xref: /linux/drivers/gpu/drm/xe/xe_pm.c (revision df02351331671abb26788bc13f6d276e26ae068f)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_pm.h"
7 
8 #include <linux/fault-inject.h>
9 #include <linux/pm_runtime.h>
10 #include <linux/suspend.h>
11 
12 #include <drm/drm_managed.h>
13 #include <drm/ttm/ttm_placement.h>
14 
15 #include "display/xe_display.h"
16 #include "xe_bo.h"
17 #include "xe_bo_evict.h"
18 #include "xe_device.h"
19 #include "xe_device_sysfs.h"
20 #include "xe_ggtt.h"
21 #include "xe_gt.h"
22 #include "xe_guc.h"
23 #include "xe_irq.h"
24 #include "xe_pcode.h"
25 #include "xe_pxp.h"
26 #include "xe_trace.h"
27 #include "xe_wa.h"
28 
29 /**
30  * DOC: Xe Power Management
31  *
32  * Xe PM implements the main routines for both system level suspend states and
33  * for the opportunistic runtime suspend states.
34  *
35  * System Level Suspend (S-States) - In general this is OS initiated suspend
36  * driven by ACPI for achieving S0ix (a.k.a. S2idle, freeze), S3 (suspend to ram),
37  * S4 (disk). The main functions here are `xe_pm_suspend` and `xe_pm_resume`. They
38  * are the main point for the suspend to and resume from these states.
39  *
40  * PCI Device Suspend (D-States) - This is the opportunistic PCIe device low power
41  * state D3, controlled by the PCI subsystem and ACPI with the help from the
42  * runtime_pm infrastructure.
43  * PCI D3 is special and can mean D3hot, where Vcc power is on for keeping memory
44  * alive and quicker low latency resume or D3Cold where Vcc power is off for
45  * better power savings.
46  * The Vcc control of PCI hierarchy can only be controlled at the PCI root port
47  * level, while the device driver can be behind multiple bridges/switches and
48  * paired with other devices. For this reason, the PCI subsystem cannot perform
49  * the transition towards D3Cold. The lowest runtime PM possible from the PCI
50  * subsystem is D3hot. Then, if all these paired devices in the same root port
51  * are in D3hot, ACPI will assist here and run its own methods (_PR3 and _OFF)
52  * to perform the transition from D3hot to D3cold. Xe may disallow this
53  * transition by calling pci_d3cold_disable(root_pdev) before going to runtime
54  * suspend. It will be based on runtime conditions such as VRAM usage for a
55  * quick and low latency resume for instance.
56  *
57  * Runtime PM - This infrastructure provided by the Linux kernel allows the
58  * device drivers to indicate when the can be runtime suspended, so the device
59  * could be put at D3 (if supported), or allow deeper package sleep states
60  * (PC-states), and/or other low level power states. Xe PM component provides
61  * `xe_pm_runtime_suspend` and `xe_pm_runtime_resume` functions that PCI
62  * subsystem will call before transition to/from runtime suspend.
63  *
64  * Also, Xe PM provides get and put functions that Xe driver will use to
65  * indicate activity. In order to avoid locking complications with the memory
66  * management, whenever possible, these get and put functions needs to be called
67  * from the higher/outer levels.
68  * The main cases that need to be protected from the outer levels are: IOCTL,
69  * sysfs, debugfs, dma-buf sharing, GPU execution.
70  *
71  * This component is not responsible for GT idleness (RC6) nor GT frequency
72  * management (RPS).
73  */
74 
75 #ifdef CONFIG_LOCKDEP
76 static struct lockdep_map xe_pm_runtime_d3cold_map = {
77 	.name = "xe_rpm_d3cold_map"
78 };
79 
80 static struct lockdep_map xe_pm_runtime_nod3cold_map = {
81 	.name = "xe_rpm_nod3cold_map"
82 };
83 #endif
84 
85 /**
86  * xe_rpm_reclaim_safe() - Whether runtime resume can be done from reclaim context
87  * @xe: The xe device.
88  *
89  * Return: true if it is safe to runtime resume from reclaim context.
90  * false otherwise.
91  */
xe_rpm_reclaim_safe(const struct xe_device * xe)92 bool xe_rpm_reclaim_safe(const struct xe_device *xe)
93 {
94 	return !xe->d3cold.capable;
95 }
96 
xe_rpm_lockmap_acquire(const struct xe_device * xe)97 static void xe_rpm_lockmap_acquire(const struct xe_device *xe)
98 {
99 	lock_map_acquire(xe_rpm_reclaim_safe(xe) ?
100 			 &xe_pm_runtime_nod3cold_map :
101 			 &xe_pm_runtime_d3cold_map);
102 }
103 
xe_rpm_lockmap_release(const struct xe_device * xe)104 static void xe_rpm_lockmap_release(const struct xe_device *xe)
105 {
106 	lock_map_release(xe_rpm_reclaim_safe(xe) ?
107 			 &xe_pm_runtime_nod3cold_map :
108 			 &xe_pm_runtime_d3cold_map);
109 }
110 
111 /**
112  * xe_pm_suspend - Helper for System suspend, i.e. S0->S3 / S0->S2idle
113  * @xe: xe device instance
114  *
115  * Return: 0 on success
116  */
xe_pm_suspend(struct xe_device * xe)117 int xe_pm_suspend(struct xe_device *xe)
118 {
119 	struct xe_gt *gt;
120 	u8 id;
121 	int err;
122 
123 	drm_dbg(&xe->drm, "Suspending device\n");
124 	trace_xe_pm_suspend(xe, __builtin_return_address(0));
125 
126 	err = xe_pxp_pm_suspend(xe->pxp);
127 	if (err)
128 		goto err;
129 
130 	for_each_gt(gt, xe, id)
131 		xe_gt_suspend_prepare(gt);
132 
133 	xe_display_pm_suspend(xe);
134 
135 	/* FIXME: Super racey... */
136 	err = xe_bo_evict_all(xe);
137 	if (err)
138 		goto err_pxp;
139 
140 	for_each_gt(gt, xe, id) {
141 		err = xe_gt_suspend(gt);
142 		if (err)
143 			goto err_display;
144 	}
145 
146 	xe_irq_suspend(xe);
147 
148 	xe_display_pm_suspend_late(xe);
149 
150 	drm_dbg(&xe->drm, "Device suspended\n");
151 	return 0;
152 
153 err_display:
154 	xe_display_pm_resume(xe);
155 err_pxp:
156 	xe_pxp_pm_resume(xe->pxp);
157 err:
158 	drm_dbg(&xe->drm, "Device suspend failed %d\n", err);
159 	return err;
160 }
161 
162 /**
163  * xe_pm_resume - Helper for System resume S3->S0 / S2idle->S0
164  * @xe: xe device instance
165  *
166  * Return: 0 on success
167  */
xe_pm_resume(struct xe_device * xe)168 int xe_pm_resume(struct xe_device *xe)
169 {
170 	struct xe_tile *tile;
171 	struct xe_gt *gt;
172 	u8 id;
173 	int err;
174 
175 	drm_dbg(&xe->drm, "Resuming device\n");
176 	trace_xe_pm_resume(xe, __builtin_return_address(0));
177 
178 	for_each_tile(tile, xe, id)
179 		xe_wa_apply_tile_workarounds(tile);
180 
181 	err = xe_pcode_ready(xe, true);
182 	if (err)
183 		return err;
184 
185 	xe_display_pm_resume_early(xe);
186 
187 	/*
188 	 * This only restores pinned memory which is the memory required for the
189 	 * GT(s) to resume.
190 	 */
191 	err = xe_bo_restore_kernel(xe);
192 	if (err)
193 		goto err;
194 
195 	xe_irq_resume(xe);
196 
197 	for_each_gt(gt, xe, id)
198 		xe_gt_resume(gt);
199 
200 	xe_display_pm_resume(xe);
201 
202 	err = xe_bo_restore_user(xe);
203 	if (err)
204 		goto err;
205 
206 	xe_pxp_pm_resume(xe->pxp);
207 
208 	drm_dbg(&xe->drm, "Device resumed\n");
209 	return 0;
210 err:
211 	drm_dbg(&xe->drm, "Device resume failed %d\n", err);
212 	return err;
213 }
214 
xe_pm_pci_d3cold_capable(struct xe_device * xe)215 static bool xe_pm_pci_d3cold_capable(struct xe_device *xe)
216 {
217 	struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
218 	struct pci_dev *root_pdev;
219 
220 	root_pdev = pcie_find_root_port(pdev);
221 	if (!root_pdev)
222 		return false;
223 
224 	/* D3Cold requires PME capability */
225 	if (!pci_pme_capable(root_pdev, PCI_D3cold)) {
226 		drm_dbg(&xe->drm, "d3cold: PME# not supported\n");
227 		return false;
228 	}
229 
230 	/* D3Cold requires _PR3 power resource */
231 	if (!pci_pr3_present(root_pdev)) {
232 		drm_dbg(&xe->drm, "d3cold: ACPI _PR3 not present\n");
233 		return false;
234 	}
235 
236 	return true;
237 }
238 
xe_pm_runtime_init(struct xe_device * xe)239 static void xe_pm_runtime_init(struct xe_device *xe)
240 {
241 	struct device *dev = xe->drm.dev;
242 
243 	/*
244 	 * Disable the system suspend direct complete optimization.
245 	 * We need to ensure that the regular device suspend/resume functions
246 	 * are called since our runtime_pm cannot guarantee local memory
247 	 * eviction for d3cold.
248 	 * TODO: Check HDA audio dependencies claimed by i915, and then enforce
249 	 *       this option to integrated graphics as well.
250 	 */
251 	if (IS_DGFX(xe))
252 		dev_pm_set_driver_flags(dev, DPM_FLAG_NO_DIRECT_COMPLETE);
253 
254 	pm_runtime_use_autosuspend(dev);
255 	pm_runtime_set_autosuspend_delay(dev, 1000);
256 	pm_runtime_set_active(dev);
257 	pm_runtime_allow(dev);
258 	pm_runtime_mark_last_busy(dev);
259 	pm_runtime_put(dev);
260 }
261 
xe_pm_init_early(struct xe_device * xe)262 int xe_pm_init_early(struct xe_device *xe)
263 {
264 	int err;
265 
266 	INIT_LIST_HEAD(&xe->mem_access.vram_userfault.list);
267 
268 	err = drmm_mutex_init(&xe->drm, &xe->mem_access.vram_userfault.lock);
269 	if (err)
270 		return err;
271 
272 	err = drmm_mutex_init(&xe->drm, &xe->d3cold.lock);
273 	if (err)
274 		return err;
275 
276 	return 0;
277 }
278 ALLOW_ERROR_INJECTION(xe_pm_init_early, ERRNO); /* See xe_pci_probe() */
279 
vram_threshold_value(struct xe_device * xe)280 static u32 vram_threshold_value(struct xe_device *xe)
281 {
282 	/* FIXME: D3Cold temporarily disabled by default on BMG */
283 	if (xe->info.platform == XE_BATTLEMAGE)
284 		return 0;
285 
286 	return DEFAULT_VRAM_THRESHOLD;
287 }
288 
289 /**
290  * xe_pm_init - Initialize Xe Power Management
291  * @xe: xe device instance
292  *
293  * This component is responsible for System and Device sleep states.
294  *
295  * Returns 0 for success, negative error code otherwise.
296  */
xe_pm_init(struct xe_device * xe)297 int xe_pm_init(struct xe_device *xe)
298 {
299 	u32 vram_threshold;
300 	int err;
301 
302 	/* For now suspend/resume is only allowed with GuC */
303 	if (!xe_device_uc_enabled(xe))
304 		return 0;
305 
306 	xe->d3cold.capable = xe_pm_pci_d3cold_capable(xe);
307 
308 	if (xe->d3cold.capable) {
309 		err = xe_device_sysfs_init(xe);
310 		if (err)
311 			return err;
312 
313 		vram_threshold = vram_threshold_value(xe);
314 		err = xe_pm_set_vram_threshold(xe, vram_threshold);
315 		if (err)
316 			return err;
317 	}
318 
319 	xe_pm_runtime_init(xe);
320 
321 	return 0;
322 }
323 
324 /**
325  * xe_pm_runtime_fini - Finalize Runtime PM
326  * @xe: xe device instance
327  */
xe_pm_runtime_fini(struct xe_device * xe)328 void xe_pm_runtime_fini(struct xe_device *xe)
329 {
330 	struct device *dev = xe->drm.dev;
331 
332 	pm_runtime_get_sync(dev);
333 	pm_runtime_forbid(dev);
334 }
335 
xe_pm_write_callback_task(struct xe_device * xe,struct task_struct * task)336 static void xe_pm_write_callback_task(struct xe_device *xe,
337 				      struct task_struct *task)
338 {
339 	WRITE_ONCE(xe->pm_callback_task, task);
340 
341 	/*
342 	 * Just in case it's somehow possible for our writes to be reordered to
343 	 * the extent that something else re-uses the task written in
344 	 * pm_callback_task. For example after returning from the callback, but
345 	 * before the reordered write that resets pm_callback_task back to NULL.
346 	 */
347 	smp_mb(); /* pairs with xe_pm_read_callback_task */
348 }
349 
xe_pm_read_callback_task(struct xe_device * xe)350 struct task_struct *xe_pm_read_callback_task(struct xe_device *xe)
351 {
352 	smp_mb(); /* pairs with xe_pm_write_callback_task */
353 
354 	return READ_ONCE(xe->pm_callback_task);
355 }
356 
357 /**
358  * xe_pm_runtime_suspended - Check if runtime_pm state is suspended
359  * @xe: xe device instance
360  *
361  * This does not provide any guarantee that the device is going to remain
362  * suspended as it might be racing with the runtime state transitions.
363  * It can be used only as a non-reliable assertion, to ensure that we are not in
364  * the sleep state while trying to access some memory for instance.
365  *
366  * Returns true if PCI device is suspended, false otherwise.
367  */
xe_pm_runtime_suspended(struct xe_device * xe)368 bool xe_pm_runtime_suspended(struct xe_device *xe)
369 {
370 	return pm_runtime_suspended(xe->drm.dev);
371 }
372 
373 /**
374  * xe_pm_runtime_suspend - Prepare our device for D3hot/D3Cold
375  * @xe: xe device instance
376  *
377  * Returns 0 for success, negative error code otherwise.
378  */
xe_pm_runtime_suspend(struct xe_device * xe)379 int xe_pm_runtime_suspend(struct xe_device *xe)
380 {
381 	struct xe_bo *bo, *on;
382 	struct xe_gt *gt;
383 	u8 id;
384 	int err = 0;
385 
386 	trace_xe_pm_runtime_suspend(xe, __builtin_return_address(0));
387 	/* Disable access_ongoing asserts and prevent recursive pm calls */
388 	xe_pm_write_callback_task(xe, current);
389 
390 	/*
391 	 * The actual xe_pm_runtime_put() is always async underneath, so
392 	 * exactly where that is called should makes no difference to us. However
393 	 * we still need to be very careful with the locks that this callback
394 	 * acquires and the locks that are acquired and held by any callers of
395 	 * xe_runtime_pm_get(). We already have the matching annotation
396 	 * on that side, but we also need it here. For example lockdep should be
397 	 * able to tell us if the following scenario is in theory possible:
398 	 *
399 	 * CPU0                          | CPU1 (kworker)
400 	 * lock(A)                       |
401 	 *                               | xe_pm_runtime_suspend()
402 	 *                               |      lock(A)
403 	 * xe_pm_runtime_get()           |
404 	 *
405 	 * This will clearly deadlock since rpm core needs to wait for
406 	 * xe_pm_runtime_suspend() to complete, but here we are holding lock(A)
407 	 * on CPU0 which prevents CPU1 making forward progress.  With the
408 	 * annotation here and in xe_pm_runtime_get() lockdep will see
409 	 * the potential lock inversion and give us a nice splat.
410 	 */
411 	xe_rpm_lockmap_acquire(xe);
412 
413 	err = xe_pxp_pm_suspend(xe->pxp);
414 	if (err)
415 		goto out;
416 
417 	/*
418 	 * Applying lock for entire list op as xe_ttm_bo_destroy and xe_bo_move_notify
419 	 * also checks and deletes bo entry from user fault list.
420 	 */
421 	mutex_lock(&xe->mem_access.vram_userfault.lock);
422 	list_for_each_entry_safe(bo, on,
423 				 &xe->mem_access.vram_userfault.list, vram_userfault_link)
424 		xe_bo_runtime_pm_release_mmap_offset(bo);
425 	mutex_unlock(&xe->mem_access.vram_userfault.lock);
426 
427 	xe_display_pm_runtime_suspend(xe);
428 
429 	if (xe->d3cold.allowed) {
430 		err = xe_bo_evict_all(xe);
431 		if (err)
432 			goto out_resume;
433 	}
434 
435 	for_each_gt(gt, xe, id) {
436 		err = xe_gt_suspend(gt);
437 		if (err)
438 			goto out_resume;
439 	}
440 
441 	xe_irq_suspend(xe);
442 
443 	xe_display_pm_runtime_suspend_late(xe);
444 
445 	xe_rpm_lockmap_release(xe);
446 	xe_pm_write_callback_task(xe, NULL);
447 	return 0;
448 
449 out_resume:
450 	xe_display_pm_runtime_resume(xe);
451 	xe_pxp_pm_resume(xe->pxp);
452 out:
453 	xe_rpm_lockmap_release(xe);
454 	xe_pm_write_callback_task(xe, NULL);
455 	return err;
456 }
457 
458 /**
459  * xe_pm_runtime_resume - Waking up from D3hot/D3Cold
460  * @xe: xe device instance
461  *
462  * Returns 0 for success, negative error code otherwise.
463  */
xe_pm_runtime_resume(struct xe_device * xe)464 int xe_pm_runtime_resume(struct xe_device *xe)
465 {
466 	struct xe_gt *gt;
467 	u8 id;
468 	int err = 0;
469 
470 	trace_xe_pm_runtime_resume(xe, __builtin_return_address(0));
471 	/* Disable access_ongoing asserts and prevent recursive pm calls */
472 	xe_pm_write_callback_task(xe, current);
473 
474 	xe_rpm_lockmap_acquire(xe);
475 
476 	if (xe->d3cold.allowed) {
477 		err = xe_pcode_ready(xe, true);
478 		if (err)
479 			goto out;
480 
481 		xe_display_pm_resume_early(xe);
482 
483 		/*
484 		 * This only restores pinned memory which is the memory
485 		 * required for the GT(s) to resume.
486 		 */
487 		err = xe_bo_restore_kernel(xe);
488 		if (err)
489 			goto out;
490 	}
491 
492 	xe_irq_resume(xe);
493 
494 	for_each_gt(gt, xe, id)
495 		xe_gt_resume(gt);
496 
497 	xe_display_pm_runtime_resume(xe);
498 
499 	if (xe->d3cold.allowed) {
500 		err = xe_bo_restore_user(xe);
501 		if (err)
502 			goto out;
503 	}
504 
505 	xe_pxp_pm_resume(xe->pxp);
506 
507 out:
508 	xe_rpm_lockmap_release(xe);
509 	xe_pm_write_callback_task(xe, NULL);
510 	return err;
511 }
512 
513 /*
514  * For places where resume is synchronous it can be quite easy to deadlock
515  * if we are not careful. Also in practice it might be quite timing
516  * sensitive to ever see the 0 -> 1 transition with the callers locks
517  * held, so deadlocks might exist but are hard for lockdep to ever see.
518  * With this in mind, help lockdep learn about the potentially scary
519  * stuff that can happen inside the runtime_resume callback by acquiring
520  * a dummy lock (it doesn't protect anything and gets compiled out on
521  * non-debug builds).  Lockdep then only needs to see the
522  * xe_pm_runtime_xxx_map -> runtime_resume callback once, and then can
523  * hopefully validate all the (callers_locks) -> xe_pm_runtime_xxx_map.
524  * For example if the (callers_locks) are ever grabbed in the
525  * runtime_resume callback, lockdep should give us a nice splat.
526  */
xe_rpm_might_enter_cb(const struct xe_device * xe)527 static void xe_rpm_might_enter_cb(const struct xe_device *xe)
528 {
529 	xe_rpm_lockmap_acquire(xe);
530 	xe_rpm_lockmap_release(xe);
531 }
532 
533 /*
534  * Prime the lockdep maps for known locking orders that need to
535  * be supported but that may not always occur on all systems.
536  */
xe_pm_runtime_lockdep_prime(void)537 static void xe_pm_runtime_lockdep_prime(void)
538 {
539 	struct dma_resv lockdep_resv;
540 
541 	dma_resv_init(&lockdep_resv);
542 	lock_map_acquire(&xe_pm_runtime_d3cold_map);
543 	/* D3Cold takes the dma_resv locks to evict bos */
544 	dma_resv_lock(&lockdep_resv, NULL);
545 	dma_resv_unlock(&lockdep_resv);
546 	lock_map_release(&xe_pm_runtime_d3cold_map);
547 
548 	/* Shrinkers might like to wake up the device under reclaim. */
549 	fs_reclaim_acquire(GFP_KERNEL);
550 	lock_map_acquire(&xe_pm_runtime_nod3cold_map);
551 	lock_map_release(&xe_pm_runtime_nod3cold_map);
552 	fs_reclaim_release(GFP_KERNEL);
553 }
554 
555 /**
556  * xe_pm_runtime_get - Get a runtime_pm reference and resume synchronously
557  * @xe: xe device instance
558  */
xe_pm_runtime_get(struct xe_device * xe)559 void xe_pm_runtime_get(struct xe_device *xe)
560 {
561 	trace_xe_pm_runtime_get(xe, __builtin_return_address(0));
562 	pm_runtime_get_noresume(xe->drm.dev);
563 
564 	if (xe_pm_read_callback_task(xe) == current)
565 		return;
566 
567 	xe_rpm_might_enter_cb(xe);
568 	pm_runtime_resume(xe->drm.dev);
569 }
570 
571 /**
572  * xe_pm_runtime_put - Put the runtime_pm reference back and mark as idle
573  * @xe: xe device instance
574  */
xe_pm_runtime_put(struct xe_device * xe)575 void xe_pm_runtime_put(struct xe_device *xe)
576 {
577 	trace_xe_pm_runtime_put(xe, __builtin_return_address(0));
578 	if (xe_pm_read_callback_task(xe) == current) {
579 		pm_runtime_put_noidle(xe->drm.dev);
580 	} else {
581 		pm_runtime_mark_last_busy(xe->drm.dev);
582 		pm_runtime_put(xe->drm.dev);
583 	}
584 }
585 
586 /**
587  * xe_pm_runtime_get_ioctl - Get a runtime_pm reference before ioctl
588  * @xe: xe device instance
589  *
590  * Returns: Any number greater than or equal to 0 for success, negative error
591  * code otherwise.
592  */
xe_pm_runtime_get_ioctl(struct xe_device * xe)593 int xe_pm_runtime_get_ioctl(struct xe_device *xe)
594 {
595 	trace_xe_pm_runtime_get_ioctl(xe, __builtin_return_address(0));
596 	if (WARN_ON(xe_pm_read_callback_task(xe) == current))
597 		return -ELOOP;
598 
599 	xe_rpm_might_enter_cb(xe);
600 	return pm_runtime_get_sync(xe->drm.dev);
601 }
602 
603 /**
604  * xe_pm_runtime_get_if_active - Get a runtime_pm reference if device active
605  * @xe: xe device instance
606  *
607  * Return: True if device is awake (regardless the previous number of references)
608  * and a new reference was taken, false otherwise.
609  */
xe_pm_runtime_get_if_active(struct xe_device * xe)610 bool xe_pm_runtime_get_if_active(struct xe_device *xe)
611 {
612 	return pm_runtime_get_if_active(xe->drm.dev) > 0;
613 }
614 
615 /**
616  * xe_pm_runtime_get_if_in_use - Get a new reference if device is active with previous ref taken
617  * @xe: xe device instance
618  *
619  * Return: True if device is awake, a previous reference had been already taken,
620  * and a new reference was now taken, false otherwise.
621  */
xe_pm_runtime_get_if_in_use(struct xe_device * xe)622 bool xe_pm_runtime_get_if_in_use(struct xe_device *xe)
623 {
624 	if (xe_pm_read_callback_task(xe) == current) {
625 		/* The device is awake, grab the ref and move on */
626 		pm_runtime_get_noresume(xe->drm.dev);
627 		return true;
628 	}
629 
630 	return pm_runtime_get_if_in_use(xe->drm.dev) > 0;
631 }
632 
633 /*
634  * Very unreliable! Should only be used to suppress the false positive case
635  * in the missing outer rpm protection warning.
636  */
xe_pm_suspending_or_resuming(struct xe_device * xe)637 static bool xe_pm_suspending_or_resuming(struct xe_device *xe)
638 {
639 #ifdef CONFIG_PM
640 	struct device *dev = xe->drm.dev;
641 
642 	return dev->power.runtime_status == RPM_SUSPENDING ||
643 		dev->power.runtime_status == RPM_RESUMING ||
644 		pm_suspend_target_state != PM_SUSPEND_ON;
645 #else
646 	return false;
647 #endif
648 }
649 
650 /**
651  * xe_pm_runtime_get_noresume - Bump runtime PM usage counter without resuming
652  * @xe: xe device instance
653  *
654  * This function should be used in inner places where it is surely already
655  * protected by outer-bound callers of `xe_pm_runtime_get`.
656  * It will warn if not protected.
657  * The reference should be put back after this function regardless, since it
658  * will always bump the usage counter, regardless.
659  */
xe_pm_runtime_get_noresume(struct xe_device * xe)660 void xe_pm_runtime_get_noresume(struct xe_device *xe)
661 {
662 	bool ref;
663 
664 	ref = xe_pm_runtime_get_if_in_use(xe);
665 
666 	if (!ref) {
667 		pm_runtime_get_noresume(xe->drm.dev);
668 		drm_WARN(&xe->drm, !xe_pm_suspending_or_resuming(xe),
669 			 "Missing outer runtime PM protection\n");
670 	}
671 }
672 
673 /**
674  * xe_pm_runtime_resume_and_get - Resume, then get a runtime_pm ref if awake.
675  * @xe: xe device instance
676  *
677  * Returns: True if device is awake and the reference was taken, false otherwise.
678  */
xe_pm_runtime_resume_and_get(struct xe_device * xe)679 bool xe_pm_runtime_resume_and_get(struct xe_device *xe)
680 {
681 	if (xe_pm_read_callback_task(xe) == current) {
682 		/* The device is awake, grab the ref and move on */
683 		pm_runtime_get_noresume(xe->drm.dev);
684 		return true;
685 	}
686 
687 	xe_rpm_might_enter_cb(xe);
688 	return pm_runtime_resume_and_get(xe->drm.dev) >= 0;
689 }
690 
691 /**
692  * xe_pm_assert_unbounded_bridge - Disable PM on unbounded pcie parent bridge
693  * @xe: xe device instance
694  */
xe_pm_assert_unbounded_bridge(struct xe_device * xe)695 void xe_pm_assert_unbounded_bridge(struct xe_device *xe)
696 {
697 	struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
698 	struct pci_dev *bridge = pci_upstream_bridge(pdev);
699 
700 	if (!bridge)
701 		return;
702 
703 	if (!bridge->driver) {
704 		drm_warn(&xe->drm, "unbounded parent pci bridge, device won't support any PM support.\n");
705 		device_set_pm_not_required(&pdev->dev);
706 	}
707 }
708 
709 /**
710  * xe_pm_set_vram_threshold - Set a vram threshold for allowing/blocking D3Cold
711  * @xe: xe device instance
712  * @threshold: VRAM size in bites for the D3cold threshold
713  *
714  * Returns 0 for success, negative error code otherwise.
715  */
xe_pm_set_vram_threshold(struct xe_device * xe,u32 threshold)716 int xe_pm_set_vram_threshold(struct xe_device *xe, u32 threshold)
717 {
718 	struct ttm_resource_manager *man;
719 	u32 vram_total_mb = 0;
720 	int i;
721 
722 	for (i = XE_PL_VRAM0; i <= XE_PL_VRAM1; ++i) {
723 		man = ttm_manager_type(&xe->ttm, i);
724 		if (man)
725 			vram_total_mb += DIV_ROUND_UP_ULL(man->size, 1024 * 1024);
726 	}
727 
728 	drm_dbg(&xe->drm, "Total vram %u mb\n", vram_total_mb);
729 
730 	if (threshold > vram_total_mb)
731 		return -EINVAL;
732 
733 	mutex_lock(&xe->d3cold.lock);
734 	xe->d3cold.vram_threshold = threshold;
735 	mutex_unlock(&xe->d3cold.lock);
736 
737 	return 0;
738 }
739 
740 /**
741  * xe_pm_d3cold_allowed_toggle - Check conditions to toggle d3cold.allowed
742  * @xe: xe device instance
743  *
744  * To be called during runtime_pm idle callback.
745  * Check for all the D3Cold conditions ahead of runtime suspend.
746  */
xe_pm_d3cold_allowed_toggle(struct xe_device * xe)747 void xe_pm_d3cold_allowed_toggle(struct xe_device *xe)
748 {
749 	struct ttm_resource_manager *man;
750 	u32 total_vram_used_mb = 0;
751 	u64 vram_used;
752 	int i;
753 
754 	if (!xe->d3cold.capable) {
755 		xe->d3cold.allowed = false;
756 		return;
757 	}
758 
759 	for (i = XE_PL_VRAM0; i <= XE_PL_VRAM1; ++i) {
760 		man = ttm_manager_type(&xe->ttm, i);
761 		if (man) {
762 			vram_used = ttm_resource_manager_usage(man);
763 			total_vram_used_mb += DIV_ROUND_UP_ULL(vram_used, 1024 * 1024);
764 		}
765 	}
766 
767 	mutex_lock(&xe->d3cold.lock);
768 
769 	if (total_vram_used_mb < xe->d3cold.vram_threshold)
770 		xe->d3cold.allowed = true;
771 	else
772 		xe->d3cold.allowed = false;
773 
774 	mutex_unlock(&xe->d3cold.lock);
775 }
776 
777 /**
778  * xe_pm_module_init() - Perform xe_pm specific module initialization.
779  *
780  * Return: 0 on success. Currently doesn't fail.
781  */
xe_pm_module_init(void)782 int __init xe_pm_module_init(void)
783 {
784 	xe_pm_runtime_lockdep_prime();
785 	return 0;
786 }
787