0;
694 }
695
vgic_its_inject_cached_translation(struct kvm * kvm,struct kvm_msi * msi)696 int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi)
697 {
698 struct vgic_irq *irq;
699 unsigned long flags;
700 phys_addr_t db;
701
702 db = (u64)msi->address_hi << 32 | msi->address_lo;
703 irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data);
704 if (!irq)
705 return -EWOULDBLOCK;
706
707 raw_spin_lock_irqsave(&irq->irq_lock, flags);
708 irq->pending_latch = true;
709 vgic_queue_irq_unlock(kvm, irq, flags);
710 vgic_put_irq(kvm, irq);
711
712 return 0;
713 }
714
715 /*
716 * Queries the KVM IO bus framework to get the ITS pointer from the given
717 * doorbell address.
718 * We then call vgic_its_trigger_msi() with the decoded data.
719 * According to the KVM_SIGNAL_MSI API description returns 1 on success.
720 */
vgic_its_inject_msi(struct kvm * kvm,struct kvm_msi * msi)721 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
722 {
723 struct vgic_its *its;
724 int ret;
725
726 if (!vgic_its_inject_cached_translation(kvm, msi))
727 return 1;
728
729 its = vgic_msi_to_its(kvm, msi);
730 if (IS_ERR(its))
731 return PTR_ERR(its);
732
733 mutex_lock(&its->its_lock);
734 ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
735 mutex_unlock(&its->its_lock);
736
737 if (ret < 0)
738 return ret;
739
740 /*
741 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
742 * if the guest has blocked the MSI. So we map any LPI mapping
743 * related error to that.
744 */
745 if (ret)
746 return 0;
747 else
748 return 1;
749 }
750
751 /* Requires the its_lock to be held. */
its_free_ite(struct kvm * kvm,struct its_ite * ite)752 static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
753 {
754 struct vgic_irq *irq = ite->irq;
755 list_del(&ite->ite_list);
756
757 /* This put matches the get in vgic_add_lpi. */
758 if (irq) {
759 scoped_guard(raw_spinlock_irqsave, &irq->irq_lock) {
760 if (irq->hw)
761 its_unmap_vlpi(ite->irq->host_irq);
762
763 irq->hw = false;
764 }
765
766 vgic_put_irq(kvm, ite->irq);
767 }
768
769 kfree(ite);
770 }
771
its_cmd_mask_field(u64 * its_cmd,int word,int shift,int size)772 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
773 {
774 return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
775 }
776
777 #define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8)
778 #define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32)
779 #define its_cmd_get_size(cmd) (its_cmd_mask_field(cmd, 1, 0, 5) + 1)
780 #define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32)
781 #define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32)
782 #define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16)
783 #define its_cmd_get_ittaddr(cmd) (its_cmd_mask_field(cmd, 2, 8, 44) << 8)
784 #define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32)
785 #define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1)
786
787 /*
788 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
789 * Must be called with the its_lock mutex held.
790 */
vgic_its_cmd_handle_discard(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)791 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
792 u64 *its_cmd)
793 {
794 u32 device_id = its_cmd_get_deviceid(its_cmd);
795 u32 event_id = its_cmd_get_id(its_cmd);
796 struct its_ite *ite;
797
798 ite = find_ite(its, device_id, event_id);
799 if (ite && its_is_collection_mapped(ite->collection)) {
800 struct its_device *device = find_its_device(its, device_id);
801 int ite_esz = vgic_its_get_abi(its)->ite_esz;
802 gpa_t gpa = device->itt_addr + ite->event_id * ite_esz;
803 /*
804 * Though the spec talks about removing the pending state, we
805 * don't bother here since we clear the ITTE anyway and the
806 * pending state is a property of the ITTE struct.
807 */
808 vgic_its_invalidate_cache(its);
809
810 its_free_ite(kvm, ite);
811
812 return vgic_its_write_entry_lock(its, gpa, 0ULL, ite);
813 }
814
815 return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
816 }
817
818 /*
819 * The MOVI command moves an ITTE to a different collection.
820 * Must be called with the its_lock mutex held.
821 */
vgic_its_cmd_handle_movi(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)822 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
823 u64 *its_cmd)
824 {
825 u32 device_id = its_cmd_get_deviceid(its_cmd);
826 u32 event_id = its_cmd_get_id(its_cmd);
827 u32 coll_id = its_cmd_get_collection(its_cmd);
828 struct kvm_vcpu *vcpu;
829 struct its_ite *ite;
830 struct its_collection *collection;
831
832 ite = find_ite(its, device_id, event_id);
833 if (!ite)
834 return E_ITS_MOVI_UNMAPPED_INTERRUPT;
835
836 if (!its_is_collection_mapped(ite->collection))
837 return E_ITS_MOVI_UNMAPPED_COLLECTION;
838
839 collection = find_collection(its, coll_id);
840 if (!its_is_collection_mapped(collection))
841 return E_ITS_MOVI_UNMAPPED_COLLECTION;
842
843 ite->collection = collection;
844 vcpu = collection_to_vcpu(kvm, collection);
845
846 vgic_its_invalidate_cache(its);
847
848 return update_affinity(ite->irq, vcpu);
849 }
850
__is_visible_gfn_locked(struct vgic_its * its,gpa_t gpa)851 static bool __is_visible_gfn_locked(struct vgic_its *its, gpa_t gpa)
852 {
853 gfn_t gfn = gpa >> PAGE_SHIFT;
854 int idx;
855 bool ret;
856
857 idx = srcu_read_lock(&its->dev->kvm->srcu);
858 ret = kvm_is_visible_gfn(its->dev->kvm, gfn);
859 srcu_read_unlock(&its->dev->kvm->srcu, idx);
860 return ret;
861 }
862
863 /*
864 * Check whether an ID can be stored into the corresponding guest table.
865 * For a direct table this is pretty easy, but gets a bit nasty for
866 * indirect tables. We check whether the resulting guest physical address
867 * is actually valid (covered by a memslot and guest accessible).
868 * For this we have to read the respective first level entry.
869 */
vgic_its_check_id(struct vgic_its * its,u64 baser,u32 id,gpa_t * eaddr)870 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
871 gpa_t *eaddr)
872 {
873 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
874 u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
875 phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser);
876 int esz = GITS_BASER_ENTRY_SIZE(baser);
877 int index;
878
879 switch (type) {
880 case GITS_BASER_TYPE_DEVICE:
881 if (id > VITS_MAX_DEVID)
882 return false;
883 break;
884 case GITS_BASER_TYPE_COLLECTION:
885 /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
886 if (id >= BIT_ULL(16))
887 return false;
888 break;
889 default:
890 return false;
891 }
892
893 if (!(baser & GITS_BASER_INDIRECT)) {
894 phys_addr_t addr;
895
896 if (id >= (l1_tbl_size / esz))
897 return false;
898
899 addr = base + id * esz;
900
901 if (eaddr)
902 *eaddr = addr;
903
904 return __is_visible_gfn_locked(its, addr);
905 }
906
907 /* calculate and check the index into the 1st level */
908 index = id / (SZ_64K / esz);
909 if (index >= (l1_tbl_size / sizeof(u64)))
910 return false;
911
912 /* Each 1st level entry is represented by a 64-bit value. */
913 if (kvm_read_guest_lock(its->dev->kvm,
914 base + index * sizeof(indirect_ptr),
915 &indirect_ptr, sizeof(indirect_ptr)))
916 return false;
917
918 indirect_ptr = le64_to_cpu(indirect_ptr);
919
920 /* check the valid bit of the first level entry */
921 if (!(indirect_ptr & BIT_ULL(63)))
922 return false;
923
924 /* Mask the guest physical address and calculate the frame number. */
925 indirect_ptr &= GENMASK_ULL(51, 16);
926
927 /* Find the address of the actual entry */
928 index = id % (SZ_64K / esz);
929 indirect_ptr += index * esz;
930
931 if (eaddr)
932 *eaddr = indirect_ptr;
933
934 return __is_visible_gfn_locked(its, indirect_ptr);
935 }
936
937 /*
938 * Check whether an event ID can be stored in the corresponding Interrupt
939 * Translation Table, which starts at device->itt_addr.
940 */
vgic_its_check_event_id(struct vgic_its * its,struct its_device * device,u32 event_id)941 static bool vgic_its_check_event_id(struct vgic_its *its, struct its_device *device,
942 u32 event_id)
943 {
944 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
945 int ite_esz = abi->ite_esz;
946 gpa_t gpa;
947
948 /* max table size is: BIT_ULL(device->num_eventid_bits) * ite_esz */
949 if (event_id >= BIT_ULL(device->num_eventid_bits))
950 return false;
951
952 gpa = device->itt_addr + event_id * ite_esz;
953 return __is_visible_gfn_locked(its, gpa);
954 }
955
956 /*
957 * Add a new collection into the ITS collection table.
958 * Returns 0 on success, and a negative error value for generic errors.
959 */
vgic_its_alloc_collection(struct vgic_its * its,struct its_collection ** colp,u32 coll_id)960 static int vgic_its_alloc_collection(struct vgic_its *its,
961 struct its_collection **colp,
962 u32 coll_id)
963 {
964 struct its_collection *collection;
965
966 collection = kzalloc(sizeof(*collection), GFP_KERNEL_ACCOUNT);
967 if (!collection)
968 return -ENOMEM;
969
970 collection->collection_id = coll_id;
971 collection->target_addr = COLLECTION_NOT_MAPPED;
972
973 list_add_tail(&collection->coll_list, &its->collection_list);
974 *colp = collection;
975
976 return 0;
977 }
978
vgic_its_free_collection(struct vgic_its * its,u32 coll_id)979 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
980 {
981 struct its_collection *collection;
982 struct its_device *device;
983 struct its_ite *ite;
984
985 /*
986 * Clearing the mapping for that collection ID removes the
987 * entry from the list. If there wasn't any before, we can
988 * go home early.
989 */
990 collection = find_collection(its, coll_id);
991 if (!collection)
992 return;
993
994 for_each_lpi_its(device, ite, its)
995 if (ite->collection &&
996 ite->collection->collection_id == coll_id)
997 ite->collection = NULL;
998
999 list_del(&collection->coll_list);
1000 kfree(collection);
1001 }
1002
1003 /* Must be called with its_lock mutex held */
vgic_its_alloc_ite(struct its_device * device,struct its_collection * collection,u32 event_id)1004 static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
1005 struct its_collection *collection,
1006 u32 event_id)
1007 {
1008 struct its_ite *ite;
1009
1010 ite = kzalloc(sizeof(*ite), GFP_KERNEL_ACCOUNT);
1011 if (!ite)
1012 return ERR_PTR(-ENOMEM);
1013
1014 ite->event_id = event_id;
1015 ite->collection = collection;
1016
1017 list_add_tail(&ite->ite_list, &device->itt_head);
1018 return ite;
1019 }
1020
1021 /*
1022 * The MAPTI and MAPI commands map LPIs to ITTEs.
1023 * Must be called with its_lock mutex held.
1024 */
vgic_its_cmd_handle_mapi(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1025 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
1026 u64 *its_cmd)
1027 {
1028 u32 device_id = its_cmd_get_deviceid(its_cmd);
1029 u32 event_id = its_cmd_get_id(its_cmd);
1030 u32 coll_id = its_cmd_get_collection(its_cmd);
1031 struct its_ite *ite;
1032 struct kvm_vcpu *vcpu = NULL;
1033 struct its_device *device;
1034 struct its_collection *collection, *new_coll = NULL;
1035 struct vgic_irq *irq;
1036 int lpi_nr;
1037
1038 device = find_its_device(its, device_id);
1039 if (!device)
1040 return E_ITS_MAPTI_UNMAPPED_DEVICE;
1041
1042 if (!vgic_its_check_event_id(its, device, event_id))
1043 return E_ITS_MAPTI_ID_OOR;
1044
1045 if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
1046 lpi_nr = its_cmd_get_physical_id(its_cmd);
1047 else
1048 lpi_nr = event_id;
1049 if (lpi_nr < GIC_LPI_OFFSET ||
1050 lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
1051 return E_ITS_MAPTI_PHYSICALID_OOR;
1052
1053 /* If there is an existing mapping, behavior is UNPREDICTABLE. */
1054 if (find_ite(its, device_id, event_id))
1055 return 0;
1056
1057 collection = find_collection(its, coll_id);
1058 if (!collection) {
1059 int ret;
1060
1061 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
1062 return E_ITS_MAPC_COLLECTION_OOR;
1063
1064 ret = vgic_its_alloc_collection(its, &collection, coll_id);
1065 if (ret)
1066 return ret;
1067 new_coll = collection;
1068 }
1069
1070 ite = vgic_its_alloc_ite(device, collection, event_id);
1071 if (IS_ERR(ite)) {
1072 if (new_coll)
1073 vgic_its_free_collection(its, coll_id);
1074 return PTR_ERR(ite);
1075 }
1076
1077 if (its_is_collection_mapped(collection))
1078 vcpu = collection_to_vcpu(kvm, collection);
1079
1080 irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
1081 if (IS_ERR(irq)) {
1082 if (new_coll)
1083 vgic_its_free_collection(its, coll_id);
1084 its_free_ite(kvm, ite);
1085 return PTR_ERR(irq);
1086 }
1087 ite->irq = irq;
1088
1089 return 0;
1090 }
1091
1092 /* Requires the its_lock to be held. */
vgic_its_free_device(struct kvm * kvm,struct vgic_its * its,struct its_device * device)1093 static void vgic_its_free_device(struct kvm *kvm, struct vgic_its *its,
1094 struct its_device *device)
1095 {
1096 struct its_ite *ite, *temp;
1097
1098 /*
1099 * The spec says that unmapping a device with still valid
1100 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
1101 * since we cannot leave the memory unreferenced.
1102 */
1103 list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
1104 its_free_ite(kvm, ite);
1105
1106 vgic_its_invalidate_cache(its);
1107
1108 list_del(&device->dev_list);
1109 kfree(device);
1110 }
1111
1112 /* its lock must be held */
vgic_its_free_device_list(struct kvm * kvm,struct vgic_its * its)1113 static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
1114 {
1115 struct its_device *cur, *temp;
1116
1117 list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
1118 vgic_its_free_device(kvm, its, cur);
1119 }
1120
1121 /* its lock must be held */
vgic_its_free_collection_list(struct kvm * kvm,struct vgic_its * its)1122 static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
1123 {
1124 struct its_collection *cur, *temp;
1125
1126 list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
1127 vgic_its_free_collection(its, cur->collection_id);
1128 }
1129
1130 /* Must be called with its_lock mutex held */
vgic_its_alloc_device(struct vgic_its * its,u32 device_id,gpa_t itt_addr,u8 num_eventid_bits)1131 static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
1132 u32 device_id, gpa_t itt_addr,
1133 u8 num_eventid_bits)
1134 {
1135 struct its_device *device;
1136
1137 device = kzalloc(sizeof(*device), GFP_KERNEL_ACCOUNT);
1138 if (!device)
1139 return ERR_PTR(-ENOMEM);
1140
1141 device->device_id = device_id;
1142 device->itt_addr = itt_addr;
1143 device->num_eventid_bits = num_eventid_bits;
1144 INIT_LIST_HEAD(&device->itt_head);
1145
1146 list_add_tail(&device->dev_list, &its->device_list);
1147 return device;
1148 }
1149
1150 /*
1151 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
1152 * Must be called with the its_lock mutex held.
1153 */
vgic_its_cmd_handle_mapd(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1154 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
1155 u64 *its_cmd)
1156 {
1157 u32 device_id = its_cmd_get_deviceid(its_cmd);
1158 bool valid = its_cmd_get_validbit(its_cmd);
1159 u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1160 gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1161 struct its_device *device;
1162 gpa_t gpa;
1163
1164 if (!vgic_its_check_id(its, its->baser_device_table, device_id, &gpa))
1165 return E_ITS_MAPD_DEVICE_OOR;
1166
1167 if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
1168 return E_ITS_MAPD_ITTSIZE_OOR;
1169
1170 device = find_its_device(its, device_id);
1171
1172 /*
1173 * The spec says that calling MAPD on an already mapped device
1174 * invalidates all cached data for this device. We implement this
1175 * by removing the mapping and re-establishing it.
1176 */
1177 if (device)
1178 vgic_its_free_device(kvm, its, device);
1179
1180 /*
1181 * The spec does not say whether unmapping a not-mapped device
1182 * is an error, so we are done in any case.
1183 */
1184 if (!valid)
1185 return vgic_its_write_entry_lock(its, gpa, 0ULL, dte);
1186
1187 device = vgic_its_alloc_device(its, device_id, itt_addr,
1188 num_eventid_bits);
1189
1190 return PTR_ERR_OR_ZERO(device);
1191 }
1192
1193 /*
1194 * The MAPC command maps collection IDs to redistributors.
1195 * Must be called with the its_lock mutex held.
1196 */
vgic_its_cmd_handle_mapc(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1197 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
1198 u64 *its_cmd)
1199 {
1200 u16 coll_id;
1201 struct its_collection *collection;
1202 bool valid;
1203
1204 valid = its_cmd_get_validbit(its_cmd);
1205 coll_id = its_cmd_get_collection(its_cmd);
1206
1207 if (!valid) {
1208 vgic_its_free_collection(its, coll_id);
1209 vgic_its_invalidate_cache(its);
1210 } else {
1211 struct kvm_vcpu *vcpu;
1212
1213 vcpu = kvm_get_vcpu_by_id(kvm, its_cmd_get_target_addr(its_cmd));
1214 if (!vcpu)
1215 return E_ITS_MAPC_PROCNUM_OOR;
1216
1217 collection = find_collection(its, coll_id);
1218
1219 if (!collection) {
1220 int ret;
1221
1222 if (!vgic_its_check_id(its, its->baser_coll_table,
1223 coll_id, NULL))
1224 return E_ITS_MAPC_COLLECTION_OOR;
1225
1226 ret = vgic_its_alloc_collection(its, &collection,
1227 coll_id);
1228 if (ret)
1229 return ret;
1230 collection->target_addr = vcpu->vcpu_id;
1231 } else {
1232 collection->target_addr = vcpu->vcpu_id;
1233 update_affinity_collection(kvm, its, collection);
1234 }
1235 }
1236
1237 return 0;
1238 }
1239
1240 /*
1241 * The CLEAR command removes the pending state for a particular LPI.
1242 * Must be called with the its_lock mutex held.
1243 */
vgic_its_cmd_handle_clear(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1244 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1245 u64 *its_cmd)
1246 {
1247 u32 device_id = its_cmd_get_deviceid(its_cmd);
1248 u32 event_id = its_cmd_get_id(its_cmd);
1249 struct its_ite *ite;
1250
1251
1252 ite = find_ite(its, device_id, event_id);
1253 if (!ite)
1254 return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1255
1256 ite->irq->pending_latch = false;
1257
1258 if (ite->irq->hw)
1259 return irq_set_irqchip_state(ite->irq->host_irq,
1260 IRQCHIP_STATE_PENDING, false);
1261
1262 return 0;
1263 }
1264
vgic_its_inv_lpi(struct kvm * kvm,struct vgic_irq * irq)1265 int vgic_its_inv_lpi(struct kvm *kvm, struct vgic_irq *irq)
1266 {
1267 return update_lpi_config(kvm, irq, NULL, true);
1268 }
1269
1270 /*
1271 * The INV command syncs the configuration bits from the memory table.
1272 * Must be called with the its_lock mutex held.
1273 */
vgic_its_cmd_handle_inv(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1274 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1275 u64 *its_cmd)
1276 {
1277 u32 device_id = its_cmd_get_deviceid(its_cmd);
1278 u32 event_id = its_cmd_get_id(its_cmd);
1279 struct its_ite *ite;
1280
1281
1282 ite = find_ite(its, device_id, event_id);
1283 if (!ite)
1284 return E_ITS_INV_UNMAPPED_INTERRUPT;
1285
1286 return vgic_its_inv_lpi(kvm, ite->irq);
1287 }
1288
1289 /**
1290 * vgic_its_invall - invalidate all LPIs targeting a given vcpu
1291 * @vcpu: the vcpu for which the RD is targeted by an invalidation
1292 *
1293 * Contrary to the INVALL command, this targets a RD instead of a
1294 * collection, and we don't need to hold the its_lock, since no ITS is
1295 * involved here.
1296 */
vgic_its_invall(struct kvm_vcpu * vcpu)1297 int vgic_its_invall(struct kvm_vcpu *vcpu)
1298 {
1299 struct kvm *kvm = vcpu->kvm;
1300 struct vgic_dist *dist = &kvm->arch.vgic;
1301 struct vgic_irq *irq;
1302 unsigned long intid;
1303
1304 xa_for_each(&dist->lpi_xa, intid, irq) {
1305 irq = vgic_get_irq(kvm, intid);
1306 if (!irq)
1307 continue;
1308
1309 update_lpi_config(kvm, irq, vcpu, false);
1310 vgic_put_irq(kvm, irq);
1311 }
1312
1313 if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
1314 its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
1315
1316 return 0;
1317 }
1318
1319 /*
1320 * The INVALL command requests flushing of all IRQ data in this collection.
1321 * Find the VCPU mapped to that collection, then iterate over the VM's list
1322 * of mapped LPIs and update the configuration for each IRQ which targets
1323 * the specified vcpu. The configuration will be read from the in-memory
1324 * configuration table.
1325 * Must be called with the its_lock mutex held.
1326 */
vgic_its_cmd_handle_invall(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1327 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1328 u64 *its_cmd)
1329 {
1330 u32 coll_id = its_cmd_get_collection(its_cmd);
1331 struct its_collection *collection;
1332 struct kvm_vcpu *vcpu;
1333
1334 collection = find_collection(its, coll_id);
1335 if (!its_is_collection_mapped(collection))
1336 return E_ITS_INVALL_UNMAPPED_COLLECTION;
1337
1338 vcpu = collection_to_vcpu(kvm, collection);
1339 vgic_its_invall(vcpu);
1340
1341 return 0;
1342 }
1343
1344 /*
1345 * The MOVALL command moves the pending state of all IRQs targeting one
1346 * redistributor to another. We don't hold the pending state in the VCPUs,
1347 * but in the IRQs instead, so there is really not much to do for us here.
1348 * However the spec says that no IRQ must target the old redistributor
1349 * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1350 * This command affects all LPIs in the system that target that redistributor.
1351 */
vgic_its_cmd_handle_movall(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1352 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1353 u64 *its_cmd)
1354 {
1355 struct vgic_dist *dist = &kvm->arch.vgic;
1356 struct kvm_vcpu *vcpu1, *vcpu2;
1357 struct vgic_irq *irq;
1358 unsigned long intid;
1359
1360 /* We advertise GITS_TYPER.PTA==0, making the address the vcpu ID */
1361 vcpu1 = kvm_get_vcpu_by_id(kvm, its_cmd_get_target_addr(its_cmd));
1362 vcpu2 = kvm_get_vcpu_by_id(kvm, its_cmd_mask_field(its_cmd, 3, 16, 32));
1363
1364 if (!vcpu1 || !vcpu2)
1365 return E_ITS_MOVALL_PROCNUM_OOR;
1366
1367 if (vcpu1 == vcpu2)
1368 return 0;
1369
1370 xa_for_each(&dist->lpi_xa, intid, irq) {
1371 irq = vgic_get_irq(kvm, intid);
1372 if (!irq)
1373 continue;
1374
1375 update_affinity(irq, vcpu2);
1376
1377 vgic_put_irq(kvm, irq);
1378 }
1379
1380 vgic_its_invalidate_cache(its);
1381
1382 return 0;
1383 }
1384
1385 /*
1386 * The INT command injects the LPI associated with that DevID/EvID pair.
1387 * Must be called with the its_lock mutex held.
1388 */
vgic_its_cmd_handle_int(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1389 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1390 u64 *its_cmd)
1391 {
1392 u32 msi_data = its_cmd_get_id(its_cmd);
1393 u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1394
1395 return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1396 }
1397
1398 /*
1399 * This function is called with the its_cmd lock held, but the ITS data
1400 * structure lock dropped.
1401 */
vgic_its_handle_command(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1402 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1403 u64 *its_cmd)
1404 {
1405 int ret = -ENODEV;
1406
1407 mutex_lock(&its->its_lock);
1408 switch (its_cmd_get_command(its_cmd)) {
1409 case GITS_CMD_MAPD:
1410 ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1411 break;
1412 case GITS_CMD_MAPC:
1413 ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1414 break;
1415 case GITS_CMD_MAPI:
1416 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1417 break;
1418 case GITS_CMD_MAPTI:
1419 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1420 break;
1421 case GITS_CMD_MOVI:
1422 ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1423 break;
1424 case GITS_CMD_DISCARD:
1425 ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1426 break;
1427 case GITS_CMD_CLEAR:
1428 ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1429 break;
1430 case GITS_CMD_MOVALL:
1431 ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1432 break;
1433 case GITS_CMD_INT:
1434 ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1435 break;
1436 case GITS_CMD_INV:
1437 ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1438 break;
1439 case GITS_CMD_INVALL:
1440 ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1441 break;
1442 case GITS_CMD_SYNC:
1443 /* we ignore this command: we are in sync all of the time */
1444 ret = 0;
1445 break;
1446 }
1447 mutex_unlock(&its->its_lock);
1448
1449 return ret;
1450 }
1451
vgic_sanitise_its_baser(u64 reg)1452 static u64 vgic_sanitise_its_baser(u64 reg)
1453 {
1454 reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1455 GITS_BASER_SHAREABILITY_SHIFT,
1456 vgic_sanitise_shareability);
1457 reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1458 GITS_BASER_INNER_CACHEABILITY_SHIFT,
1459 vgic_sanitise_inner_cacheability);
1460 reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1461 GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1462 vgic_sanitise_outer_cacheability);
1463
1464 /* We support only one (ITS) page size: 64K */
1465 reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1466
1467 return reg;
1468 }
1469
vgic_sanitise_its_cbaser(u64 reg)1470 static u64 vgic_sanitise_its_cbaser(u64 reg)
1471 {
1472 reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1473 GITS_CBASER_SHAREABILITY_SHIFT,
1474 vgic_sanitise_shareability);
1475 reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1476 GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1477 vgic_sanitise_inner_cacheability);
1478 reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1479 GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1480 vgic_sanitise_outer_cacheability);
1481
1482 /* Sanitise the physical address to be 64k aligned. */
1483 reg &= ~GENMASK_ULL(15, 12);
1484
1485 return reg;
1486 }
1487
vgic_mmio_read_its_cbaser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1488 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1489 struct vgic_its *its,
1490 gpa_t addr, unsigned int len)
1491 {
1492 return extract_bytes(its->cbaser, addr & 7, len);
1493 }
1494
vgic_mmio_write_its_cbaser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1495 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1496 gpa_t addr, unsigned int len,
1497 unsigned long val)
1498 {
1499 /* When GITS_CTLR.Enable is 1, this register is RO. */
1500 if (its->enabled)
1501 return;
1502
1503 mutex_lock(&its->cmd_lock);
1504 its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1505 its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1506 its->creadr = 0;
1507 /*
1508 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1509 * it to CREADR to make sure we start with an empty command buffer.
1510 */
1511 its->cwriter = its->creadr;
1512 mutex_unlock(&its->cmd_lock);
1513 }
1514
1515 #define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12)
1516 #define ITS_CMD_SIZE 32
1517 #define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5))
1518
1519 /* Must be called with the cmd_lock held. */
vgic_its_process_commands(struct kvm * kvm,struct vgic_its * its)1520 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1521 {
1522 gpa_t cbaser;
1523 u64 cmd_buf[4];
1524
1525 /* Commands are only processed when the ITS is enabled. */
1526 if (!its->enabled)
1527 return;
1528
1529 cbaser = GITS_CBASER_ADDRESS(its->cbaser);
1530
1531 while (its->cwriter != its->creadr) {
1532 int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
1533 cmd_buf, ITS_CMD_SIZE);
1534 /*
1535 * If kvm_read_guest() fails, this could be due to the guest
1536 * programming a bogus value in CBASER or something else going
1537 * wrong from which we cannot easily recover.
1538 * According to section 6.3.2 in the GICv3 spec we can just
1539 * ignore that command then.
1540 */
1541 if (!ret)
1542 vgic_its_handle_command(kvm, its, cmd_buf);
1543
1544 its->creadr += ITS_CMD_SIZE;
1545 if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1546 its->creadr = 0;
1547 }
1548 }
1549
1550 /*
1551 * By writing to CWRITER the guest announces new commands to be processed.
1552 * To avoid any races in the first place, we take the its_cmd lock, which
1553 * protects our ring buffer variables, so that there is only one user
1554 * per ITS handling commands at a given time.
1555 */
vgic_mmio_write_its_cwriter(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1556 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1557 gpa_t addr, unsigned int len,
1558 unsigned long val)
1559 {
1560 u64 reg;
1561
1562 if (!its)
1563 return;
1564
1565 mutex_lock(&its->cmd_lock);
1566
1567 reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1568 reg = ITS_CMD_OFFSET(reg);
1569 if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1570 mutex_unlock(&its->cmd_lock);
1571 return;
1572 }
1573 its->cwriter = reg;
1574
1575 vgic_its_process_commands(kvm, its);
1576
1577 mutex_unlock(&its->cmd_lock);
1578 }
1579
vgic_mmio_read_its_cwriter(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1580 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1581 struct vgic_its *its,
1582 gpa_t addr, unsigned int len)
1583 {
1584 return extract_bytes(its->cwriter, addr & 0x7, len);
1585 }
1586
vgic_mmio_read_its_creadr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1587 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1588 struct vgic_its *its,
1589 gpa_t addr, unsigned int len)
1590 {
1591 return extract_bytes(its->creadr, addr & 0x7, len);
1592 }
1593
vgic_mmio_uaccess_write_its_creadr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1594 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1595 struct vgic_its *its,
1596 gpa_t addr, unsigned int len,
1597 unsigned long val)
1598 {
1599 u32 cmd_offset;
1600 int ret = 0;
1601
1602 mutex_lock(&its->cmd_lock);
1603
1604 if (its->enabled) {
1605 ret = -EBUSY;
1606 goto out;
1607 }
1608
1609 cmd_offset = ITS_CMD_OFFSET(val);
1610 if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1611 ret = -EINVAL;
1612 goto out;
1613 }
1614
1615 its->creadr = cmd_offset;
1616 out:
1617 mutex_unlock(&its->cmd_lock);
1618 return ret;
1619 }
1620
1621 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
vgic_mmio_read_its_baser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1622 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1623 struct vgic_its *its,
1624 gpa_t addr, unsigned int len)
1625 {
1626 u64 reg;
1627
1628 switch (BASER_INDEX(addr)) {
1629 case 0:
1630 reg = its->baser_device_table;
1631 break;
1632 case 1:
1633 reg = its->baser_coll_table;
1634 break;
1635 default:
1636 reg = 0;
1637 break;
1638 }
1639
1640 return extract_bytes(reg, addr & 7, len);
1641 }
1642
1643 #define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
vgic_mmio_write_its_baser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1644 static void vgic_mmio_write_its_baser(struct kvm *kvm,
1645 struct vgic_its *its,
1646 gpa_t addr, unsigned int len,
1647 unsigned long val)
1648 {
1649 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1650 u64 entry_size, table_type;
1651 u64 reg, *regptr, clearbits = 0;
1652
1653 /* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1654 if (its->enabled)
1655 return;
1656
1657 switch (BASER_INDEX(addr)) {
1658 case 0:
1659 regptr = &its->baser_device_table;
1660 entry_size = abi->dte_esz;
1661 table_type = GITS_BASER_TYPE_DEVICE;
1662 break;
1663 case 1:
1664 regptr = &its->baser_coll_table;
1665 entry_size = abi->cte_esz;
1666 table_type = GITS_BASER_TYPE_COLLECTION;
1667 clearbits = GITS_BASER_INDIRECT;
1668 break;
1669 default:
1670 return;
1671 }
1672
1673 reg = update_64bit_reg(*regptr, addr & 7, len, val);
1674 reg &= ~GITS_BASER_RO_MASK;
1675 reg &= ~clearbits;
1676
1677 reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1678 reg |= table_type << GITS_BASER_TYPE_SHIFT;
1679 reg = vgic_sanitise_its_baser(reg);
1680
1681 *regptr = reg;
1682
1683 if (!(reg & GITS_BASER_VALID)) {
1684 /* Take the its_lock to prevent a race with a save/restore */
1685 mutex_lock(&its->its_lock);
1686 switch (table_type) {
1687 case GITS_BASER_TYPE_DEVICE:
1688 vgic_its_free_device_list(kvm, its);
1689 break;
1690 case GITS_BASER_TYPE_COLLECTION:
1691 vgic_its_free_collection_list(kvm, its);
1692 break;
1693 }
1694 mutex_unlock(&its->its_lock);
1695 }
1696 }
1697
vgic_mmio_read_its_ctlr(struct kvm * vcpu,struct vgic_its * its,gpa_t addr,unsigned int len)1698 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1699 struct vgic_its *its,
1700 gpa_t addr, unsigned int len)
1701 {
1702 u32 reg = 0;
1703
1704 mutex_lock(&its->cmd_lock);
1705 if (its->creadr == its->cwriter)
1706 reg |= GITS_CTLR_QUIESCENT;
1707 if (its->enabled)
1708 reg |= GITS_CTLR_ENABLE;
1709 mutex_unlock(&its->cmd_lock);
1710
1711 return reg;
1712 }
1713
vgic_mmio_write_its_ctlr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1714 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1715 gpa_t addr, unsigned int len,
1716 unsigned long val)
1717 {
1718 mutex_lock(&its->cmd_lock);
1719
1720 /*
1721 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
1722 * device/collection BASER are invalid
1723 */
1724 if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
1725 (!(its->baser_device_table & GITS_BASER_VALID) ||
1726 !(its->baser_coll_table & GITS_BASER_VALID) ||
1727 !(its->cbaser & GITS_CBASER_VALID)))
1728 goto out;
1729
1730 its->enabled = !!(val & GITS_CTLR_ENABLE);
1731 if (!its->enabled)
1732 vgic_its_invalidate_cache(its);
1733
1734 /*
1735 * Try to process any pending commands. This function bails out early
1736 * if the ITS is disabled or no commands have been queued.
1737 */
1738 vgic_its_process_commands(kvm, its);
1739
1740 out:
1741 mutex_unlock(&its->cmd_lock);
1742 }
1743
1744 #define REGISTER_ITS_DESC(off, rd, wr, length, acc) \
1745 { \
1746 .reg_offset = off, \
1747 .len = length, \
1748 .access_flags = acc, \
1749 .its_read = rd, \
1750 .its_write = wr, \
1751 }
1752
1753 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1754 { \
1755 .reg_offset = off, \
1756 .len = length, \
1757 .access_flags = acc, \
1758 .its_read = rd, \
1759 .its_write = wr, \
1760 .uaccess_its_write = uwr, \
1761 }
1762
its_mmio_write_wi(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1763 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1764 gpa_t addr, unsigned int len, unsigned long val)
1765 {
1766 /* Ignore */
1767 }
1768
1769 static struct vgic_register_region its_registers[] = {
1770 REGISTER_ITS_DESC(GITS_CTLR,
1771 vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1772 VGIC_ACCESS_32bit),
1773 REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1774 vgic_mmio_read_its_iidr, its_mmio_write_wi,
1775 vgic_mmio_uaccess_write_its_iidr, 4,
1776 VGIC_ACCESS_32bit),
1777 REGISTER_ITS_DESC(GITS_TYPER,
1778 vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1779 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1780 REGISTER_ITS_DESC(GITS_CBASER,
1781 vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1782 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1783 REGISTER_ITS_DESC(GITS_CWRITER,
1784 vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1785 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1786 REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1787 vgic_mmio_read_its_creadr, its_mmio_write_wi,
1788 vgic_mmio_uaccess_write_its_creadr, 8,
1789 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1790 REGISTER_ITS_DESC(GITS_BASER,
1791 vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1792 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1793 REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1794 vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1795 VGIC_ACCESS_32bit),
1796 };
1797
1798 /* This is called on setting the LPI enable bit in the redistributor. */
vgic_enable_lpis(struct kvm_vcpu * vcpu)1799 void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1800 {
1801 if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1802 its_sync_lpi_pending_table(vcpu);
1803 }
1804
vgic_register_its_iodev(struct kvm * kvm,struct vgic_its * its,u64 addr)1805 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1806 u64 addr)
1807 {
1808 struct vgic_io_device *iodev = &its->iodev;
1809 int ret;
1810
1811 mutex_lock(&kvm->slots_lock);
1812 if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1813 ret = -EBUSY;
1814 goto out;
1815 }
1816
1817 its->vgic_its_base = addr;
1818 iodev->regions = its_registers;
1819 iodev->nr_regions = ARRAY_SIZE(its_registers);
1820 kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1821
1822 iodev->base_addr = its->vgic_its_base;
1823 iodev->iodev_type = IODEV_ITS;
1824 iodev->its = its;
1825 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1826 KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1827 out:
1828 mutex_unlock(&kvm->slots_lock);
1829
1830 return ret;
1831 }
1832
1833 #define INITIAL_BASER_VALUE \
1834 (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \
1835 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \
1836 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \
1837 GITS_BASER_PAGE_SIZE_64K)
1838
1839 #define INITIAL_PROPBASER_VALUE \
1840 (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \
1841 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \
1842 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1843
vgic_its_create(struct kvm_device * dev,u32 type)1844 static int vgic_its_create(struct kvm_device *dev, u32 type)
1845 {
1846 int ret;
1847 struct vgic_its *its;
1848
1849 if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1850 return -ENODEV;
1851
1852 its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL_ACCOUNT);
1853 if (!its)
1854 return -ENOMEM;
1855
1856 mutex_lock(&dev->kvm->arch.config_lock);
1857
1858 if (vgic_initialized(dev->kvm)) {
1859 ret = vgic_v4_init(dev->kvm);
1860 if (ret < 0) {
1861 mutex_unlock(&dev->kvm->arch.config_lock);
1862 kfree(its);
1863 return ret;
1864 }
1865 }
1866
1867 mutex_init(&its->its_lock);
1868 mutex_init(&its->cmd_lock);
1869
1870 /* Yep, even more trickery for lock ordering... */
1871 #ifdef CONFIG_LOCKDEP
1872 mutex_lock(&its->cmd_lock);
1873 mutex_lock(&its->its_lock);
1874 mutex_unlock(&its->its_lock);
1875 mutex_unlock(&its->cmd_lock);
1876 #endif
1877
1878 its->vgic_its_base = VGIC_ADDR_UNDEF;
1879
1880 INIT_LIST_HEAD(&its->device_list);
1881 INIT_LIST_HEAD(&its->collection_list);
1882 xa_init(&its->translation_cache);
1883
1884 dev->kvm->arch.vgic.msis_require_devid = true;
1885 dev->kvm->arch.vgic.has_its = true;
1886 its->enabled = false;
1887 its->dev = dev;
1888
1889 its->baser_device_table = INITIAL_BASER_VALUE |
1890 ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1891 its->baser_coll_table = INITIAL_BASER_VALUE |
1892 ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1893 dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1894
1895 dev->private = its;
1896
1897 ret = vgic_its_set_abi(its, NR_ITS_ABIS - 1);
1898
1899 mutex_unlock(&dev->kvm->arch.config_lock);
1900
1901 return ret;
1902 }
1903
vgic_its_destroy(struct kvm_device * kvm_dev)1904 static void vgic_its_destroy(struct kvm_device *kvm_dev)
1905 {
1906 struct kvm *kvm = kvm_dev->kvm;
1907 struct vgic_its *its = kvm_dev->private;
1908
1909 mutex_lock(&its->its_lock);
1910
1911 vgic_its_debug_destroy(kvm_dev);
1912
1913 vgic_its_free_device_list(kvm, its);
1914 vgic_its_free_collection_list(kvm, its);
1915 vgic_its_invalidate_cache(its);
1916 xa_destroy(&its->translation_cache);
1917
1918 mutex_unlock(&its->its_lock);
1919 kfree(its);
1920 kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */
1921 }
1922
vgic_its_has_attr_regs(struct kvm_device * dev,struct kvm_device_attr * attr)1923 static int vgic_its_has_attr_regs(struct kvm_device *dev,
1924 struct kvm_device_attr *attr)
1925 {
1926 const struct vgic_register_region *region;
1927 gpa_t offset = attr->attr;
1928 int align;
1929
1930 align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
1931
1932 if (offset & align)
1933 return -EINVAL;
1934
1935 region = vgic_find_mmio_region(its_registers,
1936 ARRAY_SIZE(its_registers),
1937 offset);
1938 if (!region)
1939 return -ENXIO;
1940
1941 return 0;
1942 }
1943
vgic_its_attr_regs_access(struct kvm_device * dev,struct kvm_device_attr * attr,u64 * reg,bool is_write)1944 static int vgic_its_attr_regs_access(struct kvm_device *dev,
1945 struct kvm_device_attr *attr,
1946 u64 *reg, bool is_write)
1947 {
1948 const struct vgic_register_region *region;
1949 struct vgic_its *its;
1950 gpa_t addr, offset;
1951 unsigned int len;
1952 int align, ret = 0;
1953
1954 its = dev->private;
1955 offset = attr->attr;
1956
1957 /*
1958 * Although the spec supports upper/lower 32-bit accesses to
1959 * 64-bit ITS registers, the userspace ABI requires 64-bit
1960 * accesses to all 64-bit wide registers. We therefore only
1961 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
1962 * registers
1963 */
1964 if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
1965 align = 0x3;
1966 else
1967 align = 0x7;
1968
1969 if (offset & align)
1970 return -EINVAL;
1971
1972 mutex_lock(&dev->kvm->lock);
1973
1974 if (kvm_trylock_all_vcpus(dev->kvm)) {
1975 mutex_unlock(&dev->kvm->lock);
1976 return -EBUSY;
1977 }
1978
1979 mutex_lock(&dev->kvm->arch.config_lock);
1980
1981 if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1982 ret = -ENXIO;
1983 goto out;
1984 }
1985
1986 region = vgic_find_mmio_region(its_registers,
1987 ARRAY_SIZE(its_registers),
1988 offset);
1989 if (!region) {
1990 ret = -ENXIO;
1991 goto out;
1992 }
1993
1994 addr = its->vgic_its_base + offset;
1995
1996 len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
1997
1998 if (is_write) {
1999 if (region->uaccess_its_write)
2000 ret = region->uaccess_its_write(dev->kvm, its, addr,
2001 len, *reg);
2002 else
2003 region->its_write(dev->kvm, its, addr, len, *reg);
2004 } else {
2005 *reg = region->its_read(dev->kvm, its, addr, len);
2006 }
2007 out:
2008 mutex_unlock(&dev->kvm->arch.config_lock);
2009 kvm_unlock_all_vcpus(dev->kvm);
2010 mutex_unlock(&dev->kvm->lock);
2011 return ret;
2012 }
2013
compute_next_devid_offset(struct list_head * h,struct its_device * dev)2014 static u32 compute_next_devid_offset(struct list_head *h,
2015 struct its_device *dev)
2016 {
2017 struct its_device *next;
2018 u32 next_offset;
2019
2020 if (list_is_last(&dev->dev_list, h))
2021 return 0;
2022 next = list_next_entry(dev, dev_list);
2023 next_offset = next->device_id - dev->device_id;
2024
2025 return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
2026 }
2027
compute_next_eventid_offset(struct list_head * h,struct its_ite * ite)2028 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
2029 {
2030 struct its_ite *next;
2031 u32 next_offset;
2032
2033 if (list_is_last(&ite->ite_list, h))
2034 return 0;
2035 next = list_next_entry(ite, ite_list);
2036 next_offset = next->event_id - ite->event_id;
2037
2038 return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
2039 }
2040
2041 /**
2042 * typedef entry_fn_t - Callback called on a table entry restore path
2043 * @its: its handle
2044 * @id: id of the entry
2045 * @entry: pointer to the entry
2046 * @opaque: pointer to an opaque data
2047 *
2048 * Return: < 0 on error, 0 if last element was identified, id offset to next
2049 * element otherwise
2050 */
2051 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
2052 void *opaque);
2053
2054 /**
2055 * scan_its_table - Scan a contiguous table in guest RAM and applies a function
2056 * to each entry
2057 *
2058 * @its: its handle
2059 * @base: base gpa of the table
2060 * @size: size of the table in bytes
2061 * @esz: entry size in bytes
2062 * @start_id: the ID of the first entry in the table
2063 * (non zero for 2d level tables)
2064 * @fn: function to apply on each entry
2065 * @opaque: pointer to opaque data
2066 *
2067 * Return: < 0 on error, 0 if last element was identified, 1 otherwise
2068 * (the last element may not be found on second level tables)
2069 */
scan_its_table(struct vgic_its * its,gpa_t base,int size,u32 esz,int start_id,entry_fn_t fn,void * opaque)2070 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz,
2071 int start_id, entry_fn_t fn, void *opaque)
2072 {
2073 struct kvm *kvm = its->dev->kvm;
2074 unsigned long len = size;
2075 int id = start_id;
2076 gpa_t gpa = base;
2077 char entry[ESZ_MAX];
2078 int ret;
2079
2080 memset(entry, 0, esz);
2081
2082 while (true) {
2083 int next_offset;
2084 size_t byte_offset;
2085
2086 ret = kvm_read_guest_lock(kvm, gpa, entry, esz);
2087 if (ret)
2088 return ret;
2089
2090 next_offset = fn(its, id, entry, opaque);
2091 if (next_offset <= 0)
2092 return next_offset;
2093
2094 byte_offset = next_offset * esz;
2095 if (byte_offset >= len)
2096 break;
2097
2098 id += next_offset;
2099 gpa += byte_offset;
2100 len -= byte_offset;
2101 }
2102 return 1;
2103 }
2104
2105 /*
2106 * vgic_its_save_ite - Save an interrupt translation entry at @gpa
2107 */
vgic_its_save_ite(struct vgic_its * its,struct its_device * dev,struct its_ite * ite,gpa_t gpa)2108 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
2109 struct its_ite *ite, gpa_t gpa)
2110 {
2111 u32 next_offset;
2112 u64 val;
2113
2114 next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
2115 val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
2116 ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
2117 ite->collection->collection_id;
2118 val = cpu_to_le64(val);
2119
2120 return vgic_its_write_entry_lock(its, gpa, val, ite);
2121 }
2122
2123 /**
2124 * vgic_its_restore_ite - restore an interrupt translation entry
2125 *
2126 * @its: its handle
2127 * @event_id: id used for indexing
2128 * @ptr: pointer to the ITE entry
2129 * @opaque: pointer to the its_device
2130 */
vgic_its_restore_ite(struct vgic_its * its,u32 event_id,void * ptr,void * opaque)2131 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
2132 void *ptr, void *opaque)
2133 {
2134 struct its_device *dev = opaque;
2135 struct its_collection *collection;
2136 struct kvm *kvm = its->dev->kvm;
2137 struct kvm_vcpu *vcpu = NULL;
2138 u64 val;
2139 u64 *p = (u64 *)ptr;
2140 struct vgic_irq *irq;
2141 u32 coll_id, lpi_id;
2142 struct its_ite *ite;
2143 u32 offset;
2144
2145 val = *p;
2146
2147 val = le64_to_cpu(val);
2148
2149 coll_id = val & KVM_ITS_ITE_ICID_MASK;
2150 lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
2151
2152 if (!lpi_id)
2153 return 1; /* invalid entry, no choice but to scan next entry */
2154
2155 if (lpi_id < VGIC_MIN_LPI)
2156 return -EINVAL;
2157
2158 offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
2159 if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
2160 return -EINVAL;
2161
2162 collection = find_collection(its, coll_id);
2163 if (!collection)
2164 return -EINVAL;
2165
2166 if (!vgic_its_check_event_id(its, dev, event_id))
2167 return -EINVAL;
2168
2169 ite = vgic_its_alloc_ite(dev, collection, event_id);
2170 if (IS_ERR(ite))
2171 return PTR_ERR(ite);
2172
2173 if (its_is_collection_mapped(collection))
2174 vcpu = kvm_get_vcpu_by_id(kvm, collection->target_addr);
2175
2176 irq = vgic_add_lpi(kvm, lpi_id, vcpu);
2177 if (IS_ERR(irq)) {
2178 its_free_ite(kvm, ite);
2179 return PTR_ERR(irq);
2180 }
2181 ite->irq = irq;
2182
2183 return offset;
2184 }
2185
vgic_its_ite_cmp(void * priv,const struct list_head * a,const struct list_head * b)2186 static int vgic_its_ite_cmp(void *priv, const struct list_head *a,
2187 const struct list_head *b)
2188 {
2189 struct its_ite *itea = container_of(a, struct its_ite, ite_list);
2190 struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
2191
2192 if (itea->event_id < iteb->event_id)
2193 return -1;
2194 else
2195 return 1;
2196 }
2197
vgic_its_save_itt(struct vgic_its * its,struct its_device * device)2198 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
2199 {
2200 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2201 gpa_t base = device->itt_addr;
2202 struct its_ite *ite;
2203 int ret;
2204 int ite_esz = abi->ite_esz;
2205
2206 list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
2207
2208 list_for_each_entry(ite, &device->itt_head, ite_list) {
2209 gpa_t gpa = base + ite->event_id * ite_esz;
2210
2211 /*
2212 * If an LPI carries the HW bit, this means that this
2213 * interrupt is controlled by GICv4, and we do not
2214 * have direct access to that state without GICv4.1.
2215 * Let's simply fail the save operation...
2216 */
2217 if (ite->irq->hw && !kvm_vgic_global_state.has_gicv4_1)
2218 return -EACCES;
2219
2220 ret = vgic_its_save_ite(its, device, ite, gpa);
2221 if (ret)
2222 return ret;
2223 }
2224 return 0;
2225 }
2226
2227 /**
2228 * vgic_its_restore_itt - restore the ITT of a device
2229 *
2230 * @its: its handle
2231 * @dev: device handle
2232 *
2233 * Return 0 on success, < 0 on error
2234 */
vgic_its_restore_itt(struct vgic_its * its,struct its_device * dev)2235 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
2236 {
2237 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2238 gpa_t base = dev->itt_addr;
2239 int ret;
2240 int ite_esz = abi->ite_esz;
2241 size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
2242
2243 ret = scan_its_table(its, base, max_size, ite_esz, 0,
2244 vgic_its_restore_ite, dev);
2245
2246 /* scan_its_table returns +1 if all ITEs are invalid */
2247 if (ret > 0)
2248 ret = 0;
2249
2250 return ret;
2251 }
2252
2253 /**
2254 * vgic_its_save_dte - Save a device table entry at a given GPA
2255 *
2256 * @its: ITS handle
2257 * @dev: ITS device
2258 * @ptr: GPA
2259 */
vgic_its_save_dte(struct vgic_its * its,struct its_device * dev,gpa_t ptr)2260 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
2261 gpa_t ptr)
2262 {
2263 u64 val, itt_addr_field;
2264 u32 next_offset;
2265
2266 itt_addr_field = dev->itt_addr >> 8;
2267 next_offset = compute_next_devid_offset(&its->device_list, dev);
2268 val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
2269 ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
2270 (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
2271 (dev->num_eventid_bits - 1));
2272 val = cpu_to_le64(val);
2273
2274 return vgic_its_write_entry_lock(its, ptr, val, dte);
2275 }
2276
2277 /**
2278 * vgic_its_restore_dte - restore a device table entry
2279 *
2280 * @its: its handle
2281 * @id: device id the DTE corresponds to
2282 * @ptr: kernel VA where the 8 byte DTE is located
2283 * @opaque: unused
2284 *
2285 * Return: < 0 on error, 0 if the dte is the last one, id offset to the
2286 * next dte otherwise
2287 */
vgic_its_restore_dte(struct vgic_its * its,u32 id,void * ptr,void * opaque)2288 static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
2289 void *ptr, void *opaque)
2290 {
2291 struct its_device *dev;
2292 u64 baser = its->baser_device_table;
2293 gpa_t itt_addr;
2294 u8 num_eventid_bits;
2295 u64 entry = *(u64 *)ptr;
2296 bool valid;
2297 u32 offset;
2298 int ret;
2299
2300 entry = le64_to_cpu(entry);
2301
2302 valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2303 num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2304 itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2305 >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2306
2307 if (!valid)
2308 return 1;
2309
2310 /* dte entry is valid */
2311 offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2312
2313 if (!vgic_its_check_id(its, baser, id, NULL))
2314 return -EINVAL;
2315
2316 dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2317 if (IS_ERR(dev))
2318 return PTR_ERR(dev);
2319
2320 ret = vgic_its_restore_itt(its, dev);
2321 if (ret) {
2322 vgic_its_free_device(its->dev->kvm, its, dev);
2323 return ret;
2324 }
2325
2326 return offset;
2327 }
2328
vgic_its_device_cmp(void * priv,const struct list_head * a,const struct list_head * b)2329 static int vgic_its_device_cmp(void *priv, const struct list_head *a,
2330 const struct list_head *b)
2331 {
2332 struct its_device *deva = container_of(a, struct its_device, dev_list);
2333 struct its_device *devb = container_of(b, struct its_device, dev_list);
2334
2335 if (deva->device_id < devb->device_id)
2336 return -1;
2337 else
2338 return 1;
2339 }
2340
2341 /*
2342 * vgic_its_save_device_tables - Save the device table and all ITT
2343 * into guest RAM
2344 *
2345 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2346 * returns the GPA of the device entry
2347 */
vgic_its_save_device_tables(struct vgic_its * its)2348 static int vgic_its_save_device_tables(struct vgic_its *its)
2349 {
2350 u64 baser = its->baser_device_table;
2351 struct its_device *dev;
2352
2353 if (!(baser & GITS_BASER_VALID))
2354 return 0;
2355
2356 list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2357
2358 list_for_each_entry(dev, &its->device_list, dev_list) {
2359 int ret;
2360 gpa_t eaddr;
2361
2362 if (!vgic_its_check_id(its, baser,
2363 dev->device_id, &eaddr))
2364 return -EINVAL;
2365
2366 ret = vgic_its_save_itt(its, dev);
2367 if (ret)
2368 return ret;
2369
2370 ret = vgic_its_save_dte(its, dev, eaddr);
2371 if (ret)
2372 return ret;
2373 }
2374 return 0;
2375 }
2376
2377 /**
2378 * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2379 *
2380 * @its: its handle
2381 * @id: index of the entry in the L1 table
2382 * @addr: kernel VA
2383 * @opaque: unused
2384 *
2385 * L1 table entries are scanned by steps of 1 entry
2386 * Return < 0 if error, 0 if last dte was found when scanning the L2
2387 * table, +1 otherwise (meaning next L1 entry must be scanned)
2388 */
handle_l1_dte(struct vgic_its * its,u32 id,void * addr,void * opaque)2389 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2390 void *opaque)
2391 {
2392 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2393 int l2_start_id = id * (SZ_64K / abi->dte_esz);
2394 u64 entry = *(u64 *)addr;
2395 int dte_esz = abi->dte_esz;
2396 gpa_t gpa;
2397 int ret;
2398
2399 entry = le64_to_cpu(entry);
2400
2401 if (!(entry & KVM_ITS_L1E_VALID_MASK))
2402 return 1;
2403
2404 gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2405
2406 ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2407 l2_start_id, vgic_its_restore_dte, NULL);
2408
2409 return ret;
2410 }
2411
2412 /*
2413 * vgic_its_restore_device_tables - Restore the device table and all ITT
2414 * from guest RAM to internal data structs
2415 */
vgic_its_restore_device_tables(struct vgic_its * its)2416 static int vgic_its_restore_device_tables(struct vgic_its *its)
2417 {
2418 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2419 u64 baser = its->baser_device_table;
2420 int l1_esz, ret;
2421 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2422 gpa_t l1_gpa;
2423
2424 if (!(baser & GITS_BASER_VALID))
2425 return 0;
2426
2427 l1_gpa = GITS_BASER_ADDR_48_to_52(baser);
2428
2429 if (baser & GITS_BASER_INDIRECT) {
2430 l1_esz = GITS_LVL1_ENTRY_SIZE;
2431 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2432 handle_l1_dte, NULL);
2433 } else {
2434 l1_esz = abi->dte_esz;
2435 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2436 vgic_its_restore_dte, NULL);
2437 }
2438
2439 /* scan_its_table returns +1 if all entries are invalid */
2440 if (ret > 0)
2441 ret = 0;
2442
2443 if (ret < 0)
2444 vgic_its_free_device_list(its->dev->kvm, its);
2445
2446 return ret;
2447 }
2448
vgic_its_save_cte(struct vgic_its * its,struct its_collection * collection,gpa_t gpa)2449 static int vgic_its_save_cte(struct vgic_its *its,
2450 struct its_collection *collection,
2451 gpa_t gpa)
2452 {
2453 u64 val;
2454
2455 val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2456 ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2457 collection->collection_id);
2458 val = cpu_to_le64(val);
2459
2460 return vgic_its_write_entry_lock(its, gpa, val, cte);
2461 }
2462
2463 /*
2464 * Restore a collection entry into the ITS collection table.
2465 * Return +1 on success, 0 if the entry was invalid (which should be
2466 * interpreted as end-of-table), and a negative error value for generic errors.
2467 */
vgic_its_restore_cte(struct vgic_its * its,gpa_t gpa)2468 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa)
2469 {
2470 struct its_collection *collection;
2471 struct kvm *kvm = its->dev->kvm;
2472 u32 target_addr, coll_id;
2473 u64 val;
2474 int ret;
2475
2476 ret = vgic_its_read_entry_lock(its, gpa, &val, cte);
2477 if (ret)
2478 return ret;
2479 val = le64_to_cpu(val);
2480 if (!(val & KVM_ITS_CTE_VALID_MASK))
2481 return 0;
2482
2483 target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2484 coll_id = val & KVM_ITS_CTE_ICID_MASK;
2485
2486 if (target_addr != COLLECTION_NOT_MAPPED &&
2487 !kvm_get_vcpu_by_id(kvm, target_addr))
2488 return -EINVAL;
2489
2490 collection = find_collection(its, coll_id);
2491 if (collection)
2492 return -EEXIST;
2493
2494 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
2495 return -EINVAL;
2496
2497 ret = vgic_its_alloc_collection(its, &collection, coll_id);
2498 if (ret)
2499 return ret;
2500 collection->target_addr = target_addr;
2501 return 1;
2502 }
2503
2504 /*
2505 * vgic_its_save_collection_table - Save the collection table into
2506 * guest RAM
2507 */
vgic_its_save_collection_table(struct vgic_its * its)2508 static int vgic_its_save_collection_table(struct vgic_its *its)
2509 {
2510 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2511 u64 baser = its->baser_coll_table;
2512 gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser);
2513 struct its_collection *collection;
2514 size_t max_size, filled = 0;
2515 int ret, cte_esz = abi->cte_esz;
2516
2517 if (!(baser & GITS_BASER_VALID))
2518 return 0;
2519
2520 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2521
2522 list_for_each_entry(collection, &its->collection_list, coll_list) {
2523 ret = vgic_its_save_cte(its, collection, gpa);
2524 if (ret)
2525 return ret;
2526 gpa += cte_esz;
2527 filled += cte_esz;
2528 }
2529
2530 if (filled == max_size)
2531 return 0;
2532
2533 /*
2534 * table is not fully filled, add a last dummy element
2535 * with valid bit unset
2536 */
2537 return vgic_its_write_entry_lock(its, gpa, 0ULL, cte);
2538 }
2539
2540 /*
2541 * vgic_its_restore_collection_table - reads the collection table
2542 * in guest memory and restores the ITS internal state. Requires the
2543 * BASER registers to be restored before.
2544 */
vgic_its_restore_collection_table(struct vgic_its * its)2545 static int vgic_its_restore_collection_table(struct vgic_its *its)
2546 {
2547 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2548 u64 baser = its->baser_coll_table;
2549 int cte_esz = abi->cte_esz;
2550 size_t max_size, read = 0;
2551 gpa_t gpa;
2552 int ret;
2553
2554 if (!(baser & GITS_BASER_VALID))
2555 return 0;
2556
2557 gpa = GITS_BASER_ADDR_48_to_52(baser);
2558
2559 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2560
2561 while (read < max_size) {
2562 ret = vgic_its_restore_cte(its, gpa);
2563 if (ret <= 0)
2564 break;
2565 gpa += cte_esz;
2566 read += cte_esz;
2567 }
2568
2569 if (ret > 0)
2570 return 0;
2571
2572 if (ret < 0)
2573 vgic_its_free_collection_list(its->dev->kvm, its);
2574
2575 return ret;
2576 }
2577
2578 /*
2579 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2580 * according to v0 ABI
2581 */
vgic_its_save_tables_v0(struct vgic_its * its)2582 static int vgic_its_save_tables_v0(struct vgic_its *its)
2583 {
2584 int ret;
2585
2586 ret = vgic_its_save_device_tables(its);
2587 if (ret)
2588 return ret;
2589
2590 return vgic_its_save_collection_table(its);
2591 }
2592
2593 /*
2594 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2595 * to internal data structs according to V0 ABI
2596 *
2597 */
vgic_its_restore_tables_v0(struct vgic_its * its)2598 static int vgic_its_restore_tables_v0(struct vgic_its *its)
2599 {
2600 int ret;
2601
2602 ret = vgic_its_restore_collection_table(its);
2603 if (ret)
2604 return ret;
2605
2606 ret = vgic_its_restore_device_tables(its);
2607 if (ret)
2608 vgic_its_free_collection_list(its->dev->kvm, its);
2609 return ret;
2610 }
2611
vgic_its_commit_v0(struct vgic_its * its)2612 static int vgic_its_commit_v0(struct vgic_its *its)
2613 {
2614 const struct vgic_its_abi *abi;
2615
2616 abi = vgic_its_get_abi(its);
2617 its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2618 its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2619
2620 its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2621 << GITS_BASER_ENTRY_SIZE_SHIFT);
2622
2623 its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2624 << GITS_BASER_ENTRY_SIZE_SHIFT);
2625 return 0;
2626 }
2627
vgic_its_reset(struct kvm * kvm,struct vgic_its * its)2628 static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
2629 {
2630 /* We need to keep the ABI specific field values */
2631 its->baser_coll_table &= ~GITS_BASER_VALID;
2632 its->baser_device_table &= ~GITS_BASER_VALID;
2633 its->cbaser = 0;
2634 its->creadr = 0;
2635 its->cwriter = 0;
2636 its->enabled = 0;
2637 vgic_its_free_device_list(kvm, its);
2638 vgic_its_free_collection_list(kvm, its);
2639 }
2640
vgic_its_has_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2641 static int vgic_its_has_attr(struct kvm_device *dev,
2642 struct kvm_device_attr *attr)
2643 {
2644 switch (attr->group) {
2645 case KVM_DEV_ARM_VGIC_GRP_ADDR:
2646 switch (attr->attr) {
2647 case KVM_VGIC_ITS_ADDR_TYPE:
2648 return 0;
2649 }
2650 break;
2651 case KVM_DEV_ARM_VGIC_GRP_CTRL:
2652 switch (attr->attr) {
2653 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2654 return 0;
2655 case KVM_DEV_ARM_ITS_CTRL_RESET:
2656 return 0;
2657 case KVM_DEV_ARM_ITS_SAVE_TABLES:
2658 return 0;
2659 case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2660 return 0;
2661 }
2662 break;
2663 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2664 return vgic_its_has_attr_regs(dev, attr);
2665 }
2666 return -ENXIO;
2667 }
2668
vgic_its_ctrl(struct kvm * kvm,struct vgic_its * its,u64 attr)2669 static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
2670 {
2671 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2672 int ret = 0;
2673
2674 if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
2675 return 0;
2676
2677 mutex_lock(&kvm->lock);
2678
2679 if (kvm_trylock_all_vcpus(kvm)) {
2680 mutex_unlock(&kvm->lock);
2681 return -EBUSY;
2682 }
2683
2684 mutex_lock(&kvm->arch.config_lock);
2685 mutex_lock(&its->its_lock);
2686
2687 switch (attr) {
2688 case KVM_DEV_ARM_ITS_CTRL_RESET:
2689 vgic_its_reset(kvm, its);
2690 break;
2691 case KVM_DEV_ARM_ITS_SAVE_TABLES:
2692 ret = abi->save_tables(its);
2693 break;
2694 case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2695 ret = abi->restore_tables(its);
2696 break;
2697 default:
2698 ret = -ENXIO;
2699 break;
2700 }
2701
2702 mutex_unlock(&its->its_lock);
2703 mutex_unlock(&kvm->arch.config_lock);
2704 kvm_unlock_all_vcpus(kvm);
2705 mutex_unlock(&kvm->lock);
2706 return ret;
2707 }
2708
2709 /*
2710 * kvm_arch_allow_write_without_running_vcpu - allow writing guest memory
2711 * without the running VCPU when dirty ring is enabled.
2712 *
2713 * The running VCPU is required to track dirty guest pages when dirty ring
2714 * is enabled. Otherwise, the backup bitmap should be used to track the
2715 * dirty guest pages. When vgic/its tables are being saved, the backup
2716 * bitmap is used to track the dirty guest pages due to the missed running
2717 * VCPU in the period.
2718 */
kvm_arch_allow_write_without_running_vcpu(struct kvm * kvm)2719 bool kvm_arch_allow_write_without_running_vcpu(struct kvm *kvm)
2720 {
2721 struct vgic_dist *dist = &kvm->arch.vgic;
2722
2723 return dist->table_write_in_progress;
2724 }
2725
vgic_its_set_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2726 static int vgic_its_set_attr(struct kvm_device *dev,
2727 struct kvm_device_attr *attr)
2728 {
2729 struct vgic_its *its = dev->private;
2730 int ret;
2731
2732 switch (attr->group) {
2733 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2734 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2735 unsigned long type = (unsigned long)attr->attr;
2736 u64 addr;
2737
2738 if (type != KVM_VGIC_ITS_ADDR_TYPE)
2739 return -ENODEV;
2740
2741 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2742 return -EFAULT;
2743
2744 ret = vgic_check_iorange(dev->kvm, its->vgic_its_base,
2745 addr, SZ_64K, KVM_VGIC_V3_ITS_SIZE);
2746 if (ret)
2747 return ret;
2748
2749 ret = vgic_register_its_iodev(dev->kvm, its, addr);
2750 if (ret)
2751 return ret;
2752
2753 return vgic_its_debug_init(dev);
2754
2755 }
2756 case KVM_DEV_ARM_VGIC_GRP_CTRL:
2757 return vgic_its_ctrl(dev->kvm, its, attr->attr);
2758 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2759 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2760 u64 reg;
2761
2762 if (get_user(reg, uaddr))
2763 return -EFAULT;
2764
2765 return vgic_its_attr_regs_access(dev, attr, ®, true);
2766 }
2767 }
2768 return -ENXIO;
2769 }
2770
vgic_its_get_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2771 static int vgic_its_get_attr(struct kvm_device *dev,
2772 struct kvm_device_attr *attr)
2773 {
2774 switch (attr->group) {
2775 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2776 struct vgic_its *its = dev->private;
2777 u64 addr = its->vgic_its_base;
2778 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2779 unsigned long type = (unsigned long)attr->attr;
2780
2781 if (type != KVM_VGIC_ITS_ADDR_TYPE)
2782 return -ENODEV;
2783
2784 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2785 return -EFAULT;
2786 break;
2787 }
2788 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2789 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2790 u64 reg;
2791 int ret;
2792
2793 ret = vgic_its_attr_regs_access(dev, attr, ®, false);
2794 if (ret)
2795 return ret;
2796 return put_user(reg, uaddr);
2797 }
2798 default:
2799 return -ENXIO;
2800 }
2801
2802 return 0;
2803 }
2804
2805 static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2806 .name = "kvm-arm-vgic-its",
2807 .create = vgic_its_create,
2808 .destroy = vgic_its_destroy,
2809 .set_attr = vgic_its_set_attr,
2810 .get_attr = vgic_its_get_attr,
2811 .has_attr = vgic_its_has_attr,
2812 };
2813
kvm_vgic_register_its_device(void)2814 int kvm_vgic_register_its_device(void)
2815 {
2816 return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2817 KVM_DEV_TYPE_ARM_VGIC_ITS);
2818 }
2819