1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This file is the ADC part of the STM32 DFSDM driver
4 *
5 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 * Author: Arnaud Pouliquen <arnaud.pouliquen@st.com>.
7 */
8
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/iio/adc/stm32-dfsdm-adc.h>
12 #include <linux/iio/backend.h>
13 #include <linux/iio/buffer.h>
14 #include <linux/iio/hw-consumer.h>
15 #include <linux/iio/sysfs.h>
16 #include <linux/iio/timer/stm32-lptim-trigger.h>
17 #include <linux/iio/timer/stm32-timer-trigger.h>
18 #include <linux/iio/trigger.h>
19 #include <linux/iio/trigger_consumer.h>
20 #include <linux/iio/triggered_buffer.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_platform.h>
25 #include <linux/platform_device.h>
26 #include <linux/regmap.h>
27 #include <linux/slab.h>
28
29 #include "stm32-dfsdm.h"
30
31 #define DFSDM_DMA_BUFFER_SIZE (4 * PAGE_SIZE)
32
33 /* Conversion timeout */
34 #define DFSDM_TIMEOUT_US 100000
35 #define DFSDM_TIMEOUT (msecs_to_jiffies(DFSDM_TIMEOUT_US / 1000))
36
37 /* Oversampling attribute default */
38 #define DFSDM_DEFAULT_OVERSAMPLING 100
39
40 /* Oversampling max values */
41 #define DFSDM_MAX_INT_OVERSAMPLING 256
42 #define DFSDM_MAX_FL_OVERSAMPLING 1024
43
44 /* Limit filter output resolution to 31 bits. (i.e. sample range is +/-2^30) */
45 #define DFSDM_DATA_MAX BIT(30)
46 /*
47 * Data are output as two's complement data in a 24 bit field.
48 * Data from filters are in the range +/-2^(n-1)
49 * 2^(n-1) maximum positive value cannot be coded in 2's complement n bits
50 * An extra bit is required to avoid wrap-around of the binary code for 2^(n-1)
51 * So, the resolution of samples from filter is actually limited to 23 bits
52 */
53 #define DFSDM_DATA_RES 24
54
55 /* Filter configuration */
56 #define DFSDM_CR1_CFG_MASK (DFSDM_CR1_RCH_MASK | DFSDM_CR1_RCONT_MASK | \
57 DFSDM_CR1_RSYNC_MASK | DFSDM_CR1_JSYNC_MASK | \
58 DFSDM_CR1_JSCAN_MASK)
59
60 enum sd_converter_type {
61 DFSDM_AUDIO,
62 DFSDM_IIO,
63 };
64
65 struct stm32_dfsdm_dev_data {
66 int type;
67 int (*init)(struct device *dev, struct iio_dev *indio_dev);
68 unsigned int num_channels;
69 const struct regmap_config *regmap_cfg;
70 };
71
72 struct stm32_dfsdm_adc {
73 struct stm32_dfsdm *dfsdm;
74 const struct stm32_dfsdm_dev_data *dev_data;
75 unsigned int fl_id;
76 unsigned int nconv;
77 unsigned long smask;
78
79 /* ADC specific */
80 unsigned int oversamp;
81 struct iio_hw_consumer *hwc;
82 struct iio_backend **backend;
83 struct completion completion;
84 u32 *buffer;
85
86 /* Audio specific */
87 unsigned int spi_freq; /* SPI bus clock frequency */
88 unsigned int sample_freq; /* Sample frequency after filter decimation */
89 int (*cb)(const void *data, size_t size, void *cb_priv);
90 void *cb_priv;
91
92 /* DMA */
93 u8 *rx_buf;
94 unsigned int bufi; /* Buffer current position */
95 unsigned int buf_sz; /* Buffer size */
96 struct dma_chan *dma_chan;
97 dma_addr_t dma_buf;
98 };
99
100 struct stm32_dfsdm_str2field {
101 const char *name;
102 unsigned int val;
103 };
104
105 /* DFSDM channel serial interface type */
106 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_type[] = {
107 { "SPI_R", 0 }, /* SPI with data on rising edge */
108 { "SPI_F", 1 }, /* SPI with data on falling edge */
109 { "MANCH_R", 2 }, /* Manchester codec, rising edge = logic 0 */
110 { "MANCH_F", 3 }, /* Manchester codec, falling edge = logic 1 */
111 {},
112 };
113
114 /* DFSDM channel clock source */
115 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_src[] = {
116 /* External SPI clock (CLKIN x) */
117 { "CLKIN", DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL },
118 /* Internal SPI clock (CLKOUT) */
119 { "CLKOUT", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL },
120 /* Internal SPI clock divided by 2 (falling edge) */
121 { "CLKOUT_F", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING },
122 /* Internal SPI clock divided by 2 (falling edge) */
123 { "CLKOUT_R", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING },
124 {},
125 };
126
stm32_dfsdm_str2val(const char * str,const struct stm32_dfsdm_str2field * list)127 static int stm32_dfsdm_str2val(const char *str,
128 const struct stm32_dfsdm_str2field *list)
129 {
130 const struct stm32_dfsdm_str2field *p = list;
131
132 for (p = list; p && p->name; p++)
133 if (!strcmp(p->name, str))
134 return p->val;
135
136 return -EINVAL;
137 }
138
139 /**
140 * struct stm32_dfsdm_trig_info - DFSDM trigger info
141 * @name: name of the trigger, corresponding to its source
142 * @jextsel: trigger signal selection
143 */
144 struct stm32_dfsdm_trig_info {
145 const char *name;
146 unsigned int jextsel;
147 };
148
149 /* hardware injected trigger enable, edge selection */
150 enum stm32_dfsdm_jexten {
151 STM32_DFSDM_JEXTEN_DISABLED,
152 STM32_DFSDM_JEXTEN_RISING_EDGE,
153 STM32_DFSDM_JEXTEN_FALLING_EDGE,
154 STM32_DFSDM_EXTEN_BOTH_EDGES,
155 };
156
157 static const struct stm32_dfsdm_trig_info stm32_dfsdm_trigs[] = {
158 { TIM1_TRGO, 0 },
159 { TIM1_TRGO2, 1 },
160 { TIM8_TRGO, 2 },
161 { TIM8_TRGO2, 3 },
162 { TIM3_TRGO, 4 },
163 { TIM4_TRGO, 5 },
164 { TIM16_OC1, 6 },
165 { TIM6_TRGO, 7 },
166 { TIM7_TRGO, 8 },
167 { LPTIM1_OUT, 26 },
168 { LPTIM2_OUT, 27 },
169 { LPTIM3_OUT, 28 },
170 {},
171 };
172
stm32_dfsdm_get_jextsel(struct iio_dev * indio_dev,struct iio_trigger * trig)173 static int stm32_dfsdm_get_jextsel(struct iio_dev *indio_dev,
174 struct iio_trigger *trig)
175 {
176 int i;
177
178 /* lookup triggers registered by stm32 timer trigger driver */
179 for (i = 0; stm32_dfsdm_trigs[i].name; i++) {
180 /**
181 * Checking both stm32 timer trigger type and trig name
182 * should be safe against arbitrary trigger names.
183 */
184 if ((is_stm32_timer_trigger(trig) ||
185 is_stm32_lptim_trigger(trig)) &&
186 !strcmp(stm32_dfsdm_trigs[i].name, trig->name)) {
187 return stm32_dfsdm_trigs[i].jextsel;
188 }
189 }
190
191 return -EINVAL;
192 }
193
stm32_dfsdm_compute_osrs(struct stm32_dfsdm_filter * fl,unsigned int fast,unsigned int oversamp)194 static int stm32_dfsdm_compute_osrs(struct stm32_dfsdm_filter *fl,
195 unsigned int fast, unsigned int oversamp)
196 {
197 unsigned int i, d, fosr, iosr;
198 u64 res, max;
199 int bits, shift;
200 unsigned int m = 1; /* multiplication factor */
201 unsigned int p = fl->ford; /* filter order (ford) */
202 struct stm32_dfsdm_filter_osr *flo = &fl->flo[fast];
203
204 pr_debug("Requested oversampling: %d\n", oversamp);
205 /*
206 * This function tries to compute filter oversampling and integrator
207 * oversampling, base on oversampling ratio requested by user.
208 *
209 * Decimation d depends on the filter order and the oversampling ratios.
210 * ford: filter order
211 * fosr: filter over sampling ratio
212 * iosr: integrator over sampling ratio
213 */
214 if (fl->ford == DFSDM_FASTSINC_ORDER) {
215 m = 2;
216 p = 2;
217 }
218
219 /*
220 * Look for filter and integrator oversampling ratios which allows
221 * to maximize data output resolution.
222 */
223 for (fosr = 1; fosr <= DFSDM_MAX_FL_OVERSAMPLING; fosr++) {
224 for (iosr = 1; iosr <= DFSDM_MAX_INT_OVERSAMPLING; iosr++) {
225 if (fast)
226 d = fosr * iosr;
227 else if (fl->ford == DFSDM_FASTSINC_ORDER)
228 d = fosr * (iosr + 3) + 2;
229 else
230 d = fosr * (iosr - 1 + p) + p;
231
232 if (d > oversamp)
233 break;
234 else if (d != oversamp)
235 continue;
236 /*
237 * Check resolution (limited to signed 32 bits)
238 * res <= 2^31
239 * Sincx filters:
240 * res = m * fosr^p x iosr (with m=1, p=ford)
241 * FastSinc filter
242 * res = m * fosr^p x iosr (with m=2, p=2)
243 */
244 res = fosr;
245 for (i = p - 1; i > 0; i--) {
246 res = res * (u64)fosr;
247 if (res > DFSDM_DATA_MAX)
248 break;
249 }
250 if (res > DFSDM_DATA_MAX)
251 continue;
252
253 res = res * (u64)m * (u64)iosr;
254 if (res > DFSDM_DATA_MAX)
255 continue;
256
257 if (res >= flo->res) {
258 flo->res = res;
259 flo->fosr = fosr;
260 flo->iosr = iosr;
261
262 bits = fls(flo->res);
263 /* 8 LBSs in data register contain chan info */
264 max = flo->res << 8;
265
266 /* if resolution is not a power of two */
267 if (flo->res > BIT(bits - 1))
268 bits++;
269 else
270 max--;
271
272 shift = DFSDM_DATA_RES - bits;
273 /*
274 * Compute right/left shift
275 * Right shift is performed by hardware
276 * when transferring samples to data register.
277 * Left shift is done by software on buffer
278 */
279 if (shift > 0) {
280 /* Resolution is lower than 24 bits */
281 flo->rshift = 0;
282 flo->lshift = shift;
283 } else {
284 /*
285 * If resolution is 24 bits or more,
286 * max positive value may be ambiguous
287 * (equal to max negative value as sign
288 * bit is dropped).
289 * Reduce resolution to 23 bits (rshift)
290 * to keep the sign on bit 23 and treat
291 * saturation before rescaling on 24
292 * bits (lshift).
293 */
294 flo->rshift = 1 - shift;
295 flo->lshift = 1;
296 max >>= flo->rshift;
297 }
298 flo->max = (s32)max;
299 flo->bits = bits;
300
301 pr_debug("fast %d, fosr %d, iosr %d, res 0x%llx/%d bits, rshift %d, lshift %d\n",
302 fast, flo->fosr, flo->iosr,
303 flo->res, bits, flo->rshift,
304 flo->lshift);
305 }
306 }
307 }
308
309 if (!flo->res)
310 return -EINVAL;
311
312 return 0;
313 }
314
stm32_dfsdm_compute_all_osrs(struct iio_dev * indio_dev,unsigned int oversamp)315 static int stm32_dfsdm_compute_all_osrs(struct iio_dev *indio_dev,
316 unsigned int oversamp)
317 {
318 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
319 struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
320 int ret0, ret1;
321
322 memset(&fl->flo[0], 0, sizeof(fl->flo[0]));
323 memset(&fl->flo[1], 0, sizeof(fl->flo[1]));
324
325 ret0 = stm32_dfsdm_compute_osrs(fl, 0, oversamp);
326 ret1 = stm32_dfsdm_compute_osrs(fl, 1, oversamp);
327 if (ret0 < 0 && ret1 < 0) {
328 dev_err(&indio_dev->dev,
329 "Filter parameters not found: errors %d/%d\n",
330 ret0, ret1);
331 return -EINVAL;
332 }
333
334 return 0;
335 }
336
stm32_dfsdm_start_channel(struct iio_dev * indio_dev)337 static int stm32_dfsdm_start_channel(struct iio_dev *indio_dev)
338 {
339 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
340 struct regmap *regmap = adc->dfsdm->regmap;
341 const struct iio_chan_spec *chan;
342 unsigned int bit;
343 int ret;
344
345 for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
346 chan = indio_dev->channels + bit;
347 ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
348 DFSDM_CHCFGR1_CHEN_MASK,
349 DFSDM_CHCFGR1_CHEN(1));
350 if (ret < 0)
351 return ret;
352 }
353
354 return 0;
355 }
356
stm32_dfsdm_stop_channel(struct iio_dev * indio_dev)357 static void stm32_dfsdm_stop_channel(struct iio_dev *indio_dev)
358 {
359 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
360 struct regmap *regmap = adc->dfsdm->regmap;
361 const struct iio_chan_spec *chan;
362 unsigned int bit;
363
364 for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
365 chan = indio_dev->channels + bit;
366 regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
367 DFSDM_CHCFGR1_CHEN_MASK,
368 DFSDM_CHCFGR1_CHEN(0));
369 }
370 }
371
stm32_dfsdm_chan_configure(struct stm32_dfsdm * dfsdm,struct stm32_dfsdm_channel * ch)372 static int stm32_dfsdm_chan_configure(struct stm32_dfsdm *dfsdm,
373 struct stm32_dfsdm_channel *ch)
374 {
375 unsigned int id = ch->id;
376 struct regmap *regmap = dfsdm->regmap;
377 int ret;
378
379 ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
380 DFSDM_CHCFGR1_SITP_MASK,
381 DFSDM_CHCFGR1_SITP(ch->type));
382 if (ret < 0)
383 return ret;
384 ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
385 DFSDM_CHCFGR1_SPICKSEL_MASK,
386 DFSDM_CHCFGR1_SPICKSEL(ch->src));
387 if (ret < 0)
388 return ret;
389 return regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
390 DFSDM_CHCFGR1_CHINSEL_MASK,
391 DFSDM_CHCFGR1_CHINSEL(ch->alt_si));
392 }
393
stm32_dfsdm_start_filter(struct stm32_dfsdm_adc * adc,unsigned int fl_id,struct iio_trigger * trig)394 static int stm32_dfsdm_start_filter(struct stm32_dfsdm_adc *adc,
395 unsigned int fl_id,
396 struct iio_trigger *trig)
397 {
398 struct stm32_dfsdm *dfsdm = adc->dfsdm;
399 int ret;
400
401 /* Enable filter */
402 ret = regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
403 DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(1));
404 if (ret < 0)
405 return ret;
406
407 /* Nothing more to do for injected (scan mode/triggered) conversions */
408 if (adc->nconv > 1 || trig)
409 return 0;
410
411 /* Software start (single or continuous) regular conversion */
412 return regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
413 DFSDM_CR1_RSWSTART_MASK,
414 DFSDM_CR1_RSWSTART(1));
415 }
416
stm32_dfsdm_stop_filter(struct stm32_dfsdm * dfsdm,unsigned int fl_id)417 static void stm32_dfsdm_stop_filter(struct stm32_dfsdm *dfsdm,
418 unsigned int fl_id)
419 {
420 /* Disable conversion */
421 regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
422 DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(0));
423 }
424
stm32_dfsdm_filter_set_trig(struct iio_dev * indio_dev,unsigned int fl_id,struct iio_trigger * trig)425 static int stm32_dfsdm_filter_set_trig(struct iio_dev *indio_dev,
426 unsigned int fl_id,
427 struct iio_trigger *trig)
428 {
429 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
430 struct regmap *regmap = adc->dfsdm->regmap;
431 u32 jextsel = 0, jexten = STM32_DFSDM_JEXTEN_DISABLED;
432 int ret;
433
434 if (trig) {
435 ret = stm32_dfsdm_get_jextsel(indio_dev, trig);
436 if (ret < 0)
437 return ret;
438
439 /* set trigger source and polarity (default to rising edge) */
440 jextsel = ret;
441 jexten = STM32_DFSDM_JEXTEN_RISING_EDGE;
442 }
443
444 ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
445 DFSDM_CR1_JEXTSEL_MASK | DFSDM_CR1_JEXTEN_MASK,
446 DFSDM_CR1_JEXTSEL(jextsel) |
447 DFSDM_CR1_JEXTEN(jexten));
448 if (ret < 0)
449 return ret;
450
451 return 0;
452 }
453
stm32_dfsdm_channels_configure(struct iio_dev * indio_dev,unsigned int fl_id,struct iio_trigger * trig)454 static int stm32_dfsdm_channels_configure(struct iio_dev *indio_dev,
455 unsigned int fl_id,
456 struct iio_trigger *trig)
457 {
458 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
459 struct regmap *regmap = adc->dfsdm->regmap;
460 struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
461 struct stm32_dfsdm_filter_osr *flo = &fl->flo[0];
462 const struct iio_chan_spec *chan;
463 unsigned int bit;
464 int ret;
465
466 fl->fast = 0;
467
468 /*
469 * In continuous mode, use fast mode configuration,
470 * if it provides a better resolution.
471 */
472 if (adc->nconv == 1 && !trig && iio_buffer_enabled(indio_dev)) {
473 if (fl->flo[1].res >= fl->flo[0].res) {
474 fl->fast = 1;
475 flo = &fl->flo[1];
476 }
477 }
478
479 if (!flo->res)
480 return -EINVAL;
481
482 dev_dbg(&indio_dev->dev, "Samples actual resolution: %d bits",
483 min(flo->bits, (u32)DFSDM_DATA_RES - 1));
484
485 for_each_set_bit(bit, &adc->smask,
486 sizeof(adc->smask) * BITS_PER_BYTE) {
487 chan = indio_dev->channels + bit;
488
489 ret = regmap_update_bits(regmap,
490 DFSDM_CHCFGR2(chan->channel),
491 DFSDM_CHCFGR2_DTRBS_MASK,
492 DFSDM_CHCFGR2_DTRBS(flo->rshift));
493 if (ret)
494 return ret;
495 }
496
497 return 0;
498 }
499
stm32_dfsdm_filter_configure(struct iio_dev * indio_dev,unsigned int fl_id,struct iio_trigger * trig)500 static int stm32_dfsdm_filter_configure(struct iio_dev *indio_dev,
501 unsigned int fl_id,
502 struct iio_trigger *trig)
503 {
504 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
505 struct regmap *regmap = adc->dfsdm->regmap;
506 struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
507 struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
508 u32 cr1;
509 const struct iio_chan_spec *chan;
510 unsigned int bit, jchg = 0;
511 int ret;
512
513 /* Average integrator oversampling */
514 ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_IOSR_MASK,
515 DFSDM_FCR_IOSR(flo->iosr - 1));
516 if (ret)
517 return ret;
518
519 /* Filter order and Oversampling */
520 ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FOSR_MASK,
521 DFSDM_FCR_FOSR(flo->fosr - 1));
522 if (ret)
523 return ret;
524
525 ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FORD_MASK,
526 DFSDM_FCR_FORD(fl->ford));
527 if (ret)
528 return ret;
529
530 ret = stm32_dfsdm_filter_set_trig(indio_dev, fl_id, trig);
531 if (ret)
532 return ret;
533
534 ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
535 DFSDM_CR1_FAST_MASK,
536 DFSDM_CR1_FAST(fl->fast));
537 if (ret)
538 return ret;
539
540 /*
541 * DFSDM modes configuration W.R.T audio/iio type modes
542 * ----------------------------------------------------------------
543 * Modes | regular | regular | injected | injected |
544 * | | continuous | | + scan |
545 * --------------|---------|--------------|----------|------------|
546 * single conv | x | | | |
547 * (1 chan) | | | | |
548 * --------------|---------|--------------|----------|------------|
549 * 1 Audio chan | | sample freq | | |
550 * | | or sync_mode | | |
551 * --------------|---------|--------------|----------|------------|
552 * 1 IIO chan | | sample freq | trigger | |
553 * | | or sync_mode | | |
554 * --------------|---------|--------------|----------|------------|
555 * 2+ IIO chans | | | | trigger or |
556 * | | | | sync_mode |
557 * ----------------------------------------------------------------
558 */
559 if (adc->nconv == 1 && !trig) {
560 bit = __ffs(adc->smask);
561 chan = indio_dev->channels + bit;
562
563 /* Use regular conversion for single channel without trigger */
564 cr1 = DFSDM_CR1_RCH(chan->channel);
565
566 /* Continuous conversions triggered by SPI clk in buffer mode */
567 if (iio_buffer_enabled(indio_dev))
568 cr1 |= DFSDM_CR1_RCONT(1);
569
570 cr1 |= DFSDM_CR1_RSYNC(fl->sync_mode);
571 } else {
572 /* Use injected conversion for multiple channels */
573 for_each_set_bit(bit, &adc->smask,
574 sizeof(adc->smask) * BITS_PER_BYTE) {
575 chan = indio_dev->channels + bit;
576 jchg |= BIT(chan->channel);
577 }
578 ret = regmap_write(regmap, DFSDM_JCHGR(fl_id), jchg);
579 if (ret < 0)
580 return ret;
581
582 /* Use scan mode for multiple channels */
583 cr1 = DFSDM_CR1_JSCAN((adc->nconv > 1) ? 1 : 0);
584
585 /*
586 * Continuous conversions not supported in injected mode,
587 * either use:
588 * - conversions in sync with filter 0
589 * - triggered conversions
590 */
591 if (!fl->sync_mode && !trig)
592 return -EINVAL;
593 cr1 |= DFSDM_CR1_JSYNC(fl->sync_mode);
594 }
595
596 return regmap_update_bits(regmap, DFSDM_CR1(fl_id), DFSDM_CR1_CFG_MASK,
597 cr1);
598 }
599
stm32_dfsdm_channel_parse_of(struct stm32_dfsdm * dfsdm,struct iio_dev * indio_dev,struct iio_chan_spec * ch)600 static int stm32_dfsdm_channel_parse_of(struct stm32_dfsdm *dfsdm,
601 struct iio_dev *indio_dev,
602 struct iio_chan_spec *ch)
603 {
604 struct stm32_dfsdm_channel *df_ch;
605 const char *of_str;
606 int chan_idx = ch->scan_index;
607 int ret, val;
608
609 ret = of_property_read_u32_index(indio_dev->dev.of_node,
610 "st,adc-channels", chan_idx,
611 &ch->channel);
612 if (ret < 0) {
613 dev_err(&indio_dev->dev,
614 " Error parsing 'st,adc-channels' for idx %d\n",
615 chan_idx);
616 return ret;
617 }
618 if (ch->channel >= dfsdm->num_chs) {
619 dev_err(&indio_dev->dev,
620 " Error bad channel number %d (max = %d)\n",
621 ch->channel, dfsdm->num_chs);
622 return -EINVAL;
623 }
624
625 ret = of_property_read_string_index(indio_dev->dev.of_node,
626 "st,adc-channel-names", chan_idx,
627 &ch->datasheet_name);
628 if (ret < 0) {
629 dev_err(&indio_dev->dev,
630 " Error parsing 'st,adc-channel-names' for idx %d\n",
631 chan_idx);
632 return ret;
633 }
634
635 df_ch = &dfsdm->ch_list[ch->channel];
636 df_ch->id = ch->channel;
637
638 ret = of_property_read_string_index(indio_dev->dev.of_node,
639 "st,adc-channel-types", chan_idx,
640 &of_str);
641 if (!ret) {
642 val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_type);
643 if (val < 0)
644 return val;
645 } else {
646 val = 0;
647 }
648 df_ch->type = val;
649
650 ret = of_property_read_string_index(indio_dev->dev.of_node,
651 "st,adc-channel-clk-src", chan_idx,
652 &of_str);
653 if (!ret) {
654 val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_src);
655 if (val < 0)
656 return val;
657 } else {
658 val = 0;
659 }
660 df_ch->src = val;
661
662 ret = of_property_read_u32_index(indio_dev->dev.of_node,
663 "st,adc-alt-channel", chan_idx,
664 &df_ch->alt_si);
665 if (ret < 0)
666 df_ch->alt_si = 0;
667
668 return 0;
669 }
670
stm32_dfsdm_generic_channel_parse_of(struct stm32_dfsdm * dfsdm,struct iio_dev * indio_dev,struct iio_chan_spec * ch,struct fwnode_handle * node)671 static int stm32_dfsdm_generic_channel_parse_of(struct stm32_dfsdm *dfsdm,
672 struct iio_dev *indio_dev,
673 struct iio_chan_spec *ch,
674 struct fwnode_handle *node)
675 {
676 struct stm32_dfsdm_channel *df_ch;
677 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
678 struct iio_backend *backend;
679 const char *of_str;
680 int ret, val;
681
682 ret = fwnode_property_read_u32(node, "reg", &ch->channel);
683 if (ret < 0) {
684 dev_err(&indio_dev->dev, "Missing channel index %d\n", ret);
685 return ret;
686 }
687
688 if (ch->channel >= dfsdm->num_chs) {
689 dev_err(&indio_dev->dev, " Error bad channel number %d (max = %d)\n",
690 ch->channel, dfsdm->num_chs);
691 return -EINVAL;
692 }
693
694 if (fwnode_property_present(node, "label")) {
695 /* label is optional */
696 ret = fwnode_property_read_string(node, "label", &ch->datasheet_name);
697 if (ret < 0) {
698 dev_err(&indio_dev->dev,
699 " Error parsing 'label' for idx %d\n", ch->channel);
700 return ret;
701 }
702 }
703
704 df_ch = &dfsdm->ch_list[ch->channel];
705 df_ch->id = ch->channel;
706
707 ret = fwnode_property_read_string(node, "st,adc-channel-type", &of_str);
708 if (!ret) {
709 val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_type);
710 if (val < 0)
711 return val;
712 } else {
713 val = 0;
714 }
715 df_ch->type = val;
716
717 ret = fwnode_property_read_string(node, "st,adc-channel-clk-src", &of_str);
718 if (!ret) {
719 val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_src);
720 if (val < 0)
721 return val;
722 } else {
723 val = 0;
724 }
725 df_ch->src = val;
726
727 ret = fwnode_property_read_u32(node, "st,adc-alt-channel", &df_ch->alt_si);
728 if (ret != -EINVAL)
729 df_ch->alt_si = 0;
730
731 if (adc->dev_data->type == DFSDM_IIO) {
732 backend = devm_iio_backend_fwnode_get(&indio_dev->dev, NULL, node);
733 if (IS_ERR(backend))
734 return dev_err_probe(&indio_dev->dev, PTR_ERR(backend),
735 "Failed to get backend\n");
736 adc->backend[ch->scan_index] = backend;
737 }
738
739 return 0;
740 }
741
dfsdm_adc_audio_get_spiclk(struct iio_dev * indio_dev,uintptr_t priv,const struct iio_chan_spec * chan,char * buf)742 static ssize_t dfsdm_adc_audio_get_spiclk(struct iio_dev *indio_dev,
743 uintptr_t priv,
744 const struct iio_chan_spec *chan,
745 char *buf)
746 {
747 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
748
749 return snprintf(buf, PAGE_SIZE, "%d\n", adc->spi_freq);
750 }
751
dfsdm_adc_set_samp_freq(struct iio_dev * indio_dev,unsigned int sample_freq,unsigned int spi_freq)752 static int dfsdm_adc_set_samp_freq(struct iio_dev *indio_dev,
753 unsigned int sample_freq,
754 unsigned int spi_freq)
755 {
756 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
757 unsigned int oversamp;
758 int ret;
759
760 oversamp = DIV_ROUND_CLOSEST(spi_freq, sample_freq);
761 if (spi_freq % sample_freq)
762 dev_dbg(&indio_dev->dev,
763 "Rate not accurate. requested (%u), actual (%u)\n",
764 sample_freq, spi_freq / oversamp);
765
766 ret = stm32_dfsdm_compute_all_osrs(indio_dev, oversamp);
767 if (ret < 0)
768 return ret;
769
770 adc->sample_freq = spi_freq / oversamp;
771 adc->oversamp = oversamp;
772
773 return 0;
774 }
775
dfsdm_adc_audio_set_spiclk(struct iio_dev * indio_dev,uintptr_t priv,const struct iio_chan_spec * chan,const char * buf,size_t len)776 static ssize_t dfsdm_adc_audio_set_spiclk(struct iio_dev *indio_dev,
777 uintptr_t priv,
778 const struct iio_chan_spec *chan,
779 const char *buf, size_t len)
780 {
781 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
782 struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
783 unsigned int sample_freq = adc->sample_freq;
784 unsigned int spi_freq;
785 int ret;
786
787 dev_err(&indio_dev->dev, "enter %s\n", __func__);
788 /* If DFSDM is master on SPI, SPI freq can not be updated */
789 if (ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
790 return -EPERM;
791
792 ret = kstrtoint(buf, 0, &spi_freq);
793 if (ret)
794 return ret;
795
796 if (!spi_freq)
797 return -EINVAL;
798
799 if (sample_freq) {
800 ret = dfsdm_adc_set_samp_freq(indio_dev, sample_freq, spi_freq);
801 if (ret < 0)
802 return ret;
803 }
804 adc->spi_freq = spi_freq;
805
806 return len;
807 }
808
stm32_dfsdm_start_conv(struct iio_dev * indio_dev,struct iio_trigger * trig)809 static int stm32_dfsdm_start_conv(struct iio_dev *indio_dev,
810 struct iio_trigger *trig)
811 {
812 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
813 struct regmap *regmap = adc->dfsdm->regmap;
814 int ret;
815
816 ret = stm32_dfsdm_channels_configure(indio_dev, adc->fl_id, trig);
817 if (ret < 0)
818 return ret;
819
820 ret = stm32_dfsdm_start_channel(indio_dev);
821 if (ret < 0)
822 return ret;
823
824 ret = stm32_dfsdm_filter_configure(indio_dev, adc->fl_id, trig);
825 if (ret < 0)
826 goto stop_channels;
827
828 ret = stm32_dfsdm_start_filter(adc, adc->fl_id, trig);
829 if (ret < 0)
830 goto filter_unconfigure;
831
832 return 0;
833
834 filter_unconfigure:
835 regmap_clear_bits(regmap, DFSDM_CR1(adc->fl_id), DFSDM_CR1_CFG_MASK);
836 stop_channels:
837 stm32_dfsdm_stop_channel(indio_dev);
838
839 return ret;
840 }
841
stm32_dfsdm_stop_conv(struct iio_dev * indio_dev)842 static void stm32_dfsdm_stop_conv(struct iio_dev *indio_dev)
843 {
844 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
845 struct regmap *regmap = adc->dfsdm->regmap;
846
847 stm32_dfsdm_stop_filter(adc->dfsdm, adc->fl_id);
848
849 regmap_clear_bits(regmap, DFSDM_CR1(adc->fl_id), DFSDM_CR1_CFG_MASK);
850
851 stm32_dfsdm_stop_channel(indio_dev);
852 }
853
stm32_dfsdm_set_watermark(struct iio_dev * indio_dev,unsigned int val)854 static int stm32_dfsdm_set_watermark(struct iio_dev *indio_dev,
855 unsigned int val)
856 {
857 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
858 unsigned int watermark = DFSDM_DMA_BUFFER_SIZE / 2;
859 unsigned int rx_buf_sz = DFSDM_DMA_BUFFER_SIZE;
860
861 /*
862 * DMA cyclic transfers are used, buffer is split into two periods.
863 * There should be :
864 * - always one buffer (period) DMA is working on
865 * - one buffer (period) driver pushed to ASoC side.
866 */
867 watermark = min(watermark, val * (unsigned int)(sizeof(u32)));
868 adc->buf_sz = min(rx_buf_sz, watermark * 2 * adc->nconv);
869
870 return 0;
871 }
872
stm32_dfsdm_adc_dma_residue(struct stm32_dfsdm_adc * adc)873 static unsigned int stm32_dfsdm_adc_dma_residue(struct stm32_dfsdm_adc *adc)
874 {
875 struct dma_tx_state state;
876 enum dma_status status;
877
878 status = dmaengine_tx_status(adc->dma_chan,
879 adc->dma_chan->cookie,
880 &state);
881 if (status == DMA_IN_PROGRESS) {
882 /* Residue is size in bytes from end of buffer */
883 unsigned int i = adc->buf_sz - state.residue;
884 unsigned int size;
885
886 /* Return available bytes */
887 if (i >= adc->bufi)
888 size = i - adc->bufi;
889 else
890 size = adc->buf_sz + i - adc->bufi;
891
892 return size;
893 }
894
895 return 0;
896 }
897
stm32_dfsdm_process_data(struct stm32_dfsdm_adc * adc,s32 * buffer)898 static inline void stm32_dfsdm_process_data(struct stm32_dfsdm_adc *adc,
899 s32 *buffer)
900 {
901 struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
902 struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
903 unsigned int i = adc->nconv;
904 s32 *ptr = buffer;
905
906 while (i--) {
907 /* Mask 8 LSB that contains the channel ID */
908 *ptr &= 0xFFFFFF00;
909 /* Convert 2^(n-1) sample to 2^(n-1)-1 to avoid wrap-around */
910 if (*ptr > flo->max)
911 *ptr -= 1;
912 /*
913 * Samples from filter are retrieved with 23 bits resolution
914 * or less. Shift left to align MSB on 24 bits.
915 */
916 *ptr <<= flo->lshift;
917
918 ptr++;
919 }
920 }
921
stm32_dfsdm_dma_buffer_done(void * data)922 static void stm32_dfsdm_dma_buffer_done(void *data)
923 {
924 struct iio_dev *indio_dev = data;
925 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
926 int available = stm32_dfsdm_adc_dma_residue(adc);
927 size_t old_pos;
928
929 /*
930 * FIXME: In Kernel interface does not support cyclic DMA buffer,and
931 * offers only an interface to push data samples per samples.
932 * For this reason IIO buffer interface is not used and interface is
933 * bypassed using a private callback registered by ASoC.
934 * This should be a temporary solution waiting a cyclic DMA engine
935 * support in IIO.
936 */
937
938 dev_dbg(&indio_dev->dev, "pos = %d, available = %d\n",
939 adc->bufi, available);
940 old_pos = adc->bufi;
941
942 while (available >= indio_dev->scan_bytes) {
943 s32 *buffer = (s32 *)&adc->rx_buf[adc->bufi];
944
945 stm32_dfsdm_process_data(adc, buffer);
946
947 available -= indio_dev->scan_bytes;
948 adc->bufi += indio_dev->scan_bytes;
949 if (adc->bufi >= adc->buf_sz) {
950 if (adc->cb)
951 adc->cb(&adc->rx_buf[old_pos],
952 adc->buf_sz - old_pos, adc->cb_priv);
953 adc->bufi = 0;
954 old_pos = 0;
955 }
956 /*
957 * In DMA mode the trigger services of IIO are not used
958 * (e.g. no call to iio_trigger_poll).
959 * Calling irq handler associated to the hardware trigger is not
960 * relevant as the conversions have already been done. Data
961 * transfers are performed directly in DMA callback instead.
962 * This implementation avoids to call trigger irq handler that
963 * may sleep, in an atomic context (DMA irq handler context).
964 */
965 if (adc->dev_data->type == DFSDM_IIO)
966 iio_push_to_buffers(indio_dev, buffer);
967 }
968 if (adc->cb)
969 adc->cb(&adc->rx_buf[old_pos], adc->bufi - old_pos,
970 adc->cb_priv);
971 }
972
stm32_dfsdm_adc_dma_start(struct iio_dev * indio_dev)973 static int stm32_dfsdm_adc_dma_start(struct iio_dev *indio_dev)
974 {
975 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
976 /*
977 * The DFSDM supports half-word transfers. However, for 16 bits record,
978 * 4 bytes buswidth is kept, to avoid losing samples LSBs when left
979 * shift is required.
980 */
981 struct dma_slave_config config = {
982 .src_addr = (dma_addr_t)adc->dfsdm->phys_base,
983 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
984 };
985 struct dma_async_tx_descriptor *desc;
986 dma_cookie_t cookie;
987 int ret;
988
989 if (!adc->dma_chan)
990 return -EINVAL;
991
992 dev_dbg(&indio_dev->dev, "size=%d watermark=%d\n",
993 adc->buf_sz, adc->buf_sz / 2);
994
995 if (adc->nconv == 1 && !indio_dev->trig)
996 config.src_addr += DFSDM_RDATAR(adc->fl_id);
997 else
998 config.src_addr += DFSDM_JDATAR(adc->fl_id);
999 ret = dmaengine_slave_config(adc->dma_chan, &config);
1000 if (ret)
1001 return ret;
1002
1003 /* Prepare a DMA cyclic transaction */
1004 desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1005 adc->dma_buf,
1006 adc->buf_sz, adc->buf_sz / 2,
1007 DMA_DEV_TO_MEM,
1008 DMA_PREP_INTERRUPT);
1009 if (!desc)
1010 return -EBUSY;
1011
1012 desc->callback = stm32_dfsdm_dma_buffer_done;
1013 desc->callback_param = indio_dev;
1014
1015 cookie = dmaengine_submit(desc);
1016 ret = dma_submit_error(cookie);
1017 if (ret)
1018 goto err_stop_dma;
1019
1020 /* Issue pending DMA requests */
1021 dma_async_issue_pending(adc->dma_chan);
1022
1023 if (adc->nconv == 1 && !indio_dev->trig) {
1024 /* Enable regular DMA transfer*/
1025 ret = regmap_set_bits(adc->dfsdm->regmap,
1026 DFSDM_CR1(adc->fl_id),
1027 DFSDM_CR1_RDMAEN_MASK);
1028 } else {
1029 /* Enable injected DMA transfer*/
1030 ret = regmap_set_bits(adc->dfsdm->regmap,
1031 DFSDM_CR1(adc->fl_id),
1032 DFSDM_CR1_JDMAEN_MASK);
1033 }
1034
1035 if (ret < 0)
1036 goto err_stop_dma;
1037
1038 return 0;
1039
1040 err_stop_dma:
1041 dmaengine_terminate_all(adc->dma_chan);
1042
1043 return ret;
1044 }
1045
stm32_dfsdm_adc_dma_stop(struct iio_dev * indio_dev)1046 static void stm32_dfsdm_adc_dma_stop(struct iio_dev *indio_dev)
1047 {
1048 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1049
1050 if (!adc->dma_chan)
1051 return;
1052
1053 regmap_clear_bits(adc->dfsdm->regmap, DFSDM_CR1(adc->fl_id),
1054 DFSDM_CR1_RDMAEN_MASK | DFSDM_CR1_JDMAEN_MASK);
1055 dmaengine_terminate_all(adc->dma_chan);
1056 }
1057
stm32_dfsdm_update_scan_mode(struct iio_dev * indio_dev,const unsigned long * scan_mask)1058 static int stm32_dfsdm_update_scan_mode(struct iio_dev *indio_dev,
1059 const unsigned long *scan_mask)
1060 {
1061 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1062
1063 adc->nconv = bitmap_weight(scan_mask, iio_get_masklength(indio_dev));
1064 adc->smask = *scan_mask;
1065
1066 dev_dbg(&indio_dev->dev, "nconv=%d mask=%lx\n", adc->nconv, *scan_mask);
1067
1068 return 0;
1069 }
1070
stm32_dfsdm_postenable(struct iio_dev * indio_dev)1071 static int stm32_dfsdm_postenable(struct iio_dev *indio_dev)
1072 {
1073 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1074 int i = 0;
1075 int ret;
1076
1077 /* Reset adc buffer index */
1078 adc->bufi = 0;
1079
1080 if (adc->hwc) {
1081 ret = iio_hw_consumer_enable(adc->hwc);
1082 if (ret < 0)
1083 return ret;
1084 }
1085
1086 if (adc->backend) {
1087 while (adc->backend[i]) {
1088 ret = iio_backend_enable(adc->backend[i]);
1089 if (ret < 0)
1090 return ret;
1091 i++;
1092 }
1093 }
1094
1095 ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1096 if (ret < 0)
1097 goto err_stop_hwc;
1098
1099 ret = stm32_dfsdm_adc_dma_start(indio_dev);
1100 if (ret) {
1101 dev_err(&indio_dev->dev, "Can't start DMA\n");
1102 goto stop_dfsdm;
1103 }
1104
1105 ret = stm32_dfsdm_start_conv(indio_dev, indio_dev->trig);
1106 if (ret) {
1107 dev_err(&indio_dev->dev, "Can't start conversion\n");
1108 goto err_stop_dma;
1109 }
1110
1111 return 0;
1112
1113 err_stop_dma:
1114 stm32_dfsdm_adc_dma_stop(indio_dev);
1115 stop_dfsdm:
1116 stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1117 err_stop_hwc:
1118 if (adc->hwc)
1119 iio_hw_consumer_disable(adc->hwc);
1120
1121 return ret;
1122 }
1123
stm32_dfsdm_predisable(struct iio_dev * indio_dev)1124 static int stm32_dfsdm_predisable(struct iio_dev *indio_dev)
1125 {
1126 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1127 int i = 0;
1128
1129 stm32_dfsdm_stop_conv(indio_dev);
1130
1131 stm32_dfsdm_adc_dma_stop(indio_dev);
1132
1133 stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1134
1135 if (adc->backend) {
1136 while (adc->backend[i]) {
1137 iio_backend_disable(adc->backend[i]);
1138 i++;
1139 }
1140 }
1141
1142 if (adc->hwc)
1143 iio_hw_consumer_disable(adc->hwc);
1144
1145 return 0;
1146 }
1147
1148 static const struct iio_buffer_setup_ops stm32_dfsdm_buffer_setup_ops = {
1149 .postenable = &stm32_dfsdm_postenable,
1150 .predisable = &stm32_dfsdm_predisable,
1151 };
1152
1153 /**
1154 * stm32_dfsdm_get_buff_cb() - register a callback that will be called when
1155 * DMA transfer period is achieved.
1156 *
1157 * @iio_dev: Handle to IIO device.
1158 * @cb: Pointer to callback function:
1159 * - data: pointer to data buffer
1160 * - size: size in byte of the data buffer
1161 * - private: pointer to consumer private structure.
1162 * @private: Pointer to consumer private structure.
1163 */
stm32_dfsdm_get_buff_cb(struct iio_dev * iio_dev,int (* cb)(const void * data,size_t size,void * private),void * private)1164 int stm32_dfsdm_get_buff_cb(struct iio_dev *iio_dev,
1165 int (*cb)(const void *data, size_t size,
1166 void *private),
1167 void *private)
1168 {
1169 struct stm32_dfsdm_adc *adc;
1170
1171 if (!iio_dev)
1172 return -EINVAL;
1173 adc = iio_priv(iio_dev);
1174
1175 adc->cb = cb;
1176 adc->cb_priv = private;
1177
1178 return 0;
1179 }
1180 EXPORT_SYMBOL_GPL(stm32_dfsdm_get_buff_cb);
1181
1182 /**
1183 * stm32_dfsdm_release_buff_cb - unregister buffer callback
1184 *
1185 * @iio_dev: Handle to IIO device.
1186 */
stm32_dfsdm_release_buff_cb(struct iio_dev * iio_dev)1187 int stm32_dfsdm_release_buff_cb(struct iio_dev *iio_dev)
1188 {
1189 struct stm32_dfsdm_adc *adc;
1190
1191 if (!iio_dev)
1192 return -EINVAL;
1193 adc = iio_priv(iio_dev);
1194
1195 adc->cb = NULL;
1196 adc->cb_priv = NULL;
1197
1198 return 0;
1199 }
1200 EXPORT_SYMBOL_GPL(stm32_dfsdm_release_buff_cb);
1201
stm32_dfsdm_single_conv(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,int * res)1202 static int stm32_dfsdm_single_conv(struct iio_dev *indio_dev,
1203 const struct iio_chan_spec *chan, int *res)
1204 {
1205 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1206 long time_left;
1207 int ret;
1208
1209 reinit_completion(&adc->completion);
1210
1211 adc->buffer = res;
1212
1213 ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1214 if (ret < 0)
1215 return ret;
1216
1217 ret = regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1218 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(1));
1219 if (ret < 0)
1220 goto stop_dfsdm;
1221
1222 adc->nconv = 1;
1223 adc->smask = BIT(chan->scan_index);
1224 ret = stm32_dfsdm_start_conv(indio_dev, NULL);
1225 if (ret < 0) {
1226 regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1227 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1228 goto stop_dfsdm;
1229 }
1230
1231 time_left = wait_for_completion_interruptible_timeout(&adc->completion,
1232 DFSDM_TIMEOUT);
1233
1234 /* Mask IRQ for regular conversion achievement*/
1235 regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1236 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1237
1238 if (time_left == 0)
1239 ret = -ETIMEDOUT;
1240 else if (time_left < 0)
1241 ret = time_left;
1242 else
1243 ret = IIO_VAL_INT;
1244
1245 stm32_dfsdm_stop_conv(indio_dev);
1246
1247 stm32_dfsdm_process_data(adc, res);
1248
1249 stop_dfsdm:
1250 stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1251
1252 return ret;
1253 }
1254
stm32_dfsdm_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)1255 static int stm32_dfsdm_write_raw(struct iio_dev *indio_dev,
1256 struct iio_chan_spec const *chan,
1257 int val, int val2, long mask)
1258 {
1259 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1260 struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
1261 unsigned int spi_freq;
1262 int ret = -EINVAL;
1263
1264 switch (ch->src) {
1265 case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL:
1266 spi_freq = adc->dfsdm->spi_master_freq;
1267 break;
1268 case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING:
1269 case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING:
1270 spi_freq = adc->dfsdm->spi_master_freq / 2;
1271 break;
1272 default:
1273 spi_freq = adc->spi_freq;
1274 }
1275
1276 switch (mask) {
1277 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1278 ret = iio_device_claim_direct_mode(indio_dev);
1279 if (ret)
1280 return ret;
1281
1282 ret = stm32_dfsdm_compute_all_osrs(indio_dev, val);
1283 if (!ret) {
1284 dev_dbg(&indio_dev->dev,
1285 "Sampling rate changed from (%u) to (%u)\n",
1286 adc->sample_freq, spi_freq / val);
1287 adc->oversamp = val;
1288 adc->sample_freq = spi_freq / val;
1289 }
1290 iio_device_release_direct_mode(indio_dev);
1291 return ret;
1292
1293 case IIO_CHAN_INFO_SAMP_FREQ:
1294 if (!val)
1295 return -EINVAL;
1296
1297 ret = iio_device_claim_direct_mode(indio_dev);
1298 if (ret)
1299 return ret;
1300
1301 ret = dfsdm_adc_set_samp_freq(indio_dev, val, spi_freq);
1302 iio_device_release_direct_mode(indio_dev);
1303 return ret;
1304 }
1305
1306 return -EINVAL;
1307 }
1308
stm32_dfsdm_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)1309 static int stm32_dfsdm_read_raw(struct iio_dev *indio_dev,
1310 struct iio_chan_spec const *chan, int *val,
1311 int *val2, long mask)
1312 {
1313 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1314
1315 struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
1316 struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
1317 u32 max = flo->max << (flo->lshift - chan->scan_type.shift);
1318 int idx = chan->scan_index;
1319 int ret;
1320
1321 if (flo->lshift < chan->scan_type.shift)
1322 max = flo->max >> (chan->scan_type.shift - flo->lshift);
1323
1324 switch (mask) {
1325 case IIO_CHAN_INFO_RAW:
1326 ret = iio_device_claim_direct_mode(indio_dev);
1327 if (ret)
1328 return ret;
1329 if (adc->hwc)
1330 ret = iio_hw_consumer_enable(adc->hwc);
1331 if (adc->backend)
1332 ret = iio_backend_enable(adc->backend[idx]);
1333 if (ret < 0) {
1334 dev_err(&indio_dev->dev,
1335 "%s: IIO enable failed (channel %d)\n",
1336 __func__, chan->channel);
1337 iio_device_release_direct_mode(indio_dev);
1338 return ret;
1339 }
1340 ret = stm32_dfsdm_single_conv(indio_dev, chan, val);
1341 if (adc->hwc)
1342 iio_hw_consumer_disable(adc->hwc);
1343 if (adc->backend)
1344 iio_backend_disable(adc->backend[idx]);
1345 if (ret < 0) {
1346 dev_err(&indio_dev->dev,
1347 "%s: Conversion failed (channel %d)\n",
1348 __func__, chan->channel);
1349 iio_device_release_direct_mode(indio_dev);
1350 return ret;
1351 }
1352 iio_device_release_direct_mode(indio_dev);
1353 return IIO_VAL_INT;
1354
1355 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1356 *val = adc->oversamp;
1357
1358 return IIO_VAL_INT;
1359
1360 case IIO_CHAN_INFO_SAMP_FREQ:
1361 *val = adc->sample_freq;
1362
1363 return IIO_VAL_INT;
1364
1365 case IIO_CHAN_INFO_SCALE:
1366 /*
1367 * Scale is expressed in mV.
1368 * When fast mode is disabled, actual resolution may be lower
1369 * than 2^n, where n = realbits - 1.
1370 * This leads to underestimating the input voltage.
1371 * To compensate this deviation, the voltage reference can be
1372 * corrected with a factor = realbits resolution / actual max
1373 */
1374 if (adc->backend) {
1375 ret = iio_backend_read_scale(adc->backend[idx], chan, val, NULL);
1376 if (ret < 0)
1377 return ret;
1378
1379 *val = div_u64((u64)*val * (u64)BIT(DFSDM_DATA_RES - 1), max);
1380 *val2 = chan->scan_type.realbits;
1381 if (chan->differential)
1382 *val *= 2;
1383 }
1384 return IIO_VAL_FRACTIONAL_LOG2;
1385
1386 case IIO_CHAN_INFO_OFFSET:
1387 /*
1388 * DFSDM output data are in the range [-2^n, 2^n],
1389 * with n = realbits - 1.
1390 * - Differential modulator:
1391 * Offset correspond to SD modulator offset.
1392 * - Single ended modulator:
1393 * Input is in [0V, Vref] range,
1394 * where 0V corresponds to -2^n, and Vref to 2^n.
1395 * Add 2^n to offset. (i.e. middle of input range)
1396 * offset = offset(sd) * vref / res(sd) * max / vref.
1397 */
1398 if (adc->backend) {
1399 ret = iio_backend_read_offset(adc->backend[idx], chan, val, NULL);
1400 if (ret < 0)
1401 return ret;
1402
1403 *val = div_u64((u64)max * *val, BIT(*val2 - 1));
1404 if (!chan->differential)
1405 *val += max;
1406 }
1407 return IIO_VAL_INT;
1408 }
1409
1410 return -EINVAL;
1411 }
1412
stm32_dfsdm_validate_trigger(struct iio_dev * indio_dev,struct iio_trigger * trig)1413 static int stm32_dfsdm_validate_trigger(struct iio_dev *indio_dev,
1414 struct iio_trigger *trig)
1415 {
1416 return stm32_dfsdm_get_jextsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1417 }
1418
1419 static const struct iio_info stm32_dfsdm_info_audio = {
1420 .hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1421 .read_raw = stm32_dfsdm_read_raw,
1422 .write_raw = stm32_dfsdm_write_raw,
1423 .update_scan_mode = stm32_dfsdm_update_scan_mode,
1424 };
1425
1426 static const struct iio_info stm32_dfsdm_info_adc = {
1427 .hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1428 .read_raw = stm32_dfsdm_read_raw,
1429 .write_raw = stm32_dfsdm_write_raw,
1430 .update_scan_mode = stm32_dfsdm_update_scan_mode,
1431 .validate_trigger = stm32_dfsdm_validate_trigger,
1432 };
1433
stm32_dfsdm_irq(int irq,void * arg)1434 static irqreturn_t stm32_dfsdm_irq(int irq, void *arg)
1435 {
1436 struct iio_dev *indio_dev = arg;
1437 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1438 struct regmap *regmap = adc->dfsdm->regmap;
1439 unsigned int status, int_en;
1440
1441 regmap_read(regmap, DFSDM_ISR(adc->fl_id), &status);
1442 regmap_read(regmap, DFSDM_CR2(adc->fl_id), &int_en);
1443
1444 if (status & DFSDM_ISR_REOCF_MASK) {
1445 /* Read the data register clean the IRQ status */
1446 regmap_read(regmap, DFSDM_RDATAR(adc->fl_id), adc->buffer);
1447 complete(&adc->completion);
1448 }
1449
1450 if (status & DFSDM_ISR_ROVRF_MASK) {
1451 if (int_en & DFSDM_CR2_ROVRIE_MASK)
1452 dev_warn(&indio_dev->dev, "Overrun detected\n");
1453 regmap_set_bits(regmap, DFSDM_ICR(adc->fl_id),
1454 DFSDM_ICR_CLRROVRF_MASK);
1455 }
1456
1457 return IRQ_HANDLED;
1458 }
1459
1460 /*
1461 * Define external info for SPI Frequency and audio sampling rate that can be
1462 * configured by ASoC driver through consumer.h API
1463 */
1464 static const struct iio_chan_spec_ext_info dfsdm_adc_audio_ext_info[] = {
1465 /* spi_clk_freq : clock freq on SPI/manchester bus used by channel */
1466 {
1467 .name = "spi_clk_freq",
1468 .shared = IIO_SHARED_BY_TYPE,
1469 .read = dfsdm_adc_audio_get_spiclk,
1470 .write = dfsdm_adc_audio_set_spiclk,
1471 },
1472 { }
1473 };
1474
stm32_dfsdm_dma_release(struct iio_dev * indio_dev)1475 static void stm32_dfsdm_dma_release(struct iio_dev *indio_dev)
1476 {
1477 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1478
1479 if (adc->dma_chan) {
1480 dma_free_coherent(adc->dma_chan->device->dev,
1481 DFSDM_DMA_BUFFER_SIZE,
1482 adc->rx_buf, adc->dma_buf);
1483 dma_release_channel(adc->dma_chan);
1484 }
1485 }
1486
stm32_dfsdm_dma_request(struct device * dev,struct iio_dev * indio_dev)1487 static int stm32_dfsdm_dma_request(struct device *dev,
1488 struct iio_dev *indio_dev)
1489 {
1490 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1491
1492 adc->dma_chan = dma_request_chan(dev, "rx");
1493 if (IS_ERR(adc->dma_chan)) {
1494 int ret = PTR_ERR(adc->dma_chan);
1495
1496 adc->dma_chan = NULL;
1497 return ret;
1498 }
1499
1500 adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1501 DFSDM_DMA_BUFFER_SIZE,
1502 &adc->dma_buf, GFP_KERNEL);
1503 if (!adc->rx_buf) {
1504 dma_release_channel(adc->dma_chan);
1505 return -ENOMEM;
1506 }
1507
1508 indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1509 indio_dev->setup_ops = &stm32_dfsdm_buffer_setup_ops;
1510
1511 return 0;
1512 }
1513
stm32_dfsdm_adc_chan_init_one(struct iio_dev * indio_dev,struct iio_chan_spec * ch,struct fwnode_handle * child)1514 static int stm32_dfsdm_adc_chan_init_one(struct iio_dev *indio_dev, struct iio_chan_spec *ch,
1515 struct fwnode_handle *child)
1516 {
1517 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1518 int ret;
1519
1520 if (child)
1521 ret = stm32_dfsdm_generic_channel_parse_of(adc->dfsdm, indio_dev, ch, child);
1522 else /* Legacy binding */
1523 ret = stm32_dfsdm_channel_parse_of(adc->dfsdm, indio_dev, ch);
1524 if (ret < 0)
1525 return dev_err_probe(&indio_dev->dev, ret, "Failed to parse channel\n");
1526
1527 ch->type = IIO_VOLTAGE;
1528 ch->indexed = 1;
1529
1530 /*
1531 * IIO_CHAN_INFO_RAW: used to compute regular conversion
1532 * IIO_CHAN_INFO_OVERSAMPLING_RATIO: used to set oversampling
1533 */
1534 if (child) {
1535 ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
1536 BIT(IIO_CHAN_INFO_SCALE) |
1537 BIT(IIO_CHAN_INFO_OFFSET);
1538 } else {
1539 /* Legacy. Scaling not supported */
1540 ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1541 }
1542
1543 ch->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO) |
1544 BIT(IIO_CHAN_INFO_SAMP_FREQ);
1545
1546 if (adc->dev_data->type == DFSDM_AUDIO) {
1547 ch->ext_info = dfsdm_adc_audio_ext_info;
1548 ch->scan_index = 0;
1549 } else {
1550 ch->scan_type.shift = 8;
1551 }
1552 ch->scan_type.sign = 's';
1553 ch->scan_type.realbits = 24;
1554 ch->scan_type.storagebits = 32;
1555
1556 return stm32_dfsdm_chan_configure(adc->dfsdm,
1557 &adc->dfsdm->ch_list[ch->channel]);
1558 }
1559
stm32_dfsdm_chan_init(struct iio_dev * indio_dev,struct iio_chan_spec * channels)1560 static int stm32_dfsdm_chan_init(struct iio_dev *indio_dev, struct iio_chan_spec *channels)
1561 {
1562 int num_ch = indio_dev->num_channels;
1563 int chan_idx = 0;
1564 int ret;
1565
1566 for (chan_idx = 0; chan_idx < num_ch; chan_idx++) {
1567 channels[chan_idx].scan_index = chan_idx;
1568 ret = stm32_dfsdm_adc_chan_init_one(indio_dev, &channels[chan_idx], NULL);
1569 if (ret < 0)
1570 return dev_err_probe(&indio_dev->dev, ret, "Channels init failed\n");
1571 }
1572
1573 return 0;
1574 }
1575
stm32_dfsdm_generic_chan_init(struct iio_dev * indio_dev,struct iio_chan_spec * channels)1576 static int stm32_dfsdm_generic_chan_init(struct iio_dev *indio_dev, struct iio_chan_spec *channels)
1577 {
1578 int chan_idx = 0, ret;
1579
1580 device_for_each_child_node_scoped(&indio_dev->dev, child) {
1581 /* Skip DAI node in DFSDM audio nodes */
1582 if (fwnode_property_present(child, "compatible"))
1583 continue;
1584
1585 channels[chan_idx].scan_index = chan_idx;
1586 ret = stm32_dfsdm_adc_chan_init_one(indio_dev, &channels[chan_idx], child);
1587 if (ret < 0)
1588 return dev_err_probe(&indio_dev->dev, ret, "Channels init failed\n");
1589
1590 chan_idx++;
1591 }
1592
1593 return chan_idx;
1594 }
1595
stm32_dfsdm_audio_init(struct device * dev,struct iio_dev * indio_dev)1596 static int stm32_dfsdm_audio_init(struct device *dev, struct iio_dev *indio_dev)
1597 {
1598 struct iio_chan_spec *ch;
1599 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1600 struct stm32_dfsdm_channel *d_ch;
1601 bool legacy = false;
1602 int num_ch, ret;
1603
1604 /* If st,adc-channels is defined legacy binding is used. Else assume generic binding. */
1605 num_ch = of_property_count_u32_elems(indio_dev->dev.of_node, "st,adc-channels");
1606 if (num_ch == 1)
1607 legacy = true;
1608
1609 ch = devm_kzalloc(&indio_dev->dev, sizeof(*ch), GFP_KERNEL);
1610 if (!ch)
1611 return -ENOMEM;
1612
1613 indio_dev->num_channels = 1;
1614 indio_dev->channels = ch;
1615
1616 if (legacy)
1617 ret = stm32_dfsdm_chan_init(indio_dev, ch);
1618 else
1619 ret = stm32_dfsdm_generic_chan_init(indio_dev, ch);
1620
1621 if (ret < 0) {
1622 dev_err(&indio_dev->dev, "Channels init failed\n");
1623 return ret;
1624 }
1625 ch->info_mask_separate = BIT(IIO_CHAN_INFO_SAMP_FREQ);
1626
1627 d_ch = &adc->dfsdm->ch_list[ch->channel];
1628 if (d_ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
1629 adc->spi_freq = adc->dfsdm->spi_master_freq;
1630
1631 return stm32_dfsdm_dma_request(dev, indio_dev);
1632 }
1633
stm32_dfsdm_adc_init(struct device * dev,struct iio_dev * indio_dev)1634 static int stm32_dfsdm_adc_init(struct device *dev, struct iio_dev *indio_dev)
1635 {
1636 struct iio_chan_spec *ch;
1637 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1638 int num_ch, ret;
1639 bool legacy = false;
1640
1641 adc->oversamp = DFSDM_DEFAULT_OVERSAMPLING;
1642 ret = stm32_dfsdm_compute_all_osrs(indio_dev, adc->oversamp);
1643 if (ret < 0)
1644 return ret;
1645
1646 num_ch = device_get_child_node_count(&indio_dev->dev);
1647 if (!num_ch) {
1648 /* No channels nodes found. Assume legacy binding */
1649 num_ch = of_property_count_u32_elems(indio_dev->dev.of_node, "st,adc-channels");
1650 if (num_ch < 0) {
1651 dev_err(&indio_dev->dev, "Bad st,adc-channels\n");
1652 return num_ch;
1653 }
1654
1655 legacy = true;
1656 }
1657
1658 if (num_ch > adc->dfsdm->num_chs) {
1659 dev_err(&indio_dev->dev, "Number of channel [%d] exceeds [%d]\n",
1660 num_ch, adc->dfsdm->num_chs);
1661 return -EINVAL;
1662 }
1663 indio_dev->num_channels = num_ch;
1664
1665 if (legacy) {
1666 /* Bind to SD modulator IIO device. */
1667 adc->hwc = devm_iio_hw_consumer_alloc(&indio_dev->dev);
1668 if (IS_ERR(adc->hwc))
1669 return dev_err_probe(&indio_dev->dev, -EPROBE_DEFER,
1670 "waiting for SD modulator\n");
1671 } else {
1672 /* Generic binding. SD modulator IIO device not used. Use SD modulator backend. */
1673 adc->hwc = NULL;
1674
1675 adc->backend = devm_kcalloc(&indio_dev->dev, num_ch, sizeof(*adc->backend),
1676 GFP_KERNEL);
1677 if (!adc->backend)
1678 return -ENOMEM;
1679 }
1680
1681 ch = devm_kcalloc(&indio_dev->dev, num_ch, sizeof(*ch), GFP_KERNEL);
1682 if (!ch)
1683 return -ENOMEM;
1684 indio_dev->channels = ch;
1685
1686 if (legacy)
1687 ret = stm32_dfsdm_chan_init(indio_dev, ch);
1688 else
1689 ret = stm32_dfsdm_generic_chan_init(indio_dev, ch);
1690 if (ret < 0)
1691 return ret;
1692
1693 init_completion(&adc->completion);
1694
1695 /* Optionally request DMA */
1696 ret = stm32_dfsdm_dma_request(dev, indio_dev);
1697 if (ret) {
1698 if (ret != -ENODEV)
1699 return dev_err_probe(dev, ret,
1700 "DMA channel request failed with\n");
1701
1702 dev_dbg(dev, "No DMA support\n");
1703 return 0;
1704 }
1705
1706 ret = iio_triggered_buffer_setup(indio_dev,
1707 &iio_pollfunc_store_time, NULL,
1708 &stm32_dfsdm_buffer_setup_ops);
1709 if (ret) {
1710 stm32_dfsdm_dma_release(indio_dev);
1711 dev_err(&indio_dev->dev, "buffer setup failed\n");
1712 return ret;
1713 }
1714
1715 /* lptimer/timer hardware triggers */
1716 indio_dev->modes |= INDIO_HARDWARE_TRIGGERED;
1717
1718 return 0;
1719 }
1720
1721 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_adc_data = {
1722 .type = DFSDM_IIO,
1723 .init = stm32_dfsdm_adc_init,
1724 };
1725
1726 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_audio_data = {
1727 .type = DFSDM_AUDIO,
1728 .init = stm32_dfsdm_audio_init,
1729 };
1730
1731 static const struct of_device_id stm32_dfsdm_adc_match[] = {
1732 {
1733 .compatible = "st,stm32-dfsdm-adc",
1734 .data = &stm32h7_dfsdm_adc_data,
1735 },
1736 {
1737 .compatible = "st,stm32-dfsdm-dmic",
1738 .data = &stm32h7_dfsdm_audio_data,
1739 },
1740 {}
1741 };
1742 MODULE_DEVICE_TABLE(of, stm32_dfsdm_adc_match);
1743
stm32_dfsdm_adc_probe(struct platform_device * pdev)1744 static int stm32_dfsdm_adc_probe(struct platform_device *pdev)
1745 {
1746 struct device *dev = &pdev->dev;
1747 struct stm32_dfsdm_adc *adc;
1748 struct device_node *np = dev->of_node;
1749 const struct stm32_dfsdm_dev_data *dev_data;
1750 struct iio_dev *iio;
1751 char *name;
1752 int ret, irq, val;
1753
1754 dev_data = of_device_get_match_data(dev);
1755 iio = devm_iio_device_alloc(dev, sizeof(*adc));
1756 if (!iio) {
1757 dev_err(dev, "%s: Failed to allocate IIO\n", __func__);
1758 return -ENOMEM;
1759 }
1760
1761 adc = iio_priv(iio);
1762 adc->dfsdm = dev_get_drvdata(dev->parent);
1763
1764 iio->dev.of_node = np;
1765 iio->modes = INDIO_DIRECT_MODE;
1766
1767 platform_set_drvdata(pdev, iio);
1768
1769 ret = of_property_read_u32(dev->of_node, "reg", &adc->fl_id);
1770 if (ret != 0 || adc->fl_id >= adc->dfsdm->num_fls) {
1771 dev_err(dev, "Missing or bad reg property\n");
1772 return -EINVAL;
1773 }
1774
1775 name = devm_kzalloc(dev, sizeof("dfsdm-adc0"), GFP_KERNEL);
1776 if (!name)
1777 return -ENOMEM;
1778 if (dev_data->type == DFSDM_AUDIO) {
1779 iio->info = &stm32_dfsdm_info_audio;
1780 snprintf(name, sizeof("dfsdm-pdm0"), "dfsdm-pdm%d", adc->fl_id);
1781 } else {
1782 iio->info = &stm32_dfsdm_info_adc;
1783 snprintf(name, sizeof("dfsdm-adc0"), "dfsdm-adc%d", adc->fl_id);
1784 }
1785 iio->name = name;
1786
1787 /*
1788 * In a first step IRQs generated for channels are not treated.
1789 * So IRQ associated to filter instance 0 is dedicated to the Filter 0.
1790 */
1791 irq = platform_get_irq(pdev, 0);
1792 if (irq < 0)
1793 return irq;
1794
1795 ret = devm_request_irq(dev, irq, stm32_dfsdm_irq,
1796 0, pdev->name, iio);
1797 if (ret < 0) {
1798 dev_err(dev, "Failed to request IRQ\n");
1799 return ret;
1800 }
1801
1802 ret = of_property_read_u32(dev->of_node, "st,filter-order", &val);
1803 if (ret < 0) {
1804 dev_err(dev, "Failed to set filter order\n");
1805 return ret;
1806 }
1807
1808 adc->dfsdm->fl_list[adc->fl_id].ford = val;
1809
1810 ret = of_property_read_u32(dev->of_node, "st,filter0-sync", &val);
1811 if (!ret)
1812 adc->dfsdm->fl_list[adc->fl_id].sync_mode = val;
1813
1814 adc->dev_data = dev_data;
1815 ret = dev_data->init(dev, iio);
1816 if (ret < 0)
1817 return ret;
1818
1819 ret = iio_device_register(iio);
1820 if (ret < 0)
1821 goto err_cleanup;
1822
1823 if (dev_data->type == DFSDM_AUDIO) {
1824 ret = of_platform_populate(np, NULL, NULL, dev);
1825 if (ret < 0) {
1826 dev_err(dev, "Failed to find an audio DAI\n");
1827 goto err_unregister;
1828 }
1829 }
1830
1831 return 0;
1832
1833 err_unregister:
1834 iio_device_unregister(iio);
1835 err_cleanup:
1836 stm32_dfsdm_dma_release(iio);
1837
1838 return ret;
1839 }
1840
stm32_dfsdm_adc_remove(struct platform_device * pdev)1841 static void stm32_dfsdm_adc_remove(struct platform_device *pdev)
1842 {
1843 struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1844 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1845
1846 if (adc->dev_data->type == DFSDM_AUDIO)
1847 of_platform_depopulate(&pdev->dev);
1848 iio_device_unregister(indio_dev);
1849 stm32_dfsdm_dma_release(indio_dev);
1850 }
1851
stm32_dfsdm_adc_suspend(struct device * dev)1852 static int stm32_dfsdm_adc_suspend(struct device *dev)
1853 {
1854 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1855
1856 if (iio_buffer_enabled(indio_dev))
1857 stm32_dfsdm_predisable(indio_dev);
1858
1859 return 0;
1860 }
1861
stm32_dfsdm_adc_resume(struct device * dev)1862 static int stm32_dfsdm_adc_resume(struct device *dev)
1863 {
1864 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1865 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1866 const struct iio_chan_spec *chan;
1867 struct stm32_dfsdm_channel *ch;
1868 int i, ret;
1869
1870 /* restore channels configuration */
1871 for (i = 0; i < indio_dev->num_channels; i++) {
1872 chan = indio_dev->channels + i;
1873 ch = &adc->dfsdm->ch_list[chan->channel];
1874 ret = stm32_dfsdm_chan_configure(adc->dfsdm, ch);
1875 if (ret)
1876 return ret;
1877 }
1878
1879 if (iio_buffer_enabled(indio_dev))
1880 stm32_dfsdm_postenable(indio_dev);
1881
1882 return 0;
1883 }
1884
1885 static DEFINE_SIMPLE_DEV_PM_OPS(stm32_dfsdm_adc_pm_ops,
1886 stm32_dfsdm_adc_suspend,
1887 stm32_dfsdm_adc_resume);
1888
1889 static struct platform_driver stm32_dfsdm_adc_driver = {
1890 .driver = {
1891 .name = "stm32-dfsdm-adc",
1892 .of_match_table = stm32_dfsdm_adc_match,
1893 .pm = pm_sleep_ptr(&stm32_dfsdm_adc_pm_ops),
1894 },
1895 .probe = stm32_dfsdm_adc_probe,
1896 .remove = stm32_dfsdm_adc_remove,
1897 };
1898 module_platform_driver(stm32_dfsdm_adc_driver);
1899
1900 MODULE_DESCRIPTION("STM32 sigma delta ADC");
1901 MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
1902 MODULE_LICENSE("GPL v2");
1903 MODULE_IMPORT_NS("IIO_BACKEND");
1904