xref: /linux/arch/arm64/include/asm/cpufeature.h (revision 6fb44438a5e1897a72dd11139274735256be8069)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org>
4  */
5 
6 #ifndef __ASM_CPUFEATURE_H
7 #define __ASM_CPUFEATURE_H
8 
9 #include <asm/alternative-macros.h>
10 #include <asm/cpucaps.h>
11 #include <asm/cputype.h>
12 #include <asm/hwcap.h>
13 #include <asm/sysreg.h>
14 
15 #define MAX_CPU_FEATURES	192
16 #define cpu_feature(x)		KERNEL_HWCAP_ ## x
17 
18 #define ARM64_SW_FEATURE_OVERRIDE_NOKASLR	0
19 #define ARM64_SW_FEATURE_OVERRIDE_HVHE		4
20 #define ARM64_SW_FEATURE_OVERRIDE_RODATA_OFF	8
21 
22 #ifndef __ASSEMBLY__
23 
24 #include <linux/bug.h>
25 #include <linux/jump_label.h>
26 #include <linux/kernel.h>
27 #include <linux/cpumask.h>
28 
29 /*
30  * CPU feature register tracking
31  *
32  * The safe value of a CPUID feature field is dependent on the implications
33  * of the values assigned to it by the architecture. Based on the relationship
34  * between the values, the features are classified into 3 types - LOWER_SAFE,
35  * HIGHER_SAFE and EXACT.
36  *
37  * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest
38  * for HIGHER_SAFE. It is expected that all CPUs have the same value for
39  * a field when EXACT is specified, failing which, the safe value specified
40  * in the table is chosen.
41  */
42 
43 enum ftr_type {
44 	FTR_EXACT,			/* Use a predefined safe value */
45 	FTR_LOWER_SAFE,			/* Smaller value is safe */
46 	FTR_HIGHER_SAFE,		/* Bigger value is safe */
47 	FTR_HIGHER_OR_ZERO_SAFE,	/* Bigger value is safe, but 0 is biggest */
48 };
49 
50 #define FTR_STRICT	true	/* SANITY check strict matching required */
51 #define FTR_NONSTRICT	false	/* SANITY check ignored */
52 
53 #define FTR_SIGNED	true	/* Value should be treated as signed */
54 #define FTR_UNSIGNED	false	/* Value should be treated as unsigned */
55 
56 #define FTR_VISIBLE	true	/* Feature visible to the user space */
57 #define FTR_HIDDEN	false	/* Feature is hidden from the user */
58 
59 #define FTR_VISIBLE_IF_IS_ENABLED(config)		\
60 	(IS_ENABLED(config) ? FTR_VISIBLE : FTR_HIDDEN)
61 
62 struct arm64_ftr_bits {
63 	bool		sign;	/* Value is signed ? */
64 	bool		visible;
65 	bool		strict;	/* CPU Sanity check: strict matching required ? */
66 	enum ftr_type	type;
67 	u8		shift;
68 	u8		width;
69 	s64		safe_val; /* safe value for FTR_EXACT features */
70 };
71 
72 /*
73  * Describe the early feature override to the core override code:
74  *
75  * @val			Values that are to be merged into the final
76  *			sanitised value of the register. Only the bitfields
77  *			set to 1 in @mask are valid
78  * @mask		Mask of the features that are overridden by @val
79  *
80  * A @mask field set to full-1 indicates that the corresponding field
81  * in @val is a valid override.
82  *
83  * A @mask field set to full-0 with the corresponding @val field set
84  * to full-0 denotes that this field has no override
85  *
86  * A @mask field set to full-0 with the corresponding @val field set
87  * to full-1 denotes that this field has an invalid override.
88  */
89 struct arm64_ftr_override {
90 	u64		val;
91 	u64		mask;
92 };
93 
94 /*
95  * @arm64_ftr_reg - Feature register
96  * @strict_mask		Bits which should match across all CPUs for sanity.
97  * @sys_val		Safe value across the CPUs (system view)
98  */
99 struct arm64_ftr_reg {
100 	const char			*name;
101 	u64				strict_mask;
102 	u64				user_mask;
103 	u64				sys_val;
104 	u64				user_val;
105 	struct arm64_ftr_override	*override;
106 	const struct arm64_ftr_bits	*ftr_bits;
107 };
108 
109 extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;
110 
111 /*
112  * CPU capabilities:
113  *
114  * We use arm64_cpu_capabilities to represent system features, errata work
115  * arounds (both used internally by kernel and tracked in system_cpucaps) and
116  * ELF HWCAPs (which are exposed to user).
117  *
118  * To support systems with heterogeneous CPUs, we need to make sure that we
119  * detect the capabilities correctly on the system and take appropriate
120  * measures to ensure there are no incompatibilities.
121  *
122  * This comment tries to explain how we treat the capabilities.
123  * Each capability has the following list of attributes :
124  *
125  * 1) Scope of Detection : The system detects a given capability by
126  *    performing some checks at runtime. This could be, e.g, checking the
127  *    value of a field in CPU ID feature register or checking the cpu
128  *    model. The capability provides a call back ( @matches() ) to
129  *    perform the check. Scope defines how the checks should be performed.
130  *    There are three cases:
131  *
132  *     a) SCOPE_LOCAL_CPU: check all the CPUs and "detect" if at least one
133  *        matches. This implies, we have to run the check on all the
134  *        booting CPUs, until the system decides that state of the
135  *        capability is finalised. (See section 2 below)
136  *		Or
137  *     b) SCOPE_SYSTEM: check all the CPUs and "detect" if all the CPUs
138  *        matches. This implies, we run the check only once, when the
139  *        system decides to finalise the state of the capability. If the
140  *        capability relies on a field in one of the CPU ID feature
141  *        registers, we use the sanitised value of the register from the
142  *        CPU feature infrastructure to make the decision.
143  *		Or
144  *     c) SCOPE_BOOT_CPU: Check only on the primary boot CPU to detect the
145  *        feature. This category is for features that are "finalised"
146  *        (or used) by the kernel very early even before the SMP cpus
147  *        are brought up.
148  *
149  *    The process of detection is usually denoted by "update" capability
150  *    state in the code.
151  *
152  * 2) Finalise the state : The kernel should finalise the state of a
153  *    capability at some point during its execution and take necessary
154  *    actions if any. Usually, this is done, after all the boot-time
155  *    enabled CPUs are brought up by the kernel, so that it can make
156  *    better decision based on the available set of CPUs. However, there
157  *    are some special cases, where the action is taken during the early
158  *    boot by the primary boot CPU. (e.g, running the kernel at EL2 with
159  *    Virtualisation Host Extensions). The kernel usually disallows any
160  *    changes to the state of a capability once it finalises the capability
161  *    and takes any action, as it may be impossible to execute the actions
162  *    safely. A CPU brought up after a capability is "finalised" is
163  *    referred to as "Late CPU" w.r.t the capability. e.g, all secondary
164  *    CPUs are treated "late CPUs" for capabilities determined by the boot
165  *    CPU.
166  *
167  *    At the moment there are two passes of finalising the capabilities.
168  *      a) Boot CPU scope capabilities - Finalised by primary boot CPU via
169  *         setup_boot_cpu_capabilities().
170  *      b) Everything except (a) - Run via setup_system_capabilities().
171  *
172  * 3) Verification: When a CPU is brought online (e.g, by user or by the
173  *    kernel), the kernel should make sure that it is safe to use the CPU,
174  *    by verifying that the CPU is compliant with the state of the
175  *    capabilities finalised already. This happens via :
176  *
177  *	secondary_start_kernel()-> check_local_cpu_capabilities()
178  *
179  *    As explained in (2) above, capabilities could be finalised at
180  *    different points in the execution. Each newly booted CPU is verified
181  *    against the capabilities that have been finalised by the time it
182  *    boots.
183  *
184  *	a) SCOPE_BOOT_CPU : All CPUs are verified against the capability
185  *	except for the primary boot CPU.
186  *
187  *	b) SCOPE_LOCAL_CPU, SCOPE_SYSTEM: All CPUs hotplugged on by the
188  *	user after the kernel boot are verified against the capability.
189  *
190  *    If there is a conflict, the kernel takes an action, based on the
191  *    severity (e.g, a CPU could be prevented from booting or cause a
192  *    kernel panic). The CPU is allowed to "affect" the state of the
193  *    capability, if it has not been finalised already. See section 5
194  *    for more details on conflicts.
195  *
196  * 4) Action: As mentioned in (2), the kernel can take an action for each
197  *    detected capability, on all CPUs on the system. Appropriate actions
198  *    include, turning on an architectural feature, modifying the control
199  *    registers (e.g, SCTLR, TCR etc.) or patching the kernel via
200  *    alternatives. The kernel patching is batched and performed at later
201  *    point. The actions are always initiated only after the capability
202  *    is finalised. This is usally denoted by "enabling" the capability.
203  *    The actions are initiated as follows :
204  *	a) Action is triggered on all online CPUs, after the capability is
205  *	finalised, invoked within the stop_machine() context from
206  *	enable_cpu_capabilitie().
207  *
208  *	b) Any late CPU, brought up after (1), the action is triggered via:
209  *
210  *	  check_local_cpu_capabilities() -> verify_local_cpu_capabilities()
211  *
212  * 5) Conflicts: Based on the state of the capability on a late CPU vs.
213  *    the system state, we could have the following combinations :
214  *
215  *		x-----------------------------x
216  *		| Type  | System   | Late CPU |
217  *		|-----------------------------|
218  *		|  a    |   y      |    n     |
219  *		|-----------------------------|
220  *		|  b    |   n      |    y     |
221  *		x-----------------------------x
222  *
223  *     Two separate flag bits are defined to indicate whether each kind of
224  *     conflict can be allowed:
225  *		ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - Case(a) is allowed
226  *		ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - Case(b) is allowed
227  *
228  *     Case (a) is not permitted for a capability that the system requires
229  *     all CPUs to have in order for the capability to be enabled. This is
230  *     typical for capabilities that represent enhanced functionality.
231  *
232  *     Case (b) is not permitted for a capability that must be enabled
233  *     during boot if any CPU in the system requires it in order to run
234  *     safely. This is typical for erratum work arounds that cannot be
235  *     enabled after the corresponding capability is finalised.
236  *
237  *     In some non-typical cases either both (a) and (b), or neither,
238  *     should be permitted. This can be described by including neither
239  *     or both flags in the capability's type field.
240  *
241  *     In case of a conflict, the CPU is prevented from booting. If the
242  *     ARM64_CPUCAP_PANIC_ON_CONFLICT flag is specified for the capability,
243  *     then a kernel panic is triggered.
244  */
245 
246 
247 /*
248  * Decide how the capability is detected.
249  * On any local CPU vs System wide vs the primary boot CPU
250  */
251 #define ARM64_CPUCAP_SCOPE_LOCAL_CPU		((u16)BIT(0))
252 #define ARM64_CPUCAP_SCOPE_SYSTEM		((u16)BIT(1))
253 /*
254  * The capabilitiy is detected on the Boot CPU and is used by kernel
255  * during early boot. i.e, the capability should be "detected" and
256  * "enabled" as early as possibly on all booting CPUs.
257  */
258 #define ARM64_CPUCAP_SCOPE_BOOT_CPU		((u16)BIT(2))
259 #define ARM64_CPUCAP_SCOPE_MASK			\
260 	(ARM64_CPUCAP_SCOPE_SYSTEM	|	\
261 	 ARM64_CPUCAP_SCOPE_LOCAL_CPU	|	\
262 	 ARM64_CPUCAP_SCOPE_BOOT_CPU)
263 
264 #define SCOPE_SYSTEM				ARM64_CPUCAP_SCOPE_SYSTEM
265 #define SCOPE_LOCAL_CPU				ARM64_CPUCAP_SCOPE_LOCAL_CPU
266 #define SCOPE_BOOT_CPU				ARM64_CPUCAP_SCOPE_BOOT_CPU
267 #define SCOPE_ALL				ARM64_CPUCAP_SCOPE_MASK
268 
269 /*
270  * Is it permitted for a late CPU to have this capability when system
271  * hasn't already enabled it ?
272  */
273 #define ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU	((u16)BIT(4))
274 /* Is it safe for a late CPU to miss this capability when system has it */
275 #define ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU	((u16)BIT(5))
276 /* Panic when a conflict is detected */
277 #define ARM64_CPUCAP_PANIC_ON_CONFLICT		((u16)BIT(6))
278 /*
279  * When paired with SCOPE_LOCAL_CPU, all early CPUs must satisfy the
280  * condition. This is different from SCOPE_SYSTEM where the check is performed
281  * only once at the end of the SMP boot on the sanitised ID registers.
282  * SCOPE_SYSTEM is not suitable for cases where the capability depends on
283  * properties local to a CPU like MIDR_EL1.
284  */
285 #define ARM64_CPUCAP_MATCH_ALL_EARLY_CPUS	((u16)BIT(7))
286 
287 /*
288  * CPU errata workarounds that need to be enabled at boot time if one or
289  * more CPUs in the system requires it. When one of these capabilities
290  * has been enabled, it is safe to allow any CPU to boot that doesn't
291  * require the workaround. However, it is not safe if a "late" CPU
292  * requires a workaround and the system hasn't enabled it already.
293  */
294 #define ARM64_CPUCAP_LOCAL_CPU_ERRATUM		\
295 	(ARM64_CPUCAP_SCOPE_LOCAL_CPU | ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
296 /*
297  * CPU feature detected at boot time based on system-wide value of a
298  * feature. It is safe for a late CPU to have this feature even though
299  * the system hasn't enabled it, although the feature will not be used
300  * by Linux in this case. If the system has enabled this feature already,
301  * then every late CPU must have it.
302  */
303 #define ARM64_CPUCAP_SYSTEM_FEATURE	\
304 	(ARM64_CPUCAP_SCOPE_SYSTEM | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
305 /*
306  * CPU feature detected at boot time based on feature of one or more CPUs.
307  * All possible conflicts for a late CPU are ignored.
308  * NOTE: this means that a late CPU with the feature will *not* cause the
309  * capability to be advertised by cpus_have_*cap()!
310  */
311 #define ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE		\
312 	(ARM64_CPUCAP_SCOPE_LOCAL_CPU		|	\
313 	 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU	|	\
314 	 ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
315 /*
316  * CPU feature detected at boot time and present on all early CPUs. Late CPUs
317  * are permitted to have the feature even if it hasn't been enabled, although
318  * the feature will not be used by Linux in this case. If all early CPUs have
319  * the feature, then every late CPU must have it.
320  */
321 #define ARM64_CPUCAP_EARLY_LOCAL_CPU_FEATURE		\
322 	 (ARM64_CPUCAP_SCOPE_LOCAL_CPU		|	\
323 	  ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU	|	\
324 	  ARM64_CPUCAP_MATCH_ALL_EARLY_CPUS)
325 
326 /*
327  * CPU feature detected at boot time, on one or more CPUs. A late CPU
328  * is not allowed to have the capability when the system doesn't have it.
329  * It is Ok for a late CPU to miss the feature.
330  */
331 #define ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE	\
332 	(ARM64_CPUCAP_SCOPE_LOCAL_CPU		|	\
333 	 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
334 
335 /*
336  * CPU feature used early in the boot based on the boot CPU. All secondary
337  * CPUs must match the state of the capability as detected by the boot CPU. In
338  * case of a conflict, a kernel panic is triggered.
339  */
340 #define ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE		\
341 	(ARM64_CPUCAP_SCOPE_BOOT_CPU | ARM64_CPUCAP_PANIC_ON_CONFLICT)
342 
343 /*
344  * CPU feature used early in the boot based on the boot CPU. It is safe for a
345  * late CPU to have this feature even though the boot CPU hasn't enabled it,
346  * although the feature will not be used by Linux in this case. If the boot CPU
347  * has enabled this feature already, then every late CPU must have it.
348  */
349 #define ARM64_CPUCAP_BOOT_CPU_FEATURE                  \
350 	(ARM64_CPUCAP_SCOPE_BOOT_CPU | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
351 
352 struct arm64_cpu_capabilities {
353 	const char *desc;
354 	u16 capability;
355 	u16 type;
356 	bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope);
357 	/*
358 	 * Take the appropriate actions to configure this capability
359 	 * for this CPU. If the capability is detected by the kernel
360 	 * this will be called on all the CPUs in the system,
361 	 * including the hotplugged CPUs, regardless of whether the
362 	 * capability is available on that specific CPU. This is
363 	 * useful for some capabilities (e.g, working around CPU
364 	 * errata), where all the CPUs must take some action (e.g,
365 	 * changing system control/configuration). Thus, if an action
366 	 * is required only if the CPU has the capability, then the
367 	 * routine must check it before taking any action.
368 	 */
369 	void (*cpu_enable)(const struct arm64_cpu_capabilities *cap);
370 	union {
371 		struct {	/* To be used for erratum handling only */
372 			struct midr_range midr_range;
373 			const struct arm64_midr_revidr {
374 				u32 midr_rv;		/* revision/variant */
375 				u32 revidr_mask;
376 			} * const fixed_revs;
377 		};
378 
379 		const struct midr_range *midr_range_list;
380 		struct {	/* Feature register checking */
381 			u32 sys_reg;
382 			u8 field_pos;
383 			u8 field_width;
384 			u8 min_field_value;
385 			u8 max_field_value;
386 			u8 hwcap_type;
387 			bool sign;
388 			unsigned long hwcap;
389 		};
390 	};
391 
392 	/*
393 	 * An optional list of "matches/cpu_enable" pair for the same
394 	 * "capability" of the same "type" as described by the parent.
395 	 * Only matches(), cpu_enable() and fields relevant to these
396 	 * methods are significant in the list. The cpu_enable is
397 	 * invoked only if the corresponding entry "matches()".
398 	 * However, if a cpu_enable() method is associated
399 	 * with multiple matches(), care should be taken that either
400 	 * the match criteria are mutually exclusive, or that the
401 	 * method is robust against being called multiple times.
402 	 */
403 	const struct arm64_cpu_capabilities *match_list;
404 	const struct cpumask *cpus;
405 };
406 
cpucap_default_scope(const struct arm64_cpu_capabilities * cap)407 static inline int cpucap_default_scope(const struct arm64_cpu_capabilities *cap)
408 {
409 	return cap->type & ARM64_CPUCAP_SCOPE_MASK;
410 }
411 
cpucap_match_all_early_cpus(const struct arm64_cpu_capabilities * cap)412 static inline bool cpucap_match_all_early_cpus(const struct arm64_cpu_capabilities *cap)
413 {
414 	return cap->type & ARM64_CPUCAP_MATCH_ALL_EARLY_CPUS;
415 }
416 
417 /*
418  * Generic helper for handling capabilities with multiple (match,enable) pairs
419  * of call backs, sharing the same capability bit.
420  * Iterate over each entry to see if at least one matches.
421  */
422 static inline bool
cpucap_multi_entry_cap_matches(const struct arm64_cpu_capabilities * entry,int scope)423 cpucap_multi_entry_cap_matches(const struct arm64_cpu_capabilities *entry,
424 			       int scope)
425 {
426 	const struct arm64_cpu_capabilities *caps;
427 
428 	for (caps = entry->match_list; caps->matches; caps++)
429 		if (caps->matches(caps, scope))
430 			return true;
431 
432 	return false;
433 }
434 
is_vhe_hyp_code(void)435 static __always_inline bool is_vhe_hyp_code(void)
436 {
437 	/* Only defined for code run in VHE hyp context */
438 	return __is_defined(__KVM_VHE_HYPERVISOR__);
439 }
440 
is_nvhe_hyp_code(void)441 static __always_inline bool is_nvhe_hyp_code(void)
442 {
443 	/* Only defined for code run in NVHE hyp context */
444 	return __is_defined(__KVM_NVHE_HYPERVISOR__);
445 }
446 
is_hyp_code(void)447 static __always_inline bool is_hyp_code(void)
448 {
449 	return is_vhe_hyp_code() || is_nvhe_hyp_code();
450 }
451 
452 extern DECLARE_BITMAP(system_cpucaps, ARM64_NCAPS);
453 
454 extern DECLARE_BITMAP(boot_cpucaps, ARM64_NCAPS);
455 
456 #define for_each_available_cap(cap)		\
457 	for_each_set_bit(cap, system_cpucaps, ARM64_NCAPS)
458 
459 bool this_cpu_has_cap(unsigned int cap);
460 void cpu_set_feature(unsigned int num);
461 bool cpu_have_feature(unsigned int num);
462 unsigned long cpu_get_elf_hwcap(void);
463 unsigned long cpu_get_elf_hwcap2(void);
464 unsigned long cpu_get_elf_hwcap3(void);
465 
466 #define cpu_set_named_feature(name) cpu_set_feature(cpu_feature(name))
467 #define cpu_have_named_feature(name) cpu_have_feature(cpu_feature(name))
468 
boot_capabilities_finalized(void)469 static __always_inline bool boot_capabilities_finalized(void)
470 {
471 	return alternative_has_cap_likely(ARM64_ALWAYS_BOOT);
472 }
473 
system_capabilities_finalized(void)474 static __always_inline bool system_capabilities_finalized(void)
475 {
476 	return alternative_has_cap_likely(ARM64_ALWAYS_SYSTEM);
477 }
478 
479 /*
480  * Test for a capability with a runtime check.
481  *
482  * Before the capability is detected, this returns false.
483  */
cpus_have_cap(unsigned int num)484 static __always_inline bool cpus_have_cap(unsigned int num)
485 {
486 	if (__builtin_constant_p(num) && !cpucap_is_possible(num))
487 		return false;
488 	if (num >= ARM64_NCAPS)
489 		return false;
490 	return arch_test_bit(num, system_cpucaps);
491 }
492 
493 /*
494  * Test for a capability without a runtime check.
495  *
496  * Before boot capabilities are finalized, this will BUG().
497  * After boot capabilities are finalized, this is patched to avoid a runtime
498  * check.
499  *
500  * @num must be a compile-time constant.
501  */
cpus_have_final_boot_cap(int num)502 static __always_inline bool cpus_have_final_boot_cap(int num)
503 {
504 	if (boot_capabilities_finalized())
505 		return alternative_has_cap_unlikely(num);
506 	else
507 		BUG();
508 }
509 
510 /*
511  * Test for a capability without a runtime check.
512  *
513  * Before system capabilities are finalized, this will BUG().
514  * After system capabilities are finalized, this is patched to avoid a runtime
515  * check.
516  *
517  * @num must be a compile-time constant.
518  */
cpus_have_final_cap(int num)519 static __always_inline bool cpus_have_final_cap(int num)
520 {
521 	if (system_capabilities_finalized())
522 		return alternative_has_cap_unlikely(num);
523 	else
524 		BUG();
525 }
526 
527 static inline int __attribute_const__
cpuid_feature_extract_signed_field_width(u64 features,int field,int width)528 cpuid_feature_extract_signed_field_width(u64 features, int field, int width)
529 {
530 	return (s64)(features << (64 - width - field)) >> (64 - width);
531 }
532 
533 static inline int __attribute_const__
cpuid_feature_extract_signed_field(u64 features,int field)534 cpuid_feature_extract_signed_field(u64 features, int field)
535 {
536 	return cpuid_feature_extract_signed_field_width(features, field, 4);
537 }
538 
539 static __always_inline unsigned int __attribute_const__
cpuid_feature_extract_unsigned_field_width(u64 features,int field,int width)540 cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width)
541 {
542 	return (u64)(features << (64 - width - field)) >> (64 - width);
543 }
544 
545 static __always_inline unsigned int __attribute_const__
cpuid_feature_extract_unsigned_field(u64 features,int field)546 cpuid_feature_extract_unsigned_field(u64 features, int field)
547 {
548 	return cpuid_feature_extract_unsigned_field_width(features, field, 4);
549 }
550 
arm64_ftr_mask(const struct arm64_ftr_bits * ftrp)551 static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp)
552 {
553 	return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift);
554 }
555 
arm64_ftr_reg_user_value(const struct arm64_ftr_reg * reg)556 static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg)
557 {
558 	return (reg->user_val | (reg->sys_val & reg->user_mask));
559 }
560 
561 static inline int __attribute_const__
cpuid_feature_extract_field_width(u64 features,int field,int width,bool sign)562 cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign)
563 {
564 	if (WARN_ON_ONCE(!width))
565 		width = 4;
566 	return (sign) ?
567 		cpuid_feature_extract_signed_field_width(features, field, width) :
568 		cpuid_feature_extract_unsigned_field_width(features, field, width);
569 }
570 
571 static inline int __attribute_const__
cpuid_feature_extract_field(u64 features,int field,bool sign)572 cpuid_feature_extract_field(u64 features, int field, bool sign)
573 {
574 	return cpuid_feature_extract_field_width(features, field, 4, sign);
575 }
576 
arm64_ftr_value(const struct arm64_ftr_bits * ftrp,u64 val)577 static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val)
578 {
579 	return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign);
580 }
581 
id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)582 static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)
583 {
584 	return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_EL1_BIGEND_SHIFT) == 0x1 ||
585 		cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT) == 0x1;
586 }
587 
id_aa64pfr0_32bit_el1(u64 pfr0)588 static inline bool id_aa64pfr0_32bit_el1(u64 pfr0)
589 {
590 	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_EL1_SHIFT);
591 
592 	return val == ID_AA64PFR0_EL1_EL1_AARCH32;
593 }
594 
id_aa64pfr0_32bit_el0(u64 pfr0)595 static inline bool id_aa64pfr0_32bit_el0(u64 pfr0)
596 {
597 	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_EL0_SHIFT);
598 
599 	return val == ID_AA64PFR0_EL1_EL0_AARCH32;
600 }
601 
id_aa64pfr0_sve(u64 pfr0)602 static inline bool id_aa64pfr0_sve(u64 pfr0)
603 {
604 	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_SVE_SHIFT);
605 
606 	return val > 0;
607 }
608 
id_aa64pfr1_sme(u64 pfr1)609 static inline bool id_aa64pfr1_sme(u64 pfr1)
610 {
611 	u32 val = cpuid_feature_extract_unsigned_field(pfr1, ID_AA64PFR1_EL1_SME_SHIFT);
612 
613 	return val > 0;
614 }
615 
id_aa64pfr0_mpam(u64 pfr0)616 static inline bool id_aa64pfr0_mpam(u64 pfr0)
617 {
618 	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_MPAM_SHIFT);
619 
620 	return val > 0;
621 }
622 
id_aa64pfr1_mte(u64 pfr1)623 static inline bool id_aa64pfr1_mte(u64 pfr1)
624 {
625 	u32 val = cpuid_feature_extract_unsigned_field(pfr1, ID_AA64PFR1_EL1_MTE_SHIFT);
626 
627 	return val >= ID_AA64PFR1_EL1_MTE_MTE2;
628 }
629 
630 void __init setup_boot_cpu_features(void);
631 void __init setup_system_features(void);
632 void __init setup_user_features(void);
633 
634 void check_local_cpu_capabilities(void);
635 
636 u64 read_sanitised_ftr_reg(u32 id);
637 u64 __read_sysreg_by_encoding(u32 sys_id);
638 
cpu_supports_mixed_endian_el0(void)639 static inline bool cpu_supports_mixed_endian_el0(void)
640 {
641 	return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1));
642 }
643 
644 
supports_csv2p3(int scope)645 static inline bool supports_csv2p3(int scope)
646 {
647 	u64 pfr0;
648 	u8 csv2_val;
649 
650 	if (scope == SCOPE_LOCAL_CPU)
651 		pfr0 = read_sysreg_s(SYS_ID_AA64PFR0_EL1);
652 	else
653 		pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
654 
655 	csv2_val = cpuid_feature_extract_unsigned_field(pfr0,
656 							ID_AA64PFR0_EL1_CSV2_SHIFT);
657 	return csv2_val == 3;
658 }
659 
supports_clearbhb(int scope)660 static inline bool supports_clearbhb(int scope)
661 {
662 	u64 isar2;
663 
664 	if (scope == SCOPE_LOCAL_CPU)
665 		isar2 = read_sysreg_s(SYS_ID_AA64ISAR2_EL1);
666 	else
667 		isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
668 
669 	return cpuid_feature_extract_unsigned_field(isar2,
670 						    ID_AA64ISAR2_EL1_CLRBHB_SHIFT);
671 }
672 
673 const struct cpumask *system_32bit_el0_cpumask(void);
674 const struct cpumask *fallback_32bit_el0_cpumask(void);
675 DECLARE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
676 
system_supports_32bit_el0(void)677 static inline bool system_supports_32bit_el0(void)
678 {
679 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
680 
681 	return static_branch_unlikely(&arm64_mismatched_32bit_el0) ||
682 	       id_aa64pfr0_32bit_el0(pfr0);
683 }
684 
system_supports_4kb_granule(void)685 static inline bool system_supports_4kb_granule(void)
686 {
687 	u64 mmfr0;
688 	u32 val;
689 
690 	mmfr0 =	read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
691 	val = cpuid_feature_extract_unsigned_field(mmfr0,
692 						ID_AA64MMFR0_EL1_TGRAN4_SHIFT);
693 
694 	return (val >= ID_AA64MMFR0_EL1_TGRAN4_SUPPORTED_MIN) &&
695 	       (val <= ID_AA64MMFR0_EL1_TGRAN4_SUPPORTED_MAX);
696 }
697 
system_supports_64kb_granule(void)698 static inline bool system_supports_64kb_granule(void)
699 {
700 	u64 mmfr0;
701 	u32 val;
702 
703 	mmfr0 =	read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
704 	val = cpuid_feature_extract_unsigned_field(mmfr0,
705 						ID_AA64MMFR0_EL1_TGRAN64_SHIFT);
706 
707 	return (val >= ID_AA64MMFR0_EL1_TGRAN64_SUPPORTED_MIN) &&
708 	       (val <= ID_AA64MMFR0_EL1_TGRAN64_SUPPORTED_MAX);
709 }
710 
system_supports_16kb_granule(void)711 static inline bool system_supports_16kb_granule(void)
712 {
713 	u64 mmfr0;
714 	u32 val;
715 
716 	mmfr0 =	read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
717 	val = cpuid_feature_extract_unsigned_field(mmfr0,
718 						ID_AA64MMFR0_EL1_TGRAN16_SHIFT);
719 
720 	return (val >= ID_AA64MMFR0_EL1_TGRAN16_SUPPORTED_MIN) &&
721 	       (val <= ID_AA64MMFR0_EL1_TGRAN16_SUPPORTED_MAX);
722 }
723 
system_supports_mixed_endian_el0(void)724 static inline bool system_supports_mixed_endian_el0(void)
725 {
726 	return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1));
727 }
728 
system_supports_mixed_endian(void)729 static inline bool system_supports_mixed_endian(void)
730 {
731 	u64 mmfr0;
732 	u32 val;
733 
734 	mmfr0 =	read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
735 	val = cpuid_feature_extract_unsigned_field(mmfr0,
736 						ID_AA64MMFR0_EL1_BIGEND_SHIFT);
737 
738 	return val == 0x1;
739 }
740 
system_supports_fpsimd(void)741 static __always_inline bool system_supports_fpsimd(void)
742 {
743 	return alternative_has_cap_likely(ARM64_HAS_FPSIMD);
744 }
745 
system_uses_hw_pan(void)746 static inline bool system_uses_hw_pan(void)
747 {
748 	return alternative_has_cap_unlikely(ARM64_HAS_PAN);
749 }
750 
system_uses_ttbr0_pan(void)751 static inline bool system_uses_ttbr0_pan(void)
752 {
753 	return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) &&
754 		!system_uses_hw_pan();
755 }
756 
system_supports_sve(void)757 static __always_inline bool system_supports_sve(void)
758 {
759 	return alternative_has_cap_unlikely(ARM64_SVE);
760 }
761 
system_supports_sme(void)762 static __always_inline bool system_supports_sme(void)
763 {
764 	return alternative_has_cap_unlikely(ARM64_SME);
765 }
766 
system_supports_sme2(void)767 static __always_inline bool system_supports_sme2(void)
768 {
769 	return alternative_has_cap_unlikely(ARM64_SME2);
770 }
771 
system_supports_fa64(void)772 static __always_inline bool system_supports_fa64(void)
773 {
774 	return alternative_has_cap_unlikely(ARM64_SME_FA64);
775 }
776 
system_supports_tpidr2(void)777 static __always_inline bool system_supports_tpidr2(void)
778 {
779 	return system_supports_sme();
780 }
781 
system_supports_fpmr(void)782 static __always_inline bool system_supports_fpmr(void)
783 {
784 	return alternative_has_cap_unlikely(ARM64_HAS_FPMR);
785 }
786 
system_supports_cnp(void)787 static __always_inline bool system_supports_cnp(void)
788 {
789 	return alternative_has_cap_unlikely(ARM64_HAS_CNP);
790 }
791 
system_supports_address_auth(void)792 static inline bool system_supports_address_auth(void)
793 {
794 	return cpus_have_final_boot_cap(ARM64_HAS_ADDRESS_AUTH);
795 }
796 
system_supports_generic_auth(void)797 static inline bool system_supports_generic_auth(void)
798 {
799 	return alternative_has_cap_unlikely(ARM64_HAS_GENERIC_AUTH);
800 }
801 
system_has_full_ptr_auth(void)802 static inline bool system_has_full_ptr_auth(void)
803 {
804 	return system_supports_address_auth() && system_supports_generic_auth();
805 }
806 
system_uses_irq_prio_masking(void)807 static __always_inline bool system_uses_irq_prio_masking(void)
808 {
809 	return alternative_has_cap_unlikely(ARM64_HAS_GIC_PRIO_MASKING);
810 }
811 
system_supports_mte(void)812 static inline bool system_supports_mte(void)
813 {
814 	return alternative_has_cap_unlikely(ARM64_MTE);
815 }
816 
system_has_prio_mask_debugging(void)817 static inline bool system_has_prio_mask_debugging(void)
818 {
819 	return IS_ENABLED(CONFIG_ARM64_DEBUG_PRIORITY_MASKING) &&
820 	       system_uses_irq_prio_masking();
821 }
822 
system_supports_bti(void)823 static inline bool system_supports_bti(void)
824 {
825 	return cpus_have_final_cap(ARM64_BTI);
826 }
827 
system_supports_bti_kernel(void)828 static inline bool system_supports_bti_kernel(void)
829 {
830 	return IS_ENABLED(CONFIG_ARM64_BTI_KERNEL) &&
831 		cpus_have_final_boot_cap(ARM64_BTI);
832 }
833 
system_supports_tlb_range(void)834 static inline bool system_supports_tlb_range(void)
835 {
836 	return alternative_has_cap_unlikely(ARM64_HAS_TLB_RANGE);
837 }
838 
system_supports_lpa2(void)839 static inline bool system_supports_lpa2(void)
840 {
841 	return cpus_have_final_cap(ARM64_HAS_LPA2);
842 }
843 
system_supports_poe(void)844 static inline bool system_supports_poe(void)
845 {
846 	return alternative_has_cap_unlikely(ARM64_HAS_S1POE);
847 }
848 
system_supports_gcs(void)849 static inline bool system_supports_gcs(void)
850 {
851 	return alternative_has_cap_unlikely(ARM64_HAS_GCS);
852 }
853 
system_supports_haft(void)854 static inline bool system_supports_haft(void)
855 {
856 	return cpus_have_final_cap(ARM64_HAFT);
857 }
858 
system_supports_mpam(void)859 static __always_inline bool system_supports_mpam(void)
860 {
861 	return alternative_has_cap_unlikely(ARM64_MPAM);
862 }
863 
system_supports_mpam_hcr(void)864 static __always_inline bool system_supports_mpam_hcr(void)
865 {
866 	return alternative_has_cap_unlikely(ARM64_MPAM_HCR);
867 }
868 
system_supports_pmuv3(void)869 static inline bool system_supports_pmuv3(void)
870 {
871 	return cpus_have_final_cap(ARM64_HAS_PMUV3);
872 }
873 
system_supports_bbml2_noabort(void)874 static inline bool system_supports_bbml2_noabort(void)
875 {
876 	return alternative_has_cap_unlikely(ARM64_HAS_BBML2_NOABORT);
877 }
878 
879 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt);
880 bool try_emulate_mrs(struct pt_regs *regs, u32 isn);
881 
id_aa64mmfr0_parange_to_phys_shift(int parange)882 static inline u32 id_aa64mmfr0_parange_to_phys_shift(int parange)
883 {
884 	switch (parange) {
885 	case ID_AA64MMFR0_EL1_PARANGE_32: return 32;
886 	case ID_AA64MMFR0_EL1_PARANGE_36: return 36;
887 	case ID_AA64MMFR0_EL1_PARANGE_40: return 40;
888 	case ID_AA64MMFR0_EL1_PARANGE_42: return 42;
889 	case ID_AA64MMFR0_EL1_PARANGE_44: return 44;
890 	case ID_AA64MMFR0_EL1_PARANGE_48: return 48;
891 	case ID_AA64MMFR0_EL1_PARANGE_52: return 52;
892 	/*
893 	 * A future PE could use a value unknown to the kernel.
894 	 * However, by the "D10.1.4 Principles of the ID scheme
895 	 * for fields in ID registers", ARM DDI 0487C.a, any new
896 	 * value is guaranteed to be higher than what we know already.
897 	 * As a safe limit, we return the limit supported by the kernel.
898 	 */
899 	default: return CONFIG_ARM64_PA_BITS;
900 	}
901 }
902 
903 /* Check whether hardware update of the Access flag is supported */
cpu_has_hw_af(void)904 static inline bool cpu_has_hw_af(void)
905 {
906 	u64 mmfr1;
907 
908 	if (!IS_ENABLED(CONFIG_ARM64_HW_AFDBM))
909 		return false;
910 
911 	/*
912 	 * Use cached version to avoid emulated msr operation on KVM
913 	 * guests.
914 	 */
915 	mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
916 	return cpuid_feature_extract_unsigned_field(mmfr1,
917 						ID_AA64MMFR1_EL1_HAFDBS_SHIFT);
918 }
919 
cpu_has_pan(void)920 static inline bool cpu_has_pan(void)
921 {
922 	u64 mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
923 	return cpuid_feature_extract_unsigned_field(mmfr1,
924 						    ID_AA64MMFR1_EL1_PAN_SHIFT);
925 }
926 
927 #ifdef CONFIG_ARM64_AMU_EXTN
928 /* Check whether the cpu supports the Activity Monitors Unit (AMU) */
929 extern bool cpu_has_amu_feat(int cpu);
930 #else
cpu_has_amu_feat(int cpu)931 static inline bool cpu_has_amu_feat(int cpu)
932 {
933 	return false;
934 }
935 #endif
936 
937 /* Get a cpu that supports the Activity Monitors Unit (AMU) */
938 extern int get_cpu_with_amu_feat(void);
939 
get_vmid_bits(u64 mmfr1)940 static inline unsigned int get_vmid_bits(u64 mmfr1)
941 {
942 	int vmid_bits;
943 
944 	vmid_bits = cpuid_feature_extract_unsigned_field(mmfr1,
945 						ID_AA64MMFR1_EL1_VMIDBits_SHIFT);
946 	if (vmid_bits == ID_AA64MMFR1_EL1_VMIDBits_16)
947 		return 16;
948 
949 	/*
950 	 * Return the default here even if any reserved
951 	 * value is fetched from the system register.
952 	 */
953 	return 8;
954 }
955 
956 s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new, s64 cur);
957 struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id);
958 
959 extern struct arm64_ftr_override id_aa64mmfr0_override;
960 extern struct arm64_ftr_override id_aa64mmfr1_override;
961 extern struct arm64_ftr_override id_aa64mmfr2_override;
962 extern struct arm64_ftr_override id_aa64pfr0_override;
963 extern struct arm64_ftr_override id_aa64pfr1_override;
964 extern struct arm64_ftr_override id_aa64zfr0_override;
965 extern struct arm64_ftr_override id_aa64smfr0_override;
966 extern struct arm64_ftr_override id_aa64isar1_override;
967 extern struct arm64_ftr_override id_aa64isar2_override;
968 
969 extern struct arm64_ftr_override arm64_sw_feature_override;
970 
971 static inline
arm64_apply_feature_override(u64 val,int feat,int width,const struct arm64_ftr_override * override)972 u64 arm64_apply_feature_override(u64 val, int feat, int width,
973 				 const struct arm64_ftr_override *override)
974 {
975 	u64 oval = override->val;
976 
977 	/*
978 	 * When it encounters an invalid override (e.g., an override that
979 	 * cannot be honoured due to a missing CPU feature), the early idreg
980 	 * override code will set the mask to 0x0 and the value to non-zero for
981 	 * the field in question. In order to determine whether the override is
982 	 * valid or not for the field we are interested in, we first need to
983 	 * disregard bits belonging to other fields.
984 	 */
985 	oval &= GENMASK_ULL(feat + width - 1, feat);
986 
987 	/*
988 	 * The override is valid if all value bits are accounted for in the
989 	 * mask. If so, replace the masked bits with the override value.
990 	 */
991 	if (oval == (oval & override->mask)) {
992 		val &= ~override->mask;
993 		val |= oval;
994 	}
995 
996 	/* Extract the field from the updated value */
997 	return cpuid_feature_extract_unsigned_field(val, feat);
998 }
999 
arm64_test_sw_feature_override(int feat)1000 static inline bool arm64_test_sw_feature_override(int feat)
1001 {
1002 	/*
1003 	 * Software features are pseudo CPU features that have no underlying
1004 	 * CPUID system register value to apply the override to.
1005 	 */
1006 	return arm64_apply_feature_override(0, feat, 4,
1007 					    &arm64_sw_feature_override);
1008 }
1009 
kaslr_disabled_cmdline(void)1010 static inline bool kaslr_disabled_cmdline(void)
1011 {
1012 	return arm64_test_sw_feature_override(ARM64_SW_FEATURE_OVERRIDE_NOKASLR);
1013 }
1014 
1015 u32 get_kvm_ipa_limit(void);
1016 void dump_cpu_features(void);
1017 
cpu_has_bti(void)1018 static inline bool cpu_has_bti(void)
1019 {
1020 	if (!IS_ENABLED(CONFIG_ARM64_BTI))
1021 		return false;
1022 
1023 	return arm64_apply_feature_override(read_cpuid(ID_AA64PFR1_EL1),
1024 					    ID_AA64PFR1_EL1_BT_SHIFT, 4,
1025 					    &id_aa64pfr1_override);
1026 }
1027 
cpu_has_pac(void)1028 static inline bool cpu_has_pac(void)
1029 {
1030 	u64 isar1, isar2;
1031 
1032 	if (!IS_ENABLED(CONFIG_ARM64_PTR_AUTH))
1033 		return false;
1034 
1035 	isar1 = read_cpuid(ID_AA64ISAR1_EL1);
1036 	isar2 = read_cpuid(ID_AA64ISAR2_EL1);
1037 
1038 	if (arm64_apply_feature_override(isar1, ID_AA64ISAR1_EL1_APA_SHIFT, 4,
1039 					 &id_aa64isar1_override))
1040 		return true;
1041 
1042 	if (arm64_apply_feature_override(isar1, ID_AA64ISAR1_EL1_API_SHIFT, 4,
1043 					 &id_aa64isar1_override))
1044 		return true;
1045 
1046 	return arm64_apply_feature_override(isar2, ID_AA64ISAR2_EL1_APA3_SHIFT, 4,
1047 					    &id_aa64isar2_override);
1048 }
1049 
cpu_has_lva(void)1050 static inline bool cpu_has_lva(void)
1051 {
1052 	u64 mmfr2;
1053 
1054 	mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
1055 	mmfr2 &= ~id_aa64mmfr2_override.mask;
1056 	mmfr2 |= id_aa64mmfr2_override.val;
1057 	return cpuid_feature_extract_unsigned_field(mmfr2,
1058 						    ID_AA64MMFR2_EL1_VARange_SHIFT);
1059 }
1060 
cpu_has_lpa2(void)1061 static inline bool cpu_has_lpa2(void)
1062 {
1063 #ifdef CONFIG_ARM64_LPA2
1064 	u64 mmfr0;
1065 	int feat;
1066 
1067 	mmfr0 = read_sysreg(id_aa64mmfr0_el1);
1068 	mmfr0 &= ~id_aa64mmfr0_override.mask;
1069 	mmfr0 |= id_aa64mmfr0_override.val;
1070 	feat = cpuid_feature_extract_signed_field(mmfr0,
1071 						  ID_AA64MMFR0_EL1_TGRAN_SHIFT);
1072 
1073 	return feat >= ID_AA64MMFR0_EL1_TGRAN_LPA2;
1074 #else
1075 	return false;
1076 #endif
1077 }
1078 
1079 #endif /* __ASSEMBLY__ */
1080 
1081 #endif
1082