1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * intel_pstate.c: Native P state management for Intel processors
4 *
5 * (C) Copyright 2012 Intel Corporation
6 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/sched/smt.h>
20 #include <linux/list.h>
21 #include <linux/cpu.h>
22 #include <linux/cpufreq.h>
23 #include <linux/sysfs.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/acpi.h>
27 #include <linux/vmalloc.h>
28 #include <linux/pm_qos.h>
29 #include <linux/bitfield.h>
30 #include <trace/events/power.h>
31
32 #include <asm/cpu.h>
33 #include <asm/div64.h>
34 #include <asm/msr.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/cpufeature.h>
37 #include <asm/intel-family.h>
38 #include "../drivers/thermal/intel/thermal_interrupt.h"
39
40 #define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
41
42 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
43 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP 5000
44 #define INTEL_CPUFREQ_TRANSITION_DELAY 500
45
46 #ifdef CONFIG_ACPI
47 #include <acpi/processor.h>
48 #include <acpi/cppc_acpi.h>
49 #endif
50
51 #define FRAC_BITS 8
52 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
53 #define fp_toint(X) ((X) >> FRAC_BITS)
54
55 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
56
57 #define EXT_BITS 6
58 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
59 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
60 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
61
mul_fp(int32_t x,int32_t y)62 static inline int32_t mul_fp(int32_t x, int32_t y)
63 {
64 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
65 }
66
div_fp(s64 x,s64 y)67 static inline int32_t div_fp(s64 x, s64 y)
68 {
69 return div64_s64((int64_t)x << FRAC_BITS, y);
70 }
71
ceiling_fp(int32_t x)72 static inline int ceiling_fp(int32_t x)
73 {
74 int mask, ret;
75
76 ret = fp_toint(x);
77 mask = (1 << FRAC_BITS) - 1;
78 if (x & mask)
79 ret += 1;
80 return ret;
81 }
82
mul_ext_fp(u64 x,u64 y)83 static inline u64 mul_ext_fp(u64 x, u64 y)
84 {
85 return (x * y) >> EXT_FRAC_BITS;
86 }
87
div_ext_fp(u64 x,u64 y)88 static inline u64 div_ext_fp(u64 x, u64 y)
89 {
90 return div64_u64(x << EXT_FRAC_BITS, y);
91 }
92
93 /**
94 * struct sample - Store performance sample
95 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
96 * performance during last sample period
97 * @busy_scaled: Scaled busy value which is used to calculate next
98 * P state. This can be different than core_avg_perf
99 * to account for cpu idle period
100 * @aperf: Difference of actual performance frequency clock count
101 * read from APERF MSR between last and current sample
102 * @mperf: Difference of maximum performance frequency clock count
103 * read from MPERF MSR between last and current sample
104 * @tsc: Difference of time stamp counter between last and
105 * current sample
106 * @time: Current time from scheduler
107 *
108 * This structure is used in the cpudata structure to store performance sample
109 * data for choosing next P State.
110 */
111 struct sample {
112 int32_t core_avg_perf;
113 int32_t busy_scaled;
114 u64 aperf;
115 u64 mperf;
116 u64 tsc;
117 u64 time;
118 };
119
120 /**
121 * struct pstate_data - Store P state data
122 * @current_pstate: Current requested P state
123 * @min_pstate: Min P state possible for this platform
124 * @max_pstate: Max P state possible for this platform
125 * @max_pstate_physical:This is physical Max P state for a processor
126 * This can be higher than the max_pstate which can
127 * be limited by platform thermal design power limits
128 * @perf_ctl_scaling: PERF_CTL P-state to frequency scaling factor
129 * @scaling: Scaling factor between performance and frequency
130 * @turbo_pstate: Max Turbo P state possible for this platform
131 * @min_freq: @min_pstate frequency in cpufreq units
132 * @max_freq: @max_pstate frequency in cpufreq units
133 * @turbo_freq: @turbo_pstate frequency in cpufreq units
134 *
135 * Stores the per cpu model P state limits and current P state.
136 */
137 struct pstate_data {
138 int current_pstate;
139 int min_pstate;
140 int max_pstate;
141 int max_pstate_physical;
142 int perf_ctl_scaling;
143 int scaling;
144 int turbo_pstate;
145 unsigned int min_freq;
146 unsigned int max_freq;
147 unsigned int turbo_freq;
148 };
149
150 /**
151 * struct vid_data - Stores voltage information data
152 * @min: VID data for this platform corresponding to
153 * the lowest P state
154 * @max: VID data corresponding to the highest P State.
155 * @turbo: VID data for turbo P state
156 * @ratio: Ratio of (vid max - vid min) /
157 * (max P state - Min P State)
158 *
159 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
160 * This data is used in Atom platforms, where in addition to target P state,
161 * the voltage data needs to be specified to select next P State.
162 */
163 struct vid_data {
164 int min;
165 int max;
166 int turbo;
167 int32_t ratio;
168 };
169
170 /**
171 * struct global_params - Global parameters, mostly tunable via sysfs.
172 * @no_turbo: Whether or not to use turbo P-states.
173 * @turbo_disabled: Whether or not turbo P-states are available at all,
174 * based on the MSR_IA32_MISC_ENABLE value and whether or
175 * not the maximum reported turbo P-state is different from
176 * the maximum reported non-turbo one.
177 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
178 * P-state capacity.
179 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
180 * P-state capacity.
181 */
182 struct global_params {
183 bool no_turbo;
184 bool turbo_disabled;
185 int max_perf_pct;
186 int min_perf_pct;
187 };
188
189 /**
190 * struct cpudata - Per CPU instance data storage
191 * @cpu: CPU number for this instance data
192 * @policy: CPUFreq policy value
193 * @update_util: CPUFreq utility callback information
194 * @update_util_set: CPUFreq utility callback is set
195 * @iowait_boost: iowait-related boost fraction
196 * @last_update: Time of the last update.
197 * @pstate: Stores P state limits for this CPU
198 * @vid: Stores VID limits for this CPU
199 * @last_sample_time: Last Sample time
200 * @aperf_mperf_shift: APERF vs MPERF counting frequency difference
201 * @prev_aperf: Last APERF value read from APERF MSR
202 * @prev_mperf: Last MPERF value read from MPERF MSR
203 * @prev_tsc: Last timestamp counter (TSC) value
204 * @sample: Storage for storing last Sample data
205 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios
206 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios
207 * @acpi_perf_data: Stores ACPI perf information read from _PSS
208 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
209 * @epp_powersave: Last saved HWP energy performance preference
210 * (EPP) or energy performance bias (EPB),
211 * when policy switched to performance
212 * @epp_policy: Last saved policy used to set EPP/EPB
213 * @epp_default: Power on default HWP energy performance
214 * preference/bias
215 * @epp_cached: Cached HWP energy-performance preference value
216 * @hwp_req_cached: Cached value of the last HWP Request MSR
217 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR
218 * @last_io_update: Last time when IO wake flag was set
219 * @capacity_perf: Highest perf used for scale invariance
220 * @sched_flags: Store scheduler flags for possible cross CPU update
221 * @hwp_boost_min: Last HWP boosted min performance
222 * @suspended: Whether or not the driver has been suspended.
223 * @hwp_notify_work: workqueue for HWP notifications.
224 *
225 * This structure stores per CPU instance data for all CPUs.
226 */
227 struct cpudata {
228 int cpu;
229
230 unsigned int policy;
231 struct update_util_data update_util;
232 bool update_util_set;
233
234 struct pstate_data pstate;
235 struct vid_data vid;
236
237 u64 last_update;
238 u64 last_sample_time;
239 u64 aperf_mperf_shift;
240 u64 prev_aperf;
241 u64 prev_mperf;
242 u64 prev_tsc;
243 struct sample sample;
244 int32_t min_perf_ratio;
245 int32_t max_perf_ratio;
246 #ifdef CONFIG_ACPI
247 struct acpi_processor_performance acpi_perf_data;
248 bool valid_pss_table;
249 #endif
250 unsigned int iowait_boost;
251 s16 epp_powersave;
252 s16 epp_policy;
253 s16 epp_default;
254 s16 epp_cached;
255 u64 hwp_req_cached;
256 u64 hwp_cap_cached;
257 u64 last_io_update;
258 unsigned int capacity_perf;
259 unsigned int sched_flags;
260 u32 hwp_boost_min;
261 bool suspended;
262 struct delayed_work hwp_notify_work;
263 };
264
265 static struct cpudata **all_cpu_data;
266
267 /**
268 * struct pstate_funcs - Per CPU model specific callbacks
269 * @get_max: Callback to get maximum non turbo effective P state
270 * @get_max_physical: Callback to get maximum non turbo physical P state
271 * @get_min: Callback to get minimum P state
272 * @get_turbo: Callback to get turbo P state
273 * @get_scaling: Callback to get frequency scaling factor
274 * @get_cpu_scaling: Get frequency scaling factor for a given cpu
275 * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
276 * @get_val: Callback to convert P state to actual MSR write value
277 * @get_vid: Callback to get VID data for Atom platforms
278 *
279 * Core and Atom CPU models have different way to get P State limits. This
280 * structure is used to store those callbacks.
281 */
282 struct pstate_funcs {
283 int (*get_max)(int cpu);
284 int (*get_max_physical)(int cpu);
285 int (*get_min)(int cpu);
286 int (*get_turbo)(int cpu);
287 int (*get_scaling)(void);
288 int (*get_cpu_scaling)(int cpu);
289 int (*get_aperf_mperf_shift)(void);
290 u64 (*get_val)(struct cpudata*, int pstate);
291 void (*get_vid)(struct cpudata *);
292 };
293
294 static struct pstate_funcs pstate_funcs __read_mostly;
295
296 static bool hwp_active __ro_after_init;
297 static int hwp_mode_bdw __ro_after_init;
298 static bool per_cpu_limits __ro_after_init;
299 static bool hwp_forced __ro_after_init;
300 static bool hwp_boost __read_mostly;
301 static bool hwp_is_hybrid;
302
303 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
304
305 #define HYBRID_SCALING_FACTOR 78741
306 #define HYBRID_SCALING_FACTOR_MTL 80000
307 #define HYBRID_SCALING_FACTOR_LNL 86957
308
309 static int hybrid_scaling_factor = HYBRID_SCALING_FACTOR;
310
core_get_scaling(void)311 static inline int core_get_scaling(void)
312 {
313 return 100000;
314 }
315
316 #ifdef CONFIG_ACPI
317 static bool acpi_ppc;
318 #endif
319
320 static struct global_params global;
321
322 static DEFINE_MUTEX(intel_pstate_driver_lock);
323 static DEFINE_MUTEX(intel_pstate_limits_lock);
324
325 #ifdef CONFIG_ACPI
326
intel_pstate_acpi_pm_profile_server(void)327 static bool intel_pstate_acpi_pm_profile_server(void)
328 {
329 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
330 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
331 return true;
332
333 return false;
334 }
335
intel_pstate_get_ppc_enable_status(void)336 static bool intel_pstate_get_ppc_enable_status(void)
337 {
338 if (intel_pstate_acpi_pm_profile_server())
339 return true;
340
341 return acpi_ppc;
342 }
343
344 #ifdef CONFIG_ACPI_CPPC_LIB
345
346 /* The work item is needed to avoid CPU hotplug locking issues */
intel_pstste_sched_itmt_work_fn(struct work_struct * work)347 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
348 {
349 sched_set_itmt_support();
350 }
351
352 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
353
354 #define CPPC_MAX_PERF U8_MAX
355
intel_pstate_set_itmt_prio(int cpu)356 static void intel_pstate_set_itmt_prio(int cpu)
357 {
358 struct cppc_perf_caps cppc_perf;
359 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
360 int ret;
361
362 ret = cppc_get_perf_caps(cpu, &cppc_perf);
363 /*
364 * If CPPC is not available, fall back to MSR_HWP_CAPABILITIES bits [8:0].
365 *
366 * Also, on some systems with overclocking enabled, CPPC.highest_perf is
367 * hardcoded to 0xff, so CPPC.highest_perf cannot be used to enable ITMT.
368 * Fall back to MSR_HWP_CAPABILITIES then too.
369 */
370 if (ret || cppc_perf.highest_perf == CPPC_MAX_PERF)
371 cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached));
372
373 /*
374 * The priorities can be set regardless of whether or not
375 * sched_set_itmt_support(true) has been called and it is valid to
376 * update them at any time after it has been called.
377 */
378 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
379
380 if (max_highest_perf <= min_highest_perf) {
381 if (cppc_perf.highest_perf > max_highest_perf)
382 max_highest_perf = cppc_perf.highest_perf;
383
384 if (cppc_perf.highest_perf < min_highest_perf)
385 min_highest_perf = cppc_perf.highest_perf;
386
387 if (max_highest_perf > min_highest_perf) {
388 /*
389 * This code can be run during CPU online under the
390 * CPU hotplug locks, so sched_set_itmt_support()
391 * cannot be called from here. Queue up a work item
392 * to invoke it.
393 */
394 schedule_work(&sched_itmt_work);
395 }
396 }
397 }
398
intel_pstate_get_cppc_guaranteed(int cpu)399 static int intel_pstate_get_cppc_guaranteed(int cpu)
400 {
401 struct cppc_perf_caps cppc_perf;
402 int ret;
403
404 ret = cppc_get_perf_caps(cpu, &cppc_perf);
405 if (ret)
406 return ret;
407
408 if (cppc_perf.guaranteed_perf)
409 return cppc_perf.guaranteed_perf;
410
411 return cppc_perf.nominal_perf;
412 }
413
intel_pstate_cppc_get_scaling(int cpu)414 static int intel_pstate_cppc_get_scaling(int cpu)
415 {
416 struct cppc_perf_caps cppc_perf;
417 int ret;
418
419 ret = cppc_get_perf_caps(cpu, &cppc_perf);
420
421 /*
422 * If the nominal frequency and the nominal performance are not
423 * zero and the ratio between them is not 100, return the hybrid
424 * scaling factor.
425 */
426 if (!ret && cppc_perf.nominal_perf && cppc_perf.nominal_freq &&
427 cppc_perf.nominal_perf * 100 != cppc_perf.nominal_freq)
428 return hybrid_scaling_factor;
429
430 return core_get_scaling();
431 }
432
433 #else /* CONFIG_ACPI_CPPC_LIB */
intel_pstate_set_itmt_prio(int cpu)434 static inline void intel_pstate_set_itmt_prio(int cpu)
435 {
436 }
437 #endif /* CONFIG_ACPI_CPPC_LIB */
438
intel_pstate_init_acpi_perf_limits(struct cpufreq_policy * policy)439 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
440 {
441 struct cpudata *cpu;
442 int ret;
443 int i;
444
445 if (hwp_active) {
446 intel_pstate_set_itmt_prio(policy->cpu);
447 return;
448 }
449
450 if (!intel_pstate_get_ppc_enable_status())
451 return;
452
453 cpu = all_cpu_data[policy->cpu];
454
455 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
456 policy->cpu);
457 if (ret)
458 return;
459
460 /*
461 * Check if the control value in _PSS is for PERF_CTL MSR, which should
462 * guarantee that the states returned by it map to the states in our
463 * list directly.
464 */
465 if (cpu->acpi_perf_data.control_register.space_id !=
466 ACPI_ADR_SPACE_FIXED_HARDWARE)
467 goto err;
468
469 /*
470 * If there is only one entry _PSS, simply ignore _PSS and continue as
471 * usual without taking _PSS into account
472 */
473 if (cpu->acpi_perf_data.state_count < 2)
474 goto err;
475
476 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
477 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
478 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
479 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
480 (u32) cpu->acpi_perf_data.states[i].core_frequency,
481 (u32) cpu->acpi_perf_data.states[i].power,
482 (u32) cpu->acpi_perf_data.states[i].control);
483 }
484
485 cpu->valid_pss_table = true;
486 pr_debug("_PPC limits will be enforced\n");
487
488 return;
489
490 err:
491 cpu->valid_pss_table = false;
492 acpi_processor_unregister_performance(policy->cpu);
493 }
494
intel_pstate_exit_perf_limits(struct cpufreq_policy * policy)495 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
496 {
497 struct cpudata *cpu;
498
499 cpu = all_cpu_data[policy->cpu];
500 if (!cpu->valid_pss_table)
501 return;
502
503 acpi_processor_unregister_performance(policy->cpu);
504 }
505 #else /* CONFIG_ACPI */
intel_pstate_init_acpi_perf_limits(struct cpufreq_policy * policy)506 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
507 {
508 }
509
intel_pstate_exit_perf_limits(struct cpufreq_policy * policy)510 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
511 {
512 }
513
intel_pstate_acpi_pm_profile_server(void)514 static inline bool intel_pstate_acpi_pm_profile_server(void)
515 {
516 return false;
517 }
518 #endif /* CONFIG_ACPI */
519
520 #ifndef CONFIG_ACPI_CPPC_LIB
intel_pstate_get_cppc_guaranteed(int cpu)521 static inline int intel_pstate_get_cppc_guaranteed(int cpu)
522 {
523 return -ENOTSUPP;
524 }
525
intel_pstate_cppc_get_scaling(int cpu)526 static int intel_pstate_cppc_get_scaling(int cpu)
527 {
528 return core_get_scaling();
529 }
530 #endif /* CONFIG_ACPI_CPPC_LIB */
531
intel_pstate_freq_to_hwp_rel(struct cpudata * cpu,int freq,unsigned int relation)532 static int intel_pstate_freq_to_hwp_rel(struct cpudata *cpu, int freq,
533 unsigned int relation)
534 {
535 if (freq == cpu->pstate.turbo_freq)
536 return cpu->pstate.turbo_pstate;
537
538 if (freq == cpu->pstate.max_freq)
539 return cpu->pstate.max_pstate;
540
541 switch (relation) {
542 case CPUFREQ_RELATION_H:
543 return freq / cpu->pstate.scaling;
544 case CPUFREQ_RELATION_C:
545 return DIV_ROUND_CLOSEST(freq, cpu->pstate.scaling);
546 }
547
548 return DIV_ROUND_UP(freq, cpu->pstate.scaling);
549 }
550
intel_pstate_freq_to_hwp(struct cpudata * cpu,int freq)551 static int intel_pstate_freq_to_hwp(struct cpudata *cpu, int freq)
552 {
553 return intel_pstate_freq_to_hwp_rel(cpu, freq, CPUFREQ_RELATION_L);
554 }
555
556 /**
557 * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels.
558 * @cpu: Target CPU.
559 *
560 * On hybrid processors, HWP may expose more performance levels than there are
561 * P-states accessible through the PERF_CTL interface. If that happens, the
562 * scaling factor between HWP performance levels and CPU frequency will be less
563 * than the scaling factor between P-state values and CPU frequency.
564 *
565 * In that case, adjust the CPU parameters used in computations accordingly.
566 */
intel_pstate_hybrid_hwp_adjust(struct cpudata * cpu)567 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu)
568 {
569 int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
570 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
571 int perf_ctl_turbo = pstate_funcs.get_turbo(cpu->cpu);
572 int scaling = cpu->pstate.scaling;
573 int freq;
574
575 pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
576 pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
577 pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
578 pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
579 pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
580 pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
581
582 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_pstate * scaling,
583 perf_ctl_scaling);
584 cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
585 perf_ctl_scaling);
586
587 freq = perf_ctl_max_phys * perf_ctl_scaling;
588 cpu->pstate.max_pstate_physical = intel_pstate_freq_to_hwp(cpu, freq);
589
590 freq = cpu->pstate.min_pstate * perf_ctl_scaling;
591 cpu->pstate.min_freq = freq;
592 /*
593 * Cast the min P-state value retrieved via pstate_funcs.get_min() to
594 * the effective range of HWP performance levels.
595 */
596 cpu->pstate.min_pstate = intel_pstate_freq_to_hwp(cpu, freq);
597 }
598
turbo_is_disabled(void)599 static bool turbo_is_disabled(void)
600 {
601 u64 misc_en;
602
603 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
604
605 return !!(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
606 }
607
min_perf_pct_min(void)608 static int min_perf_pct_min(void)
609 {
610 struct cpudata *cpu = all_cpu_data[0];
611 int turbo_pstate = cpu->pstate.turbo_pstate;
612
613 return turbo_pstate ?
614 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
615 }
616
intel_pstate_get_epb(struct cpudata * cpu_data)617 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
618 {
619 u64 epb;
620 int ret;
621
622 if (!boot_cpu_has(X86_FEATURE_EPB))
623 return -ENXIO;
624
625 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
626 if (ret)
627 return (s16)ret;
628
629 return (s16)(epb & 0x0f);
630 }
631
intel_pstate_get_epp(struct cpudata * cpu_data,u64 hwp_req_data)632 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
633 {
634 s16 epp;
635
636 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
637 /*
638 * When hwp_req_data is 0, means that caller didn't read
639 * MSR_HWP_REQUEST, so need to read and get EPP.
640 */
641 if (!hwp_req_data) {
642 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
643 &hwp_req_data);
644 if (epp)
645 return epp;
646 }
647 epp = (hwp_req_data >> 24) & 0xff;
648 } else {
649 /* When there is no EPP present, HWP uses EPB settings */
650 epp = intel_pstate_get_epb(cpu_data);
651 }
652
653 return epp;
654 }
655
intel_pstate_set_epb(int cpu,s16 pref)656 static int intel_pstate_set_epb(int cpu, s16 pref)
657 {
658 u64 epb;
659 int ret;
660
661 if (!boot_cpu_has(X86_FEATURE_EPB))
662 return -ENXIO;
663
664 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
665 if (ret)
666 return ret;
667
668 epb = (epb & ~0x0f) | pref;
669 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
670
671 return 0;
672 }
673
674 /*
675 * EPP/EPB display strings corresponding to EPP index in the
676 * energy_perf_strings[]
677 * index String
678 *-------------------------------------
679 * 0 default
680 * 1 performance
681 * 2 balance_performance
682 * 3 balance_power
683 * 4 power
684 */
685
686 enum energy_perf_value_index {
687 EPP_INDEX_DEFAULT = 0,
688 EPP_INDEX_PERFORMANCE,
689 EPP_INDEX_BALANCE_PERFORMANCE,
690 EPP_INDEX_BALANCE_POWERSAVE,
691 EPP_INDEX_POWERSAVE,
692 };
693
694 static const char * const energy_perf_strings[] = {
695 [EPP_INDEX_DEFAULT] = "default",
696 [EPP_INDEX_PERFORMANCE] = "performance",
697 [EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance",
698 [EPP_INDEX_BALANCE_POWERSAVE] = "balance_power",
699 [EPP_INDEX_POWERSAVE] = "power",
700 NULL
701 };
702 static unsigned int epp_values[] = {
703 [EPP_INDEX_DEFAULT] = 0, /* Unused index */
704 [EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE,
705 [EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE,
706 [EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE,
707 [EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE,
708 };
709
intel_pstate_get_energy_pref_index(struct cpudata * cpu_data,int * raw_epp)710 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
711 {
712 s16 epp;
713 int index = -EINVAL;
714
715 *raw_epp = 0;
716 epp = intel_pstate_get_epp(cpu_data, 0);
717 if (epp < 0)
718 return epp;
719
720 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
721 if (epp == epp_values[EPP_INDEX_PERFORMANCE])
722 return EPP_INDEX_PERFORMANCE;
723 if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE])
724 return EPP_INDEX_BALANCE_PERFORMANCE;
725 if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE])
726 return EPP_INDEX_BALANCE_POWERSAVE;
727 if (epp == epp_values[EPP_INDEX_POWERSAVE])
728 return EPP_INDEX_POWERSAVE;
729 *raw_epp = epp;
730 return 0;
731 } else if (boot_cpu_has(X86_FEATURE_EPB)) {
732 /*
733 * Range:
734 * 0x00-0x03 : Performance
735 * 0x04-0x07 : Balance performance
736 * 0x08-0x0B : Balance power
737 * 0x0C-0x0F : Power
738 * The EPB is a 4 bit value, but our ranges restrict the
739 * value which can be set. Here only using top two bits
740 * effectively.
741 */
742 index = (epp >> 2) + 1;
743 }
744
745 return index;
746 }
747
intel_pstate_set_epp(struct cpudata * cpu,u32 epp)748 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
749 {
750 int ret;
751
752 /*
753 * Use the cached HWP Request MSR value, because in the active mode the
754 * register itself may be updated by intel_pstate_hwp_boost_up() or
755 * intel_pstate_hwp_boost_down() at any time.
756 */
757 u64 value = READ_ONCE(cpu->hwp_req_cached);
758
759 value &= ~GENMASK_ULL(31, 24);
760 value |= (u64)epp << 24;
761 /*
762 * The only other updater of hwp_req_cached in the active mode,
763 * intel_pstate_hwp_set(), is called under the same lock as this
764 * function, so it cannot run in parallel with the update below.
765 */
766 WRITE_ONCE(cpu->hwp_req_cached, value);
767 ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
768 if (!ret)
769 cpu->epp_cached = epp;
770
771 return ret;
772 }
773
intel_pstate_set_energy_pref_index(struct cpudata * cpu_data,int pref_index,bool use_raw,u32 raw_epp)774 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
775 int pref_index, bool use_raw,
776 u32 raw_epp)
777 {
778 int epp = -EINVAL;
779 int ret;
780
781 if (!pref_index)
782 epp = cpu_data->epp_default;
783
784 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
785 if (use_raw)
786 epp = raw_epp;
787 else if (epp == -EINVAL)
788 epp = epp_values[pref_index];
789
790 /*
791 * To avoid confusion, refuse to set EPP to any values different
792 * from 0 (performance) if the current policy is "performance",
793 * because those values would be overridden.
794 */
795 if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
796 return -EBUSY;
797
798 ret = intel_pstate_set_epp(cpu_data, epp);
799 } else {
800 if (epp == -EINVAL)
801 epp = (pref_index - 1) << 2;
802 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
803 }
804
805 return ret;
806 }
807
show_energy_performance_available_preferences(struct cpufreq_policy * policy,char * buf)808 static ssize_t show_energy_performance_available_preferences(
809 struct cpufreq_policy *policy, char *buf)
810 {
811 int i = 0;
812 int ret = 0;
813
814 while (energy_perf_strings[i] != NULL)
815 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
816
817 ret += sprintf(&buf[ret], "\n");
818
819 return ret;
820 }
821
822 cpufreq_freq_attr_ro(energy_performance_available_preferences);
823
824 static struct cpufreq_driver intel_pstate;
825
store_energy_performance_preference(struct cpufreq_policy * policy,const char * buf,size_t count)826 static ssize_t store_energy_performance_preference(
827 struct cpufreq_policy *policy, const char *buf, size_t count)
828 {
829 struct cpudata *cpu = all_cpu_data[policy->cpu];
830 char str_preference[21];
831 bool raw = false;
832 ssize_t ret;
833 u32 epp = 0;
834
835 ret = sscanf(buf, "%20s", str_preference);
836 if (ret != 1)
837 return -EINVAL;
838
839 ret = match_string(energy_perf_strings, -1, str_preference);
840 if (ret < 0) {
841 if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
842 return ret;
843
844 ret = kstrtouint(buf, 10, &epp);
845 if (ret)
846 return ret;
847
848 if (epp > 255)
849 return -EINVAL;
850
851 raw = true;
852 }
853
854 /*
855 * This function runs with the policy R/W semaphore held, which
856 * guarantees that the driver pointer will not change while it is
857 * running.
858 */
859 if (!intel_pstate_driver)
860 return -EAGAIN;
861
862 mutex_lock(&intel_pstate_limits_lock);
863
864 if (intel_pstate_driver == &intel_pstate) {
865 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
866 } else {
867 /*
868 * In the passive mode the governor needs to be stopped on the
869 * target CPU before the EPP update and restarted after it,
870 * which is super-heavy-weight, so make sure it is worth doing
871 * upfront.
872 */
873 if (!raw)
874 epp = ret ? epp_values[ret] : cpu->epp_default;
875
876 if (cpu->epp_cached != epp) {
877 int err;
878
879 cpufreq_stop_governor(policy);
880 ret = intel_pstate_set_epp(cpu, epp);
881 err = cpufreq_start_governor(policy);
882 if (!ret)
883 ret = err;
884 } else {
885 ret = 0;
886 }
887 }
888
889 mutex_unlock(&intel_pstate_limits_lock);
890
891 return ret ?: count;
892 }
893
show_energy_performance_preference(struct cpufreq_policy * policy,char * buf)894 static ssize_t show_energy_performance_preference(
895 struct cpufreq_policy *policy, char *buf)
896 {
897 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
898 int preference, raw_epp;
899
900 preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
901 if (preference < 0)
902 return preference;
903
904 if (raw_epp)
905 return sprintf(buf, "%d\n", raw_epp);
906 else
907 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
908 }
909
910 cpufreq_freq_attr_rw(energy_performance_preference);
911
show_base_frequency(struct cpufreq_policy * policy,char * buf)912 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
913 {
914 struct cpudata *cpu = all_cpu_data[policy->cpu];
915 int ratio, freq;
916
917 ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
918 if (ratio <= 0) {
919 u64 cap;
920
921 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
922 ratio = HWP_GUARANTEED_PERF(cap);
923 }
924
925 freq = ratio * cpu->pstate.scaling;
926 if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
927 freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
928
929 return sprintf(buf, "%d\n", freq);
930 }
931
932 cpufreq_freq_attr_ro(base_frequency);
933
934 static struct freq_attr *hwp_cpufreq_attrs[] = {
935 &energy_performance_preference,
936 &energy_performance_available_preferences,
937 &base_frequency,
938 NULL,
939 };
940
941 static struct cpudata *hybrid_max_perf_cpu __read_mostly;
942 /*
943 * Protects hybrid_max_perf_cpu, the capacity_perf fields in struct cpudata,
944 * and the x86 arch scale-invariance information from concurrent updates.
945 */
946 static DEFINE_MUTEX(hybrid_capacity_lock);
947
hybrid_set_cpu_capacity(struct cpudata * cpu)948 static void hybrid_set_cpu_capacity(struct cpudata *cpu)
949 {
950 arch_set_cpu_capacity(cpu->cpu, cpu->capacity_perf,
951 hybrid_max_perf_cpu->capacity_perf,
952 cpu->capacity_perf,
953 cpu->pstate.max_pstate_physical);
954
955 pr_debug("CPU%d: perf = %u, max. perf = %u, base perf = %d\n", cpu->cpu,
956 cpu->capacity_perf, hybrid_max_perf_cpu->capacity_perf,
957 cpu->pstate.max_pstate_physical);
958 }
959
hybrid_clear_cpu_capacity(unsigned int cpunum)960 static void hybrid_clear_cpu_capacity(unsigned int cpunum)
961 {
962 arch_set_cpu_capacity(cpunum, 1, 1, 1, 1);
963 }
964
hybrid_get_capacity_perf(struct cpudata * cpu)965 static void hybrid_get_capacity_perf(struct cpudata *cpu)
966 {
967 if (READ_ONCE(global.no_turbo)) {
968 cpu->capacity_perf = cpu->pstate.max_pstate_physical;
969 return;
970 }
971
972 cpu->capacity_perf = HWP_HIGHEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
973 }
974
hybrid_set_capacity_of_cpus(void)975 static void hybrid_set_capacity_of_cpus(void)
976 {
977 int cpunum;
978
979 for_each_online_cpu(cpunum) {
980 struct cpudata *cpu = all_cpu_data[cpunum];
981
982 if (cpu)
983 hybrid_set_cpu_capacity(cpu);
984 }
985 }
986
hybrid_update_cpu_capacity_scaling(void)987 static void hybrid_update_cpu_capacity_scaling(void)
988 {
989 struct cpudata *max_perf_cpu = NULL;
990 unsigned int max_cap_perf = 0;
991 int cpunum;
992
993 for_each_online_cpu(cpunum) {
994 struct cpudata *cpu = all_cpu_data[cpunum];
995
996 if (!cpu)
997 continue;
998
999 /*
1000 * During initialization, CPU performance at full capacity needs
1001 * to be determined.
1002 */
1003 if (!hybrid_max_perf_cpu)
1004 hybrid_get_capacity_perf(cpu);
1005
1006 /*
1007 * If hybrid_max_perf_cpu is not NULL at this point, it is
1008 * being replaced, so don't take it into account when looking
1009 * for the new one.
1010 */
1011 if (cpu == hybrid_max_perf_cpu)
1012 continue;
1013
1014 if (cpu->capacity_perf > max_cap_perf) {
1015 max_cap_perf = cpu->capacity_perf;
1016 max_perf_cpu = cpu;
1017 }
1018 }
1019
1020 if (max_perf_cpu) {
1021 hybrid_max_perf_cpu = max_perf_cpu;
1022 hybrid_set_capacity_of_cpus();
1023 } else {
1024 pr_info("Found no CPUs with nonzero maximum performance\n");
1025 /* Revert to the flat CPU capacity structure. */
1026 for_each_online_cpu(cpunum)
1027 hybrid_clear_cpu_capacity(cpunum);
1028 }
1029 }
1030
__hybrid_refresh_cpu_capacity_scaling(void)1031 static void __hybrid_refresh_cpu_capacity_scaling(void)
1032 {
1033 hybrid_max_perf_cpu = NULL;
1034 hybrid_update_cpu_capacity_scaling();
1035 }
1036
hybrid_refresh_cpu_capacity_scaling(void)1037 static void hybrid_refresh_cpu_capacity_scaling(void)
1038 {
1039 guard(mutex)(&hybrid_capacity_lock);
1040
1041 __hybrid_refresh_cpu_capacity_scaling();
1042 }
1043
hybrid_init_cpu_capacity_scaling(bool refresh)1044 static void hybrid_init_cpu_capacity_scaling(bool refresh)
1045 {
1046 /*
1047 * If hybrid_max_perf_cpu is set at this point, the hybrid CPU capacity
1048 * scaling has been enabled already and the driver is just changing the
1049 * operation mode.
1050 */
1051 if (refresh) {
1052 hybrid_refresh_cpu_capacity_scaling();
1053 return;
1054 }
1055
1056 /*
1057 * On hybrid systems, use asym capacity instead of ITMT, but because
1058 * the capacity of SMT threads is not deterministic even approximately,
1059 * do not do that when SMT is in use.
1060 */
1061 if (hwp_is_hybrid && !sched_smt_active() && arch_enable_hybrid_capacity_scale()) {
1062 hybrid_refresh_cpu_capacity_scaling();
1063 /*
1064 * Disabling ITMT causes sched domains to be rebuilt to disable asym
1065 * packing and enable asym capacity.
1066 */
1067 sched_clear_itmt_support();
1068 }
1069 }
1070
hybrid_clear_max_perf_cpu(void)1071 static bool hybrid_clear_max_perf_cpu(void)
1072 {
1073 bool ret;
1074
1075 guard(mutex)(&hybrid_capacity_lock);
1076
1077 ret = !!hybrid_max_perf_cpu;
1078 hybrid_max_perf_cpu = NULL;
1079
1080 return ret;
1081 }
1082
__intel_pstate_get_hwp_cap(struct cpudata * cpu)1083 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
1084 {
1085 u64 cap;
1086
1087 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
1088 WRITE_ONCE(cpu->hwp_cap_cached, cap);
1089 cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
1090 cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
1091 }
1092
intel_pstate_get_hwp_cap(struct cpudata * cpu)1093 static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
1094 {
1095 int scaling = cpu->pstate.scaling;
1096
1097 __intel_pstate_get_hwp_cap(cpu);
1098
1099 cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
1100 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
1101 if (scaling != cpu->pstate.perf_ctl_scaling) {
1102 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
1103
1104 cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
1105 perf_ctl_scaling);
1106 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
1107 perf_ctl_scaling);
1108 }
1109 }
1110
hybrid_update_capacity(struct cpudata * cpu)1111 static void hybrid_update_capacity(struct cpudata *cpu)
1112 {
1113 unsigned int max_cap_perf;
1114
1115 mutex_lock(&hybrid_capacity_lock);
1116
1117 if (!hybrid_max_perf_cpu)
1118 goto unlock;
1119
1120 /*
1121 * The maximum performance of the CPU may have changed, but assume
1122 * that the performance of the other CPUs has not changed.
1123 */
1124 max_cap_perf = hybrid_max_perf_cpu->capacity_perf;
1125
1126 intel_pstate_get_hwp_cap(cpu);
1127
1128 hybrid_get_capacity_perf(cpu);
1129 /* Should hybrid_max_perf_cpu be replaced by this CPU? */
1130 if (cpu->capacity_perf > max_cap_perf) {
1131 hybrid_max_perf_cpu = cpu;
1132 hybrid_set_capacity_of_cpus();
1133 goto unlock;
1134 }
1135
1136 /* If this CPU is hybrid_max_perf_cpu, should it be replaced? */
1137 if (cpu == hybrid_max_perf_cpu && cpu->capacity_perf < max_cap_perf) {
1138 hybrid_update_cpu_capacity_scaling();
1139 goto unlock;
1140 }
1141
1142 hybrid_set_cpu_capacity(cpu);
1143
1144 unlock:
1145 mutex_unlock(&hybrid_capacity_lock);
1146 }
1147
intel_pstate_hwp_set(unsigned int cpu)1148 static void intel_pstate_hwp_set(unsigned int cpu)
1149 {
1150 struct cpudata *cpu_data = all_cpu_data[cpu];
1151 int max, min;
1152 u64 value;
1153 s16 epp;
1154
1155 max = cpu_data->max_perf_ratio;
1156 min = cpu_data->min_perf_ratio;
1157
1158 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
1159 min = max;
1160
1161 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
1162
1163 value &= ~HWP_MIN_PERF(~0L);
1164 value |= HWP_MIN_PERF(min);
1165
1166 value &= ~HWP_MAX_PERF(~0L);
1167 value |= HWP_MAX_PERF(max);
1168
1169 if (cpu_data->epp_policy == cpu_data->policy)
1170 goto skip_epp;
1171
1172 cpu_data->epp_policy = cpu_data->policy;
1173
1174 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
1175 epp = intel_pstate_get_epp(cpu_data, value);
1176 cpu_data->epp_powersave = epp;
1177 /* If EPP read was failed, then don't try to write */
1178 if (epp < 0)
1179 goto skip_epp;
1180
1181 epp = 0;
1182 } else {
1183 /* skip setting EPP, when saved value is invalid */
1184 if (cpu_data->epp_powersave < 0)
1185 goto skip_epp;
1186
1187 /*
1188 * No need to restore EPP when it is not zero. This
1189 * means:
1190 * - Policy is not changed
1191 * - user has manually changed
1192 * - Error reading EPB
1193 */
1194 epp = intel_pstate_get_epp(cpu_data, value);
1195 if (epp)
1196 goto skip_epp;
1197
1198 epp = cpu_data->epp_powersave;
1199 }
1200 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1201 value &= ~GENMASK_ULL(31, 24);
1202 value |= (u64)epp << 24;
1203 } else {
1204 intel_pstate_set_epb(cpu, epp);
1205 }
1206 skip_epp:
1207 WRITE_ONCE(cpu_data->hwp_req_cached, value);
1208 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
1209 }
1210
1211 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata);
1212
intel_pstate_hwp_offline(struct cpudata * cpu)1213 static void intel_pstate_hwp_offline(struct cpudata *cpu)
1214 {
1215 u64 value = READ_ONCE(cpu->hwp_req_cached);
1216 int min_perf;
1217
1218 intel_pstate_disable_hwp_interrupt(cpu);
1219
1220 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1221 /*
1222 * In case the EPP has been set to "performance" by the
1223 * active mode "performance" scaling algorithm, replace that
1224 * temporary value with the cached EPP one.
1225 */
1226 value &= ~GENMASK_ULL(31, 24);
1227 value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
1228 /*
1229 * However, make sure that EPP will be set to "performance" when
1230 * the CPU is brought back online again and the "performance"
1231 * scaling algorithm is still in effect.
1232 */
1233 cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN;
1234 }
1235
1236 /*
1237 * Clear the desired perf field in the cached HWP request value to
1238 * prevent nonzero desired values from being leaked into the active
1239 * mode.
1240 */
1241 value &= ~HWP_DESIRED_PERF(~0L);
1242 WRITE_ONCE(cpu->hwp_req_cached, value);
1243
1244 value &= ~GENMASK_ULL(31, 0);
1245 min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1246
1247 /* Set hwp_max = hwp_min */
1248 value |= HWP_MAX_PERF(min_perf);
1249 value |= HWP_MIN_PERF(min_perf);
1250
1251 /* Set EPP to min */
1252 if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1253 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1254
1255 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1256
1257 mutex_lock(&hybrid_capacity_lock);
1258
1259 if (!hybrid_max_perf_cpu) {
1260 mutex_unlock(&hybrid_capacity_lock);
1261
1262 return;
1263 }
1264
1265 if (hybrid_max_perf_cpu == cpu)
1266 hybrid_update_cpu_capacity_scaling();
1267
1268 mutex_unlock(&hybrid_capacity_lock);
1269
1270 /* Reset the capacity of the CPU going offline to the initial value. */
1271 hybrid_clear_cpu_capacity(cpu->cpu);
1272 }
1273
1274 #define POWER_CTL_EE_ENABLE 1
1275 #define POWER_CTL_EE_DISABLE 2
1276
1277 static int power_ctl_ee_state;
1278
set_power_ctl_ee_state(bool input)1279 static void set_power_ctl_ee_state(bool input)
1280 {
1281 u64 power_ctl;
1282
1283 mutex_lock(&intel_pstate_driver_lock);
1284 rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1285 if (input) {
1286 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1287 power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1288 } else {
1289 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1290 power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1291 }
1292 wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
1293 mutex_unlock(&intel_pstate_driver_lock);
1294 }
1295
1296 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1297
intel_pstate_hwp_reenable(struct cpudata * cpu)1298 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1299 {
1300 intel_pstate_hwp_enable(cpu);
1301 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
1302 }
1303
intel_pstate_suspend(struct cpufreq_policy * policy)1304 static int intel_pstate_suspend(struct cpufreq_policy *policy)
1305 {
1306 struct cpudata *cpu = all_cpu_data[policy->cpu];
1307
1308 pr_debug("CPU %d suspending\n", cpu->cpu);
1309
1310 cpu->suspended = true;
1311
1312 /* disable HWP interrupt and cancel any pending work */
1313 intel_pstate_disable_hwp_interrupt(cpu);
1314
1315 return 0;
1316 }
1317
intel_pstate_resume(struct cpufreq_policy * policy)1318 static int intel_pstate_resume(struct cpufreq_policy *policy)
1319 {
1320 struct cpudata *cpu = all_cpu_data[policy->cpu];
1321
1322 pr_debug("CPU %d resuming\n", cpu->cpu);
1323
1324 /* Only restore if the system default is changed */
1325 if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1326 set_power_ctl_ee_state(true);
1327 else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1328 set_power_ctl_ee_state(false);
1329
1330 if (cpu->suspended && hwp_active) {
1331 mutex_lock(&intel_pstate_limits_lock);
1332
1333 /* Re-enable HWP, because "online" has not done that. */
1334 intel_pstate_hwp_reenable(cpu);
1335
1336 mutex_unlock(&intel_pstate_limits_lock);
1337 }
1338
1339 cpu->suspended = false;
1340
1341 return 0;
1342 }
1343
intel_pstate_update_policies(void)1344 static void intel_pstate_update_policies(void)
1345 {
1346 int cpu;
1347
1348 for_each_possible_cpu(cpu)
1349 cpufreq_update_policy(cpu);
1350 }
1351
__intel_pstate_update_max_freq(struct cpudata * cpudata,struct cpufreq_policy * policy)1352 static void __intel_pstate_update_max_freq(struct cpudata *cpudata,
1353 struct cpufreq_policy *policy)
1354 {
1355 if (hwp_active)
1356 intel_pstate_get_hwp_cap(cpudata);
1357
1358 policy->cpuinfo.max_freq = READ_ONCE(global.no_turbo) ?
1359 cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1360
1361 refresh_frequency_limits(policy);
1362 }
1363
intel_pstate_update_limits(unsigned int cpu)1364 static void intel_pstate_update_limits(unsigned int cpu)
1365 {
1366 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1367 struct cpudata *cpudata;
1368
1369 if (!policy)
1370 return;
1371
1372 cpudata = all_cpu_data[cpu];
1373
1374 __intel_pstate_update_max_freq(cpudata, policy);
1375
1376 /* Prevent the driver from being unregistered now. */
1377 mutex_lock(&intel_pstate_driver_lock);
1378
1379 cpufreq_cpu_release(policy);
1380
1381 hybrid_update_capacity(cpudata);
1382
1383 mutex_unlock(&intel_pstate_driver_lock);
1384 }
1385
intel_pstate_update_limits_for_all(void)1386 static void intel_pstate_update_limits_for_all(void)
1387 {
1388 int cpu;
1389
1390 for_each_possible_cpu(cpu) {
1391 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1392
1393 if (!policy)
1394 continue;
1395
1396 __intel_pstate_update_max_freq(all_cpu_data[cpu], policy);
1397
1398 cpufreq_cpu_release(policy);
1399 }
1400
1401 mutex_lock(&hybrid_capacity_lock);
1402
1403 if (hybrid_max_perf_cpu)
1404 __hybrid_refresh_cpu_capacity_scaling();
1405
1406 mutex_unlock(&hybrid_capacity_lock);
1407 }
1408
1409 /************************** sysfs begin ************************/
1410 #define show_one(file_name, object) \
1411 static ssize_t show_##file_name \
1412 (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \
1413 { \
1414 return sprintf(buf, "%u\n", global.object); \
1415 }
1416
1417 static ssize_t intel_pstate_show_status(char *buf);
1418 static int intel_pstate_update_status(const char *buf, size_t size);
1419
show_status(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1420 static ssize_t show_status(struct kobject *kobj,
1421 struct kobj_attribute *attr, char *buf)
1422 {
1423 ssize_t ret;
1424
1425 mutex_lock(&intel_pstate_driver_lock);
1426 ret = intel_pstate_show_status(buf);
1427 mutex_unlock(&intel_pstate_driver_lock);
1428
1429 return ret;
1430 }
1431
store_status(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1432 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1433 const char *buf, size_t count)
1434 {
1435 char *p = memchr(buf, '\n', count);
1436 int ret;
1437
1438 mutex_lock(&intel_pstate_driver_lock);
1439 ret = intel_pstate_update_status(buf, p ? p - buf : count);
1440 mutex_unlock(&intel_pstate_driver_lock);
1441
1442 return ret < 0 ? ret : count;
1443 }
1444
show_turbo_pct(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1445 static ssize_t show_turbo_pct(struct kobject *kobj,
1446 struct kobj_attribute *attr, char *buf)
1447 {
1448 struct cpudata *cpu;
1449 int total, no_turbo, turbo_pct;
1450 uint32_t turbo_fp;
1451
1452 mutex_lock(&intel_pstate_driver_lock);
1453
1454 if (!intel_pstate_driver) {
1455 mutex_unlock(&intel_pstate_driver_lock);
1456 return -EAGAIN;
1457 }
1458
1459 cpu = all_cpu_data[0];
1460
1461 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1462 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1463 turbo_fp = div_fp(no_turbo, total);
1464 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1465
1466 mutex_unlock(&intel_pstate_driver_lock);
1467
1468 return sprintf(buf, "%u\n", turbo_pct);
1469 }
1470
show_num_pstates(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1471 static ssize_t show_num_pstates(struct kobject *kobj,
1472 struct kobj_attribute *attr, char *buf)
1473 {
1474 struct cpudata *cpu;
1475 int total;
1476
1477 mutex_lock(&intel_pstate_driver_lock);
1478
1479 if (!intel_pstate_driver) {
1480 mutex_unlock(&intel_pstate_driver_lock);
1481 return -EAGAIN;
1482 }
1483
1484 cpu = all_cpu_data[0];
1485 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1486
1487 mutex_unlock(&intel_pstate_driver_lock);
1488
1489 return sprintf(buf, "%u\n", total);
1490 }
1491
show_no_turbo(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1492 static ssize_t show_no_turbo(struct kobject *kobj,
1493 struct kobj_attribute *attr, char *buf)
1494 {
1495 ssize_t ret;
1496
1497 mutex_lock(&intel_pstate_driver_lock);
1498
1499 if (!intel_pstate_driver) {
1500 mutex_unlock(&intel_pstate_driver_lock);
1501 return -EAGAIN;
1502 }
1503
1504 ret = sprintf(buf, "%u\n", global.no_turbo);
1505
1506 mutex_unlock(&intel_pstate_driver_lock);
1507
1508 return ret;
1509 }
1510
store_no_turbo(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1511 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1512 const char *buf, size_t count)
1513 {
1514 unsigned int input;
1515 bool no_turbo;
1516
1517 if (sscanf(buf, "%u", &input) != 1)
1518 return -EINVAL;
1519
1520 mutex_lock(&intel_pstate_driver_lock);
1521
1522 if (!intel_pstate_driver) {
1523 count = -EAGAIN;
1524 goto unlock_driver;
1525 }
1526
1527 no_turbo = !!clamp_t(int, input, 0, 1);
1528
1529 WRITE_ONCE(global.turbo_disabled, turbo_is_disabled());
1530 if (global.turbo_disabled && !no_turbo) {
1531 pr_notice("Turbo disabled by BIOS or unavailable on processor\n");
1532 count = -EPERM;
1533 if (global.no_turbo)
1534 goto unlock_driver;
1535 else
1536 no_turbo = 1;
1537 }
1538
1539 if (no_turbo == global.no_turbo) {
1540 goto unlock_driver;
1541 }
1542
1543 WRITE_ONCE(global.no_turbo, no_turbo);
1544
1545 mutex_lock(&intel_pstate_limits_lock);
1546
1547 if (no_turbo) {
1548 struct cpudata *cpu = all_cpu_data[0];
1549 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1550
1551 /* Squash the global minimum into the permitted range. */
1552 if (global.min_perf_pct > pct)
1553 global.min_perf_pct = pct;
1554 }
1555
1556 mutex_unlock(&intel_pstate_limits_lock);
1557
1558 intel_pstate_update_limits_for_all();
1559 arch_set_max_freq_ratio(no_turbo);
1560
1561 unlock_driver:
1562 mutex_unlock(&intel_pstate_driver_lock);
1563
1564 return count;
1565 }
1566
update_qos_request(enum freq_qos_req_type type)1567 static void update_qos_request(enum freq_qos_req_type type)
1568 {
1569 struct freq_qos_request *req;
1570 struct cpufreq_policy *policy;
1571 int i;
1572
1573 for_each_possible_cpu(i) {
1574 struct cpudata *cpu = all_cpu_data[i];
1575 unsigned int freq, perf_pct;
1576
1577 policy = cpufreq_cpu_get(i);
1578 if (!policy)
1579 continue;
1580
1581 req = policy->driver_data;
1582 cpufreq_cpu_put(policy);
1583
1584 if (!req)
1585 continue;
1586
1587 if (hwp_active)
1588 intel_pstate_get_hwp_cap(cpu);
1589
1590 if (type == FREQ_QOS_MIN) {
1591 perf_pct = global.min_perf_pct;
1592 } else {
1593 req++;
1594 perf_pct = global.max_perf_pct;
1595 }
1596
1597 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
1598
1599 if (freq_qos_update_request(req, freq) < 0)
1600 pr_warn("Failed to update freq constraint: CPU%d\n", i);
1601 }
1602 }
1603
store_max_perf_pct(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1604 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1605 const char *buf, size_t count)
1606 {
1607 unsigned int input;
1608 int ret;
1609
1610 ret = sscanf(buf, "%u", &input);
1611 if (ret != 1)
1612 return -EINVAL;
1613
1614 mutex_lock(&intel_pstate_driver_lock);
1615
1616 if (!intel_pstate_driver) {
1617 mutex_unlock(&intel_pstate_driver_lock);
1618 return -EAGAIN;
1619 }
1620
1621 mutex_lock(&intel_pstate_limits_lock);
1622
1623 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1624
1625 mutex_unlock(&intel_pstate_limits_lock);
1626
1627 if (intel_pstate_driver == &intel_pstate)
1628 intel_pstate_update_policies();
1629 else
1630 update_qos_request(FREQ_QOS_MAX);
1631
1632 mutex_unlock(&intel_pstate_driver_lock);
1633
1634 return count;
1635 }
1636
store_min_perf_pct(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1637 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1638 const char *buf, size_t count)
1639 {
1640 unsigned int input;
1641 int ret;
1642
1643 ret = sscanf(buf, "%u", &input);
1644 if (ret != 1)
1645 return -EINVAL;
1646
1647 mutex_lock(&intel_pstate_driver_lock);
1648
1649 if (!intel_pstate_driver) {
1650 mutex_unlock(&intel_pstate_driver_lock);
1651 return -EAGAIN;
1652 }
1653
1654 mutex_lock(&intel_pstate_limits_lock);
1655
1656 global.min_perf_pct = clamp_t(int, input,
1657 min_perf_pct_min(), global.max_perf_pct);
1658
1659 mutex_unlock(&intel_pstate_limits_lock);
1660
1661 if (intel_pstate_driver == &intel_pstate)
1662 intel_pstate_update_policies();
1663 else
1664 update_qos_request(FREQ_QOS_MIN);
1665
1666 mutex_unlock(&intel_pstate_driver_lock);
1667
1668 return count;
1669 }
1670
show_hwp_dynamic_boost(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1671 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1672 struct kobj_attribute *attr, char *buf)
1673 {
1674 return sprintf(buf, "%u\n", hwp_boost);
1675 }
1676
store_hwp_dynamic_boost(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1677 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1678 struct kobj_attribute *b,
1679 const char *buf, size_t count)
1680 {
1681 unsigned int input;
1682 int ret;
1683
1684 ret = kstrtouint(buf, 10, &input);
1685 if (ret)
1686 return ret;
1687
1688 mutex_lock(&intel_pstate_driver_lock);
1689 hwp_boost = !!input;
1690 intel_pstate_update_policies();
1691 mutex_unlock(&intel_pstate_driver_lock);
1692
1693 return count;
1694 }
1695
show_energy_efficiency(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1696 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1697 char *buf)
1698 {
1699 u64 power_ctl;
1700 int enable;
1701
1702 rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1703 enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1704 return sprintf(buf, "%d\n", !enable);
1705 }
1706
store_energy_efficiency(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1707 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1708 const char *buf, size_t count)
1709 {
1710 bool input;
1711 int ret;
1712
1713 ret = kstrtobool(buf, &input);
1714 if (ret)
1715 return ret;
1716
1717 set_power_ctl_ee_state(input);
1718
1719 return count;
1720 }
1721
1722 show_one(max_perf_pct, max_perf_pct);
1723 show_one(min_perf_pct, min_perf_pct);
1724
1725 define_one_global_rw(status);
1726 define_one_global_rw(no_turbo);
1727 define_one_global_rw(max_perf_pct);
1728 define_one_global_rw(min_perf_pct);
1729 define_one_global_ro(turbo_pct);
1730 define_one_global_ro(num_pstates);
1731 define_one_global_rw(hwp_dynamic_boost);
1732 define_one_global_rw(energy_efficiency);
1733
1734 static struct attribute *intel_pstate_attributes[] = {
1735 &status.attr,
1736 &no_turbo.attr,
1737 NULL
1738 };
1739
1740 static const struct attribute_group intel_pstate_attr_group = {
1741 .attrs = intel_pstate_attributes,
1742 };
1743
1744 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1745
1746 static struct kobject *intel_pstate_kobject;
1747
intel_pstate_sysfs_expose_params(void)1748 static void __init intel_pstate_sysfs_expose_params(void)
1749 {
1750 struct device *dev_root = bus_get_dev_root(&cpu_subsys);
1751 int rc;
1752
1753 if (dev_root) {
1754 intel_pstate_kobject = kobject_create_and_add("intel_pstate", &dev_root->kobj);
1755 put_device(dev_root);
1756 }
1757 if (WARN_ON(!intel_pstate_kobject))
1758 return;
1759
1760 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1761 if (WARN_ON(rc))
1762 return;
1763
1764 if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1765 rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1766 WARN_ON(rc);
1767
1768 rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1769 WARN_ON(rc);
1770 }
1771
1772 /*
1773 * If per cpu limits are enforced there are no global limits, so
1774 * return without creating max/min_perf_pct attributes
1775 */
1776 if (per_cpu_limits)
1777 return;
1778
1779 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1780 WARN_ON(rc);
1781
1782 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1783 WARN_ON(rc);
1784
1785 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1786 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1787 WARN_ON(rc);
1788 }
1789 }
1790
intel_pstate_sysfs_remove(void)1791 static void __init intel_pstate_sysfs_remove(void)
1792 {
1793 if (!intel_pstate_kobject)
1794 return;
1795
1796 sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1797
1798 if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1799 sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1800 sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1801 }
1802
1803 if (!per_cpu_limits) {
1804 sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1805 sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1806
1807 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1808 sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1809 }
1810
1811 kobject_put(intel_pstate_kobject);
1812 }
1813
intel_pstate_sysfs_expose_hwp_dynamic_boost(void)1814 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1815 {
1816 int rc;
1817
1818 if (!hwp_active)
1819 return;
1820
1821 rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1822 WARN_ON_ONCE(rc);
1823 }
1824
intel_pstate_sysfs_hide_hwp_dynamic_boost(void)1825 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1826 {
1827 if (!hwp_active)
1828 return;
1829
1830 sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1831 }
1832
1833 /************************** sysfs end ************************/
1834
intel_pstate_notify_work(struct work_struct * work)1835 static void intel_pstate_notify_work(struct work_struct *work)
1836 {
1837 struct cpudata *cpudata =
1838 container_of(to_delayed_work(work), struct cpudata, hwp_notify_work);
1839 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpudata->cpu);
1840
1841 if (policy) {
1842 __intel_pstate_update_max_freq(cpudata, policy);
1843
1844 cpufreq_cpu_release(policy);
1845
1846 /*
1847 * The driver will not be unregistered while this function is
1848 * running, so update the capacity without acquiring the driver
1849 * lock.
1850 */
1851 hybrid_update_capacity(cpudata);
1852 }
1853
1854 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1855 }
1856
1857 static DEFINE_RAW_SPINLOCK(hwp_notify_lock);
1858 static cpumask_t hwp_intr_enable_mask;
1859
1860 #define HWP_GUARANTEED_PERF_CHANGE_STATUS BIT(0)
1861 #define HWP_HIGHEST_PERF_CHANGE_STATUS BIT(3)
1862
notify_hwp_interrupt(void)1863 void notify_hwp_interrupt(void)
1864 {
1865 unsigned int this_cpu = smp_processor_id();
1866 u64 value, status_mask;
1867 unsigned long flags;
1868
1869 if (!hwp_active || !cpu_feature_enabled(X86_FEATURE_HWP_NOTIFY))
1870 return;
1871
1872 status_mask = HWP_GUARANTEED_PERF_CHANGE_STATUS;
1873 if (cpu_feature_enabled(X86_FEATURE_HWP_HIGHEST_PERF_CHANGE))
1874 status_mask |= HWP_HIGHEST_PERF_CHANGE_STATUS;
1875
1876 rdmsrl_safe(MSR_HWP_STATUS, &value);
1877 if (!(value & status_mask))
1878 return;
1879
1880 raw_spin_lock_irqsave(&hwp_notify_lock, flags);
1881
1882 if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask))
1883 goto ack_intr;
1884
1885 schedule_delayed_work(&all_cpu_data[this_cpu]->hwp_notify_work,
1886 msecs_to_jiffies(10));
1887
1888 raw_spin_unlock_irqrestore(&hwp_notify_lock, flags);
1889
1890 return;
1891
1892 ack_intr:
1893 wrmsrl_safe(MSR_HWP_STATUS, 0);
1894 raw_spin_unlock_irqrestore(&hwp_notify_lock, flags);
1895 }
1896
intel_pstate_disable_hwp_interrupt(struct cpudata * cpudata)1897 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata)
1898 {
1899 bool cancel_work;
1900
1901 if (!cpu_feature_enabled(X86_FEATURE_HWP_NOTIFY))
1902 return;
1903
1904 /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1905 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1906
1907 raw_spin_lock_irq(&hwp_notify_lock);
1908 cancel_work = cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask);
1909 raw_spin_unlock_irq(&hwp_notify_lock);
1910
1911 if (cancel_work)
1912 cancel_delayed_work_sync(&cpudata->hwp_notify_work);
1913 }
1914
1915 #define HWP_GUARANTEED_PERF_CHANGE_REQ BIT(0)
1916 #define HWP_HIGHEST_PERF_CHANGE_REQ BIT(2)
1917
intel_pstate_enable_hwp_interrupt(struct cpudata * cpudata)1918 static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata)
1919 {
1920 /* Enable HWP notification interrupt for performance change */
1921 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) {
1922 u64 interrupt_mask = HWP_GUARANTEED_PERF_CHANGE_REQ;
1923
1924 raw_spin_lock_irq(&hwp_notify_lock);
1925 INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work);
1926 cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask);
1927 raw_spin_unlock_irq(&hwp_notify_lock);
1928
1929 if (cpu_feature_enabled(X86_FEATURE_HWP_HIGHEST_PERF_CHANGE))
1930 interrupt_mask |= HWP_HIGHEST_PERF_CHANGE_REQ;
1931
1932 /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1933 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, interrupt_mask);
1934 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1935 }
1936 }
1937
intel_pstate_update_epp_defaults(struct cpudata * cpudata)1938 static void intel_pstate_update_epp_defaults(struct cpudata *cpudata)
1939 {
1940 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1941
1942 /*
1943 * If the EPP is set by firmware, which means that firmware enabled HWP
1944 * - Is equal or less than 0x80 (default balance_perf EPP)
1945 * - But less performance oriented than performance EPP
1946 * then use this as new balance_perf EPP.
1947 */
1948 if (hwp_forced && cpudata->epp_default <= HWP_EPP_BALANCE_PERFORMANCE &&
1949 cpudata->epp_default > HWP_EPP_PERFORMANCE) {
1950 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = cpudata->epp_default;
1951 return;
1952 }
1953
1954 /*
1955 * If this CPU gen doesn't call for change in balance_perf
1956 * EPP return.
1957 */
1958 if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE)
1959 return;
1960
1961 /*
1962 * Use hard coded value per gen to update the balance_perf
1963 * and default EPP.
1964 */
1965 cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE];
1966 intel_pstate_set_epp(cpudata, cpudata->epp_default);
1967 }
1968
intel_pstate_hwp_enable(struct cpudata * cpudata)1969 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1970 {
1971 /* First disable HWP notification interrupt till we activate again */
1972 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1973 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1974
1975 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1976
1977 intel_pstate_enable_hwp_interrupt(cpudata);
1978
1979 if (cpudata->epp_default >= 0)
1980 return;
1981
1982 intel_pstate_update_epp_defaults(cpudata);
1983 }
1984
atom_get_min_pstate(int not_used)1985 static int atom_get_min_pstate(int not_used)
1986 {
1987 u64 value;
1988
1989 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1990 return (value >> 8) & 0x7F;
1991 }
1992
atom_get_max_pstate(int not_used)1993 static int atom_get_max_pstate(int not_used)
1994 {
1995 u64 value;
1996
1997 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1998 return (value >> 16) & 0x7F;
1999 }
2000
atom_get_turbo_pstate(int not_used)2001 static int atom_get_turbo_pstate(int not_used)
2002 {
2003 u64 value;
2004
2005 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
2006 return value & 0x7F;
2007 }
2008
atom_get_val(struct cpudata * cpudata,int pstate)2009 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
2010 {
2011 u64 val;
2012 int32_t vid_fp;
2013 u32 vid;
2014
2015 val = (u64)pstate << 8;
2016 if (READ_ONCE(global.no_turbo) && !READ_ONCE(global.turbo_disabled))
2017 val |= (u64)1 << 32;
2018
2019 vid_fp = cpudata->vid.min + mul_fp(
2020 int_tofp(pstate - cpudata->pstate.min_pstate),
2021 cpudata->vid.ratio);
2022
2023 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
2024 vid = ceiling_fp(vid_fp);
2025
2026 if (pstate > cpudata->pstate.max_pstate)
2027 vid = cpudata->vid.turbo;
2028
2029 return val | vid;
2030 }
2031
silvermont_get_scaling(void)2032 static int silvermont_get_scaling(void)
2033 {
2034 u64 value;
2035 int i;
2036 /* Defined in Table 35-6 from SDM (Sept 2015) */
2037 static int silvermont_freq_table[] = {
2038 83300, 100000, 133300, 116700, 80000};
2039
2040 rdmsrl(MSR_FSB_FREQ, value);
2041 i = value & 0x7;
2042 WARN_ON(i > 4);
2043
2044 return silvermont_freq_table[i];
2045 }
2046
airmont_get_scaling(void)2047 static int airmont_get_scaling(void)
2048 {
2049 u64 value;
2050 int i;
2051 /* Defined in Table 35-10 from SDM (Sept 2015) */
2052 static int airmont_freq_table[] = {
2053 83300, 100000, 133300, 116700, 80000,
2054 93300, 90000, 88900, 87500};
2055
2056 rdmsrl(MSR_FSB_FREQ, value);
2057 i = value & 0xF;
2058 WARN_ON(i > 8);
2059
2060 return airmont_freq_table[i];
2061 }
2062
atom_get_vid(struct cpudata * cpudata)2063 static void atom_get_vid(struct cpudata *cpudata)
2064 {
2065 u64 value;
2066
2067 rdmsrl(MSR_ATOM_CORE_VIDS, value);
2068 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
2069 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
2070 cpudata->vid.ratio = div_fp(
2071 cpudata->vid.max - cpudata->vid.min,
2072 int_tofp(cpudata->pstate.max_pstate -
2073 cpudata->pstate.min_pstate));
2074
2075 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
2076 cpudata->vid.turbo = value & 0x7f;
2077 }
2078
core_get_min_pstate(int cpu)2079 static int core_get_min_pstate(int cpu)
2080 {
2081 u64 value;
2082
2083 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
2084 return (value >> 40) & 0xFF;
2085 }
2086
core_get_max_pstate_physical(int cpu)2087 static int core_get_max_pstate_physical(int cpu)
2088 {
2089 u64 value;
2090
2091 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
2092 return (value >> 8) & 0xFF;
2093 }
2094
core_get_tdp_ratio(int cpu,u64 plat_info)2095 static int core_get_tdp_ratio(int cpu, u64 plat_info)
2096 {
2097 /* Check how many TDP levels present */
2098 if (plat_info & 0x600000000) {
2099 u64 tdp_ctrl;
2100 u64 tdp_ratio;
2101 int tdp_msr;
2102 int err;
2103
2104 /* Get the TDP level (0, 1, 2) to get ratios */
2105 err = rdmsrl_safe_on_cpu(cpu, MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
2106 if (err)
2107 return err;
2108
2109 /* TDP MSR are continuous starting at 0x648 */
2110 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
2111 err = rdmsrl_safe_on_cpu(cpu, tdp_msr, &tdp_ratio);
2112 if (err)
2113 return err;
2114
2115 /* For level 1 and 2, bits[23:16] contain the ratio */
2116 if (tdp_ctrl & 0x03)
2117 tdp_ratio >>= 16;
2118
2119 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
2120 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
2121
2122 return (int)tdp_ratio;
2123 }
2124
2125 return -ENXIO;
2126 }
2127
core_get_max_pstate(int cpu)2128 static int core_get_max_pstate(int cpu)
2129 {
2130 u64 tar;
2131 u64 plat_info;
2132 int max_pstate;
2133 int tdp_ratio;
2134 int err;
2135
2136 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &plat_info);
2137 max_pstate = (plat_info >> 8) & 0xFF;
2138
2139 tdp_ratio = core_get_tdp_ratio(cpu, plat_info);
2140 if (tdp_ratio <= 0)
2141 return max_pstate;
2142
2143 if (hwp_active) {
2144 /* Turbo activation ratio is not used on HWP platforms */
2145 return tdp_ratio;
2146 }
2147
2148 err = rdmsrl_safe_on_cpu(cpu, MSR_TURBO_ACTIVATION_RATIO, &tar);
2149 if (!err) {
2150 int tar_levels;
2151
2152 /* Do some sanity checking for safety */
2153 tar_levels = tar & 0xff;
2154 if (tdp_ratio - 1 == tar_levels) {
2155 max_pstate = tar_levels;
2156 pr_debug("max_pstate=TAC %x\n", max_pstate);
2157 }
2158 }
2159
2160 return max_pstate;
2161 }
2162
core_get_turbo_pstate(int cpu)2163 static int core_get_turbo_pstate(int cpu)
2164 {
2165 u64 value;
2166 int nont, ret;
2167
2168 rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
2169 nont = core_get_max_pstate(cpu);
2170 ret = (value) & 255;
2171 if (ret <= nont)
2172 ret = nont;
2173 return ret;
2174 }
2175
core_get_val(struct cpudata * cpudata,int pstate)2176 static u64 core_get_val(struct cpudata *cpudata, int pstate)
2177 {
2178 u64 val;
2179
2180 val = (u64)pstate << 8;
2181 if (READ_ONCE(global.no_turbo) && !READ_ONCE(global.turbo_disabled))
2182 val |= (u64)1 << 32;
2183
2184 return val;
2185 }
2186
knl_get_aperf_mperf_shift(void)2187 static int knl_get_aperf_mperf_shift(void)
2188 {
2189 return 10;
2190 }
2191
knl_get_turbo_pstate(int cpu)2192 static int knl_get_turbo_pstate(int cpu)
2193 {
2194 u64 value;
2195 int nont, ret;
2196
2197 rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
2198 nont = core_get_max_pstate(cpu);
2199 ret = (((value) >> 8) & 0xFF);
2200 if (ret <= nont)
2201 ret = nont;
2202 return ret;
2203 }
2204
hybrid_get_type(void * data)2205 static void hybrid_get_type(void *data)
2206 {
2207 u8 *cpu_type = data;
2208
2209 *cpu_type = get_this_hybrid_cpu_type();
2210 }
2211
hwp_get_cpu_scaling(int cpu)2212 static int hwp_get_cpu_scaling(int cpu)
2213 {
2214 u8 cpu_type = 0;
2215
2216 smp_call_function_single(cpu, hybrid_get_type, &cpu_type, 1);
2217 /* P-cores have a smaller perf level-to-freqency scaling factor. */
2218 if (cpu_type == 0x40)
2219 return hybrid_scaling_factor;
2220
2221 /* Use default core scaling for E-cores */
2222 if (cpu_type == 0x20)
2223 return core_get_scaling();
2224
2225 /*
2226 * If reached here, this system is either non-hybrid (like Tiger
2227 * Lake) or hybrid-capable (like Alder Lake or Raptor Lake) with
2228 * no E cores (in which case CPUID for hybrid support is 0).
2229 *
2230 * The CPPC nominal_frequency field is 0 for non-hybrid systems,
2231 * so the default core scaling will be used for them.
2232 */
2233 return intel_pstate_cppc_get_scaling(cpu);
2234 }
2235
intel_pstate_set_pstate(struct cpudata * cpu,int pstate)2236 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
2237 {
2238 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
2239 cpu->pstate.current_pstate = pstate;
2240 /*
2241 * Generally, there is no guarantee that this code will always run on
2242 * the CPU being updated, so force the register update to run on the
2243 * right CPU.
2244 */
2245 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2246 pstate_funcs.get_val(cpu, pstate));
2247 }
2248
intel_pstate_set_min_pstate(struct cpudata * cpu)2249 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
2250 {
2251 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
2252 }
2253
intel_pstate_get_cpu_pstates(struct cpudata * cpu)2254 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
2255 {
2256 int perf_ctl_max_phys = pstate_funcs.get_max_physical(cpu->cpu);
2257 int perf_ctl_scaling = pstate_funcs.get_scaling();
2258
2259 cpu->pstate.min_pstate = pstate_funcs.get_min(cpu->cpu);
2260 cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
2261 cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
2262
2263 if (hwp_active && !hwp_mode_bdw) {
2264 __intel_pstate_get_hwp_cap(cpu);
2265
2266 if (pstate_funcs.get_cpu_scaling) {
2267 cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu);
2268 if (cpu->pstate.scaling != perf_ctl_scaling) {
2269 intel_pstate_hybrid_hwp_adjust(cpu);
2270 hwp_is_hybrid = true;
2271 }
2272 } else {
2273 cpu->pstate.scaling = perf_ctl_scaling;
2274 }
2275 /*
2276 * If the CPU is going online for the first time and it was
2277 * offline initially, asym capacity scaling needs to be updated.
2278 */
2279 hybrid_update_capacity(cpu);
2280 } else {
2281 cpu->pstate.scaling = perf_ctl_scaling;
2282 cpu->pstate.max_pstate = pstate_funcs.get_max(cpu->cpu);
2283 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(cpu->cpu);
2284 }
2285
2286 if (cpu->pstate.scaling == perf_ctl_scaling) {
2287 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
2288 cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
2289 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
2290 }
2291
2292 if (pstate_funcs.get_aperf_mperf_shift)
2293 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
2294
2295 if (pstate_funcs.get_vid)
2296 pstate_funcs.get_vid(cpu);
2297
2298 intel_pstate_set_min_pstate(cpu);
2299 }
2300
2301 /*
2302 * Long hold time will keep high perf limits for long time,
2303 * which negatively impacts perf/watt for some workloads,
2304 * like specpower. 3ms is based on experiements on some
2305 * workoads.
2306 */
2307 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
2308
intel_pstate_hwp_boost_up(struct cpudata * cpu)2309 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
2310 {
2311 u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
2312 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2313 u32 max_limit = (hwp_req & 0xff00) >> 8;
2314 u32 min_limit = (hwp_req & 0xff);
2315 u32 boost_level1;
2316
2317 /*
2318 * Cases to consider (User changes via sysfs or boot time):
2319 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
2320 * No boost, return.
2321 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
2322 * Should result in one level boost only for P0.
2323 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
2324 * Should result in two level boost:
2325 * (min + p1)/2 and P1.
2326 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
2327 * Should result in three level boost:
2328 * (min + p1)/2, P1 and P0.
2329 */
2330
2331 /* If max and min are equal or already at max, nothing to boost */
2332 if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
2333 return;
2334
2335 if (!cpu->hwp_boost_min)
2336 cpu->hwp_boost_min = min_limit;
2337
2338 /* level at half way mark between min and guranteed */
2339 boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
2340
2341 if (cpu->hwp_boost_min < boost_level1)
2342 cpu->hwp_boost_min = boost_level1;
2343 else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
2344 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
2345 else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
2346 max_limit != HWP_GUARANTEED_PERF(hwp_cap))
2347 cpu->hwp_boost_min = max_limit;
2348 else
2349 return;
2350
2351 hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
2352 wrmsrl(MSR_HWP_REQUEST, hwp_req);
2353 cpu->last_update = cpu->sample.time;
2354 }
2355
intel_pstate_hwp_boost_down(struct cpudata * cpu)2356 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
2357 {
2358 if (cpu->hwp_boost_min) {
2359 bool expired;
2360
2361 /* Check if we are idle for hold time to boost down */
2362 expired = time_after64(cpu->sample.time, cpu->last_update +
2363 hwp_boost_hold_time_ns);
2364 if (expired) {
2365 wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
2366 cpu->hwp_boost_min = 0;
2367 }
2368 }
2369 cpu->last_update = cpu->sample.time;
2370 }
2371
intel_pstate_update_util_hwp_local(struct cpudata * cpu,u64 time)2372 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
2373 u64 time)
2374 {
2375 cpu->sample.time = time;
2376
2377 if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
2378 bool do_io = false;
2379
2380 cpu->sched_flags = 0;
2381 /*
2382 * Set iowait_boost flag and update time. Since IO WAIT flag
2383 * is set all the time, we can't just conclude that there is
2384 * some IO bound activity is scheduled on this CPU with just
2385 * one occurrence. If we receive at least two in two
2386 * consecutive ticks, then we treat as boost candidate.
2387 */
2388 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
2389 do_io = true;
2390
2391 cpu->last_io_update = time;
2392
2393 if (do_io)
2394 intel_pstate_hwp_boost_up(cpu);
2395
2396 } else {
2397 intel_pstate_hwp_boost_down(cpu);
2398 }
2399 }
2400
intel_pstate_update_util_hwp(struct update_util_data * data,u64 time,unsigned int flags)2401 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
2402 u64 time, unsigned int flags)
2403 {
2404 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2405
2406 cpu->sched_flags |= flags;
2407
2408 if (smp_processor_id() == cpu->cpu)
2409 intel_pstate_update_util_hwp_local(cpu, time);
2410 }
2411
intel_pstate_calc_avg_perf(struct cpudata * cpu)2412 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
2413 {
2414 struct sample *sample = &cpu->sample;
2415
2416 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
2417 }
2418
intel_pstate_sample(struct cpudata * cpu,u64 time)2419 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
2420 {
2421 u64 aperf, mperf;
2422 unsigned long flags;
2423 u64 tsc;
2424
2425 local_irq_save(flags);
2426 rdmsrl(MSR_IA32_APERF, aperf);
2427 rdmsrl(MSR_IA32_MPERF, mperf);
2428 tsc = rdtsc();
2429 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
2430 local_irq_restore(flags);
2431 return false;
2432 }
2433 local_irq_restore(flags);
2434
2435 cpu->last_sample_time = cpu->sample.time;
2436 cpu->sample.time = time;
2437 cpu->sample.aperf = aperf;
2438 cpu->sample.mperf = mperf;
2439 cpu->sample.tsc = tsc;
2440 cpu->sample.aperf -= cpu->prev_aperf;
2441 cpu->sample.mperf -= cpu->prev_mperf;
2442 cpu->sample.tsc -= cpu->prev_tsc;
2443
2444 cpu->prev_aperf = aperf;
2445 cpu->prev_mperf = mperf;
2446 cpu->prev_tsc = tsc;
2447 /*
2448 * First time this function is invoked in a given cycle, all of the
2449 * previous sample data fields are equal to zero or stale and they must
2450 * be populated with meaningful numbers for things to work, so assume
2451 * that sample.time will always be reset before setting the utilization
2452 * update hook and make the caller skip the sample then.
2453 */
2454 if (cpu->last_sample_time) {
2455 intel_pstate_calc_avg_perf(cpu);
2456 return true;
2457 }
2458 return false;
2459 }
2460
get_avg_frequency(struct cpudata * cpu)2461 static inline int32_t get_avg_frequency(struct cpudata *cpu)
2462 {
2463 return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
2464 }
2465
get_avg_pstate(struct cpudata * cpu)2466 static inline int32_t get_avg_pstate(struct cpudata *cpu)
2467 {
2468 return mul_ext_fp(cpu->pstate.max_pstate_physical,
2469 cpu->sample.core_avg_perf);
2470 }
2471
get_target_pstate(struct cpudata * cpu)2472 static inline int32_t get_target_pstate(struct cpudata *cpu)
2473 {
2474 struct sample *sample = &cpu->sample;
2475 int32_t busy_frac;
2476 int target, avg_pstate;
2477
2478 busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2479 sample->tsc);
2480
2481 if (busy_frac < cpu->iowait_boost)
2482 busy_frac = cpu->iowait_boost;
2483
2484 sample->busy_scaled = busy_frac * 100;
2485
2486 target = READ_ONCE(global.no_turbo) ?
2487 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2488 target += target >> 2;
2489 target = mul_fp(target, busy_frac);
2490 if (target < cpu->pstate.min_pstate)
2491 target = cpu->pstate.min_pstate;
2492
2493 /*
2494 * If the average P-state during the previous cycle was higher than the
2495 * current target, add 50% of the difference to the target to reduce
2496 * possible performance oscillations and offset possible performance
2497 * loss related to moving the workload from one CPU to another within
2498 * a package/module.
2499 */
2500 avg_pstate = get_avg_pstate(cpu);
2501 if (avg_pstate > target)
2502 target += (avg_pstate - target) >> 1;
2503
2504 return target;
2505 }
2506
intel_pstate_prepare_request(struct cpudata * cpu,int pstate)2507 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2508 {
2509 int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2510 int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2511
2512 return clamp_t(int, pstate, min_pstate, max_pstate);
2513 }
2514
intel_pstate_update_pstate(struct cpudata * cpu,int pstate)2515 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2516 {
2517 if (pstate == cpu->pstate.current_pstate)
2518 return;
2519
2520 cpu->pstate.current_pstate = pstate;
2521 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2522 }
2523
intel_pstate_adjust_pstate(struct cpudata * cpu)2524 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2525 {
2526 int from = cpu->pstate.current_pstate;
2527 struct sample *sample;
2528 int target_pstate;
2529
2530 target_pstate = get_target_pstate(cpu);
2531 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2532 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
2533 intel_pstate_update_pstate(cpu, target_pstate);
2534
2535 sample = &cpu->sample;
2536 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2537 fp_toint(sample->busy_scaled),
2538 from,
2539 cpu->pstate.current_pstate,
2540 sample->mperf,
2541 sample->aperf,
2542 sample->tsc,
2543 get_avg_frequency(cpu),
2544 fp_toint(cpu->iowait_boost * 100));
2545 }
2546
intel_pstate_update_util(struct update_util_data * data,u64 time,unsigned int flags)2547 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2548 unsigned int flags)
2549 {
2550 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2551 u64 delta_ns;
2552
2553 /* Don't allow remote callbacks */
2554 if (smp_processor_id() != cpu->cpu)
2555 return;
2556
2557 delta_ns = time - cpu->last_update;
2558 if (flags & SCHED_CPUFREQ_IOWAIT) {
2559 /* Start over if the CPU may have been idle. */
2560 if (delta_ns > TICK_NSEC) {
2561 cpu->iowait_boost = ONE_EIGHTH_FP;
2562 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2563 cpu->iowait_boost <<= 1;
2564 if (cpu->iowait_boost > int_tofp(1))
2565 cpu->iowait_boost = int_tofp(1);
2566 } else {
2567 cpu->iowait_boost = ONE_EIGHTH_FP;
2568 }
2569 } else if (cpu->iowait_boost) {
2570 /* Clear iowait_boost if the CPU may have been idle. */
2571 if (delta_ns > TICK_NSEC)
2572 cpu->iowait_boost = 0;
2573 else
2574 cpu->iowait_boost >>= 1;
2575 }
2576 cpu->last_update = time;
2577 delta_ns = time - cpu->sample.time;
2578 if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2579 return;
2580
2581 if (intel_pstate_sample(cpu, time))
2582 intel_pstate_adjust_pstate(cpu);
2583 }
2584
2585 static struct pstate_funcs core_funcs = {
2586 .get_max = core_get_max_pstate,
2587 .get_max_physical = core_get_max_pstate_physical,
2588 .get_min = core_get_min_pstate,
2589 .get_turbo = core_get_turbo_pstate,
2590 .get_scaling = core_get_scaling,
2591 .get_val = core_get_val,
2592 };
2593
2594 static const struct pstate_funcs silvermont_funcs = {
2595 .get_max = atom_get_max_pstate,
2596 .get_max_physical = atom_get_max_pstate,
2597 .get_min = atom_get_min_pstate,
2598 .get_turbo = atom_get_turbo_pstate,
2599 .get_val = atom_get_val,
2600 .get_scaling = silvermont_get_scaling,
2601 .get_vid = atom_get_vid,
2602 };
2603
2604 static const struct pstate_funcs airmont_funcs = {
2605 .get_max = atom_get_max_pstate,
2606 .get_max_physical = atom_get_max_pstate,
2607 .get_min = atom_get_min_pstate,
2608 .get_turbo = atom_get_turbo_pstate,
2609 .get_val = atom_get_val,
2610 .get_scaling = airmont_get_scaling,
2611 .get_vid = atom_get_vid,
2612 };
2613
2614 static const struct pstate_funcs knl_funcs = {
2615 .get_max = core_get_max_pstate,
2616 .get_max_physical = core_get_max_pstate_physical,
2617 .get_min = core_get_min_pstate,
2618 .get_turbo = knl_get_turbo_pstate,
2619 .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2620 .get_scaling = core_get_scaling,
2621 .get_val = core_get_val,
2622 };
2623
2624 #define X86_MATCH(vfm, policy) \
2625 X86_MATCH_VFM_FEATURE(vfm, X86_FEATURE_APERFMPERF, &policy)
2626
2627 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2628 X86_MATCH(INTEL_SANDYBRIDGE, core_funcs),
2629 X86_MATCH(INTEL_SANDYBRIDGE_X, core_funcs),
2630 X86_MATCH(INTEL_ATOM_SILVERMONT, silvermont_funcs),
2631 X86_MATCH(INTEL_IVYBRIDGE, core_funcs),
2632 X86_MATCH(INTEL_HASWELL, core_funcs),
2633 X86_MATCH(INTEL_BROADWELL, core_funcs),
2634 X86_MATCH(INTEL_IVYBRIDGE_X, core_funcs),
2635 X86_MATCH(INTEL_HASWELL_X, core_funcs),
2636 X86_MATCH(INTEL_HASWELL_L, core_funcs),
2637 X86_MATCH(INTEL_HASWELL_G, core_funcs),
2638 X86_MATCH(INTEL_BROADWELL_G, core_funcs),
2639 X86_MATCH(INTEL_ATOM_AIRMONT, airmont_funcs),
2640 X86_MATCH(INTEL_SKYLAKE_L, core_funcs),
2641 X86_MATCH(INTEL_BROADWELL_X, core_funcs),
2642 X86_MATCH(INTEL_SKYLAKE, core_funcs),
2643 X86_MATCH(INTEL_BROADWELL_D, core_funcs),
2644 X86_MATCH(INTEL_XEON_PHI_KNL, knl_funcs),
2645 X86_MATCH(INTEL_XEON_PHI_KNM, knl_funcs),
2646 X86_MATCH(INTEL_ATOM_GOLDMONT, core_funcs),
2647 X86_MATCH(INTEL_ATOM_GOLDMONT_PLUS, core_funcs),
2648 X86_MATCH(INTEL_SKYLAKE_X, core_funcs),
2649 X86_MATCH(INTEL_COMETLAKE, core_funcs),
2650 X86_MATCH(INTEL_ICELAKE_X, core_funcs),
2651 X86_MATCH(INTEL_TIGERLAKE, core_funcs),
2652 X86_MATCH(INTEL_SAPPHIRERAPIDS_X, core_funcs),
2653 X86_MATCH(INTEL_EMERALDRAPIDS_X, core_funcs),
2654 {}
2655 };
2656 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2657
2658 #ifdef CONFIG_ACPI
2659 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2660 X86_MATCH(INTEL_BROADWELL_D, core_funcs),
2661 X86_MATCH(INTEL_BROADWELL_X, core_funcs),
2662 X86_MATCH(INTEL_SKYLAKE_X, core_funcs),
2663 X86_MATCH(INTEL_ICELAKE_X, core_funcs),
2664 X86_MATCH(INTEL_SAPPHIRERAPIDS_X, core_funcs),
2665 X86_MATCH(INTEL_EMERALDRAPIDS_X, core_funcs),
2666 X86_MATCH(INTEL_GRANITERAPIDS_D, core_funcs),
2667 X86_MATCH(INTEL_GRANITERAPIDS_X, core_funcs),
2668 X86_MATCH(INTEL_ATOM_CRESTMONT, core_funcs),
2669 X86_MATCH(INTEL_ATOM_CRESTMONT_X, core_funcs),
2670 {}
2671 };
2672 #endif
2673
2674 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2675 X86_MATCH(INTEL_KABYLAKE, core_funcs),
2676 {}
2677 };
2678
intel_pstate_init_cpu(unsigned int cpunum)2679 static int intel_pstate_init_cpu(unsigned int cpunum)
2680 {
2681 struct cpudata *cpu;
2682
2683 cpu = all_cpu_data[cpunum];
2684
2685 if (!cpu) {
2686 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2687 if (!cpu)
2688 return -ENOMEM;
2689
2690 WRITE_ONCE(all_cpu_data[cpunum], cpu);
2691
2692 cpu->cpu = cpunum;
2693
2694 cpu->epp_default = -EINVAL;
2695
2696 if (hwp_active) {
2697 intel_pstate_hwp_enable(cpu);
2698
2699 if (intel_pstate_acpi_pm_profile_server())
2700 hwp_boost = true;
2701 }
2702 } else if (hwp_active) {
2703 /*
2704 * Re-enable HWP in case this happens after a resume from ACPI
2705 * S3 if the CPU was offline during the whole system/resume
2706 * cycle.
2707 */
2708 intel_pstate_hwp_reenable(cpu);
2709 }
2710
2711 cpu->epp_powersave = -EINVAL;
2712 cpu->epp_policy = 0;
2713
2714 intel_pstate_get_cpu_pstates(cpu);
2715
2716 pr_debug("controlling: cpu %d\n", cpunum);
2717
2718 return 0;
2719 }
2720
intel_pstate_set_update_util_hook(unsigned int cpu_num)2721 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2722 {
2723 struct cpudata *cpu = all_cpu_data[cpu_num];
2724
2725 if (hwp_active && !hwp_boost)
2726 return;
2727
2728 if (cpu->update_util_set)
2729 return;
2730
2731 /* Prevent intel_pstate_update_util() from using stale data. */
2732 cpu->sample.time = 0;
2733 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2734 (hwp_active ?
2735 intel_pstate_update_util_hwp :
2736 intel_pstate_update_util));
2737 cpu->update_util_set = true;
2738 }
2739
intel_pstate_clear_update_util_hook(unsigned int cpu)2740 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2741 {
2742 struct cpudata *cpu_data = all_cpu_data[cpu];
2743
2744 if (!cpu_data->update_util_set)
2745 return;
2746
2747 cpufreq_remove_update_util_hook(cpu);
2748 cpu_data->update_util_set = false;
2749 synchronize_rcu();
2750 }
2751
intel_pstate_get_max_freq(struct cpudata * cpu)2752 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2753 {
2754 return READ_ONCE(global.no_turbo) ?
2755 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2756 }
2757
intel_pstate_update_perf_limits(struct cpudata * cpu,unsigned int policy_min,unsigned int policy_max)2758 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2759 unsigned int policy_min,
2760 unsigned int policy_max)
2761 {
2762 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2763 int32_t max_policy_perf, min_policy_perf;
2764
2765 max_policy_perf = policy_max / perf_ctl_scaling;
2766 if (policy_max == policy_min) {
2767 min_policy_perf = max_policy_perf;
2768 } else {
2769 min_policy_perf = policy_min / perf_ctl_scaling;
2770 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2771 0, max_policy_perf);
2772 }
2773
2774 /*
2775 * HWP needs some special consideration, because HWP_REQUEST uses
2776 * abstract values to represent performance rather than pure ratios.
2777 */
2778 if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) {
2779 int freq;
2780
2781 freq = max_policy_perf * perf_ctl_scaling;
2782 max_policy_perf = intel_pstate_freq_to_hwp(cpu, freq);
2783 freq = min_policy_perf * perf_ctl_scaling;
2784 min_policy_perf = intel_pstate_freq_to_hwp(cpu, freq);
2785 }
2786
2787 pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2788 cpu->cpu, min_policy_perf, max_policy_perf);
2789
2790 /* Normalize user input to [min_perf, max_perf] */
2791 if (per_cpu_limits) {
2792 cpu->min_perf_ratio = min_policy_perf;
2793 cpu->max_perf_ratio = max_policy_perf;
2794 } else {
2795 int turbo_max = cpu->pstate.turbo_pstate;
2796 int32_t global_min, global_max;
2797
2798 /* Global limits are in percent of the maximum turbo P-state. */
2799 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2800 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2801 global_min = clamp_t(int32_t, global_min, 0, global_max);
2802
2803 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2804 global_min, global_max);
2805
2806 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2807 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2808 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2809 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2810
2811 /* Make sure min_perf <= max_perf */
2812 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2813 cpu->max_perf_ratio);
2814
2815 }
2816 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2817 cpu->max_perf_ratio,
2818 cpu->min_perf_ratio);
2819 }
2820
intel_pstate_set_policy(struct cpufreq_policy * policy)2821 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2822 {
2823 struct cpudata *cpu;
2824
2825 if (!policy->cpuinfo.max_freq)
2826 return -ENODEV;
2827
2828 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2829 policy->cpuinfo.max_freq, policy->max);
2830
2831 cpu = all_cpu_data[policy->cpu];
2832 cpu->policy = policy->policy;
2833
2834 mutex_lock(&intel_pstate_limits_lock);
2835
2836 intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2837
2838 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2839 int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
2840
2841 /*
2842 * NOHZ_FULL CPUs need this as the governor callback may not
2843 * be invoked on them.
2844 */
2845 intel_pstate_clear_update_util_hook(policy->cpu);
2846 intel_pstate_set_pstate(cpu, pstate);
2847 } else {
2848 intel_pstate_set_update_util_hook(policy->cpu);
2849 }
2850
2851 if (hwp_active) {
2852 /*
2853 * When hwp_boost was active before and dynamically it
2854 * was turned off, in that case we need to clear the
2855 * update util hook.
2856 */
2857 if (!hwp_boost)
2858 intel_pstate_clear_update_util_hook(policy->cpu);
2859 intel_pstate_hwp_set(policy->cpu);
2860 }
2861 /*
2862 * policy->cur is never updated with the intel_pstate driver, but it
2863 * is used as a stale frequency value. So, keep it within limits.
2864 */
2865 policy->cur = policy->min;
2866
2867 mutex_unlock(&intel_pstate_limits_lock);
2868
2869 return 0;
2870 }
2871
intel_pstate_adjust_policy_max(struct cpudata * cpu,struct cpufreq_policy_data * policy)2872 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2873 struct cpufreq_policy_data *policy)
2874 {
2875 if (!hwp_active &&
2876 cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2877 policy->max < policy->cpuinfo.max_freq &&
2878 policy->max > cpu->pstate.max_freq) {
2879 pr_debug("policy->max > max non turbo frequency\n");
2880 policy->max = policy->cpuinfo.max_freq;
2881 }
2882 }
2883
intel_pstate_verify_cpu_policy(struct cpudata * cpu,struct cpufreq_policy_data * policy)2884 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2885 struct cpufreq_policy_data *policy)
2886 {
2887 int max_freq;
2888
2889 if (hwp_active) {
2890 intel_pstate_get_hwp_cap(cpu);
2891 max_freq = READ_ONCE(global.no_turbo) ?
2892 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2893 } else {
2894 max_freq = intel_pstate_get_max_freq(cpu);
2895 }
2896 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2897
2898 intel_pstate_adjust_policy_max(cpu, policy);
2899 }
2900
intel_pstate_verify_policy(struct cpufreq_policy_data * policy)2901 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2902 {
2903 intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2904
2905 return 0;
2906 }
2907
intel_cpufreq_cpu_offline(struct cpufreq_policy * policy)2908 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
2909 {
2910 struct cpudata *cpu = all_cpu_data[policy->cpu];
2911
2912 pr_debug("CPU %d going offline\n", cpu->cpu);
2913
2914 if (cpu->suspended)
2915 return 0;
2916
2917 /*
2918 * If the CPU is an SMT thread and it goes offline with the performance
2919 * settings different from the minimum, it will prevent its sibling
2920 * from getting to lower performance levels, so force the minimum
2921 * performance on CPU offline to prevent that from happening.
2922 */
2923 if (hwp_active)
2924 intel_pstate_hwp_offline(cpu);
2925 else
2926 intel_pstate_set_min_pstate(cpu);
2927
2928 intel_pstate_exit_perf_limits(policy);
2929
2930 return 0;
2931 }
2932
intel_pstate_cpu_online(struct cpufreq_policy * policy)2933 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2934 {
2935 struct cpudata *cpu = all_cpu_data[policy->cpu];
2936
2937 pr_debug("CPU %d going online\n", cpu->cpu);
2938
2939 intel_pstate_init_acpi_perf_limits(policy);
2940
2941 if (hwp_active) {
2942 /*
2943 * Re-enable HWP and clear the "suspended" flag to let "resume"
2944 * know that it need not do that.
2945 */
2946 intel_pstate_hwp_reenable(cpu);
2947 cpu->suspended = false;
2948
2949 hybrid_update_capacity(cpu);
2950 }
2951
2952 return 0;
2953 }
2954
intel_pstate_cpu_offline(struct cpufreq_policy * policy)2955 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2956 {
2957 intel_pstate_clear_update_util_hook(policy->cpu);
2958
2959 return intel_cpufreq_cpu_offline(policy);
2960 }
2961
intel_pstate_cpu_exit(struct cpufreq_policy * policy)2962 static void intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2963 {
2964 pr_debug("CPU %d exiting\n", policy->cpu);
2965
2966 policy->fast_switch_possible = false;
2967 }
2968
__intel_pstate_cpu_init(struct cpufreq_policy * policy)2969 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2970 {
2971 struct cpudata *cpu;
2972 int rc;
2973
2974 rc = intel_pstate_init_cpu(policy->cpu);
2975 if (rc)
2976 return rc;
2977
2978 cpu = all_cpu_data[policy->cpu];
2979
2980 cpu->max_perf_ratio = 0xFF;
2981 cpu->min_perf_ratio = 0;
2982
2983 /* cpuinfo and default policy values */
2984 policy->cpuinfo.min_freq = cpu->pstate.min_freq;
2985 policy->cpuinfo.max_freq = READ_ONCE(global.no_turbo) ?
2986 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2987
2988 policy->min = policy->cpuinfo.min_freq;
2989 policy->max = policy->cpuinfo.max_freq;
2990
2991 intel_pstate_init_acpi_perf_limits(policy);
2992
2993 policy->fast_switch_possible = true;
2994
2995 return 0;
2996 }
2997
intel_pstate_cpu_init(struct cpufreq_policy * policy)2998 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2999 {
3000 int ret = __intel_pstate_cpu_init(policy);
3001
3002 if (ret)
3003 return ret;
3004
3005 /*
3006 * Set the policy to powersave to provide a valid fallback value in case
3007 * the default cpufreq governor is neither powersave nor performance.
3008 */
3009 policy->policy = CPUFREQ_POLICY_POWERSAVE;
3010
3011 if (hwp_active) {
3012 struct cpudata *cpu = all_cpu_data[policy->cpu];
3013
3014 cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
3015 }
3016
3017 return 0;
3018 }
3019
3020 static struct cpufreq_driver intel_pstate = {
3021 .flags = CPUFREQ_CONST_LOOPS,
3022 .verify = intel_pstate_verify_policy,
3023 .setpolicy = intel_pstate_set_policy,
3024 .suspend = intel_pstate_suspend,
3025 .resume = intel_pstate_resume,
3026 .init = intel_pstate_cpu_init,
3027 .exit = intel_pstate_cpu_exit,
3028 .offline = intel_pstate_cpu_offline,
3029 .online = intel_pstate_cpu_online,
3030 .update_limits = intel_pstate_update_limits,
3031 .name = "intel_pstate",
3032 };
3033
intel_cpufreq_verify_policy(struct cpufreq_policy_data * policy)3034 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
3035 {
3036 struct cpudata *cpu = all_cpu_data[policy->cpu];
3037
3038 intel_pstate_verify_cpu_policy(cpu, policy);
3039 intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
3040
3041 return 0;
3042 }
3043
3044 /* Use of trace in passive mode:
3045 *
3046 * In passive mode the trace core_busy field (also known as the
3047 * performance field, and lablelled as such on the graphs; also known as
3048 * core_avg_perf) is not needed and so is re-assigned to indicate if the
3049 * driver call was via the normal or fast switch path. Various graphs
3050 * output from the intel_pstate_tracer.py utility that include core_busy
3051 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
3052 * so we use 10 to indicate the normal path through the driver, and
3053 * 90 to indicate the fast switch path through the driver.
3054 * The scaled_busy field is not used, and is set to 0.
3055 */
3056
3057 #define INTEL_PSTATE_TRACE_TARGET 10
3058 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
3059
intel_cpufreq_trace(struct cpudata * cpu,unsigned int trace_type,int old_pstate)3060 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
3061 {
3062 struct sample *sample;
3063
3064 if (!trace_pstate_sample_enabled())
3065 return;
3066
3067 if (!intel_pstate_sample(cpu, ktime_get()))
3068 return;
3069
3070 sample = &cpu->sample;
3071 trace_pstate_sample(trace_type,
3072 0,
3073 old_pstate,
3074 cpu->pstate.current_pstate,
3075 sample->mperf,
3076 sample->aperf,
3077 sample->tsc,
3078 get_avg_frequency(cpu),
3079 fp_toint(cpu->iowait_boost * 100));
3080 }
3081
intel_cpufreq_hwp_update(struct cpudata * cpu,u32 min,u32 max,u32 desired,bool fast_switch)3082 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
3083 u32 desired, bool fast_switch)
3084 {
3085 u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
3086
3087 value &= ~HWP_MIN_PERF(~0L);
3088 value |= HWP_MIN_PERF(min);
3089
3090 value &= ~HWP_MAX_PERF(~0L);
3091 value |= HWP_MAX_PERF(max);
3092
3093 value &= ~HWP_DESIRED_PERF(~0L);
3094 value |= HWP_DESIRED_PERF(desired);
3095
3096 if (value == prev)
3097 return;
3098
3099 WRITE_ONCE(cpu->hwp_req_cached, value);
3100 if (fast_switch)
3101 wrmsrl(MSR_HWP_REQUEST, value);
3102 else
3103 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3104 }
3105
intel_cpufreq_perf_ctl_update(struct cpudata * cpu,u32 target_pstate,bool fast_switch)3106 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
3107 u32 target_pstate, bool fast_switch)
3108 {
3109 if (fast_switch)
3110 wrmsrl(MSR_IA32_PERF_CTL,
3111 pstate_funcs.get_val(cpu, target_pstate));
3112 else
3113 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
3114 pstate_funcs.get_val(cpu, target_pstate));
3115 }
3116
intel_cpufreq_update_pstate(struct cpufreq_policy * policy,int target_pstate,bool fast_switch)3117 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
3118 int target_pstate, bool fast_switch)
3119 {
3120 struct cpudata *cpu = all_cpu_data[policy->cpu];
3121 int old_pstate = cpu->pstate.current_pstate;
3122
3123 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
3124 if (hwp_active) {
3125 int max_pstate = policy->strict_target ?
3126 target_pstate : cpu->max_perf_ratio;
3127
3128 intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
3129 fast_switch);
3130 } else if (target_pstate != old_pstate) {
3131 intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
3132 }
3133
3134 cpu->pstate.current_pstate = target_pstate;
3135
3136 intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
3137 INTEL_PSTATE_TRACE_TARGET, old_pstate);
3138
3139 return target_pstate;
3140 }
3141
intel_cpufreq_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)3142 static int intel_cpufreq_target(struct cpufreq_policy *policy,
3143 unsigned int target_freq,
3144 unsigned int relation)
3145 {
3146 struct cpudata *cpu = all_cpu_data[policy->cpu];
3147 struct cpufreq_freqs freqs;
3148 int target_pstate;
3149
3150 freqs.old = policy->cur;
3151 freqs.new = target_freq;
3152
3153 cpufreq_freq_transition_begin(policy, &freqs);
3154
3155 target_pstate = intel_pstate_freq_to_hwp_rel(cpu, freqs.new, relation);
3156 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
3157
3158 freqs.new = target_pstate * cpu->pstate.scaling;
3159
3160 cpufreq_freq_transition_end(policy, &freqs, false);
3161
3162 return 0;
3163 }
3164
intel_cpufreq_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)3165 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
3166 unsigned int target_freq)
3167 {
3168 struct cpudata *cpu = all_cpu_data[policy->cpu];
3169 int target_pstate;
3170
3171 target_pstate = intel_pstate_freq_to_hwp(cpu, target_freq);
3172
3173 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
3174
3175 return target_pstate * cpu->pstate.scaling;
3176 }
3177
intel_cpufreq_adjust_perf(unsigned int cpunum,unsigned long min_perf,unsigned long target_perf,unsigned long capacity)3178 static void intel_cpufreq_adjust_perf(unsigned int cpunum,
3179 unsigned long min_perf,
3180 unsigned long target_perf,
3181 unsigned long capacity)
3182 {
3183 struct cpudata *cpu = all_cpu_data[cpunum];
3184 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
3185 int old_pstate = cpu->pstate.current_pstate;
3186 int cap_pstate, min_pstate, max_pstate, target_pstate;
3187
3188 cap_pstate = READ_ONCE(global.no_turbo) ?
3189 HWP_GUARANTEED_PERF(hwp_cap) :
3190 HWP_HIGHEST_PERF(hwp_cap);
3191
3192 /* Optimization: Avoid unnecessary divisions. */
3193
3194 target_pstate = cap_pstate;
3195 if (target_perf < capacity)
3196 target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
3197
3198 min_pstate = cap_pstate;
3199 if (min_perf < capacity)
3200 min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
3201
3202 if (min_pstate < cpu->pstate.min_pstate)
3203 min_pstate = cpu->pstate.min_pstate;
3204
3205 if (min_pstate < cpu->min_perf_ratio)
3206 min_pstate = cpu->min_perf_ratio;
3207
3208 if (min_pstate > cpu->max_perf_ratio)
3209 min_pstate = cpu->max_perf_ratio;
3210
3211 max_pstate = min(cap_pstate, cpu->max_perf_ratio);
3212 if (max_pstate < min_pstate)
3213 max_pstate = min_pstate;
3214
3215 target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
3216
3217 intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
3218
3219 cpu->pstate.current_pstate = target_pstate;
3220 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
3221 }
3222
intel_cpufreq_cpu_init(struct cpufreq_policy * policy)3223 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
3224 {
3225 struct freq_qos_request *req;
3226 struct cpudata *cpu;
3227 struct device *dev;
3228 int ret, freq;
3229
3230 dev = get_cpu_device(policy->cpu);
3231 if (!dev)
3232 return -ENODEV;
3233
3234 ret = __intel_pstate_cpu_init(policy);
3235 if (ret)
3236 return ret;
3237
3238 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
3239 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
3240 policy->cur = policy->cpuinfo.min_freq;
3241
3242 req = kcalloc(2, sizeof(*req), GFP_KERNEL);
3243 if (!req) {
3244 ret = -ENOMEM;
3245 goto pstate_exit;
3246 }
3247
3248 cpu = all_cpu_data[policy->cpu];
3249
3250 if (hwp_active) {
3251 u64 value;
3252
3253 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
3254
3255 intel_pstate_get_hwp_cap(cpu);
3256
3257 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
3258 WRITE_ONCE(cpu->hwp_req_cached, value);
3259
3260 cpu->epp_cached = intel_pstate_get_epp(cpu, value);
3261 } else {
3262 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
3263 }
3264
3265 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
3266
3267 ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
3268 freq);
3269 if (ret < 0) {
3270 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
3271 goto free_req;
3272 }
3273
3274 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
3275
3276 ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
3277 freq);
3278 if (ret < 0) {
3279 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
3280 goto remove_min_req;
3281 }
3282
3283 policy->driver_data = req;
3284
3285 return 0;
3286
3287 remove_min_req:
3288 freq_qos_remove_request(req);
3289 free_req:
3290 kfree(req);
3291 pstate_exit:
3292 intel_pstate_exit_perf_limits(policy);
3293
3294 return ret;
3295 }
3296
intel_cpufreq_cpu_exit(struct cpufreq_policy * policy)3297 static void intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
3298 {
3299 struct freq_qos_request *req;
3300
3301 req = policy->driver_data;
3302
3303 freq_qos_remove_request(req + 1);
3304 freq_qos_remove_request(req);
3305 kfree(req);
3306
3307 intel_pstate_cpu_exit(policy);
3308 }
3309
intel_cpufreq_suspend(struct cpufreq_policy * policy)3310 static int intel_cpufreq_suspend(struct cpufreq_policy *policy)
3311 {
3312 intel_pstate_suspend(policy);
3313
3314 if (hwp_active) {
3315 struct cpudata *cpu = all_cpu_data[policy->cpu];
3316 u64 value = READ_ONCE(cpu->hwp_req_cached);
3317
3318 /*
3319 * Clear the desired perf field in MSR_HWP_REQUEST in case
3320 * intel_cpufreq_adjust_perf() is in use and the last value
3321 * written by it may not be suitable.
3322 */
3323 value &= ~HWP_DESIRED_PERF(~0L);
3324 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3325 WRITE_ONCE(cpu->hwp_req_cached, value);
3326 }
3327
3328 return 0;
3329 }
3330
3331 static struct cpufreq_driver intel_cpufreq = {
3332 .flags = CPUFREQ_CONST_LOOPS,
3333 .verify = intel_cpufreq_verify_policy,
3334 .target = intel_cpufreq_target,
3335 .fast_switch = intel_cpufreq_fast_switch,
3336 .init = intel_cpufreq_cpu_init,
3337 .exit = intel_cpufreq_cpu_exit,
3338 .offline = intel_cpufreq_cpu_offline,
3339 .online = intel_pstate_cpu_online,
3340 .suspend = intel_cpufreq_suspend,
3341 .resume = intel_pstate_resume,
3342 .update_limits = intel_pstate_update_limits,
3343 .name = "intel_cpufreq",
3344 };
3345
3346 static struct cpufreq_driver *default_driver;
3347
intel_pstate_driver_cleanup(void)3348 static void intel_pstate_driver_cleanup(void)
3349 {
3350 unsigned int cpu;
3351
3352 cpus_read_lock();
3353 for_each_online_cpu(cpu) {
3354 if (all_cpu_data[cpu]) {
3355 if (intel_pstate_driver == &intel_pstate)
3356 intel_pstate_clear_update_util_hook(cpu);
3357
3358 kfree(all_cpu_data[cpu]);
3359 WRITE_ONCE(all_cpu_data[cpu], NULL);
3360 }
3361 }
3362 cpus_read_unlock();
3363
3364 intel_pstate_driver = NULL;
3365 }
3366
intel_pstate_register_driver(struct cpufreq_driver * driver)3367 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
3368 {
3369 bool refresh_cpu_cap_scaling;
3370 int ret;
3371
3372 if (driver == &intel_pstate)
3373 intel_pstate_sysfs_expose_hwp_dynamic_boost();
3374
3375 memset(&global, 0, sizeof(global));
3376 global.max_perf_pct = 100;
3377 global.turbo_disabled = turbo_is_disabled();
3378 global.no_turbo = global.turbo_disabled;
3379
3380 arch_set_max_freq_ratio(global.turbo_disabled);
3381
3382 refresh_cpu_cap_scaling = hybrid_clear_max_perf_cpu();
3383
3384 intel_pstate_driver = driver;
3385 ret = cpufreq_register_driver(intel_pstate_driver);
3386 if (ret) {
3387 intel_pstate_driver_cleanup();
3388 return ret;
3389 }
3390
3391 global.min_perf_pct = min_perf_pct_min();
3392
3393 hybrid_init_cpu_capacity_scaling(refresh_cpu_cap_scaling);
3394
3395 return 0;
3396 }
3397
intel_pstate_show_status(char * buf)3398 static ssize_t intel_pstate_show_status(char *buf)
3399 {
3400 if (!intel_pstate_driver)
3401 return sprintf(buf, "off\n");
3402
3403 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
3404 "active" : "passive");
3405 }
3406
intel_pstate_update_status(const char * buf,size_t size)3407 static int intel_pstate_update_status(const char *buf, size_t size)
3408 {
3409 if (size == 3 && !strncmp(buf, "off", size)) {
3410 if (!intel_pstate_driver)
3411 return -EINVAL;
3412
3413 if (hwp_active)
3414 return -EBUSY;
3415
3416 cpufreq_unregister_driver(intel_pstate_driver);
3417 intel_pstate_driver_cleanup();
3418 return 0;
3419 }
3420
3421 if (size == 6 && !strncmp(buf, "active", size)) {
3422 if (intel_pstate_driver) {
3423 if (intel_pstate_driver == &intel_pstate)
3424 return 0;
3425
3426 cpufreq_unregister_driver(intel_pstate_driver);
3427 }
3428
3429 return intel_pstate_register_driver(&intel_pstate);
3430 }
3431
3432 if (size == 7 && !strncmp(buf, "passive", size)) {
3433 if (intel_pstate_driver) {
3434 if (intel_pstate_driver == &intel_cpufreq)
3435 return 0;
3436
3437 cpufreq_unregister_driver(intel_pstate_driver);
3438 intel_pstate_sysfs_hide_hwp_dynamic_boost();
3439 }
3440
3441 return intel_pstate_register_driver(&intel_cpufreq);
3442 }
3443
3444 return -EINVAL;
3445 }
3446
3447 static int no_load __initdata;
3448 static int no_hwp __initdata;
3449 static int hwp_only __initdata;
3450 static unsigned int force_load __initdata;
3451
intel_pstate_msrs_not_valid(void)3452 static int __init intel_pstate_msrs_not_valid(void)
3453 {
3454 if (!pstate_funcs.get_max(0) ||
3455 !pstate_funcs.get_min(0) ||
3456 !pstate_funcs.get_turbo(0))
3457 return -ENODEV;
3458
3459 return 0;
3460 }
3461
copy_cpu_funcs(struct pstate_funcs * funcs)3462 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3463 {
3464 pstate_funcs.get_max = funcs->get_max;
3465 pstate_funcs.get_max_physical = funcs->get_max_physical;
3466 pstate_funcs.get_min = funcs->get_min;
3467 pstate_funcs.get_turbo = funcs->get_turbo;
3468 pstate_funcs.get_scaling = funcs->get_scaling;
3469 pstate_funcs.get_val = funcs->get_val;
3470 pstate_funcs.get_vid = funcs->get_vid;
3471 pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
3472 }
3473
3474 #ifdef CONFIG_ACPI
3475
intel_pstate_no_acpi_pss(void)3476 static bool __init intel_pstate_no_acpi_pss(void)
3477 {
3478 int i;
3479
3480 for_each_possible_cpu(i) {
3481 acpi_status status;
3482 union acpi_object *pss;
3483 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3484 struct acpi_processor *pr = per_cpu(processors, i);
3485
3486 if (!pr)
3487 continue;
3488
3489 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3490 if (ACPI_FAILURE(status))
3491 continue;
3492
3493 pss = buffer.pointer;
3494 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3495 kfree(pss);
3496 return false;
3497 }
3498
3499 kfree(pss);
3500 }
3501
3502 pr_debug("ACPI _PSS not found\n");
3503 return true;
3504 }
3505
intel_pstate_no_acpi_pcch(void)3506 static bool __init intel_pstate_no_acpi_pcch(void)
3507 {
3508 acpi_status status;
3509 acpi_handle handle;
3510
3511 status = acpi_get_handle(NULL, "\\_SB", &handle);
3512 if (ACPI_FAILURE(status))
3513 goto not_found;
3514
3515 if (acpi_has_method(handle, "PCCH"))
3516 return false;
3517
3518 not_found:
3519 pr_debug("ACPI PCCH not found\n");
3520 return true;
3521 }
3522
intel_pstate_has_acpi_ppc(void)3523 static bool __init intel_pstate_has_acpi_ppc(void)
3524 {
3525 int i;
3526
3527 for_each_possible_cpu(i) {
3528 struct acpi_processor *pr = per_cpu(processors, i);
3529
3530 if (!pr)
3531 continue;
3532 if (acpi_has_method(pr->handle, "_PPC"))
3533 return true;
3534 }
3535 pr_debug("ACPI _PPC not found\n");
3536 return false;
3537 }
3538
3539 enum {
3540 PSS,
3541 PPC,
3542 };
3543
3544 /* Hardware vendor-specific info that has its own power management modes */
3545 static struct acpi_platform_list plat_info[] __initdata = {
3546 {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3547 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3548 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3549 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3550 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3551 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3552 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3553 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3554 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3555 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3556 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3557 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3558 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3559 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3560 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3561 { } /* End */
3562 };
3563
3564 #define BITMASK_OOB (BIT(8) | BIT(18))
3565
intel_pstate_platform_pwr_mgmt_exists(void)3566 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3567 {
3568 const struct x86_cpu_id *id;
3569 u64 misc_pwr;
3570 int idx;
3571
3572 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3573 if (id) {
3574 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
3575 if (misc_pwr & BITMASK_OOB) {
3576 pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3577 pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3578 return true;
3579 }
3580 }
3581
3582 idx = acpi_match_platform_list(plat_info);
3583 if (idx < 0)
3584 return false;
3585
3586 switch (plat_info[idx].data) {
3587 case PSS:
3588 if (!intel_pstate_no_acpi_pss())
3589 return false;
3590
3591 return intel_pstate_no_acpi_pcch();
3592 case PPC:
3593 return intel_pstate_has_acpi_ppc() && !force_load;
3594 }
3595
3596 return false;
3597 }
3598
intel_pstate_request_control_from_smm(void)3599 static void intel_pstate_request_control_from_smm(void)
3600 {
3601 /*
3602 * It may be unsafe to request P-states control from SMM if _PPC support
3603 * has not been enabled.
3604 */
3605 if (acpi_ppc)
3606 acpi_processor_pstate_control();
3607 }
3608 #else /* CONFIG_ACPI not enabled */
intel_pstate_platform_pwr_mgmt_exists(void)3609 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
intel_pstate_has_acpi_ppc(void)3610 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
intel_pstate_request_control_from_smm(void)3611 static inline void intel_pstate_request_control_from_smm(void) {}
3612 #endif /* CONFIG_ACPI */
3613
3614 #define INTEL_PSTATE_HWP_BROADWELL 0x01
3615
3616 #define X86_MATCH_HWP(vfm, hwp_mode) \
3617 X86_MATCH_VFM_FEATURE(vfm, X86_FEATURE_HWP, hwp_mode)
3618
3619 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3620 X86_MATCH_HWP(INTEL_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
3621 X86_MATCH_HWP(INTEL_BROADWELL_D, INTEL_PSTATE_HWP_BROADWELL),
3622 X86_MATCH_HWP(INTEL_ANY, 0),
3623 {}
3624 };
3625
intel_pstate_hwp_is_enabled(void)3626 static bool intel_pstate_hwp_is_enabled(void)
3627 {
3628 u64 value;
3629
3630 rdmsrl(MSR_PM_ENABLE, value);
3631 return !!(value & 0x1);
3632 }
3633
3634 #define POWERSAVE_MASK GENMASK(7, 0)
3635 #define BALANCE_POWER_MASK GENMASK(15, 8)
3636 #define BALANCE_PERFORMANCE_MASK GENMASK(23, 16)
3637 #define PERFORMANCE_MASK GENMASK(31, 24)
3638
3639 #define HWP_SET_EPP_VALUES(powersave, balance_power, balance_perf, performance) \
3640 (FIELD_PREP_CONST(POWERSAVE_MASK, powersave) |\
3641 FIELD_PREP_CONST(BALANCE_POWER_MASK, balance_power) |\
3642 FIELD_PREP_CONST(BALANCE_PERFORMANCE_MASK, balance_perf) |\
3643 FIELD_PREP_CONST(PERFORMANCE_MASK, performance))
3644
3645 #define HWP_SET_DEF_BALANCE_PERF_EPP(balance_perf) \
3646 (HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE, HWP_EPP_BALANCE_POWERSAVE,\
3647 balance_perf, HWP_EPP_PERFORMANCE))
3648
3649 static const struct x86_cpu_id intel_epp_default[] = {
3650 /*
3651 * Set EPP value as 102, this is the max suggested EPP
3652 * which can result in one core turbo frequency for
3653 * AlderLake Mobile CPUs.
3654 */
3655 X86_MATCH_VFM(INTEL_ALDERLAKE_L, HWP_SET_DEF_BALANCE_PERF_EPP(102)),
3656 X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, HWP_SET_DEF_BALANCE_PERF_EPP(32)),
3657 X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, HWP_SET_DEF_BALANCE_PERF_EPP(32)),
3658 X86_MATCH_VFM(INTEL_GRANITERAPIDS_X, HWP_SET_DEF_BALANCE_PERF_EPP(32)),
3659 X86_MATCH_VFM(INTEL_GRANITERAPIDS_D, HWP_SET_DEF_BALANCE_PERF_EPP(32)),
3660 X86_MATCH_VFM(INTEL_METEORLAKE_L, HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE,
3661 179, 64, 16)),
3662 X86_MATCH_VFM(INTEL_ARROWLAKE, HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE,
3663 179, 64, 16)),
3664 {}
3665 };
3666
3667 static const struct x86_cpu_id intel_hybrid_scaling_factor[] = {
3668 X86_MATCH_VFM(INTEL_METEORLAKE_L, HYBRID_SCALING_FACTOR_MTL),
3669 X86_MATCH_VFM(INTEL_ARROWLAKE, HYBRID_SCALING_FACTOR_MTL),
3670 X86_MATCH_VFM(INTEL_LUNARLAKE_M, HYBRID_SCALING_FACTOR_LNL),
3671 {}
3672 };
3673
intel_pstate_init(void)3674 static int __init intel_pstate_init(void)
3675 {
3676 static struct cpudata **_all_cpu_data;
3677 const struct x86_cpu_id *id;
3678 int rc;
3679
3680 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3681 return -ENODEV;
3682
3683 id = x86_match_cpu(hwp_support_ids);
3684 if (id) {
3685 hwp_forced = intel_pstate_hwp_is_enabled();
3686
3687 if (hwp_forced)
3688 pr_info("HWP enabled by BIOS\n");
3689 else if (no_load)
3690 return -ENODEV;
3691
3692 copy_cpu_funcs(&core_funcs);
3693 /*
3694 * Avoid enabling HWP for processors without EPP support,
3695 * because that means incomplete HWP implementation which is a
3696 * corner case and supporting it is generally problematic.
3697 *
3698 * If HWP is enabled already, though, there is no choice but to
3699 * deal with it.
3700 */
3701 if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) {
3702 hwp_active = true;
3703 hwp_mode_bdw = id->driver_data;
3704 intel_pstate.attr = hwp_cpufreq_attrs;
3705 intel_cpufreq.attr = hwp_cpufreq_attrs;
3706 intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3707 intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3708 if (!default_driver)
3709 default_driver = &intel_pstate;
3710
3711 pstate_funcs.get_cpu_scaling = hwp_get_cpu_scaling;
3712
3713 goto hwp_cpu_matched;
3714 }
3715 pr_info("HWP not enabled\n");
3716 } else {
3717 if (no_load)
3718 return -ENODEV;
3719
3720 id = x86_match_cpu(intel_pstate_cpu_ids);
3721 if (!id) {
3722 pr_info("CPU model not supported\n");
3723 return -ENODEV;
3724 }
3725
3726 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3727 }
3728
3729 if (intel_pstate_msrs_not_valid()) {
3730 pr_info("Invalid MSRs\n");
3731 return -ENODEV;
3732 }
3733 /* Without HWP start in the passive mode. */
3734 if (!default_driver)
3735 default_driver = &intel_cpufreq;
3736
3737 hwp_cpu_matched:
3738 /*
3739 * The Intel pstate driver will be ignored if the platform
3740 * firmware has its own power management modes.
3741 */
3742 if (intel_pstate_platform_pwr_mgmt_exists()) {
3743 pr_info("P-states controlled by the platform\n");
3744 return -ENODEV;
3745 }
3746
3747 if (!hwp_active && hwp_only)
3748 return -ENOTSUPP;
3749
3750 pr_info("Intel P-state driver initializing\n");
3751
3752 _all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3753 if (!_all_cpu_data)
3754 return -ENOMEM;
3755
3756 WRITE_ONCE(all_cpu_data, _all_cpu_data);
3757
3758 intel_pstate_request_control_from_smm();
3759
3760 intel_pstate_sysfs_expose_params();
3761
3762 if (hwp_active) {
3763 const struct x86_cpu_id *id = x86_match_cpu(intel_epp_default);
3764 const struct x86_cpu_id *hybrid_id = x86_match_cpu(intel_hybrid_scaling_factor);
3765
3766 if (id) {
3767 epp_values[EPP_INDEX_POWERSAVE] =
3768 FIELD_GET(POWERSAVE_MASK, id->driver_data);
3769 epp_values[EPP_INDEX_BALANCE_POWERSAVE] =
3770 FIELD_GET(BALANCE_POWER_MASK, id->driver_data);
3771 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] =
3772 FIELD_GET(BALANCE_PERFORMANCE_MASK, id->driver_data);
3773 epp_values[EPP_INDEX_PERFORMANCE] =
3774 FIELD_GET(PERFORMANCE_MASK, id->driver_data);
3775 pr_debug("Updated EPPs powersave:%x balanced power:%x balanced perf:%x performance:%x\n",
3776 epp_values[EPP_INDEX_POWERSAVE],
3777 epp_values[EPP_INDEX_BALANCE_POWERSAVE],
3778 epp_values[EPP_INDEX_BALANCE_PERFORMANCE],
3779 epp_values[EPP_INDEX_PERFORMANCE]);
3780 }
3781
3782 if (hybrid_id) {
3783 hybrid_scaling_factor = hybrid_id->driver_data;
3784 pr_debug("hybrid scaling factor: %d\n", hybrid_scaling_factor);
3785 }
3786
3787 }
3788
3789 mutex_lock(&intel_pstate_driver_lock);
3790 rc = intel_pstate_register_driver(default_driver);
3791 mutex_unlock(&intel_pstate_driver_lock);
3792 if (rc) {
3793 intel_pstate_sysfs_remove();
3794 return rc;
3795 }
3796
3797 if (hwp_active) {
3798 const struct x86_cpu_id *id;
3799
3800 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3801 if (id) {
3802 set_power_ctl_ee_state(false);
3803 pr_info("Disabling energy efficiency optimization\n");
3804 }
3805
3806 pr_info("HWP enabled\n");
3807 } else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3808 pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3809 }
3810
3811 return 0;
3812 }
3813 device_initcall(intel_pstate_init);
3814
intel_pstate_setup(char * str)3815 static int __init intel_pstate_setup(char *str)
3816 {
3817 if (!str)
3818 return -EINVAL;
3819
3820 if (!strcmp(str, "disable"))
3821 no_load = 1;
3822 else if (!strcmp(str, "active"))
3823 default_driver = &intel_pstate;
3824 else if (!strcmp(str, "passive"))
3825 default_driver = &intel_cpufreq;
3826
3827 if (!strcmp(str, "no_hwp"))
3828 no_hwp = 1;
3829
3830 if (!strcmp(str, "force"))
3831 force_load = 1;
3832 if (!strcmp(str, "hwp_only"))
3833 hwp_only = 1;
3834 if (!strcmp(str, "per_cpu_perf_limits"))
3835 per_cpu_limits = true;
3836
3837 #ifdef CONFIG_ACPI
3838 if (!strcmp(str, "support_acpi_ppc"))
3839 acpi_ppc = true;
3840 #endif
3841
3842 return 0;
3843 }
3844 early_param("intel_pstate", intel_pstate_setup);
3845
3846 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3847 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
3848