xref: /linux/arch/x86/kernel/irq.c (revision c924c5e9b8c65b3a479a90e5e37d74cc8cd9fe0a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Common interrupt code for 32 and 64 bit
4  */
5 #include <linux/cpu.h>
6 #include <linux/interrupt.h>
7 #include <linux/kernel_stat.h>
8 #include <linux/of.h>
9 #include <linux/seq_file.h>
10 #include <linux/smp.h>
11 #include <linux/ftrace.h>
12 #include <linux/delay.h>
13 #include <linux/export.h>
14 #include <linux/irq.h>
15 
16 #include <asm/irq_stack.h>
17 #include <asm/apic.h>
18 #include <asm/io_apic.h>
19 #include <asm/irq.h>
20 #include <asm/mce.h>
21 #include <asm/hw_irq.h>
22 #include <asm/desc.h>
23 #include <asm/traps.h>
24 #include <asm/thermal.h>
25 #include <asm/posted_intr.h>
26 #include <asm/irq_remapping.h>
27 
28 #if defined(CONFIG_X86_LOCAL_APIC) || defined(CONFIG_X86_THERMAL_VECTOR)
29 #define CREATE_TRACE_POINTS
30 #include <asm/trace/irq_vectors.h>
31 #endif
32 
33 DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
34 EXPORT_PER_CPU_SYMBOL(irq_stat);
35 
36 DEFINE_PER_CPU_CACHE_HOT(u16, __softirq_pending);
37 EXPORT_PER_CPU_SYMBOL(__softirq_pending);
38 
39 DEFINE_PER_CPU_CACHE_HOT(struct irq_stack *, hardirq_stack_ptr);
40 
41 atomic_t irq_err_count;
42 
43 /*
44  * 'what should we do if we get a hw irq event on an illegal vector'.
45  * each architecture has to answer this themselves.
46  */
ack_bad_irq(unsigned int irq)47 void ack_bad_irq(unsigned int irq)
48 {
49 	if (printk_ratelimit())
50 		pr_err("unexpected IRQ trap at vector %02x\n", irq);
51 
52 	/*
53 	 * Currently unexpected vectors happen only on SMP and APIC.
54 	 * We _must_ ack these because every local APIC has only N
55 	 * irq slots per priority level, and a 'hanging, unacked' IRQ
56 	 * holds up an irq slot - in excessive cases (when multiple
57 	 * unexpected vectors occur) that might lock up the APIC
58 	 * completely.
59 	 * But only ack when the APIC is enabled -AK
60 	 */
61 	apic_eoi();
62 }
63 
64 #define irq_stats(x)		(&per_cpu(irq_stat, x))
65 /*
66  * /proc/interrupts printing for arch specific interrupts
67  */
arch_show_interrupts(struct seq_file * p,int prec)68 int arch_show_interrupts(struct seq_file *p, int prec)
69 {
70 	int j;
71 
72 	seq_printf(p, "%*s: ", prec, "NMI");
73 	for_each_online_cpu(j)
74 		seq_printf(p, "%10u ", irq_stats(j)->__nmi_count);
75 	seq_puts(p, "  Non-maskable interrupts\n");
76 #ifdef CONFIG_X86_LOCAL_APIC
77 	seq_printf(p, "%*s: ", prec, "LOC");
78 	for_each_online_cpu(j)
79 		seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs);
80 	seq_puts(p, "  Local timer interrupts\n");
81 
82 	seq_printf(p, "%*s: ", prec, "SPU");
83 	for_each_online_cpu(j)
84 		seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count);
85 	seq_puts(p, "  Spurious interrupts\n");
86 	seq_printf(p, "%*s: ", prec, "PMI");
87 	for_each_online_cpu(j)
88 		seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs);
89 	seq_puts(p, "  Performance monitoring interrupts\n");
90 	seq_printf(p, "%*s: ", prec, "IWI");
91 	for_each_online_cpu(j)
92 		seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs);
93 	seq_puts(p, "  IRQ work interrupts\n");
94 	seq_printf(p, "%*s: ", prec, "RTR");
95 	for_each_online_cpu(j)
96 		seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count);
97 	seq_puts(p, "  APIC ICR read retries\n");
98 	if (x86_platform_ipi_callback) {
99 		seq_printf(p, "%*s: ", prec, "PLT");
100 		for_each_online_cpu(j)
101 			seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis);
102 		seq_puts(p, "  Platform interrupts\n");
103 	}
104 #endif
105 #ifdef CONFIG_SMP
106 	seq_printf(p, "%*s: ", prec, "RES");
107 	for_each_online_cpu(j)
108 		seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
109 	seq_puts(p, "  Rescheduling interrupts\n");
110 	seq_printf(p, "%*s: ", prec, "CAL");
111 	for_each_online_cpu(j)
112 		seq_printf(p, "%10u ", irq_stats(j)->irq_call_count);
113 	seq_puts(p, "  Function call interrupts\n");
114 	seq_printf(p, "%*s: ", prec, "TLB");
115 	for_each_online_cpu(j)
116 		seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
117 	seq_puts(p, "  TLB shootdowns\n");
118 #endif
119 #ifdef CONFIG_X86_THERMAL_VECTOR
120 	seq_printf(p, "%*s: ", prec, "TRM");
121 	for_each_online_cpu(j)
122 		seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count);
123 	seq_puts(p, "  Thermal event interrupts\n");
124 #endif
125 #ifdef CONFIG_X86_MCE_THRESHOLD
126 	seq_printf(p, "%*s: ", prec, "THR");
127 	for_each_online_cpu(j)
128 		seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count);
129 	seq_puts(p, "  Threshold APIC interrupts\n");
130 #endif
131 #ifdef CONFIG_X86_MCE_AMD
132 	seq_printf(p, "%*s: ", prec, "DFR");
133 	for_each_online_cpu(j)
134 		seq_printf(p, "%10u ", irq_stats(j)->irq_deferred_error_count);
135 	seq_puts(p, "  Deferred Error APIC interrupts\n");
136 #endif
137 #ifdef CONFIG_X86_MCE
138 	seq_printf(p, "%*s: ", prec, "MCE");
139 	for_each_online_cpu(j)
140 		seq_printf(p, "%10u ", per_cpu(mce_exception_count, j));
141 	seq_puts(p, "  Machine check exceptions\n");
142 	seq_printf(p, "%*s: ", prec, "MCP");
143 	for_each_online_cpu(j)
144 		seq_printf(p, "%10u ", per_cpu(mce_poll_count, j));
145 	seq_puts(p, "  Machine check polls\n");
146 #endif
147 #ifdef CONFIG_X86_HV_CALLBACK_VECTOR
148 	if (test_bit(HYPERVISOR_CALLBACK_VECTOR, system_vectors)) {
149 		seq_printf(p, "%*s: ", prec, "HYP");
150 		for_each_online_cpu(j)
151 			seq_printf(p, "%10u ",
152 				   irq_stats(j)->irq_hv_callback_count);
153 		seq_puts(p, "  Hypervisor callback interrupts\n");
154 	}
155 #endif
156 #if IS_ENABLED(CONFIG_HYPERV)
157 	if (test_bit(HYPERV_REENLIGHTENMENT_VECTOR, system_vectors)) {
158 		seq_printf(p, "%*s: ", prec, "HRE");
159 		for_each_online_cpu(j)
160 			seq_printf(p, "%10u ",
161 				   irq_stats(j)->irq_hv_reenlightenment_count);
162 		seq_puts(p, "  Hyper-V reenlightenment interrupts\n");
163 	}
164 	if (test_bit(HYPERV_STIMER0_VECTOR, system_vectors)) {
165 		seq_printf(p, "%*s: ", prec, "HVS");
166 		for_each_online_cpu(j)
167 			seq_printf(p, "%10u ",
168 				   irq_stats(j)->hyperv_stimer0_count);
169 		seq_puts(p, "  Hyper-V stimer0 interrupts\n");
170 	}
171 #endif
172 	seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
173 #if defined(CONFIG_X86_IO_APIC)
174 	seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count));
175 #endif
176 #if IS_ENABLED(CONFIG_KVM)
177 	seq_printf(p, "%*s: ", prec, "PIN");
178 	for_each_online_cpu(j)
179 		seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_ipis);
180 	seq_puts(p, "  Posted-interrupt notification event\n");
181 
182 	seq_printf(p, "%*s: ", prec, "NPI");
183 	for_each_online_cpu(j)
184 		seq_printf(p, "%10u ",
185 			   irq_stats(j)->kvm_posted_intr_nested_ipis);
186 	seq_puts(p, "  Nested posted-interrupt event\n");
187 
188 	seq_printf(p, "%*s: ", prec, "PIW");
189 	for_each_online_cpu(j)
190 		seq_printf(p, "%10u ",
191 			   irq_stats(j)->kvm_posted_intr_wakeup_ipis);
192 	seq_puts(p, "  Posted-interrupt wakeup event\n");
193 #endif
194 #ifdef CONFIG_X86_POSTED_MSI
195 	seq_printf(p, "%*s: ", prec, "PMN");
196 	for_each_online_cpu(j)
197 		seq_printf(p, "%10u ",
198 			   irq_stats(j)->posted_msi_notification_count);
199 	seq_puts(p, "  Posted MSI notification event\n");
200 #endif
201 	return 0;
202 }
203 
204 /*
205  * /proc/stat helpers
206  */
arch_irq_stat_cpu(unsigned int cpu)207 u64 arch_irq_stat_cpu(unsigned int cpu)
208 {
209 	u64 sum = irq_stats(cpu)->__nmi_count;
210 
211 #ifdef CONFIG_X86_LOCAL_APIC
212 	sum += irq_stats(cpu)->apic_timer_irqs;
213 	sum += irq_stats(cpu)->irq_spurious_count;
214 	sum += irq_stats(cpu)->apic_perf_irqs;
215 	sum += irq_stats(cpu)->apic_irq_work_irqs;
216 	sum += irq_stats(cpu)->icr_read_retry_count;
217 	if (x86_platform_ipi_callback)
218 		sum += irq_stats(cpu)->x86_platform_ipis;
219 #endif
220 #ifdef CONFIG_SMP
221 	sum += irq_stats(cpu)->irq_resched_count;
222 	sum += irq_stats(cpu)->irq_call_count;
223 #endif
224 #ifdef CONFIG_X86_THERMAL_VECTOR
225 	sum += irq_stats(cpu)->irq_thermal_count;
226 #endif
227 #ifdef CONFIG_X86_MCE_THRESHOLD
228 	sum += irq_stats(cpu)->irq_threshold_count;
229 #endif
230 #ifdef CONFIG_X86_HV_CALLBACK_VECTOR
231 	sum += irq_stats(cpu)->irq_hv_callback_count;
232 #endif
233 #if IS_ENABLED(CONFIG_HYPERV)
234 	sum += irq_stats(cpu)->irq_hv_reenlightenment_count;
235 	sum += irq_stats(cpu)->hyperv_stimer0_count;
236 #endif
237 #ifdef CONFIG_X86_MCE
238 	sum += per_cpu(mce_exception_count, cpu);
239 	sum += per_cpu(mce_poll_count, cpu);
240 #endif
241 	return sum;
242 }
243 
arch_irq_stat(void)244 u64 arch_irq_stat(void)
245 {
246 	u64 sum = atomic_read(&irq_err_count);
247 	return sum;
248 }
249 
handle_irq(struct irq_desc * desc,struct pt_regs * regs)250 static __always_inline void handle_irq(struct irq_desc *desc,
251 				       struct pt_regs *regs)
252 {
253 	if (IS_ENABLED(CONFIG_X86_64))
254 		generic_handle_irq_desc(desc);
255 	else
256 		__handle_irq(desc, regs);
257 }
258 
call_irq_handler(int vector,struct pt_regs * regs)259 static __always_inline int call_irq_handler(int vector, struct pt_regs *regs)
260 {
261 	struct irq_desc *desc;
262 	int ret = 0;
263 
264 	desc = __this_cpu_read(vector_irq[vector]);
265 	if (likely(!IS_ERR_OR_NULL(desc))) {
266 		handle_irq(desc, regs);
267 	} else {
268 		ret = -EINVAL;
269 		if (desc == VECTOR_UNUSED) {
270 			pr_emerg_ratelimited("%s: %d.%u No irq handler for vector\n",
271 					     __func__, smp_processor_id(),
272 					     vector);
273 		} else {
274 			__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
275 		}
276 	}
277 
278 	return ret;
279 }
280 
281 /*
282  * common_interrupt() handles all normal device IRQ's (the special SMP
283  * cross-CPU interrupts have their own entry points).
284  */
DEFINE_IDTENTRY_IRQ(common_interrupt)285 DEFINE_IDTENTRY_IRQ(common_interrupt)
286 {
287 	struct pt_regs *old_regs = set_irq_regs(regs);
288 
289 	/* entry code tells RCU that we're not quiescent.  Check it. */
290 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "IRQ failed to wake up RCU");
291 
292 	if (unlikely(call_irq_handler(vector, regs)))
293 		apic_eoi();
294 
295 	set_irq_regs(old_regs);
296 }
297 
298 #ifdef CONFIG_X86_LOCAL_APIC
299 /* Function pointer for generic interrupt vector handling */
300 void (*x86_platform_ipi_callback)(void) = NULL;
301 /*
302  * Handler for X86_PLATFORM_IPI_VECTOR.
303  */
DEFINE_IDTENTRY_SYSVEC(sysvec_x86_platform_ipi)304 DEFINE_IDTENTRY_SYSVEC(sysvec_x86_platform_ipi)
305 {
306 	struct pt_regs *old_regs = set_irq_regs(regs);
307 
308 	apic_eoi();
309 	trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR);
310 	inc_irq_stat(x86_platform_ipis);
311 	if (x86_platform_ipi_callback)
312 		x86_platform_ipi_callback();
313 	trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR);
314 	set_irq_regs(old_regs);
315 }
316 #endif
317 
318 #if IS_ENABLED(CONFIG_KVM)
dummy_handler(void)319 static void dummy_handler(void) {}
320 static void (*kvm_posted_intr_wakeup_handler)(void) = dummy_handler;
321 
kvm_set_posted_intr_wakeup_handler(void (* handler)(void))322 void kvm_set_posted_intr_wakeup_handler(void (*handler)(void))
323 {
324 	if (handler)
325 		kvm_posted_intr_wakeup_handler = handler;
326 	else {
327 		kvm_posted_intr_wakeup_handler = dummy_handler;
328 		synchronize_rcu();
329 	}
330 }
331 EXPORT_SYMBOL_GPL(kvm_set_posted_intr_wakeup_handler);
332 
333 /*
334  * Handler for POSTED_INTERRUPT_VECTOR.
335  */
DEFINE_IDTENTRY_SYSVEC_SIMPLE(sysvec_kvm_posted_intr_ipi)336 DEFINE_IDTENTRY_SYSVEC_SIMPLE(sysvec_kvm_posted_intr_ipi)
337 {
338 	apic_eoi();
339 	inc_irq_stat(kvm_posted_intr_ipis);
340 }
341 
342 /*
343  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
344  */
DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_posted_intr_wakeup_ipi)345 DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_posted_intr_wakeup_ipi)
346 {
347 	apic_eoi();
348 	inc_irq_stat(kvm_posted_intr_wakeup_ipis);
349 	kvm_posted_intr_wakeup_handler();
350 }
351 
352 /*
353  * Handler for POSTED_INTERRUPT_NESTED_VECTOR.
354  */
DEFINE_IDTENTRY_SYSVEC_SIMPLE(sysvec_kvm_posted_intr_nested_ipi)355 DEFINE_IDTENTRY_SYSVEC_SIMPLE(sysvec_kvm_posted_intr_nested_ipi)
356 {
357 	apic_eoi();
358 	inc_irq_stat(kvm_posted_intr_nested_ipis);
359 }
360 #endif
361 
362 #ifdef CONFIG_X86_POSTED_MSI
363 
364 /* Posted Interrupt Descriptors for coalesced MSIs to be posted */
365 DEFINE_PER_CPU_ALIGNED(struct pi_desc, posted_msi_pi_desc);
366 
intel_posted_msi_init(void)367 void intel_posted_msi_init(void)
368 {
369 	u32 destination;
370 	u32 apic_id;
371 
372 	this_cpu_write(posted_msi_pi_desc.nv, POSTED_MSI_NOTIFICATION_VECTOR);
373 
374 	/*
375 	 * APIC destination ID is stored in bit 8:15 while in XAPIC mode.
376 	 * VT-d spec. CH 9.11
377 	 */
378 	apic_id = this_cpu_read(x86_cpu_to_apicid);
379 	destination = x2apic_enabled() ? apic_id : apic_id << 8;
380 	this_cpu_write(posted_msi_pi_desc.ndst, destination);
381 }
382 
383 /*
384  * De-multiplexing posted interrupts is on the performance path, the code
385  * below is written to optimize the cache performance based on the following
386  * considerations:
387  * 1.Posted interrupt descriptor (PID) fits in a cache line that is frequently
388  *   accessed by both CPU and IOMMU.
389  * 2.During posted MSI processing, the CPU needs to do 64-bit read and xchg
390  *   for checking and clearing posted interrupt request (PIR), a 256 bit field
391  *   within the PID.
392  * 3.On the other side, the IOMMU does atomic swaps of the entire PID cache
393  *   line when posting interrupts and setting control bits.
394  * 4.The CPU can access the cache line a magnitude faster than the IOMMU.
395  * 5.Each time the IOMMU does interrupt posting to the PIR will evict the PID
396  *   cache line. The cache line states after each operation are as follows:
397  *   CPU		IOMMU			PID Cache line state
398  *   ---------------------------------------------------------------
399  *...read64					exclusive
400  *...lock xchg64				modified
401  *...			post/atomic swap	invalid
402  *...-------------------------------------------------------------
403  *
404  * To reduce L1 data cache miss, it is important to avoid contention with
405  * IOMMU's interrupt posting/atomic swap. Therefore, a copy of PIR is used
406  * to dispatch interrupt handlers.
407  *
408  * In addition, the code is trying to keep the cache line state consistent
409  * as much as possible. e.g. when making a copy and clearing the PIR
410  * (assuming non-zero PIR bits are present in the entire PIR), it does:
411  *		read, read, read, read, xchg, xchg, xchg, xchg
412  * instead of:
413  *		read, xchg, read, xchg, read, xchg, read, xchg
414  */
handle_pending_pir(u64 * pir,struct pt_regs * regs)415 static __always_inline bool handle_pending_pir(u64 *pir, struct pt_regs *regs)
416 {
417 	int i, vec = FIRST_EXTERNAL_VECTOR;
418 	unsigned long pir_copy[4];
419 	bool handled = false;
420 
421 	for (i = 0; i < 4; i++)
422 		pir_copy[i] = pir[i];
423 
424 	for (i = 0; i < 4; i++) {
425 		if (!pir_copy[i])
426 			continue;
427 
428 		pir_copy[i] = arch_xchg(&pir[i], 0);
429 		handled = true;
430 	}
431 
432 	if (handled) {
433 		for_each_set_bit_from(vec, pir_copy, FIRST_SYSTEM_VECTOR)
434 			call_irq_handler(vec, regs);
435 	}
436 
437 	return handled;
438 }
439 
440 /*
441  * Performance data shows that 3 is good enough to harvest 90+% of the benefit
442  * on high IRQ rate workload.
443  */
444 #define MAX_POSTED_MSI_COALESCING_LOOP 3
445 
446 /*
447  * For MSIs that are delivered as posted interrupts, the CPU notifications
448  * can be coalesced if the MSIs arrive in high frequency bursts.
449  */
DEFINE_IDTENTRY_SYSVEC(sysvec_posted_msi_notification)450 DEFINE_IDTENTRY_SYSVEC(sysvec_posted_msi_notification)
451 {
452 	struct pt_regs *old_regs = set_irq_regs(regs);
453 	struct pi_desc *pid;
454 	int i = 0;
455 
456 	pid = this_cpu_ptr(&posted_msi_pi_desc);
457 
458 	inc_irq_stat(posted_msi_notification_count);
459 	irq_enter();
460 
461 	/*
462 	 * Max coalescing count includes the extra round of handle_pending_pir
463 	 * after clearing the outstanding notification bit. Hence, at most
464 	 * MAX_POSTED_MSI_COALESCING_LOOP - 1 loops are executed here.
465 	 */
466 	while (++i < MAX_POSTED_MSI_COALESCING_LOOP) {
467 		if (!handle_pending_pir(pid->pir64, regs))
468 			break;
469 	}
470 
471 	/*
472 	 * Clear outstanding notification bit to allow new IRQ notifications,
473 	 * do this last to maximize the window of interrupt coalescing.
474 	 */
475 	pi_clear_on(pid);
476 
477 	/*
478 	 * There could be a race of PI notification and the clearing of ON bit,
479 	 * process PIR bits one last time such that handling the new interrupts
480 	 * are not delayed until the next IRQ.
481 	 */
482 	handle_pending_pir(pid->pir64, regs);
483 
484 	apic_eoi();
485 	irq_exit();
486 	set_irq_regs(old_regs);
487 }
488 #endif /* X86_POSTED_MSI */
489 
490 #ifdef CONFIG_HOTPLUG_CPU
491 /* A cpu has been removed from cpu_online_mask.  Reset irq affinities. */
fixup_irqs(void)492 void fixup_irqs(void)
493 {
494 	unsigned int vector;
495 	struct irq_desc *desc;
496 	struct irq_data *data;
497 	struct irq_chip *chip;
498 
499 	irq_migrate_all_off_this_cpu();
500 
501 	/*
502 	 * We can remove mdelay() and then send spurious interrupts to
503 	 * new cpu targets for all the irqs that were handled previously by
504 	 * this cpu. While it works, I have seen spurious interrupt messages
505 	 * (nothing wrong but still...).
506 	 *
507 	 * So for now, retain mdelay(1) and check the IRR and then send those
508 	 * interrupts to new targets as this cpu is already offlined...
509 	 */
510 	mdelay(1);
511 
512 	/*
513 	 * We can walk the vector array of this cpu without holding
514 	 * vector_lock because the cpu is already marked !online, so
515 	 * nothing else will touch it.
516 	 */
517 	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
518 		if (IS_ERR_OR_NULL(__this_cpu_read(vector_irq[vector])))
519 			continue;
520 
521 		if (is_vector_pending(vector)) {
522 			desc = __this_cpu_read(vector_irq[vector]);
523 
524 			raw_spin_lock(&desc->lock);
525 			data = irq_desc_get_irq_data(desc);
526 			chip = irq_data_get_irq_chip(data);
527 			if (chip->irq_retrigger) {
528 				chip->irq_retrigger(data);
529 				__this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED);
530 			}
531 			raw_spin_unlock(&desc->lock);
532 		}
533 		if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED)
534 			__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
535 	}
536 }
537 #endif
538 
539 #ifdef CONFIG_X86_THERMAL_VECTOR
smp_thermal_vector(void)540 static void smp_thermal_vector(void)
541 {
542 	if (x86_thermal_enabled())
543 		intel_thermal_interrupt();
544 	else
545 		pr_err("CPU%d: Unexpected LVT thermal interrupt!\n",
546 		       smp_processor_id());
547 }
548 
DEFINE_IDTENTRY_SYSVEC(sysvec_thermal)549 DEFINE_IDTENTRY_SYSVEC(sysvec_thermal)
550 {
551 	trace_thermal_apic_entry(THERMAL_APIC_VECTOR);
552 	inc_irq_stat(irq_thermal_count);
553 	smp_thermal_vector();
554 	trace_thermal_apic_exit(THERMAL_APIC_VECTOR);
555 	apic_eoi();
556 }
557 #endif
558