xref: /linux/fs/xfs/xfs_trans.c (revision b477ff98d903618a1ab8247861f2ea6e70c0f0f8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
4  * Copyright (C) 2010 Red Hat, Inc.
5  * All Rights Reserved.
6  */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_extent_busy.h"
15 #include "xfs_quota.h"
16 #include "xfs_trans.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_log.h"
19 #include "xfs_log_priv.h"
20 #include "xfs_trace.h"
21 #include "xfs_error.h"
22 #include "xfs_defer.h"
23 #include "xfs_inode.h"
24 #include "xfs_dquot_item.h"
25 #include "xfs_dquot.h"
26 #include "xfs_icache.h"
27 #include "xfs_rtbitmap.h"
28 #include "xfs_rtgroup.h"
29 #include "xfs_sb.h"
30 
31 struct kmem_cache	*xfs_trans_cache;
32 
33 #if defined(CONFIG_TRACEPOINTS)
34 static void
xfs_trans_trace_reservations(struct xfs_mount * mp)35 xfs_trans_trace_reservations(
36 	struct xfs_mount	*mp)
37 {
38 	struct xfs_trans_res	*res;
39 	struct xfs_trans_res	*end_res;
40 	int			i;
41 
42 	res = (struct xfs_trans_res *)M_RES(mp);
43 	end_res = (struct xfs_trans_res *)(M_RES(mp) + 1);
44 	for (i = 0; res < end_res; i++, res++)
45 		trace_xfs_trans_resv_calc(mp, i, res);
46 }
47 #else
48 # define xfs_trans_trace_reservations(mp)
49 #endif
50 
51 /*
52  * Initialize the precomputed transaction reservation values
53  * in the mount structure.
54  */
55 void
xfs_trans_init(struct xfs_mount * mp)56 xfs_trans_init(
57 	struct xfs_mount	*mp)
58 {
59 	xfs_trans_resv_calc(mp, M_RES(mp));
60 	xfs_trans_trace_reservations(mp);
61 }
62 
63 /*
64  * Free the transaction structure.  If there is more clean up
65  * to do when the structure is freed, add it here.
66  */
67 STATIC void
xfs_trans_free(struct xfs_trans * tp)68 xfs_trans_free(
69 	struct xfs_trans	*tp)
70 {
71 	xfs_extent_busy_sort(&tp->t_busy);
72 	xfs_extent_busy_clear(&tp->t_busy, false);
73 
74 	trace_xfs_trans_free(tp, _RET_IP_);
75 	xfs_trans_clear_context(tp);
76 	if (!(tp->t_flags & XFS_TRANS_NO_WRITECOUNT))
77 		sb_end_intwrite(tp->t_mountp->m_super);
78 	xfs_trans_free_dqinfo(tp);
79 	kmem_cache_free(xfs_trans_cache, tp);
80 }
81 
82 /*
83  * This is called to create a new transaction which will share the
84  * permanent log reservation of the given transaction.  The remaining
85  * unused block and rt extent reservations are also inherited.  This
86  * implies that the original transaction is no longer allowed to allocate
87  * blocks.  Locks and log items, however, are no inherited.  They must
88  * be added to the new transaction explicitly.
89  */
90 STATIC struct xfs_trans *
xfs_trans_dup(struct xfs_trans * tp)91 xfs_trans_dup(
92 	struct xfs_trans	*tp)
93 {
94 	struct xfs_trans	*ntp;
95 
96 	trace_xfs_trans_dup(tp, _RET_IP_);
97 
98 	ntp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
99 
100 	/*
101 	 * Initialize the new transaction structure.
102 	 */
103 	ntp->t_mountp = tp->t_mountp;
104 	INIT_LIST_HEAD(&ntp->t_items);
105 	INIT_LIST_HEAD(&ntp->t_busy);
106 	INIT_LIST_HEAD(&ntp->t_dfops);
107 	ntp->t_highest_agno = NULLAGNUMBER;
108 
109 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
110 	ASSERT(tp->t_ticket != NULL);
111 
112 	ntp->t_flags = XFS_TRANS_PERM_LOG_RES |
113 		       (tp->t_flags & XFS_TRANS_RESERVE) |
114 		       (tp->t_flags & XFS_TRANS_NO_WRITECOUNT) |
115 		       (tp->t_flags & XFS_TRANS_RES_FDBLKS);
116 	/* We gave our writer reference to the new transaction */
117 	tp->t_flags |= XFS_TRANS_NO_WRITECOUNT;
118 	ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
119 
120 	ASSERT(tp->t_blk_res >= tp->t_blk_res_used);
121 	ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
122 	tp->t_blk_res = tp->t_blk_res_used;
123 
124 	ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
125 	tp->t_rtx_res = tp->t_rtx_res_used;
126 
127 	xfs_trans_switch_context(tp, ntp);
128 
129 	/* move deferred ops over to the new tp */
130 	xfs_defer_move(ntp, tp);
131 
132 	xfs_trans_dup_dqinfo(tp, ntp);
133 	return ntp;
134 }
135 
136 /*
137  * This is called to reserve free disk blocks and log space for the
138  * given transaction.  This must be done before allocating any resources
139  * within the transaction.
140  *
141  * This will return ENOSPC if there are not enough blocks available.
142  * It will sleep waiting for available log space.
143  * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
144  * is used by long running transactions.  If any one of the reservations
145  * fails then they will all be backed out.
146  *
147  * This does not do quota reservations. That typically is done by the
148  * caller afterwards.
149  */
150 static int
xfs_trans_reserve(struct xfs_trans * tp,struct xfs_trans_res * resp,uint blocks,uint rtextents)151 xfs_trans_reserve(
152 	struct xfs_trans	*tp,
153 	struct xfs_trans_res	*resp,
154 	uint			blocks,
155 	uint			rtextents)
156 {
157 	struct xfs_mount	*mp = tp->t_mountp;
158 	int			error = 0;
159 	bool			rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
160 
161 	/*
162 	 * Attempt to reserve the needed disk blocks by decrementing
163 	 * the number needed from the number available.  This will
164 	 * fail if the count would go below zero.
165 	 */
166 	if (blocks > 0) {
167 		error = xfs_dec_fdblocks(mp, blocks, rsvd);
168 		if (error != 0)
169 			return -ENOSPC;
170 		tp->t_blk_res += blocks;
171 	}
172 
173 	/*
174 	 * Reserve the log space needed for this transaction.
175 	 */
176 	if (resp->tr_logres > 0) {
177 		bool	permanent = false;
178 
179 		ASSERT(tp->t_log_res == 0 ||
180 		       tp->t_log_res == resp->tr_logres);
181 		ASSERT(tp->t_log_count == 0 ||
182 		       tp->t_log_count == resp->tr_logcount);
183 
184 		if (resp->tr_logflags & XFS_TRANS_PERM_LOG_RES) {
185 			tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
186 			permanent = true;
187 		} else {
188 			ASSERT(tp->t_ticket == NULL);
189 			ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
190 		}
191 
192 		if (tp->t_ticket != NULL) {
193 			ASSERT(resp->tr_logflags & XFS_TRANS_PERM_LOG_RES);
194 			error = xfs_log_regrant(mp, tp->t_ticket);
195 		} else {
196 			error = xfs_log_reserve(mp, resp->tr_logres,
197 						resp->tr_logcount,
198 						&tp->t_ticket, permanent);
199 		}
200 
201 		if (error)
202 			goto undo_blocks;
203 
204 		tp->t_log_res = resp->tr_logres;
205 		tp->t_log_count = resp->tr_logcount;
206 	}
207 
208 	/*
209 	 * Attempt to reserve the needed realtime extents by decrementing
210 	 * the number needed from the number available.  This will
211 	 * fail if the count would go below zero.
212 	 */
213 	if (rtextents > 0) {
214 		error = xfs_dec_frextents(mp, rtextents);
215 		if (error) {
216 			error = -ENOSPC;
217 			goto undo_log;
218 		}
219 		tp->t_rtx_res += rtextents;
220 	}
221 
222 	return 0;
223 
224 	/*
225 	 * Error cases jump to one of these labels to undo any
226 	 * reservations which have already been performed.
227 	 */
228 undo_log:
229 	if (resp->tr_logres > 0) {
230 		xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket);
231 		tp->t_ticket = NULL;
232 		tp->t_log_res = 0;
233 		tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
234 	}
235 
236 undo_blocks:
237 	if (blocks > 0) {
238 		xfs_add_fdblocks(mp, blocks);
239 		tp->t_blk_res = 0;
240 	}
241 	return error;
242 }
243 
244 int
xfs_trans_alloc(struct xfs_mount * mp,struct xfs_trans_res * resp,uint blocks,uint rtextents,uint flags,struct xfs_trans ** tpp)245 xfs_trans_alloc(
246 	struct xfs_mount	*mp,
247 	struct xfs_trans_res	*resp,
248 	uint			blocks,
249 	uint			rtextents,
250 	uint			flags,
251 	struct xfs_trans	**tpp)
252 {
253 	struct xfs_trans	*tp;
254 	bool			want_retry = true;
255 	int			error;
256 
257 	/*
258 	 * Allocate the handle before we do our freeze accounting and setting up
259 	 * GFP_NOFS allocation context so that we avoid lockdep false positives
260 	 * by doing GFP_KERNEL allocations inside sb_start_intwrite().
261 	 */
262 retry:
263 	tp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
264 	if (!(flags & XFS_TRANS_NO_WRITECOUNT))
265 		sb_start_intwrite(mp->m_super);
266 	xfs_trans_set_context(tp);
267 
268 	/*
269 	 * Zero-reservation ("empty") transactions can't modify anything, so
270 	 * they're allowed to run while we're frozen.
271 	 */
272 	WARN_ON(resp->tr_logres > 0 &&
273 		mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE);
274 	ASSERT(!(flags & XFS_TRANS_RES_FDBLKS) ||
275 	       xfs_has_lazysbcount(mp));
276 
277 	tp->t_flags = flags;
278 	tp->t_mountp = mp;
279 	INIT_LIST_HEAD(&tp->t_items);
280 	INIT_LIST_HEAD(&tp->t_busy);
281 	INIT_LIST_HEAD(&tp->t_dfops);
282 	tp->t_highest_agno = NULLAGNUMBER;
283 
284 	error = xfs_trans_reserve(tp, resp, blocks, rtextents);
285 	if (error == -ENOSPC && want_retry) {
286 		xfs_trans_cancel(tp);
287 
288 		/*
289 		 * We weren't able to reserve enough space for the transaction.
290 		 * Flush the other speculative space allocations to free space.
291 		 * Do not perform a synchronous scan because callers can hold
292 		 * other locks.
293 		 */
294 		error = xfs_blockgc_flush_all(mp);
295 		if (error)
296 			return error;
297 		want_retry = false;
298 		goto retry;
299 	}
300 	if (error) {
301 		xfs_trans_cancel(tp);
302 		return error;
303 	}
304 
305 	trace_xfs_trans_alloc(tp, _RET_IP_);
306 
307 	*tpp = tp;
308 	return 0;
309 }
310 
311 /*
312  * Create an empty transaction with no reservation.  This is a defensive
313  * mechanism for routines that query metadata without actually modifying them --
314  * if the metadata being queried is somehow cross-linked (think a btree block
315  * pointer that points higher in the tree), we risk deadlock.  However, blocks
316  * grabbed as part of a transaction can be re-grabbed.  The verifiers will
317  * notice the corrupt block and the operation will fail back to userspace
318  * without deadlocking.
319  *
320  * Note the zero-length reservation; this transaction MUST be cancelled without
321  * any dirty data.
322  *
323  * Callers should obtain freeze protection to avoid a conflict with fs freezing
324  * where we can be grabbing buffers at the same time that freeze is trying to
325  * drain the buffer LRU list.
326  */
327 int
xfs_trans_alloc_empty(struct xfs_mount * mp,struct xfs_trans ** tpp)328 xfs_trans_alloc_empty(
329 	struct xfs_mount		*mp,
330 	struct xfs_trans		**tpp)
331 {
332 	struct xfs_trans_res		resv = {0};
333 
334 	return xfs_trans_alloc(mp, &resv, 0, 0, XFS_TRANS_NO_WRITECOUNT, tpp);
335 }
336 
337 /*
338  * Record the indicated change to the given field for application
339  * to the file system's superblock when the transaction commits.
340  * For now, just store the change in the transaction structure.
341  *
342  * Mark the transaction structure to indicate that the superblock
343  * needs to be updated before committing.
344  *
345  * Because we may not be keeping track of allocated/free inodes and
346  * used filesystem blocks in the superblock, we do not mark the
347  * superblock dirty in this transaction if we modify these fields.
348  * We still need to update the transaction deltas so that they get
349  * applied to the incore superblock, but we don't want them to
350  * cause the superblock to get locked and logged if these are the
351  * only fields in the superblock that the transaction modifies.
352  */
353 void
xfs_trans_mod_sb(xfs_trans_t * tp,uint field,int64_t delta)354 xfs_trans_mod_sb(
355 	xfs_trans_t	*tp,
356 	uint		field,
357 	int64_t		delta)
358 {
359 	uint32_t	flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
360 	xfs_mount_t	*mp = tp->t_mountp;
361 
362 	switch (field) {
363 	case XFS_TRANS_SB_ICOUNT:
364 		tp->t_icount_delta += delta;
365 		if (xfs_has_lazysbcount(mp))
366 			flags &= ~XFS_TRANS_SB_DIRTY;
367 		break;
368 	case XFS_TRANS_SB_IFREE:
369 		tp->t_ifree_delta += delta;
370 		if (xfs_has_lazysbcount(mp))
371 			flags &= ~XFS_TRANS_SB_DIRTY;
372 		break;
373 	case XFS_TRANS_SB_FDBLOCKS:
374 		/*
375 		 * Track the number of blocks allocated in the transaction.
376 		 * Make sure it does not exceed the number reserved. If so,
377 		 * shutdown as this can lead to accounting inconsistency.
378 		 */
379 		if (delta < 0) {
380 			tp->t_blk_res_used += (uint)-delta;
381 			if (tp->t_blk_res_used > tp->t_blk_res)
382 				xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
383 		} else if (delta > 0 && (tp->t_flags & XFS_TRANS_RES_FDBLKS)) {
384 			int64_t	blkres_delta;
385 
386 			/*
387 			 * Return freed blocks directly to the reservation
388 			 * instead of the global pool, being careful not to
389 			 * overflow the trans counter. This is used to preserve
390 			 * reservation across chains of transaction rolls that
391 			 * repeatedly free and allocate blocks.
392 			 */
393 			blkres_delta = min_t(int64_t, delta,
394 					     UINT_MAX - tp->t_blk_res);
395 			tp->t_blk_res += blkres_delta;
396 			delta -= blkres_delta;
397 		}
398 		tp->t_fdblocks_delta += delta;
399 		if (xfs_has_lazysbcount(mp))
400 			flags &= ~XFS_TRANS_SB_DIRTY;
401 		break;
402 	case XFS_TRANS_SB_RES_FDBLOCKS:
403 		/*
404 		 * The allocation has already been applied to the
405 		 * in-core superblock's counter.  This should only
406 		 * be applied to the on-disk superblock.
407 		 */
408 		tp->t_res_fdblocks_delta += delta;
409 		if (xfs_has_lazysbcount(mp))
410 			flags &= ~XFS_TRANS_SB_DIRTY;
411 		break;
412 	case XFS_TRANS_SB_FREXTENTS:
413 		/*
414 		 * Track the number of blocks allocated in the
415 		 * transaction.  Make sure it does not exceed the
416 		 * number reserved.
417 		 */
418 		if (delta < 0) {
419 			tp->t_rtx_res_used += (uint)-delta;
420 			ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
421 		}
422 		tp->t_frextents_delta += delta;
423 		if (xfs_has_rtgroups(mp))
424 			flags &= ~XFS_TRANS_SB_DIRTY;
425 		break;
426 	case XFS_TRANS_SB_RES_FREXTENTS:
427 		/*
428 		 * The allocation has already been applied to the
429 		 * in-core superblock's counter.  This should only
430 		 * be applied to the on-disk superblock.
431 		 */
432 		ASSERT(delta < 0);
433 		tp->t_res_frextents_delta += delta;
434 		if (xfs_has_rtgroups(mp))
435 			flags &= ~XFS_TRANS_SB_DIRTY;
436 		break;
437 	case XFS_TRANS_SB_DBLOCKS:
438 		tp->t_dblocks_delta += delta;
439 		break;
440 	case XFS_TRANS_SB_AGCOUNT:
441 		ASSERT(delta > 0);
442 		tp->t_agcount_delta += delta;
443 		break;
444 	case XFS_TRANS_SB_IMAXPCT:
445 		tp->t_imaxpct_delta += delta;
446 		break;
447 	case XFS_TRANS_SB_REXTSIZE:
448 		tp->t_rextsize_delta += delta;
449 		break;
450 	case XFS_TRANS_SB_RBMBLOCKS:
451 		tp->t_rbmblocks_delta += delta;
452 		break;
453 	case XFS_TRANS_SB_RBLOCKS:
454 		tp->t_rblocks_delta += delta;
455 		break;
456 	case XFS_TRANS_SB_REXTENTS:
457 		tp->t_rextents_delta += delta;
458 		break;
459 	case XFS_TRANS_SB_REXTSLOG:
460 		tp->t_rextslog_delta += delta;
461 		break;
462 	case XFS_TRANS_SB_RGCOUNT:
463 		ASSERT(delta > 0);
464 		tp->t_rgcount_delta += delta;
465 		break;
466 	default:
467 		ASSERT(0);
468 		return;
469 	}
470 
471 	tp->t_flags |= flags;
472 }
473 
474 /*
475  * xfs_trans_apply_sb_deltas() is called from the commit code
476  * to bring the superblock buffer into the current transaction
477  * and modify it as requested by earlier calls to xfs_trans_mod_sb().
478  *
479  * For now we just look at each field allowed to change and change
480  * it if necessary.
481  */
482 STATIC void
xfs_trans_apply_sb_deltas(xfs_trans_t * tp)483 xfs_trans_apply_sb_deltas(
484 	xfs_trans_t	*tp)
485 {
486 	struct xfs_dsb	*sbp;
487 	struct xfs_buf	*bp;
488 	int		whole = 0;
489 
490 	bp = xfs_trans_getsb(tp);
491 	sbp = bp->b_addr;
492 
493 	/*
494 	 * Only update the superblock counters if we are logging them
495 	 */
496 	if (!xfs_has_lazysbcount((tp->t_mountp))) {
497 		if (tp->t_icount_delta)
498 			be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
499 		if (tp->t_ifree_delta)
500 			be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
501 		if (tp->t_fdblocks_delta)
502 			be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
503 		if (tp->t_res_fdblocks_delta)
504 			be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
505 	}
506 
507 	/*
508 	 * sb_frextents was added to the lazy sb counters when the rt groups
509 	 * feature was introduced.  This is possible because we know that all
510 	 * kernels supporting rtgroups will also recompute frextents from the
511 	 * realtime bitmap.
512 	 *
513 	 * For older file systems, updating frextents requires careful handling
514 	 * because we cannot rely on log recovery in older kernels to recompute
515 	 * the value from the rtbitmap.  This means that the ondisk frextents
516 	 * must be consistent with the rtbitmap.
517 	 *
518 	 * Therefore, log the frextents change to the ondisk superblock and
519 	 * update the incore superblock so that future calls to xfs_log_sb
520 	 * write the correct value ondisk.
521 	 */
522 	if ((tp->t_frextents_delta || tp->t_res_frextents_delta) &&
523 	    !xfs_has_rtgroups(tp->t_mountp)) {
524 		struct xfs_mount	*mp = tp->t_mountp;
525 		int64_t			rtxdelta;
526 
527 		rtxdelta = tp->t_frextents_delta + tp->t_res_frextents_delta;
528 
529 		spin_lock(&mp->m_sb_lock);
530 		be64_add_cpu(&sbp->sb_frextents, rtxdelta);
531 		mp->m_sb.sb_frextents += rtxdelta;
532 		spin_unlock(&mp->m_sb_lock);
533 	}
534 
535 	if (tp->t_dblocks_delta) {
536 		be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
537 		whole = 1;
538 	}
539 	if (tp->t_agcount_delta) {
540 		be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
541 		whole = 1;
542 	}
543 	if (tp->t_imaxpct_delta) {
544 		sbp->sb_imax_pct += tp->t_imaxpct_delta;
545 		whole = 1;
546 	}
547 	if (tp->t_rextsize_delta) {
548 		be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
549 
550 		/*
551 		 * Because the ondisk sb records rtgroup size in units of rt
552 		 * extents, any time we update the rt extent size we have to
553 		 * recompute the ondisk rtgroup block log.  The incore values
554 		 * will be recomputed in xfs_trans_unreserve_and_mod_sb.
555 		 */
556 		if (xfs_has_rtgroups(tp->t_mountp)) {
557 			sbp->sb_rgblklog = xfs_compute_rgblklog(
558 						be32_to_cpu(sbp->sb_rgextents),
559 						be32_to_cpu(sbp->sb_rextsize));
560 		}
561 		whole = 1;
562 	}
563 	if (tp->t_rbmblocks_delta) {
564 		be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
565 		whole = 1;
566 	}
567 	if (tp->t_rblocks_delta) {
568 		be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
569 		whole = 1;
570 	}
571 	if (tp->t_rextents_delta) {
572 		be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
573 		whole = 1;
574 	}
575 	if (tp->t_rextslog_delta) {
576 		sbp->sb_rextslog += tp->t_rextslog_delta;
577 		whole = 1;
578 	}
579 	if (tp->t_rgcount_delta) {
580 		be32_add_cpu(&sbp->sb_rgcount, tp->t_rgcount_delta);
581 		whole = 1;
582 	}
583 
584 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF);
585 	if (whole)
586 		/*
587 		 * Log the whole thing, the fields are noncontiguous.
588 		 */
589 		xfs_trans_log_buf(tp, bp, 0, sizeof(struct xfs_dsb) - 1);
590 	else
591 		/*
592 		 * Since all the modifiable fields are contiguous, we
593 		 * can get away with this.
594 		 */
595 		xfs_trans_log_buf(tp, bp, offsetof(struct xfs_dsb, sb_icount),
596 				  offsetof(struct xfs_dsb, sb_frextents) +
597 				  sizeof(sbp->sb_frextents) - 1);
598 }
599 
600 /*
601  * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations and
602  * apply superblock counter changes to the in-core superblock.  The
603  * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
604  * applied to the in-core superblock.  The idea is that that has already been
605  * done.
606  *
607  * If we are not logging superblock counters, then the inode allocated/free and
608  * used block counts are not updated in the on disk superblock. In this case,
609  * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
610  * still need to update the incore superblock with the changes.
611  *
612  * Deltas for the inode count are +/-64, hence we use a large batch size of 128
613  * so we don't need to take the counter lock on every update.
614  */
615 #define XFS_ICOUNT_BATCH	128
616 
617 void
xfs_trans_unreserve_and_mod_sb(struct xfs_trans * tp)618 xfs_trans_unreserve_and_mod_sb(
619 	struct xfs_trans	*tp)
620 {
621 	struct xfs_mount	*mp = tp->t_mountp;
622 	int64_t			blkdelta = tp->t_blk_res;
623 	int64_t			rtxdelta = tp->t_rtx_res;
624 	int64_t			idelta = 0;
625 	int64_t			ifreedelta = 0;
626 
627 	/*
628 	 * Calculate the deltas.
629 	 *
630 	 * t_fdblocks_delta and t_frextents_delta can be positive or negative:
631 	 *
632 	 *  - positive values indicate blocks freed in the transaction.
633 	 *  - negative values indicate blocks allocated in the transaction
634 	 *
635 	 * Negative values can only happen if the transaction has a block
636 	 * reservation that covers the allocated block.  The end result is
637 	 * that the calculated delta values must always be positive and we
638 	 * can only put back previous allocated or reserved blocks here.
639 	 */
640 	ASSERT(tp->t_blk_res || tp->t_fdblocks_delta >= 0);
641 	if (xfs_has_lazysbcount(mp) || (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
642 	        blkdelta += tp->t_fdblocks_delta;
643 		ASSERT(blkdelta >= 0);
644 	}
645 
646 	ASSERT(tp->t_rtx_res || tp->t_frextents_delta >= 0);
647 	if (xfs_has_rtgroups(mp) || (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
648 		rtxdelta += tp->t_frextents_delta;
649 		ASSERT(rtxdelta >= 0);
650 	}
651 
652 	if (xfs_has_lazysbcount(mp) || (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
653 		idelta = tp->t_icount_delta;
654 		ifreedelta = tp->t_ifree_delta;
655 	}
656 
657 	/* apply the per-cpu counters */
658 	if (blkdelta)
659 		xfs_add_fdblocks(mp, blkdelta);
660 
661 	if (idelta)
662 		percpu_counter_add_batch(&mp->m_icount, idelta,
663 					 XFS_ICOUNT_BATCH);
664 
665 	if (ifreedelta)
666 		percpu_counter_add(&mp->m_ifree, ifreedelta);
667 
668 	if (rtxdelta)
669 		xfs_add_frextents(mp, rtxdelta);
670 
671 	if (!(tp->t_flags & XFS_TRANS_SB_DIRTY))
672 		return;
673 
674 	/* apply remaining deltas */
675 	spin_lock(&mp->m_sb_lock);
676 	mp->m_sb.sb_fdblocks += tp->t_fdblocks_delta + tp->t_res_fdblocks_delta;
677 	mp->m_sb.sb_icount += idelta;
678 	mp->m_sb.sb_ifree += ifreedelta;
679 	/*
680 	 * Do not touch sb_frextents here because it is handled in
681 	 * xfs_trans_apply_sb_deltas for file systems where it isn't a lazy
682 	 * counter anyway.
683 	 */
684 	mp->m_sb.sb_dblocks += tp->t_dblocks_delta;
685 	mp->m_sb.sb_agcount += tp->t_agcount_delta;
686 	mp->m_sb.sb_imax_pct += tp->t_imaxpct_delta;
687 	if (tp->t_rextsize_delta)
688 		xfs_mount_sb_set_rextsize(mp, &mp->m_sb,
689 				mp->m_sb.sb_rextsize + tp->t_rextsize_delta);
690 	mp->m_sb.sb_rbmblocks += tp->t_rbmblocks_delta;
691 	mp->m_sb.sb_rblocks += tp->t_rblocks_delta;
692 	mp->m_sb.sb_rextents += tp->t_rextents_delta;
693 	mp->m_sb.sb_rextslog += tp->t_rextslog_delta;
694 	mp->m_sb.sb_rgcount += tp->t_rgcount_delta;
695 	spin_unlock(&mp->m_sb_lock);
696 
697 	/*
698 	 * Debug checks outside of the spinlock so they don't lock up the
699 	 * machine if they fail.
700 	 */
701 	ASSERT(mp->m_sb.sb_imax_pct >= 0);
702 	ASSERT(mp->m_sb.sb_rextslog >= 0);
703 }
704 
705 /* Add the given log item to the transaction's list of log items. */
706 void
xfs_trans_add_item(struct xfs_trans * tp,struct xfs_log_item * lip)707 xfs_trans_add_item(
708 	struct xfs_trans	*tp,
709 	struct xfs_log_item	*lip)
710 {
711 	ASSERT(lip->li_log == tp->t_mountp->m_log);
712 	ASSERT(lip->li_ailp == tp->t_mountp->m_ail);
713 	ASSERT(list_empty(&lip->li_trans));
714 	ASSERT(!test_bit(XFS_LI_DIRTY, &lip->li_flags));
715 
716 	list_add_tail(&lip->li_trans, &tp->t_items);
717 	trace_xfs_trans_add_item(tp, _RET_IP_);
718 }
719 
720 /*
721  * Unlink the log item from the transaction. the log item is no longer
722  * considered dirty in this transaction, as the linked transaction has
723  * finished, either by abort or commit completion.
724  */
725 void
xfs_trans_del_item(struct xfs_log_item * lip)726 xfs_trans_del_item(
727 	struct xfs_log_item	*lip)
728 {
729 	clear_bit(XFS_LI_DIRTY, &lip->li_flags);
730 	list_del_init(&lip->li_trans);
731 }
732 
733 /* Detach and unlock all of the items in a transaction */
734 static void
xfs_trans_free_items(struct xfs_trans * tp,bool abort)735 xfs_trans_free_items(
736 	struct xfs_trans	*tp,
737 	bool			abort)
738 {
739 	struct xfs_log_item	*lip, *next;
740 
741 	trace_xfs_trans_free_items(tp, _RET_IP_);
742 
743 	list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
744 		xfs_trans_del_item(lip);
745 		if (abort)
746 			set_bit(XFS_LI_ABORTED, &lip->li_flags);
747 		if (lip->li_ops->iop_release)
748 			lip->li_ops->iop_release(lip);
749 	}
750 }
751 
752 /*
753  * Sort transaction items prior to running precommit operations. This will
754  * attempt to order the items such that they will always be locked in the same
755  * order. Items that have no sort function are moved to the end of the list
756  * and so are locked last.
757  *
758  * This may need refinement as different types of objects add sort functions.
759  *
760  * Function is more complex than it needs to be because we are comparing 64 bit
761  * values and the function only returns 32 bit values.
762  */
763 static int
xfs_trans_precommit_sort(void * unused_arg,const struct list_head * a,const struct list_head * b)764 xfs_trans_precommit_sort(
765 	void			*unused_arg,
766 	const struct list_head	*a,
767 	const struct list_head	*b)
768 {
769 	struct xfs_log_item	*lia = container_of(a,
770 					struct xfs_log_item, li_trans);
771 	struct xfs_log_item	*lib = container_of(b,
772 					struct xfs_log_item, li_trans);
773 	int64_t			diff;
774 
775 	/*
776 	 * If both items are non-sortable, leave them alone. If only one is
777 	 * sortable, move the non-sortable item towards the end of the list.
778 	 */
779 	if (!lia->li_ops->iop_sort && !lib->li_ops->iop_sort)
780 		return 0;
781 	if (!lia->li_ops->iop_sort)
782 		return 1;
783 	if (!lib->li_ops->iop_sort)
784 		return -1;
785 
786 	diff = lia->li_ops->iop_sort(lia) - lib->li_ops->iop_sort(lib);
787 	if (diff < 0)
788 		return -1;
789 	if (diff > 0)
790 		return 1;
791 	return 0;
792 }
793 
794 /*
795  * Run transaction precommit functions.
796  *
797  * If there is an error in any of the callouts, then stop immediately and
798  * trigger a shutdown to abort the transaction. There is no recovery possible
799  * from errors at this point as the transaction is dirty....
800  */
801 static int
xfs_trans_run_precommits(struct xfs_trans * tp)802 xfs_trans_run_precommits(
803 	struct xfs_trans	*tp)
804 {
805 	struct xfs_mount	*mp = tp->t_mountp;
806 	struct xfs_log_item	*lip, *n;
807 	int			error = 0;
808 
809 	/*
810 	 * Sort the item list to avoid ABBA deadlocks with other transactions
811 	 * running precommit operations that lock multiple shared items such as
812 	 * inode cluster buffers.
813 	 */
814 	list_sort(NULL, &tp->t_items, xfs_trans_precommit_sort);
815 
816 	/*
817 	 * Precommit operations can remove the log item from the transaction
818 	 * if the log item exists purely to delay modifications until they
819 	 * can be ordered against other operations. Hence we have to use
820 	 * list_for_each_entry_safe() here.
821 	 */
822 	list_for_each_entry_safe(lip, n, &tp->t_items, li_trans) {
823 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
824 			continue;
825 		if (lip->li_ops->iop_precommit) {
826 			error = lip->li_ops->iop_precommit(tp, lip);
827 			if (error)
828 				break;
829 		}
830 	}
831 	if (error)
832 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
833 	return error;
834 }
835 
836 /*
837  * Commit the given transaction to the log.
838  *
839  * XFS disk error handling mechanism is not based on a typical
840  * transaction abort mechanism. Logically after the filesystem
841  * gets marked 'SHUTDOWN', we can't let any new transactions
842  * be durable - ie. committed to disk - because some metadata might
843  * be inconsistent. In such cases, this returns an error, and the
844  * caller may assume that all locked objects joined to the transaction
845  * have already been unlocked as if the commit had succeeded.
846  * Do not reference the transaction structure after this call.
847  */
848 static int
__xfs_trans_commit(struct xfs_trans * tp,bool regrant)849 __xfs_trans_commit(
850 	struct xfs_trans	*tp,
851 	bool			regrant)
852 {
853 	struct xfs_mount	*mp = tp->t_mountp;
854 	struct xlog		*log = mp->m_log;
855 	xfs_csn_t		commit_seq = 0;
856 	int			error = 0;
857 	int			sync = tp->t_flags & XFS_TRANS_SYNC;
858 
859 	trace_xfs_trans_commit(tp, _RET_IP_);
860 
861 	/*
862 	 * Commit per-transaction changes that are not already tracked through
863 	 * log items.  This can add dirty log items to the transaction.
864 	 */
865 	if (tp->t_flags & XFS_TRANS_SB_DIRTY)
866 		xfs_trans_apply_sb_deltas(tp);
867 	xfs_trans_apply_dquot_deltas(tp);
868 
869 	error = xfs_trans_run_precommits(tp);
870 	if (error)
871 		goto out_unreserve;
872 
873 	/*
874 	 * If there is nothing to be logged by the transaction,
875 	 * then unlock all of the items associated with the
876 	 * transaction and free the transaction structure.
877 	 * Also make sure to return any reserved blocks to
878 	 * the free pool.
879 	 */
880 	if (!(tp->t_flags & XFS_TRANS_DIRTY))
881 		goto out_unreserve;
882 
883 	/*
884 	 * We must check against log shutdown here because we cannot abort log
885 	 * items and leave them dirty, inconsistent and unpinned in memory while
886 	 * the log is active. This leaves them open to being written back to
887 	 * disk, and that will lead to on-disk corruption.
888 	 */
889 	if (xlog_is_shutdown(log)) {
890 		error = -EIO;
891 		goto out_unreserve;
892 	}
893 
894 	ASSERT(tp->t_ticket != NULL);
895 
896 	xlog_cil_commit(log, tp, &commit_seq, regrant);
897 
898 	xfs_trans_free(tp);
899 
900 	/*
901 	 * If the transaction needs to be synchronous, then force the
902 	 * log out now and wait for it.
903 	 */
904 	if (sync) {
905 		error = xfs_log_force_seq(mp, commit_seq, XFS_LOG_SYNC, NULL);
906 		XFS_STATS_INC(mp, xs_trans_sync);
907 	} else {
908 		XFS_STATS_INC(mp, xs_trans_async);
909 	}
910 
911 	return error;
912 
913 out_unreserve:
914 	xfs_trans_unreserve_and_mod_sb(tp);
915 
916 	/*
917 	 * It is indeed possible for the transaction to be not dirty but
918 	 * the dqinfo portion to be.  All that means is that we have some
919 	 * (non-persistent) quota reservations that need to be unreserved.
920 	 */
921 	xfs_trans_unreserve_and_mod_dquots(tp, true);
922 	if (tp->t_ticket) {
923 		if (regrant && !xlog_is_shutdown(log))
924 			xfs_log_ticket_regrant(log, tp->t_ticket);
925 		else
926 			xfs_log_ticket_ungrant(log, tp->t_ticket);
927 		tp->t_ticket = NULL;
928 	}
929 	xfs_trans_free_items(tp, !!error);
930 	xfs_trans_free(tp);
931 
932 	XFS_STATS_INC(mp, xs_trans_empty);
933 	return error;
934 }
935 
936 int
xfs_trans_commit(struct xfs_trans * tp)937 xfs_trans_commit(
938 	struct xfs_trans	*tp)
939 {
940 	/*
941 	 * Finish deferred items on final commit. Only permanent transactions
942 	 * should ever have deferred ops.
943 	 */
944 	WARN_ON_ONCE(!list_empty(&tp->t_dfops) &&
945 		     !(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
946 	if (tp->t_flags & XFS_TRANS_PERM_LOG_RES) {
947 		int error = xfs_defer_finish_noroll(&tp);
948 		if (error) {
949 			xfs_trans_cancel(tp);
950 			return error;
951 		}
952 	}
953 
954 	return __xfs_trans_commit(tp, false);
955 }
956 
957 /*
958  * Unlock all of the transaction's items and free the transaction.  If the
959  * transaction is dirty, we must shut down the filesystem because there is no
960  * way to restore them to their previous state.
961  *
962  * If the transaction has made a log reservation, make sure to release it as
963  * well.
964  *
965  * This is a high level function (equivalent to xfs_trans_commit()) and so can
966  * be called after the transaction has effectively been aborted due to the mount
967  * being shut down. However, if the mount has not been shut down and the
968  * transaction is dirty we will shut the mount down and, in doing so, that
969  * guarantees that the log is shut down, too. Hence we don't need to be as
970  * careful with shutdown state and dirty items here as we need to be in
971  * xfs_trans_commit().
972  */
973 void
xfs_trans_cancel(struct xfs_trans * tp)974 xfs_trans_cancel(
975 	struct xfs_trans	*tp)
976 {
977 	struct xfs_mount	*mp = tp->t_mountp;
978 	struct xlog		*log = mp->m_log;
979 	bool			dirty = (tp->t_flags & XFS_TRANS_DIRTY);
980 
981 	trace_xfs_trans_cancel(tp, _RET_IP_);
982 
983 	/*
984 	 * It's never valid to cancel a transaction with deferred ops attached,
985 	 * because the transaction is effectively dirty.  Complain about this
986 	 * loudly before freeing the in-memory defer items and shutting down the
987 	 * filesystem.
988 	 */
989 	if (!list_empty(&tp->t_dfops)) {
990 		ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
991 		dirty = true;
992 		xfs_defer_cancel(tp);
993 	}
994 
995 	/*
996 	 * See if the caller is relying on us to shut down the filesystem. We
997 	 * only want an error report if there isn't already a shutdown in
998 	 * progress, so we only need to check against the mount shutdown state
999 	 * here.
1000 	 */
1001 	if (dirty && !xfs_is_shutdown(mp)) {
1002 		XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
1003 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1004 	}
1005 #ifdef DEBUG
1006 	/* Log items need to be consistent until the log is shut down. */
1007 	if (!dirty && !xlog_is_shutdown(log)) {
1008 		struct xfs_log_item *lip;
1009 
1010 		list_for_each_entry(lip, &tp->t_items, li_trans)
1011 			ASSERT(!xlog_item_is_intent_done(lip));
1012 	}
1013 #endif
1014 	xfs_trans_unreserve_and_mod_sb(tp);
1015 	xfs_trans_unreserve_and_mod_dquots(tp, false);
1016 
1017 	if (tp->t_ticket) {
1018 		xfs_log_ticket_ungrant(log, tp->t_ticket);
1019 		tp->t_ticket = NULL;
1020 	}
1021 
1022 	xfs_trans_free_items(tp, dirty);
1023 	xfs_trans_free(tp);
1024 }
1025 
1026 /*
1027  * Roll from one trans in the sequence of PERMANENT transactions to
1028  * the next: permanent transactions are only flushed out when
1029  * committed with xfs_trans_commit(), but we still want as soon
1030  * as possible to let chunks of it go to the log. So we commit the
1031  * chunk we've been working on and get a new transaction to continue.
1032  */
1033 int
xfs_trans_roll(struct xfs_trans ** tpp)1034 xfs_trans_roll(
1035 	struct xfs_trans	**tpp)
1036 {
1037 	struct xfs_trans	*trans = *tpp;
1038 	struct xfs_trans_res	tres;
1039 	int			error;
1040 
1041 	trace_xfs_trans_roll(trans, _RET_IP_);
1042 
1043 	/*
1044 	 * Copy the critical parameters from one trans to the next.
1045 	 */
1046 	tres.tr_logres = trans->t_log_res;
1047 	tres.tr_logcount = trans->t_log_count;
1048 
1049 	*tpp = xfs_trans_dup(trans);
1050 
1051 	/*
1052 	 * Commit the current transaction.
1053 	 * If this commit failed, then it'd just unlock those items that
1054 	 * are not marked ihold. That also means that a filesystem shutdown
1055 	 * is in progress. The caller takes the responsibility to cancel
1056 	 * the duplicate transaction that gets returned.
1057 	 */
1058 	error = __xfs_trans_commit(trans, true);
1059 	if (error)
1060 		return error;
1061 
1062 	/*
1063 	 * Reserve space in the log for the next transaction.
1064 	 * This also pushes items in the "AIL", the list of logged items,
1065 	 * out to disk if they are taking up space at the tail of the log
1066 	 * that we want to use.  This requires that either nothing be locked
1067 	 * across this call, or that anything that is locked be logged in
1068 	 * the prior and the next transactions.
1069 	 */
1070 	tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1071 	return xfs_trans_reserve(*tpp, &tres, 0, 0);
1072 }
1073 
1074 /*
1075  * Allocate an transaction, lock and join the inode to it, and reserve quota.
1076  *
1077  * The caller must ensure that the on-disk dquots attached to this inode have
1078  * already been allocated and initialized.  The caller is responsible for
1079  * releasing ILOCK_EXCL if a new transaction is returned.
1080  */
1081 int
xfs_trans_alloc_inode(struct xfs_inode * ip,struct xfs_trans_res * resv,unsigned int dblocks,unsigned int rblocks,bool force,struct xfs_trans ** tpp)1082 xfs_trans_alloc_inode(
1083 	struct xfs_inode	*ip,
1084 	struct xfs_trans_res	*resv,
1085 	unsigned int		dblocks,
1086 	unsigned int		rblocks,
1087 	bool			force,
1088 	struct xfs_trans	**tpp)
1089 {
1090 	struct xfs_trans	*tp;
1091 	struct xfs_mount	*mp = ip->i_mount;
1092 	bool			retried = false;
1093 	int			error;
1094 
1095 retry:
1096 	error = xfs_trans_alloc(mp, resv, dblocks,
1097 			xfs_extlen_to_rtxlen(mp, rblocks),
1098 			force ? XFS_TRANS_RESERVE : 0, &tp);
1099 	if (error)
1100 		return error;
1101 
1102 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1103 	xfs_trans_ijoin(tp, ip, 0);
1104 
1105 	error = xfs_qm_dqattach_locked(ip, false);
1106 	if (error) {
1107 		/* Caller should have allocated the dquots! */
1108 		ASSERT(error != -ENOENT);
1109 		goto out_cancel;
1110 	}
1111 
1112 	error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks, force);
1113 	if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1114 		xfs_trans_cancel(tp);
1115 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1116 		xfs_blockgc_free_quota(ip, 0);
1117 		retried = true;
1118 		goto retry;
1119 	}
1120 	if (error)
1121 		goto out_cancel;
1122 
1123 	*tpp = tp;
1124 	return 0;
1125 
1126 out_cancel:
1127 	xfs_trans_cancel(tp);
1128 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1129 	return error;
1130 }
1131 
1132 /*
1133  * Try to reserve more blocks for a transaction.
1134  *
1135  * This is for callers that need to attach resources to a transaction, scan
1136  * those resources to determine the space reservation requirements, and then
1137  * modify the attached resources.  In other words, online repair.  This can
1138  * fail due to ENOSPC, so the caller must be able to cancel the transaction
1139  * without shutting down the fs.
1140  */
1141 int
xfs_trans_reserve_more(struct xfs_trans * tp,unsigned int blocks,unsigned int rtextents)1142 xfs_trans_reserve_more(
1143 	struct xfs_trans	*tp,
1144 	unsigned int		blocks,
1145 	unsigned int		rtextents)
1146 {
1147 	struct xfs_trans_res	resv = { };
1148 
1149 	return xfs_trans_reserve(tp, &resv, blocks, rtextents);
1150 }
1151 
1152 /*
1153  * Try to reserve more blocks and file quota for a transaction.  Same
1154  * conditions of usage as xfs_trans_reserve_more.
1155  */
1156 int
xfs_trans_reserve_more_inode(struct xfs_trans * tp,struct xfs_inode * ip,unsigned int dblocks,unsigned int rblocks,bool force_quota)1157 xfs_trans_reserve_more_inode(
1158 	struct xfs_trans	*tp,
1159 	struct xfs_inode	*ip,
1160 	unsigned int		dblocks,
1161 	unsigned int		rblocks,
1162 	bool			force_quota)
1163 {
1164 	struct xfs_trans_res	resv = { };
1165 	struct xfs_mount	*mp = ip->i_mount;
1166 	unsigned int		rtx = xfs_extlen_to_rtxlen(mp, rblocks);
1167 	int			error;
1168 
1169 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1170 
1171 	error = xfs_trans_reserve(tp, &resv, dblocks, rtx);
1172 	if (error)
1173 		return error;
1174 
1175 	if (!XFS_IS_QUOTA_ON(mp) || xfs_is_quota_inode(&mp->m_sb, ip->i_ino))
1176 		return 0;
1177 
1178 	if (tp->t_flags & XFS_TRANS_RESERVE)
1179 		force_quota = true;
1180 
1181 	error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks,
1182 			force_quota);
1183 	if (!error)
1184 		return 0;
1185 
1186 	/* Quota failed, give back the new reservation. */
1187 	xfs_add_fdblocks(mp, dblocks);
1188 	tp->t_blk_res -= dblocks;
1189 	xfs_add_frextents(mp, rtx);
1190 	tp->t_rtx_res -= rtx;
1191 	return error;
1192 }
1193 
1194 /*
1195  * Allocate an transaction in preparation for inode creation by reserving quota
1196  * against the given dquots.  Callers are not required to hold any inode locks.
1197  */
1198 int
xfs_trans_alloc_icreate(struct xfs_mount * mp,struct xfs_trans_res * resv,struct xfs_dquot * udqp,struct xfs_dquot * gdqp,struct xfs_dquot * pdqp,unsigned int dblocks,struct xfs_trans ** tpp)1199 xfs_trans_alloc_icreate(
1200 	struct xfs_mount	*mp,
1201 	struct xfs_trans_res	*resv,
1202 	struct xfs_dquot	*udqp,
1203 	struct xfs_dquot	*gdqp,
1204 	struct xfs_dquot	*pdqp,
1205 	unsigned int		dblocks,
1206 	struct xfs_trans	**tpp)
1207 {
1208 	struct xfs_trans	*tp;
1209 	bool			retried = false;
1210 	int			error;
1211 
1212 retry:
1213 	error = xfs_trans_alloc(mp, resv, dblocks, 0, 0, &tp);
1214 	if (error)
1215 		return error;
1216 
1217 	error = xfs_trans_reserve_quota_icreate(tp, udqp, gdqp, pdqp, dblocks);
1218 	if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1219 		xfs_trans_cancel(tp);
1220 		xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1221 		retried = true;
1222 		goto retry;
1223 	}
1224 	if (error) {
1225 		xfs_trans_cancel(tp);
1226 		return error;
1227 	}
1228 
1229 	*tpp = tp;
1230 	return 0;
1231 }
1232 
1233 /*
1234  * Allocate an transaction, lock and join the inode to it, and reserve quota
1235  * in preparation for inode attribute changes that include uid, gid, or prid
1236  * changes.
1237  *
1238  * The caller must ensure that the on-disk dquots attached to this inode have
1239  * already been allocated and initialized.  The ILOCK will be dropped when the
1240  * transaction is committed or cancelled.
1241  */
1242 int
xfs_trans_alloc_ichange(struct xfs_inode * ip,struct xfs_dquot * new_udqp,struct xfs_dquot * new_gdqp,struct xfs_dquot * new_pdqp,bool force,struct xfs_trans ** tpp)1243 xfs_trans_alloc_ichange(
1244 	struct xfs_inode	*ip,
1245 	struct xfs_dquot	*new_udqp,
1246 	struct xfs_dquot	*new_gdqp,
1247 	struct xfs_dquot	*new_pdqp,
1248 	bool			force,
1249 	struct xfs_trans	**tpp)
1250 {
1251 	struct xfs_trans	*tp;
1252 	struct xfs_mount	*mp = ip->i_mount;
1253 	struct xfs_dquot	*udqp;
1254 	struct xfs_dquot	*gdqp;
1255 	struct xfs_dquot	*pdqp;
1256 	bool			retried = false;
1257 	int			error;
1258 
1259 retry:
1260 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1261 	if (error)
1262 		return error;
1263 
1264 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1265 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1266 
1267 	if (xfs_is_metadir_inode(ip))
1268 		goto out;
1269 
1270 	error = xfs_qm_dqattach_locked(ip, false);
1271 	if (error) {
1272 		/* Caller should have allocated the dquots! */
1273 		ASSERT(error != -ENOENT);
1274 		goto out_cancel;
1275 	}
1276 
1277 	/*
1278 	 * For each quota type, skip quota reservations if the inode's dquots
1279 	 * now match the ones that came from the caller, or the caller didn't
1280 	 * pass one in.  The inode's dquots can change if we drop the ILOCK to
1281 	 * perform a blockgc scan, so we must preserve the caller's arguments.
1282 	 */
1283 	udqp = (new_udqp != ip->i_udquot) ? new_udqp : NULL;
1284 	gdqp = (new_gdqp != ip->i_gdquot) ? new_gdqp : NULL;
1285 	pdqp = (new_pdqp != ip->i_pdquot) ? new_pdqp : NULL;
1286 	if (udqp || gdqp || pdqp) {
1287 		xfs_filblks_t	dblocks, rblocks;
1288 		unsigned int	qflags = XFS_QMOPT_RES_REGBLKS;
1289 		bool		isrt = XFS_IS_REALTIME_INODE(ip);
1290 
1291 		if (force)
1292 			qflags |= XFS_QMOPT_FORCE_RES;
1293 
1294 		if (isrt) {
1295 			error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1296 			if (error)
1297 				goto out_cancel;
1298 		}
1299 
1300 		xfs_inode_count_blocks(tp, ip, &dblocks, &rblocks);
1301 
1302 		if (isrt)
1303 			rblocks += ip->i_delayed_blks;
1304 		else
1305 			dblocks += ip->i_delayed_blks;
1306 
1307 		/*
1308 		 * Reserve enough quota to handle blocks on disk and reserved
1309 		 * for a delayed allocation.  We'll actually transfer the
1310 		 * delalloc reservation between dquots at chown time, even
1311 		 * though that part is only semi-transactional.
1312 		 */
1313 		error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp,
1314 				pdqp, dblocks, 1, qflags);
1315 		if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1316 			xfs_trans_cancel(tp);
1317 			xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1318 			retried = true;
1319 			goto retry;
1320 		}
1321 		if (error)
1322 			goto out_cancel;
1323 
1324 		/* Do the same for realtime. */
1325 		qflags = XFS_QMOPT_RES_RTBLKS | (qflags & XFS_QMOPT_FORCE_RES);
1326 		error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp,
1327 				pdqp, rblocks, 0, qflags);
1328 		if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1329 			xfs_trans_cancel(tp);
1330 			xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1331 			retried = true;
1332 			goto retry;
1333 		}
1334 		if (error)
1335 			goto out_cancel;
1336 	}
1337 
1338 out:
1339 	*tpp = tp;
1340 	return 0;
1341 
1342 out_cancel:
1343 	xfs_trans_cancel(tp);
1344 	return error;
1345 }
1346 
1347 /*
1348  * Allocate an transaction, lock and join the directory and child inodes to it,
1349  * and reserve quota for a directory update.  If there isn't sufficient space,
1350  * @dblocks will be set to zero for a reservationless directory update and
1351  * @nospace_error will be set to a negative errno describing the space
1352  * constraint we hit.
1353  *
1354  * The caller must ensure that the on-disk dquots attached to this inode have
1355  * already been allocated and initialized.  The ILOCKs will be dropped when the
1356  * transaction is committed or cancelled.
1357  *
1358  * Caller is responsible for unlocking the inodes manually upon return
1359  */
1360 int
xfs_trans_alloc_dir(struct xfs_inode * dp,struct xfs_trans_res * resv,struct xfs_inode * ip,unsigned int * dblocks,struct xfs_trans ** tpp,int * nospace_error)1361 xfs_trans_alloc_dir(
1362 	struct xfs_inode	*dp,
1363 	struct xfs_trans_res	*resv,
1364 	struct xfs_inode	*ip,
1365 	unsigned int		*dblocks,
1366 	struct xfs_trans	**tpp,
1367 	int			*nospace_error)
1368 {
1369 	struct xfs_trans	*tp;
1370 	struct xfs_mount	*mp = ip->i_mount;
1371 	unsigned int		resblks;
1372 	bool			retried = false;
1373 	int			error;
1374 
1375 retry:
1376 	*nospace_error = 0;
1377 	resblks = *dblocks;
1378 	error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1379 	if (error == -ENOSPC) {
1380 		*nospace_error = error;
1381 		resblks = 0;
1382 		error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1383 	}
1384 	if (error)
1385 		return error;
1386 
1387 	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
1388 
1389 	xfs_trans_ijoin(tp, dp, 0);
1390 	xfs_trans_ijoin(tp, ip, 0);
1391 
1392 	error = xfs_qm_dqattach_locked(dp, false);
1393 	if (error) {
1394 		/* Caller should have allocated the dquots! */
1395 		ASSERT(error != -ENOENT);
1396 		goto out_cancel;
1397 	}
1398 
1399 	error = xfs_qm_dqattach_locked(ip, false);
1400 	if (error) {
1401 		/* Caller should have allocated the dquots! */
1402 		ASSERT(error != -ENOENT);
1403 		goto out_cancel;
1404 	}
1405 
1406 	if (resblks == 0)
1407 		goto done;
1408 
1409 	error = xfs_trans_reserve_quota_nblks(tp, dp, resblks, 0, false);
1410 	if (error == -EDQUOT || error == -ENOSPC) {
1411 		if (!retried) {
1412 			xfs_trans_cancel(tp);
1413 			xfs_iunlock(dp, XFS_ILOCK_EXCL);
1414 			if (dp != ip)
1415 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
1416 			xfs_blockgc_free_quota(dp, 0);
1417 			retried = true;
1418 			goto retry;
1419 		}
1420 
1421 		*nospace_error = error;
1422 		resblks = 0;
1423 		error = 0;
1424 	}
1425 	if (error)
1426 		goto out_cancel;
1427 
1428 done:
1429 	*tpp = tp;
1430 	*dblocks = resblks;
1431 	return 0;
1432 
1433 out_cancel:
1434 	xfs_trans_cancel(tp);
1435 	xfs_iunlock(dp, XFS_ILOCK_EXCL);
1436 	if (dp != ip)
1437 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1438 	return error;
1439 }
1440