xref: /linux/rust/kernel/str.rs (revision c84d574698bad2c02aad506dfe712f83cbe3b771)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! String representations.
4 
5 use crate::{
6     alloc::{flags::*, AllocError, KVec},
7     error::{to_result, Result},
8     fmt::{self, Write},
9     prelude::*,
10 };
11 use core::{
12     marker::PhantomData,
13     ops::{Deref, DerefMut, Index},
14 };
15 
16 pub use crate::prelude::CStr;
17 
18 pub mod parse_int;
19 
20 /// Byte string without UTF-8 validity guarantee.
21 #[repr(transparent)]
22 pub struct BStr([u8]);
23 
24 impl BStr {
25     /// Returns the length of this string.
26     #[inline]
len(&self) -> usize27     pub const fn len(&self) -> usize {
28         self.0.len()
29     }
30 
31     /// Returns `true` if the string is empty.
32     #[inline]
is_empty(&self) -> bool33     pub const fn is_empty(&self) -> bool {
34         self.len() == 0
35     }
36 
37     /// Creates a [`BStr`] from a `[u8]`.
38     #[inline]
from_bytes(bytes: &[u8]) -> &Self39     pub const fn from_bytes(bytes: &[u8]) -> &Self {
40         // SAFETY: `BStr` is transparent to `[u8]`.
41         unsafe { &*(core::ptr::from_ref(bytes) as *const BStr) }
42     }
43 
44     /// Strip a prefix from `self`. Delegates to [`slice::strip_prefix`].
45     ///
46     /// # Examples
47     ///
48     /// ```
49     /// # use kernel::b_str;
50     /// assert_eq!(Some(b_str!("bar")), b_str!("foobar").strip_prefix(b_str!("foo")));
51     /// assert_eq!(None, b_str!("foobar").strip_prefix(b_str!("bar")));
52     /// assert_eq!(Some(b_str!("foobar")), b_str!("foobar").strip_prefix(b_str!("")));
53     /// assert_eq!(Some(b_str!("")), b_str!("foobar").strip_prefix(b_str!("foobar")));
54     /// ```
strip_prefix(&self, pattern: impl AsRef<Self>) -> Option<&BStr>55     pub fn strip_prefix(&self, pattern: impl AsRef<Self>) -> Option<&BStr> {
56         self.deref()
57             .strip_prefix(pattern.as_ref().deref())
58             .map(Self::from_bytes)
59     }
60 }
61 
62 impl fmt::Display for BStr {
63     /// Formats printable ASCII characters, escaping the rest.
64     ///
65     /// ```
66     /// # use kernel::{prelude::fmt, b_str, str::{BStr, CString}};
67     /// let ascii = b_str!("Hello, BStr!");
68     /// let s = CString::try_from_fmt(fmt!("{ascii}"))?;
69     /// assert_eq!(s.to_bytes(), "Hello, BStr!".as_bytes());
70     ///
71     /// let non_ascii = b_str!("��");
72     /// let s = CString::try_from_fmt(fmt!("{non_ascii}"))?;
73     /// assert_eq!(s.to_bytes(), "\\xf0\\x9f\\xa6\\x80".as_bytes());
74     /// # Ok::<(), kernel::error::Error>(())
75     /// ```
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result76     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
77         for &b in &self.0 {
78             match b {
79                 // Common escape codes.
80                 b'\t' => f.write_str("\\t")?,
81                 b'\n' => f.write_str("\\n")?,
82                 b'\r' => f.write_str("\\r")?,
83                 // Printable characters.
84                 0x20..=0x7e => f.write_char(b as char)?,
85                 _ => write!(f, "\\x{b:02x}")?,
86             }
87         }
88         Ok(())
89     }
90 }
91 
92 impl fmt::Debug for BStr {
93     /// Formats printable ASCII characters with a double quote on either end,
94     /// escaping the rest.
95     ///
96     /// ```
97     /// # use kernel::{prelude::fmt, b_str, str::{BStr, CString}};
98     /// // Embedded double quotes are escaped.
99     /// let ascii = b_str!("Hello, \"BStr\"!");
100     /// let s = CString::try_from_fmt(fmt!("{ascii:?}"))?;
101     /// assert_eq!(s.to_bytes(), "\"Hello, \\\"BStr\\\"!\"".as_bytes());
102     ///
103     /// let non_ascii = b_str!("��");
104     /// let s = CString::try_from_fmt(fmt!("{non_ascii:?}"))?;
105     /// assert_eq!(s.to_bytes(), "\"\\xf0\\x9f\\x98\\xba\"".as_bytes());
106     /// # Ok::<(), kernel::error::Error>(())
107     /// ```
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result108     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
109         f.write_char('"')?;
110         for &b in &self.0 {
111             match b {
112                 // Common escape codes.
113                 b'\t' => f.write_str("\\t")?,
114                 b'\n' => f.write_str("\\n")?,
115                 b'\r' => f.write_str("\\r")?,
116                 // String escape characters.
117                 b'\"' => f.write_str("\\\"")?,
118                 b'\\' => f.write_str("\\\\")?,
119                 // Printable characters.
120                 0x20..=0x7e => f.write_char(b as char)?,
121                 _ => write!(f, "\\x{b:02x}")?,
122             }
123         }
124         f.write_char('"')
125     }
126 }
127 
128 impl Deref for BStr {
129     type Target = [u8];
130 
131     #[inline]
deref(&self) -> &Self::Target132     fn deref(&self) -> &Self::Target {
133         &self.0
134     }
135 }
136 
137 impl PartialEq for BStr {
eq(&self, other: &Self) -> bool138     fn eq(&self, other: &Self) -> bool {
139         self.deref().eq(other.deref())
140     }
141 }
142 
143 impl<Idx> Index<Idx> for BStr
144 where
145     [u8]: Index<Idx, Output = [u8]>,
146 {
147     type Output = Self;
148 
index(&self, index: Idx) -> &Self::Output149     fn index(&self, index: Idx) -> &Self::Output {
150         BStr::from_bytes(&self.0[index])
151     }
152 }
153 
154 impl AsRef<BStr> for [u8] {
as_ref(&self) -> &BStr155     fn as_ref(&self) -> &BStr {
156         BStr::from_bytes(self)
157     }
158 }
159 
160 impl AsRef<BStr> for BStr {
as_ref(&self) -> &BStr161     fn as_ref(&self) -> &BStr {
162         self
163     }
164 }
165 
166 /// Creates a new [`BStr`] from a string literal.
167 ///
168 /// `b_str!` converts the supplied string literal to byte string, so non-ASCII
169 /// characters can be included.
170 ///
171 /// # Examples
172 ///
173 /// ```
174 /// # use kernel::b_str;
175 /// # use kernel::str::BStr;
176 /// const MY_BSTR: &BStr = b_str!("My awesome BStr!");
177 /// ```
178 #[macro_export]
179 macro_rules! b_str {
180     ($str:literal) => {{
181         const S: &'static str = $str;
182         const C: &'static $crate::str::BStr = $crate::str::BStr::from_bytes(S.as_bytes());
183         C
184     }};
185 }
186 
187 /// Returns a C pointer to the string.
188 // It is a free function rather than a method on an extension trait because:
189 //
190 // - error[E0379]: functions in trait impls cannot be declared const
191 #[inline]
as_char_ptr_in_const_context(c_str: &CStr) -> *const c_char192 pub const fn as_char_ptr_in_const_context(c_str: &CStr) -> *const c_char {
193     c_str.as_ptr().cast()
194 }
195 
196 mod private {
197     pub trait Sealed {}
198 
199     impl Sealed for super::CStr {}
200 }
201 
202 /// Extensions to [`CStr`].
203 pub trait CStrExt: private::Sealed {
204     /// Wraps a raw C string pointer.
205     ///
206     /// # Safety
207     ///
208     /// `ptr` must be a valid pointer to a `NUL`-terminated C string, and it must
209     /// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr`
210     /// must not be mutated.
211     // This function exists to paper over the fact that `CStr::from_ptr` takes a `*const
212     // core::ffi::c_char` rather than a `*const crate::ffi::c_char`.
from_char_ptr<'a>(ptr: *const c_char) -> &'a Self213     unsafe fn from_char_ptr<'a>(ptr: *const c_char) -> &'a Self;
214 
215     /// Creates a mutable [`CStr`] from a `[u8]` without performing any
216     /// additional checks.
217     ///
218     /// # Safety
219     ///
220     /// `bytes` *must* end with a `NUL` byte, and should only have a single
221     /// `NUL` byte (or the string will be truncated).
from_bytes_with_nul_unchecked_mut(bytes: &mut [u8]) -> &mut Self222     unsafe fn from_bytes_with_nul_unchecked_mut(bytes: &mut [u8]) -> &mut Self;
223 
224     /// Returns a C pointer to the string.
225     // This function exists to paper over the fact that `CStr::as_ptr` returns a `*const
226     // core::ffi::c_char` rather than a `*const crate::ffi::c_char`.
as_char_ptr(&self) -> *const c_char227     fn as_char_ptr(&self) -> *const c_char;
228 
229     /// Convert this [`CStr`] into a [`CString`] by allocating memory and
230     /// copying over the string data.
to_cstring(&self) -> Result<CString, AllocError>231     fn to_cstring(&self) -> Result<CString, AllocError>;
232 
233     /// Converts this [`CStr`] to its ASCII lower case equivalent in-place.
234     ///
235     /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
236     /// but non-ASCII letters are unchanged.
237     ///
238     /// To return a new lowercased value without modifying the existing one, use
239     /// [`to_ascii_lowercase()`].
240     ///
241     /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase
make_ascii_lowercase(&mut self)242     fn make_ascii_lowercase(&mut self);
243 
244     /// Converts this [`CStr`] to its ASCII upper case equivalent in-place.
245     ///
246     /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
247     /// but non-ASCII letters are unchanged.
248     ///
249     /// To return a new uppercased value without modifying the existing one, use
250     /// [`to_ascii_uppercase()`].
251     ///
252     /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase
make_ascii_uppercase(&mut self)253     fn make_ascii_uppercase(&mut self);
254 
255     /// Returns a copy of this [`CString`] where each character is mapped to its
256     /// ASCII lower case equivalent.
257     ///
258     /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
259     /// but non-ASCII letters are unchanged.
260     ///
261     /// To lowercase the value in-place, use [`make_ascii_lowercase`].
262     ///
263     /// [`make_ascii_lowercase`]: str::make_ascii_lowercase
to_ascii_lowercase(&self) -> Result<CString, AllocError>264     fn to_ascii_lowercase(&self) -> Result<CString, AllocError>;
265 
266     /// Returns a copy of this [`CString`] where each character is mapped to its
267     /// ASCII upper case equivalent.
268     ///
269     /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
270     /// but non-ASCII letters are unchanged.
271     ///
272     /// To uppercase the value in-place, use [`make_ascii_uppercase`].
273     ///
274     /// [`make_ascii_uppercase`]: str::make_ascii_uppercase
to_ascii_uppercase(&self) -> Result<CString, AllocError>275     fn to_ascii_uppercase(&self) -> Result<CString, AllocError>;
276 }
277 
278 impl fmt::Display for CStr {
279     /// Formats printable ASCII characters, escaping the rest.
280     ///
281     /// ```
282     /// # use kernel::prelude::fmt;
283     /// # use kernel::str::CStr;
284     /// # use kernel::str::CString;
285     /// let penguin = c"��";
286     /// let s = CString::try_from_fmt(fmt!("{penguin}"))?;
287     /// assert_eq!(s.to_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes());
288     ///
289     /// let ascii = c"so \"cool\"";
290     /// let s = CString::try_from_fmt(fmt!("{ascii}"))?;
291     /// assert_eq!(s.to_bytes_with_nul(), "so \"cool\"\0".as_bytes());
292     /// # Ok::<(), kernel::error::Error>(())
293     /// ```
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result294     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
295         for &c in self.to_bytes() {
296             if (0x20..0x7f).contains(&c) {
297                 // Printable character.
298                 f.write_char(c as char)?;
299             } else {
300                 write!(f, "\\x{c:02x}")?;
301             }
302         }
303         Ok(())
304     }
305 }
306 
307 /// Converts a mutable C string to a mutable byte slice.
308 ///
309 /// # Safety
310 ///
311 /// The caller must ensure that the slice ends in a NUL byte and contains no other NUL bytes before
312 /// the borrow ends and the underlying [`CStr`] is used.
to_bytes_mut(s: &mut CStr) -> &mut [u8]313 unsafe fn to_bytes_mut(s: &mut CStr) -> &mut [u8] {
314     // SAFETY: the cast from `&CStr` to `&[u8]` is safe since `CStr` has the same layout as `&[u8]`
315     // (this is technically not guaranteed, but we rely on it here). The pointer dereference is
316     // safe since it comes from a mutable reference which is guaranteed to be valid for writes.
317     unsafe { &mut *(core::ptr::from_mut(s) as *mut [u8]) }
318 }
319 
320 impl CStrExt for CStr {
321     #[inline]
from_char_ptr<'a>(ptr: *const c_char) -> &'a Self322     unsafe fn from_char_ptr<'a>(ptr: *const c_char) -> &'a Self {
323         // SAFETY: The safety preconditions are the same as for `CStr::from_ptr`.
324         unsafe { CStr::from_ptr(ptr.cast()) }
325     }
326 
327     #[inline]
from_bytes_with_nul_unchecked_mut(bytes: &mut [u8]) -> &mut Self328     unsafe fn from_bytes_with_nul_unchecked_mut(bytes: &mut [u8]) -> &mut Self {
329         // SAFETY: the cast from `&[u8]` to `&CStr` is safe since the properties of `bytes` are
330         // guaranteed by the safety precondition and `CStr` has the same layout as `&[u8]` (this is
331         // technically not guaranteed, but we rely on it here). The pointer dereference is safe
332         // since it comes from a mutable reference which is guaranteed to be valid for writes.
333         unsafe { &mut *(core::ptr::from_mut(bytes) as *mut CStr) }
334     }
335 
336     #[inline]
as_char_ptr(&self) -> *const c_char337     fn as_char_ptr(&self) -> *const c_char {
338         self.as_ptr().cast()
339     }
340 
to_cstring(&self) -> Result<CString, AllocError>341     fn to_cstring(&self) -> Result<CString, AllocError> {
342         CString::try_from(self)
343     }
344 
make_ascii_lowercase(&mut self)345     fn make_ascii_lowercase(&mut self) {
346         // SAFETY: This doesn't introduce or remove NUL bytes in the C string.
347         unsafe { to_bytes_mut(self) }.make_ascii_lowercase();
348     }
349 
make_ascii_uppercase(&mut self)350     fn make_ascii_uppercase(&mut self) {
351         // SAFETY: This doesn't introduce or remove NUL bytes in the C string.
352         unsafe { to_bytes_mut(self) }.make_ascii_uppercase();
353     }
354 
to_ascii_lowercase(&self) -> Result<CString, AllocError>355     fn to_ascii_lowercase(&self) -> Result<CString, AllocError> {
356         let mut s = self.to_cstring()?;
357 
358         s.make_ascii_lowercase();
359 
360         Ok(s)
361     }
362 
to_ascii_uppercase(&self) -> Result<CString, AllocError>363     fn to_ascii_uppercase(&self) -> Result<CString, AllocError> {
364         let mut s = self.to_cstring()?;
365 
366         s.make_ascii_uppercase();
367 
368         Ok(s)
369     }
370 }
371 
372 impl AsRef<BStr> for CStr {
373     #[inline]
as_ref(&self) -> &BStr374     fn as_ref(&self) -> &BStr {
375         BStr::from_bytes(self.to_bytes())
376     }
377 }
378 
379 /// Creates a new [`CStr`] from a string literal.
380 ///
381 /// The string literal should not contain any `NUL` bytes.
382 ///
383 /// # Examples
384 ///
385 /// ```
386 /// # use kernel::c_str;
387 /// # use kernel::str::CStr;
388 /// const MY_CSTR: &CStr = c_str!("My awesome CStr!");
389 /// ```
390 #[macro_export]
391 macro_rules! c_str {
392     ($str:expr) => {{
393         const S: &str = concat!($str, "\0");
394         const C: &$crate::str::CStr = match $crate::str::CStr::from_bytes_with_nul(S.as_bytes()) {
395             Ok(v) => v,
396             Err(_) => panic!("string contains interior NUL"),
397         };
398         C
399     }};
400 }
401 
402 #[kunit_tests(rust_kernel_str)]
403 mod tests {
404     use super::*;
405 
406     impl From<core::ffi::FromBytesWithNulError> for Error {
407         #[inline]
from(_: core::ffi::FromBytesWithNulError) -> Error408         fn from(_: core::ffi::FromBytesWithNulError) -> Error {
409             EINVAL
410         }
411     }
412 
413     macro_rules! format {
414         ($($f:tt)*) => ({
415             CString::try_from_fmt(fmt!($($f)*))?.to_str()?
416         })
417     }
418 
419     const ALL_ASCII_CHARS: &str =
420         "\\x01\\x02\\x03\\x04\\x05\\x06\\x07\\x08\\x09\\x0a\\x0b\\x0c\\x0d\\x0e\\x0f\
421         \\x10\\x11\\x12\\x13\\x14\\x15\\x16\\x17\\x18\\x19\\x1a\\x1b\\x1c\\x1d\\x1e\\x1f \
422         !\"#$%&'()*+,-./0123456789:;<=>?@\
423         ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~\\x7f\
424         \\x80\\x81\\x82\\x83\\x84\\x85\\x86\\x87\\x88\\x89\\x8a\\x8b\\x8c\\x8d\\x8e\\x8f\
425         \\x90\\x91\\x92\\x93\\x94\\x95\\x96\\x97\\x98\\x99\\x9a\\x9b\\x9c\\x9d\\x9e\\x9f\
426         \\xa0\\xa1\\xa2\\xa3\\xa4\\xa5\\xa6\\xa7\\xa8\\xa9\\xaa\\xab\\xac\\xad\\xae\\xaf\
427         \\xb0\\xb1\\xb2\\xb3\\xb4\\xb5\\xb6\\xb7\\xb8\\xb9\\xba\\xbb\\xbc\\xbd\\xbe\\xbf\
428         \\xc0\\xc1\\xc2\\xc3\\xc4\\xc5\\xc6\\xc7\\xc8\\xc9\\xca\\xcb\\xcc\\xcd\\xce\\xcf\
429         \\xd0\\xd1\\xd2\\xd3\\xd4\\xd5\\xd6\\xd7\\xd8\\xd9\\xda\\xdb\\xdc\\xdd\\xde\\xdf\
430         \\xe0\\xe1\\xe2\\xe3\\xe4\\xe5\\xe6\\xe7\\xe8\\xe9\\xea\\xeb\\xec\\xed\\xee\\xef\
431         \\xf0\\xf1\\xf2\\xf3\\xf4\\xf5\\xf6\\xf7\\xf8\\xf9\\xfa\\xfb\\xfc\\xfd\\xfe\\xff";
432 
433     #[test]
test_cstr_to_str() -> Result434     fn test_cstr_to_str() -> Result {
435         let cstr = c"\xf0\x9f\xa6\x80";
436         let checked_str = cstr.to_str()?;
437         assert_eq!(checked_str, "��");
438         Ok(())
439     }
440 
441     #[test]
test_cstr_to_str_invalid_utf8() -> Result442     fn test_cstr_to_str_invalid_utf8() -> Result {
443         let cstr = c"\xc3\x28";
444         assert!(cstr.to_str().is_err());
445         Ok(())
446     }
447 
448     #[test]
test_cstr_display() -> Result449     fn test_cstr_display() -> Result {
450         let hello_world = c"hello, world!";
451         assert_eq!(format!("{hello_world}"), "hello, world!");
452         let non_printables = c"\x01\x09\x0a";
453         assert_eq!(format!("{non_printables}"), "\\x01\\x09\\x0a");
454         let non_ascii = c"d\xe9j\xe0 vu";
455         assert_eq!(format!("{non_ascii}"), "d\\xe9j\\xe0 vu");
456         let good_bytes = c"\xf0\x9f\xa6\x80";
457         assert_eq!(format!("{good_bytes}"), "\\xf0\\x9f\\xa6\\x80");
458         Ok(())
459     }
460 
461     #[test]
test_cstr_display_all_bytes() -> Result462     fn test_cstr_display_all_bytes() -> Result {
463         let mut bytes: [u8; 256] = [0; 256];
464         // fill `bytes` with [1..=255] + [0]
465         for i in u8::MIN..=u8::MAX {
466             bytes[i as usize] = i.wrapping_add(1);
467         }
468         let cstr = CStr::from_bytes_with_nul(&bytes)?;
469         assert_eq!(format!("{cstr}"), ALL_ASCII_CHARS);
470         Ok(())
471     }
472 
473     #[test]
test_cstr_debug() -> Result474     fn test_cstr_debug() -> Result {
475         let hello_world = c"hello, world!";
476         assert_eq!(format!("{hello_world:?}"), "\"hello, world!\"");
477         let non_printables = c"\x01\x09\x0a";
478         assert_eq!(format!("{non_printables:?}"), "\"\\x01\\t\\n\"");
479         let non_ascii = c"d\xe9j\xe0 vu";
480         assert_eq!(format!("{non_ascii:?}"), "\"d\\xe9j\\xe0 vu\"");
481         Ok(())
482     }
483 
484     #[test]
test_bstr_display() -> Result485     fn test_bstr_display() -> Result {
486         let hello_world = BStr::from_bytes(b"hello, world!");
487         assert_eq!(format!("{hello_world}"), "hello, world!");
488         let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_");
489         assert_eq!(format!("{escapes}"), "_\\t_\\n_\\r_\\_'_\"_");
490         let others = BStr::from_bytes(b"\x01");
491         assert_eq!(format!("{others}"), "\\x01");
492         let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu");
493         assert_eq!(format!("{non_ascii}"), "d\\xe9j\\xe0 vu");
494         let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80");
495         assert_eq!(format!("{good_bytes}"), "\\xf0\\x9f\\xa6\\x80");
496         Ok(())
497     }
498 
499     #[test]
test_bstr_debug() -> Result500     fn test_bstr_debug() -> Result {
501         let hello_world = BStr::from_bytes(b"hello, world!");
502         assert_eq!(format!("{hello_world:?}"), "\"hello, world!\"");
503         let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_");
504         assert_eq!(format!("{escapes:?}"), "\"_\\t_\\n_\\r_\\\\_'_\\\"_\"");
505         let others = BStr::from_bytes(b"\x01");
506         assert_eq!(format!("{others:?}"), "\"\\x01\"");
507         let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu");
508         assert_eq!(format!("{non_ascii:?}"), "\"d\\xe9j\\xe0 vu\"");
509         let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80");
510         assert_eq!(format!("{good_bytes:?}"), "\"\\xf0\\x9f\\xa6\\x80\"");
511         Ok(())
512     }
513 }
514 
515 /// Allows formatting of [`fmt::Arguments`] into a raw buffer.
516 ///
517 /// It does not fail if callers write past the end of the buffer so that they can calculate the
518 /// size required to fit everything.
519 ///
520 /// # Invariants
521 ///
522 /// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos`
523 /// is less than `end`.
524 pub struct RawFormatter {
525     // Use `usize` to use `saturating_*` functions.
526     beg: usize,
527     pos: usize,
528     end: usize,
529 }
530 
531 impl RawFormatter {
532     /// Creates a new instance of [`RawFormatter`] with an empty buffer.
new() -> Self533     fn new() -> Self {
534         // INVARIANT: The buffer is empty, so the region that needs to be writable is empty.
535         Self {
536             beg: 0,
537             pos: 0,
538             end: 0,
539         }
540     }
541 
542     /// Creates a new instance of [`RawFormatter`] with the given buffer pointers.
543     ///
544     /// # Safety
545     ///
546     /// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end`
547     /// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`].
from_ptrs(pos: *mut u8, end: *mut u8) -> Self548     pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self {
549         // INVARIANT: The safety requirements guarantee the type invariants.
550         Self {
551             beg: pos as usize,
552             pos: pos as usize,
553             end: end as usize,
554         }
555     }
556 
557     /// Creates a new instance of [`RawFormatter`] with the given buffer.
558     ///
559     /// # Safety
560     ///
561     /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
562     /// for the lifetime of the returned [`RawFormatter`].
from_buffer(buf: *mut u8, len: usize) -> Self563     pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
564         let pos = buf as usize;
565         // INVARIANT: We ensure that `end` is never less than `buf`, and the safety requirements
566         // guarantees that the memory region is valid for writes.
567         Self {
568             pos,
569             beg: pos,
570             end: pos.saturating_add(len),
571         }
572     }
573 
574     /// Returns the current insert position.
575     ///
576     /// N.B. It may point to invalid memory.
pos(&self) -> *mut u8577     pub(crate) fn pos(&self) -> *mut u8 {
578         self.pos as *mut u8
579     }
580 
581     /// Returns the number of bytes written to the formatter.
bytes_written(&self) -> usize582     pub fn bytes_written(&self) -> usize {
583         self.pos - self.beg
584     }
585 }
586 
587 impl fmt::Write for RawFormatter {
write_str(&mut self, s: &str) -> fmt::Result588     fn write_str(&mut self, s: &str) -> fmt::Result {
589         // `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we
590         // don't want it to wrap around to 0.
591         let pos_new = self.pos.saturating_add(s.len());
592 
593         // Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`.
594         let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos);
595 
596         if len_to_copy > 0 {
597             // SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end`
598             // yet, so it is valid for write per the type invariants.
599             unsafe {
600                 core::ptr::copy_nonoverlapping(
601                     s.as_bytes().as_ptr(),
602                     self.pos as *mut u8,
603                     len_to_copy,
604                 )
605             };
606         }
607 
608         self.pos = pos_new;
609         Ok(())
610     }
611 }
612 
613 /// Allows formatting of [`fmt::Arguments`] into a raw buffer.
614 ///
615 /// Fails if callers attempt to write more than will fit in the buffer.
616 pub struct Formatter<'a>(RawFormatter, PhantomData<&'a mut ()>);
617 
618 impl Formatter<'_> {
619     /// Creates a new instance of [`Formatter`] with the given buffer.
620     ///
621     /// # Safety
622     ///
623     /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
624     /// for the lifetime of the returned [`Formatter`].
from_buffer(buf: *mut u8, len: usize) -> Self625     pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
626         // SAFETY: The safety requirements of this function satisfy those of the callee.
627         Self(unsafe { RawFormatter::from_buffer(buf, len) }, PhantomData)
628     }
629 
630     /// Create a new [`Self`] instance.
new(buffer: &mut [u8]) -> Self631     pub fn new(buffer: &mut [u8]) -> Self {
632         // SAFETY: `buffer` is valid for writes for the entire length for
633         // the lifetime of `Self`.
634         unsafe { Formatter::from_buffer(buffer.as_mut_ptr(), buffer.len()) }
635     }
636 }
637 
638 impl Deref for Formatter<'_> {
639     type Target = RawFormatter;
640 
deref(&self) -> &Self::Target641     fn deref(&self) -> &Self::Target {
642         &self.0
643     }
644 }
645 
646 impl fmt::Write for Formatter<'_> {
write_str(&mut self, s: &str) -> fmt::Result647     fn write_str(&mut self, s: &str) -> fmt::Result {
648         self.0.write_str(s)?;
649 
650         // Fail the request if we go past the end of the buffer.
651         if self.0.pos > self.0.end {
652             Err(fmt::Error)
653         } else {
654             Ok(())
655         }
656     }
657 }
658 
659 /// A mutable reference to a byte buffer where a string can be written into.
660 ///
661 /// The buffer will be automatically null terminated after the last written character.
662 ///
663 /// # Invariants
664 ///
665 /// * The first byte of `buffer` is always zero.
666 /// * The length of `buffer` is at least 1.
667 pub(crate) struct NullTerminatedFormatter<'a> {
668     buffer: &'a mut [u8],
669 }
670 
671 impl<'a> NullTerminatedFormatter<'a> {
672     /// Create a new [`Self`] instance.
new(buffer: &'a mut [u8]) -> Option<NullTerminatedFormatter<'a>>673     pub(crate) fn new(buffer: &'a mut [u8]) -> Option<NullTerminatedFormatter<'a>> {
674         *(buffer.first_mut()?) = 0;
675 
676         // INVARIANT:
677         //  - We wrote zero to the first byte above.
678         //  - If buffer was not at least length 1, `buffer.first_mut()` would return None.
679         Some(Self { buffer })
680     }
681 }
682 
683 impl Write for NullTerminatedFormatter<'_> {
write_str(&mut self, s: &str) -> fmt::Result684     fn write_str(&mut self, s: &str) -> fmt::Result {
685         let bytes = s.as_bytes();
686         let len = bytes.len();
687 
688         // We want space for a zero. By type invariant, buffer length is always at least 1, so no
689         // underflow.
690         if len > self.buffer.len() - 1 {
691             return Err(fmt::Error);
692         }
693 
694         let buffer = core::mem::take(&mut self.buffer);
695         // We break the zero start invariant for a short while.
696         buffer[..len].copy_from_slice(bytes);
697         // INVARIANT: We checked above that buffer will have size at least 1 after this assignment.
698         self.buffer = &mut buffer[len..];
699 
700         // INVARIANT: We write zero to the first byte of the buffer.
701         self.buffer[0] = 0;
702 
703         Ok(())
704     }
705 }
706 
707 /// # Safety
708 ///
709 /// - `string` must point to a null terminated string that is valid for read.
kstrtobool_raw(string: *const u8) -> Result<bool>710 unsafe fn kstrtobool_raw(string: *const u8) -> Result<bool> {
711     let mut result: bool = false;
712 
713     // SAFETY:
714     // - By function safety requirement, `string` is a valid null-terminated string.
715     // - `result` is a valid `bool` that we own.
716     to_result(unsafe { bindings::kstrtobool(string, &mut result) })?;
717     Ok(result)
718 }
719 
720 /// Convert common user inputs into boolean values using the kernel's `kstrtobool` function.
721 ///
722 /// This routine returns `Ok(bool)` if the first character is one of 'YyTt1NnFf0', or
723 /// \[oO\]\[NnFf\] for "on" and "off". Otherwise it will return `Err(EINVAL)`.
724 ///
725 /// # Examples
726 ///
727 /// ```
728 /// # use kernel::str::kstrtobool;
729 ///
730 /// // Lowercase
731 /// assert_eq!(kstrtobool(c"true"), Ok(true));
732 /// assert_eq!(kstrtobool(c"tr"), Ok(true));
733 /// assert_eq!(kstrtobool(c"t"), Ok(true));
734 /// assert_eq!(kstrtobool(c"twrong"), Ok(true));
735 /// assert_eq!(kstrtobool(c"false"), Ok(false));
736 /// assert_eq!(kstrtobool(c"f"), Ok(false));
737 /// assert_eq!(kstrtobool(c"yes"), Ok(true));
738 /// assert_eq!(kstrtobool(c"no"), Ok(false));
739 /// assert_eq!(kstrtobool(c"on"), Ok(true));
740 /// assert_eq!(kstrtobool(c"off"), Ok(false));
741 ///
742 /// // Camel case
743 /// assert_eq!(kstrtobool(c"True"), Ok(true));
744 /// assert_eq!(kstrtobool(c"False"), Ok(false));
745 /// assert_eq!(kstrtobool(c"Yes"), Ok(true));
746 /// assert_eq!(kstrtobool(c"No"), Ok(false));
747 /// assert_eq!(kstrtobool(c"On"), Ok(true));
748 /// assert_eq!(kstrtobool(c"Off"), Ok(false));
749 ///
750 /// // All caps
751 /// assert_eq!(kstrtobool(c"TRUE"), Ok(true));
752 /// assert_eq!(kstrtobool(c"FALSE"), Ok(false));
753 /// assert_eq!(kstrtobool(c"YES"), Ok(true));
754 /// assert_eq!(kstrtobool(c"NO"), Ok(false));
755 /// assert_eq!(kstrtobool(c"ON"), Ok(true));
756 /// assert_eq!(kstrtobool(c"OFF"), Ok(false));
757 ///
758 /// // Numeric
759 /// assert_eq!(kstrtobool(c"1"), Ok(true));
760 /// assert_eq!(kstrtobool(c"0"), Ok(false));
761 ///
762 /// // Invalid input
763 /// assert_eq!(kstrtobool(c"invalid"), Err(EINVAL));
764 /// assert_eq!(kstrtobool(c"2"), Err(EINVAL));
765 /// ```
kstrtobool(string: &CStr) -> Result<bool>766 pub fn kstrtobool(string: &CStr) -> Result<bool> {
767     // SAFETY:
768     // - The pointer returned by `CStr::as_char_ptr` is guaranteed to be
769     //   null terminated.
770     // - `string` is live and thus the string is valid for read.
771     unsafe { kstrtobool_raw(string.as_char_ptr()) }
772 }
773 
774 /// Convert `&[u8]` to `bool` by deferring to [`kernel::str::kstrtobool`].
775 ///
776 /// Only considers at most the first two bytes of `bytes`.
kstrtobool_bytes(bytes: &[u8]) -> Result<bool>777 pub fn kstrtobool_bytes(bytes: &[u8]) -> Result<bool> {
778     // `ktostrbool` only considers the first two bytes of the input.
779     let stack_string = [*bytes.first().unwrap_or(&0), *bytes.get(1).unwrap_or(&0), 0];
780     // SAFETY: `stack_string` is null terminated and it is live on the stack so
781     // it is valid for read.
782     unsafe { kstrtobool_raw(stack_string.as_ptr()) }
783 }
784 
785 /// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end.
786 ///
787 /// Used for interoperability with kernel APIs that take C strings.
788 ///
789 /// # Invariants
790 ///
791 /// The string is always `NUL`-terminated and contains no other `NUL` bytes.
792 ///
793 /// # Examples
794 ///
795 /// ```
796 /// use kernel::{str::CString, prelude::fmt};
797 ///
798 /// let s = CString::try_from_fmt(fmt!("{}{}{}", "abc", 10, 20))?;
799 /// assert_eq!(s.to_bytes_with_nul(), "abc1020\0".as_bytes());
800 ///
801 /// let tmp = "testing";
802 /// let s = CString::try_from_fmt(fmt!("{tmp}{}", 123))?;
803 /// assert_eq!(s.to_bytes_with_nul(), "testing123\0".as_bytes());
804 ///
805 /// // This fails because it has an embedded `NUL` byte.
806 /// let s = CString::try_from_fmt(fmt!("a\0b{}", 123));
807 /// assert_eq!(s.is_ok(), false);
808 /// # Ok::<(), kernel::error::Error>(())
809 /// ```
810 pub struct CString {
811     buf: KVec<u8>,
812 }
813 
814 impl CString {
815     /// Creates an instance of [`CString`] from the given formatted arguments.
try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error>816     pub fn try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error> {
817         // Calculate the size needed (formatted string plus `NUL` terminator).
818         let mut f = RawFormatter::new();
819         f.write_fmt(args)?;
820         f.write_str("\0")?;
821         let size = f.bytes_written();
822 
823         // Allocate a vector with the required number of bytes, and write to it.
824         let mut buf = KVec::with_capacity(size, GFP_KERNEL)?;
825         // SAFETY: The buffer stored in `buf` is at least of size `size` and is valid for writes.
826         let mut f = unsafe { Formatter::from_buffer(buf.as_mut_ptr(), size) };
827         f.write_fmt(args)?;
828         f.write_str("\0")?;
829 
830         // SAFETY: The number of bytes that can be written to `f` is bounded by `size`, which is
831         // `buf`'s capacity. The contents of the buffer have been initialised by writes to `f`.
832         unsafe { buf.inc_len(f.bytes_written()) };
833 
834         // Check that there are no `NUL` bytes before the end.
835         // SAFETY: The buffer is valid for read because `f.bytes_written()` is bounded by `size`
836         // (which the minimum buffer size) and is non-zero (we wrote at least the `NUL` terminator)
837         // so `f.bytes_written() - 1` doesn't underflow.
838         let ptr = unsafe { bindings::memchr(buf.as_ptr().cast(), 0, f.bytes_written() - 1) };
839         if !ptr.is_null() {
840             return Err(EINVAL);
841         }
842 
843         // INVARIANT: We wrote the `NUL` terminator and checked above that no other `NUL` bytes
844         // exist in the buffer.
845         Ok(Self { buf })
846     }
847 }
848 
849 impl Deref for CString {
850     type Target = CStr;
851 
deref(&self) -> &Self::Target852     fn deref(&self) -> &Self::Target {
853         // SAFETY: The type invariants guarantee that the string is `NUL`-terminated and that no
854         // other `NUL` bytes exist.
855         unsafe { CStr::from_bytes_with_nul_unchecked(self.buf.as_slice()) }
856     }
857 }
858 
859 impl DerefMut for CString {
deref_mut(&mut self) -> &mut Self::Target860     fn deref_mut(&mut self) -> &mut Self::Target {
861         // SAFETY: A `CString` is always NUL-terminated and contains no other
862         // NUL bytes.
863         unsafe { CStr::from_bytes_with_nul_unchecked_mut(self.buf.as_mut_slice()) }
864     }
865 }
866 
867 impl<'a> TryFrom<&'a CStr> for CString {
868     type Error = AllocError;
869 
try_from(cstr: &'a CStr) -> Result<CString, AllocError>870     fn try_from(cstr: &'a CStr) -> Result<CString, AllocError> {
871         let mut buf = KVec::new();
872 
873         buf.extend_from_slice(cstr.to_bytes_with_nul(), GFP_KERNEL)?;
874 
875         // INVARIANT: The `CStr` and `CString` types have the same invariants for
876         // the string data, and we copied it over without changes.
877         Ok(CString { buf })
878     }
879 }
880 
881 impl fmt::Debug for CString {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result882     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
883         fmt::Debug::fmt(&**self, f)
884     }
885 }
886