1 // SPDX-License-Identifier: GPL-2.0
2
3 //! Work queues.
4 //!
5 //! This file has two components: The raw work item API, and the safe work item API.
6 //!
7 //! One pattern that is used in both APIs is the `ID` const generic, which exists to allow a single
8 //! type to define multiple `work_struct` fields. This is done by choosing an id for each field,
9 //! and using that id to specify which field you wish to use. (The actual value doesn't matter, as
10 //! long as you use different values for different fields of the same struct.) Since these IDs are
11 //! generic, they are used only at compile-time, so they shouldn't exist in the final binary.
12 //!
13 //! # The raw API
14 //!
15 //! The raw API consists of the [`RawWorkItem`] trait, where the work item needs to provide an
16 //! arbitrary function that knows how to enqueue the work item. It should usually not be used
17 //! directly, but if you want to, you can use it without using the pieces from the safe API.
18 //!
19 //! # The safe API
20 //!
21 //! The safe API is used via the [`Work`] struct and [`WorkItem`] traits. Furthermore, it also
22 //! includes a trait called [`WorkItemPointer`], which is usually not used directly by the user.
23 //!
24 //! * The [`Work`] struct is the Rust wrapper for the C `work_struct` type.
25 //! * The [`WorkItem`] trait is implemented for structs that can be enqueued to a workqueue.
26 //! * The [`WorkItemPointer`] trait is implemented for the pointer type that points at a something
27 //! that implements [`WorkItem`].
28 //!
29 //! ## Example
30 //!
31 //! This example defines a struct that holds an integer and can be scheduled on the workqueue. When
32 //! the struct is executed, it will print the integer. Since there is only one `work_struct` field,
33 //! we do not need to specify ids for the fields.
34 //!
35 //! ```
36 //! use kernel::sync::Arc;
37 //! use kernel::workqueue::{self, impl_has_work, new_work, Work, WorkItem};
38 //!
39 //! #[pin_data]
40 //! struct MyStruct {
41 //! value: i32,
42 //! #[pin]
43 //! work: Work<MyStruct>,
44 //! }
45 //!
46 //! impl_has_work! {
47 //! impl HasWork<Self> for MyStruct { self.work }
48 //! }
49 //!
50 //! impl MyStruct {
51 //! fn new(value: i32) -> Result<Arc<Self>> {
52 //! Arc::pin_init(pin_init!(MyStruct {
53 //! value,
54 //! work <- new_work!("MyStruct::work"),
55 //! }), GFP_KERNEL)
56 //! }
57 //! }
58 //!
59 //! impl WorkItem for MyStruct {
60 //! type Pointer = Arc<MyStruct>;
61 //!
62 //! fn run(this: Arc<MyStruct>) {
63 //! pr_info!("The value is: {}", this.value);
64 //! }
65 //! }
66 //!
67 //! /// This method will enqueue the struct for execution on the system workqueue, where its value
68 //! /// will be printed.
69 //! fn print_later(val: Arc<MyStruct>) {
70 //! let _ = workqueue::system().enqueue(val);
71 //! }
72 //! # print_later(MyStruct::new(42).unwrap());
73 //! ```
74 //!
75 //! The following example shows how multiple `work_struct` fields can be used:
76 //!
77 //! ```
78 //! use kernel::sync::Arc;
79 //! use kernel::workqueue::{self, impl_has_work, new_work, Work, WorkItem};
80 //!
81 //! #[pin_data]
82 //! struct MyStruct {
83 //! value_1: i32,
84 //! value_2: i32,
85 //! #[pin]
86 //! work_1: Work<MyStruct, 1>,
87 //! #[pin]
88 //! work_2: Work<MyStruct, 2>,
89 //! }
90 //!
91 //! impl_has_work! {
92 //! impl HasWork<Self, 1> for MyStruct { self.work_1 }
93 //! impl HasWork<Self, 2> for MyStruct { self.work_2 }
94 //! }
95 //!
96 //! impl MyStruct {
97 //! fn new(value_1: i32, value_2: i32) -> Result<Arc<Self>> {
98 //! Arc::pin_init(pin_init!(MyStruct {
99 //! value_1,
100 //! value_2,
101 //! work_1 <- new_work!("MyStruct::work_1"),
102 //! work_2 <- new_work!("MyStruct::work_2"),
103 //! }), GFP_KERNEL)
104 //! }
105 //! }
106 //!
107 //! impl WorkItem<1> for MyStruct {
108 //! type Pointer = Arc<MyStruct>;
109 //!
110 //! fn run(this: Arc<MyStruct>) {
111 //! pr_info!("The value is: {}", this.value_1);
112 //! }
113 //! }
114 //!
115 //! impl WorkItem<2> for MyStruct {
116 //! type Pointer = Arc<MyStruct>;
117 //!
118 //! fn run(this: Arc<MyStruct>) {
119 //! pr_info!("The second value is: {}", this.value_2);
120 //! }
121 //! }
122 //!
123 //! fn print_1_later(val: Arc<MyStruct>) {
124 //! let _ = workqueue::system().enqueue::<Arc<MyStruct>, 1>(val);
125 //! }
126 //!
127 //! fn print_2_later(val: Arc<MyStruct>) {
128 //! let _ = workqueue::system().enqueue::<Arc<MyStruct>, 2>(val);
129 //! }
130 //! # print_1_later(MyStruct::new(24, 25).unwrap());
131 //! # print_2_later(MyStruct::new(41, 42).unwrap());
132 //! ```
133 //!
134 //! C header: [`include/linux/workqueue.h`](srctree/include/linux/workqueue.h)
135
136 use crate::alloc::{AllocError, Flags};
137 use crate::{prelude::*, sync::Arc, sync::LockClassKey, types::Opaque};
138 use core::marker::PhantomData;
139
140 /// Creates a [`Work`] initialiser with the given name and a newly-created lock class.
141 #[macro_export]
142 macro_rules! new_work {
143 ($($name:literal)?) => {
144 $crate::workqueue::Work::new($crate::optional_name!($($name)?), $crate::static_lock_class!())
145 };
146 }
147 pub use new_work;
148
149 /// A kernel work queue.
150 ///
151 /// Wraps the kernel's C `struct workqueue_struct`.
152 ///
153 /// It allows work items to be queued to run on thread pools managed by the kernel. Several are
154 /// always available, for example, `system`, `system_highpri`, `system_long`, etc.
155 #[repr(transparent)]
156 pub struct Queue(Opaque<bindings::workqueue_struct>);
157
158 // SAFETY: Accesses to workqueues used by [`Queue`] are thread-safe.
159 unsafe impl Send for Queue {}
160 // SAFETY: Accesses to workqueues used by [`Queue`] are thread-safe.
161 unsafe impl Sync for Queue {}
162
163 impl Queue {
164 /// Use the provided `struct workqueue_struct` with Rust.
165 ///
166 /// # Safety
167 ///
168 /// The caller must ensure that the provided raw pointer is not dangling, that it points at a
169 /// valid workqueue, and that it remains valid until the end of `'a`.
from_raw<'a>(ptr: *const bindings::workqueue_struct) -> &'a Queue170 pub unsafe fn from_raw<'a>(ptr: *const bindings::workqueue_struct) -> &'a Queue {
171 // SAFETY: The `Queue` type is `#[repr(transparent)]`, so the pointer cast is valid. The
172 // caller promises that the pointer is not dangling.
173 unsafe { &*(ptr as *const Queue) }
174 }
175
176 /// Enqueues a work item.
177 ///
178 /// This may fail if the work item is already enqueued in a workqueue.
179 ///
180 /// The work item will be submitted using `WORK_CPU_UNBOUND`.
enqueue<W, const ID: u64>(&self, w: W) -> W::EnqueueOutput where W: RawWorkItem<ID> + Send + 'static,181 pub fn enqueue<W, const ID: u64>(&self, w: W) -> W::EnqueueOutput
182 where
183 W: RawWorkItem<ID> + Send + 'static,
184 {
185 let queue_ptr = self.0.get();
186
187 // SAFETY: We only return `false` if the `work_struct` is already in a workqueue. The other
188 // `__enqueue` requirements are not relevant since `W` is `Send` and static.
189 //
190 // The call to `bindings::queue_work_on` will dereference the provided raw pointer, which
191 // is ok because `__enqueue` guarantees that the pointer is valid for the duration of this
192 // closure.
193 //
194 // Furthermore, if the C workqueue code accesses the pointer after this call to
195 // `__enqueue`, then the work item was successfully enqueued, and `bindings::queue_work_on`
196 // will have returned true. In this case, `__enqueue` promises that the raw pointer will
197 // stay valid until we call the function pointer in the `work_struct`, so the access is ok.
198 unsafe {
199 w.__enqueue(move |work_ptr| {
200 bindings::queue_work_on(
201 bindings::wq_misc_consts_WORK_CPU_UNBOUND as _,
202 queue_ptr,
203 work_ptr,
204 )
205 })
206 }
207 }
208
209 /// Tries to spawn the given function or closure as a work item.
210 ///
211 /// This method can fail because it allocates memory to store the work item.
try_spawn<T: 'static + Send + FnOnce()>( &self, flags: Flags, func: T, ) -> Result<(), AllocError>212 pub fn try_spawn<T: 'static + Send + FnOnce()>(
213 &self,
214 flags: Flags,
215 func: T,
216 ) -> Result<(), AllocError> {
217 let init = pin_init!(ClosureWork {
218 work <- new_work!("Queue::try_spawn"),
219 func: Some(func),
220 });
221
222 self.enqueue(KBox::pin_init(init, flags).map_err(|_| AllocError)?);
223 Ok(())
224 }
225 }
226
227 /// A helper type used in [`try_spawn`].
228 ///
229 /// [`try_spawn`]: Queue::try_spawn
230 #[pin_data]
231 struct ClosureWork<T> {
232 #[pin]
233 work: Work<ClosureWork<T>>,
234 func: Option<T>,
235 }
236
237 impl<T> ClosureWork<T> {
project(self: Pin<&mut Self>) -> &mut Option<T>238 fn project(self: Pin<&mut Self>) -> &mut Option<T> {
239 // SAFETY: The `func` field is not structurally pinned.
240 unsafe { &mut self.get_unchecked_mut().func }
241 }
242 }
243
244 impl<T: FnOnce()> WorkItem for ClosureWork<T> {
245 type Pointer = Pin<KBox<Self>>;
246
run(mut this: Pin<KBox<Self>>)247 fn run(mut this: Pin<KBox<Self>>) {
248 if let Some(func) = this.as_mut().project().take() {
249 (func)()
250 }
251 }
252 }
253
254 /// A raw work item.
255 ///
256 /// This is the low-level trait that is designed for being as general as possible.
257 ///
258 /// The `ID` parameter to this trait exists so that a single type can provide multiple
259 /// implementations of this trait. For example, if a struct has multiple `work_struct` fields, then
260 /// you will implement this trait once for each field, using a different id for each field. The
261 /// actual value of the id is not important as long as you use different ids for different fields
262 /// of the same struct. (Fields of different structs need not use different ids.)
263 ///
264 /// Note that the id is used only to select the right method to call during compilation. It won't be
265 /// part of the final executable.
266 ///
267 /// # Safety
268 ///
269 /// Implementers must ensure that any pointers passed to a `queue_work_on` closure by [`__enqueue`]
270 /// remain valid for the duration specified in the guarantees section of the documentation for
271 /// [`__enqueue`].
272 ///
273 /// [`__enqueue`]: RawWorkItem::__enqueue
274 pub unsafe trait RawWorkItem<const ID: u64> {
275 /// The return type of [`Queue::enqueue`].
276 type EnqueueOutput;
277
278 /// Enqueues this work item on a queue using the provided `queue_work_on` method.
279 ///
280 /// # Guarantees
281 ///
282 /// If this method calls the provided closure, then the raw pointer is guaranteed to point at a
283 /// valid `work_struct` for the duration of the call to the closure. If the closure returns
284 /// true, then it is further guaranteed that the pointer remains valid until someone calls the
285 /// function pointer stored in the `work_struct`.
286 ///
287 /// # Safety
288 ///
289 /// The provided closure may only return `false` if the `work_struct` is already in a workqueue.
290 ///
291 /// If the work item type is annotated with any lifetimes, then you must not call the function
292 /// pointer after any such lifetime expires. (Never calling the function pointer is okay.)
293 ///
294 /// If the work item type is not [`Send`], then the function pointer must be called on the same
295 /// thread as the call to `__enqueue`.
__enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput where F: FnOnce(*mut bindings::work_struct) -> bool296 unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput
297 where
298 F: FnOnce(*mut bindings::work_struct) -> bool;
299 }
300
301 /// Defines the method that should be called directly when a work item is executed.
302 ///
303 /// This trait is implemented by `Pin<KBox<T>>` and [`Arc<T>`], and is mainly intended to be
304 /// implemented for smart pointer types. For your own structs, you would implement [`WorkItem`]
305 /// instead. The [`run`] method on this trait will usually just perform the appropriate
306 /// `container_of` translation and then call into the [`run`][WorkItem::run] method from the
307 /// [`WorkItem`] trait.
308 ///
309 /// This trait is used when the `work_struct` field is defined using the [`Work`] helper.
310 ///
311 /// # Safety
312 ///
313 /// Implementers must ensure that [`__enqueue`] uses a `work_struct` initialized with the [`run`]
314 /// method of this trait as the function pointer.
315 ///
316 /// [`__enqueue`]: RawWorkItem::__enqueue
317 /// [`run`]: WorkItemPointer::run
318 pub unsafe trait WorkItemPointer<const ID: u64>: RawWorkItem<ID> {
319 /// Run this work item.
320 ///
321 /// # Safety
322 ///
323 /// The provided `work_struct` pointer must originate from a previous call to [`__enqueue`]
324 /// where the `queue_work_on` closure returned true, and the pointer must still be valid.
325 ///
326 /// [`__enqueue`]: RawWorkItem::__enqueue
run(ptr: *mut bindings::work_struct)327 unsafe extern "C" fn run(ptr: *mut bindings::work_struct);
328 }
329
330 /// Defines the method that should be called when this work item is executed.
331 ///
332 /// This trait is used when the `work_struct` field is defined using the [`Work`] helper.
333 pub trait WorkItem<const ID: u64 = 0> {
334 /// The pointer type that this struct is wrapped in. This will typically be `Arc<Self>` or
335 /// `Pin<KBox<Self>>`.
336 type Pointer: WorkItemPointer<ID>;
337
338 /// The method that should be called when this work item is executed.
run(this: Self::Pointer)339 fn run(this: Self::Pointer);
340 }
341
342 /// Links for a work item.
343 ///
344 /// This struct contains a function pointer to the [`run`] function from the [`WorkItemPointer`]
345 /// trait, and defines the linked list pointers necessary to enqueue a work item in a workqueue.
346 ///
347 /// Wraps the kernel's C `struct work_struct`.
348 ///
349 /// This is a helper type used to associate a `work_struct` with the [`WorkItem`] that uses it.
350 ///
351 /// [`run`]: WorkItemPointer::run
352 #[pin_data]
353 #[repr(transparent)]
354 pub struct Work<T: ?Sized, const ID: u64 = 0> {
355 #[pin]
356 work: Opaque<bindings::work_struct>,
357 _inner: PhantomData<T>,
358 }
359
360 // SAFETY: Kernel work items are usable from any thread.
361 //
362 // We do not need to constrain `T` since the work item does not actually contain a `T`.
363 unsafe impl<T: ?Sized, const ID: u64> Send for Work<T, ID> {}
364 // SAFETY: Kernel work items are usable from any thread.
365 //
366 // We do not need to constrain `T` since the work item does not actually contain a `T`.
367 unsafe impl<T: ?Sized, const ID: u64> Sync for Work<T, ID> {}
368
369 impl<T: ?Sized, const ID: u64> Work<T, ID> {
370 /// Creates a new instance of [`Work`].
371 #[inline]
new(name: &'static CStr, key: &'static LockClassKey) -> impl PinInit<Self> where T: WorkItem<ID>,372 pub fn new(name: &'static CStr, key: &'static LockClassKey) -> impl PinInit<Self>
373 where
374 T: WorkItem<ID>,
375 {
376 pin_init!(Self {
377 work <- Opaque::ffi_init(|slot| {
378 // SAFETY: The `WorkItemPointer` implementation promises that `run` can be used as
379 // the work item function.
380 unsafe {
381 bindings::init_work_with_key(
382 slot,
383 Some(T::Pointer::run),
384 false,
385 name.as_char_ptr(),
386 key.as_ptr(),
387 )
388 }
389 }),
390 _inner: PhantomData,
391 })
392 }
393
394 /// Get a pointer to the inner `work_struct`.
395 ///
396 /// # Safety
397 ///
398 /// The provided pointer must not be dangling and must be properly aligned. (But the memory
399 /// need not be initialized.)
400 #[inline]
raw_get(ptr: *const Self) -> *mut bindings::work_struct401 pub unsafe fn raw_get(ptr: *const Self) -> *mut bindings::work_struct {
402 // SAFETY: The caller promises that the pointer is aligned and not dangling.
403 //
404 // A pointer cast would also be ok due to `#[repr(transparent)]`. We use `addr_of!` so that
405 // the compiler does not complain that the `work` field is unused.
406 unsafe { Opaque::raw_get(core::ptr::addr_of!((*ptr).work)) }
407 }
408 }
409
410 /// Declares that a type has a [`Work<T, ID>`] field.
411 ///
412 /// The intended way of using this trait is via the [`impl_has_work!`] macro. You can use the macro
413 /// like this:
414 ///
415 /// ```no_run
416 /// use kernel::workqueue::{impl_has_work, Work};
417 ///
418 /// struct MyWorkItem {
419 /// work_field: Work<MyWorkItem, 1>,
420 /// }
421 ///
422 /// impl_has_work! {
423 /// impl HasWork<MyWorkItem, 1> for MyWorkItem { self.work_field }
424 /// }
425 /// ```
426 ///
427 /// Note that since the [`Work`] type is annotated with an id, you can have several `work_struct`
428 /// fields by using a different id for each one.
429 ///
430 /// # Safety
431 ///
432 /// The [`OFFSET`] constant must be the offset of a field in `Self` of type [`Work<T, ID>`]. The
433 /// methods on this trait must have exactly the behavior that the definitions given below have.
434 ///
435 /// [`impl_has_work!`]: crate::impl_has_work
436 /// [`OFFSET`]: HasWork::OFFSET
437 pub unsafe trait HasWork<T, const ID: u64 = 0> {
438 /// The offset of the [`Work<T, ID>`] field.
439 const OFFSET: usize;
440
441 /// Returns the offset of the [`Work<T, ID>`] field.
442 ///
443 /// This method exists because the [`OFFSET`] constant cannot be accessed if the type is not
444 /// [`Sized`].
445 ///
446 /// [`OFFSET`]: HasWork::OFFSET
447 #[inline]
get_work_offset(&self) -> usize448 fn get_work_offset(&self) -> usize {
449 Self::OFFSET
450 }
451
452 /// Returns a pointer to the [`Work<T, ID>`] field.
453 ///
454 /// # Safety
455 ///
456 /// The provided pointer must point at a valid struct of type `Self`.
457 #[inline]
raw_get_work(ptr: *mut Self) -> *mut Work<T, ID>458 unsafe fn raw_get_work(ptr: *mut Self) -> *mut Work<T, ID> {
459 // SAFETY: The caller promises that the pointer is valid.
460 unsafe { (ptr as *mut u8).add(Self::OFFSET) as *mut Work<T, ID> }
461 }
462
463 /// Returns a pointer to the struct containing the [`Work<T, ID>`] field.
464 ///
465 /// # Safety
466 ///
467 /// The pointer must point at a [`Work<T, ID>`] field in a struct of type `Self`.
468 #[inline]
work_container_of(ptr: *mut Work<T, ID>) -> *mut Self where Self: Sized,469 unsafe fn work_container_of(ptr: *mut Work<T, ID>) -> *mut Self
470 where
471 Self: Sized,
472 {
473 // SAFETY: The caller promises that the pointer points at a field of the right type in the
474 // right kind of struct.
475 unsafe { (ptr as *mut u8).sub(Self::OFFSET) as *mut Self }
476 }
477 }
478
479 /// Used to safely implement the [`HasWork<T, ID>`] trait.
480 ///
481 /// # Examples
482 ///
483 /// ```
484 /// use kernel::sync::Arc;
485 /// use kernel::workqueue::{self, impl_has_work, Work};
486 ///
487 /// struct MyStruct<'a, T, const N: usize> {
488 /// work_field: Work<MyStruct<'a, T, N>, 17>,
489 /// f: fn(&'a [T; N]),
490 /// }
491 ///
492 /// impl_has_work! {
493 /// impl{'a, T, const N: usize} HasWork<MyStruct<'a, T, N>, 17>
494 /// for MyStruct<'a, T, N> { self.work_field }
495 /// }
496 /// ```
497 #[macro_export]
498 macro_rules! impl_has_work {
499 ($(impl$({$($generics:tt)*})?
500 HasWork<$work_type:ty $(, $id:tt)?>
501 for $self:ty
502 { self.$field:ident }
503 )*) => {$(
504 // SAFETY: The implementation of `raw_get_work` only compiles if the field has the right
505 // type.
506 unsafe impl$(<$($generics)+>)? $crate::workqueue::HasWork<$work_type $(, $id)?> for $self {
507 const OFFSET: usize = ::core::mem::offset_of!(Self, $field) as usize;
508
509 #[inline]
510 unsafe fn raw_get_work(ptr: *mut Self) -> *mut $crate::workqueue::Work<$work_type $(, $id)?> {
511 // SAFETY: The caller promises that the pointer is not dangling.
512 unsafe {
513 ::core::ptr::addr_of_mut!((*ptr).$field)
514 }
515 }
516 }
517 )*};
518 }
519 pub use impl_has_work;
520
521 impl_has_work! {
522 impl{T} HasWork<Self> for ClosureWork<T> { self.work }
523 }
524
525 // SAFETY: The `__enqueue` implementation in RawWorkItem uses a `work_struct` initialized with the
526 // `run` method of this trait as the function pointer because:
527 // - `__enqueue` gets the `work_struct` from the `Work` field, using `T::raw_get_work`.
528 // - The only safe way to create a `Work` object is through `Work::new`.
529 // - `Work::new` makes sure that `T::Pointer::run` is passed to `init_work_with_key`.
530 // - Finally `Work` and `RawWorkItem` guarantee that the correct `Work` field
531 // will be used because of the ID const generic bound. This makes sure that `T::raw_get_work`
532 // uses the correct offset for the `Work` field, and `Work::new` picks the correct
533 // implementation of `WorkItemPointer` for `Arc<T>`.
534 unsafe impl<T, const ID: u64> WorkItemPointer<ID> for Arc<T>
535 where
536 T: WorkItem<ID, Pointer = Self>,
537 T: HasWork<T, ID>,
538 {
run(ptr: *mut bindings::work_struct)539 unsafe extern "C" fn run(ptr: *mut bindings::work_struct) {
540 // The `__enqueue` method always uses a `work_struct` stored in a `Work<T, ID>`.
541 let ptr = ptr as *mut Work<T, ID>;
542 // SAFETY: This computes the pointer that `__enqueue` got from `Arc::into_raw`.
543 let ptr = unsafe { T::work_container_of(ptr) };
544 // SAFETY: This pointer comes from `Arc::into_raw` and we've been given back ownership.
545 let arc = unsafe { Arc::from_raw(ptr) };
546
547 T::run(arc)
548 }
549 }
550
551 // SAFETY: The `work_struct` raw pointer is guaranteed to be valid for the duration of the call to
552 // the closure because we get it from an `Arc`, which means that the ref count will be at least 1,
553 // and we don't drop the `Arc` ourselves. If `queue_work_on` returns true, it is further guaranteed
554 // to be valid until a call to the function pointer in `work_struct` because we leak the memory it
555 // points to, and only reclaim it if the closure returns false, or in `WorkItemPointer::run`, which
556 // is what the function pointer in the `work_struct` must be pointing to, according to the safety
557 // requirements of `WorkItemPointer`.
558 unsafe impl<T, const ID: u64> RawWorkItem<ID> for Arc<T>
559 where
560 T: WorkItem<ID, Pointer = Self>,
561 T: HasWork<T, ID>,
562 {
563 type EnqueueOutput = Result<(), Self>;
564
__enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput where F: FnOnce(*mut bindings::work_struct) -> bool,565 unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput
566 where
567 F: FnOnce(*mut bindings::work_struct) -> bool,
568 {
569 // Casting between const and mut is not a problem as long as the pointer is a raw pointer.
570 let ptr = Arc::into_raw(self).cast_mut();
571
572 // SAFETY: Pointers into an `Arc` point at a valid value.
573 let work_ptr = unsafe { T::raw_get_work(ptr) };
574 // SAFETY: `raw_get_work` returns a pointer to a valid value.
575 let work_ptr = unsafe { Work::raw_get(work_ptr) };
576
577 if queue_work_on(work_ptr) {
578 Ok(())
579 } else {
580 // SAFETY: The work queue has not taken ownership of the pointer.
581 Err(unsafe { Arc::from_raw(ptr) })
582 }
583 }
584 }
585
586 // SAFETY: TODO.
587 unsafe impl<T, const ID: u64> WorkItemPointer<ID> for Pin<KBox<T>>
588 where
589 T: WorkItem<ID, Pointer = Self>,
590 T: HasWork<T, ID>,
591 {
run(ptr: *mut bindings::work_struct)592 unsafe extern "C" fn run(ptr: *mut bindings::work_struct) {
593 // The `__enqueue` method always uses a `work_struct` stored in a `Work<T, ID>`.
594 let ptr = ptr as *mut Work<T, ID>;
595 // SAFETY: This computes the pointer that `__enqueue` got from `Arc::into_raw`.
596 let ptr = unsafe { T::work_container_of(ptr) };
597 // SAFETY: This pointer comes from `Arc::into_raw` and we've been given back ownership.
598 let boxed = unsafe { KBox::from_raw(ptr) };
599 // SAFETY: The box was already pinned when it was enqueued.
600 let pinned = unsafe { Pin::new_unchecked(boxed) };
601
602 T::run(pinned)
603 }
604 }
605
606 // SAFETY: TODO.
607 unsafe impl<T, const ID: u64> RawWorkItem<ID> for Pin<KBox<T>>
608 where
609 T: WorkItem<ID, Pointer = Self>,
610 T: HasWork<T, ID>,
611 {
612 type EnqueueOutput = ();
613
__enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput where F: FnOnce(*mut bindings::work_struct) -> bool,614 unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput
615 where
616 F: FnOnce(*mut bindings::work_struct) -> bool,
617 {
618 // SAFETY: We're not going to move `self` or any of its fields, so its okay to temporarily
619 // remove the `Pin` wrapper.
620 let boxed = unsafe { Pin::into_inner_unchecked(self) };
621 let ptr = KBox::into_raw(boxed);
622
623 // SAFETY: Pointers into a `KBox` point at a valid value.
624 let work_ptr = unsafe { T::raw_get_work(ptr) };
625 // SAFETY: `raw_get_work` returns a pointer to a valid value.
626 let work_ptr = unsafe { Work::raw_get(work_ptr) };
627
628 if !queue_work_on(work_ptr) {
629 // SAFETY: This method requires exclusive ownership of the box, so it cannot be in a
630 // workqueue.
631 unsafe { ::core::hint::unreachable_unchecked() }
632 }
633 }
634 }
635
636 /// Returns the system work queue (`system_wq`).
637 ///
638 /// It is the one used by `schedule[_delayed]_work[_on]()`. Multi-CPU multi-threaded. There are
639 /// users which expect relatively short queue flush time.
640 ///
641 /// Callers shouldn't queue work items which can run for too long.
system() -> &'static Queue642 pub fn system() -> &'static Queue {
643 // SAFETY: `system_wq` is a C global, always available.
644 unsafe { Queue::from_raw(bindings::system_wq) }
645 }
646
647 /// Returns the system high-priority work queue (`system_highpri_wq`).
648 ///
649 /// It is similar to the one returned by [`system`] but for work items which require higher
650 /// scheduling priority.
system_highpri() -> &'static Queue651 pub fn system_highpri() -> &'static Queue {
652 // SAFETY: `system_highpri_wq` is a C global, always available.
653 unsafe { Queue::from_raw(bindings::system_highpri_wq) }
654 }
655
656 /// Returns the system work queue for potentially long-running work items (`system_long_wq`).
657 ///
658 /// It is similar to the one returned by [`system`] but may host long running work items. Queue
659 /// flushing might take relatively long.
system_long() -> &'static Queue660 pub fn system_long() -> &'static Queue {
661 // SAFETY: `system_long_wq` is a C global, always available.
662 unsafe { Queue::from_raw(bindings::system_long_wq) }
663 }
664
665 /// Returns the system unbound work queue (`system_unbound_wq`).
666 ///
667 /// Workers are not bound to any specific CPU, not concurrency managed, and all queued work items
668 /// are executed immediately as long as `max_active` limit is not reached and resources are
669 /// available.
system_unbound() -> &'static Queue670 pub fn system_unbound() -> &'static Queue {
671 // SAFETY: `system_unbound_wq` is a C global, always available.
672 unsafe { Queue::from_raw(bindings::system_unbound_wq) }
673 }
674
675 /// Returns the system freezable work queue (`system_freezable_wq`).
676 ///
677 /// It is equivalent to the one returned by [`system`] except that it's freezable.
678 ///
679 /// A freezable workqueue participates in the freeze phase of the system suspend operations. Work
680 /// items on the workqueue are drained and no new work item starts execution until thawed.
system_freezable() -> &'static Queue681 pub fn system_freezable() -> &'static Queue {
682 // SAFETY: `system_freezable_wq` is a C global, always available.
683 unsafe { Queue::from_raw(bindings::system_freezable_wq) }
684 }
685
686 /// Returns the system power-efficient work queue (`system_power_efficient_wq`).
687 ///
688 /// It is inclined towards saving power and is converted to "unbound" variants if the
689 /// `workqueue.power_efficient` kernel parameter is specified; otherwise, it is similar to the one
690 /// returned by [`system`].
system_power_efficient() -> &'static Queue691 pub fn system_power_efficient() -> &'static Queue {
692 // SAFETY: `system_power_efficient_wq` is a C global, always available.
693 unsafe { Queue::from_raw(bindings::system_power_efficient_wq) }
694 }
695
696 /// Returns the system freezable power-efficient work queue (`system_freezable_power_efficient_wq`).
697 ///
698 /// It is similar to the one returned by [`system_power_efficient`] except that is freezable.
699 ///
700 /// A freezable workqueue participates in the freeze phase of the system suspend operations. Work
701 /// items on the workqueue are drained and no new work item starts execution until thawed.
system_freezable_power_efficient() -> &'static Queue702 pub fn system_freezable_power_efficient() -> &'static Queue {
703 // SAFETY: `system_freezable_power_efficient_wq` is a C global, always available.
704 unsafe { Queue::from_raw(bindings::system_freezable_power_efficient_wq) }
705 }
706