xref: /linux/kernel/sched/sched.h (revision 8b82c18bf98ff4b5e01a6c36649eafa2c7a4e476)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #ifndef _KERNEL_SCHED_SCHED_H
6 #define _KERNEL_SCHED_SCHED_H
7 
8 #include <linux/sched/affinity.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/deadline.h>
12 #include <linux/sched.h>
13 #include <linux/sched/loadavg.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/rseq_api.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/smt.h>
18 #include <linux/sched/stat.h>
19 #include <linux/sched/sysctl.h>
20 #include <linux/sched/task_flags.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/topology.h>
23 
24 #include <linux/atomic.h>
25 #include <linux/bitmap.h>
26 #include <linux/bug.h>
27 #include <linux/capability.h>
28 #include <linux/cgroup_api.h>
29 #include <linux/cgroup.h>
30 #include <linux/context_tracking.h>
31 #include <linux/cpufreq.h>
32 #include <linux/cpumask_api.h>
33 #include <linux/ctype.h>
34 #include <linux/file.h>
35 #include <linux/fs_api.h>
36 #include <linux/hrtimer_api.h>
37 #include <linux/interrupt.h>
38 #include <linux/irq_work.h>
39 #include <linux/jiffies.h>
40 #include <linux/kref_api.h>
41 #include <linux/kthread.h>
42 #include <linux/ktime_api.h>
43 #include <linux/lockdep_api.h>
44 #include <linux/lockdep.h>
45 #include <linux/minmax.h>
46 #include <linux/mm.h>
47 #include <linux/module.h>
48 #include <linux/mutex_api.h>
49 #include <linux/plist.h>
50 #include <linux/poll.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/psi.h>
54 #include <linux/rcupdate.h>
55 #include <linux/seq_file.h>
56 #include <linux/seqlock.h>
57 #include <linux/softirq.h>
58 #include <linux/spinlock_api.h>
59 #include <linux/static_key.h>
60 #include <linux/stop_machine.h>
61 #include <linux/syscalls_api.h>
62 #include <linux/syscalls.h>
63 #include <linux/tick.h>
64 #include <linux/topology.h>
65 #include <linux/types.h>
66 #include <linux/u64_stats_sync_api.h>
67 #include <linux/uaccess.h>
68 #include <linux/wait_api.h>
69 #include <linux/wait_bit.h>
70 #include <linux/workqueue_api.h>
71 #include <linux/delayacct.h>
72 
73 #include <trace/events/power.h>
74 #include <trace/events/sched.h>
75 
76 #include "../workqueue_internal.h"
77 
78 struct rq;
79 struct cfs_rq;
80 struct rt_rq;
81 struct sched_group;
82 struct cpuidle_state;
83 
84 #ifdef CONFIG_PARAVIRT
85 # include <asm/paravirt.h>
86 # include <asm/paravirt_api_clock.h>
87 #endif
88 
89 #include <asm/barrier.h>
90 
91 #include "cpupri.h"
92 #include "cpudeadline.h"
93 
94 #ifdef CONFIG_SCHED_DEBUG
95 # define SCHED_WARN_ON(x)      WARN_ONCE(x, #x)
96 #else
97 # define SCHED_WARN_ON(x)      ({ (void)(x), 0; })
98 #endif
99 
100 /* task_struct::on_rq states: */
101 #define TASK_ON_RQ_QUEUED	1
102 #define TASK_ON_RQ_MIGRATING	2
103 
104 extern __read_mostly int scheduler_running;
105 
106 extern unsigned long calc_load_update;
107 extern atomic_long_t calc_load_tasks;
108 
109 extern void calc_global_load_tick(struct rq *this_rq);
110 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
111 
112 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
113 
114 extern int sysctl_sched_rt_period;
115 extern int sysctl_sched_rt_runtime;
116 extern int sched_rr_timeslice;
117 
118 /*
119  * Asymmetric CPU capacity bits
120  */
121 struct asym_cap_data {
122 	struct list_head link;
123 	struct rcu_head rcu;
124 	unsigned long capacity;
125 	unsigned long cpus[];
126 };
127 
128 extern struct list_head asym_cap_list;
129 
130 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus)
131 
132 /*
133  * Helpers for converting nanosecond timing to jiffy resolution
134  */
135 #define NS_TO_JIFFIES(time)	((unsigned long)(time) / (NSEC_PER_SEC/HZ))
136 
137 /*
138  * Increase resolution of nice-level calculations for 64-bit architectures.
139  * The extra resolution improves shares distribution and load balancing of
140  * low-weight task groups (eg. nice +19 on an autogroup), deeper task-group
141  * hierarchies, especially on larger systems. This is not a user-visible change
142  * and does not change the user-interface for setting shares/weights.
143  *
144  * We increase resolution only if we have enough bits to allow this increased
145  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
146  * are pretty high and the returns do not justify the increased costs.
147  *
148  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
149  * increase coverage and consistency always enable it on 64-bit platforms.
150  */
151 #ifdef CONFIG_64BIT
152 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
153 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
154 # define scale_load_down(w)					\
155 ({								\
156 	unsigned long __w = (w);				\
157 								\
158 	if (__w)						\
159 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT);	\
160 	__w;							\
161 })
162 #else
163 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
164 # define scale_load(w)		(w)
165 # define scale_load_down(w)	(w)
166 #endif
167 
168 /*
169  * Task weight (visible to users) and its load (invisible to users) have
170  * independent resolution, but they should be well calibrated. We use
171  * scale_load() and scale_load_down(w) to convert between them. The
172  * following must be true:
173  *
174  *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
175  *
176  */
177 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
178 
179 /*
180  * Single value that decides SCHED_DEADLINE internal math precision.
181  * 10 -> just above 1us
182  * 9  -> just above 0.5us
183  */
184 #define DL_SCALE		10
185 
186 /*
187  * Single value that denotes runtime == period, ie unlimited time.
188  */
189 #define RUNTIME_INF		((u64)~0ULL)
190 
idle_policy(int policy)191 static inline int idle_policy(int policy)
192 {
193 	return policy == SCHED_IDLE;
194 }
195 
normal_policy(int policy)196 static inline int normal_policy(int policy)
197 {
198 #ifdef CONFIG_SCHED_CLASS_EXT
199 	if (policy == SCHED_EXT)
200 		return true;
201 #endif
202 	return policy == SCHED_NORMAL;
203 }
204 
fair_policy(int policy)205 static inline int fair_policy(int policy)
206 {
207 	return normal_policy(policy) || policy == SCHED_BATCH;
208 }
209 
rt_policy(int policy)210 static inline int rt_policy(int policy)
211 {
212 	return policy == SCHED_FIFO || policy == SCHED_RR;
213 }
214 
dl_policy(int policy)215 static inline int dl_policy(int policy)
216 {
217 	return policy == SCHED_DEADLINE;
218 }
219 
valid_policy(int policy)220 static inline bool valid_policy(int policy)
221 {
222 	return idle_policy(policy) || fair_policy(policy) ||
223 		rt_policy(policy) || dl_policy(policy);
224 }
225 
task_has_idle_policy(struct task_struct * p)226 static inline int task_has_idle_policy(struct task_struct *p)
227 {
228 	return idle_policy(p->policy);
229 }
230 
task_has_rt_policy(struct task_struct * p)231 static inline int task_has_rt_policy(struct task_struct *p)
232 {
233 	return rt_policy(p->policy);
234 }
235 
task_has_dl_policy(struct task_struct * p)236 static inline int task_has_dl_policy(struct task_struct *p)
237 {
238 	return dl_policy(p->policy);
239 }
240 
241 #define cap_scale(v, s)		((v)*(s) >> SCHED_CAPACITY_SHIFT)
242 
update_avg(u64 * avg,u64 sample)243 static inline void update_avg(u64 *avg, u64 sample)
244 {
245 	s64 diff = sample - *avg;
246 
247 	*avg += diff / 8;
248 }
249 
250 /*
251  * Shifting a value by an exponent greater *or equal* to the size of said value
252  * is UB; cap at size-1.
253  */
254 #define shr_bound(val, shift)							\
255 	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
256 
257 /*
258  * cgroup weight knobs should use the common MIN, DFL and MAX values which are
259  * 1, 100 and 10000 respectively. While it loses a bit of range on both ends, it
260  * maps pretty well onto the shares value used by scheduler and the round-trip
261  * conversions preserve the original value over the entire range.
262  */
sched_weight_from_cgroup(unsigned long cgrp_weight)263 static inline unsigned long sched_weight_from_cgroup(unsigned long cgrp_weight)
264 {
265 	return DIV_ROUND_CLOSEST_ULL(cgrp_weight * 1024, CGROUP_WEIGHT_DFL);
266 }
267 
sched_weight_to_cgroup(unsigned long weight)268 static inline unsigned long sched_weight_to_cgroup(unsigned long weight)
269 {
270 	return clamp_t(unsigned long,
271 		       DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024),
272 		       CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
273 }
274 
275 /*
276  * !! For sched_setattr_nocheck() (kernel) only !!
277  *
278  * This is actually gross. :(
279  *
280  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
281  * tasks, but still be able to sleep. We need this on platforms that cannot
282  * atomically change clock frequency. Remove once fast switching will be
283  * available on such platforms.
284  *
285  * SUGOV stands for SchedUtil GOVernor.
286  */
287 #define SCHED_FLAG_SUGOV	0x10000000
288 
289 #define SCHED_DL_FLAGS		(SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
290 
dl_entity_is_special(const struct sched_dl_entity * dl_se)291 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se)
292 {
293 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
294 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
295 #else
296 	return false;
297 #endif
298 }
299 
300 /*
301  * Tells if entity @a should preempt entity @b.
302  */
dl_entity_preempt(const struct sched_dl_entity * a,const struct sched_dl_entity * b)303 static inline bool dl_entity_preempt(const struct sched_dl_entity *a,
304 				     const struct sched_dl_entity *b)
305 {
306 	return dl_entity_is_special(a) ||
307 	       dl_time_before(a->deadline, b->deadline);
308 }
309 
310 /*
311  * This is the priority-queue data structure of the RT scheduling class:
312  */
313 struct rt_prio_array {
314 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
315 	struct list_head queue[MAX_RT_PRIO];
316 };
317 
318 struct rt_bandwidth {
319 	/* nests inside the rq lock: */
320 	raw_spinlock_t		rt_runtime_lock;
321 	ktime_t			rt_period;
322 	u64			rt_runtime;
323 	struct hrtimer		rt_period_timer;
324 	unsigned int		rt_period_active;
325 };
326 
dl_bandwidth_enabled(void)327 static inline int dl_bandwidth_enabled(void)
328 {
329 	return sysctl_sched_rt_runtime >= 0;
330 }
331 
332 /*
333  * To keep the bandwidth of -deadline tasks under control
334  * we need some place where:
335  *  - store the maximum -deadline bandwidth of each cpu;
336  *  - cache the fraction of bandwidth that is currently allocated in
337  *    each root domain;
338  *
339  * This is all done in the data structure below. It is similar to the
340  * one used for RT-throttling (rt_bandwidth), with the main difference
341  * that, since here we are only interested in admission control, we
342  * do not decrease any runtime while the group "executes", neither we
343  * need a timer to replenish it.
344  *
345  * With respect to SMP, bandwidth is given on a per root domain basis,
346  * meaning that:
347  *  - bw (< 100%) is the deadline bandwidth of each CPU;
348  *  - total_bw is the currently allocated bandwidth in each root domain;
349  */
350 struct dl_bw {
351 	raw_spinlock_t		lock;
352 	u64			bw;
353 	u64			total_bw;
354 };
355 
356 extern void init_dl_bw(struct dl_bw *dl_b);
357 extern int  sched_dl_global_validate(void);
358 extern void sched_dl_do_global(void);
359 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
360 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
361 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
362 extern bool __checkparam_dl(const struct sched_attr *attr);
363 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
364 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
365 extern int  dl_bw_deactivate(int cpu);
366 extern s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec);
367 /*
368  * SCHED_DEADLINE supports servers (nested scheduling) with the following
369  * interface:
370  *
371  *   dl_se::rq -- runqueue we belong to.
372  *
373  *   dl_se::server_has_tasks() -- used on bandwidth enforcement; we 'stop' the
374  *                                server when it runs out of tasks to run.
375  *
376  *   dl_se::server_pick() -- nested pick_next_task(); we yield the period if this
377  *                           returns NULL.
378  *
379  *   dl_server_update() -- called from update_curr_common(), propagates runtime
380  *                         to the server.
381  *
382  *   dl_server_start()
383  *   dl_server_stop()  -- start/stop the server when it has (no) tasks.
384  *
385  *   dl_server_init() -- initializes the server.
386  */
387 extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec);
388 extern void dl_server_start(struct sched_dl_entity *dl_se);
389 extern void dl_server_stop(struct sched_dl_entity *dl_se);
390 extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
391 		    dl_server_has_tasks_f has_tasks,
392 		    dl_server_pick_f pick_task);
393 
394 extern void dl_server_update_idle_time(struct rq *rq,
395 		    struct task_struct *p);
396 extern void fair_server_init(struct rq *rq);
397 extern void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq);
398 extern int dl_server_apply_params(struct sched_dl_entity *dl_se,
399 		    u64 runtime, u64 period, bool init);
400 
dl_server_active(struct sched_dl_entity * dl_se)401 static inline bool dl_server_active(struct sched_dl_entity *dl_se)
402 {
403 	return dl_se->dl_server_active;
404 }
405 
406 #ifdef CONFIG_CGROUP_SCHED
407 
408 extern struct list_head task_groups;
409 
410 struct cfs_bandwidth {
411 #ifdef CONFIG_CFS_BANDWIDTH
412 	raw_spinlock_t		lock;
413 	ktime_t			period;
414 	u64			quota;
415 	u64			runtime;
416 	u64			burst;
417 	u64			runtime_snap;
418 	s64			hierarchical_quota;
419 
420 	u8			idle;
421 	u8			period_active;
422 	u8			slack_started;
423 	struct hrtimer		period_timer;
424 	struct hrtimer		slack_timer;
425 	struct list_head	throttled_cfs_rq;
426 
427 	/* Statistics: */
428 	int			nr_periods;
429 	int			nr_throttled;
430 	int			nr_burst;
431 	u64			throttled_time;
432 	u64			burst_time;
433 #endif
434 };
435 
436 /* Task group related information */
437 struct task_group {
438 	struct cgroup_subsys_state css;
439 
440 #ifdef CONFIG_GROUP_SCHED_WEIGHT
441 	/* A positive value indicates that this is a SCHED_IDLE group. */
442 	int			idle;
443 #endif
444 
445 #ifdef CONFIG_FAIR_GROUP_SCHED
446 	/* schedulable entities of this group on each CPU */
447 	struct sched_entity	**se;
448 	/* runqueue "owned" by this group on each CPU */
449 	struct cfs_rq		**cfs_rq;
450 	unsigned long		shares;
451 #ifdef	CONFIG_SMP
452 	/*
453 	 * load_avg can be heavily contended at clock tick time, so put
454 	 * it in its own cache-line separated from the fields above which
455 	 * will also be accessed at each tick.
456 	 */
457 	atomic_long_t		load_avg ____cacheline_aligned;
458 #endif
459 #endif
460 
461 #ifdef CONFIG_RT_GROUP_SCHED
462 	struct sched_rt_entity	**rt_se;
463 	struct rt_rq		**rt_rq;
464 
465 	struct rt_bandwidth	rt_bandwidth;
466 #endif
467 
468 #ifdef CONFIG_EXT_GROUP_SCHED
469 	u32			scx_flags;	/* SCX_TG_* */
470 	u32			scx_weight;
471 #endif
472 
473 	struct rcu_head		rcu;
474 	struct list_head	list;
475 
476 	struct task_group	*parent;
477 	struct list_head	siblings;
478 	struct list_head	children;
479 
480 #ifdef CONFIG_SCHED_AUTOGROUP
481 	struct autogroup	*autogroup;
482 #endif
483 
484 	struct cfs_bandwidth	cfs_bandwidth;
485 
486 #ifdef CONFIG_UCLAMP_TASK_GROUP
487 	/* The two decimal precision [%] value requested from user-space */
488 	unsigned int		uclamp_pct[UCLAMP_CNT];
489 	/* Clamp values requested for a task group */
490 	struct uclamp_se	uclamp_req[UCLAMP_CNT];
491 	/* Effective clamp values used for a task group */
492 	struct uclamp_se	uclamp[UCLAMP_CNT];
493 #endif
494 
495 };
496 
497 #ifdef CONFIG_GROUP_SCHED_WEIGHT
498 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
499 
500 /*
501  * A weight of 0 or 1 can cause arithmetics problems.
502  * A weight of a cfs_rq is the sum of weights of which entities
503  * are queued on this cfs_rq, so a weight of a entity should not be
504  * too large, so as the shares value of a task group.
505  * (The default weight is 1024 - so there's no practical
506  *  limitation from this.)
507  */
508 #define MIN_SHARES		(1UL <<  1)
509 #define MAX_SHARES		(1UL << 18)
510 #endif
511 
512 typedef int (*tg_visitor)(struct task_group *, void *);
513 
514 extern int walk_tg_tree_from(struct task_group *from,
515 			     tg_visitor down, tg_visitor up, void *data);
516 
517 /*
518  * Iterate the full tree, calling @down when first entering a node and @up when
519  * leaving it for the final time.
520  *
521  * Caller must hold rcu_lock or sufficient equivalent.
522  */
walk_tg_tree(tg_visitor down,tg_visitor up,void * data)523 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
524 {
525 	return walk_tg_tree_from(&root_task_group, down, up, data);
526 }
527 
css_tg(struct cgroup_subsys_state * css)528 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
529 {
530 	return css ? container_of(css, struct task_group, css) : NULL;
531 }
532 
533 extern int tg_nop(struct task_group *tg, void *data);
534 
535 #ifdef CONFIG_FAIR_GROUP_SCHED
536 extern void free_fair_sched_group(struct task_group *tg);
537 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
538 extern void online_fair_sched_group(struct task_group *tg);
539 extern void unregister_fair_sched_group(struct task_group *tg);
540 #else
free_fair_sched_group(struct task_group * tg)541 static inline void free_fair_sched_group(struct task_group *tg) { }
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)542 static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
543 {
544        return 1;
545 }
online_fair_sched_group(struct task_group * tg)546 static inline void online_fair_sched_group(struct task_group *tg) { }
unregister_fair_sched_group(struct task_group * tg)547 static inline void unregister_fair_sched_group(struct task_group *tg) { }
548 #endif
549 
550 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
551 			struct sched_entity *se, int cpu,
552 			struct sched_entity *parent);
553 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent);
554 
555 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
556 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
557 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
558 extern bool cfs_task_bw_constrained(struct task_struct *p);
559 
560 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
561 		struct sched_rt_entity *rt_se, int cpu,
562 		struct sched_rt_entity *parent);
563 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
564 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
565 extern long sched_group_rt_runtime(struct task_group *tg);
566 extern long sched_group_rt_period(struct task_group *tg);
567 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
568 
569 extern struct task_group *sched_create_group(struct task_group *parent);
570 extern void sched_online_group(struct task_group *tg,
571 			       struct task_group *parent);
572 extern void sched_destroy_group(struct task_group *tg);
573 extern void sched_release_group(struct task_group *tg);
574 
575 extern void sched_move_task(struct task_struct *tsk, bool for_autogroup);
576 
577 #ifdef CONFIG_FAIR_GROUP_SCHED
578 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
579 
580 extern int sched_group_set_idle(struct task_group *tg, long idle);
581 
582 #ifdef CONFIG_SMP
583 extern void set_task_rq_fair(struct sched_entity *se,
584 			     struct cfs_rq *prev, struct cfs_rq *next);
585 #else /* !CONFIG_SMP */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)586 static inline void set_task_rq_fair(struct sched_entity *se,
587 			     struct cfs_rq *prev, struct cfs_rq *next) { }
588 #endif /* CONFIG_SMP */
589 #else /* !CONFIG_FAIR_GROUP_SCHED */
sched_group_set_shares(struct task_group * tg,unsigned long shares)590 static inline int sched_group_set_shares(struct task_group *tg, unsigned long shares) { return 0; }
sched_group_set_idle(struct task_group * tg,long idle)591 static inline int sched_group_set_idle(struct task_group *tg, long idle) { return 0; }
592 #endif /* CONFIG_FAIR_GROUP_SCHED */
593 
594 #else /* CONFIG_CGROUP_SCHED */
595 
596 struct cfs_bandwidth { };
597 
cfs_task_bw_constrained(struct task_struct * p)598 static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; }
599 
600 #endif	/* CONFIG_CGROUP_SCHED */
601 
602 extern void unregister_rt_sched_group(struct task_group *tg);
603 extern void free_rt_sched_group(struct task_group *tg);
604 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
605 
606 /*
607  * u64_u32_load/u64_u32_store
608  *
609  * Use a copy of a u64 value to protect against data race. This is only
610  * applicable for 32-bits architectures.
611  */
612 #ifdef CONFIG_64BIT
613 # define u64_u32_load_copy(var, copy)		var
614 # define u64_u32_store_copy(var, copy, val)	(var = val)
615 #else
616 # define u64_u32_load_copy(var, copy)					\
617 ({									\
618 	u64 __val, __val_copy;						\
619 	do {								\
620 		__val_copy = copy;					\
621 		/*							\
622 		 * paired with u64_u32_store_copy(), ordering access	\
623 		 * to var and copy.					\
624 		 */							\
625 		smp_rmb();						\
626 		__val = var;						\
627 	} while (__val != __val_copy);					\
628 	__val;								\
629 })
630 # define u64_u32_store_copy(var, copy, val)				\
631 do {									\
632 	typeof(val) __val = (val);					\
633 	var = __val;							\
634 	/*								\
635 	 * paired with u64_u32_load_copy(), ordering access to var and	\
636 	 * copy.							\
637 	 */								\
638 	smp_wmb();							\
639 	copy = __val;							\
640 } while (0)
641 #endif
642 # define u64_u32_load(var)		u64_u32_load_copy(var, var##_copy)
643 # define u64_u32_store(var, val)	u64_u32_store_copy(var, var##_copy, val)
644 
645 struct balance_callback {
646 	struct balance_callback *next;
647 	void (*func)(struct rq *rq);
648 };
649 
650 /* CFS-related fields in a runqueue */
651 struct cfs_rq {
652 	struct load_weight	load;
653 	unsigned int		nr_queued;
654 	unsigned int		h_nr_queued;       /* SCHED_{NORMAL,BATCH,IDLE} */
655 	unsigned int		h_nr_runnable;     /* SCHED_{NORMAL,BATCH,IDLE} */
656 	unsigned int		h_nr_idle; /* SCHED_IDLE */
657 
658 	s64			avg_vruntime;
659 	u64			avg_load;
660 
661 	u64			min_vruntime;
662 #ifdef CONFIG_SCHED_CORE
663 	unsigned int		forceidle_seq;
664 	u64			min_vruntime_fi;
665 #endif
666 
667 	struct rb_root_cached	tasks_timeline;
668 
669 	/*
670 	 * 'curr' points to currently running entity on this cfs_rq.
671 	 * It is set to NULL otherwise (i.e when none are currently running).
672 	 */
673 	struct sched_entity	*curr;
674 	struct sched_entity	*next;
675 
676 #ifdef CONFIG_SMP
677 	/*
678 	 * CFS load tracking
679 	 */
680 	struct sched_avg	avg;
681 #ifndef CONFIG_64BIT
682 	u64			last_update_time_copy;
683 #endif
684 	struct {
685 		raw_spinlock_t	lock ____cacheline_aligned;
686 		int		nr;
687 		unsigned long	load_avg;
688 		unsigned long	util_avg;
689 		unsigned long	runnable_avg;
690 	} removed;
691 
692 #ifdef CONFIG_FAIR_GROUP_SCHED
693 	u64			last_update_tg_load_avg;
694 	unsigned long		tg_load_avg_contrib;
695 	long			propagate;
696 	long			prop_runnable_sum;
697 
698 	/*
699 	 *   h_load = weight * f(tg)
700 	 *
701 	 * Where f(tg) is the recursive weight fraction assigned to
702 	 * this group.
703 	 */
704 	unsigned long		h_load;
705 	u64			last_h_load_update;
706 	struct sched_entity	*h_load_next;
707 #endif /* CONFIG_FAIR_GROUP_SCHED */
708 #endif /* CONFIG_SMP */
709 
710 #ifdef CONFIG_FAIR_GROUP_SCHED
711 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
712 
713 	/*
714 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
715 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
716 	 * (like users, containers etc.)
717 	 *
718 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
719 	 * This list is used during load balance.
720 	 */
721 	int			on_list;
722 	struct list_head	leaf_cfs_rq_list;
723 	struct task_group	*tg;	/* group that "owns" this runqueue */
724 
725 	/* Locally cached copy of our task_group's idle value */
726 	int			idle;
727 
728 #ifdef CONFIG_CFS_BANDWIDTH
729 	int			runtime_enabled;
730 	s64			runtime_remaining;
731 
732 	u64			throttled_pelt_idle;
733 #ifndef CONFIG_64BIT
734 	u64                     throttled_pelt_idle_copy;
735 #endif
736 	u64			throttled_clock;
737 	u64			throttled_clock_pelt;
738 	u64			throttled_clock_pelt_time;
739 	u64			throttled_clock_self;
740 	u64			throttled_clock_self_time;
741 	int			throttled;
742 	int			throttle_count;
743 	struct list_head	throttled_list;
744 	struct list_head	throttled_csd_list;
745 #endif /* CONFIG_CFS_BANDWIDTH */
746 #endif /* CONFIG_FAIR_GROUP_SCHED */
747 };
748 
749 #ifdef CONFIG_SCHED_CLASS_EXT
750 /* scx_rq->flags, protected by the rq lock */
751 enum scx_rq_flags {
752 	/*
753 	 * A hotplugged CPU starts scheduling before rq_online_scx(). Track
754 	 * ops.cpu_on/offline() state so that ops.enqueue/dispatch() are called
755 	 * only while the BPF scheduler considers the CPU to be online.
756 	 */
757 	SCX_RQ_ONLINE		= 1 << 0,
758 	SCX_RQ_CAN_STOP_TICK	= 1 << 1,
759 	SCX_RQ_BAL_PENDING	= 1 << 2, /* balance hasn't run yet */
760 	SCX_RQ_BAL_KEEP		= 1 << 3, /* balance decided to keep current */
761 	SCX_RQ_BYPASSING	= 1 << 4,
762 	SCX_RQ_CLK_VALID	= 1 << 5, /* RQ clock is fresh and valid */
763 
764 	SCX_RQ_IN_WAKEUP	= 1 << 16,
765 	SCX_RQ_IN_BALANCE	= 1 << 17,
766 };
767 
768 struct scx_rq {
769 	struct scx_dispatch_q	local_dsq;
770 	struct list_head	runnable_list;		/* runnable tasks on this rq */
771 	struct list_head	ddsp_deferred_locals;	/* deferred ddsps from enq */
772 	unsigned long		ops_qseq;
773 	u64			extra_enq_flags;	/* see move_task_to_local_dsq() */
774 	u32			nr_running;
775 	u32			cpuperf_target;		/* [0, SCHED_CAPACITY_SCALE] */
776 	bool			cpu_released;
777 	u32			flags;
778 	u64			clock;			/* current per-rq clock -- see scx_bpf_now() */
779 	cpumask_var_t		cpus_to_kick;
780 	cpumask_var_t		cpus_to_kick_if_idle;
781 	cpumask_var_t		cpus_to_preempt;
782 	cpumask_var_t		cpus_to_wait;
783 	unsigned long		pnt_seq;
784 	struct balance_callback	deferred_bal_cb;
785 	struct irq_work		deferred_irq_work;
786 	struct irq_work		kick_cpus_irq_work;
787 };
788 #endif /* CONFIG_SCHED_CLASS_EXT */
789 
rt_bandwidth_enabled(void)790 static inline int rt_bandwidth_enabled(void)
791 {
792 	return sysctl_sched_rt_runtime >= 0;
793 }
794 
795 /* RT IPI pull logic requires IRQ_WORK */
796 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
797 # define HAVE_RT_PUSH_IPI
798 #endif
799 
800 /* Real-Time classes' related field in a runqueue: */
801 struct rt_rq {
802 	struct rt_prio_array	active;
803 	unsigned int		rt_nr_running;
804 	unsigned int		rr_nr_running;
805 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
806 	struct {
807 		int		curr; /* highest queued rt task prio */
808 #ifdef CONFIG_SMP
809 		int		next; /* next highest */
810 #endif
811 	} highest_prio;
812 #endif
813 #ifdef CONFIG_SMP
814 	bool			overloaded;
815 	struct plist_head	pushable_tasks;
816 
817 #endif /* CONFIG_SMP */
818 	int			rt_queued;
819 
820 #ifdef CONFIG_RT_GROUP_SCHED
821 	int			rt_throttled;
822 	u64			rt_time;
823 	u64			rt_runtime;
824 	/* Nests inside the rq lock: */
825 	raw_spinlock_t		rt_runtime_lock;
826 
827 	unsigned int		rt_nr_boosted;
828 
829 	struct rq		*rq;
830 	struct task_group	*tg;
831 #endif
832 };
833 
rt_rq_is_runnable(struct rt_rq * rt_rq)834 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
835 {
836 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
837 }
838 
839 /* Deadline class' related fields in a runqueue */
840 struct dl_rq {
841 	/* runqueue is an rbtree, ordered by deadline */
842 	struct rb_root_cached	root;
843 
844 	unsigned int		dl_nr_running;
845 
846 #ifdef CONFIG_SMP
847 	/*
848 	 * Deadline values of the currently executing and the
849 	 * earliest ready task on this rq. Caching these facilitates
850 	 * the decision whether or not a ready but not running task
851 	 * should migrate somewhere else.
852 	 */
853 	struct {
854 		u64		curr;
855 		u64		next;
856 	} earliest_dl;
857 
858 	bool			overloaded;
859 
860 	/*
861 	 * Tasks on this rq that can be pushed away. They are kept in
862 	 * an rb-tree, ordered by tasks' deadlines, with caching
863 	 * of the leftmost (earliest deadline) element.
864 	 */
865 	struct rb_root_cached	pushable_dl_tasks_root;
866 #else
867 	struct dl_bw		dl_bw;
868 #endif
869 	/*
870 	 * "Active utilization" for this runqueue: increased when a
871 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
872 	 * task blocks
873 	 */
874 	u64			running_bw;
875 
876 	/*
877 	 * Utilization of the tasks "assigned" to this runqueue (including
878 	 * the tasks that are in runqueue and the tasks that executed on this
879 	 * CPU and blocked). Increased when a task moves to this runqueue, and
880 	 * decreased when the task moves away (migrates, changes scheduling
881 	 * policy, or terminates).
882 	 * This is needed to compute the "inactive utilization" for the
883 	 * runqueue (inactive utilization = this_bw - running_bw).
884 	 */
885 	u64			this_bw;
886 	u64			extra_bw;
887 
888 	/*
889 	 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM
890 	 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB).
891 	 */
892 	u64			max_bw;
893 
894 	/*
895 	 * Inverse of the fraction of CPU utilization that can be reclaimed
896 	 * by the GRUB algorithm.
897 	 */
898 	u64			bw_ratio;
899 };
900 
901 #ifdef CONFIG_FAIR_GROUP_SCHED
902 
903 /* An entity is a task if it doesn't "own" a runqueue */
904 #define entity_is_task(se)	(!se->my_q)
905 
se_update_runnable(struct sched_entity * se)906 static inline void se_update_runnable(struct sched_entity *se)
907 {
908 	if (!entity_is_task(se))
909 		se->runnable_weight = se->my_q->h_nr_runnable;
910 }
911 
se_runnable(struct sched_entity * se)912 static inline long se_runnable(struct sched_entity *se)
913 {
914 	if (se->sched_delayed)
915 		return false;
916 
917 	if (entity_is_task(se))
918 		return !!se->on_rq;
919 	else
920 		return se->runnable_weight;
921 }
922 
923 #else /* !CONFIG_FAIR_GROUP_SCHED: */
924 
925 #define entity_is_task(se)	1
926 
se_update_runnable(struct sched_entity * se)927 static inline void se_update_runnable(struct sched_entity *se) { }
928 
se_runnable(struct sched_entity * se)929 static inline long se_runnable(struct sched_entity *se)
930 {
931 	if (se->sched_delayed)
932 		return false;
933 
934 	return !!se->on_rq;
935 }
936 
937 #endif /* !CONFIG_FAIR_GROUP_SCHED */
938 
939 #ifdef CONFIG_SMP
940 /*
941  * XXX we want to get rid of these helpers and use the full load resolution.
942  */
se_weight(struct sched_entity * se)943 static inline long se_weight(struct sched_entity *se)
944 {
945 	return scale_load_down(se->load.weight);
946 }
947 
948 
sched_asym_prefer(int a,int b)949 static inline bool sched_asym_prefer(int a, int b)
950 {
951 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
952 }
953 
954 struct perf_domain {
955 	struct em_perf_domain *em_pd;
956 	struct perf_domain *next;
957 	struct rcu_head rcu;
958 };
959 
960 /*
961  * We add the notion of a root-domain which will be used to define per-domain
962  * variables. Each exclusive cpuset essentially defines an island domain by
963  * fully partitioning the member CPUs from any other cpuset. Whenever a new
964  * exclusive cpuset is created, we also create and attach a new root-domain
965  * object.
966  *
967  */
968 struct root_domain {
969 	atomic_t		refcount;
970 	atomic_t		rto_count;
971 	struct rcu_head		rcu;
972 	cpumask_var_t		span;
973 	cpumask_var_t		online;
974 
975 	/*
976 	 * Indicate pullable load on at least one CPU, e.g:
977 	 * - More than one runnable task
978 	 * - Running task is misfit
979 	 */
980 	bool			overloaded;
981 
982 	/* Indicate one or more CPUs over-utilized (tipping point) */
983 	bool			overutilized;
984 
985 	/*
986 	 * The bit corresponding to a CPU gets set here if such CPU has more
987 	 * than one runnable -deadline task (as it is below for RT tasks).
988 	 */
989 	cpumask_var_t		dlo_mask;
990 	atomic_t		dlo_count;
991 	struct dl_bw		dl_bw;
992 	struct cpudl		cpudl;
993 
994 	/*
995 	 * Indicate whether a root_domain's dl_bw has been checked or
996 	 * updated. It's monotonously increasing value.
997 	 *
998 	 * Also, some corner cases, like 'wrap around' is dangerous, but given
999 	 * that u64 is 'big enough'. So that shouldn't be a concern.
1000 	 */
1001 	u64 visit_gen;
1002 
1003 #ifdef HAVE_RT_PUSH_IPI
1004 	/*
1005 	 * For IPI pull requests, loop across the rto_mask.
1006 	 */
1007 	struct irq_work		rto_push_work;
1008 	raw_spinlock_t		rto_lock;
1009 	/* These are only updated and read within rto_lock */
1010 	int			rto_loop;
1011 	int			rto_cpu;
1012 	/* These atomics are updated outside of a lock */
1013 	atomic_t		rto_loop_next;
1014 	atomic_t		rto_loop_start;
1015 #endif
1016 	/*
1017 	 * The "RT overload" flag: it gets set if a CPU has more than
1018 	 * one runnable RT task.
1019 	 */
1020 	cpumask_var_t		rto_mask;
1021 	struct cpupri		cpupri;
1022 
1023 	/*
1024 	 * NULL-terminated list of performance domains intersecting with the
1025 	 * CPUs of the rd. Protected by RCU.
1026 	 */
1027 	struct perf_domain __rcu *pd;
1028 };
1029 
1030 extern void init_defrootdomain(void);
1031 extern int sched_init_domains(const struct cpumask *cpu_map);
1032 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
1033 extern void sched_get_rd(struct root_domain *rd);
1034 extern void sched_put_rd(struct root_domain *rd);
1035 
get_rd_overloaded(struct root_domain * rd)1036 static inline int get_rd_overloaded(struct root_domain *rd)
1037 {
1038 	return READ_ONCE(rd->overloaded);
1039 }
1040 
set_rd_overloaded(struct root_domain * rd,int status)1041 static inline void set_rd_overloaded(struct root_domain *rd, int status)
1042 {
1043 	if (get_rd_overloaded(rd) != status)
1044 		WRITE_ONCE(rd->overloaded, status);
1045 }
1046 
1047 #ifdef HAVE_RT_PUSH_IPI
1048 extern void rto_push_irq_work_func(struct irq_work *work);
1049 #endif
1050 #endif /* CONFIG_SMP */
1051 
1052 #ifdef CONFIG_UCLAMP_TASK
1053 /*
1054  * struct uclamp_bucket - Utilization clamp bucket
1055  * @value: utilization clamp value for tasks on this clamp bucket
1056  * @tasks: number of RUNNABLE tasks on this clamp bucket
1057  *
1058  * Keep track of how many tasks are RUNNABLE for a given utilization
1059  * clamp value.
1060  */
1061 struct uclamp_bucket {
1062 	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
1063 	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
1064 };
1065 
1066 /*
1067  * struct uclamp_rq - rq's utilization clamp
1068  * @value: currently active clamp values for a rq
1069  * @bucket: utilization clamp buckets affecting a rq
1070  *
1071  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
1072  * A clamp value is affecting a rq when there is at least one task RUNNABLE
1073  * (or actually running) with that value.
1074  *
1075  * There are up to UCLAMP_CNT possible different clamp values, currently there
1076  * are only two: minimum utilization and maximum utilization.
1077  *
1078  * All utilization clamping values are MAX aggregated, since:
1079  * - for util_min: we want to run the CPU at least at the max of the minimum
1080  *   utilization required by its currently RUNNABLE tasks.
1081  * - for util_max: we want to allow the CPU to run up to the max of the
1082  *   maximum utilization allowed by its currently RUNNABLE tasks.
1083  *
1084  * Since on each system we expect only a limited number of different
1085  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
1086  * the metrics required to compute all the per-rq utilization clamp values.
1087  */
1088 struct uclamp_rq {
1089 	unsigned int value;
1090 	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
1091 };
1092 
1093 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
1094 #endif /* CONFIG_UCLAMP_TASK */
1095 
1096 /*
1097  * This is the main, per-CPU runqueue data structure.
1098  *
1099  * Locking rule: those places that want to lock multiple runqueues
1100  * (such as the load balancing or the thread migration code), lock
1101  * acquire operations must be ordered by ascending &runqueue.
1102  */
1103 struct rq {
1104 	/* runqueue lock: */
1105 	raw_spinlock_t		__lock;
1106 
1107 	unsigned int		nr_running;
1108 #ifdef CONFIG_NUMA_BALANCING
1109 	unsigned int		nr_numa_running;
1110 	unsigned int		nr_preferred_running;
1111 	unsigned int		numa_migrate_on;
1112 #endif
1113 #ifdef CONFIG_NO_HZ_COMMON
1114 #ifdef CONFIG_SMP
1115 	unsigned long		last_blocked_load_update_tick;
1116 	unsigned int		has_blocked_load;
1117 	call_single_data_t	nohz_csd;
1118 #endif /* CONFIG_SMP */
1119 	unsigned int		nohz_tick_stopped;
1120 	atomic_t		nohz_flags;
1121 #endif /* CONFIG_NO_HZ_COMMON */
1122 
1123 #ifdef CONFIG_SMP
1124 	unsigned int		ttwu_pending;
1125 #endif
1126 	u64			nr_switches;
1127 
1128 #ifdef CONFIG_UCLAMP_TASK
1129 	/* Utilization clamp values based on CPU's RUNNABLE tasks */
1130 	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
1131 	unsigned int		uclamp_flags;
1132 #define UCLAMP_FLAG_IDLE 0x01
1133 #endif
1134 
1135 	struct cfs_rq		cfs;
1136 	struct rt_rq		rt;
1137 	struct dl_rq		dl;
1138 #ifdef CONFIG_SCHED_CLASS_EXT
1139 	struct scx_rq		scx;
1140 #endif
1141 
1142 	struct sched_dl_entity	fair_server;
1143 
1144 #ifdef CONFIG_FAIR_GROUP_SCHED
1145 	/* list of leaf cfs_rq on this CPU: */
1146 	struct list_head	leaf_cfs_rq_list;
1147 	struct list_head	*tmp_alone_branch;
1148 #endif /* CONFIG_FAIR_GROUP_SCHED */
1149 
1150 	/*
1151 	 * This is part of a global counter where only the total sum
1152 	 * over all CPUs matters. A task can increase this counter on
1153 	 * one CPU and if it got migrated afterwards it may decrease
1154 	 * it on another CPU. Always updated under the runqueue lock:
1155 	 */
1156 	unsigned int		nr_uninterruptible;
1157 
1158 	union {
1159 		struct task_struct __rcu *donor; /* Scheduler context */
1160 		struct task_struct __rcu *curr;  /* Execution context */
1161 	};
1162 	struct sched_dl_entity	*dl_server;
1163 	struct task_struct	*idle;
1164 	struct task_struct	*stop;
1165 	unsigned long		next_balance;
1166 	struct mm_struct	*prev_mm;
1167 
1168 	unsigned int		clock_update_flags;
1169 	u64			clock;
1170 	/* Ensure that all clocks are in the same cache line */
1171 	u64			clock_task ____cacheline_aligned;
1172 	u64			clock_pelt;
1173 	unsigned long		lost_idle_time;
1174 	u64			clock_pelt_idle;
1175 	u64			clock_idle;
1176 #ifndef CONFIG_64BIT
1177 	u64			clock_pelt_idle_copy;
1178 	u64			clock_idle_copy;
1179 #endif
1180 
1181 	atomic_t		nr_iowait;
1182 
1183 #ifdef CONFIG_SCHED_DEBUG
1184 	u64 last_seen_need_resched_ns;
1185 	int ticks_without_resched;
1186 #endif
1187 
1188 #ifdef CONFIG_MEMBARRIER
1189 	int membarrier_state;
1190 #endif
1191 
1192 #ifdef CONFIG_SMP
1193 	struct root_domain		*rd;
1194 	struct sched_domain __rcu	*sd;
1195 
1196 	unsigned long		cpu_capacity;
1197 
1198 	struct balance_callback *balance_callback;
1199 
1200 	unsigned char		nohz_idle_balance;
1201 	unsigned char		idle_balance;
1202 
1203 	unsigned long		misfit_task_load;
1204 
1205 	/* For active balancing */
1206 	int			active_balance;
1207 	int			push_cpu;
1208 	struct cpu_stop_work	active_balance_work;
1209 
1210 	/* CPU of this runqueue: */
1211 	int			cpu;
1212 	int			online;
1213 
1214 	struct list_head cfs_tasks;
1215 
1216 	struct sched_avg	avg_rt;
1217 	struct sched_avg	avg_dl;
1218 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1219 	struct sched_avg	avg_irq;
1220 #endif
1221 #ifdef CONFIG_SCHED_HW_PRESSURE
1222 	struct sched_avg	avg_hw;
1223 #endif
1224 	u64			idle_stamp;
1225 	u64			avg_idle;
1226 
1227 	/* This is used to determine avg_idle's max value */
1228 	u64			max_idle_balance_cost;
1229 
1230 #ifdef CONFIG_HOTPLUG_CPU
1231 	struct rcuwait		hotplug_wait;
1232 #endif
1233 #endif /* CONFIG_SMP */
1234 
1235 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1236 	u64			prev_irq_time;
1237 	u64			psi_irq_time;
1238 #endif
1239 #ifdef CONFIG_PARAVIRT
1240 	u64			prev_steal_time;
1241 #endif
1242 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1243 	u64			prev_steal_time_rq;
1244 #endif
1245 
1246 	/* calc_load related fields */
1247 	unsigned long		calc_load_update;
1248 	long			calc_load_active;
1249 
1250 #ifdef CONFIG_SCHED_HRTICK
1251 #ifdef CONFIG_SMP
1252 	call_single_data_t	hrtick_csd;
1253 #endif
1254 	struct hrtimer		hrtick_timer;
1255 	ktime_t			hrtick_time;
1256 #endif
1257 
1258 #ifdef CONFIG_SCHEDSTATS
1259 	/* latency stats */
1260 	struct sched_info	rq_sched_info;
1261 	unsigned long long	rq_cpu_time;
1262 
1263 	/* sys_sched_yield() stats */
1264 	unsigned int		yld_count;
1265 
1266 	/* schedule() stats */
1267 	unsigned int		sched_count;
1268 	unsigned int		sched_goidle;
1269 
1270 	/* try_to_wake_up() stats */
1271 	unsigned int		ttwu_count;
1272 	unsigned int		ttwu_local;
1273 #endif
1274 
1275 #ifdef CONFIG_CPU_IDLE
1276 	/* Must be inspected within a RCU lock section */
1277 	struct cpuidle_state	*idle_state;
1278 #endif
1279 
1280 #ifdef CONFIG_SMP
1281 	unsigned int		nr_pinned;
1282 #endif
1283 	unsigned int		push_busy;
1284 	struct cpu_stop_work	push_work;
1285 
1286 #ifdef CONFIG_SCHED_CORE
1287 	/* per rq */
1288 	struct rq		*core;
1289 	struct task_struct	*core_pick;
1290 	struct sched_dl_entity	*core_dl_server;
1291 	unsigned int		core_enabled;
1292 	unsigned int		core_sched_seq;
1293 	struct rb_root		core_tree;
1294 
1295 	/* shared state -- careful with sched_core_cpu_deactivate() */
1296 	unsigned int		core_task_seq;
1297 	unsigned int		core_pick_seq;
1298 	unsigned long		core_cookie;
1299 	unsigned int		core_forceidle_count;
1300 	unsigned int		core_forceidle_seq;
1301 	unsigned int		core_forceidle_occupation;
1302 	u64			core_forceidle_start;
1303 #endif
1304 
1305 	/* Scratch cpumask to be temporarily used under rq_lock */
1306 	cpumask_var_t		scratch_mask;
1307 
1308 #if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP)
1309 	call_single_data_t	cfsb_csd;
1310 	struct list_head	cfsb_csd_list;
1311 #endif
1312 };
1313 
1314 #ifdef CONFIG_FAIR_GROUP_SCHED
1315 
1316 /* CPU runqueue to which this cfs_rq is attached */
rq_of(struct cfs_rq * cfs_rq)1317 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1318 {
1319 	return cfs_rq->rq;
1320 }
1321 
1322 #else
1323 
rq_of(struct cfs_rq * cfs_rq)1324 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1325 {
1326 	return container_of(cfs_rq, struct rq, cfs);
1327 }
1328 #endif
1329 
cpu_of(struct rq * rq)1330 static inline int cpu_of(struct rq *rq)
1331 {
1332 #ifdef CONFIG_SMP
1333 	return rq->cpu;
1334 #else
1335 	return 0;
1336 #endif
1337 }
1338 
1339 #define MDF_PUSH		0x01
1340 
is_migration_disabled(struct task_struct * p)1341 static inline bool is_migration_disabled(struct task_struct *p)
1342 {
1343 #ifdef CONFIG_SMP
1344 	return p->migration_disabled;
1345 #else
1346 	return false;
1347 #endif
1348 }
1349 
1350 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1351 
1352 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1353 #define this_rq()		this_cpu_ptr(&runqueues)
1354 #define task_rq(p)		cpu_rq(task_cpu(p))
1355 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1356 #define raw_rq()		raw_cpu_ptr(&runqueues)
1357 
rq_set_donor(struct rq * rq,struct task_struct * t)1358 static inline void rq_set_donor(struct rq *rq, struct task_struct *t)
1359 {
1360 	/* Do nothing */
1361 }
1362 
1363 #ifdef CONFIG_SCHED_CORE
1364 static inline struct cpumask *sched_group_span(struct sched_group *sg);
1365 
1366 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1367 
sched_core_enabled(struct rq * rq)1368 static inline bool sched_core_enabled(struct rq *rq)
1369 {
1370 	return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1371 }
1372 
sched_core_disabled(void)1373 static inline bool sched_core_disabled(void)
1374 {
1375 	return !static_branch_unlikely(&__sched_core_enabled);
1376 }
1377 
1378 /*
1379  * Be careful with this function; not for general use. The return value isn't
1380  * stable unless you actually hold a relevant rq->__lock.
1381  */
rq_lockp(struct rq * rq)1382 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1383 {
1384 	if (sched_core_enabled(rq))
1385 		return &rq->core->__lock;
1386 
1387 	return &rq->__lock;
1388 }
1389 
__rq_lockp(struct rq * rq)1390 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1391 {
1392 	if (rq->core_enabled)
1393 		return &rq->core->__lock;
1394 
1395 	return &rq->__lock;
1396 }
1397 
1398 extern bool
1399 cfs_prio_less(const struct task_struct *a, const struct task_struct *b, bool fi);
1400 
1401 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
1402 
1403 /*
1404  * Helpers to check if the CPU's core cookie matches with the task's cookie
1405  * when core scheduling is enabled.
1406  * A special case is that the task's cookie always matches with CPU's core
1407  * cookie if the CPU is in an idle core.
1408  */
sched_cpu_cookie_match(struct rq * rq,struct task_struct * p)1409 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1410 {
1411 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1412 	if (!sched_core_enabled(rq))
1413 		return true;
1414 
1415 	return rq->core->core_cookie == p->core_cookie;
1416 }
1417 
sched_core_cookie_match(struct rq * rq,struct task_struct * p)1418 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1419 {
1420 	bool idle_core = true;
1421 	int cpu;
1422 
1423 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1424 	if (!sched_core_enabled(rq))
1425 		return true;
1426 
1427 	for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1428 		if (!available_idle_cpu(cpu)) {
1429 			idle_core = false;
1430 			break;
1431 		}
1432 	}
1433 
1434 	/*
1435 	 * A CPU in an idle core is always the best choice for tasks with
1436 	 * cookies.
1437 	 */
1438 	return idle_core || rq->core->core_cookie == p->core_cookie;
1439 }
1440 
sched_group_cookie_match(struct rq * rq,struct task_struct * p,struct sched_group * group)1441 static inline bool sched_group_cookie_match(struct rq *rq,
1442 					    struct task_struct *p,
1443 					    struct sched_group *group)
1444 {
1445 	int cpu;
1446 
1447 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1448 	if (!sched_core_enabled(rq))
1449 		return true;
1450 
1451 	for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1452 		if (sched_core_cookie_match(cpu_rq(cpu), p))
1453 			return true;
1454 	}
1455 	return false;
1456 }
1457 
sched_core_enqueued(struct task_struct * p)1458 static inline bool sched_core_enqueued(struct task_struct *p)
1459 {
1460 	return !RB_EMPTY_NODE(&p->core_node);
1461 }
1462 
1463 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1464 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
1465 
1466 extern void sched_core_get(void);
1467 extern void sched_core_put(void);
1468 
1469 #else /* !CONFIG_SCHED_CORE: */
1470 
sched_core_enabled(struct rq * rq)1471 static inline bool sched_core_enabled(struct rq *rq)
1472 {
1473 	return false;
1474 }
1475 
sched_core_disabled(void)1476 static inline bool sched_core_disabled(void)
1477 {
1478 	return true;
1479 }
1480 
rq_lockp(struct rq * rq)1481 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1482 {
1483 	return &rq->__lock;
1484 }
1485 
__rq_lockp(struct rq * rq)1486 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1487 {
1488 	return &rq->__lock;
1489 }
1490 
sched_cpu_cookie_match(struct rq * rq,struct task_struct * p)1491 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1492 {
1493 	return true;
1494 }
1495 
sched_core_cookie_match(struct rq * rq,struct task_struct * p)1496 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1497 {
1498 	return true;
1499 }
1500 
sched_group_cookie_match(struct rq * rq,struct task_struct * p,struct sched_group * group)1501 static inline bool sched_group_cookie_match(struct rq *rq,
1502 					    struct task_struct *p,
1503 					    struct sched_group *group)
1504 {
1505 	return true;
1506 }
1507 
1508 #endif /* !CONFIG_SCHED_CORE */
1509 
lockdep_assert_rq_held(struct rq * rq)1510 static inline void lockdep_assert_rq_held(struct rq *rq)
1511 {
1512 	lockdep_assert_held(__rq_lockp(rq));
1513 }
1514 
1515 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1516 extern bool raw_spin_rq_trylock(struct rq *rq);
1517 extern void raw_spin_rq_unlock(struct rq *rq);
1518 
raw_spin_rq_lock(struct rq * rq)1519 static inline void raw_spin_rq_lock(struct rq *rq)
1520 {
1521 	raw_spin_rq_lock_nested(rq, 0);
1522 }
1523 
raw_spin_rq_lock_irq(struct rq * rq)1524 static inline void raw_spin_rq_lock_irq(struct rq *rq)
1525 {
1526 	local_irq_disable();
1527 	raw_spin_rq_lock(rq);
1528 }
1529 
raw_spin_rq_unlock_irq(struct rq * rq)1530 static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1531 {
1532 	raw_spin_rq_unlock(rq);
1533 	local_irq_enable();
1534 }
1535 
_raw_spin_rq_lock_irqsave(struct rq * rq)1536 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1537 {
1538 	unsigned long flags;
1539 
1540 	local_irq_save(flags);
1541 	raw_spin_rq_lock(rq);
1542 
1543 	return flags;
1544 }
1545 
raw_spin_rq_unlock_irqrestore(struct rq * rq,unsigned long flags)1546 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1547 {
1548 	raw_spin_rq_unlock(rq);
1549 	local_irq_restore(flags);
1550 }
1551 
1552 #define raw_spin_rq_lock_irqsave(rq, flags)	\
1553 do {						\
1554 	flags = _raw_spin_rq_lock_irqsave(rq);	\
1555 } while (0)
1556 
1557 #ifdef CONFIG_SCHED_SMT
1558 extern void __update_idle_core(struct rq *rq);
1559 
update_idle_core(struct rq * rq)1560 static inline void update_idle_core(struct rq *rq)
1561 {
1562 	if (static_branch_unlikely(&sched_smt_present))
1563 		__update_idle_core(rq);
1564 }
1565 
1566 #else
update_idle_core(struct rq * rq)1567 static inline void update_idle_core(struct rq *rq) { }
1568 #endif
1569 
1570 #ifdef CONFIG_FAIR_GROUP_SCHED
1571 
task_of(struct sched_entity * se)1572 static inline struct task_struct *task_of(struct sched_entity *se)
1573 {
1574 	SCHED_WARN_ON(!entity_is_task(se));
1575 	return container_of(se, struct task_struct, se);
1576 }
1577 
task_cfs_rq(struct task_struct * p)1578 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1579 {
1580 	return p->se.cfs_rq;
1581 }
1582 
1583 /* runqueue on which this entity is (to be) queued */
cfs_rq_of(const struct sched_entity * se)1584 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1585 {
1586 	return se->cfs_rq;
1587 }
1588 
1589 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)1590 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1591 {
1592 	return grp->my_q;
1593 }
1594 
1595 #else /* !CONFIG_FAIR_GROUP_SCHED: */
1596 
1597 #define task_of(_se)		container_of(_se, struct task_struct, se)
1598 
task_cfs_rq(const struct task_struct * p)1599 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p)
1600 {
1601 	return &task_rq(p)->cfs;
1602 }
1603 
cfs_rq_of(const struct sched_entity * se)1604 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1605 {
1606 	const struct task_struct *p = task_of(se);
1607 	struct rq *rq = task_rq(p);
1608 
1609 	return &rq->cfs;
1610 }
1611 
1612 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)1613 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1614 {
1615 	return NULL;
1616 }
1617 
1618 #endif /* !CONFIG_FAIR_GROUP_SCHED */
1619 
1620 extern void update_rq_clock(struct rq *rq);
1621 
1622 /*
1623  * rq::clock_update_flags bits
1624  *
1625  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1626  *  call to __schedule(). This is an optimisation to avoid
1627  *  neighbouring rq clock updates.
1628  *
1629  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1630  *  in effect and calls to update_rq_clock() are being ignored.
1631  *
1632  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1633  *  made to update_rq_clock() since the last time rq::lock was pinned.
1634  *
1635  * If inside of __schedule(), clock_update_flags will have been
1636  * shifted left (a left shift is a cheap operation for the fast path
1637  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1638  *
1639  *	if (rq-clock_update_flags >= RQCF_UPDATED)
1640  *
1641  * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1642  * one position though, because the next rq_unpin_lock() will shift it
1643  * back.
1644  */
1645 #define RQCF_REQ_SKIP		0x01
1646 #define RQCF_ACT_SKIP		0x02
1647 #define RQCF_UPDATED		0x04
1648 
assert_clock_updated(struct rq * rq)1649 static inline void assert_clock_updated(struct rq *rq)
1650 {
1651 	/*
1652 	 * The only reason for not seeing a clock update since the
1653 	 * last rq_pin_lock() is if we're currently skipping updates.
1654 	 */
1655 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1656 }
1657 
rq_clock(struct rq * rq)1658 static inline u64 rq_clock(struct rq *rq)
1659 {
1660 	lockdep_assert_rq_held(rq);
1661 	assert_clock_updated(rq);
1662 
1663 	return rq->clock;
1664 }
1665 
rq_clock_task(struct rq * rq)1666 static inline u64 rq_clock_task(struct rq *rq)
1667 {
1668 	lockdep_assert_rq_held(rq);
1669 	assert_clock_updated(rq);
1670 
1671 	return rq->clock_task;
1672 }
1673 
rq_clock_skip_update(struct rq * rq)1674 static inline void rq_clock_skip_update(struct rq *rq)
1675 {
1676 	lockdep_assert_rq_held(rq);
1677 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1678 }
1679 
1680 /*
1681  * See rt task throttling, which is the only time a skip
1682  * request is canceled.
1683  */
rq_clock_cancel_skipupdate(struct rq * rq)1684 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1685 {
1686 	lockdep_assert_rq_held(rq);
1687 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1688 }
1689 
1690 /*
1691  * During cpu offlining and rq wide unthrottling, we can trigger
1692  * an update_rq_clock() for several cfs and rt runqueues (Typically
1693  * when using list_for_each_entry_*)
1694  * rq_clock_start_loop_update() can be called after updating the clock
1695  * once and before iterating over the list to prevent multiple update.
1696  * After the iterative traversal, we need to call rq_clock_stop_loop_update()
1697  * to clear RQCF_ACT_SKIP of rq->clock_update_flags.
1698  */
rq_clock_start_loop_update(struct rq * rq)1699 static inline void rq_clock_start_loop_update(struct rq *rq)
1700 {
1701 	lockdep_assert_rq_held(rq);
1702 	SCHED_WARN_ON(rq->clock_update_flags & RQCF_ACT_SKIP);
1703 	rq->clock_update_flags |= RQCF_ACT_SKIP;
1704 }
1705 
rq_clock_stop_loop_update(struct rq * rq)1706 static inline void rq_clock_stop_loop_update(struct rq *rq)
1707 {
1708 	lockdep_assert_rq_held(rq);
1709 	rq->clock_update_flags &= ~RQCF_ACT_SKIP;
1710 }
1711 
1712 struct rq_flags {
1713 	unsigned long flags;
1714 	struct pin_cookie cookie;
1715 #ifdef CONFIG_SCHED_DEBUG
1716 	/*
1717 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1718 	 * current pin context is stashed here in case it needs to be
1719 	 * restored in rq_repin_lock().
1720 	 */
1721 	unsigned int clock_update_flags;
1722 #endif
1723 };
1724 
1725 extern struct balance_callback balance_push_callback;
1726 
1727 #ifdef CONFIG_SCHED_CLASS_EXT
1728 extern const struct sched_class ext_sched_class;
1729 
1730 DECLARE_STATIC_KEY_FALSE(__scx_ops_enabled);	/* SCX BPF scheduler loaded */
1731 DECLARE_STATIC_KEY_FALSE(__scx_switched_all);	/* all fair class tasks on SCX */
1732 
1733 #define scx_enabled()		static_branch_unlikely(&__scx_ops_enabled)
1734 #define scx_switched_all()	static_branch_unlikely(&__scx_switched_all)
1735 
scx_rq_clock_update(struct rq * rq,u64 clock)1736 static inline void scx_rq_clock_update(struct rq *rq, u64 clock)
1737 {
1738 	if (!scx_enabled())
1739 		return;
1740 	WRITE_ONCE(rq->scx.clock, clock);
1741 	smp_store_release(&rq->scx.flags, rq->scx.flags | SCX_RQ_CLK_VALID);
1742 }
1743 
scx_rq_clock_invalidate(struct rq * rq)1744 static inline void scx_rq_clock_invalidate(struct rq *rq)
1745 {
1746 	if (!scx_enabled())
1747 		return;
1748 	WRITE_ONCE(rq->scx.flags, rq->scx.flags & ~SCX_RQ_CLK_VALID);
1749 }
1750 
1751 #else /* !CONFIG_SCHED_CLASS_EXT */
1752 #define scx_enabled()		false
1753 #define scx_switched_all()	false
1754 
scx_rq_clock_update(struct rq * rq,u64 clock)1755 static inline void scx_rq_clock_update(struct rq *rq, u64 clock) {}
scx_rq_clock_invalidate(struct rq * rq)1756 static inline void scx_rq_clock_invalidate(struct rq *rq) {}
1757 #endif /* !CONFIG_SCHED_CLASS_EXT */
1758 
1759 /*
1760  * Lockdep annotation that avoids accidental unlocks; it's like a
1761  * sticky/continuous lockdep_assert_held().
1762  *
1763  * This avoids code that has access to 'struct rq *rq' (basically everything in
1764  * the scheduler) from accidentally unlocking the rq if they do not also have a
1765  * copy of the (on-stack) 'struct rq_flags rf'.
1766  *
1767  * Also see Documentation/locking/lockdep-design.rst.
1768  */
rq_pin_lock(struct rq * rq,struct rq_flags * rf)1769 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1770 {
1771 	rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1772 
1773 #ifdef CONFIG_SCHED_DEBUG
1774 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1775 	rf->clock_update_flags = 0;
1776 # ifdef CONFIG_SMP
1777 	SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1778 # endif
1779 #endif
1780 }
1781 
rq_unpin_lock(struct rq * rq,struct rq_flags * rf)1782 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1783 {
1784 #ifdef CONFIG_SCHED_DEBUG
1785 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1786 		rf->clock_update_flags = RQCF_UPDATED;
1787 #endif
1788 	scx_rq_clock_invalidate(rq);
1789 	lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1790 }
1791 
rq_repin_lock(struct rq * rq,struct rq_flags * rf)1792 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1793 {
1794 	lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1795 
1796 #ifdef CONFIG_SCHED_DEBUG
1797 	/*
1798 	 * Restore the value we stashed in @rf for this pin context.
1799 	 */
1800 	rq->clock_update_flags |= rf->clock_update_flags;
1801 #endif
1802 }
1803 
1804 extern
1805 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1806 	__acquires(rq->lock);
1807 
1808 extern
1809 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1810 	__acquires(p->pi_lock)
1811 	__acquires(rq->lock);
1812 
__task_rq_unlock(struct rq * rq,struct rq_flags * rf)1813 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1814 	__releases(rq->lock)
1815 {
1816 	rq_unpin_lock(rq, rf);
1817 	raw_spin_rq_unlock(rq);
1818 }
1819 
1820 static inline void
task_rq_unlock(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1821 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1822 	__releases(rq->lock)
1823 	__releases(p->pi_lock)
1824 {
1825 	rq_unpin_lock(rq, rf);
1826 	raw_spin_rq_unlock(rq);
1827 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1828 }
1829 
1830 DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct,
1831 		    _T->rq = task_rq_lock(_T->lock, &_T->rf),
1832 		    task_rq_unlock(_T->rq, _T->lock, &_T->rf),
1833 		    struct rq *rq; struct rq_flags rf)
1834 
rq_lock_irqsave(struct rq * rq,struct rq_flags * rf)1835 static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1836 	__acquires(rq->lock)
1837 {
1838 	raw_spin_rq_lock_irqsave(rq, rf->flags);
1839 	rq_pin_lock(rq, rf);
1840 }
1841 
rq_lock_irq(struct rq * rq,struct rq_flags * rf)1842 static inline void rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1843 	__acquires(rq->lock)
1844 {
1845 	raw_spin_rq_lock_irq(rq);
1846 	rq_pin_lock(rq, rf);
1847 }
1848 
rq_lock(struct rq * rq,struct rq_flags * rf)1849 static inline void rq_lock(struct rq *rq, struct rq_flags *rf)
1850 	__acquires(rq->lock)
1851 {
1852 	raw_spin_rq_lock(rq);
1853 	rq_pin_lock(rq, rf);
1854 }
1855 
rq_unlock_irqrestore(struct rq * rq,struct rq_flags * rf)1856 static inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1857 	__releases(rq->lock)
1858 {
1859 	rq_unpin_lock(rq, rf);
1860 	raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1861 }
1862 
rq_unlock_irq(struct rq * rq,struct rq_flags * rf)1863 static inline void rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1864 	__releases(rq->lock)
1865 {
1866 	rq_unpin_lock(rq, rf);
1867 	raw_spin_rq_unlock_irq(rq);
1868 }
1869 
rq_unlock(struct rq * rq,struct rq_flags * rf)1870 static inline void rq_unlock(struct rq *rq, struct rq_flags *rf)
1871 	__releases(rq->lock)
1872 {
1873 	rq_unpin_lock(rq, rf);
1874 	raw_spin_rq_unlock(rq);
1875 }
1876 
1877 DEFINE_LOCK_GUARD_1(rq_lock, struct rq,
1878 		    rq_lock(_T->lock, &_T->rf),
1879 		    rq_unlock(_T->lock, &_T->rf),
1880 		    struct rq_flags rf)
1881 
1882 DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq,
1883 		    rq_lock_irq(_T->lock, &_T->rf),
1884 		    rq_unlock_irq(_T->lock, &_T->rf),
1885 		    struct rq_flags rf)
1886 
1887 DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq,
1888 		    rq_lock_irqsave(_T->lock, &_T->rf),
1889 		    rq_unlock_irqrestore(_T->lock, &_T->rf),
1890 		    struct rq_flags rf)
1891 
this_rq_lock_irq(struct rq_flags * rf)1892 static inline struct rq *this_rq_lock_irq(struct rq_flags *rf)
1893 	__acquires(rq->lock)
1894 {
1895 	struct rq *rq;
1896 
1897 	local_irq_disable();
1898 	rq = this_rq();
1899 	rq_lock(rq, rf);
1900 
1901 	return rq;
1902 }
1903 
1904 #ifdef CONFIG_NUMA
1905 
1906 enum numa_topology_type {
1907 	NUMA_DIRECT,
1908 	NUMA_GLUELESS_MESH,
1909 	NUMA_BACKPLANE,
1910 };
1911 
1912 extern enum numa_topology_type sched_numa_topology_type;
1913 extern int sched_max_numa_distance;
1914 extern bool find_numa_distance(int distance);
1915 extern void sched_init_numa(int offline_node);
1916 extern void sched_update_numa(int cpu, bool online);
1917 extern void sched_domains_numa_masks_set(unsigned int cpu);
1918 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1919 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1920 
1921 #else /* !CONFIG_NUMA: */
1922 
sched_init_numa(int offline_node)1923 static inline void sched_init_numa(int offline_node) { }
sched_update_numa(int cpu,bool online)1924 static inline void sched_update_numa(int cpu, bool online) { }
sched_domains_numa_masks_set(unsigned int cpu)1925 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
sched_domains_numa_masks_clear(unsigned int cpu)1926 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1927 
sched_numa_find_closest(const struct cpumask * cpus,int cpu)1928 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1929 {
1930 	return nr_cpu_ids;
1931 }
1932 
1933 #endif /* !CONFIG_NUMA */
1934 
1935 #ifdef CONFIG_NUMA_BALANCING
1936 
1937 /* The regions in numa_faults array from task_struct */
1938 enum numa_faults_stats {
1939 	NUMA_MEM = 0,
1940 	NUMA_CPU,
1941 	NUMA_MEMBUF,
1942 	NUMA_CPUBUF
1943 };
1944 
1945 extern void sched_setnuma(struct task_struct *p, int node);
1946 extern int migrate_task_to(struct task_struct *p, int cpu);
1947 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1948 			int cpu, int scpu);
1949 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1950 
1951 #else /* !CONFIG_NUMA_BALANCING: */
1952 
1953 static inline void
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)1954 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1955 {
1956 }
1957 
1958 #endif /* !CONFIG_NUMA_BALANCING */
1959 
1960 #ifdef CONFIG_SMP
1961 
1962 static inline void
queue_balance_callback(struct rq * rq,struct balance_callback * head,void (* func)(struct rq * rq))1963 queue_balance_callback(struct rq *rq,
1964 		       struct balance_callback *head,
1965 		       void (*func)(struct rq *rq))
1966 {
1967 	lockdep_assert_rq_held(rq);
1968 
1969 	/*
1970 	 * Don't (re)queue an already queued item; nor queue anything when
1971 	 * balance_push() is active, see the comment with
1972 	 * balance_push_callback.
1973 	 */
1974 	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1975 		return;
1976 
1977 	head->func = func;
1978 	head->next = rq->balance_callback;
1979 	rq->balance_callback = head;
1980 }
1981 
1982 #define rcu_dereference_check_sched_domain(p) \
1983 	rcu_dereference_check((p), lockdep_is_held(&sched_domains_mutex))
1984 
1985 /*
1986  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1987  * See destroy_sched_domains: call_rcu for details.
1988  *
1989  * The domain tree of any CPU may only be accessed from within
1990  * preempt-disabled sections.
1991  */
1992 #define for_each_domain(cpu, __sd) \
1993 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1994 			__sd; __sd = __sd->parent)
1995 
1996 /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */
1997 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) |
1998 static const unsigned int SD_SHARED_CHILD_MASK =
1999 #include <linux/sched/sd_flags.h>
2000 0;
2001 #undef SD_FLAG
2002 
2003 /**
2004  * highest_flag_domain - Return highest sched_domain containing flag.
2005  * @cpu:	The CPU whose highest level of sched domain is to
2006  *		be returned.
2007  * @flag:	The flag to check for the highest sched_domain
2008  *		for the given CPU.
2009  *
2010  * Returns the highest sched_domain of a CPU which contains @flag. If @flag has
2011  * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag.
2012  */
highest_flag_domain(int cpu,int flag)2013 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
2014 {
2015 	struct sched_domain *sd, *hsd = NULL;
2016 
2017 	for_each_domain(cpu, sd) {
2018 		if (sd->flags & flag) {
2019 			hsd = sd;
2020 			continue;
2021 		}
2022 
2023 		/*
2024 		 * Stop the search if @flag is known to be shared at lower
2025 		 * levels. It will not be found further up.
2026 		 */
2027 		if (flag & SD_SHARED_CHILD_MASK)
2028 			break;
2029 	}
2030 
2031 	return hsd;
2032 }
2033 
lowest_flag_domain(int cpu,int flag)2034 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
2035 {
2036 	struct sched_domain *sd;
2037 
2038 	for_each_domain(cpu, sd) {
2039 		if (sd->flags & flag)
2040 			break;
2041 	}
2042 
2043 	return sd;
2044 }
2045 
2046 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
2047 DECLARE_PER_CPU(int, sd_llc_size);
2048 DECLARE_PER_CPU(int, sd_llc_id);
2049 DECLARE_PER_CPU(int, sd_share_id);
2050 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
2051 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
2052 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
2053 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
2054 
2055 extern struct static_key_false sched_asym_cpucapacity;
2056 extern struct static_key_false sched_cluster_active;
2057 
sched_asym_cpucap_active(void)2058 static __always_inline bool sched_asym_cpucap_active(void)
2059 {
2060 	return static_branch_unlikely(&sched_asym_cpucapacity);
2061 }
2062 
2063 struct sched_group_capacity {
2064 	atomic_t		ref;
2065 	/*
2066 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
2067 	 * for a single CPU.
2068 	 */
2069 	unsigned long		capacity;
2070 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
2071 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
2072 	unsigned long		next_update;
2073 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
2074 
2075 #ifdef CONFIG_SCHED_DEBUG
2076 	int			id;
2077 #endif
2078 
2079 	unsigned long		cpumask[];		/* Balance mask */
2080 };
2081 
2082 struct sched_group {
2083 	struct sched_group	*next;			/* Must be a circular list */
2084 	atomic_t		ref;
2085 
2086 	unsigned int		group_weight;
2087 	unsigned int		cores;
2088 	struct sched_group_capacity *sgc;
2089 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
2090 	int			flags;
2091 
2092 	/*
2093 	 * The CPUs this group covers.
2094 	 *
2095 	 * NOTE: this field is variable length. (Allocated dynamically
2096 	 * by attaching extra space to the end of the structure,
2097 	 * depending on how many CPUs the kernel has booted up with)
2098 	 */
2099 	unsigned long		cpumask[];
2100 };
2101 
sched_group_span(struct sched_group * sg)2102 static inline struct cpumask *sched_group_span(struct sched_group *sg)
2103 {
2104 	return to_cpumask(sg->cpumask);
2105 }
2106 
2107 /*
2108  * See build_balance_mask().
2109  */
group_balance_mask(struct sched_group * sg)2110 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
2111 {
2112 	return to_cpumask(sg->sgc->cpumask);
2113 }
2114 
2115 extern int group_balance_cpu(struct sched_group *sg);
2116 
2117 #ifdef CONFIG_SCHED_DEBUG
2118 extern void update_sched_domain_debugfs(void);
2119 extern void dirty_sched_domain_sysctl(int cpu);
2120 #else
update_sched_domain_debugfs(void)2121 static inline void update_sched_domain_debugfs(void) { }
dirty_sched_domain_sysctl(int cpu)2122 static inline void dirty_sched_domain_sysctl(int cpu) { }
2123 #endif
2124 
2125 extern int sched_update_scaling(void);
2126 
task_user_cpus(struct task_struct * p)2127 static inline const struct cpumask *task_user_cpus(struct task_struct *p)
2128 {
2129 	if (!p->user_cpus_ptr)
2130 		return cpu_possible_mask; /* &init_task.cpus_mask */
2131 	return p->user_cpus_ptr;
2132 }
2133 
2134 #endif /* CONFIG_SMP */
2135 
2136 #ifdef CONFIG_CGROUP_SCHED
2137 
2138 /*
2139  * Return the group to which this tasks belongs.
2140  *
2141  * We cannot use task_css() and friends because the cgroup subsystem
2142  * changes that value before the cgroup_subsys::attach() method is called,
2143  * therefore we cannot pin it and might observe the wrong value.
2144  *
2145  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
2146  * core changes this before calling sched_move_task().
2147  *
2148  * Instead we use a 'copy' which is updated from sched_move_task() while
2149  * holding both task_struct::pi_lock and rq::lock.
2150  */
task_group(struct task_struct * p)2151 static inline struct task_group *task_group(struct task_struct *p)
2152 {
2153 	return p->sched_task_group;
2154 }
2155 
2156 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
set_task_rq(struct task_struct * p,unsigned int cpu)2157 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
2158 {
2159 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
2160 	struct task_group *tg = task_group(p);
2161 #endif
2162 
2163 #ifdef CONFIG_FAIR_GROUP_SCHED
2164 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
2165 	p->se.cfs_rq = tg->cfs_rq[cpu];
2166 	p->se.parent = tg->se[cpu];
2167 	p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
2168 #endif
2169 
2170 #ifdef CONFIG_RT_GROUP_SCHED
2171 	p->rt.rt_rq  = tg->rt_rq[cpu];
2172 	p->rt.parent = tg->rt_se[cpu];
2173 #endif
2174 }
2175 
2176 #else /* !CONFIG_CGROUP_SCHED: */
2177 
set_task_rq(struct task_struct * p,unsigned int cpu)2178 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
2179 
task_group(struct task_struct * p)2180 static inline struct task_group *task_group(struct task_struct *p)
2181 {
2182 	return NULL;
2183 }
2184 
2185 #endif /* !CONFIG_CGROUP_SCHED */
2186 
__set_task_cpu(struct task_struct * p,unsigned int cpu)2187 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
2188 {
2189 	set_task_rq(p, cpu);
2190 #ifdef CONFIG_SMP
2191 	/*
2192 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
2193 	 * successfully executed on another CPU. We must ensure that updates of
2194 	 * per-task data have been completed by this moment.
2195 	 */
2196 	smp_wmb();
2197 	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
2198 	p->wake_cpu = cpu;
2199 #endif
2200 }
2201 
2202 /*
2203  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
2204  */
2205 #ifdef CONFIG_SCHED_DEBUG
2206 # define const_debug __read_mostly
2207 #else
2208 # define const_debug const
2209 #endif
2210 
2211 #define SCHED_FEAT(name, enabled)	\
2212 	__SCHED_FEAT_##name ,
2213 
2214 enum {
2215 #include "features.h"
2216 	__SCHED_FEAT_NR,
2217 };
2218 
2219 #undef SCHED_FEAT
2220 
2221 #ifdef CONFIG_SCHED_DEBUG
2222 
2223 /*
2224  * To support run-time toggling of sched features, all the translation units
2225  * (but core.c) reference the sysctl_sched_features defined in core.c.
2226  */
2227 extern const_debug unsigned int sysctl_sched_features;
2228 
2229 #ifdef CONFIG_JUMP_LABEL
2230 
2231 #define SCHED_FEAT(name, enabled)					\
2232 static __always_inline bool static_branch_##name(struct static_key *key) \
2233 {									\
2234 	return static_key_##enabled(key);				\
2235 }
2236 
2237 #include "features.h"
2238 #undef SCHED_FEAT
2239 
2240 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
2241 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
2242 
2243 #else /* !CONFIG_JUMP_LABEL: */
2244 
2245 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2246 
2247 #endif /* !CONFIG_JUMP_LABEL */
2248 
2249 #else /* !SCHED_DEBUG: */
2250 
2251 /*
2252  * Each translation unit has its own copy of sysctl_sched_features to allow
2253  * constants propagation at compile time and compiler optimization based on
2254  * features default.
2255  */
2256 #define SCHED_FEAT(name, enabled)	\
2257 	(1UL << __SCHED_FEAT_##name) * enabled |
2258 static const_debug __maybe_unused unsigned int sysctl_sched_features =
2259 #include "features.h"
2260 	0;
2261 #undef SCHED_FEAT
2262 
2263 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2264 
2265 #endif /* !SCHED_DEBUG */
2266 
2267 extern struct static_key_false sched_numa_balancing;
2268 extern struct static_key_false sched_schedstats;
2269 
global_rt_period(void)2270 static inline u64 global_rt_period(void)
2271 {
2272 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2273 }
2274 
global_rt_runtime(void)2275 static inline u64 global_rt_runtime(void)
2276 {
2277 	if (sysctl_sched_rt_runtime < 0)
2278 		return RUNTIME_INF;
2279 
2280 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2281 }
2282 
2283 /*
2284  * Is p the current execution context?
2285  */
task_current(struct rq * rq,struct task_struct * p)2286 static inline int task_current(struct rq *rq, struct task_struct *p)
2287 {
2288 	return rq->curr == p;
2289 }
2290 
2291 /*
2292  * Is p the current scheduling context?
2293  *
2294  * Note that it might be the current execution context at the same time if
2295  * rq->curr == rq->donor == p.
2296  */
task_current_donor(struct rq * rq,struct task_struct * p)2297 static inline int task_current_donor(struct rq *rq, struct task_struct *p)
2298 {
2299 	return rq->donor == p;
2300 }
2301 
task_on_cpu(struct rq * rq,struct task_struct * p)2302 static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
2303 {
2304 #ifdef CONFIG_SMP
2305 	return p->on_cpu;
2306 #else
2307 	return task_current(rq, p);
2308 #endif
2309 }
2310 
task_on_rq_queued(struct task_struct * p)2311 static inline int task_on_rq_queued(struct task_struct *p)
2312 {
2313 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_QUEUED;
2314 }
2315 
task_on_rq_migrating(struct task_struct * p)2316 static inline int task_on_rq_migrating(struct task_struct *p)
2317 {
2318 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2319 }
2320 
2321 /* Wake flags. The first three directly map to some SD flag value */
2322 #define WF_EXEC			0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2323 #define WF_FORK			0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2324 #define WF_TTWU			0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
2325 
2326 #define WF_SYNC			0x10 /* Waker goes to sleep after wakeup */
2327 #define WF_MIGRATED		0x20 /* Internal use, task got migrated */
2328 #define WF_CURRENT_CPU		0x40 /* Prefer to move the wakee to the current CPU. */
2329 #define WF_RQ_SELECTED		0x80 /* ->select_task_rq() was called */
2330 
2331 #ifdef CONFIG_SMP
2332 static_assert(WF_EXEC == SD_BALANCE_EXEC);
2333 static_assert(WF_FORK == SD_BALANCE_FORK);
2334 static_assert(WF_TTWU == SD_BALANCE_WAKE);
2335 #endif
2336 
2337 /*
2338  * To aid in avoiding the subversion of "niceness" due to uneven distribution
2339  * of tasks with abnormal "nice" values across CPUs the contribution that
2340  * each task makes to its run queue's load is weighted according to its
2341  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2342  * scaled version of the new time slice allocation that they receive on time
2343  * slice expiry etc.
2344  */
2345 
2346 #define WEIGHT_IDLEPRIO		3
2347 #define WMULT_IDLEPRIO		1431655765
2348 
2349 extern const int		sched_prio_to_weight[40];
2350 extern const u32		sched_prio_to_wmult[40];
2351 
2352 /*
2353  * {de,en}queue flags:
2354  *
2355  * DEQUEUE_SLEEP  - task is no longer runnable
2356  * ENQUEUE_WAKEUP - task just became runnable
2357  *
2358  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2359  *                are in a known state which allows modification. Such pairs
2360  *                should preserve as much state as possible.
2361  *
2362  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2363  *        in the runqueue.
2364  *
2365  * NOCLOCK - skip the update_rq_clock() (avoids double updates)
2366  *
2367  * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE)
2368  *
2369  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
2370  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2371  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
2372  * ENQUEUE_RQ_SELECTED - ->select_task_rq() was called
2373  *
2374  */
2375 
2376 #define DEQUEUE_SLEEP		0x01 /* Matches ENQUEUE_WAKEUP */
2377 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
2378 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
2379 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
2380 #define DEQUEUE_SPECIAL		0x10
2381 #define DEQUEUE_MIGRATING	0x100 /* Matches ENQUEUE_MIGRATING */
2382 #define DEQUEUE_DELAYED		0x200 /* Matches ENQUEUE_DELAYED */
2383 
2384 #define ENQUEUE_WAKEUP		0x01
2385 #define ENQUEUE_RESTORE		0x02
2386 #define ENQUEUE_MOVE		0x04
2387 #define ENQUEUE_NOCLOCK		0x08
2388 
2389 #define ENQUEUE_HEAD		0x10
2390 #define ENQUEUE_REPLENISH	0x20
2391 #ifdef CONFIG_SMP
2392 #define ENQUEUE_MIGRATED	0x40
2393 #else
2394 #define ENQUEUE_MIGRATED	0x00
2395 #endif
2396 #define ENQUEUE_INITIAL		0x80
2397 #define ENQUEUE_MIGRATING	0x100
2398 #define ENQUEUE_DELAYED		0x200
2399 #define ENQUEUE_RQ_SELECTED	0x400
2400 
2401 #define RETRY_TASK		((void *)-1UL)
2402 
2403 struct affinity_context {
2404 	const struct cpumask	*new_mask;
2405 	struct cpumask		*user_mask;
2406 	unsigned int		flags;
2407 };
2408 
2409 extern s64 update_curr_common(struct rq *rq);
2410 
2411 struct sched_class {
2412 
2413 #ifdef CONFIG_UCLAMP_TASK
2414 	int uclamp_enabled;
2415 #endif
2416 
2417 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2418 	bool (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2419 	void (*yield_task)   (struct rq *rq);
2420 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2421 
2422 	void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags);
2423 
2424 	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2425 	struct task_struct *(*pick_task)(struct rq *rq);
2426 	/*
2427 	 * Optional! When implemented pick_next_task() should be equivalent to:
2428 	 *
2429 	 *   next = pick_task();
2430 	 *   if (next) {
2431 	 *       put_prev_task(prev);
2432 	 *       set_next_task_first(next);
2433 	 *   }
2434 	 */
2435 	struct task_struct *(*pick_next_task)(struct rq *rq, struct task_struct *prev);
2436 
2437 	void (*put_prev_task)(struct rq *rq, struct task_struct *p, struct task_struct *next);
2438 	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2439 
2440 #ifdef CONFIG_SMP
2441 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2442 
2443 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2444 
2445 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2446 
2447 	void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx);
2448 
2449 	void (*rq_online)(struct rq *rq);
2450 	void (*rq_offline)(struct rq *rq);
2451 
2452 	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2453 #endif
2454 
2455 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2456 	void (*task_fork)(struct task_struct *p);
2457 	void (*task_dead)(struct task_struct *p);
2458 
2459 	/*
2460 	 * The switched_from() call is allowed to drop rq->lock, therefore we
2461 	 * cannot assume the switched_from/switched_to pair is serialized by
2462 	 * rq->lock. They are however serialized by p->pi_lock.
2463 	 */
2464 	void (*switching_to) (struct rq *this_rq, struct task_struct *task);
2465 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2466 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
2467 	void (*reweight_task)(struct rq *this_rq, struct task_struct *task,
2468 			      const struct load_weight *lw);
2469 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2470 			      int oldprio);
2471 
2472 	unsigned int (*get_rr_interval)(struct rq *rq,
2473 					struct task_struct *task);
2474 
2475 	void (*update_curr)(struct rq *rq);
2476 
2477 #ifdef CONFIG_FAIR_GROUP_SCHED
2478 	void (*task_change_group)(struct task_struct *p);
2479 #endif
2480 
2481 #ifdef CONFIG_SCHED_CORE
2482 	int (*task_is_throttled)(struct task_struct *p, int cpu);
2483 #endif
2484 };
2485 
put_prev_task(struct rq * rq,struct task_struct * prev)2486 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2487 {
2488 	WARN_ON_ONCE(rq->donor != prev);
2489 	prev->sched_class->put_prev_task(rq, prev, NULL);
2490 }
2491 
set_next_task(struct rq * rq,struct task_struct * next)2492 static inline void set_next_task(struct rq *rq, struct task_struct *next)
2493 {
2494 	next->sched_class->set_next_task(rq, next, false);
2495 }
2496 
2497 static inline void
__put_prev_set_next_dl_server(struct rq * rq,struct task_struct * prev,struct task_struct * next)2498 __put_prev_set_next_dl_server(struct rq *rq,
2499 			      struct task_struct *prev,
2500 			      struct task_struct *next)
2501 {
2502 	prev->dl_server = NULL;
2503 	next->dl_server = rq->dl_server;
2504 	rq->dl_server = NULL;
2505 }
2506 
put_prev_set_next_task(struct rq * rq,struct task_struct * prev,struct task_struct * next)2507 static inline void put_prev_set_next_task(struct rq *rq,
2508 					  struct task_struct *prev,
2509 					  struct task_struct *next)
2510 {
2511 	WARN_ON_ONCE(rq->curr != prev);
2512 
2513 	__put_prev_set_next_dl_server(rq, prev, next);
2514 
2515 	if (next == prev)
2516 		return;
2517 
2518 	prev->sched_class->put_prev_task(rq, prev, next);
2519 	next->sched_class->set_next_task(rq, next, true);
2520 }
2521 
2522 /*
2523  * Helper to define a sched_class instance; each one is placed in a separate
2524  * section which is ordered by the linker script:
2525  *
2526  *   include/asm-generic/vmlinux.lds.h
2527  *
2528  * *CAREFUL* they are laid out in *REVERSE* order!!!
2529  *
2530  * Also enforce alignment on the instance, not the type, to guarantee layout.
2531  */
2532 #define DEFINE_SCHED_CLASS(name) \
2533 const struct sched_class name##_sched_class \
2534 	__aligned(__alignof__(struct sched_class)) \
2535 	__section("__" #name "_sched_class")
2536 
2537 /* Defined in include/asm-generic/vmlinux.lds.h */
2538 extern struct sched_class __sched_class_highest[];
2539 extern struct sched_class __sched_class_lowest[];
2540 
2541 extern const struct sched_class stop_sched_class;
2542 extern const struct sched_class dl_sched_class;
2543 extern const struct sched_class rt_sched_class;
2544 extern const struct sched_class fair_sched_class;
2545 extern const struct sched_class idle_sched_class;
2546 
2547 /*
2548  * Iterate only active classes. SCX can take over all fair tasks or be
2549  * completely disabled. If the former, skip fair. If the latter, skip SCX.
2550  */
next_active_class(const struct sched_class * class)2551 static inline const struct sched_class *next_active_class(const struct sched_class *class)
2552 {
2553 	class++;
2554 #ifdef CONFIG_SCHED_CLASS_EXT
2555 	if (scx_switched_all() && class == &fair_sched_class)
2556 		class++;
2557 	if (!scx_enabled() && class == &ext_sched_class)
2558 		class++;
2559 #endif
2560 	return class;
2561 }
2562 
2563 #define for_class_range(class, _from, _to) \
2564 	for (class = (_from); class < (_to); class++)
2565 
2566 #define for_each_class(class) \
2567 	for_class_range(class, __sched_class_highest, __sched_class_lowest)
2568 
2569 #define for_active_class_range(class, _from, _to)				\
2570 	for (class = (_from); class != (_to); class = next_active_class(class))
2571 
2572 #define for_each_active_class(class)						\
2573 	for_active_class_range(class, __sched_class_highest, __sched_class_lowest)
2574 
2575 #define sched_class_above(_a, _b)	((_a) < (_b))
2576 
sched_stop_runnable(struct rq * rq)2577 static inline bool sched_stop_runnable(struct rq *rq)
2578 {
2579 	return rq->stop && task_on_rq_queued(rq->stop);
2580 }
2581 
sched_dl_runnable(struct rq * rq)2582 static inline bool sched_dl_runnable(struct rq *rq)
2583 {
2584 	return rq->dl.dl_nr_running > 0;
2585 }
2586 
sched_rt_runnable(struct rq * rq)2587 static inline bool sched_rt_runnable(struct rq *rq)
2588 {
2589 	return rq->rt.rt_queued > 0;
2590 }
2591 
sched_fair_runnable(struct rq * rq)2592 static inline bool sched_fair_runnable(struct rq *rq)
2593 {
2594 	return rq->cfs.nr_queued > 0;
2595 }
2596 
2597 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2598 extern struct task_struct *pick_task_idle(struct rq *rq);
2599 
2600 #define SCA_CHECK		0x01
2601 #define SCA_MIGRATE_DISABLE	0x02
2602 #define SCA_MIGRATE_ENABLE	0x04
2603 #define SCA_USER		0x08
2604 
2605 #ifdef CONFIG_SMP
2606 
2607 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2608 
2609 extern void sched_balance_trigger(struct rq *rq);
2610 
2611 extern int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx);
2612 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx);
2613 
task_allowed_on_cpu(struct task_struct * p,int cpu)2614 static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu)
2615 {
2616 	/* When not in the task's cpumask, no point in looking further. */
2617 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2618 		return false;
2619 
2620 	/* Can @cpu run a user thread? */
2621 	if (!(p->flags & PF_KTHREAD) && !task_cpu_possible(cpu, p))
2622 		return false;
2623 
2624 	return true;
2625 }
2626 
alloc_user_cpus_ptr(int node)2627 static inline cpumask_t *alloc_user_cpus_ptr(int node)
2628 {
2629 	/*
2630 	 * See do_set_cpus_allowed() above for the rcu_head usage.
2631 	 */
2632 	int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2633 
2634 	return kmalloc_node(size, GFP_KERNEL, node);
2635 }
2636 
get_push_task(struct rq * rq)2637 static inline struct task_struct *get_push_task(struct rq *rq)
2638 {
2639 	struct task_struct *p = rq->donor;
2640 
2641 	lockdep_assert_rq_held(rq);
2642 
2643 	if (rq->push_busy)
2644 		return NULL;
2645 
2646 	if (p->nr_cpus_allowed == 1)
2647 		return NULL;
2648 
2649 	if (p->migration_disabled)
2650 		return NULL;
2651 
2652 	rq->push_busy = true;
2653 	return get_task_struct(p);
2654 }
2655 
2656 extern int push_cpu_stop(void *arg);
2657 
2658 #else /* !CONFIG_SMP: */
2659 
task_allowed_on_cpu(struct task_struct * p,int cpu)2660 static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu)
2661 {
2662 	return true;
2663 }
2664 
__set_cpus_allowed_ptr(struct task_struct * p,struct affinity_context * ctx)2665 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2666 					 struct affinity_context *ctx)
2667 {
2668 	return set_cpus_allowed_ptr(p, ctx->new_mask);
2669 }
2670 
alloc_user_cpus_ptr(int node)2671 static inline cpumask_t *alloc_user_cpus_ptr(int node)
2672 {
2673 	return NULL;
2674 }
2675 
2676 #endif /* !CONFIG_SMP */
2677 
2678 #ifdef CONFIG_CPU_IDLE
2679 
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2680 static inline void idle_set_state(struct rq *rq,
2681 				  struct cpuidle_state *idle_state)
2682 {
2683 	rq->idle_state = idle_state;
2684 }
2685 
idle_get_state(struct rq * rq)2686 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2687 {
2688 	SCHED_WARN_ON(!rcu_read_lock_held());
2689 
2690 	return rq->idle_state;
2691 }
2692 
2693 #else /* !CONFIG_CPU_IDLE: */
2694 
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2695 static inline void idle_set_state(struct rq *rq,
2696 				  struct cpuidle_state *idle_state)
2697 {
2698 }
2699 
idle_get_state(struct rq * rq)2700 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2701 {
2702 	return NULL;
2703 }
2704 
2705 #endif /* !CONFIG_CPU_IDLE */
2706 
2707 extern void schedule_idle(void);
2708 asmlinkage void schedule_user(void);
2709 
2710 extern void sysrq_sched_debug_show(void);
2711 extern void sched_init_granularity(void);
2712 extern void update_max_interval(void);
2713 
2714 extern void init_sched_dl_class(void);
2715 extern void init_sched_rt_class(void);
2716 extern void init_sched_fair_class(void);
2717 
2718 extern void resched_curr(struct rq *rq);
2719 extern void resched_curr_lazy(struct rq *rq);
2720 extern void resched_cpu(int cpu);
2721 
2722 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2723 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
2724 
2725 extern void init_dl_entity(struct sched_dl_entity *dl_se);
2726 
2727 #define BW_SHIFT		20
2728 #define BW_UNIT			(1 << BW_SHIFT)
2729 #define RATIO_SHIFT		8
2730 #define MAX_BW_BITS		(64 - BW_SHIFT)
2731 #define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2732 
2733 extern unsigned long to_ratio(u64 period, u64 runtime);
2734 
2735 extern void init_entity_runnable_average(struct sched_entity *se);
2736 extern void post_init_entity_util_avg(struct task_struct *p);
2737 
2738 #ifdef CONFIG_NO_HZ_FULL
2739 extern bool sched_can_stop_tick(struct rq *rq);
2740 extern int __init sched_tick_offload_init(void);
2741 
2742 /*
2743  * Tick may be needed by tasks in the runqueue depending on their policy and
2744  * requirements. If tick is needed, lets send the target an IPI to kick it out of
2745  * nohz mode if necessary.
2746  */
sched_update_tick_dependency(struct rq * rq)2747 static inline void sched_update_tick_dependency(struct rq *rq)
2748 {
2749 	int cpu = cpu_of(rq);
2750 
2751 	if (!tick_nohz_full_cpu(cpu))
2752 		return;
2753 
2754 	if (sched_can_stop_tick(rq))
2755 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2756 	else
2757 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2758 }
2759 #else /* !CONFIG_NO_HZ_FULL: */
sched_tick_offload_init(void)2760 static inline int sched_tick_offload_init(void) { return 0; }
sched_update_tick_dependency(struct rq * rq)2761 static inline void sched_update_tick_dependency(struct rq *rq) { }
2762 #endif /* !CONFIG_NO_HZ_FULL */
2763 
add_nr_running(struct rq * rq,unsigned count)2764 static inline void add_nr_running(struct rq *rq, unsigned count)
2765 {
2766 	unsigned prev_nr = rq->nr_running;
2767 
2768 	rq->nr_running = prev_nr + count;
2769 	if (trace_sched_update_nr_running_tp_enabled()) {
2770 		call_trace_sched_update_nr_running(rq, count);
2771 	}
2772 
2773 #ifdef CONFIG_SMP
2774 	if (prev_nr < 2 && rq->nr_running >= 2)
2775 		set_rd_overloaded(rq->rd, 1);
2776 #endif
2777 
2778 	sched_update_tick_dependency(rq);
2779 }
2780 
sub_nr_running(struct rq * rq,unsigned count)2781 static inline void sub_nr_running(struct rq *rq, unsigned count)
2782 {
2783 	rq->nr_running -= count;
2784 	if (trace_sched_update_nr_running_tp_enabled()) {
2785 		call_trace_sched_update_nr_running(rq, -count);
2786 	}
2787 
2788 	/* Check if we still need preemption */
2789 	sched_update_tick_dependency(rq);
2790 }
2791 
__block_task(struct rq * rq,struct task_struct * p)2792 static inline void __block_task(struct rq *rq, struct task_struct *p)
2793 {
2794 	if (p->sched_contributes_to_load)
2795 		rq->nr_uninterruptible++;
2796 
2797 	if (p->in_iowait) {
2798 		atomic_inc(&rq->nr_iowait);
2799 		delayacct_blkio_start();
2800 	}
2801 
2802 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2803 
2804 	/*
2805 	 * The moment this write goes through, ttwu() can swoop in and migrate
2806 	 * this task, rendering our rq->__lock ineffective.
2807 	 *
2808 	 * __schedule()				try_to_wake_up()
2809 	 *   LOCK rq->__lock			  LOCK p->pi_lock
2810 	 *   pick_next_task()
2811 	 *     pick_next_task_fair()
2812 	 *       pick_next_entity()
2813 	 *         dequeue_entities()
2814 	 *           __block_task()
2815 	 *             RELEASE p->on_rq = 0	  if (p->on_rq && ...)
2816 	 *					    break;
2817 	 *
2818 	 *					  ACQUIRE (after ctrl-dep)
2819 	 *
2820 	 *					  cpu = select_task_rq();
2821 	 *					  set_task_cpu(p, cpu);
2822 	 *					  ttwu_queue()
2823 	 *					    ttwu_do_activate()
2824 	 *					      LOCK rq->__lock
2825 	 *					      activate_task()
2826 	 *					        STORE p->on_rq = 1
2827 	 *   UNLOCK rq->__lock
2828 	 *
2829 	 * Callers must ensure to not reference @p after this -- we no longer
2830 	 * own it.
2831 	 */
2832 	smp_store_release(&p->on_rq, 0);
2833 }
2834 
2835 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2836 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2837 
2838 extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags);
2839 
2840 #ifdef CONFIG_PREEMPT_RT
2841 # define SCHED_NR_MIGRATE_BREAK 8
2842 #else
2843 # define SCHED_NR_MIGRATE_BREAK 32
2844 #endif
2845 
2846 extern const_debug unsigned int sysctl_sched_nr_migrate;
2847 extern const_debug unsigned int sysctl_sched_migration_cost;
2848 
2849 extern unsigned int sysctl_sched_base_slice;
2850 
2851 #ifdef CONFIG_SCHED_DEBUG
2852 extern int sysctl_resched_latency_warn_ms;
2853 extern int sysctl_resched_latency_warn_once;
2854 
2855 extern unsigned int sysctl_sched_tunable_scaling;
2856 
2857 extern unsigned int sysctl_numa_balancing_scan_delay;
2858 extern unsigned int sysctl_numa_balancing_scan_period_min;
2859 extern unsigned int sysctl_numa_balancing_scan_period_max;
2860 extern unsigned int sysctl_numa_balancing_scan_size;
2861 extern unsigned int sysctl_numa_balancing_hot_threshold;
2862 #endif
2863 
2864 #ifdef CONFIG_SCHED_HRTICK
2865 
2866 /*
2867  * Use hrtick when:
2868  *  - enabled by features
2869  *  - hrtimer is actually high res
2870  */
hrtick_enabled(struct rq * rq)2871 static inline int hrtick_enabled(struct rq *rq)
2872 {
2873 	if (!cpu_active(cpu_of(rq)))
2874 		return 0;
2875 	return hrtimer_is_hres_active(&rq->hrtick_timer);
2876 }
2877 
hrtick_enabled_fair(struct rq * rq)2878 static inline int hrtick_enabled_fair(struct rq *rq)
2879 {
2880 	if (!sched_feat(HRTICK))
2881 		return 0;
2882 	return hrtick_enabled(rq);
2883 }
2884 
hrtick_enabled_dl(struct rq * rq)2885 static inline int hrtick_enabled_dl(struct rq *rq)
2886 {
2887 	if (!sched_feat(HRTICK_DL))
2888 		return 0;
2889 	return hrtick_enabled(rq);
2890 }
2891 
2892 extern void hrtick_start(struct rq *rq, u64 delay);
2893 
2894 #else /* !CONFIG_SCHED_HRTICK: */
2895 
hrtick_enabled_fair(struct rq * rq)2896 static inline int hrtick_enabled_fair(struct rq *rq)
2897 {
2898 	return 0;
2899 }
2900 
hrtick_enabled_dl(struct rq * rq)2901 static inline int hrtick_enabled_dl(struct rq *rq)
2902 {
2903 	return 0;
2904 }
2905 
hrtick_enabled(struct rq * rq)2906 static inline int hrtick_enabled(struct rq *rq)
2907 {
2908 	return 0;
2909 }
2910 
2911 #endif /* !CONFIG_SCHED_HRTICK */
2912 
2913 #ifndef arch_scale_freq_tick
arch_scale_freq_tick(void)2914 static __always_inline void arch_scale_freq_tick(void) { }
2915 #endif
2916 
2917 #ifndef arch_scale_freq_capacity
2918 /**
2919  * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2920  * @cpu: the CPU in question.
2921  *
2922  * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2923  *
2924  *     f_curr
2925  *     ------ * SCHED_CAPACITY_SCALE
2926  *     f_max
2927  */
2928 static __always_inline
arch_scale_freq_capacity(int cpu)2929 unsigned long arch_scale_freq_capacity(int cpu)
2930 {
2931 	return SCHED_CAPACITY_SCALE;
2932 }
2933 #endif
2934 
2935 #ifdef CONFIG_SCHED_DEBUG
2936 /*
2937  * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
2938  * acquire rq lock instead of rq_lock(). So at the end of these two functions
2939  * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
2940  * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
2941  */
double_rq_clock_clear_update(struct rq * rq1,struct rq * rq2)2942 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
2943 {
2944 	rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2945 	/* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
2946 #ifdef CONFIG_SMP
2947 	rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2948 #endif
2949 }
2950 #else
double_rq_clock_clear_update(struct rq * rq1,struct rq * rq2)2951 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) { }
2952 #endif
2953 
2954 #define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...)				\
2955 __DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__)			\
2956 static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2)	\
2957 { class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t;			\
2958   _lock; return _t; }
2959 
2960 #ifdef CONFIG_SMP
2961 
rq_order_less(struct rq * rq1,struct rq * rq2)2962 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2963 {
2964 #ifdef CONFIG_SCHED_CORE
2965 	/*
2966 	 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2967 	 * order by core-id first and cpu-id second.
2968 	 *
2969 	 * Notably:
2970 	 *
2971 	 *	double_rq_lock(0,3); will take core-0, core-1 lock
2972 	 *	double_rq_lock(1,2); will take core-1, core-0 lock
2973 	 *
2974 	 * when only cpu-id is considered.
2975 	 */
2976 	if (rq1->core->cpu < rq2->core->cpu)
2977 		return true;
2978 	if (rq1->core->cpu > rq2->core->cpu)
2979 		return false;
2980 
2981 	/*
2982 	 * __sched_core_flip() relies on SMT having cpu-id lock order.
2983 	 */
2984 #endif
2985 	return rq1->cpu < rq2->cpu;
2986 }
2987 
2988 extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2989 
2990 #ifdef CONFIG_PREEMPTION
2991 
2992 /*
2993  * fair double_lock_balance: Safely acquires both rq->locks in a fair
2994  * way at the expense of forcing extra atomic operations in all
2995  * invocations.  This assures that the double_lock is acquired using the
2996  * same underlying policy as the spinlock_t on this architecture, which
2997  * reduces latency compared to the unfair variant below.  However, it
2998  * also adds more overhead and therefore may reduce throughput.
2999  */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)3000 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
3001 	__releases(this_rq->lock)
3002 	__acquires(busiest->lock)
3003 	__acquires(this_rq->lock)
3004 {
3005 	raw_spin_rq_unlock(this_rq);
3006 	double_rq_lock(this_rq, busiest);
3007 
3008 	return 1;
3009 }
3010 
3011 #else /* !CONFIG_PREEMPTION: */
3012 /*
3013  * Unfair double_lock_balance: Optimizes throughput at the expense of
3014  * latency by eliminating extra atomic operations when the locks are
3015  * already in proper order on entry.  This favors lower CPU-ids and will
3016  * grant the double lock to lower CPUs over higher ids under contention,
3017  * regardless of entry order into the function.
3018  */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)3019 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
3020 	__releases(this_rq->lock)
3021 	__acquires(busiest->lock)
3022 	__acquires(this_rq->lock)
3023 {
3024 	if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
3025 	    likely(raw_spin_rq_trylock(busiest))) {
3026 		double_rq_clock_clear_update(this_rq, busiest);
3027 		return 0;
3028 	}
3029 
3030 	if (rq_order_less(this_rq, busiest)) {
3031 		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
3032 		double_rq_clock_clear_update(this_rq, busiest);
3033 		return 0;
3034 	}
3035 
3036 	raw_spin_rq_unlock(this_rq);
3037 	double_rq_lock(this_rq, busiest);
3038 
3039 	return 1;
3040 }
3041 
3042 #endif /* !CONFIG_PREEMPTION */
3043 
3044 /*
3045  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
3046  */
double_lock_balance(struct rq * this_rq,struct rq * busiest)3047 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
3048 {
3049 	lockdep_assert_irqs_disabled();
3050 
3051 	return _double_lock_balance(this_rq, busiest);
3052 }
3053 
double_unlock_balance(struct rq * this_rq,struct rq * busiest)3054 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
3055 	__releases(busiest->lock)
3056 {
3057 	if (__rq_lockp(this_rq) != __rq_lockp(busiest))
3058 		raw_spin_rq_unlock(busiest);
3059 	lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
3060 }
3061 
double_lock(spinlock_t * l1,spinlock_t * l2)3062 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
3063 {
3064 	if (l1 > l2)
3065 		swap(l1, l2);
3066 
3067 	spin_lock(l1);
3068 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
3069 }
3070 
double_lock_irq(spinlock_t * l1,spinlock_t * l2)3071 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
3072 {
3073 	if (l1 > l2)
3074 		swap(l1, l2);
3075 
3076 	spin_lock_irq(l1);
3077 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
3078 }
3079 
double_raw_lock(raw_spinlock_t * l1,raw_spinlock_t * l2)3080 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
3081 {
3082 	if (l1 > l2)
3083 		swap(l1, l2);
3084 
3085 	raw_spin_lock(l1);
3086 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
3087 }
3088 
double_raw_unlock(raw_spinlock_t * l1,raw_spinlock_t * l2)3089 static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2)
3090 {
3091 	raw_spin_unlock(l1);
3092 	raw_spin_unlock(l2);
3093 }
3094 
3095 DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t,
3096 		    double_raw_lock(_T->lock, _T->lock2),
3097 		    double_raw_unlock(_T->lock, _T->lock2))
3098 
3099 /*
3100  * double_rq_unlock - safely unlock two runqueues
3101  *
3102  * Note this does not restore interrupts like task_rq_unlock,
3103  * you need to do so manually after calling.
3104  */
double_rq_unlock(struct rq * rq1,struct rq * rq2)3105 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3106 	__releases(rq1->lock)
3107 	__releases(rq2->lock)
3108 {
3109 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
3110 		raw_spin_rq_unlock(rq2);
3111 	else
3112 		__release(rq2->lock);
3113 	raw_spin_rq_unlock(rq1);
3114 }
3115 
3116 extern void set_rq_online (struct rq *rq);
3117 extern void set_rq_offline(struct rq *rq);
3118 
3119 extern bool sched_smp_initialized;
3120 
3121 #else /* !CONFIG_SMP: */
3122 
3123 /*
3124  * double_rq_lock - safely lock two runqueues
3125  *
3126  * Note this does not disable interrupts like task_rq_lock,
3127  * you need to do so manually before calling.
3128  */
double_rq_lock(struct rq * rq1,struct rq * rq2)3129 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
3130 	__acquires(rq1->lock)
3131 	__acquires(rq2->lock)
3132 {
3133 	WARN_ON_ONCE(!irqs_disabled());
3134 	WARN_ON_ONCE(rq1 != rq2);
3135 	raw_spin_rq_lock(rq1);
3136 	__acquire(rq2->lock);	/* Fake it out ;) */
3137 	double_rq_clock_clear_update(rq1, rq2);
3138 }
3139 
3140 /*
3141  * double_rq_unlock - safely unlock two runqueues
3142  *
3143  * Note this does not restore interrupts like task_rq_unlock,
3144  * you need to do so manually after calling.
3145  */
double_rq_unlock(struct rq * rq1,struct rq * rq2)3146 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3147 	__releases(rq1->lock)
3148 	__releases(rq2->lock)
3149 {
3150 	WARN_ON_ONCE(rq1 != rq2);
3151 	raw_spin_rq_unlock(rq1);
3152 	__release(rq2->lock);
3153 }
3154 
3155 #endif /* !CONFIG_SMP */
3156 
3157 DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq,
3158 		    double_rq_lock(_T->lock, _T->lock2),
3159 		    double_rq_unlock(_T->lock, _T->lock2))
3160 
3161 extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq);
3162 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
3163 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
3164 
3165 #ifdef	CONFIG_SCHED_DEBUG
3166 extern bool sched_debug_verbose;
3167 
3168 extern void print_cfs_stats(struct seq_file *m, int cpu);
3169 extern void print_rt_stats(struct seq_file *m, int cpu);
3170 extern void print_dl_stats(struct seq_file *m, int cpu);
3171 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
3172 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
3173 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
3174 
3175 extern void resched_latency_warn(int cpu, u64 latency);
3176 # ifdef CONFIG_NUMA_BALANCING
3177 extern void show_numa_stats(struct task_struct *p, struct seq_file *m);
3178 extern void
3179 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
3180 		 unsigned long tpf, unsigned long gsf, unsigned long gpf);
3181 # endif /* CONFIG_NUMA_BALANCING */
3182 #else /* !CONFIG_SCHED_DEBUG: */
resched_latency_warn(int cpu,u64 latency)3183 static inline void resched_latency_warn(int cpu, u64 latency) { }
3184 #endif /* !CONFIG_SCHED_DEBUG */
3185 
3186 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
3187 extern void init_rt_rq(struct rt_rq *rt_rq);
3188 extern void init_dl_rq(struct dl_rq *dl_rq);
3189 
3190 extern void cfs_bandwidth_usage_inc(void);
3191 extern void cfs_bandwidth_usage_dec(void);
3192 
3193 #ifdef CONFIG_NO_HZ_COMMON
3194 
3195 #define NOHZ_BALANCE_KICK_BIT	0
3196 #define NOHZ_STATS_KICK_BIT	1
3197 #define NOHZ_NEWILB_KICK_BIT	2
3198 #define NOHZ_NEXT_KICK_BIT	3
3199 
3200 /* Run sched_balance_domains() */
3201 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
3202 /* Update blocked load */
3203 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
3204 /* Update blocked load when entering idle */
3205 #define NOHZ_NEWILB_KICK	BIT(NOHZ_NEWILB_KICK_BIT)
3206 /* Update nohz.next_balance */
3207 #define NOHZ_NEXT_KICK		BIT(NOHZ_NEXT_KICK_BIT)
3208 
3209 #define NOHZ_KICK_MASK		(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
3210 
3211 #define nohz_flags(cpu)		(&cpu_rq(cpu)->nohz_flags)
3212 
3213 extern void nohz_balance_exit_idle(struct rq *rq);
3214 #else /* !CONFIG_NO_HZ_COMMON: */
nohz_balance_exit_idle(struct rq * rq)3215 static inline void nohz_balance_exit_idle(struct rq *rq) { }
3216 #endif /* !CONFIG_NO_HZ_COMMON */
3217 
3218 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
3219 extern void nohz_run_idle_balance(int cpu);
3220 #else
nohz_run_idle_balance(int cpu)3221 static inline void nohz_run_idle_balance(int cpu) { }
3222 #endif
3223 
3224 #include "stats.h"
3225 
3226 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
3227 
3228 extern void __sched_core_account_forceidle(struct rq *rq);
3229 
sched_core_account_forceidle(struct rq * rq)3230 static inline void sched_core_account_forceidle(struct rq *rq)
3231 {
3232 	if (schedstat_enabled())
3233 		__sched_core_account_forceidle(rq);
3234 }
3235 
3236 extern void __sched_core_tick(struct rq *rq);
3237 
sched_core_tick(struct rq * rq)3238 static inline void sched_core_tick(struct rq *rq)
3239 {
3240 	if (sched_core_enabled(rq) && schedstat_enabled())
3241 		__sched_core_tick(rq);
3242 }
3243 
3244 #else /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS): */
3245 
sched_core_account_forceidle(struct rq * rq)3246 static inline void sched_core_account_forceidle(struct rq *rq) { }
3247 
sched_core_tick(struct rq * rq)3248 static inline void sched_core_tick(struct rq *rq) { }
3249 
3250 #endif /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS) */
3251 
3252 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3253 
3254 struct irqtime {
3255 	u64			total;
3256 	u64			tick_delta;
3257 	u64			irq_start_time;
3258 	struct u64_stats_sync	sync;
3259 };
3260 
3261 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
3262 DECLARE_STATIC_KEY_FALSE(sched_clock_irqtime);
3263 
irqtime_enabled(void)3264 static inline int irqtime_enabled(void)
3265 {
3266 	return static_branch_likely(&sched_clock_irqtime);
3267 }
3268 
3269 /*
3270  * Returns the irqtime minus the softirq time computed by ksoftirqd.
3271  * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
3272  * and never move forward.
3273  */
irq_time_read(int cpu)3274 static inline u64 irq_time_read(int cpu)
3275 {
3276 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
3277 	unsigned int seq;
3278 	u64 total;
3279 
3280 	do {
3281 		seq = __u64_stats_fetch_begin(&irqtime->sync);
3282 		total = irqtime->total;
3283 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
3284 
3285 	return total;
3286 }
3287 
3288 #else
3289 
irqtime_enabled(void)3290 static inline int irqtime_enabled(void)
3291 {
3292 	return 0;
3293 }
3294 
3295 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3296 
3297 #ifdef CONFIG_CPU_FREQ
3298 
3299 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
3300 
3301 /**
3302  * cpufreq_update_util - Take a note about CPU utilization changes.
3303  * @rq: Runqueue to carry out the update for.
3304  * @flags: Update reason flags.
3305  *
3306  * This function is called by the scheduler on the CPU whose utilization is
3307  * being updated.
3308  *
3309  * It can only be called from RCU-sched read-side critical sections.
3310  *
3311  * The way cpufreq is currently arranged requires it to evaluate the CPU
3312  * performance state (frequency/voltage) on a regular basis to prevent it from
3313  * being stuck in a completely inadequate performance level for too long.
3314  * That is not guaranteed to happen if the updates are only triggered from CFS
3315  * and DL, though, because they may not be coming in if only RT tasks are
3316  * active all the time (or there are RT tasks only).
3317  *
3318  * As a workaround for that issue, this function is called periodically by the
3319  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
3320  * but that really is a band-aid.  Going forward it should be replaced with
3321  * solutions targeted more specifically at RT tasks.
3322  */
cpufreq_update_util(struct rq * rq,unsigned int flags)3323 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
3324 {
3325 	struct update_util_data *data;
3326 
3327 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
3328 						  cpu_of(rq)));
3329 	if (data)
3330 		data->func(data, rq_clock(rq), flags);
3331 }
3332 #else /* !CONFIG_CPU_FREQ: */
cpufreq_update_util(struct rq * rq,unsigned int flags)3333 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) { }
3334 #endif /* !CONFIG_CPU_FREQ */
3335 
3336 #ifdef arch_scale_freq_capacity
3337 # ifndef arch_scale_freq_invariant
3338 #  define arch_scale_freq_invariant()	true
3339 # endif
3340 #else
3341 # define arch_scale_freq_invariant()	false
3342 #endif
3343 
3344 #ifdef CONFIG_SMP
3345 
3346 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
3347 				 unsigned long *min,
3348 				 unsigned long *max);
3349 
3350 unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual,
3351 				 unsigned long min,
3352 				 unsigned long max);
3353 
3354 
3355 /*
3356  * Verify the fitness of task @p to run on @cpu taking into account the
3357  * CPU original capacity and the runtime/deadline ratio of the task.
3358  *
3359  * The function will return true if the original capacity of @cpu is
3360  * greater than or equal to task's deadline density right shifted by
3361  * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
3362  */
dl_task_fits_capacity(struct task_struct * p,int cpu)3363 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
3364 {
3365 	unsigned long cap = arch_scale_cpu_capacity(cpu);
3366 
3367 	return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
3368 }
3369 
cpu_bw_dl(struct rq * rq)3370 static inline unsigned long cpu_bw_dl(struct rq *rq)
3371 {
3372 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
3373 }
3374 
cpu_util_dl(struct rq * rq)3375 static inline unsigned long cpu_util_dl(struct rq *rq)
3376 {
3377 	return READ_ONCE(rq->avg_dl.util_avg);
3378 }
3379 
3380 
3381 extern unsigned long cpu_util_cfs(int cpu);
3382 extern unsigned long cpu_util_cfs_boost(int cpu);
3383 
cpu_util_rt(struct rq * rq)3384 static inline unsigned long cpu_util_rt(struct rq *rq)
3385 {
3386 	return READ_ONCE(rq->avg_rt.util_avg);
3387 }
3388 
3389 #else /* !CONFIG_SMP */
update_other_load_avgs(struct rq * rq)3390 static inline bool update_other_load_avgs(struct rq *rq) { return false; }
3391 #endif /* CONFIG_SMP */
3392 
3393 #ifdef CONFIG_UCLAMP_TASK
3394 
3395 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
3396 
uclamp_rq_get(struct rq * rq,enum uclamp_id clamp_id)3397 static inline unsigned long uclamp_rq_get(struct rq *rq,
3398 					  enum uclamp_id clamp_id)
3399 {
3400 	return READ_ONCE(rq->uclamp[clamp_id].value);
3401 }
3402 
uclamp_rq_set(struct rq * rq,enum uclamp_id clamp_id,unsigned int value)3403 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3404 				 unsigned int value)
3405 {
3406 	WRITE_ONCE(rq->uclamp[clamp_id].value, value);
3407 }
3408 
uclamp_rq_is_idle(struct rq * rq)3409 static inline bool uclamp_rq_is_idle(struct rq *rq)
3410 {
3411 	return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
3412 }
3413 
3414 /* Is the rq being capped/throttled by uclamp_max? */
uclamp_rq_is_capped(struct rq * rq)3415 static inline bool uclamp_rq_is_capped(struct rq *rq)
3416 {
3417 	unsigned long rq_util;
3418 	unsigned long max_util;
3419 
3420 	if (!static_branch_likely(&sched_uclamp_used))
3421 		return false;
3422 
3423 	rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
3424 	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
3425 
3426 	return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
3427 }
3428 
3429 /*
3430  * When uclamp is compiled in, the aggregation at rq level is 'turned off'
3431  * by default in the fast path and only gets turned on once userspace performs
3432  * an operation that requires it.
3433  *
3434  * Returns true if userspace opted-in to use uclamp and aggregation at rq level
3435  * hence is active.
3436  */
uclamp_is_used(void)3437 static inline bool uclamp_is_used(void)
3438 {
3439 	return static_branch_likely(&sched_uclamp_used);
3440 }
3441 
3442 #define for_each_clamp_id(clamp_id) \
3443 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
3444 
3445 extern unsigned int sysctl_sched_uclamp_util_min_rt_default;
3446 
3447 
uclamp_none(enum uclamp_id clamp_id)3448 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
3449 {
3450 	if (clamp_id == UCLAMP_MIN)
3451 		return 0;
3452 	return SCHED_CAPACITY_SCALE;
3453 }
3454 
3455 /* Integer rounded range for each bucket */
3456 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
3457 
uclamp_bucket_id(unsigned int clamp_value)3458 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
3459 {
3460 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
3461 }
3462 
3463 static inline void
uclamp_se_set(struct uclamp_se * uc_se,unsigned int value,bool user_defined)3464 uclamp_se_set(struct uclamp_se *uc_se, unsigned int value, bool user_defined)
3465 {
3466 	uc_se->value = value;
3467 	uc_se->bucket_id = uclamp_bucket_id(value);
3468 	uc_se->user_defined = user_defined;
3469 }
3470 
3471 #else /* !CONFIG_UCLAMP_TASK: */
3472 
3473 static inline unsigned long
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)3474 uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
3475 {
3476 	if (clamp_id == UCLAMP_MIN)
3477 		return 0;
3478 
3479 	return SCHED_CAPACITY_SCALE;
3480 }
3481 
uclamp_rq_is_capped(struct rq * rq)3482 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
3483 
uclamp_is_used(void)3484 static inline bool uclamp_is_used(void)
3485 {
3486 	return false;
3487 }
3488 
3489 static inline unsigned long
uclamp_rq_get(struct rq * rq,enum uclamp_id clamp_id)3490 uclamp_rq_get(struct rq *rq, enum uclamp_id clamp_id)
3491 {
3492 	if (clamp_id == UCLAMP_MIN)
3493 		return 0;
3494 
3495 	return SCHED_CAPACITY_SCALE;
3496 }
3497 
3498 static inline void
uclamp_rq_set(struct rq * rq,enum uclamp_id clamp_id,unsigned int value)3499 uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, unsigned int value)
3500 {
3501 }
3502 
uclamp_rq_is_idle(struct rq * rq)3503 static inline bool uclamp_rq_is_idle(struct rq *rq)
3504 {
3505 	return false;
3506 }
3507 
3508 #endif /* !CONFIG_UCLAMP_TASK */
3509 
3510 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
3511 
cpu_util_irq(struct rq * rq)3512 static inline unsigned long cpu_util_irq(struct rq *rq)
3513 {
3514 	return READ_ONCE(rq->avg_irq.util_avg);
3515 }
3516 
3517 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)3518 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3519 {
3520 	util *= (max - irq);
3521 	util /= max;
3522 
3523 	return util;
3524 
3525 }
3526 
3527 #else /* !CONFIG_HAVE_SCHED_AVG_IRQ: */
3528 
cpu_util_irq(struct rq * rq)3529 static inline unsigned long cpu_util_irq(struct rq *rq)
3530 {
3531 	return 0;
3532 }
3533 
3534 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)3535 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3536 {
3537 	return util;
3538 }
3539 
3540 #endif /* !CONFIG_HAVE_SCHED_AVG_IRQ */
3541 
3542 extern void __setparam_fair(struct task_struct *p, const struct sched_attr *attr);
3543 
3544 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3545 
3546 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3547 
3548 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3549 
sched_energy_enabled(void)3550 static inline bool sched_energy_enabled(void)
3551 {
3552 	return static_branch_unlikely(&sched_energy_present);
3553 }
3554 
3555 extern struct cpufreq_governor schedutil_gov;
3556 
3557 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3558 
3559 #define perf_domain_span(pd) NULL
3560 
sched_energy_enabled(void)3561 static inline bool sched_energy_enabled(void) { return false; }
3562 
3563 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
3564 
3565 #ifdef CONFIG_MEMBARRIER
3566 
3567 /*
3568  * The scheduler provides memory barriers required by membarrier between:
3569  * - prior user-space memory accesses and store to rq->membarrier_state,
3570  * - store to rq->membarrier_state and following user-space memory accesses.
3571  * In the same way it provides those guarantees around store to rq->curr.
3572  */
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)3573 static inline void membarrier_switch_mm(struct rq *rq,
3574 					struct mm_struct *prev_mm,
3575 					struct mm_struct *next_mm)
3576 {
3577 	int membarrier_state;
3578 
3579 	if (prev_mm == next_mm)
3580 		return;
3581 
3582 	membarrier_state = atomic_read(&next_mm->membarrier_state);
3583 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3584 		return;
3585 
3586 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
3587 }
3588 
3589 #else /* !CONFIG_MEMBARRIER :*/
3590 
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)3591 static inline void membarrier_switch_mm(struct rq *rq,
3592 					struct mm_struct *prev_mm,
3593 					struct mm_struct *next_mm)
3594 {
3595 }
3596 
3597 #endif /* !CONFIG_MEMBARRIER */
3598 
3599 #ifdef CONFIG_SMP
is_per_cpu_kthread(struct task_struct * p)3600 static inline bool is_per_cpu_kthread(struct task_struct *p)
3601 {
3602 	if (!(p->flags & PF_KTHREAD))
3603 		return false;
3604 
3605 	if (p->nr_cpus_allowed != 1)
3606 		return false;
3607 
3608 	return true;
3609 }
3610 #endif
3611 
3612 extern void swake_up_all_locked(struct swait_queue_head *q);
3613 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3614 
3615 extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags);
3616 
3617 #ifdef CONFIG_PREEMPT_DYNAMIC
3618 extern int preempt_dynamic_mode;
3619 extern int sched_dynamic_mode(const char *str);
3620 extern void sched_dynamic_update(int mode);
3621 #endif
3622 
3623 #ifdef CONFIG_SCHED_MM_CID
3624 
3625 #define SCHED_MM_CID_PERIOD_NS	(100ULL * 1000000)	/* 100ms */
3626 #define MM_CID_SCAN_DELAY	100			/* 100ms */
3627 
3628 extern raw_spinlock_t cid_lock;
3629 extern int use_cid_lock;
3630 
3631 extern void sched_mm_cid_migrate_from(struct task_struct *t);
3632 extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t);
3633 extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr);
3634 extern void init_sched_mm_cid(struct task_struct *t);
3635 
__mm_cid_put(struct mm_struct * mm,int cid)3636 static inline void __mm_cid_put(struct mm_struct *mm, int cid)
3637 {
3638 	if (cid < 0)
3639 		return;
3640 	cpumask_clear_cpu(cid, mm_cidmask(mm));
3641 }
3642 
3643 /*
3644  * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to
3645  * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to
3646  * be held to transition to other states.
3647  *
3648  * State transitions synchronized with cmpxchg or try_cmpxchg need to be
3649  * consistent across CPUs, which prevents use of this_cpu_cmpxchg.
3650  */
mm_cid_put_lazy(struct task_struct * t)3651 static inline void mm_cid_put_lazy(struct task_struct *t)
3652 {
3653 	struct mm_struct *mm = t->mm;
3654 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3655 	int cid;
3656 
3657 	lockdep_assert_irqs_disabled();
3658 	cid = __this_cpu_read(pcpu_cid->cid);
3659 	if (!mm_cid_is_lazy_put(cid) ||
3660 	    !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3661 		return;
3662 	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3663 }
3664 
mm_cid_pcpu_unset(struct mm_struct * mm)3665 static inline int mm_cid_pcpu_unset(struct mm_struct *mm)
3666 {
3667 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3668 	int cid, res;
3669 
3670 	lockdep_assert_irqs_disabled();
3671 	cid = __this_cpu_read(pcpu_cid->cid);
3672 	for (;;) {
3673 		if (mm_cid_is_unset(cid))
3674 			return MM_CID_UNSET;
3675 		/*
3676 		 * Attempt transition from valid or lazy-put to unset.
3677 		 */
3678 		res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET);
3679 		if (res == cid)
3680 			break;
3681 		cid = res;
3682 	}
3683 	return cid;
3684 }
3685 
mm_cid_put(struct mm_struct * mm)3686 static inline void mm_cid_put(struct mm_struct *mm)
3687 {
3688 	int cid;
3689 
3690 	lockdep_assert_irqs_disabled();
3691 	cid = mm_cid_pcpu_unset(mm);
3692 	if (cid == MM_CID_UNSET)
3693 		return;
3694 	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3695 }
3696 
__mm_cid_try_get(struct task_struct * t,struct mm_struct * mm)3697 static inline int __mm_cid_try_get(struct task_struct *t, struct mm_struct *mm)
3698 {
3699 	struct cpumask *cidmask = mm_cidmask(mm);
3700 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3701 	int cid, max_nr_cid, allowed_max_nr_cid;
3702 
3703 	/*
3704 	 * After shrinking the number of threads or reducing the number
3705 	 * of allowed cpus, reduce the value of max_nr_cid so expansion
3706 	 * of cid allocation will preserve cache locality if the number
3707 	 * of threads or allowed cpus increase again.
3708 	 */
3709 	max_nr_cid = atomic_read(&mm->max_nr_cid);
3710 	while ((allowed_max_nr_cid = min_t(int, READ_ONCE(mm->nr_cpus_allowed),
3711 					   atomic_read(&mm->mm_users))),
3712 	       max_nr_cid > allowed_max_nr_cid) {
3713 		/* atomic_try_cmpxchg loads previous mm->max_nr_cid into max_nr_cid. */
3714 		if (atomic_try_cmpxchg(&mm->max_nr_cid, &max_nr_cid, allowed_max_nr_cid)) {
3715 			max_nr_cid = allowed_max_nr_cid;
3716 			break;
3717 		}
3718 	}
3719 	/* Try to re-use recent cid. This improves cache locality. */
3720 	cid = __this_cpu_read(pcpu_cid->recent_cid);
3721 	if (!mm_cid_is_unset(cid) && cid < max_nr_cid &&
3722 	    !cpumask_test_and_set_cpu(cid, cidmask))
3723 		return cid;
3724 	/*
3725 	 * Expand cid allocation if the maximum number of concurrency
3726 	 * IDs allocated (max_nr_cid) is below the number cpus allowed
3727 	 * and number of threads. Expanding cid allocation as much as
3728 	 * possible improves cache locality.
3729 	 */
3730 	cid = max_nr_cid;
3731 	while (cid < READ_ONCE(mm->nr_cpus_allowed) && cid < atomic_read(&mm->mm_users)) {
3732 		/* atomic_try_cmpxchg loads previous mm->max_nr_cid into cid. */
3733 		if (!atomic_try_cmpxchg(&mm->max_nr_cid, &cid, cid + 1))
3734 			continue;
3735 		if (!cpumask_test_and_set_cpu(cid, cidmask))
3736 			return cid;
3737 	}
3738 	/*
3739 	 * Find the first available concurrency id.
3740 	 * Retry finding first zero bit if the mask is temporarily
3741 	 * filled. This only happens during concurrent remote-clear
3742 	 * which owns a cid without holding a rq lock.
3743 	 */
3744 	for (;;) {
3745 		cid = cpumask_first_zero(cidmask);
3746 		if (cid < READ_ONCE(mm->nr_cpus_allowed))
3747 			break;
3748 		cpu_relax();
3749 	}
3750 	if (cpumask_test_and_set_cpu(cid, cidmask))
3751 		return -1;
3752 
3753 	return cid;
3754 }
3755 
3756 /*
3757  * Save a snapshot of the current runqueue time of this cpu
3758  * with the per-cpu cid value, allowing to estimate how recently it was used.
3759  */
mm_cid_snapshot_time(struct rq * rq,struct mm_struct * mm)3760 static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm)
3761 {
3762 	struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq));
3763 
3764 	lockdep_assert_rq_held(rq);
3765 	WRITE_ONCE(pcpu_cid->time, rq->clock);
3766 }
3767 
__mm_cid_get(struct rq * rq,struct task_struct * t,struct mm_struct * mm)3768 static inline int __mm_cid_get(struct rq *rq, struct task_struct *t,
3769 			       struct mm_struct *mm)
3770 {
3771 	int cid;
3772 
3773 	/*
3774 	 * All allocations (even those using the cid_lock) are lock-free. If
3775 	 * use_cid_lock is set, hold the cid_lock to perform cid allocation to
3776 	 * guarantee forward progress.
3777 	 */
3778 	if (!READ_ONCE(use_cid_lock)) {
3779 		cid = __mm_cid_try_get(t, mm);
3780 		if (cid >= 0)
3781 			goto end;
3782 		raw_spin_lock(&cid_lock);
3783 	} else {
3784 		raw_spin_lock(&cid_lock);
3785 		cid = __mm_cid_try_get(t, mm);
3786 		if (cid >= 0)
3787 			goto unlock;
3788 	}
3789 
3790 	/*
3791 	 * cid concurrently allocated. Retry while forcing following
3792 	 * allocations to use the cid_lock to ensure forward progress.
3793 	 */
3794 	WRITE_ONCE(use_cid_lock, 1);
3795 	/*
3796 	 * Set use_cid_lock before allocation. Only care about program order
3797 	 * because this is only required for forward progress.
3798 	 */
3799 	barrier();
3800 	/*
3801 	 * Retry until it succeeds. It is guaranteed to eventually succeed once
3802 	 * all newcoming allocations observe the use_cid_lock flag set.
3803 	 */
3804 	do {
3805 		cid = __mm_cid_try_get(t, mm);
3806 		cpu_relax();
3807 	} while (cid < 0);
3808 	/*
3809 	 * Allocate before clearing use_cid_lock. Only care about
3810 	 * program order because this is for forward progress.
3811 	 */
3812 	barrier();
3813 	WRITE_ONCE(use_cid_lock, 0);
3814 unlock:
3815 	raw_spin_unlock(&cid_lock);
3816 end:
3817 	mm_cid_snapshot_time(rq, mm);
3818 
3819 	return cid;
3820 }
3821 
mm_cid_get(struct rq * rq,struct task_struct * t,struct mm_struct * mm)3822 static inline int mm_cid_get(struct rq *rq, struct task_struct *t,
3823 			     struct mm_struct *mm)
3824 {
3825 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3826 	struct cpumask *cpumask;
3827 	int cid;
3828 
3829 	lockdep_assert_rq_held(rq);
3830 	cpumask = mm_cidmask(mm);
3831 	cid = __this_cpu_read(pcpu_cid->cid);
3832 	if (mm_cid_is_valid(cid)) {
3833 		mm_cid_snapshot_time(rq, mm);
3834 		return cid;
3835 	}
3836 	if (mm_cid_is_lazy_put(cid)) {
3837 		if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3838 			__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3839 	}
3840 	cid = __mm_cid_get(rq, t, mm);
3841 	__this_cpu_write(pcpu_cid->cid, cid);
3842 	__this_cpu_write(pcpu_cid->recent_cid, cid);
3843 
3844 	return cid;
3845 }
3846 
switch_mm_cid(struct rq * rq,struct task_struct * prev,struct task_struct * next)3847 static inline void switch_mm_cid(struct rq *rq,
3848 				 struct task_struct *prev,
3849 				 struct task_struct *next)
3850 {
3851 	/*
3852 	 * Provide a memory barrier between rq->curr store and load of
3853 	 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition.
3854 	 *
3855 	 * Should be adapted if context_switch() is modified.
3856 	 */
3857 	if (!next->mm) {                                // to kernel
3858 		/*
3859 		 * user -> kernel transition does not guarantee a barrier, but
3860 		 * we can use the fact that it performs an atomic operation in
3861 		 * mmgrab().
3862 		 */
3863 		if (prev->mm)                           // from user
3864 			smp_mb__after_mmgrab();
3865 		/*
3866 		 * kernel -> kernel transition does not change rq->curr->mm
3867 		 * state. It stays NULL.
3868 		 */
3869 	} else {                                        // to user
3870 		/*
3871 		 * kernel -> user transition does not provide a barrier
3872 		 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu].
3873 		 * Provide it here.
3874 		 */
3875 		if (!prev->mm) {                        // from kernel
3876 			smp_mb();
3877 		} else {				// from user
3878 			/*
3879 			 * user->user transition relies on an implicit
3880 			 * memory barrier in switch_mm() when
3881 			 * current->mm changes. If the architecture
3882 			 * switch_mm() does not have an implicit memory
3883 			 * barrier, it is emitted here.  If current->mm
3884 			 * is unchanged, no barrier is needed.
3885 			 */
3886 			smp_mb__after_switch_mm();
3887 		}
3888 	}
3889 	if (prev->mm_cid_active) {
3890 		mm_cid_snapshot_time(rq, prev->mm);
3891 		mm_cid_put_lazy(prev);
3892 		prev->mm_cid = -1;
3893 	}
3894 	if (next->mm_cid_active)
3895 		next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next, next->mm);
3896 }
3897 
3898 #else /* !CONFIG_SCHED_MM_CID: */
switch_mm_cid(struct rq * rq,struct task_struct * prev,struct task_struct * next)3899 static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { }
sched_mm_cid_migrate_from(struct task_struct * t)3900 static inline void sched_mm_cid_migrate_from(struct task_struct *t) { }
sched_mm_cid_migrate_to(struct rq * dst_rq,struct task_struct * t)3901 static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { }
task_tick_mm_cid(struct rq * rq,struct task_struct * curr)3902 static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { }
init_sched_mm_cid(struct task_struct * t)3903 static inline void init_sched_mm_cid(struct task_struct *t) { }
3904 #endif /* !CONFIG_SCHED_MM_CID */
3905 
3906 extern u64 avg_vruntime(struct cfs_rq *cfs_rq);
3907 extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se);
3908 #ifdef CONFIG_SMP
3909 static inline
move_queued_task_locked(struct rq * src_rq,struct rq * dst_rq,struct task_struct * task)3910 void move_queued_task_locked(struct rq *src_rq, struct rq *dst_rq, struct task_struct *task)
3911 {
3912 	lockdep_assert_rq_held(src_rq);
3913 	lockdep_assert_rq_held(dst_rq);
3914 
3915 	deactivate_task(src_rq, task, 0);
3916 	set_task_cpu(task, dst_rq->cpu);
3917 	activate_task(dst_rq, task, 0);
3918 }
3919 
3920 static inline
task_is_pushable(struct rq * rq,struct task_struct * p,int cpu)3921 bool task_is_pushable(struct rq *rq, struct task_struct *p, int cpu)
3922 {
3923 	if (!task_on_cpu(rq, p) &&
3924 	    cpumask_test_cpu(cpu, &p->cpus_mask))
3925 		return true;
3926 
3927 	return false;
3928 }
3929 #endif
3930 
3931 #ifdef CONFIG_RT_MUTEXES
3932 
__rt_effective_prio(struct task_struct * pi_task,int prio)3933 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3934 {
3935 	if (pi_task)
3936 		prio = min(prio, pi_task->prio);
3937 
3938 	return prio;
3939 }
3940 
rt_effective_prio(struct task_struct * p,int prio)3941 static inline int rt_effective_prio(struct task_struct *p, int prio)
3942 {
3943 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
3944 
3945 	return __rt_effective_prio(pi_task, prio);
3946 }
3947 
3948 #else /* !CONFIG_RT_MUTEXES: */
3949 
rt_effective_prio(struct task_struct * p,int prio)3950 static inline int rt_effective_prio(struct task_struct *p, int prio)
3951 {
3952 	return prio;
3953 }
3954 
3955 #endif /* !CONFIG_RT_MUTEXES */
3956 
3957 extern int __sched_setscheduler(struct task_struct *p, const struct sched_attr *attr, bool user, bool pi);
3958 extern int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
3959 extern const struct sched_class *__setscheduler_class(int policy, int prio);
3960 extern void set_load_weight(struct task_struct *p, bool update_load);
3961 extern void enqueue_task(struct rq *rq, struct task_struct *p, int flags);
3962 extern bool dequeue_task(struct rq *rq, struct task_struct *p, int flags);
3963 
3964 extern void check_class_changing(struct rq *rq, struct task_struct *p,
3965 				 const struct sched_class *prev_class);
3966 extern void check_class_changed(struct rq *rq, struct task_struct *p,
3967 				const struct sched_class *prev_class,
3968 				int oldprio);
3969 
3970 #ifdef CONFIG_SMP
3971 extern struct balance_callback *splice_balance_callbacks(struct rq *rq);
3972 extern void balance_callbacks(struct rq *rq, struct balance_callback *head);
3973 #else
3974 
splice_balance_callbacks(struct rq * rq)3975 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
3976 {
3977 	return NULL;
3978 }
3979 
balance_callbacks(struct rq * rq,struct balance_callback * head)3980 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
3981 {
3982 }
3983 
3984 #endif
3985 
3986 #ifdef CONFIG_SCHED_CLASS_EXT
3987 /*
3988  * Used by SCX in the enable/disable paths to move tasks between sched_classes
3989  * and establish invariants.
3990  */
3991 struct sched_enq_and_set_ctx {
3992 	struct task_struct	*p;
3993 	int			queue_flags;
3994 	bool			queued;
3995 	bool			running;
3996 };
3997 
3998 void sched_deq_and_put_task(struct task_struct *p, int queue_flags,
3999 			    struct sched_enq_and_set_ctx *ctx);
4000 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx);
4001 
4002 #endif /* CONFIG_SCHED_CLASS_EXT */
4003 
4004 #include "ext.h"
4005 
4006 #endif /* _KERNEL_SCHED_SCHED_H */
4007