xref: /linux/drivers/net/can/m_can/m_can.c (revision 634ec1fc7982efeeeeed4a7688b0004827b43a21)
1 // SPDX-License-Identifier: GPL-2.0
2 // CAN bus driver for Bosch M_CAN controller
3 // Copyright (C) 2014 Freescale Semiconductor, Inc.
4 //      Dong Aisheng <aisheng.dong@nxp.com>
5 // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/
6 
7 /* Bosch M_CAN user manual can be obtained from:
8  * https://github.com/linux-can/can-doc/tree/master/m_can
9  */
10 
11 #include <linux/bitfield.h>
12 #include <linux/can/dev.h>
13 #include <linux/ethtool.h>
14 #include <linux/hrtimer.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/iopoll.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/netdevice.h>
21 #include <linux/of.h>
22 #include <linux/phy/phy.h>
23 #include <linux/pinctrl/consumer.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 
27 #include "m_can.h"
28 
29 /* registers definition */
30 enum m_can_reg {
31 	M_CAN_CREL	= 0x0,
32 	M_CAN_ENDN	= 0x4,
33 	M_CAN_CUST	= 0x8,
34 	M_CAN_DBTP	= 0xc,
35 	M_CAN_TEST	= 0x10,
36 	M_CAN_RWD	= 0x14,
37 	M_CAN_CCCR	= 0x18,
38 	M_CAN_NBTP	= 0x1c,
39 	M_CAN_TSCC	= 0x20,
40 	M_CAN_TSCV	= 0x24,
41 	M_CAN_TOCC	= 0x28,
42 	M_CAN_TOCV	= 0x2c,
43 	M_CAN_ECR	= 0x40,
44 	M_CAN_PSR	= 0x44,
45 	/* TDCR Register only available for version >=3.1.x */
46 	M_CAN_TDCR	= 0x48,
47 	M_CAN_IR	= 0x50,
48 	M_CAN_IE	= 0x54,
49 	M_CAN_ILS	= 0x58,
50 	M_CAN_ILE	= 0x5c,
51 	M_CAN_GFC	= 0x80,
52 	M_CAN_SIDFC	= 0x84,
53 	M_CAN_XIDFC	= 0x88,
54 	M_CAN_XIDAM	= 0x90,
55 	M_CAN_HPMS	= 0x94,
56 	M_CAN_NDAT1	= 0x98,
57 	M_CAN_NDAT2	= 0x9c,
58 	M_CAN_RXF0C	= 0xa0,
59 	M_CAN_RXF0S	= 0xa4,
60 	M_CAN_RXF0A	= 0xa8,
61 	M_CAN_RXBC	= 0xac,
62 	M_CAN_RXF1C	= 0xb0,
63 	M_CAN_RXF1S	= 0xb4,
64 	M_CAN_RXF1A	= 0xb8,
65 	M_CAN_RXESC	= 0xbc,
66 	M_CAN_TXBC	= 0xc0,
67 	M_CAN_TXFQS	= 0xc4,
68 	M_CAN_TXESC	= 0xc8,
69 	M_CAN_TXBRP	= 0xcc,
70 	M_CAN_TXBAR	= 0xd0,
71 	M_CAN_TXBCR	= 0xd4,
72 	M_CAN_TXBTO	= 0xd8,
73 	M_CAN_TXBCF	= 0xdc,
74 	M_CAN_TXBTIE	= 0xe0,
75 	M_CAN_TXBCIE	= 0xe4,
76 	M_CAN_TXEFC	= 0xf0,
77 	M_CAN_TXEFS	= 0xf4,
78 	M_CAN_TXEFA	= 0xf8,
79 };
80 
81 /* message ram configuration data length */
82 #define MRAM_CFG_LEN	8
83 
84 /* Core Release Register (CREL) */
85 #define CREL_REL_MASK		GENMASK(31, 28)
86 #define CREL_STEP_MASK		GENMASK(27, 24)
87 #define CREL_SUBSTEP_MASK	GENMASK(23, 20)
88 
89 /* Data Bit Timing & Prescaler Register (DBTP) */
90 #define DBTP_TDC		BIT(23)
91 #define DBTP_DBRP_MASK		GENMASK(20, 16)
92 #define DBTP_DTSEG1_MASK	GENMASK(12, 8)
93 #define DBTP_DTSEG2_MASK	GENMASK(7, 4)
94 #define DBTP_DSJW_MASK		GENMASK(3, 0)
95 
96 /* Transmitter Delay Compensation Register (TDCR) */
97 #define TDCR_TDCO_MASK		GENMASK(14, 8)
98 #define TDCR_TDCF_MASK		GENMASK(6, 0)
99 
100 /* Test Register (TEST) */
101 #define TEST_LBCK		BIT(4)
102 
103 /* CC Control Register (CCCR) */
104 #define CCCR_TXP		BIT(14)
105 #define CCCR_TEST		BIT(7)
106 #define CCCR_DAR		BIT(6)
107 #define CCCR_MON		BIT(5)
108 #define CCCR_CSR		BIT(4)
109 #define CCCR_CSA		BIT(3)
110 #define CCCR_ASM		BIT(2)
111 #define CCCR_CCE		BIT(1)
112 #define CCCR_INIT		BIT(0)
113 /* for version 3.0.x */
114 #define CCCR_CMR_MASK		GENMASK(11, 10)
115 #define CCCR_CMR_CANFD		0x1
116 #define CCCR_CMR_CANFD_BRS	0x2
117 #define CCCR_CMR_CAN		0x3
118 #define CCCR_CME_MASK		GENMASK(9, 8)
119 #define CCCR_CME_CAN		0
120 #define CCCR_CME_CANFD		0x1
121 #define CCCR_CME_CANFD_BRS	0x2
122 /* for version >=3.1.x */
123 #define CCCR_EFBI		BIT(13)
124 #define CCCR_PXHD		BIT(12)
125 #define CCCR_BRSE		BIT(9)
126 #define CCCR_FDOE		BIT(8)
127 /* for version >=3.2.x */
128 #define CCCR_NISO		BIT(15)
129 /* for version >=3.3.x */
130 #define CCCR_WMM		BIT(11)
131 #define CCCR_UTSU		BIT(10)
132 
133 /* Nominal Bit Timing & Prescaler Register (NBTP) */
134 #define NBTP_NSJW_MASK		GENMASK(31, 25)
135 #define NBTP_NBRP_MASK		GENMASK(24, 16)
136 #define NBTP_NTSEG1_MASK	GENMASK(15, 8)
137 #define NBTP_NTSEG2_MASK	GENMASK(6, 0)
138 
139 /* Timestamp Counter Configuration Register (TSCC) */
140 #define TSCC_TCP_MASK		GENMASK(19, 16)
141 #define TSCC_TSS_MASK		GENMASK(1, 0)
142 #define TSCC_TSS_DISABLE	0x0
143 #define TSCC_TSS_INTERNAL	0x1
144 #define TSCC_TSS_EXTERNAL	0x2
145 
146 /* Timestamp Counter Value Register (TSCV) */
147 #define TSCV_TSC_MASK		GENMASK(15, 0)
148 
149 /* Error Counter Register (ECR) */
150 #define ECR_RP			BIT(15)
151 #define ECR_REC_MASK		GENMASK(14, 8)
152 #define ECR_TEC_MASK		GENMASK(7, 0)
153 
154 /* Protocol Status Register (PSR) */
155 #define PSR_BO		BIT(7)
156 #define PSR_EW		BIT(6)
157 #define PSR_EP		BIT(5)
158 #define PSR_LEC_MASK	GENMASK(2, 0)
159 #define PSR_DLEC_MASK	GENMASK(10, 8)
160 
161 /* Interrupt Register (IR) */
162 #define IR_ALL_INT	0xffffffff
163 
164 /* Renamed bits for versions > 3.1.x */
165 #define IR_ARA		BIT(29)
166 #define IR_PED		BIT(28)
167 #define IR_PEA		BIT(27)
168 
169 /* Bits for version 3.0.x */
170 #define IR_STE		BIT(31)
171 #define IR_FOE		BIT(30)
172 #define IR_ACKE		BIT(29)
173 #define IR_BE		BIT(28)
174 #define IR_CRCE		BIT(27)
175 #define IR_WDI		BIT(26)
176 #define IR_BO		BIT(25)
177 #define IR_EW		BIT(24)
178 #define IR_EP		BIT(23)
179 #define IR_ELO		BIT(22)
180 #define IR_BEU		BIT(21)
181 #define IR_BEC		BIT(20)
182 #define IR_DRX		BIT(19)
183 #define IR_TOO		BIT(18)
184 #define IR_MRAF		BIT(17)
185 #define IR_TSW		BIT(16)
186 #define IR_TEFL		BIT(15)
187 #define IR_TEFF		BIT(14)
188 #define IR_TEFW		BIT(13)
189 #define IR_TEFN		BIT(12)
190 #define IR_TFE		BIT(11)
191 #define IR_TCF		BIT(10)
192 #define IR_TC		BIT(9)
193 #define IR_HPM		BIT(8)
194 #define IR_RF1L		BIT(7)
195 #define IR_RF1F		BIT(6)
196 #define IR_RF1W		BIT(5)
197 #define IR_RF1N		BIT(4)
198 #define IR_RF0L		BIT(3)
199 #define IR_RF0F		BIT(2)
200 #define IR_RF0W		BIT(1)
201 #define IR_RF0N		BIT(0)
202 #define IR_ERR_STATE	(IR_BO | IR_EW | IR_EP)
203 
204 /* Interrupts for version 3.0.x */
205 #define IR_ERR_LEC_30X	(IR_STE	| IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
206 #define IR_ERR_BUS_30X	(IR_ERR_LEC_30X | IR_WDI | IR_BEU | IR_BEC | \
207 			 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
208 			 IR_RF0L)
209 #define IR_ERR_ALL_30X	(IR_ERR_STATE | IR_ERR_BUS_30X)
210 
211 /* Interrupts for version >= 3.1.x */
212 #define IR_ERR_LEC_31X	(IR_PED | IR_PEA)
213 #define IR_ERR_BUS_31X	(IR_ERR_LEC_31X | IR_WDI | IR_BEU | IR_BEC | \
214 			 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
215 			 IR_RF0L)
216 #define IR_ERR_ALL_31X	(IR_ERR_STATE | IR_ERR_BUS_31X)
217 
218 /* Interrupt Line Select (ILS) */
219 #define ILS_ALL_INT0	0x0
220 #define ILS_ALL_INT1	0xFFFFFFFF
221 
222 /* Interrupt Line Enable (ILE) */
223 #define ILE_EINT1	BIT(1)
224 #define ILE_EINT0	BIT(0)
225 
226 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
227 #define RXFC_FWM_MASK	GENMASK(30, 24)
228 #define RXFC_FS_MASK	GENMASK(22, 16)
229 
230 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
231 #define RXFS_RFL	BIT(25)
232 #define RXFS_FF		BIT(24)
233 #define RXFS_FPI_MASK	GENMASK(21, 16)
234 #define RXFS_FGI_MASK	GENMASK(13, 8)
235 #define RXFS_FFL_MASK	GENMASK(6, 0)
236 
237 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */
238 #define RXESC_RBDS_MASK		GENMASK(10, 8)
239 #define RXESC_F1DS_MASK		GENMASK(6, 4)
240 #define RXESC_F0DS_MASK		GENMASK(2, 0)
241 #define RXESC_64B		0x7
242 
243 /* Tx Buffer Configuration (TXBC) */
244 #define TXBC_TFQS_MASK		GENMASK(29, 24)
245 #define TXBC_NDTB_MASK		GENMASK(21, 16)
246 
247 /* Tx FIFO/Queue Status (TXFQS) */
248 #define TXFQS_TFQF		BIT(21)
249 #define TXFQS_TFQPI_MASK	GENMASK(20, 16)
250 #define TXFQS_TFGI_MASK		GENMASK(12, 8)
251 #define TXFQS_TFFL_MASK		GENMASK(5, 0)
252 
253 /* Tx Buffer Element Size Configuration (TXESC) */
254 #define TXESC_TBDS_MASK		GENMASK(2, 0)
255 #define TXESC_TBDS_64B		0x7
256 
257 /* Tx Event FIFO Configuration (TXEFC) */
258 #define TXEFC_EFWM_MASK		GENMASK(29, 24)
259 #define TXEFC_EFS_MASK		GENMASK(21, 16)
260 
261 /* Tx Event FIFO Status (TXEFS) */
262 #define TXEFS_TEFL		BIT(25)
263 #define TXEFS_EFF		BIT(24)
264 #define TXEFS_EFGI_MASK		GENMASK(12, 8)
265 #define TXEFS_EFFL_MASK		GENMASK(5, 0)
266 
267 /* Tx Event FIFO Acknowledge (TXEFA) */
268 #define TXEFA_EFAI_MASK		GENMASK(4, 0)
269 
270 /* Message RAM Configuration (in bytes) */
271 #define SIDF_ELEMENT_SIZE	4
272 #define XIDF_ELEMENT_SIZE	8
273 #define RXF0_ELEMENT_SIZE	72
274 #define RXF1_ELEMENT_SIZE	72
275 #define RXB_ELEMENT_SIZE	72
276 #define TXE_ELEMENT_SIZE	8
277 #define TXB_ELEMENT_SIZE	72
278 
279 /* Message RAM Elements */
280 #define M_CAN_FIFO_ID		0x0
281 #define M_CAN_FIFO_DLC		0x4
282 #define M_CAN_FIFO_DATA		0x8
283 
284 /* Rx Buffer Element */
285 /* R0 */
286 #define RX_BUF_ESI		BIT(31)
287 #define RX_BUF_XTD		BIT(30)
288 #define RX_BUF_RTR		BIT(29)
289 /* R1 */
290 #define RX_BUF_ANMF		BIT(31)
291 #define RX_BUF_FDF		BIT(21)
292 #define RX_BUF_BRS		BIT(20)
293 #define RX_BUF_RXTS_MASK	GENMASK(15, 0)
294 
295 /* Tx Buffer Element */
296 /* T0 */
297 #define TX_BUF_ESI		BIT(31)
298 #define TX_BUF_XTD		BIT(30)
299 #define TX_BUF_RTR		BIT(29)
300 /* T1 */
301 #define TX_BUF_EFC		BIT(23)
302 #define TX_BUF_FDF		BIT(21)
303 #define TX_BUF_BRS		BIT(20)
304 #define TX_BUF_MM_MASK		GENMASK(31, 24)
305 #define TX_BUF_DLC_MASK		GENMASK(19, 16)
306 
307 /* Tx event FIFO Element */
308 /* E1 */
309 #define TX_EVENT_MM_MASK	GENMASK(31, 24)
310 #define TX_EVENT_TXTS_MASK	GENMASK(15, 0)
311 
312 /* Hrtimer polling interval */
313 #define HRTIMER_POLL_INTERVAL_MS		1
314 
315 /* The ID and DLC registers are adjacent in M_CAN FIFO memory,
316  * and we can save a (potentially slow) bus round trip by combining
317  * reads and writes to them.
318  */
319 struct id_and_dlc {
320 	u32 id;
321 	u32 dlc;
322 };
323 
324 struct m_can_fifo_element {
325 	u32 id;
326 	u32 dlc;
327 	u8 data[CANFD_MAX_DLEN];
328 };
329 
m_can_read(struct m_can_classdev * cdev,enum m_can_reg reg)330 static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg)
331 {
332 	return cdev->ops->read_reg(cdev, reg);
333 }
334 
m_can_write(struct m_can_classdev * cdev,enum m_can_reg reg,u32 val)335 static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg,
336 			       u32 val)
337 {
338 	cdev->ops->write_reg(cdev, reg, val);
339 }
340 
341 static int
m_can_fifo_read(struct m_can_classdev * cdev,u32 fgi,unsigned int offset,void * val,size_t val_count)342 m_can_fifo_read(struct m_can_classdev *cdev,
343 		u32 fgi, unsigned int offset, void *val, size_t val_count)
344 {
345 	u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE +
346 		offset;
347 
348 	if (val_count == 0)
349 		return 0;
350 
351 	return cdev->ops->read_fifo(cdev, addr_offset, val, val_count);
352 }
353 
354 static int
m_can_fifo_write(struct m_can_classdev * cdev,u32 fpi,unsigned int offset,const void * val,size_t val_count)355 m_can_fifo_write(struct m_can_classdev *cdev,
356 		 u32 fpi, unsigned int offset, const void *val, size_t val_count)
357 {
358 	u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE +
359 		offset;
360 
361 	if (val_count == 0)
362 		return 0;
363 
364 	return cdev->ops->write_fifo(cdev, addr_offset, val, val_count);
365 }
366 
m_can_fifo_write_no_off(struct m_can_classdev * cdev,u32 fpi,u32 val)367 static inline int m_can_fifo_write_no_off(struct m_can_classdev *cdev,
368 					  u32 fpi, u32 val)
369 {
370 	return cdev->ops->write_fifo(cdev, fpi, &val, 1);
371 }
372 
373 static int
m_can_txe_fifo_read(struct m_can_classdev * cdev,u32 fgi,u32 offset,u32 * val)374 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset, u32 *val)
375 {
376 	u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE +
377 		offset;
378 
379 	return cdev->ops->read_fifo(cdev, addr_offset, val, 1);
380 }
381 
m_can_cccr_update_bits(struct m_can_classdev * cdev,u32 mask,u32 val)382 static int m_can_cccr_update_bits(struct m_can_classdev *cdev, u32 mask, u32 val)
383 {
384 	u32 val_before = m_can_read(cdev, M_CAN_CCCR);
385 	u32 val_after = (val_before & ~mask) | val;
386 	size_t tries = 10;
387 
388 	if (!(mask & CCCR_INIT) && !(val_before & CCCR_INIT)) {
389 		dev_err(cdev->dev,
390 			"refusing to configure device when in normal mode\n");
391 		return -EBUSY;
392 	}
393 
394 	/* The chip should be in standby mode when changing the CCCR register,
395 	 * and some chips set the CSR and CSA bits when in standby. Furthermore,
396 	 * the CSR and CSA bits should be written as zeros, even when they read
397 	 * ones.
398 	 */
399 	val_after &= ~(CCCR_CSR | CCCR_CSA);
400 
401 	while (tries--) {
402 		u32 val_read;
403 
404 		/* Write the desired value in each try, as setting some bits in
405 		 * the CCCR register require other bits to be set first. E.g.
406 		 * setting the NISO bit requires setting the CCE bit first.
407 		 */
408 		m_can_write(cdev, M_CAN_CCCR, val_after);
409 
410 		val_read = m_can_read(cdev, M_CAN_CCCR) & ~(CCCR_CSR | CCCR_CSA);
411 
412 		if (val_read == val_after)
413 			return 0;
414 
415 		usleep_range(1, 5);
416 	}
417 
418 	return -ETIMEDOUT;
419 }
420 
m_can_config_enable(struct m_can_classdev * cdev)421 static int m_can_config_enable(struct m_can_classdev *cdev)
422 {
423 	int err;
424 
425 	/* CCCR_INIT must be set in order to set CCCR_CCE, but access to
426 	 * configuration registers should only be enabled when in standby mode,
427 	 * where CCCR_INIT is always set.
428 	 */
429 	err = m_can_cccr_update_bits(cdev, CCCR_CCE, CCCR_CCE);
430 	if (err)
431 		netdev_err(cdev->net, "failed to enable configuration mode\n");
432 
433 	return err;
434 }
435 
m_can_config_disable(struct m_can_classdev * cdev)436 static int m_can_config_disable(struct m_can_classdev *cdev)
437 {
438 	int err;
439 
440 	/* Only clear CCCR_CCE, since CCCR_INIT cannot be cleared while in
441 	 * standby mode
442 	 */
443 	err = m_can_cccr_update_bits(cdev, CCCR_CCE, 0);
444 	if (err)
445 		netdev_err(cdev->net, "failed to disable configuration registers\n");
446 
447 	return err;
448 }
449 
m_can_interrupt_enable(struct m_can_classdev * cdev,u32 interrupts)450 static void m_can_interrupt_enable(struct m_can_classdev *cdev, u32 interrupts)
451 {
452 	if (cdev->active_interrupts == interrupts)
453 		return;
454 	cdev->ops->write_reg(cdev, M_CAN_IE, interrupts);
455 	cdev->active_interrupts = interrupts;
456 }
457 
m_can_coalescing_disable(struct m_can_classdev * cdev)458 static void m_can_coalescing_disable(struct m_can_classdev *cdev)
459 {
460 	u32 new_interrupts = cdev->active_interrupts | IR_RF0N | IR_TEFN;
461 
462 	if (!cdev->net->irq)
463 		return;
464 
465 	hrtimer_cancel(&cdev->hrtimer);
466 	m_can_interrupt_enable(cdev, new_interrupts);
467 }
468 
m_can_enable_all_interrupts(struct m_can_classdev * cdev)469 static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev)
470 {
471 	if (!cdev->net->irq) {
472 		dev_dbg(cdev->dev, "Start hrtimer\n");
473 		hrtimer_start(&cdev->hrtimer,
474 			      ms_to_ktime(HRTIMER_POLL_INTERVAL_MS),
475 			      HRTIMER_MODE_REL_PINNED);
476 	}
477 
478 	/* Only interrupt line 0 is used in this driver */
479 	m_can_write(cdev, M_CAN_ILE, ILE_EINT0);
480 }
481 
m_can_disable_all_interrupts(struct m_can_classdev * cdev)482 static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev)
483 {
484 	m_can_coalescing_disable(cdev);
485 	m_can_write(cdev, M_CAN_ILE, 0x0);
486 
487 	if (!cdev->net->irq) {
488 		dev_dbg(cdev->dev, "Stop hrtimer\n");
489 		hrtimer_try_to_cancel(&cdev->hrtimer);
490 	}
491 }
492 
493 /* Retrieve internal timestamp counter from TSCV.TSC, and shift it to 32-bit
494  * width.
495  */
m_can_get_timestamp(struct m_can_classdev * cdev)496 static u32 m_can_get_timestamp(struct m_can_classdev *cdev)
497 {
498 	u32 tscv;
499 	u32 tsc;
500 
501 	tscv = m_can_read(cdev, M_CAN_TSCV);
502 	tsc = FIELD_GET(TSCV_TSC_MASK, tscv);
503 
504 	return (tsc << 16);
505 }
506 
m_can_clean(struct net_device * net)507 static void m_can_clean(struct net_device *net)
508 {
509 	struct m_can_classdev *cdev = netdev_priv(net);
510 	unsigned long irqflags;
511 
512 	if (cdev->tx_ops) {
513 		for (int i = 0; i != cdev->tx_fifo_size; ++i) {
514 			if (!cdev->tx_ops[i].skb)
515 				continue;
516 
517 			net->stats.tx_errors++;
518 			cdev->tx_ops[i].skb = NULL;
519 		}
520 	}
521 
522 	for (int i = 0; i != cdev->can.echo_skb_max; ++i)
523 		can_free_echo_skb(cdev->net, i, NULL);
524 
525 	netdev_reset_queue(cdev->net);
526 
527 	spin_lock_irqsave(&cdev->tx_handling_spinlock, irqflags);
528 	cdev->tx_fifo_in_flight = 0;
529 	spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags);
530 }
531 
532 /* For peripherals, pass skb to rx-offload, which will push skb from
533  * napi. For non-peripherals, RX is done in napi already, so push
534  * directly. timestamp is used to ensure good skb ordering in
535  * rx-offload and is ignored for non-peripherals.
536  */
m_can_receive_skb(struct m_can_classdev * cdev,struct sk_buff * skb,u32 timestamp)537 static void m_can_receive_skb(struct m_can_classdev *cdev,
538 			      struct sk_buff *skb,
539 			      u32 timestamp)
540 {
541 	if (cdev->is_peripheral) {
542 		struct net_device_stats *stats = &cdev->net->stats;
543 		int err;
544 
545 		err = can_rx_offload_queue_timestamp(&cdev->offload, skb,
546 						     timestamp);
547 		if (err)
548 			stats->rx_fifo_errors++;
549 	} else {
550 		netif_receive_skb(skb);
551 	}
552 }
553 
m_can_read_fifo(struct net_device * dev,u32 fgi)554 static int m_can_read_fifo(struct net_device *dev, u32 fgi)
555 {
556 	struct net_device_stats *stats = &dev->stats;
557 	struct m_can_classdev *cdev = netdev_priv(dev);
558 	struct canfd_frame *cf;
559 	struct sk_buff *skb;
560 	struct id_and_dlc fifo_header;
561 	u32 timestamp = 0;
562 	int err;
563 
564 	err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID, &fifo_header, 2);
565 	if (err)
566 		goto out_fail;
567 
568 	if (fifo_header.dlc & RX_BUF_FDF)
569 		skb = alloc_canfd_skb(dev, &cf);
570 	else
571 		skb = alloc_can_skb(dev, (struct can_frame **)&cf);
572 	if (!skb) {
573 		stats->rx_dropped++;
574 		return 0;
575 	}
576 
577 	if (fifo_header.dlc & RX_BUF_FDF)
578 		cf->len = can_fd_dlc2len((fifo_header.dlc >> 16) & 0x0F);
579 	else
580 		cf->len = can_cc_dlc2len((fifo_header.dlc >> 16) & 0x0F);
581 
582 	if (fifo_header.id & RX_BUF_XTD)
583 		cf->can_id = (fifo_header.id & CAN_EFF_MASK) | CAN_EFF_FLAG;
584 	else
585 		cf->can_id = (fifo_header.id >> 18) & CAN_SFF_MASK;
586 
587 	if (fifo_header.id & RX_BUF_ESI) {
588 		cf->flags |= CANFD_ESI;
589 		netdev_dbg(dev, "ESI Error\n");
590 	}
591 
592 	if (!(fifo_header.dlc & RX_BUF_FDF) && (fifo_header.id & RX_BUF_RTR)) {
593 		cf->can_id |= CAN_RTR_FLAG;
594 	} else {
595 		if (fifo_header.dlc & RX_BUF_BRS)
596 			cf->flags |= CANFD_BRS;
597 
598 		err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DATA,
599 				      cf->data, DIV_ROUND_UP(cf->len, 4));
600 		if (err)
601 			goto out_free_skb;
602 
603 		stats->rx_bytes += cf->len;
604 	}
605 	stats->rx_packets++;
606 
607 	timestamp = FIELD_GET(RX_BUF_RXTS_MASK, fifo_header.dlc) << 16;
608 
609 	m_can_receive_skb(cdev, skb, timestamp);
610 
611 	return 0;
612 
613 out_free_skb:
614 	kfree_skb(skb);
615 out_fail:
616 	netdev_err(dev, "FIFO read returned %d\n", err);
617 	return err;
618 }
619 
m_can_do_rx_poll(struct net_device * dev,int quota)620 static int m_can_do_rx_poll(struct net_device *dev, int quota)
621 {
622 	struct m_can_classdev *cdev = netdev_priv(dev);
623 	u32 pkts = 0;
624 	u32 rxfs;
625 	u32 rx_count;
626 	u32 fgi;
627 	int ack_fgi = -1;
628 	int i;
629 	int err = 0;
630 
631 	rxfs = m_can_read(cdev, M_CAN_RXF0S);
632 	if (!(rxfs & RXFS_FFL_MASK)) {
633 		netdev_dbg(dev, "no messages in fifo0\n");
634 		return 0;
635 	}
636 
637 	rx_count = FIELD_GET(RXFS_FFL_MASK, rxfs);
638 	fgi = FIELD_GET(RXFS_FGI_MASK, rxfs);
639 
640 	for (i = 0; i < rx_count && quota > 0; ++i) {
641 		err = m_can_read_fifo(dev, fgi);
642 		if (err)
643 			break;
644 
645 		quota--;
646 		pkts++;
647 		ack_fgi = fgi;
648 		fgi = (++fgi >= cdev->mcfg[MRAM_RXF0].num ? 0 : fgi);
649 	}
650 
651 	if (ack_fgi != -1)
652 		m_can_write(cdev, M_CAN_RXF0A, ack_fgi);
653 
654 	if (err)
655 		return err;
656 
657 	return pkts;
658 }
659 
m_can_handle_lost_msg(struct net_device * dev)660 static int m_can_handle_lost_msg(struct net_device *dev)
661 {
662 	struct m_can_classdev *cdev = netdev_priv(dev);
663 	struct net_device_stats *stats = &dev->stats;
664 	struct sk_buff *skb;
665 	struct can_frame *frame;
666 	u32 timestamp = 0;
667 
668 	netdev_dbg(dev, "msg lost in rxf0\n");
669 
670 	stats->rx_errors++;
671 	stats->rx_over_errors++;
672 
673 	skb = alloc_can_err_skb(dev, &frame);
674 	if (unlikely(!skb))
675 		return 0;
676 
677 	frame->can_id |= CAN_ERR_CRTL;
678 	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
679 
680 	if (cdev->is_peripheral)
681 		timestamp = m_can_get_timestamp(cdev);
682 
683 	m_can_receive_skb(cdev, skb, timestamp);
684 
685 	return 1;
686 }
687 
m_can_handle_lec_err(struct net_device * dev,enum m_can_lec_type lec_type)688 static int m_can_handle_lec_err(struct net_device *dev,
689 				enum m_can_lec_type lec_type)
690 {
691 	struct m_can_classdev *cdev = netdev_priv(dev);
692 	struct net_device_stats *stats = &dev->stats;
693 	struct can_frame *cf;
694 	struct sk_buff *skb;
695 	u32 timestamp = 0;
696 
697 	cdev->can.can_stats.bus_error++;
698 
699 	/* propagate the error condition to the CAN stack */
700 	skb = alloc_can_err_skb(dev, &cf);
701 
702 	/* check for 'last error code' which tells us the
703 	 * type of the last error to occur on the CAN bus
704 	 */
705 	if (likely(skb))
706 		cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
707 
708 	switch (lec_type) {
709 	case LEC_STUFF_ERROR:
710 		netdev_dbg(dev, "stuff error\n");
711 		stats->rx_errors++;
712 		if (likely(skb))
713 			cf->data[2] |= CAN_ERR_PROT_STUFF;
714 		break;
715 	case LEC_FORM_ERROR:
716 		netdev_dbg(dev, "form error\n");
717 		stats->rx_errors++;
718 		if (likely(skb))
719 			cf->data[2] |= CAN_ERR_PROT_FORM;
720 		break;
721 	case LEC_ACK_ERROR:
722 		netdev_dbg(dev, "ack error\n");
723 		stats->tx_errors++;
724 		if (likely(skb))
725 			cf->data[3] = CAN_ERR_PROT_LOC_ACK;
726 		break;
727 	case LEC_BIT1_ERROR:
728 		netdev_dbg(dev, "bit1 error\n");
729 		stats->tx_errors++;
730 		if (likely(skb))
731 			cf->data[2] |= CAN_ERR_PROT_BIT1;
732 		break;
733 	case LEC_BIT0_ERROR:
734 		netdev_dbg(dev, "bit0 error\n");
735 		stats->tx_errors++;
736 		if (likely(skb))
737 			cf->data[2] |= CAN_ERR_PROT_BIT0;
738 		break;
739 	case LEC_CRC_ERROR:
740 		netdev_dbg(dev, "CRC error\n");
741 		stats->rx_errors++;
742 		if (likely(skb))
743 			cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
744 		break;
745 	default:
746 		break;
747 	}
748 
749 	if (unlikely(!skb))
750 		return 0;
751 
752 	if (cdev->is_peripheral)
753 		timestamp = m_can_get_timestamp(cdev);
754 
755 	m_can_receive_skb(cdev, skb, timestamp);
756 
757 	return 1;
758 }
759 
__m_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)760 static int __m_can_get_berr_counter(const struct net_device *dev,
761 				    struct can_berr_counter *bec)
762 {
763 	struct m_can_classdev *cdev = netdev_priv(dev);
764 	unsigned int ecr;
765 
766 	ecr = m_can_read(cdev, M_CAN_ECR);
767 	bec->rxerr = FIELD_GET(ECR_REC_MASK, ecr);
768 	bec->txerr = FIELD_GET(ECR_TEC_MASK, ecr);
769 
770 	return 0;
771 }
772 
m_can_clk_start(struct m_can_classdev * cdev)773 static int m_can_clk_start(struct m_can_classdev *cdev)
774 {
775 	if (cdev->pm_clock_support == 0)
776 		return 0;
777 
778 	return pm_runtime_resume_and_get(cdev->dev);
779 }
780 
m_can_clk_stop(struct m_can_classdev * cdev)781 static void m_can_clk_stop(struct m_can_classdev *cdev)
782 {
783 	if (cdev->pm_clock_support)
784 		pm_runtime_put_sync(cdev->dev);
785 }
786 
m_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)787 static int m_can_get_berr_counter(const struct net_device *dev,
788 				  struct can_berr_counter *bec)
789 {
790 	struct m_can_classdev *cdev = netdev_priv(dev);
791 	int err;
792 
793 	err = m_can_clk_start(cdev);
794 	if (err)
795 		return err;
796 
797 	__m_can_get_berr_counter(dev, bec);
798 
799 	m_can_clk_stop(cdev);
800 
801 	return 0;
802 }
803 
m_can_handle_state_change(struct net_device * dev,enum can_state new_state)804 static int m_can_handle_state_change(struct net_device *dev,
805 				     enum can_state new_state)
806 {
807 	struct m_can_classdev *cdev = netdev_priv(dev);
808 	struct can_frame *cf;
809 	struct sk_buff *skb;
810 	struct can_berr_counter bec;
811 	unsigned int ecr;
812 	u32 timestamp = 0;
813 
814 	switch (new_state) {
815 	case CAN_STATE_ERROR_ACTIVE:
816 		cdev->can.state = CAN_STATE_ERROR_ACTIVE;
817 		break;
818 	case CAN_STATE_ERROR_WARNING:
819 		/* error warning state */
820 		cdev->can.can_stats.error_warning++;
821 		cdev->can.state = CAN_STATE_ERROR_WARNING;
822 		break;
823 	case CAN_STATE_ERROR_PASSIVE:
824 		/* error passive state */
825 		cdev->can.can_stats.error_passive++;
826 		cdev->can.state = CAN_STATE_ERROR_PASSIVE;
827 		break;
828 	case CAN_STATE_BUS_OFF:
829 		/* bus-off state */
830 		cdev->can.state = CAN_STATE_BUS_OFF;
831 		m_can_disable_all_interrupts(cdev);
832 		cdev->can.can_stats.bus_off++;
833 		can_bus_off(dev);
834 		break;
835 	default:
836 		break;
837 	}
838 
839 	/* propagate the error condition to the CAN stack */
840 	skb = alloc_can_err_skb(dev, &cf);
841 	if (unlikely(!skb))
842 		return 0;
843 
844 	__m_can_get_berr_counter(dev, &bec);
845 
846 	switch (new_state) {
847 	case CAN_STATE_ERROR_ACTIVE:
848 		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
849 		cf->data[1] = CAN_ERR_CRTL_ACTIVE;
850 		cf->data[6] = bec.txerr;
851 		cf->data[7] = bec.rxerr;
852 		break;
853 	case CAN_STATE_ERROR_WARNING:
854 		/* error warning state */
855 		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
856 		cf->data[1] = (bec.txerr > bec.rxerr) ?
857 			CAN_ERR_CRTL_TX_WARNING :
858 			CAN_ERR_CRTL_RX_WARNING;
859 		cf->data[6] = bec.txerr;
860 		cf->data[7] = bec.rxerr;
861 		break;
862 	case CAN_STATE_ERROR_PASSIVE:
863 		/* error passive state */
864 		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
865 		ecr = m_can_read(cdev, M_CAN_ECR);
866 		if (ecr & ECR_RP)
867 			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
868 		if (bec.txerr > 127)
869 			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
870 		cf->data[6] = bec.txerr;
871 		cf->data[7] = bec.rxerr;
872 		break;
873 	case CAN_STATE_BUS_OFF:
874 		/* bus-off state */
875 		cf->can_id |= CAN_ERR_BUSOFF;
876 		break;
877 	default:
878 		break;
879 	}
880 
881 	if (cdev->is_peripheral)
882 		timestamp = m_can_get_timestamp(cdev);
883 
884 	m_can_receive_skb(cdev, skb, timestamp);
885 
886 	return 1;
887 }
888 
889 static enum can_state
m_can_state_get_by_psr(struct m_can_classdev * cdev)890 m_can_state_get_by_psr(struct m_can_classdev *cdev)
891 {
892 	u32 reg_psr;
893 
894 	reg_psr = m_can_read(cdev, M_CAN_PSR);
895 
896 	if (reg_psr & PSR_BO)
897 		return CAN_STATE_BUS_OFF;
898 	if (reg_psr & PSR_EP)
899 		return CAN_STATE_ERROR_PASSIVE;
900 	if (reg_psr & PSR_EW)
901 		return CAN_STATE_ERROR_WARNING;
902 
903 	return CAN_STATE_ERROR_ACTIVE;
904 }
905 
m_can_handle_state_errors(struct net_device * dev)906 static int m_can_handle_state_errors(struct net_device *dev)
907 {
908 	struct m_can_classdev *cdev = netdev_priv(dev);
909 	enum can_state new_state;
910 
911 	new_state = m_can_state_get_by_psr(cdev);
912 	if (new_state == cdev->can.state)
913 		return 0;
914 
915 	return m_can_handle_state_change(dev, new_state);
916 }
917 
m_can_handle_other_err(struct net_device * dev,u32 irqstatus)918 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
919 {
920 	if (irqstatus & IR_WDI)
921 		netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
922 	if (irqstatus & IR_BEU)
923 		netdev_err(dev, "Bit Error Uncorrected\n");
924 	if (irqstatus & IR_BEC)
925 		netdev_err(dev, "Bit Error Corrected\n");
926 	if (irqstatus & IR_TOO)
927 		netdev_err(dev, "Timeout reached\n");
928 	if (irqstatus & IR_MRAF)
929 		netdev_err(dev, "Message RAM access failure occurred\n");
930 }
931 
is_lec_err(u8 lec)932 static inline bool is_lec_err(u8 lec)
933 {
934 	return lec != LEC_NO_ERROR && lec != LEC_NO_CHANGE;
935 }
936 
m_can_is_protocol_err(u32 irqstatus)937 static inline bool m_can_is_protocol_err(u32 irqstatus)
938 {
939 	return irqstatus & IR_ERR_LEC_31X;
940 }
941 
m_can_handle_protocol_error(struct net_device * dev,u32 irqstatus)942 static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus)
943 {
944 	struct net_device_stats *stats = &dev->stats;
945 	struct m_can_classdev *cdev = netdev_priv(dev);
946 	struct can_frame *cf;
947 	struct sk_buff *skb;
948 	u32 timestamp = 0;
949 
950 	/* propagate the error condition to the CAN stack */
951 	skb = alloc_can_err_skb(dev, &cf);
952 
953 	/* update tx error stats since there is protocol error */
954 	stats->tx_errors++;
955 
956 	/* update arbitration lost status */
957 	if (cdev->version >= 31 && (irqstatus & IR_PEA)) {
958 		netdev_dbg(dev, "Protocol error in Arbitration fail\n");
959 		cdev->can.can_stats.arbitration_lost++;
960 		if (skb) {
961 			cf->can_id |= CAN_ERR_LOSTARB;
962 			cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
963 		}
964 	}
965 
966 	if (unlikely(!skb)) {
967 		netdev_dbg(dev, "allocation of skb failed\n");
968 		return 0;
969 	}
970 
971 	if (cdev->is_peripheral)
972 		timestamp = m_can_get_timestamp(cdev);
973 
974 	m_can_receive_skb(cdev, skb, timestamp);
975 
976 	return 1;
977 }
978 
m_can_handle_bus_errors(struct net_device * dev,u32 irqstatus,u32 psr)979 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
980 				   u32 psr)
981 {
982 	struct m_can_classdev *cdev = netdev_priv(dev);
983 	int work_done = 0;
984 
985 	if (irqstatus & IR_RF0L)
986 		work_done += m_can_handle_lost_msg(dev);
987 
988 	/* handle lec errors on the bus */
989 	if (cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
990 		u8 lec = FIELD_GET(PSR_LEC_MASK, psr);
991 		u8 dlec = FIELD_GET(PSR_DLEC_MASK, psr);
992 
993 		if (is_lec_err(lec)) {
994 			netdev_dbg(dev, "Arbitration phase error detected\n");
995 			work_done += m_can_handle_lec_err(dev, lec);
996 		}
997 
998 		if (is_lec_err(dlec)) {
999 			netdev_dbg(dev, "Data phase error detected\n");
1000 			work_done += m_can_handle_lec_err(dev, dlec);
1001 		}
1002 	}
1003 
1004 	/* handle protocol errors in arbitration phase */
1005 	if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
1006 	    m_can_is_protocol_err(irqstatus))
1007 		work_done += m_can_handle_protocol_error(dev, irqstatus);
1008 
1009 	/* other unproccessed error interrupts */
1010 	m_can_handle_other_err(dev, irqstatus);
1011 
1012 	return work_done;
1013 }
1014 
m_can_rx_handler(struct net_device * dev,int quota,u32 irqstatus)1015 static int m_can_rx_handler(struct net_device *dev, int quota, u32 irqstatus)
1016 {
1017 	struct m_can_classdev *cdev = netdev_priv(dev);
1018 	int rx_work_or_err;
1019 	int work_done = 0;
1020 
1021 	if (!irqstatus)
1022 		goto end;
1023 
1024 	/* Errata workaround for issue "Needless activation of MRAF irq"
1025 	 * During frame reception while the MCAN is in Error Passive state
1026 	 * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
1027 	 * it may happen that MCAN_IR.MRAF is set although there was no
1028 	 * Message RAM access failure.
1029 	 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
1030 	 * The Message RAM Access Failure interrupt routine needs to check
1031 	 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
1032 	 * In this case, reset MCAN_IR.MRAF. No further action is required.
1033 	 */
1034 	if (cdev->version <= 31 && irqstatus & IR_MRAF &&
1035 	    m_can_read(cdev, M_CAN_ECR) & ECR_RP) {
1036 		struct can_berr_counter bec;
1037 
1038 		__m_can_get_berr_counter(dev, &bec);
1039 		if (bec.rxerr == 127) {
1040 			m_can_write(cdev, M_CAN_IR, IR_MRAF);
1041 			irqstatus &= ~IR_MRAF;
1042 		}
1043 	}
1044 
1045 	if (irqstatus & IR_ERR_STATE)
1046 		work_done += m_can_handle_state_errors(dev);
1047 
1048 	if (irqstatus & IR_ERR_BUS_30X)
1049 		work_done += m_can_handle_bus_errors(dev, irqstatus,
1050 						     m_can_read(cdev, M_CAN_PSR));
1051 
1052 	if (irqstatus & IR_RF0N) {
1053 		rx_work_or_err = m_can_do_rx_poll(dev, (quota - work_done));
1054 		if (rx_work_or_err < 0)
1055 			return rx_work_or_err;
1056 
1057 		work_done += rx_work_or_err;
1058 	}
1059 end:
1060 	return work_done;
1061 }
1062 
m_can_poll(struct napi_struct * napi,int quota)1063 static int m_can_poll(struct napi_struct *napi, int quota)
1064 {
1065 	struct net_device *dev = napi->dev;
1066 	struct m_can_classdev *cdev = netdev_priv(dev);
1067 	int work_done;
1068 	u32 irqstatus;
1069 
1070 	irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR);
1071 
1072 	work_done = m_can_rx_handler(dev, quota, irqstatus);
1073 
1074 	/* Don't re-enable interrupts if the driver had a fatal error
1075 	 * (e.g., FIFO read failure).
1076 	 */
1077 	if (work_done >= 0 && work_done < quota) {
1078 		napi_complete_done(napi, work_done);
1079 		m_can_enable_all_interrupts(cdev);
1080 	}
1081 
1082 	return work_done;
1083 }
1084 
1085 /* Echo tx skb and update net stats. Peripherals use rx-offload for
1086  * echo. timestamp is used for peripherals to ensure correct ordering
1087  * by rx-offload, and is ignored for non-peripherals.
1088  */
m_can_tx_update_stats(struct m_can_classdev * cdev,unsigned int msg_mark,u32 timestamp)1089 static unsigned int m_can_tx_update_stats(struct m_can_classdev *cdev,
1090 					  unsigned int msg_mark, u32 timestamp)
1091 {
1092 	struct net_device *dev = cdev->net;
1093 	struct net_device_stats *stats = &dev->stats;
1094 	unsigned int frame_len;
1095 
1096 	if (cdev->is_peripheral)
1097 		stats->tx_bytes +=
1098 			can_rx_offload_get_echo_skb_queue_timestamp(&cdev->offload,
1099 								    msg_mark,
1100 								    timestamp,
1101 								    &frame_len);
1102 	else
1103 		stats->tx_bytes += can_get_echo_skb(dev, msg_mark, &frame_len);
1104 
1105 	stats->tx_packets++;
1106 
1107 	return frame_len;
1108 }
1109 
m_can_finish_tx(struct m_can_classdev * cdev,int transmitted,unsigned int transmitted_frame_len)1110 static void m_can_finish_tx(struct m_can_classdev *cdev, int transmitted,
1111 			    unsigned int transmitted_frame_len)
1112 {
1113 	unsigned long irqflags;
1114 
1115 	netdev_completed_queue(cdev->net, transmitted, transmitted_frame_len);
1116 
1117 	spin_lock_irqsave(&cdev->tx_handling_spinlock, irqflags);
1118 	if (cdev->tx_fifo_in_flight >= cdev->tx_fifo_size && transmitted > 0)
1119 		netif_wake_queue(cdev->net);
1120 	cdev->tx_fifo_in_flight -= transmitted;
1121 	spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags);
1122 }
1123 
m_can_start_tx(struct m_can_classdev * cdev)1124 static netdev_tx_t m_can_start_tx(struct m_can_classdev *cdev)
1125 {
1126 	unsigned long irqflags;
1127 	int tx_fifo_in_flight;
1128 
1129 	spin_lock_irqsave(&cdev->tx_handling_spinlock, irqflags);
1130 	tx_fifo_in_flight = cdev->tx_fifo_in_flight + 1;
1131 	if (tx_fifo_in_flight >= cdev->tx_fifo_size) {
1132 		netif_stop_queue(cdev->net);
1133 		if (tx_fifo_in_flight > cdev->tx_fifo_size) {
1134 			netdev_err_once(cdev->net, "hard_xmit called while TX FIFO full\n");
1135 			spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags);
1136 			return NETDEV_TX_BUSY;
1137 		}
1138 	}
1139 	cdev->tx_fifo_in_flight = tx_fifo_in_flight;
1140 	spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags);
1141 
1142 	return NETDEV_TX_OK;
1143 }
1144 
m_can_echo_tx_event(struct net_device * dev)1145 static int m_can_echo_tx_event(struct net_device *dev)
1146 {
1147 	u32 txe_count = 0;
1148 	u32 m_can_txefs;
1149 	u32 fgi = 0;
1150 	int ack_fgi = -1;
1151 	int i = 0;
1152 	int err = 0;
1153 	unsigned int msg_mark;
1154 	int processed = 0;
1155 	unsigned int processed_frame_len = 0;
1156 
1157 	struct m_can_classdev *cdev = netdev_priv(dev);
1158 
1159 	/* read tx event fifo status */
1160 	m_can_txefs = m_can_read(cdev, M_CAN_TXEFS);
1161 
1162 	/* Get Tx Event fifo element count */
1163 	txe_count = FIELD_GET(TXEFS_EFFL_MASK, m_can_txefs);
1164 	fgi = FIELD_GET(TXEFS_EFGI_MASK, m_can_txefs);
1165 
1166 	/* Get and process all sent elements */
1167 	for (i = 0; i < txe_count; i++) {
1168 		u32 txe, timestamp = 0;
1169 
1170 		/* get message marker, timestamp */
1171 		err = m_can_txe_fifo_read(cdev, fgi, 4, &txe);
1172 		if (err) {
1173 			netdev_err(dev, "TXE FIFO read returned %d\n", err);
1174 			break;
1175 		}
1176 
1177 		msg_mark = FIELD_GET(TX_EVENT_MM_MASK, txe);
1178 		timestamp = FIELD_GET(TX_EVENT_TXTS_MASK, txe) << 16;
1179 
1180 		ack_fgi = fgi;
1181 		fgi = (++fgi >= cdev->mcfg[MRAM_TXE].num ? 0 : fgi);
1182 
1183 		/* update stats */
1184 		processed_frame_len += m_can_tx_update_stats(cdev, msg_mark,
1185 							     timestamp);
1186 
1187 		++processed;
1188 	}
1189 
1190 	if (ack_fgi != -1)
1191 		m_can_write(cdev, M_CAN_TXEFA, FIELD_PREP(TXEFA_EFAI_MASK,
1192 							  ack_fgi));
1193 
1194 	m_can_finish_tx(cdev, processed, processed_frame_len);
1195 
1196 	return err;
1197 }
1198 
m_can_coalescing_update(struct m_can_classdev * cdev,u32 ir)1199 static void m_can_coalescing_update(struct m_can_classdev *cdev, u32 ir)
1200 {
1201 	u32 new_interrupts = cdev->active_interrupts;
1202 	bool enable_rx_timer = false;
1203 	bool enable_tx_timer = false;
1204 
1205 	if (!cdev->net->irq)
1206 		return;
1207 
1208 	if (cdev->rx_coalesce_usecs_irq > 0 && (ir & (IR_RF0N | IR_RF0W))) {
1209 		enable_rx_timer = true;
1210 		new_interrupts &= ~IR_RF0N;
1211 	}
1212 	if (cdev->tx_coalesce_usecs_irq > 0 && (ir & (IR_TEFN | IR_TEFW))) {
1213 		enable_tx_timer = true;
1214 		new_interrupts &= ~IR_TEFN;
1215 	}
1216 	if (!enable_rx_timer && !hrtimer_active(&cdev->hrtimer))
1217 		new_interrupts |= IR_RF0N;
1218 	if (!enable_tx_timer && !hrtimer_active(&cdev->hrtimer))
1219 		new_interrupts |= IR_TEFN;
1220 
1221 	m_can_interrupt_enable(cdev, new_interrupts);
1222 	if (enable_rx_timer | enable_tx_timer)
1223 		hrtimer_start(&cdev->hrtimer, cdev->irq_timer_wait,
1224 			      HRTIMER_MODE_REL);
1225 }
1226 
1227 /* This interrupt handler is called either from the interrupt thread or a
1228  * hrtimer. This has implications like cancelling a timer won't be possible
1229  * blocking.
1230  */
m_can_interrupt_handler(struct m_can_classdev * cdev)1231 static int m_can_interrupt_handler(struct m_can_classdev *cdev)
1232 {
1233 	struct net_device *dev = cdev->net;
1234 	u32 ir = 0, ir_read;
1235 	int ret;
1236 
1237 	if (pm_runtime_suspended(cdev->dev))
1238 		return IRQ_NONE;
1239 
1240 	/* The m_can controller signals its interrupt status as a level, but
1241 	 * depending in the integration the CPU may interpret the signal as
1242 	 * edge-triggered (for example with m_can_pci). For these
1243 	 * edge-triggered integrations, we must observe that IR is 0 at least
1244 	 * once to be sure that the next interrupt will generate an edge.
1245 	 */
1246 	while ((ir_read = m_can_read(cdev, M_CAN_IR)) != 0) {
1247 		ir |= ir_read;
1248 
1249 		/* ACK all irqs */
1250 		m_can_write(cdev, M_CAN_IR, ir);
1251 
1252 		if (!cdev->irq_edge_triggered)
1253 			break;
1254 	}
1255 
1256 	m_can_coalescing_update(cdev, ir);
1257 	if (!ir)
1258 		return IRQ_NONE;
1259 
1260 	if (cdev->ops->clear_interrupts)
1261 		cdev->ops->clear_interrupts(cdev);
1262 
1263 	/* schedule NAPI in case of
1264 	 * - rx IRQ
1265 	 * - state change IRQ
1266 	 * - bus error IRQ and bus error reporting
1267 	 */
1268 	if (ir & (IR_RF0N | IR_RF0W | IR_ERR_ALL_30X)) {
1269 		cdev->irqstatus = ir;
1270 		if (!cdev->is_peripheral) {
1271 			m_can_disable_all_interrupts(cdev);
1272 			napi_schedule(&cdev->napi);
1273 		} else {
1274 			ret = m_can_rx_handler(dev, NAPI_POLL_WEIGHT, ir);
1275 			if (ret < 0)
1276 				return ret;
1277 		}
1278 	}
1279 
1280 	if (cdev->version == 30) {
1281 		if (ir & IR_TC) {
1282 			/* Transmission Complete Interrupt*/
1283 			u32 timestamp = 0;
1284 			unsigned int frame_len;
1285 
1286 			if (cdev->is_peripheral)
1287 				timestamp = m_can_get_timestamp(cdev);
1288 			frame_len = m_can_tx_update_stats(cdev, 0, timestamp);
1289 			m_can_finish_tx(cdev, 1, frame_len);
1290 		}
1291 	} else  {
1292 		if (ir & (IR_TEFN | IR_TEFW)) {
1293 			/* New TX FIFO Element arrived */
1294 			ret = m_can_echo_tx_event(dev);
1295 			if (ret != 0)
1296 				return ret;
1297 		}
1298 	}
1299 
1300 	if (cdev->is_peripheral)
1301 		can_rx_offload_threaded_irq_finish(&cdev->offload);
1302 
1303 	return IRQ_HANDLED;
1304 }
1305 
m_can_isr(int irq,void * dev_id)1306 static irqreturn_t m_can_isr(int irq, void *dev_id)
1307 {
1308 	struct net_device *dev = (struct net_device *)dev_id;
1309 	struct m_can_classdev *cdev = netdev_priv(dev);
1310 	int ret;
1311 
1312 	ret =  m_can_interrupt_handler(cdev);
1313 	if (ret < 0) {
1314 		m_can_disable_all_interrupts(cdev);
1315 		return IRQ_HANDLED;
1316 	}
1317 
1318 	return ret;
1319 }
1320 
m_can_coalescing_timer(struct hrtimer * timer)1321 static enum hrtimer_restart m_can_coalescing_timer(struct hrtimer *timer)
1322 {
1323 	struct m_can_classdev *cdev = container_of(timer, struct m_can_classdev, hrtimer);
1324 
1325 	if (cdev->can.state == CAN_STATE_BUS_OFF ||
1326 	    cdev->can.state == CAN_STATE_STOPPED)
1327 		return HRTIMER_NORESTART;
1328 
1329 	irq_wake_thread(cdev->net->irq, cdev->net);
1330 
1331 	return HRTIMER_NORESTART;
1332 }
1333 
1334 static const struct can_bittiming_const m_can_bittiming_const_30X = {
1335 	.name = KBUILD_MODNAME,
1336 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1337 	.tseg1_max = 64,
1338 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1339 	.tseg2_max = 16,
1340 	.sjw_max = 16,
1341 	.brp_min = 1,
1342 	.brp_max = 1024,
1343 	.brp_inc = 1,
1344 };
1345 
1346 static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
1347 	.name = KBUILD_MODNAME,
1348 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1349 	.tseg1_max = 16,
1350 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1351 	.tseg2_max = 8,
1352 	.sjw_max = 4,
1353 	.brp_min = 1,
1354 	.brp_max = 32,
1355 	.brp_inc = 1,
1356 };
1357 
1358 static const struct can_bittiming_const m_can_bittiming_const_31X = {
1359 	.name = KBUILD_MODNAME,
1360 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1361 	.tseg1_max = 256,
1362 	.tseg2_min = 2,		/* Time segment 2 = phase_seg2 */
1363 	.tseg2_max = 128,
1364 	.sjw_max = 128,
1365 	.brp_min = 1,
1366 	.brp_max = 512,
1367 	.brp_inc = 1,
1368 };
1369 
1370 static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
1371 	.name = KBUILD_MODNAME,
1372 	.tseg1_min = 1,		/* Time segment 1 = prop_seg + phase_seg1 */
1373 	.tseg1_max = 32,
1374 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1375 	.tseg2_max = 16,
1376 	.sjw_max = 16,
1377 	.brp_min = 1,
1378 	.brp_max = 32,
1379 	.brp_inc = 1,
1380 };
1381 
m_can_set_bittiming(struct net_device * dev)1382 static int m_can_set_bittiming(struct net_device *dev)
1383 {
1384 	struct m_can_classdev *cdev = netdev_priv(dev);
1385 	const struct can_bittiming *bt = &cdev->can.bittiming;
1386 	const struct can_bittiming *dbt = &cdev->can.fd.data_bittiming;
1387 	u16 brp, sjw, tseg1, tseg2;
1388 	u32 reg_btp;
1389 
1390 	brp = bt->brp - 1;
1391 	sjw = bt->sjw - 1;
1392 	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1393 	tseg2 = bt->phase_seg2 - 1;
1394 	reg_btp = FIELD_PREP(NBTP_NBRP_MASK, brp) |
1395 		  FIELD_PREP(NBTP_NSJW_MASK, sjw) |
1396 		  FIELD_PREP(NBTP_NTSEG1_MASK, tseg1) |
1397 		  FIELD_PREP(NBTP_NTSEG2_MASK, tseg2);
1398 	m_can_write(cdev, M_CAN_NBTP, reg_btp);
1399 
1400 	if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1401 		reg_btp = 0;
1402 		brp = dbt->brp - 1;
1403 		sjw = dbt->sjw - 1;
1404 		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1405 		tseg2 = dbt->phase_seg2 - 1;
1406 
1407 		/* TDC is only needed for bitrates beyond 2.5 MBit/s.
1408 		 * This is mentioned in the "Bit Time Requirements for CAN FD"
1409 		 * paper presented at the International CAN Conference 2013
1410 		 */
1411 		if (dbt->bitrate > 2500000) {
1412 			u32 tdco, ssp;
1413 
1414 			/* Use the same value of secondary sampling point
1415 			 * as the data sampling point
1416 			 */
1417 			ssp = dbt->sample_point;
1418 
1419 			/* Equation based on Bosch's M_CAN User Manual's
1420 			 * Transmitter Delay Compensation Section
1421 			 */
1422 			tdco = (cdev->can.clock.freq / 1000) *
1423 				ssp / dbt->bitrate;
1424 
1425 			/* Max valid TDCO value is 127 */
1426 			if (tdco > 127) {
1427 				netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1428 					    tdco);
1429 				tdco = 127;
1430 			}
1431 
1432 			reg_btp |= DBTP_TDC;
1433 			m_can_write(cdev, M_CAN_TDCR,
1434 				    FIELD_PREP(TDCR_TDCO_MASK, tdco));
1435 		}
1436 
1437 		reg_btp |= FIELD_PREP(DBTP_DBRP_MASK, brp) |
1438 			FIELD_PREP(DBTP_DSJW_MASK, sjw) |
1439 			FIELD_PREP(DBTP_DTSEG1_MASK, tseg1) |
1440 			FIELD_PREP(DBTP_DTSEG2_MASK, tseg2);
1441 
1442 		m_can_write(cdev, M_CAN_DBTP, reg_btp);
1443 	}
1444 
1445 	return 0;
1446 }
1447 
1448 /* Configure M_CAN chip:
1449  * - set rx buffer/fifo element size
1450  * - configure rx fifo
1451  * - accept non-matching frame into fifo 0
1452  * - configure tx buffer
1453  *		- >= v3.1.x: TX FIFO is used
1454  * - configure mode
1455  * - setup bittiming
1456  * - configure timestamp generation
1457  */
m_can_chip_config(struct net_device * dev)1458 static int m_can_chip_config(struct net_device *dev)
1459 {
1460 	struct m_can_classdev *cdev = netdev_priv(dev);
1461 	u32 interrupts = IR_ALL_INT;
1462 	u32 cccr, test;
1463 	int err;
1464 
1465 	err = m_can_init_ram(cdev);
1466 	if (err) {
1467 		dev_err(cdev->dev, "Message RAM configuration failed\n");
1468 		return err;
1469 	}
1470 
1471 	/* Disable unused interrupts */
1472 	interrupts &= ~(IR_ARA | IR_ELO | IR_DRX | IR_TEFF | IR_TFE | IR_TCF |
1473 			IR_HPM | IR_RF1F | IR_RF1W | IR_RF1N | IR_RF0F |
1474 			IR_TSW);
1475 
1476 	err = m_can_config_enable(cdev);
1477 	if (err)
1478 		return err;
1479 
1480 	/* RX Buffer/FIFO Element Size 64 bytes data field */
1481 	m_can_write(cdev, M_CAN_RXESC,
1482 		    FIELD_PREP(RXESC_RBDS_MASK, RXESC_64B) |
1483 		    FIELD_PREP(RXESC_F1DS_MASK, RXESC_64B) |
1484 		    FIELD_PREP(RXESC_F0DS_MASK, RXESC_64B));
1485 
1486 	/* Accept Non-matching Frames Into FIFO 0 */
1487 	m_can_write(cdev, M_CAN_GFC, 0x0);
1488 
1489 	if (cdev->version == 30) {
1490 		/* only support one Tx Buffer currently */
1491 		m_can_write(cdev, M_CAN_TXBC, FIELD_PREP(TXBC_NDTB_MASK, 1) |
1492 			    cdev->mcfg[MRAM_TXB].off);
1493 	} else {
1494 		/* TX FIFO is used for newer IP Core versions */
1495 		m_can_write(cdev, M_CAN_TXBC,
1496 			    FIELD_PREP(TXBC_TFQS_MASK,
1497 				       cdev->mcfg[MRAM_TXB].num) |
1498 			    cdev->mcfg[MRAM_TXB].off);
1499 	}
1500 
1501 	/* support 64 bytes payload */
1502 	m_can_write(cdev, M_CAN_TXESC,
1503 		    FIELD_PREP(TXESC_TBDS_MASK, TXESC_TBDS_64B));
1504 
1505 	/* TX Event FIFO */
1506 	if (cdev->version == 30) {
1507 		m_can_write(cdev, M_CAN_TXEFC,
1508 			    FIELD_PREP(TXEFC_EFS_MASK, 1) |
1509 			    cdev->mcfg[MRAM_TXE].off);
1510 	} else {
1511 		/* Full TX Event FIFO is used */
1512 		m_can_write(cdev, M_CAN_TXEFC,
1513 			    FIELD_PREP(TXEFC_EFWM_MASK,
1514 				       cdev->tx_max_coalesced_frames_irq) |
1515 			    FIELD_PREP(TXEFC_EFS_MASK,
1516 				       cdev->mcfg[MRAM_TXE].num) |
1517 			    cdev->mcfg[MRAM_TXE].off);
1518 	}
1519 
1520 	/* rx fifo configuration, blocking mode, fifo size 1 */
1521 	m_can_write(cdev, M_CAN_RXF0C,
1522 		    FIELD_PREP(RXFC_FWM_MASK, cdev->rx_max_coalesced_frames_irq) |
1523 		    FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF0].num) |
1524 		    cdev->mcfg[MRAM_RXF0].off);
1525 
1526 	m_can_write(cdev, M_CAN_RXF1C,
1527 		    FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF1].num) |
1528 		    cdev->mcfg[MRAM_RXF1].off);
1529 
1530 	cccr = m_can_read(cdev, M_CAN_CCCR);
1531 	test = m_can_read(cdev, M_CAN_TEST);
1532 	test &= ~TEST_LBCK;
1533 	if (cdev->version == 30) {
1534 		/* Version 3.0.x */
1535 
1536 		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR |
1537 			  FIELD_PREP(CCCR_CMR_MASK, FIELD_MAX(CCCR_CMR_MASK)) |
1538 			  FIELD_PREP(CCCR_CME_MASK, FIELD_MAX(CCCR_CME_MASK)));
1539 
1540 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1541 			cccr |= FIELD_PREP(CCCR_CME_MASK, CCCR_CME_CANFD_BRS);
1542 
1543 	} else {
1544 		/* Version 3.1.x or 3.2.x */
1545 		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
1546 			  CCCR_NISO | CCCR_DAR);
1547 
1548 		/* Only 3.2.x has NISO Bit implemented */
1549 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1550 			cccr |= CCCR_NISO;
1551 
1552 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1553 			cccr |= (CCCR_BRSE | CCCR_FDOE);
1554 	}
1555 
1556 	/* Loopback Mode */
1557 	if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1558 		cccr |= CCCR_TEST | CCCR_MON;
1559 		test |= TEST_LBCK;
1560 	}
1561 
1562 	/* Enable Monitoring (all versions) */
1563 	if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1564 		cccr |= CCCR_MON;
1565 
1566 	/* Disable Auto Retransmission (all versions) */
1567 	if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
1568 		cccr |= CCCR_DAR;
1569 
1570 	/* Write config */
1571 	m_can_write(cdev, M_CAN_CCCR, cccr);
1572 	m_can_write(cdev, M_CAN_TEST, test);
1573 
1574 	/* Enable interrupts */
1575 	if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) {
1576 		if (cdev->version == 30)
1577 			interrupts &= ~(IR_ERR_LEC_30X);
1578 		else
1579 			interrupts &= ~(IR_ERR_LEC_31X);
1580 	}
1581 	cdev->active_interrupts = 0;
1582 	m_can_interrupt_enable(cdev, interrupts);
1583 
1584 	/* route all interrupts to INT0 */
1585 	m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0);
1586 
1587 	/* set bittiming params */
1588 	m_can_set_bittiming(dev);
1589 
1590 	/* enable internal timestamp generation, with a prescaler of 16. The
1591 	 * prescaler is applied to the nominal bit timing
1592 	 */
1593 	m_can_write(cdev, M_CAN_TSCC,
1594 		    FIELD_PREP(TSCC_TCP_MASK, 0xf) |
1595 		    FIELD_PREP(TSCC_TSS_MASK, TSCC_TSS_INTERNAL));
1596 
1597 	err = m_can_config_disable(cdev);
1598 	if (err)
1599 		return err;
1600 
1601 	if (cdev->ops->init)
1602 		cdev->ops->init(cdev);
1603 
1604 	return 0;
1605 }
1606 
m_can_start(struct net_device * dev)1607 static int m_can_start(struct net_device *dev)
1608 {
1609 	struct m_can_classdev *cdev = netdev_priv(dev);
1610 	int ret;
1611 
1612 	/* basic m_can configuration */
1613 	ret = m_can_chip_config(dev);
1614 	if (ret)
1615 		return ret;
1616 
1617 	netdev_queue_set_dql_min_limit(netdev_get_tx_queue(cdev->net, 0),
1618 				       cdev->tx_max_coalesced_frames);
1619 
1620 	cdev->can.state = m_can_state_get_by_psr(cdev);
1621 
1622 	m_can_enable_all_interrupts(cdev);
1623 
1624 	if (cdev->version > 30)
1625 		cdev->tx_fifo_putidx = FIELD_GET(TXFQS_TFQPI_MASK,
1626 						 m_can_read(cdev, M_CAN_TXFQS));
1627 
1628 	ret = m_can_cccr_update_bits(cdev, CCCR_INIT, 0);
1629 	if (ret)
1630 		netdev_err(dev, "failed to enter normal mode\n");
1631 
1632 	return ret;
1633 }
1634 
m_can_set_mode(struct net_device * dev,enum can_mode mode)1635 static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1636 {
1637 	switch (mode) {
1638 	case CAN_MODE_START:
1639 		m_can_clean(dev);
1640 		m_can_start(dev);
1641 		netif_wake_queue(dev);
1642 		break;
1643 	default:
1644 		return -EOPNOTSUPP;
1645 	}
1646 
1647 	return 0;
1648 }
1649 
1650 /* Checks core release number of M_CAN
1651  * returns 0 if an unsupported device is detected
1652  * else it returns the release and step coded as:
1653  * return value = 10 * <release> + 1 * <step>
1654  */
m_can_check_core_release(struct m_can_classdev * cdev)1655 static int m_can_check_core_release(struct m_can_classdev *cdev)
1656 {
1657 	u32 crel_reg;
1658 	u8 rel;
1659 	u8 step;
1660 	int res;
1661 
1662 	/* Read Core Release Version and split into version number
1663 	 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1664 	 */
1665 	crel_reg = m_can_read(cdev, M_CAN_CREL);
1666 	rel = (u8)FIELD_GET(CREL_REL_MASK, crel_reg);
1667 	step = (u8)FIELD_GET(CREL_STEP_MASK, crel_reg);
1668 
1669 	if (rel == 3) {
1670 		/* M_CAN v3.x.y: create return value */
1671 		res = 30 + step;
1672 	} else {
1673 		/* Unsupported M_CAN version */
1674 		res = 0;
1675 	}
1676 
1677 	return res;
1678 }
1679 
1680 /* Selectable Non ISO support only in version 3.2.x
1681  * Return 1 if the bit is writable, 0 if it is not, or negative on error.
1682  */
m_can_niso_supported(struct m_can_classdev * cdev)1683 static int m_can_niso_supported(struct m_can_classdev *cdev)
1684 {
1685 	int ret, niso;
1686 
1687 	ret = m_can_config_enable(cdev);
1688 	if (ret)
1689 		return ret;
1690 
1691 	/* First try to set the NISO bit. */
1692 	niso = m_can_cccr_update_bits(cdev, CCCR_NISO, CCCR_NISO);
1693 
1694 	/* Then clear the it again. */
1695 	ret = m_can_cccr_update_bits(cdev, CCCR_NISO, 0);
1696 	if (ret) {
1697 		dev_err(cdev->dev, "failed to revert the NON-ISO bit in CCCR\n");
1698 		return ret;
1699 	}
1700 
1701 	ret = m_can_config_disable(cdev);
1702 	if (ret)
1703 		return ret;
1704 
1705 	return niso == 0;
1706 }
1707 
m_can_dev_setup(struct m_can_classdev * cdev)1708 static int m_can_dev_setup(struct m_can_classdev *cdev)
1709 {
1710 	struct net_device *dev = cdev->net;
1711 	int m_can_version, err, niso;
1712 
1713 	m_can_version = m_can_check_core_release(cdev);
1714 	/* return if unsupported version */
1715 	if (!m_can_version) {
1716 		dev_err(cdev->dev, "Unsupported version number: %2d",
1717 			m_can_version);
1718 		return -EINVAL;
1719 	}
1720 
1721 	/* Write the INIT bit, in case no hardware reset has happened before
1722 	 * the probe (for example, it was observed that the Intel Elkhart Lake
1723 	 * SoCs do not properly reset the CAN controllers on reboot)
1724 	 */
1725 	err = m_can_cccr_update_bits(cdev, CCCR_INIT, CCCR_INIT);
1726 	if (err)
1727 		return err;
1728 
1729 	if (!cdev->is_peripheral)
1730 		netif_napi_add(dev, &cdev->napi, m_can_poll);
1731 
1732 	/* Shared properties of all M_CAN versions */
1733 	cdev->version = m_can_version;
1734 	cdev->can.do_set_mode = m_can_set_mode;
1735 	cdev->can.do_get_berr_counter = m_can_get_berr_counter;
1736 
1737 	/* Set M_CAN supported operations */
1738 	cdev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1739 		CAN_CTRLMODE_LISTENONLY |
1740 		CAN_CTRLMODE_BERR_REPORTING |
1741 		CAN_CTRLMODE_FD |
1742 		CAN_CTRLMODE_ONE_SHOT;
1743 
1744 	/* Set properties depending on M_CAN version */
1745 	switch (cdev->version) {
1746 	case 30:
1747 		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1748 		err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1749 		if (err)
1750 			return err;
1751 		cdev->can.bittiming_const = &m_can_bittiming_const_30X;
1752 		cdev->can.fd.data_bittiming_const = &m_can_data_bittiming_const_30X;
1753 		break;
1754 	case 31:
1755 		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1756 		err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1757 		if (err)
1758 			return err;
1759 		cdev->can.bittiming_const = &m_can_bittiming_const_31X;
1760 		cdev->can.fd.data_bittiming_const = &m_can_data_bittiming_const_31X;
1761 		break;
1762 	case 32:
1763 	case 33:
1764 		/* Support both MCAN version v3.2.x and v3.3.0 */
1765 		cdev->can.bittiming_const = &m_can_bittiming_const_31X;
1766 		cdev->can.fd.data_bittiming_const = &m_can_data_bittiming_const_31X;
1767 
1768 		niso = m_can_niso_supported(cdev);
1769 		if (niso < 0)
1770 			return niso;
1771 		if (niso)
1772 			cdev->can.ctrlmode_supported |= CAN_CTRLMODE_FD_NON_ISO;
1773 		break;
1774 	default:
1775 		dev_err(cdev->dev, "Unsupported version number: %2d",
1776 			cdev->version);
1777 		return -EINVAL;
1778 	}
1779 
1780 	return 0;
1781 }
1782 
m_can_stop(struct net_device * dev)1783 static void m_can_stop(struct net_device *dev)
1784 {
1785 	struct m_can_classdev *cdev = netdev_priv(dev);
1786 	int ret;
1787 
1788 	/* disable all interrupts */
1789 	m_can_disable_all_interrupts(cdev);
1790 
1791 	/* Set init mode to disengage from the network */
1792 	ret = m_can_cccr_update_bits(cdev, CCCR_INIT, CCCR_INIT);
1793 	if (ret)
1794 		netdev_err(dev, "failed to enter standby mode: %pe\n",
1795 			   ERR_PTR(ret));
1796 
1797 	/* set the state as STOPPED */
1798 	cdev->can.state = CAN_STATE_STOPPED;
1799 
1800 	if (cdev->ops->deinit) {
1801 		ret = cdev->ops->deinit(cdev);
1802 		if (ret)
1803 			netdev_err(dev, "failed to deinitialize: %pe\n",
1804 				   ERR_PTR(ret));
1805 	}
1806 }
1807 
m_can_close(struct net_device * dev)1808 static int m_can_close(struct net_device *dev)
1809 {
1810 	struct m_can_classdev *cdev = netdev_priv(dev);
1811 
1812 	netif_stop_queue(dev);
1813 
1814 	m_can_stop(dev);
1815 	if (dev->irq)
1816 		free_irq(dev->irq, dev);
1817 
1818 	m_can_clean(dev);
1819 
1820 	if (cdev->is_peripheral) {
1821 		destroy_workqueue(cdev->tx_wq);
1822 		cdev->tx_wq = NULL;
1823 		can_rx_offload_disable(&cdev->offload);
1824 	} else {
1825 		napi_disable(&cdev->napi);
1826 	}
1827 
1828 	close_candev(dev);
1829 
1830 	m_can_clk_stop(cdev);
1831 	phy_power_off(cdev->transceiver);
1832 
1833 	return 0;
1834 }
1835 
m_can_tx_handler(struct m_can_classdev * cdev,struct sk_buff * skb)1836 static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev,
1837 				    struct sk_buff *skb)
1838 {
1839 	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1840 	u8 len_padded = DIV_ROUND_UP(cf->len, 4);
1841 	struct m_can_fifo_element fifo_element;
1842 	struct net_device *dev = cdev->net;
1843 	u32 cccr, fdflags;
1844 	int err;
1845 	u32 putidx;
1846 	unsigned int frame_len = can_skb_get_frame_len(skb);
1847 
1848 	/* Generate ID field for TX buffer Element */
1849 	/* Common to all supported M_CAN versions */
1850 	if (cf->can_id & CAN_EFF_FLAG) {
1851 		fifo_element.id = cf->can_id & CAN_EFF_MASK;
1852 		fifo_element.id |= TX_BUF_XTD;
1853 	} else {
1854 		fifo_element.id = ((cf->can_id & CAN_SFF_MASK) << 18);
1855 	}
1856 
1857 	if (cf->can_id & CAN_RTR_FLAG)
1858 		fifo_element.id |= TX_BUF_RTR;
1859 
1860 	if (cdev->version == 30) {
1861 		netif_stop_queue(dev);
1862 
1863 		fifo_element.dlc = can_fd_len2dlc(cf->len) << 16;
1864 
1865 		/* Write the frame ID, DLC, and payload to the FIFO element. */
1866 		err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, &fifo_element, 2);
1867 		if (err)
1868 			goto out_fail;
1869 
1870 		err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_DATA,
1871 				       cf->data, len_padded);
1872 		if (err)
1873 			goto out_fail;
1874 
1875 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1876 			cccr = m_can_read(cdev, M_CAN_CCCR);
1877 			cccr &= ~CCCR_CMR_MASK;
1878 			if (can_is_canfd_skb(skb)) {
1879 				if (cf->flags & CANFD_BRS)
1880 					cccr |= FIELD_PREP(CCCR_CMR_MASK,
1881 							   CCCR_CMR_CANFD_BRS);
1882 				else
1883 					cccr |= FIELD_PREP(CCCR_CMR_MASK,
1884 							   CCCR_CMR_CANFD);
1885 			} else {
1886 				cccr |= FIELD_PREP(CCCR_CMR_MASK, CCCR_CMR_CAN);
1887 			}
1888 			m_can_write(cdev, M_CAN_CCCR, cccr);
1889 		}
1890 		m_can_write(cdev, M_CAN_TXBTIE, 0x1);
1891 
1892 		can_put_echo_skb(skb, dev, 0, frame_len);
1893 
1894 		m_can_write(cdev, M_CAN_TXBAR, 0x1);
1895 		/* End of xmit function for version 3.0.x */
1896 	} else {
1897 		/* Transmit routine for version >= v3.1.x */
1898 
1899 		/* get put index for frame */
1900 		putidx = cdev->tx_fifo_putidx;
1901 
1902 		/* Construct DLC Field, with CAN-FD configuration.
1903 		 * Use the put index of the fifo as the message marker,
1904 		 * used in the TX interrupt for sending the correct echo frame.
1905 		 */
1906 
1907 		/* get CAN FD configuration of frame */
1908 		fdflags = 0;
1909 		if (can_is_canfd_skb(skb)) {
1910 			fdflags |= TX_BUF_FDF;
1911 			if (cf->flags & CANFD_BRS)
1912 				fdflags |= TX_BUF_BRS;
1913 		}
1914 
1915 		fifo_element.dlc = FIELD_PREP(TX_BUF_MM_MASK, putidx) |
1916 			FIELD_PREP(TX_BUF_DLC_MASK, can_fd_len2dlc(cf->len)) |
1917 			fdflags | TX_BUF_EFC;
1918 
1919 		memcpy_and_pad(fifo_element.data, CANFD_MAX_DLEN, &cf->data,
1920 			       cf->len, 0);
1921 
1922 		err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID,
1923 				       &fifo_element, 2 + len_padded);
1924 		if (err)
1925 			goto out_fail;
1926 
1927 		/* Push loopback echo.
1928 		 * Will be looped back on TX interrupt based on message marker
1929 		 */
1930 		can_put_echo_skb(skb, dev, putidx, frame_len);
1931 
1932 		if (cdev->is_peripheral) {
1933 			/* Delay enabling TX FIFO element */
1934 			cdev->tx_peripheral_submit |= BIT(putidx);
1935 		} else {
1936 			/* Enable TX FIFO element to start transfer  */
1937 			m_can_write(cdev, M_CAN_TXBAR, BIT(putidx));
1938 		}
1939 		cdev->tx_fifo_putidx = (++cdev->tx_fifo_putidx >= cdev->can.echo_skb_max ?
1940 					0 : cdev->tx_fifo_putidx);
1941 	}
1942 
1943 	return NETDEV_TX_OK;
1944 
1945 out_fail:
1946 	netdev_err(dev, "FIFO write returned %d\n", err);
1947 	m_can_disable_all_interrupts(cdev);
1948 	return NETDEV_TX_BUSY;
1949 }
1950 
m_can_tx_submit(struct m_can_classdev * cdev)1951 static void m_can_tx_submit(struct m_can_classdev *cdev)
1952 {
1953 	if (cdev->version == 30)
1954 		return;
1955 	if (!cdev->is_peripheral)
1956 		return;
1957 
1958 	m_can_write(cdev, M_CAN_TXBAR, cdev->tx_peripheral_submit);
1959 	cdev->tx_peripheral_submit = 0;
1960 }
1961 
m_can_tx_work_queue(struct work_struct * ws)1962 static void m_can_tx_work_queue(struct work_struct *ws)
1963 {
1964 	struct m_can_tx_op *op = container_of(ws, struct m_can_tx_op, work);
1965 	struct m_can_classdev *cdev = op->cdev;
1966 	struct sk_buff *skb = op->skb;
1967 
1968 	op->skb = NULL;
1969 	m_can_tx_handler(cdev, skb);
1970 	if (op->submit)
1971 		m_can_tx_submit(cdev);
1972 }
1973 
m_can_tx_queue_skb(struct m_can_classdev * cdev,struct sk_buff * skb,bool submit)1974 static void m_can_tx_queue_skb(struct m_can_classdev *cdev, struct sk_buff *skb,
1975 			       bool submit)
1976 {
1977 	cdev->tx_ops[cdev->next_tx_op].skb = skb;
1978 	cdev->tx_ops[cdev->next_tx_op].submit = submit;
1979 	queue_work(cdev->tx_wq, &cdev->tx_ops[cdev->next_tx_op].work);
1980 
1981 	++cdev->next_tx_op;
1982 	if (cdev->next_tx_op >= cdev->tx_fifo_size)
1983 		cdev->next_tx_op = 0;
1984 }
1985 
m_can_start_peripheral_xmit(struct m_can_classdev * cdev,struct sk_buff * skb)1986 static netdev_tx_t m_can_start_peripheral_xmit(struct m_can_classdev *cdev,
1987 					       struct sk_buff *skb)
1988 {
1989 	bool submit;
1990 
1991 	++cdev->nr_txs_without_submit;
1992 	if (cdev->nr_txs_without_submit >= cdev->tx_max_coalesced_frames ||
1993 	    !netdev_xmit_more()) {
1994 		cdev->nr_txs_without_submit = 0;
1995 		submit = true;
1996 	} else {
1997 		submit = false;
1998 	}
1999 	m_can_tx_queue_skb(cdev, skb, submit);
2000 
2001 	return NETDEV_TX_OK;
2002 }
2003 
m_can_start_xmit(struct sk_buff * skb,struct net_device * dev)2004 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
2005 				    struct net_device *dev)
2006 {
2007 	struct m_can_classdev *cdev = netdev_priv(dev);
2008 	unsigned int frame_len;
2009 	netdev_tx_t ret;
2010 
2011 	if (can_dev_dropped_skb(dev, skb))
2012 		return NETDEV_TX_OK;
2013 
2014 	frame_len = can_skb_get_frame_len(skb);
2015 
2016 	if (cdev->can.state == CAN_STATE_BUS_OFF) {
2017 		m_can_clean(cdev->net);
2018 		return NETDEV_TX_OK;
2019 	}
2020 
2021 	ret = m_can_start_tx(cdev);
2022 	if (ret != NETDEV_TX_OK)
2023 		return ret;
2024 
2025 	netdev_sent_queue(dev, frame_len);
2026 
2027 	if (cdev->is_peripheral)
2028 		ret = m_can_start_peripheral_xmit(cdev, skb);
2029 	else
2030 		ret = m_can_tx_handler(cdev, skb);
2031 
2032 	if (ret != NETDEV_TX_OK)
2033 		netdev_completed_queue(dev, 1, frame_len);
2034 
2035 	return ret;
2036 }
2037 
hrtimer_callback(struct hrtimer * timer)2038 static enum hrtimer_restart hrtimer_callback(struct hrtimer *timer)
2039 {
2040 	struct m_can_classdev *cdev = container_of(timer, struct
2041 						   m_can_classdev, hrtimer);
2042 	int ret;
2043 
2044 	if (cdev->can.state == CAN_STATE_BUS_OFF ||
2045 	    cdev->can.state == CAN_STATE_STOPPED)
2046 		return HRTIMER_NORESTART;
2047 
2048 	ret = m_can_interrupt_handler(cdev);
2049 
2050 	/* On error or if napi is scheduled to read, stop the timer */
2051 	if (ret < 0 || napi_is_scheduled(&cdev->napi))
2052 		return HRTIMER_NORESTART;
2053 
2054 	hrtimer_forward_now(timer, ms_to_ktime(HRTIMER_POLL_INTERVAL_MS));
2055 
2056 	return HRTIMER_RESTART;
2057 }
2058 
m_can_open(struct net_device * dev)2059 static int m_can_open(struct net_device *dev)
2060 {
2061 	struct m_can_classdev *cdev = netdev_priv(dev);
2062 	int err;
2063 
2064 	err = phy_power_on(cdev->transceiver);
2065 	if (err)
2066 		return err;
2067 
2068 	err = m_can_clk_start(cdev);
2069 	if (err)
2070 		goto out_phy_power_off;
2071 
2072 	/* open the can device */
2073 	err = open_candev(dev);
2074 	if (err) {
2075 		netdev_err(dev, "failed to open can device\n");
2076 		goto exit_disable_clks;
2077 	}
2078 
2079 	if (cdev->is_peripheral)
2080 		can_rx_offload_enable(&cdev->offload);
2081 	else
2082 		napi_enable(&cdev->napi);
2083 
2084 	/* register interrupt handler */
2085 	if (cdev->is_peripheral) {
2086 		cdev->tx_wq = alloc_ordered_workqueue("mcan_wq",
2087 						      WQ_FREEZABLE | WQ_MEM_RECLAIM);
2088 		if (!cdev->tx_wq) {
2089 			err = -ENOMEM;
2090 			goto out_wq_fail;
2091 		}
2092 
2093 		for (int i = 0; i != cdev->tx_fifo_size; ++i) {
2094 			cdev->tx_ops[i].cdev = cdev;
2095 			INIT_WORK(&cdev->tx_ops[i].work, m_can_tx_work_queue);
2096 		}
2097 
2098 		err = request_threaded_irq(dev->irq, NULL, m_can_isr,
2099 					   IRQF_ONESHOT,
2100 					   dev->name, dev);
2101 	} else if (dev->irq) {
2102 		err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
2103 				  dev);
2104 	}
2105 
2106 	if (err < 0) {
2107 		netdev_err(dev, "failed to request interrupt\n");
2108 		goto exit_irq_fail;
2109 	}
2110 
2111 	/* start the m_can controller */
2112 	err = m_can_start(dev);
2113 	if (err)
2114 		goto exit_start_fail;
2115 
2116 	netif_start_queue(dev);
2117 
2118 	return 0;
2119 
2120 exit_start_fail:
2121 	if (cdev->is_peripheral || dev->irq)
2122 		free_irq(dev->irq, dev);
2123 exit_irq_fail:
2124 	if (cdev->is_peripheral)
2125 		destroy_workqueue(cdev->tx_wq);
2126 out_wq_fail:
2127 	if (cdev->is_peripheral)
2128 		can_rx_offload_disable(&cdev->offload);
2129 	else
2130 		napi_disable(&cdev->napi);
2131 	close_candev(dev);
2132 exit_disable_clks:
2133 	m_can_clk_stop(cdev);
2134 out_phy_power_off:
2135 	phy_power_off(cdev->transceiver);
2136 	return err;
2137 }
2138 
2139 static const struct net_device_ops m_can_netdev_ops = {
2140 	.ndo_open = m_can_open,
2141 	.ndo_stop = m_can_close,
2142 	.ndo_start_xmit = m_can_start_xmit,
2143 	.ndo_change_mtu = can_change_mtu,
2144 };
2145 
m_can_get_coalesce(struct net_device * dev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kec,struct netlink_ext_ack * ext_ack)2146 static int m_can_get_coalesce(struct net_device *dev,
2147 			      struct ethtool_coalesce *ec,
2148 			      struct kernel_ethtool_coalesce *kec,
2149 			      struct netlink_ext_ack *ext_ack)
2150 {
2151 	struct m_can_classdev *cdev = netdev_priv(dev);
2152 
2153 	ec->rx_max_coalesced_frames_irq = cdev->rx_max_coalesced_frames_irq;
2154 	ec->rx_coalesce_usecs_irq = cdev->rx_coalesce_usecs_irq;
2155 	ec->tx_max_coalesced_frames = cdev->tx_max_coalesced_frames;
2156 	ec->tx_max_coalesced_frames_irq = cdev->tx_max_coalesced_frames_irq;
2157 	ec->tx_coalesce_usecs_irq = cdev->tx_coalesce_usecs_irq;
2158 
2159 	return 0;
2160 }
2161 
m_can_set_coalesce(struct net_device * dev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kec,struct netlink_ext_ack * ext_ack)2162 static int m_can_set_coalesce(struct net_device *dev,
2163 			      struct ethtool_coalesce *ec,
2164 			      struct kernel_ethtool_coalesce *kec,
2165 			      struct netlink_ext_ack *ext_ack)
2166 {
2167 	struct m_can_classdev *cdev = netdev_priv(dev);
2168 
2169 	if (cdev->can.state != CAN_STATE_STOPPED) {
2170 		netdev_err(dev, "Device is in use, please shut it down first\n");
2171 		return -EBUSY;
2172 	}
2173 
2174 	if (ec->rx_max_coalesced_frames_irq > cdev->mcfg[MRAM_RXF0].num) {
2175 		netdev_err(dev, "rx-frames-irq %u greater than the RX FIFO %u\n",
2176 			   ec->rx_max_coalesced_frames_irq,
2177 			   cdev->mcfg[MRAM_RXF0].num);
2178 		return -EINVAL;
2179 	}
2180 	if ((ec->rx_max_coalesced_frames_irq == 0) != (ec->rx_coalesce_usecs_irq == 0)) {
2181 		netdev_err(dev, "rx-frames-irq and rx-usecs-irq can only be set together\n");
2182 		return -EINVAL;
2183 	}
2184 	if (ec->tx_max_coalesced_frames_irq > cdev->mcfg[MRAM_TXE].num) {
2185 		netdev_err(dev, "tx-frames-irq %u greater than the TX event FIFO %u\n",
2186 			   ec->tx_max_coalesced_frames_irq,
2187 			   cdev->mcfg[MRAM_TXE].num);
2188 		return -EINVAL;
2189 	}
2190 	if (ec->tx_max_coalesced_frames_irq > cdev->mcfg[MRAM_TXB].num) {
2191 		netdev_err(dev, "tx-frames-irq %u greater than the TX FIFO %u\n",
2192 			   ec->tx_max_coalesced_frames_irq,
2193 			   cdev->mcfg[MRAM_TXB].num);
2194 		return -EINVAL;
2195 	}
2196 	if ((ec->tx_max_coalesced_frames_irq == 0) != (ec->tx_coalesce_usecs_irq == 0)) {
2197 		netdev_err(dev, "tx-frames-irq and tx-usecs-irq can only be set together\n");
2198 		return -EINVAL;
2199 	}
2200 	if (ec->tx_max_coalesced_frames > cdev->mcfg[MRAM_TXE].num) {
2201 		netdev_err(dev, "tx-frames %u greater than the TX event FIFO %u\n",
2202 			   ec->tx_max_coalesced_frames,
2203 			   cdev->mcfg[MRAM_TXE].num);
2204 		return -EINVAL;
2205 	}
2206 	if (ec->tx_max_coalesced_frames > cdev->mcfg[MRAM_TXB].num) {
2207 		netdev_err(dev, "tx-frames %u greater than the TX FIFO %u\n",
2208 			   ec->tx_max_coalesced_frames,
2209 			   cdev->mcfg[MRAM_TXB].num);
2210 		return -EINVAL;
2211 	}
2212 	if (ec->rx_coalesce_usecs_irq != 0 && ec->tx_coalesce_usecs_irq != 0 &&
2213 	    ec->rx_coalesce_usecs_irq != ec->tx_coalesce_usecs_irq) {
2214 		netdev_err(dev, "rx-usecs-irq %u needs to be equal to tx-usecs-irq %u if both are enabled\n",
2215 			   ec->rx_coalesce_usecs_irq,
2216 			   ec->tx_coalesce_usecs_irq);
2217 		return -EINVAL;
2218 	}
2219 
2220 	cdev->rx_max_coalesced_frames_irq = ec->rx_max_coalesced_frames_irq;
2221 	cdev->rx_coalesce_usecs_irq = ec->rx_coalesce_usecs_irq;
2222 	cdev->tx_max_coalesced_frames = ec->tx_max_coalesced_frames;
2223 	cdev->tx_max_coalesced_frames_irq = ec->tx_max_coalesced_frames_irq;
2224 	cdev->tx_coalesce_usecs_irq = ec->tx_coalesce_usecs_irq;
2225 
2226 	if (cdev->rx_coalesce_usecs_irq)
2227 		cdev->irq_timer_wait = us_to_ktime(cdev->rx_coalesce_usecs_irq);
2228 	else
2229 		cdev->irq_timer_wait = us_to_ktime(cdev->tx_coalesce_usecs_irq);
2230 
2231 	return 0;
2232 }
2233 
2234 static const struct ethtool_ops m_can_ethtool_ops_coalescing = {
2235 	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS_IRQ |
2236 		ETHTOOL_COALESCE_RX_MAX_FRAMES_IRQ |
2237 		ETHTOOL_COALESCE_TX_USECS_IRQ |
2238 		ETHTOOL_COALESCE_TX_MAX_FRAMES |
2239 		ETHTOOL_COALESCE_TX_MAX_FRAMES_IRQ,
2240 	.get_ts_info = ethtool_op_get_ts_info,
2241 	.get_coalesce = m_can_get_coalesce,
2242 	.set_coalesce = m_can_set_coalesce,
2243 };
2244 
2245 static const struct ethtool_ops m_can_ethtool_ops = {
2246 	.get_ts_info = ethtool_op_get_ts_info,
2247 };
2248 
register_m_can_dev(struct m_can_classdev * cdev)2249 static int register_m_can_dev(struct m_can_classdev *cdev)
2250 {
2251 	struct net_device *dev = cdev->net;
2252 
2253 	dev->flags |= IFF_ECHO;	/* we support local echo */
2254 	dev->netdev_ops = &m_can_netdev_ops;
2255 	if (dev->irq && cdev->is_peripheral)
2256 		dev->ethtool_ops = &m_can_ethtool_ops_coalescing;
2257 	else
2258 		dev->ethtool_ops = &m_can_ethtool_ops;
2259 
2260 	return register_candev(dev);
2261 }
2262 
m_can_check_mram_cfg(struct m_can_classdev * cdev,u32 mram_max_size)2263 int m_can_check_mram_cfg(struct m_can_classdev *cdev, u32 mram_max_size)
2264 {
2265 	u32 total_size;
2266 
2267 	total_size = cdev->mcfg[MRAM_TXB].off - cdev->mcfg[MRAM_SIDF].off +
2268 			cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
2269 	if (total_size > mram_max_size) {
2270 		dev_err(cdev->dev, "Total size of mram config(%u) exceeds mram(%u)\n",
2271 			total_size, mram_max_size);
2272 		return -EINVAL;
2273 	}
2274 
2275 	return 0;
2276 }
2277 EXPORT_SYMBOL_GPL(m_can_check_mram_cfg);
2278 
m_can_of_parse_mram(struct m_can_classdev * cdev,const u32 * mram_config_vals)2279 static void m_can_of_parse_mram(struct m_can_classdev *cdev,
2280 				const u32 *mram_config_vals)
2281 {
2282 	cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0];
2283 	cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1];
2284 	cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off +
2285 		cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
2286 	cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2];
2287 	cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off +
2288 		cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
2289 	cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
2290 		FIELD_MAX(RXFC_FS_MASK);
2291 	cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off +
2292 		cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
2293 	cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
2294 		FIELD_MAX(RXFC_FS_MASK);
2295 	cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off +
2296 		cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
2297 	cdev->mcfg[MRAM_RXB].num = mram_config_vals[5];
2298 	cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off +
2299 		cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
2300 	cdev->mcfg[MRAM_TXE].num = mram_config_vals[6];
2301 	cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off +
2302 		cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
2303 	cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] &
2304 		FIELD_MAX(TXBC_NDTB_MASK);
2305 
2306 	dev_dbg(cdev->dev,
2307 		"sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
2308 		cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num,
2309 		cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num,
2310 		cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num,
2311 		cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num,
2312 		cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num,
2313 		cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num,
2314 		cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num);
2315 }
2316 
m_can_init_ram(struct m_can_classdev * cdev)2317 int m_can_init_ram(struct m_can_classdev *cdev)
2318 {
2319 	int end, i, start;
2320 	int err = 0;
2321 
2322 	/* initialize the entire Message RAM in use to avoid possible
2323 	 * ECC/parity checksum errors when reading an uninitialized buffer
2324 	 */
2325 	start = cdev->mcfg[MRAM_SIDF].off;
2326 	end = cdev->mcfg[MRAM_TXB].off +
2327 		cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
2328 
2329 	for (i = start; i < end; i += 4) {
2330 		err = m_can_fifo_write_no_off(cdev, i, 0x0);
2331 		if (err)
2332 			break;
2333 	}
2334 
2335 	return err;
2336 }
2337 EXPORT_SYMBOL_GPL(m_can_init_ram);
2338 
m_can_class_get_clocks(struct m_can_classdev * cdev)2339 int m_can_class_get_clocks(struct m_can_classdev *cdev)
2340 {
2341 	int ret = 0;
2342 
2343 	cdev->hclk = devm_clk_get(cdev->dev, "hclk");
2344 	cdev->cclk = devm_clk_get(cdev->dev, "cclk");
2345 
2346 	if (IS_ERR(cdev->hclk) || IS_ERR(cdev->cclk)) {
2347 		dev_err(cdev->dev, "no clock found\n");
2348 		ret = -ENODEV;
2349 	}
2350 
2351 	return ret;
2352 }
2353 EXPORT_SYMBOL_GPL(m_can_class_get_clocks);
2354 
m_can_class_allocate_dev(struct device * dev,int sizeof_priv)2355 struct m_can_classdev *m_can_class_allocate_dev(struct device *dev,
2356 						int sizeof_priv)
2357 {
2358 	struct m_can_classdev *class_dev = NULL;
2359 	u32 mram_config_vals[MRAM_CFG_LEN];
2360 	struct net_device *net_dev;
2361 	u32 tx_fifo_size;
2362 	int ret;
2363 
2364 	ret = fwnode_property_read_u32_array(dev_fwnode(dev),
2365 					     "bosch,mram-cfg",
2366 					     mram_config_vals,
2367 					     sizeof(mram_config_vals) / 4);
2368 	if (ret) {
2369 		dev_err(dev, "Could not get Message RAM configuration.");
2370 		goto out;
2371 	}
2372 
2373 	/* Get TX FIFO size
2374 	 * Defines the total amount of echo buffers for loopback
2375 	 */
2376 	tx_fifo_size = mram_config_vals[7];
2377 
2378 	/* allocate the m_can device */
2379 	net_dev = alloc_candev(sizeof_priv, tx_fifo_size);
2380 	if (!net_dev) {
2381 		dev_err(dev, "Failed to allocate CAN device");
2382 		goto out;
2383 	}
2384 
2385 	class_dev = netdev_priv(net_dev);
2386 	class_dev->net = net_dev;
2387 	class_dev->dev = dev;
2388 	SET_NETDEV_DEV(net_dev, dev);
2389 
2390 	m_can_of_parse_mram(class_dev, mram_config_vals);
2391 	spin_lock_init(&class_dev->tx_handling_spinlock);
2392 out:
2393 	return class_dev;
2394 }
2395 EXPORT_SYMBOL_GPL(m_can_class_allocate_dev);
2396 
m_can_class_free_dev(struct net_device * net)2397 void m_can_class_free_dev(struct net_device *net)
2398 {
2399 	free_candev(net);
2400 }
2401 EXPORT_SYMBOL_GPL(m_can_class_free_dev);
2402 
m_can_class_register(struct m_can_classdev * cdev)2403 int m_can_class_register(struct m_can_classdev *cdev)
2404 {
2405 	int ret;
2406 
2407 	cdev->tx_fifo_size = max(1, min(cdev->mcfg[MRAM_TXB].num,
2408 					cdev->mcfg[MRAM_TXE].num));
2409 	if (cdev->is_peripheral) {
2410 		cdev->tx_ops =
2411 			devm_kzalloc(cdev->dev,
2412 				     cdev->tx_fifo_size * sizeof(*cdev->tx_ops),
2413 				     GFP_KERNEL);
2414 		if (!cdev->tx_ops) {
2415 			dev_err(cdev->dev, "Failed to allocate tx_ops for workqueue\n");
2416 			return -ENOMEM;
2417 		}
2418 	}
2419 
2420 	ret = m_can_clk_start(cdev);
2421 	if (ret)
2422 		return ret;
2423 
2424 	if (cdev->is_peripheral) {
2425 		ret = can_rx_offload_add_manual(cdev->net, &cdev->offload,
2426 						NAPI_POLL_WEIGHT);
2427 		if (ret)
2428 			goto clk_disable;
2429 	}
2430 
2431 	if (!cdev->net->irq) {
2432 		dev_dbg(cdev->dev, "Polling enabled, initialize hrtimer");
2433 		hrtimer_setup(&cdev->hrtimer, &hrtimer_callback, CLOCK_MONOTONIC,
2434 			      HRTIMER_MODE_REL_PINNED);
2435 	} else {
2436 		hrtimer_setup(&cdev->hrtimer, m_can_coalescing_timer, CLOCK_MONOTONIC,
2437 			      HRTIMER_MODE_REL);
2438 	}
2439 
2440 	ret = m_can_dev_setup(cdev);
2441 	if (ret)
2442 		goto rx_offload_del;
2443 
2444 	ret = register_m_can_dev(cdev);
2445 	if (ret) {
2446 		dev_err(cdev->dev, "registering %s failed (err=%d)\n",
2447 			cdev->net->name, ret);
2448 		goto rx_offload_del;
2449 	}
2450 
2451 	of_can_transceiver(cdev->net);
2452 
2453 	dev_info(cdev->dev, "%s device registered (irq=%d, version=%d)\n",
2454 		 KBUILD_MODNAME, cdev->net->irq, cdev->version);
2455 
2456 	/* Probe finished
2457 	 * Stop clocks. They will be reactivated once the M_CAN device is opened
2458 	 */
2459 	m_can_clk_stop(cdev);
2460 
2461 	return 0;
2462 
2463 rx_offload_del:
2464 	if (cdev->is_peripheral)
2465 		can_rx_offload_del(&cdev->offload);
2466 clk_disable:
2467 	m_can_clk_stop(cdev);
2468 
2469 	return ret;
2470 }
2471 EXPORT_SYMBOL_GPL(m_can_class_register);
2472 
m_can_class_unregister(struct m_can_classdev * cdev)2473 void m_can_class_unregister(struct m_can_classdev *cdev)
2474 {
2475 	unregister_candev(cdev->net);
2476 	if (cdev->is_peripheral)
2477 		can_rx_offload_del(&cdev->offload);
2478 }
2479 EXPORT_SYMBOL_GPL(m_can_class_unregister);
2480 
m_can_class_suspend(struct device * dev)2481 int m_can_class_suspend(struct device *dev)
2482 {
2483 	struct m_can_classdev *cdev = dev_get_drvdata(dev);
2484 	struct net_device *ndev = cdev->net;
2485 	int ret = 0;
2486 
2487 	if (netif_running(ndev)) {
2488 		netif_stop_queue(ndev);
2489 		netif_device_detach(ndev);
2490 
2491 		/* leave the chip running with rx interrupt enabled if it is
2492 		 * used as a wake-up source. Coalescing needs to be reset then,
2493 		 * the timer is cancelled here, interrupts are done in resume.
2494 		 */
2495 		if (cdev->pm_wake_source) {
2496 			hrtimer_cancel(&cdev->hrtimer);
2497 			m_can_write(cdev, M_CAN_IE, IR_RF0N);
2498 
2499 			if (cdev->ops->deinit)
2500 				ret = cdev->ops->deinit(cdev);
2501 		} else {
2502 			m_can_stop(ndev);
2503 		}
2504 
2505 		m_can_clk_stop(cdev);
2506 		cdev->can.state = CAN_STATE_SLEEPING;
2507 	}
2508 
2509 	pinctrl_pm_select_sleep_state(dev);
2510 
2511 	return ret;
2512 }
2513 EXPORT_SYMBOL_GPL(m_can_class_suspend);
2514 
m_can_class_resume(struct device * dev)2515 int m_can_class_resume(struct device *dev)
2516 {
2517 	struct m_can_classdev *cdev = dev_get_drvdata(dev);
2518 	struct net_device *ndev = cdev->net;
2519 	int ret = 0;
2520 
2521 	pinctrl_pm_select_default_state(dev);
2522 
2523 	if (netif_running(ndev)) {
2524 		ret = m_can_clk_start(cdev);
2525 		if (ret)
2526 			return ret;
2527 
2528 		if (cdev->pm_wake_source) {
2529 			/* Restore active interrupts but disable coalescing as
2530 			 * we may have missed important waterlevel interrupts
2531 			 * between suspend and resume. Timers are already
2532 			 * stopped in suspend. Here we enable all interrupts
2533 			 * again.
2534 			 */
2535 			cdev->active_interrupts |= IR_RF0N | IR_TEFN;
2536 
2537 			if (cdev->ops->init)
2538 				ret = cdev->ops->init(cdev);
2539 
2540 			cdev->can.state = m_can_state_get_by_psr(cdev);
2541 
2542 			m_can_write(cdev, M_CAN_IE, cdev->active_interrupts);
2543 		} else {
2544 			ret  = m_can_start(ndev);
2545 			if (ret) {
2546 				m_can_clk_stop(cdev);
2547 				return ret;
2548 			}
2549 		}
2550 
2551 		netif_device_attach(ndev);
2552 		netif_start_queue(ndev);
2553 	}
2554 
2555 	return ret;
2556 }
2557 EXPORT_SYMBOL_GPL(m_can_class_resume);
2558 
2559 MODULE_AUTHOR("Dong Aisheng <aisheng.dong@nxp.com>");
2560 MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
2561 MODULE_LICENSE("GPL v2");
2562 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");
2563