1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
4 * Copyright (C) 2010 Red Hat, Inc.
5 * All Rights Reserved.
6 */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_extent_busy.h"
15 #include "xfs_quota.h"
16 #include "xfs_trans.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_log.h"
19 #include "xfs_log_priv.h"
20 #include "xfs_trace.h"
21 #include "xfs_error.h"
22 #include "xfs_defer.h"
23 #include "xfs_inode.h"
24 #include "xfs_dquot_item.h"
25 #include "xfs_dquot.h"
26 #include "xfs_icache.h"
27 #include "xfs_rtbitmap.h"
28 #include "xfs_rtgroup.h"
29 #include "xfs_sb.h"
30
31 struct kmem_cache *xfs_trans_cache;
32
33 #if defined(CONFIG_TRACEPOINTS)
34 static void
xfs_trans_trace_reservations(struct xfs_mount * mp)35 xfs_trans_trace_reservations(
36 struct xfs_mount *mp)
37 {
38 struct xfs_trans_res *res;
39 struct xfs_trans_res *end_res;
40 int i;
41
42 res = (struct xfs_trans_res *)M_RES(mp);
43 end_res = (struct xfs_trans_res *)(M_RES(mp) + 1);
44 for (i = 0; res < end_res; i++, res++)
45 trace_xfs_trans_resv_calc(mp, i, res);
46 }
47 #else
48 # define xfs_trans_trace_reservations(mp)
49 #endif
50
51 /*
52 * Initialize the precomputed transaction reservation values
53 * in the mount structure.
54 */
55 void
xfs_trans_init(struct xfs_mount * mp)56 xfs_trans_init(
57 struct xfs_mount *mp)
58 {
59 xfs_trans_resv_calc(mp, M_RES(mp));
60 xfs_trans_trace_reservations(mp);
61 }
62
63 /*
64 * Free the transaction structure. If there is more clean up
65 * to do when the structure is freed, add it here.
66 */
67 STATIC void
xfs_trans_free(struct xfs_trans * tp)68 xfs_trans_free(
69 struct xfs_trans *tp)
70 {
71 xfs_extent_busy_sort(&tp->t_busy);
72 xfs_extent_busy_clear(&tp->t_busy, false);
73
74 trace_xfs_trans_free(tp, _RET_IP_);
75 xfs_trans_clear_context(tp);
76 if (!(tp->t_flags & XFS_TRANS_NO_WRITECOUNT))
77 sb_end_intwrite(tp->t_mountp->m_super);
78 xfs_trans_free_dqinfo(tp);
79 kmem_cache_free(xfs_trans_cache, tp);
80 }
81
82 /*
83 * This is called to create a new transaction which will share the
84 * permanent log reservation of the given transaction. The remaining
85 * unused block and rt extent reservations are also inherited. This
86 * implies that the original transaction is no longer allowed to allocate
87 * blocks. Locks and log items, however, are no inherited. They must
88 * be added to the new transaction explicitly.
89 */
90 STATIC struct xfs_trans *
xfs_trans_dup(struct xfs_trans * tp)91 xfs_trans_dup(
92 struct xfs_trans *tp)
93 {
94 struct xfs_trans *ntp;
95
96 trace_xfs_trans_dup(tp, _RET_IP_);
97
98 ntp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
99
100 /*
101 * Initialize the new transaction structure.
102 */
103 ntp->t_mountp = tp->t_mountp;
104 INIT_LIST_HEAD(&ntp->t_items);
105 INIT_LIST_HEAD(&ntp->t_busy);
106 INIT_LIST_HEAD(&ntp->t_dfops);
107 ntp->t_highest_agno = NULLAGNUMBER;
108
109 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
110 ASSERT(tp->t_ticket != NULL);
111
112 ntp->t_flags = XFS_TRANS_PERM_LOG_RES |
113 (tp->t_flags & XFS_TRANS_RESERVE) |
114 (tp->t_flags & XFS_TRANS_NO_WRITECOUNT) |
115 (tp->t_flags & XFS_TRANS_RES_FDBLKS);
116 /* We gave our writer reference to the new transaction */
117 tp->t_flags |= XFS_TRANS_NO_WRITECOUNT;
118 ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
119
120 ASSERT(tp->t_blk_res >= tp->t_blk_res_used);
121 ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
122 tp->t_blk_res = tp->t_blk_res_used;
123
124 ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
125 tp->t_rtx_res = tp->t_rtx_res_used;
126
127 xfs_trans_switch_context(tp, ntp);
128
129 /* move deferred ops over to the new tp */
130 xfs_defer_move(ntp, tp);
131
132 xfs_trans_dup_dqinfo(tp, ntp);
133 return ntp;
134 }
135
136 /*
137 * This is called to reserve free disk blocks and log space for the
138 * given transaction. This must be done before allocating any resources
139 * within the transaction.
140 *
141 * This will return ENOSPC if there are not enough blocks available.
142 * It will sleep waiting for available log space.
143 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
144 * is used by long running transactions. If any one of the reservations
145 * fails then they will all be backed out.
146 *
147 * This does not do quota reservations. That typically is done by the
148 * caller afterwards.
149 */
150 static int
xfs_trans_reserve(struct xfs_trans * tp,struct xfs_trans_res * resp,uint blocks,uint rtextents)151 xfs_trans_reserve(
152 struct xfs_trans *tp,
153 struct xfs_trans_res *resp,
154 uint blocks,
155 uint rtextents)
156 {
157 struct xfs_mount *mp = tp->t_mountp;
158 int error = 0;
159 bool rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
160
161 /*
162 * Attempt to reserve the needed disk blocks by decrementing
163 * the number needed from the number available. This will
164 * fail if the count would go below zero.
165 */
166 if (blocks > 0) {
167 error = xfs_dec_fdblocks(mp, blocks, rsvd);
168 if (error != 0)
169 return -ENOSPC;
170 tp->t_blk_res += blocks;
171 }
172
173 /*
174 * Reserve the log space needed for this transaction.
175 */
176 if (resp->tr_logres > 0) {
177 bool permanent = false;
178
179 ASSERT(tp->t_log_res == 0 ||
180 tp->t_log_res == resp->tr_logres);
181 ASSERT(tp->t_log_count == 0 ||
182 tp->t_log_count == resp->tr_logcount);
183
184 if (resp->tr_logflags & XFS_TRANS_PERM_LOG_RES) {
185 tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
186 permanent = true;
187 } else {
188 ASSERT(tp->t_ticket == NULL);
189 ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
190 }
191
192 if (tp->t_ticket != NULL) {
193 ASSERT(resp->tr_logflags & XFS_TRANS_PERM_LOG_RES);
194 error = xfs_log_regrant(mp, tp->t_ticket);
195 } else {
196 error = xfs_log_reserve(mp, resp->tr_logres,
197 resp->tr_logcount,
198 &tp->t_ticket, permanent);
199 }
200
201 if (error)
202 goto undo_blocks;
203
204 tp->t_log_res = resp->tr_logres;
205 tp->t_log_count = resp->tr_logcount;
206 }
207
208 /*
209 * Attempt to reserve the needed realtime extents by decrementing
210 * the number needed from the number available. This will
211 * fail if the count would go below zero.
212 */
213 if (rtextents > 0) {
214 error = xfs_dec_frextents(mp, rtextents);
215 if (error) {
216 error = -ENOSPC;
217 goto undo_log;
218 }
219 tp->t_rtx_res += rtextents;
220 }
221
222 return 0;
223
224 /*
225 * Error cases jump to one of these labels to undo any
226 * reservations which have already been performed.
227 */
228 undo_log:
229 if (resp->tr_logres > 0) {
230 xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket);
231 tp->t_ticket = NULL;
232 tp->t_log_res = 0;
233 tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
234 }
235
236 undo_blocks:
237 if (blocks > 0) {
238 xfs_add_fdblocks(mp, blocks);
239 tp->t_blk_res = 0;
240 }
241 return error;
242 }
243
244 int
xfs_trans_alloc(struct xfs_mount * mp,struct xfs_trans_res * resp,uint blocks,uint rtextents,uint flags,struct xfs_trans ** tpp)245 xfs_trans_alloc(
246 struct xfs_mount *mp,
247 struct xfs_trans_res *resp,
248 uint blocks,
249 uint rtextents,
250 uint flags,
251 struct xfs_trans **tpp)
252 {
253 struct xfs_trans *tp;
254 bool want_retry = true;
255 int error;
256
257 /*
258 * Allocate the handle before we do our freeze accounting and setting up
259 * GFP_NOFS allocation context so that we avoid lockdep false positives
260 * by doing GFP_KERNEL allocations inside sb_start_intwrite().
261 */
262 retry:
263 tp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
264 if (!(flags & XFS_TRANS_NO_WRITECOUNT))
265 sb_start_intwrite(mp->m_super);
266 xfs_trans_set_context(tp);
267
268 /*
269 * Zero-reservation ("empty") transactions can't modify anything, so
270 * they're allowed to run while we're frozen.
271 */
272 WARN_ON(resp->tr_logres > 0 &&
273 mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE);
274 ASSERT(!(flags & XFS_TRANS_RES_FDBLKS) ||
275 xfs_has_lazysbcount(mp));
276
277 tp->t_flags = flags;
278 tp->t_mountp = mp;
279 INIT_LIST_HEAD(&tp->t_items);
280 INIT_LIST_HEAD(&tp->t_busy);
281 INIT_LIST_HEAD(&tp->t_dfops);
282 tp->t_highest_agno = NULLAGNUMBER;
283
284 error = xfs_trans_reserve(tp, resp, blocks, rtextents);
285 if (error == -ENOSPC && want_retry) {
286 xfs_trans_cancel(tp);
287
288 /*
289 * We weren't able to reserve enough space for the transaction.
290 * Flush the other speculative space allocations to free space.
291 * Do not perform a synchronous scan because callers can hold
292 * other locks.
293 */
294 error = xfs_blockgc_flush_all(mp);
295 if (error)
296 return error;
297 want_retry = false;
298 goto retry;
299 }
300 if (error) {
301 xfs_trans_cancel(tp);
302 return error;
303 }
304
305 trace_xfs_trans_alloc(tp, _RET_IP_);
306
307 *tpp = tp;
308 return 0;
309 }
310
311 /*
312 * Create an empty transaction with no reservation. This is a defensive
313 * mechanism for routines that query metadata without actually modifying them --
314 * if the metadata being queried is somehow cross-linked (think a btree block
315 * pointer that points higher in the tree), we risk deadlock. However, blocks
316 * grabbed as part of a transaction can be re-grabbed. The verifiers will
317 * notice the corrupt block and the operation will fail back to userspace
318 * without deadlocking.
319 *
320 * Note the zero-length reservation; this transaction MUST be cancelled without
321 * any dirty data.
322 *
323 * Callers should obtain freeze protection to avoid a conflict with fs freezing
324 * where we can be grabbing buffers at the same time that freeze is trying to
325 * drain the buffer LRU list.
326 */
327 int
xfs_trans_alloc_empty(struct xfs_mount * mp,struct xfs_trans ** tpp)328 xfs_trans_alloc_empty(
329 struct xfs_mount *mp,
330 struct xfs_trans **tpp)
331 {
332 struct xfs_trans_res resv = {0};
333
334 return xfs_trans_alloc(mp, &resv, 0, 0, XFS_TRANS_NO_WRITECOUNT, tpp);
335 }
336
337 /*
338 * Record the indicated change to the given field for application
339 * to the file system's superblock when the transaction commits.
340 * For now, just store the change in the transaction structure.
341 *
342 * Mark the transaction structure to indicate that the superblock
343 * needs to be updated before committing.
344 *
345 * Because we may not be keeping track of allocated/free inodes and
346 * used filesystem blocks in the superblock, we do not mark the
347 * superblock dirty in this transaction if we modify these fields.
348 * We still need to update the transaction deltas so that they get
349 * applied to the incore superblock, but we don't want them to
350 * cause the superblock to get locked and logged if these are the
351 * only fields in the superblock that the transaction modifies.
352 */
353 void
xfs_trans_mod_sb(xfs_trans_t * tp,uint field,int64_t delta)354 xfs_trans_mod_sb(
355 xfs_trans_t *tp,
356 uint field,
357 int64_t delta)
358 {
359 uint32_t flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
360 xfs_mount_t *mp = tp->t_mountp;
361
362 switch (field) {
363 case XFS_TRANS_SB_ICOUNT:
364 tp->t_icount_delta += delta;
365 if (xfs_has_lazysbcount(mp))
366 flags &= ~XFS_TRANS_SB_DIRTY;
367 break;
368 case XFS_TRANS_SB_IFREE:
369 tp->t_ifree_delta += delta;
370 if (xfs_has_lazysbcount(mp))
371 flags &= ~XFS_TRANS_SB_DIRTY;
372 break;
373 case XFS_TRANS_SB_FDBLOCKS:
374 /*
375 * Track the number of blocks allocated in the transaction.
376 * Make sure it does not exceed the number reserved. If so,
377 * shutdown as this can lead to accounting inconsistency.
378 */
379 if (delta < 0) {
380 tp->t_blk_res_used += (uint)-delta;
381 if (tp->t_blk_res_used > tp->t_blk_res)
382 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
383 } else if (delta > 0 && (tp->t_flags & XFS_TRANS_RES_FDBLKS)) {
384 int64_t blkres_delta;
385
386 /*
387 * Return freed blocks directly to the reservation
388 * instead of the global pool, being careful not to
389 * overflow the trans counter. This is used to preserve
390 * reservation across chains of transaction rolls that
391 * repeatedly free and allocate blocks.
392 */
393 blkres_delta = min_t(int64_t, delta,
394 UINT_MAX - tp->t_blk_res);
395 tp->t_blk_res += blkres_delta;
396 delta -= blkres_delta;
397 }
398 tp->t_fdblocks_delta += delta;
399 if (xfs_has_lazysbcount(mp))
400 flags &= ~XFS_TRANS_SB_DIRTY;
401 break;
402 case XFS_TRANS_SB_RES_FDBLOCKS:
403 /*
404 * The allocation has already been applied to the
405 * in-core superblock's counter. This should only
406 * be applied to the on-disk superblock.
407 */
408 tp->t_res_fdblocks_delta += delta;
409 if (xfs_has_lazysbcount(mp))
410 flags &= ~XFS_TRANS_SB_DIRTY;
411 break;
412 case XFS_TRANS_SB_FREXTENTS:
413 /*
414 * Track the number of blocks allocated in the
415 * transaction. Make sure it does not exceed the
416 * number reserved.
417 */
418 if (delta < 0) {
419 tp->t_rtx_res_used += (uint)-delta;
420 ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
421 }
422 tp->t_frextents_delta += delta;
423 if (xfs_has_rtgroups(mp))
424 flags &= ~XFS_TRANS_SB_DIRTY;
425 break;
426 case XFS_TRANS_SB_RES_FREXTENTS:
427 /*
428 * The allocation has already been applied to the
429 * in-core superblock's counter. This should only
430 * be applied to the on-disk superblock.
431 */
432 ASSERT(delta < 0);
433 tp->t_res_frextents_delta += delta;
434 if (xfs_has_rtgroups(mp))
435 flags &= ~XFS_TRANS_SB_DIRTY;
436 break;
437 case XFS_TRANS_SB_DBLOCKS:
438 tp->t_dblocks_delta += delta;
439 break;
440 case XFS_TRANS_SB_AGCOUNT:
441 ASSERT(delta > 0);
442 tp->t_agcount_delta += delta;
443 break;
444 case XFS_TRANS_SB_IMAXPCT:
445 tp->t_imaxpct_delta += delta;
446 break;
447 case XFS_TRANS_SB_REXTSIZE:
448 tp->t_rextsize_delta += delta;
449 break;
450 case XFS_TRANS_SB_RBMBLOCKS:
451 tp->t_rbmblocks_delta += delta;
452 break;
453 case XFS_TRANS_SB_RBLOCKS:
454 tp->t_rblocks_delta += delta;
455 break;
456 case XFS_TRANS_SB_REXTENTS:
457 tp->t_rextents_delta += delta;
458 break;
459 case XFS_TRANS_SB_REXTSLOG:
460 tp->t_rextslog_delta += delta;
461 break;
462 case XFS_TRANS_SB_RGCOUNT:
463 ASSERT(delta > 0);
464 tp->t_rgcount_delta += delta;
465 break;
466 default:
467 ASSERT(0);
468 return;
469 }
470
471 tp->t_flags |= flags;
472 }
473
474 /*
475 * xfs_trans_apply_sb_deltas() is called from the commit code
476 * to bring the superblock buffer into the current transaction
477 * and modify it as requested by earlier calls to xfs_trans_mod_sb().
478 *
479 * For now we just look at each field allowed to change and change
480 * it if necessary.
481 */
482 STATIC void
xfs_trans_apply_sb_deltas(xfs_trans_t * tp)483 xfs_trans_apply_sb_deltas(
484 xfs_trans_t *tp)
485 {
486 struct xfs_dsb *sbp;
487 struct xfs_buf *bp;
488 int whole = 0;
489
490 bp = xfs_trans_getsb(tp);
491 sbp = bp->b_addr;
492
493 /*
494 * Only update the superblock counters if we are logging them
495 */
496 if (!xfs_has_lazysbcount((tp->t_mountp))) {
497 if (tp->t_icount_delta)
498 be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
499 if (tp->t_ifree_delta)
500 be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
501 if (tp->t_fdblocks_delta)
502 be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
503 if (tp->t_res_fdblocks_delta)
504 be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
505 }
506
507 /*
508 * sb_frextents was added to the lazy sb counters when the rt groups
509 * feature was introduced. This is possible because we know that all
510 * kernels supporting rtgroups will also recompute frextents from the
511 * realtime bitmap.
512 *
513 * For older file systems, updating frextents requires careful handling
514 * because we cannot rely on log recovery in older kernels to recompute
515 * the value from the rtbitmap. This means that the ondisk frextents
516 * must be consistent with the rtbitmap.
517 *
518 * Therefore, log the frextents change to the ondisk superblock and
519 * update the incore superblock so that future calls to xfs_log_sb
520 * write the correct value ondisk.
521 */
522 if ((tp->t_frextents_delta || tp->t_res_frextents_delta) &&
523 !xfs_has_rtgroups(tp->t_mountp)) {
524 struct xfs_mount *mp = tp->t_mountp;
525 int64_t rtxdelta;
526
527 rtxdelta = tp->t_frextents_delta + tp->t_res_frextents_delta;
528
529 spin_lock(&mp->m_sb_lock);
530 be64_add_cpu(&sbp->sb_frextents, rtxdelta);
531 mp->m_sb.sb_frextents += rtxdelta;
532 spin_unlock(&mp->m_sb_lock);
533 }
534
535 if (tp->t_dblocks_delta) {
536 be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
537 whole = 1;
538 }
539 if (tp->t_agcount_delta) {
540 be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
541 whole = 1;
542 }
543 if (tp->t_imaxpct_delta) {
544 sbp->sb_imax_pct += tp->t_imaxpct_delta;
545 whole = 1;
546 }
547 if (tp->t_rextsize_delta) {
548 be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
549
550 /*
551 * Because the ondisk sb records rtgroup size in units of rt
552 * extents, any time we update the rt extent size we have to
553 * recompute the ondisk rtgroup block log. The incore values
554 * will be recomputed in xfs_trans_unreserve_and_mod_sb.
555 */
556 if (xfs_has_rtgroups(tp->t_mountp)) {
557 sbp->sb_rgblklog = xfs_compute_rgblklog(
558 be32_to_cpu(sbp->sb_rgextents),
559 be32_to_cpu(sbp->sb_rextsize));
560 }
561 whole = 1;
562 }
563 if (tp->t_rbmblocks_delta) {
564 be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
565 whole = 1;
566 }
567 if (tp->t_rblocks_delta) {
568 be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
569 whole = 1;
570 }
571 if (tp->t_rextents_delta) {
572 be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
573 whole = 1;
574 }
575 if (tp->t_rextslog_delta) {
576 sbp->sb_rextslog += tp->t_rextslog_delta;
577 whole = 1;
578 }
579 if (tp->t_rgcount_delta) {
580 be32_add_cpu(&sbp->sb_rgcount, tp->t_rgcount_delta);
581 whole = 1;
582 }
583
584 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF);
585 if (whole)
586 /*
587 * Log the whole thing, the fields are noncontiguous.
588 */
589 xfs_trans_log_buf(tp, bp, 0, sizeof(struct xfs_dsb) - 1);
590 else
591 /*
592 * Since all the modifiable fields are contiguous, we
593 * can get away with this.
594 */
595 xfs_trans_log_buf(tp, bp, offsetof(struct xfs_dsb, sb_icount),
596 offsetof(struct xfs_dsb, sb_frextents) +
597 sizeof(sbp->sb_frextents) - 1);
598 }
599
600 /*
601 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations and
602 * apply superblock counter changes to the in-core superblock. The
603 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
604 * applied to the in-core superblock. The idea is that that has already been
605 * done.
606 *
607 * If we are not logging superblock counters, then the inode allocated/free and
608 * used block counts are not updated in the on disk superblock. In this case,
609 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
610 * still need to update the incore superblock with the changes.
611 *
612 * Deltas for the inode count are +/-64, hence we use a large batch size of 128
613 * so we don't need to take the counter lock on every update.
614 */
615 #define XFS_ICOUNT_BATCH 128
616
617 void
xfs_trans_unreserve_and_mod_sb(struct xfs_trans * tp)618 xfs_trans_unreserve_and_mod_sb(
619 struct xfs_trans *tp)
620 {
621 struct xfs_mount *mp = tp->t_mountp;
622 int64_t blkdelta = tp->t_blk_res;
623 int64_t rtxdelta = tp->t_rtx_res;
624 int64_t idelta = 0;
625 int64_t ifreedelta = 0;
626
627 /*
628 * Calculate the deltas.
629 *
630 * t_fdblocks_delta and t_frextents_delta can be positive or negative:
631 *
632 * - positive values indicate blocks freed in the transaction.
633 * - negative values indicate blocks allocated in the transaction
634 *
635 * Negative values can only happen if the transaction has a block
636 * reservation that covers the allocated block. The end result is
637 * that the calculated delta values must always be positive and we
638 * can only put back previous allocated or reserved blocks here.
639 */
640 ASSERT(tp->t_blk_res || tp->t_fdblocks_delta >= 0);
641 if (xfs_has_lazysbcount(mp) || (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
642 blkdelta += tp->t_fdblocks_delta;
643 ASSERT(blkdelta >= 0);
644 }
645
646 ASSERT(tp->t_rtx_res || tp->t_frextents_delta >= 0);
647 if (xfs_has_rtgroups(mp) || (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
648 rtxdelta += tp->t_frextents_delta;
649 ASSERT(rtxdelta >= 0);
650 }
651
652 if (xfs_has_lazysbcount(mp) || (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
653 idelta = tp->t_icount_delta;
654 ifreedelta = tp->t_ifree_delta;
655 }
656
657 /* apply the per-cpu counters */
658 if (blkdelta)
659 xfs_add_fdblocks(mp, blkdelta);
660
661 if (idelta)
662 percpu_counter_add_batch(&mp->m_icount, idelta,
663 XFS_ICOUNT_BATCH);
664
665 if (ifreedelta)
666 percpu_counter_add(&mp->m_ifree, ifreedelta);
667
668 if (rtxdelta)
669 xfs_add_frextents(mp, rtxdelta);
670
671 if (!(tp->t_flags & XFS_TRANS_SB_DIRTY))
672 return;
673
674 /* apply remaining deltas */
675 spin_lock(&mp->m_sb_lock);
676 mp->m_sb.sb_fdblocks += tp->t_fdblocks_delta + tp->t_res_fdblocks_delta;
677 mp->m_sb.sb_icount += idelta;
678 mp->m_sb.sb_ifree += ifreedelta;
679 /*
680 * Do not touch sb_frextents here because it is handled in
681 * xfs_trans_apply_sb_deltas for file systems where it isn't a lazy
682 * counter anyway.
683 */
684 mp->m_sb.sb_dblocks += tp->t_dblocks_delta;
685 mp->m_sb.sb_agcount += tp->t_agcount_delta;
686 mp->m_sb.sb_imax_pct += tp->t_imaxpct_delta;
687 if (tp->t_rextsize_delta)
688 xfs_mount_sb_set_rextsize(mp, &mp->m_sb,
689 mp->m_sb.sb_rextsize + tp->t_rextsize_delta);
690 mp->m_sb.sb_rbmblocks += tp->t_rbmblocks_delta;
691 mp->m_sb.sb_rblocks += tp->t_rblocks_delta;
692 mp->m_sb.sb_rextents += tp->t_rextents_delta;
693 mp->m_sb.sb_rextslog += tp->t_rextslog_delta;
694 mp->m_sb.sb_rgcount += tp->t_rgcount_delta;
695 spin_unlock(&mp->m_sb_lock);
696
697 /*
698 * Debug checks outside of the spinlock so they don't lock up the
699 * machine if they fail.
700 */
701 ASSERT(mp->m_sb.sb_imax_pct >= 0);
702 ASSERT(mp->m_sb.sb_rextslog >= 0);
703 }
704
705 /* Add the given log item to the transaction's list of log items. */
706 void
xfs_trans_add_item(struct xfs_trans * tp,struct xfs_log_item * lip)707 xfs_trans_add_item(
708 struct xfs_trans *tp,
709 struct xfs_log_item *lip)
710 {
711 ASSERT(lip->li_log == tp->t_mountp->m_log);
712 ASSERT(lip->li_ailp == tp->t_mountp->m_ail);
713 ASSERT(list_empty(&lip->li_trans));
714 ASSERT(!test_bit(XFS_LI_DIRTY, &lip->li_flags));
715
716 list_add_tail(&lip->li_trans, &tp->t_items);
717 trace_xfs_trans_add_item(tp, _RET_IP_);
718 }
719
720 /*
721 * Unlink the log item from the transaction. the log item is no longer
722 * considered dirty in this transaction, as the linked transaction has
723 * finished, either by abort or commit completion.
724 */
725 void
xfs_trans_del_item(struct xfs_log_item * lip)726 xfs_trans_del_item(
727 struct xfs_log_item *lip)
728 {
729 clear_bit(XFS_LI_DIRTY, &lip->li_flags);
730 list_del_init(&lip->li_trans);
731 }
732
733 /* Detach and unlock all of the items in a transaction */
734 static void
xfs_trans_free_items(struct xfs_trans * tp,bool abort)735 xfs_trans_free_items(
736 struct xfs_trans *tp,
737 bool abort)
738 {
739 struct xfs_log_item *lip, *next;
740
741 trace_xfs_trans_free_items(tp, _RET_IP_);
742
743 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
744 xfs_trans_del_item(lip);
745 if (abort)
746 set_bit(XFS_LI_ABORTED, &lip->li_flags);
747 if (lip->li_ops->iop_release)
748 lip->li_ops->iop_release(lip);
749 }
750 }
751
752 /*
753 * Sort transaction items prior to running precommit operations. This will
754 * attempt to order the items such that they will always be locked in the same
755 * order. Items that have no sort function are moved to the end of the list
756 * and so are locked last.
757 *
758 * This may need refinement as different types of objects add sort functions.
759 *
760 * Function is more complex than it needs to be because we are comparing 64 bit
761 * values and the function only returns 32 bit values.
762 */
763 static int
xfs_trans_precommit_sort(void * unused_arg,const struct list_head * a,const struct list_head * b)764 xfs_trans_precommit_sort(
765 void *unused_arg,
766 const struct list_head *a,
767 const struct list_head *b)
768 {
769 struct xfs_log_item *lia = container_of(a,
770 struct xfs_log_item, li_trans);
771 struct xfs_log_item *lib = container_of(b,
772 struct xfs_log_item, li_trans);
773 int64_t diff;
774
775 /*
776 * If both items are non-sortable, leave them alone. If only one is
777 * sortable, move the non-sortable item towards the end of the list.
778 */
779 if (!lia->li_ops->iop_sort && !lib->li_ops->iop_sort)
780 return 0;
781 if (!lia->li_ops->iop_sort)
782 return 1;
783 if (!lib->li_ops->iop_sort)
784 return -1;
785
786 diff = lia->li_ops->iop_sort(lia) - lib->li_ops->iop_sort(lib);
787 if (diff < 0)
788 return -1;
789 if (diff > 0)
790 return 1;
791 return 0;
792 }
793
794 /*
795 * Run transaction precommit functions.
796 *
797 * If there is an error in any of the callouts, then stop immediately and
798 * trigger a shutdown to abort the transaction. There is no recovery possible
799 * from errors at this point as the transaction is dirty....
800 */
801 static int
xfs_trans_run_precommits(struct xfs_trans * tp)802 xfs_trans_run_precommits(
803 struct xfs_trans *tp)
804 {
805 struct xfs_mount *mp = tp->t_mountp;
806 struct xfs_log_item *lip, *n;
807 int error = 0;
808
809 /*
810 * Sort the item list to avoid ABBA deadlocks with other transactions
811 * running precommit operations that lock multiple shared items such as
812 * inode cluster buffers.
813 */
814 list_sort(NULL, &tp->t_items, xfs_trans_precommit_sort);
815
816 /*
817 * Precommit operations can remove the log item from the transaction
818 * if the log item exists purely to delay modifications until they
819 * can be ordered against other operations. Hence we have to use
820 * list_for_each_entry_safe() here.
821 */
822 list_for_each_entry_safe(lip, n, &tp->t_items, li_trans) {
823 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
824 continue;
825 if (lip->li_ops->iop_precommit) {
826 error = lip->li_ops->iop_precommit(tp, lip);
827 if (error)
828 break;
829 }
830 }
831 if (error)
832 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
833 return error;
834 }
835
836 /*
837 * Commit the given transaction to the log.
838 *
839 * XFS disk error handling mechanism is not based on a typical
840 * transaction abort mechanism. Logically after the filesystem
841 * gets marked 'SHUTDOWN', we can't let any new transactions
842 * be durable - ie. committed to disk - because some metadata might
843 * be inconsistent. In such cases, this returns an error, and the
844 * caller may assume that all locked objects joined to the transaction
845 * have already been unlocked as if the commit had succeeded.
846 * Do not reference the transaction structure after this call.
847 */
848 static int
__xfs_trans_commit(struct xfs_trans * tp,bool regrant)849 __xfs_trans_commit(
850 struct xfs_trans *tp,
851 bool regrant)
852 {
853 struct xfs_mount *mp = tp->t_mountp;
854 struct xlog *log = mp->m_log;
855 xfs_csn_t commit_seq = 0;
856 int error = 0;
857 int sync = tp->t_flags & XFS_TRANS_SYNC;
858
859 trace_xfs_trans_commit(tp, _RET_IP_);
860
861 /*
862 * Commit per-transaction changes that are not already tracked through
863 * log items. This can add dirty log items to the transaction.
864 */
865 if (tp->t_flags & XFS_TRANS_SB_DIRTY)
866 xfs_trans_apply_sb_deltas(tp);
867 xfs_trans_apply_dquot_deltas(tp);
868
869 error = xfs_trans_run_precommits(tp);
870 if (error)
871 goto out_unreserve;
872
873 /*
874 * If there is nothing to be logged by the transaction,
875 * then unlock all of the items associated with the
876 * transaction and free the transaction structure.
877 * Also make sure to return any reserved blocks to
878 * the free pool.
879 */
880 if (!(tp->t_flags & XFS_TRANS_DIRTY))
881 goto out_unreserve;
882
883 /*
884 * We must check against log shutdown here because we cannot abort log
885 * items and leave them dirty, inconsistent and unpinned in memory while
886 * the log is active. This leaves them open to being written back to
887 * disk, and that will lead to on-disk corruption.
888 */
889 if (xlog_is_shutdown(log)) {
890 error = -EIO;
891 goto out_unreserve;
892 }
893
894 ASSERT(tp->t_ticket != NULL);
895
896 xlog_cil_commit(log, tp, &commit_seq, regrant);
897
898 xfs_trans_free(tp);
899
900 /*
901 * If the transaction needs to be synchronous, then force the
902 * log out now and wait for it.
903 */
904 if (sync) {
905 error = xfs_log_force_seq(mp, commit_seq, XFS_LOG_SYNC, NULL);
906 XFS_STATS_INC(mp, xs_trans_sync);
907 } else {
908 XFS_STATS_INC(mp, xs_trans_async);
909 }
910
911 return error;
912
913 out_unreserve:
914 xfs_trans_unreserve_and_mod_sb(tp);
915
916 /*
917 * It is indeed possible for the transaction to be not dirty but
918 * the dqinfo portion to be. All that means is that we have some
919 * (non-persistent) quota reservations that need to be unreserved.
920 */
921 xfs_trans_unreserve_and_mod_dquots(tp, true);
922 if (tp->t_ticket) {
923 if (regrant && !xlog_is_shutdown(log))
924 xfs_log_ticket_regrant(log, tp->t_ticket);
925 else
926 xfs_log_ticket_ungrant(log, tp->t_ticket);
927 tp->t_ticket = NULL;
928 }
929 xfs_trans_free_items(tp, !!error);
930 xfs_trans_free(tp);
931
932 XFS_STATS_INC(mp, xs_trans_empty);
933 return error;
934 }
935
936 int
xfs_trans_commit(struct xfs_trans * tp)937 xfs_trans_commit(
938 struct xfs_trans *tp)
939 {
940 /*
941 * Finish deferred items on final commit. Only permanent transactions
942 * should ever have deferred ops.
943 */
944 WARN_ON_ONCE(!list_empty(&tp->t_dfops) &&
945 !(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
946 if (tp->t_flags & XFS_TRANS_PERM_LOG_RES) {
947 int error = xfs_defer_finish_noroll(&tp);
948 if (error) {
949 xfs_trans_cancel(tp);
950 return error;
951 }
952 }
953
954 return __xfs_trans_commit(tp, false);
955 }
956
957 /*
958 * Unlock all of the transaction's items and free the transaction. If the
959 * transaction is dirty, we must shut down the filesystem because there is no
960 * way to restore them to their previous state.
961 *
962 * If the transaction has made a log reservation, make sure to release it as
963 * well.
964 *
965 * This is a high level function (equivalent to xfs_trans_commit()) and so can
966 * be called after the transaction has effectively been aborted due to the mount
967 * being shut down. However, if the mount has not been shut down and the
968 * transaction is dirty we will shut the mount down and, in doing so, that
969 * guarantees that the log is shut down, too. Hence we don't need to be as
970 * careful with shutdown state and dirty items here as we need to be in
971 * xfs_trans_commit().
972 */
973 void
xfs_trans_cancel(struct xfs_trans * tp)974 xfs_trans_cancel(
975 struct xfs_trans *tp)
976 {
977 struct xfs_mount *mp = tp->t_mountp;
978 struct xlog *log = mp->m_log;
979 bool dirty = (tp->t_flags & XFS_TRANS_DIRTY);
980
981 trace_xfs_trans_cancel(tp, _RET_IP_);
982
983 /*
984 * It's never valid to cancel a transaction with deferred ops attached,
985 * because the transaction is effectively dirty. Complain about this
986 * loudly before freeing the in-memory defer items and shutting down the
987 * filesystem.
988 */
989 if (!list_empty(&tp->t_dfops)) {
990 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
991 dirty = true;
992 xfs_defer_cancel(tp);
993 }
994
995 /*
996 * See if the caller is relying on us to shut down the filesystem. We
997 * only want an error report if there isn't already a shutdown in
998 * progress, so we only need to check against the mount shutdown state
999 * here.
1000 */
1001 if (dirty && !xfs_is_shutdown(mp)) {
1002 XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
1003 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1004 }
1005 #ifdef DEBUG
1006 /* Log items need to be consistent until the log is shut down. */
1007 if (!dirty && !xlog_is_shutdown(log)) {
1008 struct xfs_log_item *lip;
1009
1010 list_for_each_entry(lip, &tp->t_items, li_trans)
1011 ASSERT(!xlog_item_is_intent_done(lip));
1012 }
1013 #endif
1014 xfs_trans_unreserve_and_mod_sb(tp);
1015 xfs_trans_unreserve_and_mod_dquots(tp, false);
1016
1017 if (tp->t_ticket) {
1018 xfs_log_ticket_ungrant(log, tp->t_ticket);
1019 tp->t_ticket = NULL;
1020 }
1021
1022 xfs_trans_free_items(tp, dirty);
1023 xfs_trans_free(tp);
1024 }
1025
1026 /*
1027 * Roll from one trans in the sequence of PERMANENT transactions to
1028 * the next: permanent transactions are only flushed out when
1029 * committed with xfs_trans_commit(), but we still want as soon
1030 * as possible to let chunks of it go to the log. So we commit the
1031 * chunk we've been working on and get a new transaction to continue.
1032 */
1033 int
xfs_trans_roll(struct xfs_trans ** tpp)1034 xfs_trans_roll(
1035 struct xfs_trans **tpp)
1036 {
1037 struct xfs_trans *trans = *tpp;
1038 struct xfs_trans_res tres;
1039 int error;
1040
1041 trace_xfs_trans_roll(trans, _RET_IP_);
1042
1043 /*
1044 * Copy the critical parameters from one trans to the next.
1045 */
1046 tres.tr_logres = trans->t_log_res;
1047 tres.tr_logcount = trans->t_log_count;
1048
1049 *tpp = xfs_trans_dup(trans);
1050
1051 /*
1052 * Commit the current transaction.
1053 * If this commit failed, then it'd just unlock those items that
1054 * are not marked ihold. That also means that a filesystem shutdown
1055 * is in progress. The caller takes the responsibility to cancel
1056 * the duplicate transaction that gets returned.
1057 */
1058 error = __xfs_trans_commit(trans, true);
1059 if (error)
1060 return error;
1061
1062 /*
1063 * Reserve space in the log for the next transaction.
1064 * This also pushes items in the "AIL", the list of logged items,
1065 * out to disk if they are taking up space at the tail of the log
1066 * that we want to use. This requires that either nothing be locked
1067 * across this call, or that anything that is locked be logged in
1068 * the prior and the next transactions.
1069 */
1070 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1071 return xfs_trans_reserve(*tpp, &tres, 0, 0);
1072 }
1073
1074 /*
1075 * Allocate an transaction, lock and join the inode to it, and reserve quota.
1076 *
1077 * The caller must ensure that the on-disk dquots attached to this inode have
1078 * already been allocated and initialized. The caller is responsible for
1079 * releasing ILOCK_EXCL if a new transaction is returned.
1080 */
1081 int
xfs_trans_alloc_inode(struct xfs_inode * ip,struct xfs_trans_res * resv,unsigned int dblocks,unsigned int rblocks,bool force,struct xfs_trans ** tpp)1082 xfs_trans_alloc_inode(
1083 struct xfs_inode *ip,
1084 struct xfs_trans_res *resv,
1085 unsigned int dblocks,
1086 unsigned int rblocks,
1087 bool force,
1088 struct xfs_trans **tpp)
1089 {
1090 struct xfs_trans *tp;
1091 struct xfs_mount *mp = ip->i_mount;
1092 bool retried = false;
1093 int error;
1094
1095 retry:
1096 error = xfs_trans_alloc(mp, resv, dblocks,
1097 xfs_extlen_to_rtxlen(mp, rblocks),
1098 force ? XFS_TRANS_RESERVE : 0, &tp);
1099 if (error)
1100 return error;
1101
1102 xfs_ilock(ip, XFS_ILOCK_EXCL);
1103 xfs_trans_ijoin(tp, ip, 0);
1104
1105 error = xfs_qm_dqattach_locked(ip, false);
1106 if (error) {
1107 /* Caller should have allocated the dquots! */
1108 ASSERT(error != -ENOENT);
1109 goto out_cancel;
1110 }
1111
1112 error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks, force);
1113 if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1114 xfs_trans_cancel(tp);
1115 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1116 xfs_blockgc_free_quota(ip, 0);
1117 retried = true;
1118 goto retry;
1119 }
1120 if (error)
1121 goto out_cancel;
1122
1123 *tpp = tp;
1124 return 0;
1125
1126 out_cancel:
1127 xfs_trans_cancel(tp);
1128 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1129 return error;
1130 }
1131
1132 /*
1133 * Try to reserve more blocks for a transaction.
1134 *
1135 * This is for callers that need to attach resources to a transaction, scan
1136 * those resources to determine the space reservation requirements, and then
1137 * modify the attached resources. In other words, online repair. This can
1138 * fail due to ENOSPC, so the caller must be able to cancel the transaction
1139 * without shutting down the fs.
1140 */
1141 int
xfs_trans_reserve_more(struct xfs_trans * tp,unsigned int blocks,unsigned int rtextents)1142 xfs_trans_reserve_more(
1143 struct xfs_trans *tp,
1144 unsigned int blocks,
1145 unsigned int rtextents)
1146 {
1147 struct xfs_trans_res resv = { };
1148
1149 return xfs_trans_reserve(tp, &resv, blocks, rtextents);
1150 }
1151
1152 /*
1153 * Try to reserve more blocks and file quota for a transaction. Same
1154 * conditions of usage as xfs_trans_reserve_more.
1155 */
1156 int
xfs_trans_reserve_more_inode(struct xfs_trans * tp,struct xfs_inode * ip,unsigned int dblocks,unsigned int rblocks,bool force_quota)1157 xfs_trans_reserve_more_inode(
1158 struct xfs_trans *tp,
1159 struct xfs_inode *ip,
1160 unsigned int dblocks,
1161 unsigned int rblocks,
1162 bool force_quota)
1163 {
1164 struct xfs_trans_res resv = { };
1165 struct xfs_mount *mp = ip->i_mount;
1166 unsigned int rtx = xfs_extlen_to_rtxlen(mp, rblocks);
1167 int error;
1168
1169 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1170
1171 error = xfs_trans_reserve(tp, &resv, dblocks, rtx);
1172 if (error)
1173 return error;
1174
1175 if (!XFS_IS_QUOTA_ON(mp) || xfs_is_quota_inode(&mp->m_sb, ip->i_ino))
1176 return 0;
1177
1178 if (tp->t_flags & XFS_TRANS_RESERVE)
1179 force_quota = true;
1180
1181 error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks,
1182 force_quota);
1183 if (!error)
1184 return 0;
1185
1186 /* Quota failed, give back the new reservation. */
1187 xfs_add_fdblocks(mp, dblocks);
1188 tp->t_blk_res -= dblocks;
1189 xfs_add_frextents(mp, rtx);
1190 tp->t_rtx_res -= rtx;
1191 return error;
1192 }
1193
1194 /*
1195 * Allocate an transaction in preparation for inode creation by reserving quota
1196 * against the given dquots. Callers are not required to hold any inode locks.
1197 */
1198 int
xfs_trans_alloc_icreate(struct xfs_mount * mp,struct xfs_trans_res * resv,struct xfs_dquot * udqp,struct xfs_dquot * gdqp,struct xfs_dquot * pdqp,unsigned int dblocks,struct xfs_trans ** tpp)1199 xfs_trans_alloc_icreate(
1200 struct xfs_mount *mp,
1201 struct xfs_trans_res *resv,
1202 struct xfs_dquot *udqp,
1203 struct xfs_dquot *gdqp,
1204 struct xfs_dquot *pdqp,
1205 unsigned int dblocks,
1206 struct xfs_trans **tpp)
1207 {
1208 struct xfs_trans *tp;
1209 bool retried = false;
1210 int error;
1211
1212 retry:
1213 error = xfs_trans_alloc(mp, resv, dblocks, 0, 0, &tp);
1214 if (error)
1215 return error;
1216
1217 error = xfs_trans_reserve_quota_icreate(tp, udqp, gdqp, pdqp, dblocks);
1218 if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1219 xfs_trans_cancel(tp);
1220 xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1221 retried = true;
1222 goto retry;
1223 }
1224 if (error) {
1225 xfs_trans_cancel(tp);
1226 return error;
1227 }
1228
1229 *tpp = tp;
1230 return 0;
1231 }
1232
1233 /*
1234 * Allocate an transaction, lock and join the inode to it, and reserve quota
1235 * in preparation for inode attribute changes that include uid, gid, or prid
1236 * changes.
1237 *
1238 * The caller must ensure that the on-disk dquots attached to this inode have
1239 * already been allocated and initialized. The ILOCK will be dropped when the
1240 * transaction is committed or cancelled.
1241 */
1242 int
xfs_trans_alloc_ichange(struct xfs_inode * ip,struct xfs_dquot * new_udqp,struct xfs_dquot * new_gdqp,struct xfs_dquot * new_pdqp,bool force,struct xfs_trans ** tpp)1243 xfs_trans_alloc_ichange(
1244 struct xfs_inode *ip,
1245 struct xfs_dquot *new_udqp,
1246 struct xfs_dquot *new_gdqp,
1247 struct xfs_dquot *new_pdqp,
1248 bool force,
1249 struct xfs_trans **tpp)
1250 {
1251 struct xfs_trans *tp;
1252 struct xfs_mount *mp = ip->i_mount;
1253 struct xfs_dquot *udqp;
1254 struct xfs_dquot *gdqp;
1255 struct xfs_dquot *pdqp;
1256 bool retried = false;
1257 int error;
1258
1259 retry:
1260 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1261 if (error)
1262 return error;
1263
1264 xfs_ilock(ip, XFS_ILOCK_EXCL);
1265 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1266
1267 if (xfs_is_metadir_inode(ip))
1268 goto out;
1269
1270 error = xfs_qm_dqattach_locked(ip, false);
1271 if (error) {
1272 /* Caller should have allocated the dquots! */
1273 ASSERT(error != -ENOENT);
1274 goto out_cancel;
1275 }
1276
1277 /*
1278 * For each quota type, skip quota reservations if the inode's dquots
1279 * now match the ones that came from the caller, or the caller didn't
1280 * pass one in. The inode's dquots can change if we drop the ILOCK to
1281 * perform a blockgc scan, so we must preserve the caller's arguments.
1282 */
1283 udqp = (new_udqp != ip->i_udquot) ? new_udqp : NULL;
1284 gdqp = (new_gdqp != ip->i_gdquot) ? new_gdqp : NULL;
1285 pdqp = (new_pdqp != ip->i_pdquot) ? new_pdqp : NULL;
1286 if (udqp || gdqp || pdqp) {
1287 xfs_filblks_t dblocks, rblocks;
1288 unsigned int qflags = XFS_QMOPT_RES_REGBLKS;
1289 bool isrt = XFS_IS_REALTIME_INODE(ip);
1290
1291 if (force)
1292 qflags |= XFS_QMOPT_FORCE_RES;
1293
1294 if (isrt) {
1295 error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1296 if (error)
1297 goto out_cancel;
1298 }
1299
1300 xfs_inode_count_blocks(tp, ip, &dblocks, &rblocks);
1301
1302 if (isrt)
1303 rblocks += ip->i_delayed_blks;
1304 else
1305 dblocks += ip->i_delayed_blks;
1306
1307 /*
1308 * Reserve enough quota to handle blocks on disk and reserved
1309 * for a delayed allocation. We'll actually transfer the
1310 * delalloc reservation between dquots at chown time, even
1311 * though that part is only semi-transactional.
1312 */
1313 error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp,
1314 pdqp, dblocks, 1, qflags);
1315 if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1316 xfs_trans_cancel(tp);
1317 xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1318 retried = true;
1319 goto retry;
1320 }
1321 if (error)
1322 goto out_cancel;
1323
1324 /* Do the same for realtime. */
1325 qflags = XFS_QMOPT_RES_RTBLKS | (qflags & XFS_QMOPT_FORCE_RES);
1326 error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp,
1327 pdqp, rblocks, 0, qflags);
1328 if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1329 xfs_trans_cancel(tp);
1330 xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1331 retried = true;
1332 goto retry;
1333 }
1334 if (error)
1335 goto out_cancel;
1336 }
1337
1338 out:
1339 *tpp = tp;
1340 return 0;
1341
1342 out_cancel:
1343 xfs_trans_cancel(tp);
1344 return error;
1345 }
1346
1347 /*
1348 * Allocate an transaction, lock and join the directory and child inodes to it,
1349 * and reserve quota for a directory update. If there isn't sufficient space,
1350 * @dblocks will be set to zero for a reservationless directory update and
1351 * @nospace_error will be set to a negative errno describing the space
1352 * constraint we hit.
1353 *
1354 * The caller must ensure that the on-disk dquots attached to this inode have
1355 * already been allocated and initialized. The ILOCKs will be dropped when the
1356 * transaction is committed or cancelled.
1357 *
1358 * Caller is responsible for unlocking the inodes manually upon return
1359 */
1360 int
xfs_trans_alloc_dir(struct xfs_inode * dp,struct xfs_trans_res * resv,struct xfs_inode * ip,unsigned int * dblocks,struct xfs_trans ** tpp,int * nospace_error)1361 xfs_trans_alloc_dir(
1362 struct xfs_inode *dp,
1363 struct xfs_trans_res *resv,
1364 struct xfs_inode *ip,
1365 unsigned int *dblocks,
1366 struct xfs_trans **tpp,
1367 int *nospace_error)
1368 {
1369 struct xfs_trans *tp;
1370 struct xfs_mount *mp = ip->i_mount;
1371 unsigned int resblks;
1372 bool retried = false;
1373 int error;
1374
1375 retry:
1376 *nospace_error = 0;
1377 resblks = *dblocks;
1378 error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1379 if (error == -ENOSPC) {
1380 *nospace_error = error;
1381 resblks = 0;
1382 error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1383 }
1384 if (error)
1385 return error;
1386
1387 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
1388
1389 xfs_trans_ijoin(tp, dp, 0);
1390 xfs_trans_ijoin(tp, ip, 0);
1391
1392 error = xfs_qm_dqattach_locked(dp, false);
1393 if (error) {
1394 /* Caller should have allocated the dquots! */
1395 ASSERT(error != -ENOENT);
1396 goto out_cancel;
1397 }
1398
1399 error = xfs_qm_dqattach_locked(ip, false);
1400 if (error) {
1401 /* Caller should have allocated the dquots! */
1402 ASSERT(error != -ENOENT);
1403 goto out_cancel;
1404 }
1405
1406 if (resblks == 0)
1407 goto done;
1408
1409 error = xfs_trans_reserve_quota_nblks(tp, dp, resblks, 0, false);
1410 if (error == -EDQUOT || error == -ENOSPC) {
1411 if (!retried) {
1412 xfs_trans_cancel(tp);
1413 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1414 if (dp != ip)
1415 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1416 xfs_blockgc_free_quota(dp, 0);
1417 retried = true;
1418 goto retry;
1419 }
1420
1421 *nospace_error = error;
1422 resblks = 0;
1423 error = 0;
1424 }
1425 if (error)
1426 goto out_cancel;
1427
1428 done:
1429 *tpp = tp;
1430 *dblocks = resblks;
1431 return 0;
1432
1433 out_cancel:
1434 xfs_trans_cancel(tp);
1435 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1436 if (dp != ip)
1437 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1438 return error;
1439 }
1440