xref: /linux/fs/btrfs/raid56.c (revision de0674d9bc69699c497477d45172493393ae9007)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Fusion-io  All rights reserved.
4  * Copyright (C) 2012 Intel Corp. All rights reserved.
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/raid/pq.h>
12 #include <linux/hash.h>
13 #include <linux/list_sort.h>
14 #include <linux/raid/xor.h>
15 #include <linux/mm.h>
16 #include "messages.h"
17 #include "ctree.h"
18 #include "disk-io.h"
19 #include "volumes.h"
20 #include "raid56.h"
21 #include "async-thread.h"
22 #include "file-item.h"
23 #include "btrfs_inode.h"
24 
25 /* set when additional merges to this rbio are not allowed */
26 #define RBIO_RMW_LOCKED_BIT	1
27 
28 /*
29  * set when this rbio is sitting in the hash, but it is just a cache
30  * of past RMW
31  */
32 #define RBIO_CACHE_BIT		2
33 
34 /*
35  * set when it is safe to trust the stripe_pages for caching
36  */
37 #define RBIO_CACHE_READY_BIT	3
38 
39 #define RBIO_CACHE_SIZE 1024
40 
41 #define BTRFS_STRIPE_HASH_TABLE_BITS				11
42 
dump_bioc(const struct btrfs_fs_info * fs_info,const struct btrfs_io_context * bioc)43 static void dump_bioc(const struct btrfs_fs_info *fs_info, const struct btrfs_io_context *bioc)
44 {
45 	if (unlikely(!bioc)) {
46 		btrfs_crit(fs_info, "bioc=NULL");
47 		return;
48 	}
49 	btrfs_crit(fs_info,
50 "bioc logical=%llu full_stripe=%llu size=%llu map_type=0x%llx mirror=%u replace_nr_stripes=%u replace_stripe_src=%d num_stripes=%u",
51 		bioc->logical, bioc->full_stripe_logical, bioc->size,
52 		bioc->map_type, bioc->mirror_num, bioc->replace_nr_stripes,
53 		bioc->replace_stripe_src, bioc->num_stripes);
54 	for (int i = 0; i < bioc->num_stripes; i++) {
55 		btrfs_crit(fs_info, "    nr=%d devid=%llu physical=%llu",
56 			   i, bioc->stripes[i].dev->devid,
57 			   bioc->stripes[i].physical);
58 	}
59 }
60 
btrfs_dump_rbio(const struct btrfs_fs_info * fs_info,const struct btrfs_raid_bio * rbio)61 static void btrfs_dump_rbio(const struct btrfs_fs_info *fs_info,
62 			    const struct btrfs_raid_bio *rbio)
63 {
64 	if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
65 		return;
66 
67 	dump_bioc(fs_info, rbio->bioc);
68 	btrfs_crit(fs_info,
69 "rbio flags=0x%lx nr_sectors=%u nr_data=%u real_stripes=%u stripe_nsectors=%u sector_nsteps=%u scrubp=%u dbitmap=0x%lx",
70 		rbio->flags, rbio->nr_sectors, rbio->nr_data,
71 		rbio->real_stripes, rbio->stripe_nsectors,
72 		rbio->sector_nsteps, rbio->scrubp, rbio->dbitmap);
73 }
74 
75 #define ASSERT_RBIO(expr, rbio)						\
76 ({									\
77 	if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) {	\
78 		const struct btrfs_fs_info *__fs_info = (rbio)->bioc ?	\
79 					(rbio)->bioc->fs_info : NULL;	\
80 									\
81 		btrfs_dump_rbio(__fs_info, (rbio));			\
82 	}								\
83 	ASSERT((expr));							\
84 })
85 
86 #define ASSERT_RBIO_STRIPE(expr, rbio, stripe_nr)			\
87 ({									\
88 	if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) {	\
89 		const struct btrfs_fs_info *__fs_info = (rbio)->bioc ?	\
90 					(rbio)->bioc->fs_info : NULL;	\
91 									\
92 		btrfs_dump_rbio(__fs_info, (rbio));			\
93 		btrfs_crit(__fs_info, "stripe_nr=%d", (stripe_nr));	\
94 	}								\
95 	ASSERT((expr));							\
96 })
97 
98 #define ASSERT_RBIO_SECTOR(expr, rbio, sector_nr)			\
99 ({									\
100 	if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) {	\
101 		const struct btrfs_fs_info *__fs_info = (rbio)->bioc ?	\
102 					(rbio)->bioc->fs_info : NULL;	\
103 									\
104 		btrfs_dump_rbio(__fs_info, (rbio));			\
105 		btrfs_crit(__fs_info, "sector_nr=%d", (sector_nr));	\
106 	}								\
107 	ASSERT((expr));							\
108 })
109 
110 #define ASSERT_RBIO_LOGICAL(expr, rbio, logical)			\
111 ({									\
112 	if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) {	\
113 		const struct btrfs_fs_info *__fs_info = (rbio)->bioc ?	\
114 					(rbio)->bioc->fs_info : NULL;	\
115 									\
116 		btrfs_dump_rbio(__fs_info, (rbio));			\
117 		btrfs_crit(__fs_info, "logical=%llu", (logical));		\
118 	}								\
119 	ASSERT((expr));							\
120 })
121 
122 /* Used by the raid56 code to lock stripes for read/modify/write */
123 struct btrfs_stripe_hash {
124 	struct list_head hash_list;
125 	spinlock_t lock;
126 };
127 
128 /* Used by the raid56 code to lock stripes for read/modify/write */
129 struct btrfs_stripe_hash_table {
130 	struct list_head stripe_cache;
131 	spinlock_t cache_lock;
132 	int cache_size;
133 	struct btrfs_stripe_hash table[];
134 };
135 
136 /*
137  * The PFN may still be valid, but our paddrs should always be block size
138  * aligned, thus such -1 paddr is definitely not a valid one.
139  */
140 #define INVALID_PADDR	(~(phys_addr_t)0)
141 
142 static void rmw_rbio_work(struct work_struct *work);
143 static void rmw_rbio_work_locked(struct work_struct *work);
144 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
145 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
146 
147 static int finish_parity_scrub(struct btrfs_raid_bio *rbio);
148 static void scrub_rbio_work_locked(struct work_struct *work);
149 
free_raid_bio_pointers(struct btrfs_raid_bio * rbio)150 static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio)
151 {
152 	bitmap_free(rbio->error_bitmap);
153 	bitmap_free(rbio->stripe_uptodate_bitmap);
154 	kfree(rbio->stripe_pages);
155 	kfree(rbio->bio_paddrs);
156 	kfree(rbio->stripe_paddrs);
157 	kfree(rbio->finish_pointers);
158 }
159 
free_raid_bio(struct btrfs_raid_bio * rbio)160 static void free_raid_bio(struct btrfs_raid_bio *rbio)
161 {
162 	int i;
163 
164 	if (!refcount_dec_and_test(&rbio->refs))
165 		return;
166 
167 	WARN_ON(!list_empty(&rbio->stripe_cache));
168 	WARN_ON(!list_empty(&rbio->hash_list));
169 	WARN_ON(!bio_list_empty(&rbio->bio_list));
170 
171 	for (i = 0; i < rbio->nr_pages; i++) {
172 		if (rbio->stripe_pages[i]) {
173 			__free_page(rbio->stripe_pages[i]);
174 			rbio->stripe_pages[i] = NULL;
175 		}
176 	}
177 
178 	btrfs_put_bioc(rbio->bioc);
179 	free_raid_bio_pointers(rbio);
180 	kfree(rbio);
181 }
182 
start_async_work(struct btrfs_raid_bio * rbio,work_func_t work_func)183 static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func)
184 {
185 	INIT_WORK(&rbio->work, work_func);
186 	queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work);
187 }
188 
189 /*
190  * the stripe hash table is used for locking, and to collect
191  * bios in hopes of making a full stripe
192  */
btrfs_alloc_stripe_hash_table(struct btrfs_fs_info * info)193 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
194 {
195 	struct btrfs_stripe_hash_table *table;
196 	struct btrfs_stripe_hash_table *x;
197 	struct btrfs_stripe_hash *cur;
198 	struct btrfs_stripe_hash *h;
199 	unsigned int num_entries = 1U << BTRFS_STRIPE_HASH_TABLE_BITS;
200 
201 	if (info->stripe_hash_table)
202 		return 0;
203 
204 	/*
205 	 * The table is large, starting with order 4 and can go as high as
206 	 * order 7 in case lock debugging is turned on.
207 	 *
208 	 * Try harder to allocate and fallback to vmalloc to lower the chance
209 	 * of a failing mount.
210 	 */
211 	table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
212 	if (!table)
213 		return -ENOMEM;
214 
215 	spin_lock_init(&table->cache_lock);
216 	INIT_LIST_HEAD(&table->stripe_cache);
217 
218 	h = table->table;
219 
220 	for (unsigned int i = 0; i < num_entries; i++) {
221 		cur = h + i;
222 		INIT_LIST_HEAD(&cur->hash_list);
223 		spin_lock_init(&cur->lock);
224 	}
225 
226 	x = cmpxchg(&info->stripe_hash_table, NULL, table);
227 	kvfree(x);
228 	return 0;
229 }
230 
memcpy_from_bio_to_stripe(struct btrfs_raid_bio * rbio,unsigned int sector_nr)231 static void memcpy_from_bio_to_stripe(struct btrfs_raid_bio *rbio, unsigned int sector_nr)
232 {
233 	const u32 step = min(rbio->bioc->fs_info->sectorsize, PAGE_SIZE);
234 
235 	ASSERT(sector_nr < rbio->nr_sectors);
236 	for (int i = 0; i < rbio->sector_nsteps; i++) {
237 		unsigned int index = sector_nr * rbio->sector_nsteps + i;
238 		phys_addr_t dst = rbio->stripe_paddrs[index];
239 		phys_addr_t src = rbio->bio_paddrs[index];
240 
241 		ASSERT(dst != INVALID_PADDR);
242 		ASSERT(src != INVALID_PADDR);
243 
244 		memcpy_page(phys_to_page(dst), offset_in_page(dst),
245 			    phys_to_page(src), offset_in_page(src), step);
246 	}
247 }
248 
249 /*
250  * caching an rbio means to copy anything from the
251  * bio_sectors array into the stripe_pages array.  We
252  * use the page uptodate bit in the stripe cache array
253  * to indicate if it has valid data
254  *
255  * once the caching is done, we set the cache ready
256  * bit.
257  */
cache_rbio_pages(struct btrfs_raid_bio * rbio)258 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
259 {
260 	int i;
261 	int ret;
262 
263 	ret = alloc_rbio_pages(rbio);
264 	if (ret)
265 		return;
266 
267 	for (i = 0; i < rbio->nr_sectors; i++) {
268 		/* Some range not covered by bio (partial write), skip it */
269 		if (rbio->bio_paddrs[i * rbio->sector_nsteps] == INVALID_PADDR) {
270 			/*
271 			 * Even if the sector is not covered by bio, if it is
272 			 * a data sector it should still be uptodate as it is
273 			 * read from disk.
274 			 */
275 			if (i < rbio->nr_data * rbio->stripe_nsectors)
276 				ASSERT(test_bit(i, rbio->stripe_uptodate_bitmap));
277 			continue;
278 		}
279 
280 		memcpy_from_bio_to_stripe(rbio, i);
281 		set_bit(i, rbio->stripe_uptodate_bitmap);
282 	}
283 	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
284 }
285 
286 /*
287  * we hash on the first logical address of the stripe
288  */
rbio_bucket(struct btrfs_raid_bio * rbio)289 static int rbio_bucket(struct btrfs_raid_bio *rbio)
290 {
291 	u64 num = rbio->bioc->full_stripe_logical;
292 
293 	/*
294 	 * we shift down quite a bit.  We're using byte
295 	 * addressing, and most of the lower bits are zeros.
296 	 * This tends to upset hash_64, and it consistently
297 	 * returns just one or two different values.
298 	 *
299 	 * shifting off the lower bits fixes things.
300 	 */
301 	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
302 }
303 
304 /* Get the sector number of the first sector covered by @page_nr. */
page_nr_to_sector_nr(struct btrfs_raid_bio * rbio,unsigned int page_nr)305 static u32 page_nr_to_sector_nr(struct btrfs_raid_bio *rbio, unsigned int page_nr)
306 {
307 	u32 sector_nr;
308 
309 	ASSERT(page_nr < rbio->nr_pages);
310 
311 	sector_nr = (page_nr << PAGE_SHIFT) >> rbio->bioc->fs_info->sectorsize_bits;
312 	ASSERT(sector_nr < rbio->nr_sectors);
313 	return sector_nr;
314 }
315 
316 /*
317  * Get the number of sectors covered by @page_nr.
318  *
319  * For bs > ps cases, the result will always be 1.
320  * For bs <= ps cases, the result will be ps / bs.
321  */
page_nr_to_num_sectors(struct btrfs_raid_bio * rbio,unsigned int page_nr)322 static u32 page_nr_to_num_sectors(struct btrfs_raid_bio *rbio, unsigned int page_nr)
323 {
324 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
325 	u32 nr_sectors;
326 
327 	ASSERT(page_nr < rbio->nr_pages);
328 
329 	nr_sectors = round_up(PAGE_SIZE, fs_info->sectorsize) >> fs_info->sectorsize_bits;
330 	ASSERT(nr_sectors > 0);
331 	return nr_sectors;
332 }
333 
full_page_sectors_uptodate(struct btrfs_raid_bio * rbio,unsigned int page_nr)334 static __maybe_unused bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio,
335 						      unsigned int page_nr)
336 {
337 	const u32 sector_nr = page_nr_to_sector_nr(rbio, page_nr);
338 	const u32 nr_bits = page_nr_to_num_sectors(rbio, page_nr);
339 	int i;
340 
341 	ASSERT(page_nr < rbio->nr_pages);
342 	ASSERT(sector_nr + nr_bits < rbio->nr_sectors);
343 
344 	for (i = sector_nr; i < sector_nr + nr_bits; i++) {
345 		if (!test_bit(i, rbio->stripe_uptodate_bitmap))
346 			return false;
347 	}
348 	return true;
349 }
350 
351 /*
352  * Update the stripe_sectors[] array to use correct page and pgoff
353  *
354  * Should be called every time any page pointer in stripes_pages[] got modified.
355  */
index_stripe_sectors(struct btrfs_raid_bio * rbio)356 static void index_stripe_sectors(struct btrfs_raid_bio *rbio)
357 {
358 	const u32 step = min(rbio->bioc->fs_info->sectorsize, PAGE_SIZE);
359 	u32 offset;
360 	int i;
361 
362 	for (i = 0, offset = 0; i < rbio->nr_sectors * rbio->sector_nsteps;
363 	     i++, offset += step) {
364 		int page_index = offset >> PAGE_SHIFT;
365 
366 		ASSERT(page_index < rbio->nr_pages);
367 		if (!rbio->stripe_pages[page_index])
368 			continue;
369 
370 		rbio->stripe_paddrs[i] = page_to_phys(rbio->stripe_pages[page_index]) +
371 					 offset_in_page(offset);
372 	}
373 }
374 
steal_rbio_page(struct btrfs_raid_bio * src,struct btrfs_raid_bio * dest,int page_nr)375 static void steal_rbio_page(struct btrfs_raid_bio *src,
376 			    struct btrfs_raid_bio *dest, int page_nr)
377 {
378 	const u32 sector_nr = page_nr_to_sector_nr(src, page_nr);
379 	const u32 nr_bits = page_nr_to_num_sectors(src, page_nr);
380 
381 	ASSERT(page_nr < src->nr_pages);
382 	ASSERT(sector_nr + nr_bits < src->nr_sectors);
383 
384 	if (dest->stripe_pages[page_nr])
385 		__free_page(dest->stripe_pages[page_nr]);
386 	dest->stripe_pages[page_nr] = src->stripe_pages[page_nr];
387 	src->stripe_pages[page_nr] = NULL;
388 
389 	/* Also update the stripe_uptodate_bitmap bits. */
390 	bitmap_set(dest->stripe_uptodate_bitmap, sector_nr, nr_bits);
391 }
392 
is_data_stripe_page(struct btrfs_raid_bio * rbio,int page_nr)393 static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr)
394 {
395 	const int sector_nr = page_nr_to_sector_nr(rbio, page_nr);
396 
397 	/*
398 	 * We have ensured PAGE_SIZE is aligned with sectorsize, thus
399 	 * we won't have a page which is half data half parity.
400 	 *
401 	 * Thus if the first sector of the page belongs to data stripes, then
402 	 * the full page belongs to data stripes.
403 	 */
404 	return (sector_nr < rbio->nr_data * rbio->stripe_nsectors);
405 }
406 
407 /*
408  * Stealing an rbio means taking all the uptodate pages from the stripe array
409  * in the source rbio and putting them into the destination rbio.
410  *
411  * This will also update the involved stripe_sectors[] which are referring to
412  * the old pages.
413  */
steal_rbio(struct btrfs_raid_bio * src,struct btrfs_raid_bio * dest)414 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
415 {
416 	int i;
417 
418 	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
419 		return;
420 
421 	for (i = 0; i < dest->nr_pages; i++) {
422 		struct page *p = src->stripe_pages[i];
423 
424 		/*
425 		 * We don't need to steal P/Q pages as they will always be
426 		 * regenerated for RMW or full write anyway.
427 		 */
428 		if (!is_data_stripe_page(src, i))
429 			continue;
430 
431 		/*
432 		 * If @src already has RBIO_CACHE_READY_BIT, it should have
433 		 * all data stripe pages present and uptodate.
434 		 */
435 		ASSERT(p);
436 		ASSERT(full_page_sectors_uptodate(src, i));
437 		steal_rbio_page(src, dest, i);
438 	}
439 	index_stripe_sectors(dest);
440 	index_stripe_sectors(src);
441 }
442 
443 /*
444  * merging means we take the bio_list from the victim and
445  * splice it into the destination.  The victim should
446  * be discarded afterwards.
447  *
448  * must be called with dest->rbio_list_lock held
449  */
merge_rbio(struct btrfs_raid_bio * dest,struct btrfs_raid_bio * victim)450 static void merge_rbio(struct btrfs_raid_bio *dest,
451 		       struct btrfs_raid_bio *victim)
452 {
453 	bio_list_merge_init(&dest->bio_list, &victim->bio_list);
454 	dest->bio_list_bytes += victim->bio_list_bytes;
455 	/* Also inherit the bitmaps from @victim. */
456 	bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap,
457 		  dest->stripe_nsectors);
458 }
459 
460 /*
461  * used to prune items that are in the cache.  The caller
462  * must hold the hash table lock.
463  */
__remove_rbio_from_cache(struct btrfs_raid_bio * rbio)464 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
465 {
466 	int bucket = rbio_bucket(rbio);
467 	struct btrfs_stripe_hash_table *table;
468 	struct btrfs_stripe_hash *h;
469 	int freeit = 0;
470 
471 	/*
472 	 * check the bit again under the hash table lock.
473 	 */
474 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
475 		return;
476 
477 	table = rbio->bioc->fs_info->stripe_hash_table;
478 	h = table->table + bucket;
479 
480 	/* hold the lock for the bucket because we may be
481 	 * removing it from the hash table
482 	 */
483 	spin_lock(&h->lock);
484 
485 	/*
486 	 * hold the lock for the bio list because we need
487 	 * to make sure the bio list is empty
488 	 */
489 	spin_lock(&rbio->bio_list_lock);
490 
491 	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
492 		list_del_init(&rbio->stripe_cache);
493 		table->cache_size -= 1;
494 		freeit = 1;
495 
496 		/* if the bio list isn't empty, this rbio is
497 		 * still involved in an IO.  We take it out
498 		 * of the cache list, and drop the ref that
499 		 * was held for the list.
500 		 *
501 		 * If the bio_list was empty, we also remove
502 		 * the rbio from the hash_table, and drop
503 		 * the corresponding ref
504 		 */
505 		if (bio_list_empty(&rbio->bio_list)) {
506 			if (!list_empty(&rbio->hash_list)) {
507 				list_del_init(&rbio->hash_list);
508 				refcount_dec(&rbio->refs);
509 				BUG_ON(!list_empty(&rbio->plug_list));
510 			}
511 		}
512 	}
513 
514 	spin_unlock(&rbio->bio_list_lock);
515 	spin_unlock(&h->lock);
516 
517 	if (freeit)
518 		free_raid_bio(rbio);
519 }
520 
521 /*
522  * prune a given rbio from the cache
523  */
remove_rbio_from_cache(struct btrfs_raid_bio * rbio)524 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
525 {
526 	struct btrfs_stripe_hash_table *table;
527 
528 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
529 		return;
530 
531 	table = rbio->bioc->fs_info->stripe_hash_table;
532 
533 	spin_lock(&table->cache_lock);
534 	__remove_rbio_from_cache(rbio);
535 	spin_unlock(&table->cache_lock);
536 }
537 
538 /*
539  * remove everything in the cache
540  */
btrfs_clear_rbio_cache(struct btrfs_fs_info * info)541 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
542 {
543 	struct btrfs_stripe_hash_table *table;
544 	struct btrfs_raid_bio *rbio;
545 
546 	table = info->stripe_hash_table;
547 
548 	spin_lock(&table->cache_lock);
549 	while (!list_empty(&table->stripe_cache)) {
550 		rbio = list_first_entry(&table->stripe_cache,
551 					struct btrfs_raid_bio, stripe_cache);
552 		__remove_rbio_from_cache(rbio);
553 	}
554 	spin_unlock(&table->cache_lock);
555 }
556 
557 /*
558  * remove all cached entries and free the hash table
559  * used by unmount
560  */
btrfs_free_stripe_hash_table(struct btrfs_fs_info * info)561 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
562 {
563 	if (!info->stripe_hash_table)
564 		return;
565 	btrfs_clear_rbio_cache(info);
566 	kvfree(info->stripe_hash_table);
567 	info->stripe_hash_table = NULL;
568 }
569 
570 /*
571  * insert an rbio into the stripe cache.  It
572  * must have already been prepared by calling
573  * cache_rbio_pages
574  *
575  * If this rbio was already cached, it gets
576  * moved to the front of the lru.
577  *
578  * If the size of the rbio cache is too big, we
579  * prune an item.
580  */
cache_rbio(struct btrfs_raid_bio * rbio)581 static void cache_rbio(struct btrfs_raid_bio *rbio)
582 {
583 	struct btrfs_stripe_hash_table *table;
584 
585 	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
586 		return;
587 
588 	table = rbio->bioc->fs_info->stripe_hash_table;
589 
590 	spin_lock(&table->cache_lock);
591 	spin_lock(&rbio->bio_list_lock);
592 
593 	/* bump our ref if we were not in the list before */
594 	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
595 		refcount_inc(&rbio->refs);
596 
597 	if (!list_empty(&rbio->stripe_cache)){
598 		list_move(&rbio->stripe_cache, &table->stripe_cache);
599 	} else {
600 		list_add(&rbio->stripe_cache, &table->stripe_cache);
601 		table->cache_size += 1;
602 	}
603 
604 	spin_unlock(&rbio->bio_list_lock);
605 
606 	if (table->cache_size > RBIO_CACHE_SIZE) {
607 		struct btrfs_raid_bio *found;
608 
609 		found = list_last_entry(&table->stripe_cache,
610 					struct btrfs_raid_bio,
611 					stripe_cache);
612 
613 		if (found != rbio)
614 			__remove_rbio_from_cache(found);
615 	}
616 
617 	spin_unlock(&table->cache_lock);
618 }
619 
620 /*
621  * helper function to run the xor_blocks api.  It is only
622  * able to do MAX_XOR_BLOCKS at a time, so we need to
623  * loop through.
624  */
run_xor(void ** pages,int src_cnt,ssize_t len)625 static void run_xor(void **pages, int src_cnt, ssize_t len)
626 {
627 	int src_off = 0;
628 	int xor_src_cnt = 0;
629 	void *dest = pages[src_cnt];
630 
631 	while(src_cnt > 0) {
632 		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
633 		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
634 
635 		src_cnt -= xor_src_cnt;
636 		src_off += xor_src_cnt;
637 	}
638 }
639 
640 /*
641  * Returns true if the bio list inside this rbio covers an entire stripe (no
642  * rmw required).
643  */
rbio_is_full(struct btrfs_raid_bio * rbio)644 static int rbio_is_full(struct btrfs_raid_bio *rbio)
645 {
646 	unsigned long size = rbio->bio_list_bytes;
647 	int ret = 1;
648 
649 	spin_lock(&rbio->bio_list_lock);
650 	if (size != rbio->nr_data * BTRFS_STRIPE_LEN)
651 		ret = 0;
652 	BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN);
653 	spin_unlock(&rbio->bio_list_lock);
654 
655 	return ret;
656 }
657 
658 /*
659  * returns 1 if it is safe to merge two rbios together.
660  * The merging is safe if the two rbios correspond to
661  * the same stripe and if they are both going in the same
662  * direction (read vs write), and if neither one is
663  * locked for final IO
664  *
665  * The caller is responsible for locking such that
666  * rmw_locked is safe to test
667  */
rbio_can_merge(struct btrfs_raid_bio * last,struct btrfs_raid_bio * cur)668 static int rbio_can_merge(struct btrfs_raid_bio *last,
669 			  struct btrfs_raid_bio *cur)
670 {
671 	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
672 	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
673 		return 0;
674 
675 	/*
676 	 * we can't merge with cached rbios, since the
677 	 * idea is that when we merge the destination
678 	 * rbio is going to run our IO for us.  We can
679 	 * steal from cached rbios though, other functions
680 	 * handle that.
681 	 */
682 	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
683 	    test_bit(RBIO_CACHE_BIT, &cur->flags))
684 		return 0;
685 
686 	if (last->bioc->full_stripe_logical != cur->bioc->full_stripe_logical)
687 		return 0;
688 
689 	/* we can't merge with different operations */
690 	if (last->operation != cur->operation)
691 		return 0;
692 	/*
693 	 * We've need read the full stripe from the drive.
694 	 * check and repair the parity and write the new results.
695 	 *
696 	 * We're not allowed to add any new bios to the
697 	 * bio list here, anyone else that wants to
698 	 * change this stripe needs to do their own rmw.
699 	 */
700 	if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
701 		return 0;
702 
703 	if (last->operation == BTRFS_RBIO_READ_REBUILD)
704 		return 0;
705 
706 	return 1;
707 }
708 
709 /* Return the sector index for @stripe_nr and @sector_nr. */
rbio_sector_index(const struct btrfs_raid_bio * rbio,unsigned int stripe_nr,unsigned int sector_nr)710 static unsigned int rbio_sector_index(const struct btrfs_raid_bio *rbio,
711 				      unsigned int stripe_nr,
712 				      unsigned int sector_nr)
713 {
714 	unsigned int ret;
715 
716 	ASSERT_RBIO_STRIPE(stripe_nr < rbio->real_stripes, rbio, stripe_nr);
717 	ASSERT_RBIO_SECTOR(sector_nr < rbio->stripe_nsectors, rbio, sector_nr);
718 
719 	ret = stripe_nr * rbio->stripe_nsectors + sector_nr;
720 	ASSERT(ret < rbio->nr_sectors);
721 	return ret;
722 }
723 
724 /* Return the paddr array index for @stripe_nr, @sector_nr and @step_nr. */
rbio_paddr_index(const struct btrfs_raid_bio * rbio,unsigned int stripe_nr,unsigned int sector_nr,unsigned int step_nr)725 static unsigned int rbio_paddr_index(const struct btrfs_raid_bio *rbio,
726 				     unsigned int stripe_nr,
727 				     unsigned int sector_nr,
728 				     unsigned int step_nr)
729 {
730 	unsigned int ret;
731 
732 	ASSERT_RBIO_SECTOR(step_nr < rbio->sector_nsteps, rbio, step_nr);
733 
734 	ret = rbio_sector_index(rbio, stripe_nr, sector_nr) * rbio->sector_nsteps + step_nr;
735 	ASSERT(ret < rbio->nr_sectors * rbio->sector_nsteps);
736 	return ret;
737 }
738 
rbio_stripe_paddr(const struct btrfs_raid_bio * rbio,unsigned int stripe_nr,unsigned int sector_nr,unsigned int step_nr)739 static phys_addr_t rbio_stripe_paddr(const struct btrfs_raid_bio *rbio,
740 					  unsigned int stripe_nr, unsigned int sector_nr,
741 					  unsigned int step_nr)
742 {
743 	return rbio->stripe_paddrs[rbio_paddr_index(rbio, stripe_nr, sector_nr, step_nr)];
744 }
745 
rbio_pstripe_paddr(const struct btrfs_raid_bio * rbio,unsigned int sector_nr,unsigned int step_nr)746 static phys_addr_t rbio_pstripe_paddr(const struct btrfs_raid_bio *rbio,
747 					   unsigned int sector_nr, unsigned int step_nr)
748 {
749 	return rbio_stripe_paddr(rbio, rbio->nr_data, sector_nr, step_nr);
750 }
751 
rbio_qstripe_paddr(const struct btrfs_raid_bio * rbio,unsigned int sector_nr,unsigned int step_nr)752 static phys_addr_t rbio_qstripe_paddr(const struct btrfs_raid_bio *rbio,
753 					   unsigned int sector_nr, unsigned int step_nr)
754 {
755 	if (rbio->nr_data + 1 == rbio->real_stripes)
756 		return INVALID_PADDR;
757 	return rbio_stripe_paddr(rbio, rbio->nr_data + 1, sector_nr, step_nr);
758 }
759 
760 /* Return a paddr pointer into the rbio::stripe_paddrs[] for the specified sector. */
rbio_stripe_paddrs(const struct btrfs_raid_bio * rbio,unsigned int stripe_nr,unsigned int sector_nr)761 static phys_addr_t *rbio_stripe_paddrs(const struct btrfs_raid_bio *rbio,
762 				       unsigned int stripe_nr, unsigned int sector_nr)
763 {
764 	return &rbio->stripe_paddrs[rbio_paddr_index(rbio, stripe_nr, sector_nr, 0)];
765 }
766 
767 /*
768  * The first stripe in the table for a logical address
769  * has the lock.  rbios are added in one of three ways:
770  *
771  * 1) Nobody has the stripe locked yet.  The rbio is given
772  * the lock and 0 is returned.  The caller must start the IO
773  * themselves.
774  *
775  * 2) Someone has the stripe locked, but we're able to merge
776  * with the lock owner.  The rbio is freed and the IO will
777  * start automatically along with the existing rbio.  1 is returned.
778  *
779  * 3) Someone has the stripe locked, but we're not able to merge.
780  * The rbio is added to the lock owner's plug list, or merged into
781  * an rbio already on the plug list.  When the lock owner unlocks,
782  * the next rbio on the list is run and the IO is started automatically.
783  * 1 is returned
784  *
785  * If we return 0, the caller still owns the rbio and must continue with
786  * IO submission.  If we return 1, the caller must assume the rbio has
787  * already been freed.
788  */
lock_stripe_add(struct btrfs_raid_bio * rbio)789 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
790 {
791 	struct btrfs_stripe_hash *h;
792 	struct btrfs_raid_bio *cur;
793 	struct btrfs_raid_bio *pending;
794 	struct btrfs_raid_bio *freeit = NULL;
795 	struct btrfs_raid_bio *cache_drop = NULL;
796 	int ret = 0;
797 
798 	h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
799 
800 	spin_lock(&h->lock);
801 	list_for_each_entry(cur, &h->hash_list, hash_list) {
802 		if (cur->bioc->full_stripe_logical != rbio->bioc->full_stripe_logical)
803 			continue;
804 
805 		spin_lock(&cur->bio_list_lock);
806 
807 		/* Can we steal this cached rbio's pages? */
808 		if (bio_list_empty(&cur->bio_list) &&
809 		    list_empty(&cur->plug_list) &&
810 		    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
811 		    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
812 			list_del_init(&cur->hash_list);
813 			refcount_dec(&cur->refs);
814 
815 			steal_rbio(cur, rbio);
816 			cache_drop = cur;
817 			spin_unlock(&cur->bio_list_lock);
818 
819 			goto lockit;
820 		}
821 
822 		/* Can we merge into the lock owner? */
823 		if (rbio_can_merge(cur, rbio)) {
824 			merge_rbio(cur, rbio);
825 			spin_unlock(&cur->bio_list_lock);
826 			freeit = rbio;
827 			ret = 1;
828 			goto out;
829 		}
830 
831 
832 		/*
833 		 * We couldn't merge with the running rbio, see if we can merge
834 		 * with the pending ones.  We don't have to check for rmw_locked
835 		 * because there is no way they are inside finish_rmw right now
836 		 */
837 		list_for_each_entry(pending, &cur->plug_list, plug_list) {
838 			if (rbio_can_merge(pending, rbio)) {
839 				merge_rbio(pending, rbio);
840 				spin_unlock(&cur->bio_list_lock);
841 				freeit = rbio;
842 				ret = 1;
843 				goto out;
844 			}
845 		}
846 
847 		/*
848 		 * No merging, put us on the tail of the plug list, our rbio
849 		 * will be started with the currently running rbio unlocks
850 		 */
851 		list_add_tail(&rbio->plug_list, &cur->plug_list);
852 		spin_unlock(&cur->bio_list_lock);
853 		ret = 1;
854 		goto out;
855 	}
856 lockit:
857 	refcount_inc(&rbio->refs);
858 	list_add(&rbio->hash_list, &h->hash_list);
859 out:
860 	spin_unlock(&h->lock);
861 	if (cache_drop)
862 		remove_rbio_from_cache(cache_drop);
863 	if (freeit)
864 		free_raid_bio(freeit);
865 	return ret;
866 }
867 
868 static void recover_rbio_work_locked(struct work_struct *work);
869 
870 /*
871  * called as rmw or parity rebuild is completed.  If the plug list has more
872  * rbios waiting for this stripe, the next one on the list will be started
873  */
unlock_stripe(struct btrfs_raid_bio * rbio)874 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
875 {
876 	int bucket;
877 	struct btrfs_stripe_hash *h;
878 	int keep_cache = 0;
879 
880 	bucket = rbio_bucket(rbio);
881 	h = rbio->bioc->fs_info->stripe_hash_table->table + bucket;
882 
883 	if (list_empty(&rbio->plug_list))
884 		cache_rbio(rbio);
885 
886 	spin_lock(&h->lock);
887 	spin_lock(&rbio->bio_list_lock);
888 
889 	if (!list_empty(&rbio->hash_list)) {
890 		/*
891 		 * if we're still cached and there is no other IO
892 		 * to perform, just leave this rbio here for others
893 		 * to steal from later
894 		 */
895 		if (list_empty(&rbio->plug_list) &&
896 		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
897 			keep_cache = 1;
898 			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
899 			BUG_ON(!bio_list_empty(&rbio->bio_list));
900 			goto done;
901 		}
902 
903 		list_del_init(&rbio->hash_list);
904 		refcount_dec(&rbio->refs);
905 
906 		/*
907 		 * we use the plug list to hold all the rbios
908 		 * waiting for the chance to lock this stripe.
909 		 * hand the lock over to one of them.
910 		 */
911 		if (!list_empty(&rbio->plug_list)) {
912 			struct btrfs_raid_bio *next;
913 			struct list_head *head = rbio->plug_list.next;
914 
915 			next = list_entry(head, struct btrfs_raid_bio,
916 					  plug_list);
917 
918 			list_del_init(&rbio->plug_list);
919 
920 			list_add(&next->hash_list, &h->hash_list);
921 			refcount_inc(&next->refs);
922 			spin_unlock(&rbio->bio_list_lock);
923 			spin_unlock(&h->lock);
924 
925 			if (next->operation == BTRFS_RBIO_READ_REBUILD) {
926 				start_async_work(next, recover_rbio_work_locked);
927 			} else if (next->operation == BTRFS_RBIO_WRITE) {
928 				steal_rbio(rbio, next);
929 				start_async_work(next, rmw_rbio_work_locked);
930 			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
931 				steal_rbio(rbio, next);
932 				start_async_work(next, scrub_rbio_work_locked);
933 			}
934 
935 			goto done_nolock;
936 		}
937 	}
938 done:
939 	spin_unlock(&rbio->bio_list_lock);
940 	spin_unlock(&h->lock);
941 
942 done_nolock:
943 	if (!keep_cache)
944 		remove_rbio_from_cache(rbio);
945 }
946 
rbio_endio_bio_list(struct bio * cur,blk_status_t status)947 static void rbio_endio_bio_list(struct bio *cur, blk_status_t status)
948 {
949 	struct bio *next;
950 
951 	while (cur) {
952 		next = cur->bi_next;
953 		cur->bi_next = NULL;
954 		cur->bi_status = status;
955 		bio_endio(cur);
956 		cur = next;
957 	}
958 }
959 
960 /*
961  * this frees the rbio and runs through all the bios in the
962  * bio_list and calls end_io on them
963  */
rbio_orig_end_io(struct btrfs_raid_bio * rbio,blk_status_t status)964 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t status)
965 {
966 	struct bio *cur = bio_list_get(&rbio->bio_list);
967 	struct bio *extra;
968 
969 	kfree(rbio->csum_buf);
970 	bitmap_free(rbio->csum_bitmap);
971 	rbio->csum_buf = NULL;
972 	rbio->csum_bitmap = NULL;
973 
974 	/*
975 	 * Clear the data bitmap, as the rbio may be cached for later usage.
976 	 * do this before before unlock_stripe() so there will be no new bio
977 	 * for this bio.
978 	 */
979 	bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors);
980 
981 	/*
982 	 * At this moment, rbio->bio_list is empty, however since rbio does not
983 	 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
984 	 * hash list, rbio may be merged with others so that rbio->bio_list
985 	 * becomes non-empty.
986 	 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
987 	 * more and we can call bio_endio() on all queued bios.
988 	 */
989 	unlock_stripe(rbio);
990 	extra = bio_list_get(&rbio->bio_list);
991 	free_raid_bio(rbio);
992 
993 	rbio_endio_bio_list(cur, status);
994 	if (extra)
995 		rbio_endio_bio_list(extra, status);
996 }
997 
998 /*
999  * Get paddr pointer for the sector specified by its @stripe_nr and @sector_nr.
1000  *
1001  * @rbio:               The raid bio
1002  * @stripe_nr:          Stripe number, valid range [0, real_stripe)
1003  * @sector_nr:		Sector number inside the stripe,
1004  *			valid range [0, stripe_nsectors)
1005  * @bio_list_only:      Whether to use sectors inside the bio list only.
1006  *
1007  * The read/modify/write code wants to reuse the original bio page as much
1008  * as possible, and only use stripe_sectors as fallback.
1009  *
1010  * Return NULL if bio_list_only is set but the specified sector has no
1011  * coresponding bio.
1012  */
sector_paddrs_in_rbio(struct btrfs_raid_bio * rbio,int stripe_nr,int sector_nr,bool bio_list_only)1013 static phys_addr_t *sector_paddrs_in_rbio(struct btrfs_raid_bio *rbio,
1014 					  int stripe_nr, int sector_nr,
1015 					  bool bio_list_only)
1016 {
1017 	phys_addr_t *ret = NULL;
1018 	const int index = rbio_paddr_index(rbio, stripe_nr, sector_nr, 0);
1019 
1020 	ASSERT(index >= 0 && index < rbio->nr_sectors * rbio->sector_nsteps);
1021 
1022 	scoped_guard(spinlock, &rbio->bio_list_lock) {
1023 		if (rbio->bio_paddrs[index] != INVALID_PADDR || bio_list_only) {
1024 			/* Don't return sector without a valid page pointer */
1025 			if (rbio->bio_paddrs[index] != INVALID_PADDR)
1026 				ret = &rbio->bio_paddrs[index];
1027 			return ret;
1028 		}
1029 	}
1030 	return &rbio->stripe_paddrs[index];
1031 }
1032 
1033 /*
1034  * Similar to sector_paddr_in_rbio(), but with extra consideration for
1035  * bs > ps cases, where we can have multiple steps for a fs block.
1036  */
sector_paddr_in_rbio(struct btrfs_raid_bio * rbio,int stripe_nr,int sector_nr,int step_nr,bool bio_list_only)1037 static phys_addr_t sector_paddr_in_rbio(struct btrfs_raid_bio *rbio,
1038 					int stripe_nr, int sector_nr, int step_nr,
1039 					bool bio_list_only)
1040 {
1041 	phys_addr_t ret = INVALID_PADDR;
1042 	const int index = rbio_paddr_index(rbio, stripe_nr, sector_nr, step_nr);
1043 
1044 	ASSERT(index >= 0 && index < rbio->nr_sectors * rbio->sector_nsteps);
1045 
1046 	scoped_guard(spinlock, &rbio->bio_list_lock) {
1047 		if (rbio->bio_paddrs[index] != INVALID_PADDR || bio_list_only) {
1048 			/* Don't return sector without a valid page pointer */
1049 			if (rbio->bio_paddrs[index] != INVALID_PADDR)
1050 				ret = rbio->bio_paddrs[index];
1051 			return ret;
1052 		}
1053 	}
1054 	return rbio->stripe_paddrs[index];
1055 }
1056 
1057 /*
1058  * allocation and initial setup for the btrfs_raid_bio.  Not
1059  * this does not allocate any pages for rbio->pages.
1060  */
alloc_rbio(struct btrfs_fs_info * fs_info,struct btrfs_io_context * bioc)1061 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
1062 					 struct btrfs_io_context *bioc)
1063 {
1064 	const unsigned int real_stripes = bioc->num_stripes - bioc->replace_nr_stripes;
1065 	const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT;
1066 	const unsigned int num_pages = stripe_npages * real_stripes;
1067 	const unsigned int stripe_nsectors =
1068 		BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
1069 	const unsigned int num_sectors = stripe_nsectors * real_stripes;
1070 	const unsigned int step = min(fs_info->sectorsize, PAGE_SIZE);
1071 	const unsigned int sector_nsteps = fs_info->sectorsize / step;
1072 	struct btrfs_raid_bio *rbio;
1073 
1074 	/*
1075 	 * For bs <= ps cases, ps must be aligned to bs.
1076 	 * For bs > ps cases, bs must be aligned to ps.
1077 	 */
1078 	ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize) ||
1079 	       IS_ALIGNED(fs_info->sectorsize, PAGE_SIZE));
1080 	/*
1081 	 * Our current stripe len should be fixed to 64k thus stripe_nsectors
1082 	 * (at most 16) should be no larger than BITS_PER_LONG.
1083 	 */
1084 	ASSERT(stripe_nsectors <= BITS_PER_LONG);
1085 
1086 	/*
1087 	 * Real stripes must be between 2 (2 disks RAID5, aka RAID1) and 256
1088 	 * (limited by u8).
1089 	 */
1090 	ASSERT(real_stripes >= 2);
1091 	ASSERT(real_stripes <= U8_MAX);
1092 
1093 	rbio = kzalloc(sizeof(*rbio), GFP_NOFS);
1094 	if (!rbio)
1095 		return ERR_PTR(-ENOMEM);
1096 	rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *),
1097 				     GFP_NOFS);
1098 	rbio->bio_paddrs = kcalloc(num_sectors * sector_nsteps, sizeof(phys_addr_t), GFP_NOFS);
1099 	rbio->stripe_paddrs = kcalloc(num_sectors * sector_nsteps, sizeof(phys_addr_t), GFP_NOFS);
1100 	rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS);
1101 	rbio->error_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS);
1102 	rbio->stripe_uptodate_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS);
1103 
1104 	if (!rbio->stripe_pages || !rbio->bio_paddrs || !rbio->stripe_paddrs ||
1105 	    !rbio->finish_pointers || !rbio->error_bitmap || !rbio->stripe_uptodate_bitmap) {
1106 		free_raid_bio_pointers(rbio);
1107 		kfree(rbio);
1108 		return ERR_PTR(-ENOMEM);
1109 	}
1110 	for (int i = 0; i < num_sectors * sector_nsteps; i++) {
1111 		rbio->stripe_paddrs[i] = INVALID_PADDR;
1112 		rbio->bio_paddrs[i] = INVALID_PADDR;
1113 	}
1114 
1115 	bio_list_init(&rbio->bio_list);
1116 	init_waitqueue_head(&rbio->io_wait);
1117 	INIT_LIST_HEAD(&rbio->plug_list);
1118 	spin_lock_init(&rbio->bio_list_lock);
1119 	INIT_LIST_HEAD(&rbio->stripe_cache);
1120 	INIT_LIST_HEAD(&rbio->hash_list);
1121 	btrfs_get_bioc(bioc);
1122 	rbio->bioc = bioc;
1123 	rbio->nr_pages = num_pages;
1124 	rbio->nr_sectors = num_sectors;
1125 	rbio->real_stripes = real_stripes;
1126 	rbio->stripe_npages = stripe_npages;
1127 	rbio->stripe_nsectors = stripe_nsectors;
1128 	rbio->sector_nsteps = sector_nsteps;
1129 	refcount_set(&rbio->refs, 1);
1130 	atomic_set(&rbio->stripes_pending, 0);
1131 
1132 	ASSERT(btrfs_nr_parity_stripes(bioc->map_type));
1133 	rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type);
1134 	ASSERT(rbio->nr_data > 0);
1135 
1136 	return rbio;
1137 }
1138 
1139 /* allocate pages for all the stripes in the bio, including parity */
alloc_rbio_pages(struct btrfs_raid_bio * rbio)1140 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1141 {
1142 	int ret;
1143 
1144 	ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages, false);
1145 	if (ret < 0)
1146 		return ret;
1147 	/* Mapping all sectors */
1148 	index_stripe_sectors(rbio);
1149 	return 0;
1150 }
1151 
1152 /* only allocate pages for p/q stripes */
alloc_rbio_parity_pages(struct btrfs_raid_bio * rbio)1153 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1154 {
1155 	const int data_pages = rbio->nr_data * rbio->stripe_npages;
1156 	int ret;
1157 
1158 	ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages,
1159 				     rbio->stripe_pages + data_pages, false);
1160 	if (ret < 0)
1161 		return ret;
1162 
1163 	index_stripe_sectors(rbio);
1164 	return 0;
1165 }
1166 
1167 /*
1168  * Return the total number of errors found in the vertical stripe of @sector_nr.
1169  *
1170  * @faila and @failb will also be updated to the first and second stripe
1171  * number of the errors.
1172  */
get_rbio_vertical_errors(struct btrfs_raid_bio * rbio,int sector_nr,int * faila,int * failb)1173 static int get_rbio_vertical_errors(struct btrfs_raid_bio *rbio, int sector_nr,
1174 				    int *faila, int *failb)
1175 {
1176 	int stripe_nr;
1177 	int found_errors = 0;
1178 
1179 	if (faila || failb) {
1180 		/*
1181 		 * Both @faila and @failb should be valid pointers if any of
1182 		 * them is specified.
1183 		 */
1184 		ASSERT(faila && failb);
1185 		*faila = -1;
1186 		*failb = -1;
1187 	}
1188 
1189 	for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1190 		int total_sector_nr = stripe_nr * rbio->stripe_nsectors + sector_nr;
1191 
1192 		if (test_bit(total_sector_nr, rbio->error_bitmap)) {
1193 			found_errors++;
1194 			if (faila) {
1195 				/* Update faila and failb. */
1196 				if (*faila < 0)
1197 					*faila = stripe_nr;
1198 				else if (*failb < 0)
1199 					*failb = stripe_nr;
1200 			}
1201 		}
1202 	}
1203 	return found_errors;
1204 }
1205 
bio_add_paddrs(struct bio * bio,phys_addr_t * paddrs,unsigned int nr_steps,unsigned int step)1206 static int bio_add_paddrs(struct bio *bio, phys_addr_t *paddrs, unsigned int nr_steps,
1207 			  unsigned int step)
1208 {
1209 	int added = 0;
1210 	int ret;
1211 
1212 	for (int i = 0; i < nr_steps; i++) {
1213 		ret = bio_add_page(bio, phys_to_page(paddrs[i]), step,
1214 				   offset_in_page(paddrs[i]));
1215 		if (ret != step)
1216 			goto revert;
1217 		added += ret;
1218 	}
1219 	return added;
1220 revert:
1221 	/*
1222 	 * We don't need to revert the bvec, as the bio will be submitted immediately,
1223 	 * as long as the size is reduced the extra bvec will not be accessed.
1224 	 */
1225 	bio->bi_iter.bi_size -= added;
1226 	return 0;
1227 }
1228 
1229 /*
1230  * Add a single sector @sector into our list of bios for IO.
1231  *
1232  * Return 0 if everything went well.
1233  * Return <0 for error, and no byte will be added to @rbio.
1234  */
rbio_add_io_paddrs(struct btrfs_raid_bio * rbio,struct bio_list * bio_list,phys_addr_t * paddrs,unsigned int stripe_nr,unsigned int sector_nr,enum req_op op)1235 static int rbio_add_io_paddrs(struct btrfs_raid_bio *rbio, struct bio_list *bio_list,
1236 			      phys_addr_t *paddrs, unsigned int stripe_nr,
1237 			      unsigned int sector_nr, enum req_op op)
1238 {
1239 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1240 	const u32 step = min(sectorsize, PAGE_SIZE);
1241 	struct bio *last = bio_list->tail;
1242 	int ret;
1243 	struct bio *bio;
1244 	struct btrfs_io_stripe *stripe;
1245 	u64 disk_start;
1246 
1247 	/*
1248 	 * Note: here stripe_nr has taken device replace into consideration,
1249 	 * thus it can be larger than rbio->real_stripe.
1250 	 * So here we check against bioc->num_stripes, not rbio->real_stripes.
1251 	 */
1252 	ASSERT_RBIO_STRIPE(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes,
1253 			   rbio, stripe_nr);
1254 	ASSERT_RBIO_SECTOR(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors,
1255 			   rbio, sector_nr);
1256 	ASSERT(paddrs != NULL);
1257 
1258 	stripe = &rbio->bioc->stripes[stripe_nr];
1259 	disk_start = stripe->physical + sector_nr * sectorsize;
1260 
1261 	/* if the device is missing, just fail this stripe */
1262 	if (!stripe->dev->bdev) {
1263 		int found_errors;
1264 
1265 		set_bit(stripe_nr * rbio->stripe_nsectors + sector_nr,
1266 			rbio->error_bitmap);
1267 
1268 		/* Check if we have reached tolerance early. */
1269 		found_errors = get_rbio_vertical_errors(rbio, sector_nr,
1270 							NULL, NULL);
1271 		if (unlikely(found_errors > rbio->bioc->max_errors))
1272 			return -EIO;
1273 		return 0;
1274 	}
1275 
1276 	/* see if we can add this page onto our existing bio */
1277 	if (last) {
1278 		u64 last_end = last->bi_iter.bi_sector << SECTOR_SHIFT;
1279 		last_end += last->bi_iter.bi_size;
1280 
1281 		/*
1282 		 * we can't merge these if they are from different
1283 		 * devices or if they are not contiguous
1284 		 */
1285 		if (last_end == disk_start && !last->bi_status &&
1286 		    last->bi_bdev == stripe->dev->bdev) {
1287 			ret = bio_add_paddrs(last, paddrs, rbio->sector_nsteps, step);
1288 			if (ret == sectorsize)
1289 				return 0;
1290 		}
1291 	}
1292 
1293 	/* put a new bio on the list */
1294 	bio = bio_alloc(stripe->dev->bdev,
1295 			max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1),
1296 			op, GFP_NOFS);
1297 	bio->bi_iter.bi_sector = disk_start >> SECTOR_SHIFT;
1298 	bio->bi_private = rbio;
1299 
1300 	ret = bio_add_paddrs(bio, paddrs, rbio->sector_nsteps, step);
1301 	ASSERT(ret == sectorsize);
1302 	bio_list_add(bio_list, bio);
1303 	return 0;
1304 }
1305 
index_one_bio(struct btrfs_raid_bio * rbio,struct bio * bio)1306 static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio)
1307 {
1308 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1309 	const u32 step = min(fs_info->sectorsize, PAGE_SIZE);
1310 	const u32 step_bits = min(fs_info->sectorsize_bits, PAGE_SHIFT);
1311 	struct bvec_iter iter = bio->bi_iter;
1312 	phys_addr_t paddr;
1313 	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1314 		     rbio->bioc->full_stripe_logical;
1315 
1316 	btrfs_bio_for_each_block(paddr, bio, &iter, step) {
1317 		unsigned int index = (offset >> step_bits);
1318 
1319 		rbio->bio_paddrs[index] = paddr;
1320 		offset += step;
1321 	}
1322 }
1323 
1324 /*
1325  * helper function to walk our bio list and populate the bio_pages array with
1326  * the result.  This seems expensive, but it is faster than constantly
1327  * searching through the bio list as we setup the IO in finish_rmw or stripe
1328  * reconstruction.
1329  *
1330  * This must be called before you trust the answers from page_in_rbio
1331  */
index_rbio_pages(struct btrfs_raid_bio * rbio)1332 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1333 {
1334 	struct bio *bio;
1335 
1336 	spin_lock(&rbio->bio_list_lock);
1337 	bio_list_for_each(bio, &rbio->bio_list)
1338 		index_one_bio(rbio, bio);
1339 
1340 	spin_unlock(&rbio->bio_list_lock);
1341 }
1342 
bio_get_trace_info(struct btrfs_raid_bio * rbio,struct bio * bio,struct raid56_bio_trace_info * trace_info)1343 static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio,
1344 			       struct raid56_bio_trace_info *trace_info)
1345 {
1346 	const struct btrfs_io_context *bioc = rbio->bioc;
1347 	int i;
1348 
1349 	ASSERT(bioc);
1350 
1351 	/* We rely on bio->bi_bdev to find the stripe number. */
1352 	if (!bio->bi_bdev)
1353 		goto not_found;
1354 
1355 	for (i = 0; i < bioc->num_stripes; i++) {
1356 		if (bio->bi_bdev != bioc->stripes[i].dev->bdev)
1357 			continue;
1358 		trace_info->stripe_nr = i;
1359 		trace_info->devid = bioc->stripes[i].dev->devid;
1360 		trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1361 				     bioc->stripes[i].physical;
1362 		return;
1363 	}
1364 
1365 not_found:
1366 	trace_info->devid = -1;
1367 	trace_info->offset = -1;
1368 	trace_info->stripe_nr = -1;
1369 }
1370 
bio_list_put(struct bio_list * bio_list)1371 static inline void bio_list_put(struct bio_list *bio_list)
1372 {
1373 	struct bio *bio;
1374 
1375 	while ((bio = bio_list_pop(bio_list)))
1376 		bio_put(bio);
1377 }
1378 
assert_rbio(struct btrfs_raid_bio * rbio)1379 static void assert_rbio(struct btrfs_raid_bio *rbio)
1380 {
1381 	if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
1382 		return;
1383 
1384 	/*
1385 	 * At least two stripes (2 disks RAID5), and since real_stripes is U8,
1386 	 * we won't go beyond 256 disks anyway.
1387 	 */
1388 	ASSERT_RBIO(rbio->real_stripes >= 2, rbio);
1389 	ASSERT_RBIO(rbio->nr_data > 0, rbio);
1390 
1391 	/*
1392 	 * This is another check to make sure nr data stripes is smaller
1393 	 * than total stripes.
1394 	 */
1395 	ASSERT_RBIO(rbio->nr_data < rbio->real_stripes, rbio);
1396 }
1397 
kmap_local_paddr(phys_addr_t paddr)1398 static inline void *kmap_local_paddr(phys_addr_t paddr)
1399 {
1400 	/* The sector pointer must have a page mapped to it. */
1401 	ASSERT(paddr != INVALID_PADDR);
1402 
1403 	return kmap_local_page(phys_to_page(paddr)) + offset_in_page(paddr);
1404 }
1405 
generate_pq_vertical_step(struct btrfs_raid_bio * rbio,unsigned int sector_nr,unsigned int step_nr)1406 static void generate_pq_vertical_step(struct btrfs_raid_bio *rbio, unsigned int sector_nr,
1407 				      unsigned int step_nr)
1408 {
1409 	void **pointers = rbio->finish_pointers;
1410 	const u32 step = min(rbio->bioc->fs_info->sectorsize, PAGE_SIZE);
1411 	int stripe;
1412 	const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6;
1413 
1414 	/* First collect one sector from each data stripe */
1415 	for (stripe = 0; stripe < rbio->nr_data; stripe++)
1416 		pointers[stripe] = kmap_local_paddr(
1417 				sector_paddr_in_rbio(rbio, stripe, sector_nr, step_nr, 0));
1418 
1419 	/* Then add the parity stripe */
1420 	pointers[stripe++] = kmap_local_paddr(rbio_pstripe_paddr(rbio, sector_nr, step_nr));
1421 
1422 	if (has_qstripe) {
1423 		/*
1424 		 * RAID6, add the qstripe and call the library function
1425 		 * to fill in our p/q
1426 		 */
1427 		pointers[stripe++] = kmap_local_paddr(
1428 				rbio_qstripe_paddr(rbio, sector_nr, step_nr));
1429 
1430 		assert_rbio(rbio);
1431 		raid6_call.gen_syndrome(rbio->real_stripes, step, pointers);
1432 	} else {
1433 		/* raid5 */
1434 		memcpy(pointers[rbio->nr_data], pointers[0], step);
1435 		run_xor(pointers + 1, rbio->nr_data - 1, step);
1436 	}
1437 	for (stripe = stripe - 1; stripe >= 0; stripe--)
1438 		kunmap_local(pointers[stripe]);
1439 }
1440 
1441 /* Generate PQ for one vertical stripe. */
generate_pq_vertical(struct btrfs_raid_bio * rbio,int sectornr)1442 static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr)
1443 {
1444 	const bool has_qstripe = (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6);
1445 
1446 	for (int i = 0; i < rbio->sector_nsteps; i++)
1447 		generate_pq_vertical_step(rbio, sectornr, i);
1448 
1449 	set_bit(rbio_sector_index(rbio, rbio->nr_data, sectornr),
1450 		rbio->stripe_uptodate_bitmap);
1451 	if (has_qstripe)
1452 		set_bit(rbio_sector_index(rbio, rbio->nr_data + 1, sectornr),
1453 			rbio->stripe_uptodate_bitmap);
1454 }
1455 
rmw_assemble_write_bios(struct btrfs_raid_bio * rbio,struct bio_list * bio_list)1456 static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio,
1457 				   struct bio_list *bio_list)
1458 {
1459 	/* The total sector number inside the full stripe. */
1460 	int total_sector_nr;
1461 	int sectornr;
1462 	int stripe;
1463 	int ret;
1464 
1465 	ASSERT(bio_list_size(bio_list) == 0);
1466 
1467 	/* We should have at least one data sector. */
1468 	ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors));
1469 
1470 	/*
1471 	 * Reset errors, as we may have errors inherited from from degraded
1472 	 * write.
1473 	 */
1474 	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
1475 
1476 	/*
1477 	 * Start assembly.  Make bios for everything from the higher layers (the
1478 	 * bio_list in our rbio) and our P/Q.  Ignore everything else.
1479 	 */
1480 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1481 	     total_sector_nr++) {
1482 		phys_addr_t *paddrs;
1483 
1484 		stripe = total_sector_nr / rbio->stripe_nsectors;
1485 		sectornr = total_sector_nr % rbio->stripe_nsectors;
1486 
1487 		/* This vertical stripe has no data, skip it. */
1488 		if (!test_bit(sectornr, &rbio->dbitmap))
1489 			continue;
1490 
1491 		if (stripe < rbio->nr_data) {
1492 			paddrs = sector_paddrs_in_rbio(rbio, stripe, sectornr, 1);
1493 			if (paddrs == NULL)
1494 				continue;
1495 		} else {
1496 			paddrs = rbio_stripe_paddrs(rbio, stripe, sectornr);
1497 		}
1498 
1499 		ret = rbio_add_io_paddrs(rbio, bio_list, paddrs, stripe,
1500 					 sectornr, REQ_OP_WRITE);
1501 		if (ret)
1502 			goto error;
1503 	}
1504 
1505 	if (likely(!rbio->bioc->replace_nr_stripes))
1506 		return 0;
1507 
1508 	/*
1509 	 * Make a copy for the replace target device.
1510 	 *
1511 	 * Thus the source stripe number (in replace_stripe_src) should be valid.
1512 	 */
1513 	ASSERT(rbio->bioc->replace_stripe_src >= 0);
1514 
1515 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1516 	     total_sector_nr++) {
1517 		phys_addr_t *paddrs;
1518 
1519 		stripe = total_sector_nr / rbio->stripe_nsectors;
1520 		sectornr = total_sector_nr % rbio->stripe_nsectors;
1521 
1522 		/*
1523 		 * For RAID56, there is only one device that can be replaced,
1524 		 * and replace_stripe_src[0] indicates the stripe number we
1525 		 * need to copy from.
1526 		 */
1527 		if (stripe != rbio->bioc->replace_stripe_src) {
1528 			/*
1529 			 * We can skip the whole stripe completely, note
1530 			 * total_sector_nr will be increased by one anyway.
1531 			 */
1532 			ASSERT(sectornr == 0);
1533 			total_sector_nr += rbio->stripe_nsectors - 1;
1534 			continue;
1535 		}
1536 
1537 		/* This vertical stripe has no data, skip it. */
1538 		if (!test_bit(sectornr, &rbio->dbitmap))
1539 			continue;
1540 
1541 		if (stripe < rbio->nr_data) {
1542 			paddrs = sector_paddrs_in_rbio(rbio, stripe, sectornr, 1);
1543 			if (paddrs == NULL)
1544 				continue;
1545 		} else {
1546 			paddrs = rbio_stripe_paddrs(rbio, stripe, sectornr);
1547 		}
1548 
1549 		ret = rbio_add_io_paddrs(rbio, bio_list, paddrs,
1550 					 rbio->real_stripes,
1551 					 sectornr, REQ_OP_WRITE);
1552 		if (ret)
1553 			goto error;
1554 	}
1555 
1556 	return 0;
1557 error:
1558 	bio_list_put(bio_list);
1559 	return -EIO;
1560 }
1561 
set_rbio_range_error(struct btrfs_raid_bio * rbio,struct bio * bio)1562 static void set_rbio_range_error(struct btrfs_raid_bio *rbio, struct bio *bio)
1563 {
1564 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1565 	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1566 		     rbio->bioc->full_stripe_logical;
1567 	int total_nr_sector = offset >> fs_info->sectorsize_bits;
1568 
1569 	ASSERT(total_nr_sector < rbio->nr_data * rbio->stripe_nsectors);
1570 
1571 	bitmap_set(rbio->error_bitmap, total_nr_sector,
1572 		   bio->bi_iter.bi_size >> fs_info->sectorsize_bits);
1573 
1574 	/*
1575 	 * Special handling for raid56_alloc_missing_rbio() used by
1576 	 * scrub/replace.  Unlike call path in raid56_parity_recover(), they
1577 	 * pass an empty bio here.  Thus we have to find out the missing device
1578 	 * and mark the stripe error instead.
1579 	 */
1580 	if (bio->bi_iter.bi_size == 0) {
1581 		bool found_missing = false;
1582 		int stripe_nr;
1583 
1584 		for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1585 			if (!rbio->bioc->stripes[stripe_nr].dev->bdev) {
1586 				found_missing = true;
1587 				bitmap_set(rbio->error_bitmap,
1588 					   stripe_nr * rbio->stripe_nsectors,
1589 					   rbio->stripe_nsectors);
1590 			}
1591 		}
1592 		ASSERT(found_missing);
1593 	}
1594 }
1595 
1596 /*
1597  * Return the index inside the rbio->stripe_sectors[] array.
1598  *
1599  * Return -1 if not found.
1600  */
find_stripe_sector_nr(struct btrfs_raid_bio * rbio,phys_addr_t paddr)1601 static int find_stripe_sector_nr(struct btrfs_raid_bio *rbio, phys_addr_t paddr)
1602 {
1603 	for (int i = 0; i < rbio->nr_sectors; i++) {
1604 		if (rbio->stripe_paddrs[i * rbio->sector_nsteps] == paddr)
1605 			return i;
1606 	}
1607 	return -1;
1608 }
1609 
1610 /*
1611  * this sets each page in the bio uptodate.  It should only be used on private
1612  * rbio pages, nothing that comes in from the higher layers
1613  */
set_bio_pages_uptodate(struct btrfs_raid_bio * rbio,struct bio * bio)1614 static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio)
1615 {
1616 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1617 	const u32 step = min(sectorsize, PAGE_SIZE);
1618 	u32 offset = 0;
1619 	phys_addr_t paddr;
1620 
1621 	ASSERT(!bio_flagged(bio, BIO_CLONED));
1622 
1623 	btrfs_bio_for_each_block_all(paddr, bio, step) {
1624 		/* Hitting the first step of a sector. */
1625 		if (IS_ALIGNED(offset, sectorsize)) {
1626 			int sector_nr = find_stripe_sector_nr(rbio, paddr);
1627 
1628 			ASSERT(sector_nr >= 0);
1629 			if (sector_nr >= 0)
1630 				set_bit(sector_nr, rbio->stripe_uptodate_bitmap);
1631 		}
1632 		offset += step;
1633 	}
1634 }
1635 
get_bio_sector_nr(struct btrfs_raid_bio * rbio,struct bio * bio)1636 static int get_bio_sector_nr(struct btrfs_raid_bio *rbio, struct bio *bio)
1637 {
1638 	phys_addr_t bvec_paddr = bvec_phys(bio_first_bvec_all(bio));
1639 	int i;
1640 
1641 	for (i = 0; i < rbio->nr_sectors; i++) {
1642 		if (rbio->stripe_paddrs[i * rbio->sector_nsteps] == bvec_paddr)
1643 			break;
1644 		if (rbio->bio_paddrs[i * rbio->sector_nsteps] == bvec_paddr)
1645 			break;
1646 	}
1647 	ASSERT(i < rbio->nr_sectors);
1648 	return i;
1649 }
1650 
rbio_update_error_bitmap(struct btrfs_raid_bio * rbio,struct bio * bio)1651 static void rbio_update_error_bitmap(struct btrfs_raid_bio *rbio, struct bio *bio)
1652 {
1653 	int total_sector_nr = get_bio_sector_nr(rbio, bio);
1654 	u32 bio_size = 0;
1655 	struct bio_vec *bvec;
1656 	int i;
1657 
1658 	bio_for_each_bvec_all(bvec, bio, i)
1659 		bio_size += bvec->bv_len;
1660 
1661 	/*
1662 	 * Since we can have multiple bios touching the error_bitmap, we cannot
1663 	 * call bitmap_set() without protection.
1664 	 *
1665 	 * Instead use set_bit() for each bit, as set_bit() itself is atomic.
1666 	 */
1667 	for (i = total_sector_nr; i < total_sector_nr +
1668 	     (bio_size >> rbio->bioc->fs_info->sectorsize_bits); i++)
1669 		set_bit(i, rbio->error_bitmap);
1670 }
1671 
1672 /* Verify the data sectors at read time. */
verify_bio_data_sectors(struct btrfs_raid_bio * rbio,struct bio * bio)1673 static void verify_bio_data_sectors(struct btrfs_raid_bio *rbio,
1674 				    struct bio *bio)
1675 {
1676 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1677 	const u32 step = min(fs_info->sectorsize, PAGE_SIZE);
1678 	const u32 nr_steps = rbio->sector_nsteps;
1679 	int total_sector_nr = get_bio_sector_nr(rbio, bio);
1680 	u32 offset = 0;
1681 	phys_addr_t paddrs[BTRFS_MAX_BLOCKSIZE / PAGE_SIZE];
1682 	phys_addr_t paddr;
1683 
1684 	/* No data csum for the whole stripe, no need to verify. */
1685 	if (!rbio->csum_bitmap || !rbio->csum_buf)
1686 		return;
1687 
1688 	/* P/Q stripes, they have no data csum to verify against. */
1689 	if (total_sector_nr >= rbio->nr_data * rbio->stripe_nsectors)
1690 		return;
1691 
1692 	btrfs_bio_for_each_block_all(paddr, bio, step) {
1693 		u8 csum_buf[BTRFS_CSUM_SIZE];
1694 		u8 *expected_csum;
1695 
1696 		paddrs[(offset / step) % nr_steps] = paddr;
1697 		offset += step;
1698 
1699 		/* Not yet covering the full fs block, continue to the next step. */
1700 		if (!IS_ALIGNED(offset, fs_info->sectorsize))
1701 			continue;
1702 
1703 		/* No csum for this sector, skip to the next sector. */
1704 		if (!test_bit(total_sector_nr, rbio->csum_bitmap))
1705 			continue;
1706 
1707 		expected_csum = rbio->csum_buf + total_sector_nr * fs_info->csum_size;
1708 		btrfs_calculate_block_csum_pages(fs_info, paddrs, csum_buf);
1709 		if (unlikely(memcmp(csum_buf, expected_csum, fs_info->csum_size) != 0))
1710 			set_bit(total_sector_nr, rbio->error_bitmap);
1711 		total_sector_nr++;
1712 	}
1713 }
1714 
raid_wait_read_end_io(struct bio * bio)1715 static void raid_wait_read_end_io(struct bio *bio)
1716 {
1717 	struct btrfs_raid_bio *rbio = bio->bi_private;
1718 
1719 	if (bio->bi_status) {
1720 		rbio_update_error_bitmap(rbio, bio);
1721 	} else {
1722 		set_bio_pages_uptodate(rbio, bio);
1723 		verify_bio_data_sectors(rbio, bio);
1724 	}
1725 
1726 	bio_put(bio);
1727 	if (atomic_dec_and_test(&rbio->stripes_pending))
1728 		wake_up(&rbio->io_wait);
1729 }
1730 
submit_read_wait_bio_list(struct btrfs_raid_bio * rbio,struct bio_list * bio_list)1731 static void submit_read_wait_bio_list(struct btrfs_raid_bio *rbio,
1732 			     struct bio_list *bio_list)
1733 {
1734 	struct bio *bio;
1735 
1736 	atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
1737 	while ((bio = bio_list_pop(bio_list))) {
1738 		bio->bi_end_io = raid_wait_read_end_io;
1739 
1740 		if (trace_raid56_read_enabled()) {
1741 			struct raid56_bio_trace_info trace_info = { 0 };
1742 
1743 			bio_get_trace_info(rbio, bio, &trace_info);
1744 			trace_raid56_read(rbio, bio, &trace_info);
1745 		}
1746 		submit_bio(bio);
1747 	}
1748 
1749 	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
1750 }
1751 
alloc_rbio_data_pages(struct btrfs_raid_bio * rbio)1752 static int alloc_rbio_data_pages(struct btrfs_raid_bio *rbio)
1753 {
1754 	const int data_pages = rbio->nr_data * rbio->stripe_npages;
1755 	int ret;
1756 
1757 	ret = btrfs_alloc_page_array(data_pages, rbio->stripe_pages, false);
1758 	if (ret < 0)
1759 		return ret;
1760 
1761 	index_stripe_sectors(rbio);
1762 	return 0;
1763 }
1764 
1765 /*
1766  * We use plugging call backs to collect full stripes.
1767  * Any time we get a partial stripe write while plugged
1768  * we collect it into a list.  When the unplug comes down,
1769  * we sort the list by logical block number and merge
1770  * everything we can into the same rbios
1771  */
1772 struct btrfs_plug_cb {
1773 	struct blk_plug_cb cb;
1774 	struct btrfs_fs_info *info;
1775 	struct list_head rbio_list;
1776 };
1777 
1778 /*
1779  * rbios on the plug list are sorted for easier merging.
1780  */
plug_cmp(void * priv,const struct list_head * a,const struct list_head * b)1781 static int plug_cmp(void *priv, const struct list_head *a,
1782 		    const struct list_head *b)
1783 {
1784 	const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1785 						       plug_list);
1786 	const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1787 						       plug_list);
1788 	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1789 	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1790 
1791 	if (a_sector < b_sector)
1792 		return -1;
1793 	if (a_sector > b_sector)
1794 		return 1;
1795 	return 0;
1796 }
1797 
raid_unplug(struct blk_plug_cb * cb,bool from_schedule)1798 static void raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1799 {
1800 	struct btrfs_plug_cb *plug = container_of(cb, struct btrfs_plug_cb, cb);
1801 	struct btrfs_raid_bio *cur;
1802 	struct btrfs_raid_bio *last = NULL;
1803 
1804 	list_sort(NULL, &plug->rbio_list, plug_cmp);
1805 
1806 	while (!list_empty(&plug->rbio_list)) {
1807 		cur = list_first_entry(&plug->rbio_list,
1808 				       struct btrfs_raid_bio, plug_list);
1809 		list_del_init(&cur->plug_list);
1810 
1811 		if (rbio_is_full(cur)) {
1812 			/* We have a full stripe, queue it down. */
1813 			start_async_work(cur, rmw_rbio_work);
1814 			continue;
1815 		}
1816 		if (last) {
1817 			if (rbio_can_merge(last, cur)) {
1818 				merge_rbio(last, cur);
1819 				free_raid_bio(cur);
1820 				continue;
1821 			}
1822 			start_async_work(last, rmw_rbio_work);
1823 		}
1824 		last = cur;
1825 	}
1826 	if (last)
1827 		start_async_work(last, rmw_rbio_work);
1828 	kfree(plug);
1829 }
1830 
1831 /* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */
rbio_add_bio(struct btrfs_raid_bio * rbio,struct bio * orig_bio)1832 static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio)
1833 {
1834 	const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1835 	const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT;
1836 	const u64 full_stripe_start = rbio->bioc->full_stripe_logical;
1837 	const u32 orig_len = orig_bio->bi_iter.bi_size;
1838 	const u32 sectorsize = fs_info->sectorsize;
1839 	u64 cur_logical;
1840 
1841 	ASSERT_RBIO_LOGICAL(orig_logical >= full_stripe_start &&
1842 			    orig_logical + orig_len <= full_stripe_start +
1843 			    rbio->nr_data * BTRFS_STRIPE_LEN,
1844 			    rbio, orig_logical);
1845 
1846 	bio_list_add(&rbio->bio_list, orig_bio);
1847 	rbio->bio_list_bytes += orig_bio->bi_iter.bi_size;
1848 
1849 	/* Update the dbitmap. */
1850 	for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len;
1851 	     cur_logical += sectorsize) {
1852 		int bit = ((u32)(cur_logical - full_stripe_start) >>
1853 			   fs_info->sectorsize_bits) % rbio->stripe_nsectors;
1854 
1855 		set_bit(bit, &rbio->dbitmap);
1856 	}
1857 }
1858 
1859 /*
1860  * our main entry point for writes from the rest of the FS.
1861  */
raid56_parity_write(struct bio * bio,struct btrfs_io_context * bioc)1862 void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc)
1863 {
1864 	struct btrfs_fs_info *fs_info = bioc->fs_info;
1865 	struct btrfs_raid_bio *rbio;
1866 	struct btrfs_plug_cb *plug = NULL;
1867 	struct blk_plug_cb *cb;
1868 
1869 	rbio = alloc_rbio(fs_info, bioc);
1870 	if (IS_ERR(rbio)) {
1871 		bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
1872 		bio_endio(bio);
1873 		return;
1874 	}
1875 	rbio->operation = BTRFS_RBIO_WRITE;
1876 	rbio_add_bio(rbio, bio);
1877 
1878 	/*
1879 	 * Don't plug on full rbios, just get them out the door
1880 	 * as quickly as we can
1881 	 */
1882 	if (!rbio_is_full(rbio)) {
1883 		cb = blk_check_plugged(raid_unplug, fs_info, sizeof(*plug));
1884 		if (cb) {
1885 			plug = container_of(cb, struct btrfs_plug_cb, cb);
1886 			if (!plug->info) {
1887 				plug->info = fs_info;
1888 				INIT_LIST_HEAD(&plug->rbio_list);
1889 			}
1890 			list_add_tail(&rbio->plug_list, &plug->rbio_list);
1891 			return;
1892 		}
1893 	}
1894 
1895 	/*
1896 	 * Either we don't have any existing plug, or we're doing a full stripe,
1897 	 * queue the rmw work now.
1898 	 */
1899 	start_async_work(rbio, rmw_rbio_work);
1900 }
1901 
verify_one_sector(struct btrfs_raid_bio * rbio,int stripe_nr,int sector_nr)1902 static int verify_one_sector(struct btrfs_raid_bio *rbio,
1903 			     int stripe_nr, int sector_nr)
1904 {
1905 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1906 	phys_addr_t *paddrs;
1907 	u8 csum_buf[BTRFS_CSUM_SIZE];
1908 	u8 *csum_expected;
1909 
1910 	if (!rbio->csum_bitmap || !rbio->csum_buf)
1911 		return 0;
1912 
1913 	/* No way to verify P/Q as they are not covered by data csum. */
1914 	if (stripe_nr >= rbio->nr_data)
1915 		return 0;
1916 	/*
1917 	 * If we're rebuilding a read, we have to use pages from the
1918 	 * bio list if possible.
1919 	 */
1920 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1921 		paddrs = sector_paddrs_in_rbio(rbio, stripe_nr, sector_nr, 0);
1922 	} else {
1923 		paddrs = rbio_stripe_paddrs(rbio, stripe_nr, sector_nr);
1924 	}
1925 
1926 	csum_expected = rbio->csum_buf +
1927 			(stripe_nr * rbio->stripe_nsectors + sector_nr) *
1928 			fs_info->csum_size;
1929 	btrfs_calculate_block_csum_pages(fs_info, paddrs, csum_buf);
1930 	if (unlikely(memcmp(csum_buf, csum_expected, fs_info->csum_size) != 0))
1931 		return -EIO;
1932 	return 0;
1933 }
1934 
recover_vertical_step(struct btrfs_raid_bio * rbio,unsigned int sector_nr,unsigned int step_nr,int faila,int failb,void ** pointers,void ** unmap_array)1935 static void recover_vertical_step(struct btrfs_raid_bio *rbio,
1936 				  unsigned int sector_nr,
1937 				  unsigned int step_nr,
1938 				  int faila, int failb,
1939 				  void **pointers, void **unmap_array)
1940 {
1941 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1942 	const u32 step = min(fs_info->sectorsize, PAGE_SIZE);
1943 	int stripe_nr;
1944 
1945 	ASSERT(step_nr < rbio->sector_nsteps);
1946 	ASSERT(sector_nr < rbio->stripe_nsectors);
1947 
1948 	/*
1949 	 * Setup our array of pointers with sectors from each stripe
1950 	 *
1951 	 * NOTE: store a duplicate array of pointers to preserve the
1952 	 * pointer order.
1953 	 */
1954 	for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1955 		phys_addr_t paddr;
1956 
1957 		/*
1958 		 * If we're rebuilding a read, we have to use pages from the
1959 		 * bio list if possible.
1960 		 */
1961 		if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1962 			paddr = sector_paddr_in_rbio(rbio, stripe_nr, sector_nr, step_nr, 0);
1963 		} else {
1964 			paddr = rbio_stripe_paddr(rbio, stripe_nr, sector_nr, step_nr);
1965 		}
1966 		pointers[stripe_nr] = kmap_local_paddr(paddr);
1967 		unmap_array[stripe_nr] = pointers[stripe_nr];
1968 	}
1969 
1970 	/* All raid6 handling here */
1971 	if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1972 		/* Single failure, rebuild from parity raid5 style */
1973 		if (failb < 0) {
1974 			if (faila == rbio->nr_data)
1975 				/*
1976 				 * Just the P stripe has failed, without
1977 				 * a bad data or Q stripe.
1978 				 * We have nothing to do, just skip the
1979 				 * recovery for this stripe.
1980 				 */
1981 				goto cleanup;
1982 			/*
1983 			 * a single failure in raid6 is rebuilt
1984 			 * in the pstripe code below
1985 			 */
1986 			goto pstripe;
1987 		}
1988 
1989 		/*
1990 		 * If the q stripe is failed, do a pstripe reconstruction from
1991 		 * the xors.
1992 		 * If both the q stripe and the P stripe are failed, we're
1993 		 * here due to a crc mismatch and we can't give them the
1994 		 * data they want.
1995 		 */
1996 		if (failb == rbio->real_stripes - 1) {
1997 			if (faila == rbio->real_stripes - 2)
1998 				/*
1999 				 * Only P and Q are corrupted.
2000 				 * We only care about data stripes recovery,
2001 				 * can skip this vertical stripe.
2002 				 */
2003 				goto cleanup;
2004 			/*
2005 			 * Otherwise we have one bad data stripe and
2006 			 * a good P stripe.  raid5!
2007 			 */
2008 			goto pstripe;
2009 		}
2010 
2011 		if (failb == rbio->real_stripes - 2) {
2012 			raid6_datap_recov(rbio->real_stripes, step,
2013 					  faila, pointers);
2014 		} else {
2015 			raid6_2data_recov(rbio->real_stripes, step,
2016 					  faila, failb, pointers);
2017 		}
2018 	} else {
2019 		void *p;
2020 
2021 		/* Rebuild from P stripe here (raid5 or raid6). */
2022 		ASSERT(failb == -1);
2023 pstripe:
2024 		/* Copy parity block into failed block to start with */
2025 		memcpy(pointers[faila], pointers[rbio->nr_data], step);
2026 
2027 		/* Rearrange the pointer array */
2028 		p = pointers[faila];
2029 		for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1;
2030 		     stripe_nr++)
2031 			pointers[stripe_nr] = pointers[stripe_nr + 1];
2032 		pointers[rbio->nr_data - 1] = p;
2033 
2034 		/* Xor in the rest */
2035 		run_xor(pointers, rbio->nr_data - 1, step);
2036 	}
2037 
2038 cleanup:
2039 	for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--)
2040 		kunmap_local(unmap_array[stripe_nr]);
2041 }
2042 
2043 /*
2044  * Recover a vertical stripe specified by @sector_nr.
2045  * @*pointers are the pre-allocated pointers by the caller, so we don't
2046  * need to allocate/free the pointers again and again.
2047  */
recover_vertical(struct btrfs_raid_bio * rbio,int sector_nr,void ** pointers,void ** unmap_array)2048 static int recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr,
2049 			    void **pointers, void **unmap_array)
2050 {
2051 	int found_errors;
2052 	int faila;
2053 	int failb;
2054 	int ret = 0;
2055 
2056 	/*
2057 	 * Now we just use bitmap to mark the horizontal stripes in
2058 	 * which we have data when doing parity scrub.
2059 	 */
2060 	if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
2061 	    !test_bit(sector_nr, &rbio->dbitmap))
2062 		return 0;
2063 
2064 	found_errors = get_rbio_vertical_errors(rbio, sector_nr, &faila,
2065 						&failb);
2066 	/*
2067 	 * No errors in the vertical stripe, skip it.  Can happen for recovery
2068 	 * which only part of a stripe failed csum check.
2069 	 */
2070 	if (!found_errors)
2071 		return 0;
2072 
2073 	if (unlikely(found_errors > rbio->bioc->max_errors))
2074 		return -EIO;
2075 
2076 	for (int i = 0; i < rbio->sector_nsteps; i++)
2077 		recover_vertical_step(rbio, sector_nr, i, faila, failb,
2078 					    pointers, unmap_array);
2079 	if (faila >= 0) {
2080 		ret = verify_one_sector(rbio, faila, sector_nr);
2081 		if (ret < 0)
2082 			return ret;
2083 
2084 		set_bit(rbio_sector_index(rbio, faila, sector_nr),
2085 			rbio->stripe_uptodate_bitmap);
2086 	}
2087 	if (failb >= 0) {
2088 		ret = verify_one_sector(rbio, failb, sector_nr);
2089 		if (ret < 0)
2090 			return ret;
2091 
2092 		set_bit(rbio_sector_index(rbio, failb, sector_nr),
2093 			rbio->stripe_uptodate_bitmap);
2094 	}
2095 	return ret;
2096 }
2097 
recover_sectors(struct btrfs_raid_bio * rbio)2098 static int recover_sectors(struct btrfs_raid_bio *rbio)
2099 {
2100 	void **pointers = NULL;
2101 	void **unmap_array = NULL;
2102 	int sectornr;
2103 	int ret = 0;
2104 
2105 	/*
2106 	 * @pointers array stores the pointer for each sector.
2107 	 *
2108 	 * @unmap_array stores copy of pointers that does not get reordered
2109 	 * during reconstruction so that kunmap_local works.
2110 	 */
2111 	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2112 	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2113 	if (!pointers || !unmap_array) {
2114 		ret = -ENOMEM;
2115 		goto out;
2116 	}
2117 
2118 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
2119 		spin_lock(&rbio->bio_list_lock);
2120 		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
2121 		spin_unlock(&rbio->bio_list_lock);
2122 	}
2123 
2124 	index_rbio_pages(rbio);
2125 
2126 	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
2127 		ret = recover_vertical(rbio, sectornr, pointers, unmap_array);
2128 		if (ret < 0)
2129 			break;
2130 	}
2131 
2132 out:
2133 	kfree(pointers);
2134 	kfree(unmap_array);
2135 	return ret;
2136 }
2137 
recover_rbio(struct btrfs_raid_bio * rbio)2138 static void recover_rbio(struct btrfs_raid_bio *rbio)
2139 {
2140 	struct bio_list bio_list = BIO_EMPTY_LIST;
2141 	int total_sector_nr;
2142 	int ret = 0;
2143 
2144 	/*
2145 	 * Either we're doing recover for a read failure or degraded write,
2146 	 * caller should have set error bitmap correctly.
2147 	 */
2148 	ASSERT(bitmap_weight(rbio->error_bitmap, rbio->nr_sectors));
2149 
2150 	/* For recovery, we need to read all sectors including P/Q. */
2151 	ret = alloc_rbio_pages(rbio);
2152 	if (ret < 0)
2153 		goto out;
2154 
2155 	index_rbio_pages(rbio);
2156 
2157 	/*
2158 	 * Read everything that hasn't failed. However this time we will
2159 	 * not trust any cached sector.
2160 	 * As we may read out some stale data but higher layer is not reading
2161 	 * that stale part.
2162 	 *
2163 	 * So here we always re-read everything in recovery path.
2164 	 */
2165 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2166 	     total_sector_nr++) {
2167 		int stripe = total_sector_nr / rbio->stripe_nsectors;
2168 		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2169 		phys_addr_t *paddrs;
2170 
2171 		/*
2172 		 * Skip the range which has error.  It can be a range which is
2173 		 * marked error (for csum mismatch), or it can be a missing
2174 		 * device.
2175 		 */
2176 		if (!rbio->bioc->stripes[stripe].dev->bdev ||
2177 		    test_bit(total_sector_nr, rbio->error_bitmap)) {
2178 			/*
2179 			 * Also set the error bit for missing device, which
2180 			 * may not yet have its error bit set.
2181 			 */
2182 			set_bit(total_sector_nr, rbio->error_bitmap);
2183 			continue;
2184 		}
2185 
2186 		paddrs = rbio_stripe_paddrs(rbio, stripe, sectornr);
2187 		ret = rbio_add_io_paddrs(rbio, &bio_list, paddrs, stripe,
2188 					 sectornr, REQ_OP_READ);
2189 		if (ret < 0) {
2190 			bio_list_put(&bio_list);
2191 			goto out;
2192 		}
2193 	}
2194 
2195 	submit_read_wait_bio_list(rbio, &bio_list);
2196 	ret = recover_sectors(rbio);
2197 out:
2198 	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2199 }
2200 
recover_rbio_work(struct work_struct * work)2201 static void recover_rbio_work(struct work_struct *work)
2202 {
2203 	struct btrfs_raid_bio *rbio;
2204 
2205 	rbio = container_of(work, struct btrfs_raid_bio, work);
2206 	if (!lock_stripe_add(rbio))
2207 		recover_rbio(rbio);
2208 }
2209 
recover_rbio_work_locked(struct work_struct * work)2210 static void recover_rbio_work_locked(struct work_struct *work)
2211 {
2212 	recover_rbio(container_of(work, struct btrfs_raid_bio, work));
2213 }
2214 
set_rbio_raid6_extra_error(struct btrfs_raid_bio * rbio,int mirror_num)2215 static void set_rbio_raid6_extra_error(struct btrfs_raid_bio *rbio, int mirror_num)
2216 {
2217 	bool found = false;
2218 	int sector_nr;
2219 
2220 	/*
2221 	 * This is for RAID6 extra recovery tries, thus mirror number should
2222 	 * be large than 2.
2223 	 * Mirror 1 means read from data stripes. Mirror 2 means rebuild using
2224 	 * RAID5 methods.
2225 	 */
2226 	ASSERT(mirror_num > 2);
2227 	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2228 		int found_errors;
2229 		int faila;
2230 		int failb;
2231 
2232 		found_errors = get_rbio_vertical_errors(rbio, sector_nr,
2233 							 &faila, &failb);
2234 		/* This vertical stripe doesn't have errors. */
2235 		if (!found_errors)
2236 			continue;
2237 
2238 		/*
2239 		 * If we found errors, there should be only one error marked
2240 		 * by previous set_rbio_range_error().
2241 		 */
2242 		ASSERT(found_errors == 1);
2243 		found = true;
2244 
2245 		/* Now select another stripe to mark as error. */
2246 		failb = rbio->real_stripes - (mirror_num - 1);
2247 		if (failb <= faila)
2248 			failb--;
2249 
2250 		/* Set the extra bit in error bitmap. */
2251 		if (failb >= 0)
2252 			set_bit(failb * rbio->stripe_nsectors + sector_nr,
2253 				rbio->error_bitmap);
2254 	}
2255 
2256 	/* We should found at least one vertical stripe with error.*/
2257 	ASSERT(found);
2258 }
2259 
2260 /*
2261  * the main entry point for reads from the higher layers.  This
2262  * is really only called when the normal read path had a failure,
2263  * so we assume the bio they send down corresponds to a failed part
2264  * of the drive.
2265  */
raid56_parity_recover(struct bio * bio,struct btrfs_io_context * bioc,int mirror_num)2266 void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc,
2267 			   int mirror_num)
2268 {
2269 	struct btrfs_fs_info *fs_info = bioc->fs_info;
2270 	struct btrfs_raid_bio *rbio;
2271 
2272 	rbio = alloc_rbio(fs_info, bioc);
2273 	if (IS_ERR(rbio)) {
2274 		bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
2275 		bio_endio(bio);
2276 		return;
2277 	}
2278 
2279 	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2280 	rbio_add_bio(rbio, bio);
2281 
2282 	set_rbio_range_error(rbio, bio);
2283 
2284 	/*
2285 	 * Loop retry:
2286 	 * for 'mirror == 2', reconstruct from all other stripes.
2287 	 * for 'mirror_num > 2', select a stripe to fail on every retry.
2288 	 */
2289 	if (mirror_num > 2)
2290 		set_rbio_raid6_extra_error(rbio, mirror_num);
2291 
2292 	start_async_work(rbio, recover_rbio_work);
2293 }
2294 
fill_data_csums(struct btrfs_raid_bio * rbio)2295 static void fill_data_csums(struct btrfs_raid_bio *rbio)
2296 {
2297 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
2298 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info,
2299 						       rbio->bioc->full_stripe_logical);
2300 	const u64 start = rbio->bioc->full_stripe_logical;
2301 	const u32 len = (rbio->nr_data * rbio->stripe_nsectors) <<
2302 			fs_info->sectorsize_bits;
2303 	int ret;
2304 
2305 	/* The rbio should not have its csum buffer initialized. */
2306 	ASSERT(!rbio->csum_buf && !rbio->csum_bitmap);
2307 
2308 	/*
2309 	 * Skip the csum search if:
2310 	 *
2311 	 * - The rbio doesn't belong to data block groups
2312 	 *   Then we are doing IO for tree blocks, no need to search csums.
2313 	 *
2314 	 * - The rbio belongs to mixed block groups
2315 	 *   This is to avoid deadlock, as we're already holding the full
2316 	 *   stripe lock, if we trigger a metadata read, and it needs to do
2317 	 *   raid56 recovery, we will deadlock.
2318 	 */
2319 	if (!(rbio->bioc->map_type & BTRFS_BLOCK_GROUP_DATA) ||
2320 	    rbio->bioc->map_type & BTRFS_BLOCK_GROUP_METADATA)
2321 		return;
2322 
2323 	rbio->csum_buf = kzalloc(rbio->nr_data * rbio->stripe_nsectors *
2324 				 fs_info->csum_size, GFP_NOFS);
2325 	rbio->csum_bitmap = bitmap_zalloc(rbio->nr_data * rbio->stripe_nsectors,
2326 					  GFP_NOFS);
2327 	if (!rbio->csum_buf || !rbio->csum_bitmap) {
2328 		ret = -ENOMEM;
2329 		goto error;
2330 	}
2331 
2332 	ret = btrfs_lookup_csums_bitmap(csum_root, NULL, start, start + len - 1,
2333 					rbio->csum_buf, rbio->csum_bitmap);
2334 	if (ret < 0)
2335 		goto error;
2336 	if (bitmap_empty(rbio->csum_bitmap, len >> fs_info->sectorsize_bits))
2337 		goto no_csum;
2338 	return;
2339 
2340 error:
2341 	/*
2342 	 * We failed to allocate memory or grab the csum, but it's not fatal,
2343 	 * we can still continue.  But better to warn users that RMW is no
2344 	 * longer safe for this particular sub-stripe write.
2345 	 */
2346 	btrfs_warn_rl(fs_info,
2347 "sub-stripe write for full stripe %llu is not safe, failed to get csum: %d",
2348 			rbio->bioc->full_stripe_logical, ret);
2349 no_csum:
2350 	kfree(rbio->csum_buf);
2351 	bitmap_free(rbio->csum_bitmap);
2352 	rbio->csum_buf = NULL;
2353 	rbio->csum_bitmap = NULL;
2354 }
2355 
rmw_read_wait_recover(struct btrfs_raid_bio * rbio)2356 static int rmw_read_wait_recover(struct btrfs_raid_bio *rbio)
2357 {
2358 	struct bio_list bio_list = BIO_EMPTY_LIST;
2359 	int total_sector_nr;
2360 	int ret = 0;
2361 
2362 	/*
2363 	 * Fill the data csums we need for data verification.  We need to fill
2364 	 * the csum_bitmap/csum_buf first, as our endio function will try to
2365 	 * verify the data sectors.
2366 	 */
2367 	fill_data_csums(rbio);
2368 
2369 	/*
2370 	 * Build a list of bios to read all sectors (including data and P/Q).
2371 	 *
2372 	 * This behavior is to compensate the later csum verification and recovery.
2373 	 */
2374 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2375 	     total_sector_nr++) {
2376 		int stripe = total_sector_nr / rbio->stripe_nsectors;
2377 		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2378 		phys_addr_t *paddrs;
2379 
2380 		paddrs = rbio_stripe_paddrs(rbio, stripe, sectornr);
2381 		ret = rbio_add_io_paddrs(rbio, &bio_list, paddrs, stripe,
2382 					 sectornr, REQ_OP_READ);
2383 		if (ret) {
2384 			bio_list_put(&bio_list);
2385 			return ret;
2386 		}
2387 	}
2388 
2389 	/*
2390 	 * We may or may not have any corrupted sectors (including missing dev
2391 	 * and csum mismatch), just let recover_sectors() to handle them all.
2392 	 */
2393 	submit_read_wait_bio_list(rbio, &bio_list);
2394 	return recover_sectors(rbio);
2395 }
2396 
raid_wait_write_end_io(struct bio * bio)2397 static void raid_wait_write_end_io(struct bio *bio)
2398 {
2399 	struct btrfs_raid_bio *rbio = bio->bi_private;
2400 
2401 	if (bio->bi_status)
2402 		rbio_update_error_bitmap(rbio, bio);
2403 	bio_put(bio);
2404 	if (atomic_dec_and_test(&rbio->stripes_pending))
2405 		wake_up(&rbio->io_wait);
2406 }
2407 
submit_write_bios(struct btrfs_raid_bio * rbio,struct bio_list * bio_list)2408 static void submit_write_bios(struct btrfs_raid_bio *rbio,
2409 			      struct bio_list *bio_list)
2410 {
2411 	struct bio *bio;
2412 
2413 	atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
2414 	while ((bio = bio_list_pop(bio_list))) {
2415 		bio->bi_end_io = raid_wait_write_end_io;
2416 
2417 		if (trace_raid56_write_enabled()) {
2418 			struct raid56_bio_trace_info trace_info = { 0 };
2419 
2420 			bio_get_trace_info(rbio, bio, &trace_info);
2421 			trace_raid56_write(rbio, bio, &trace_info);
2422 		}
2423 		submit_bio(bio);
2424 	}
2425 }
2426 
2427 /*
2428  * To determine if we need to read any sector from the disk.
2429  * Should only be utilized in RMW path, to skip cached rbio.
2430  */
need_read_stripe_sectors(struct btrfs_raid_bio * rbio)2431 static bool need_read_stripe_sectors(struct btrfs_raid_bio *rbio)
2432 {
2433 	int i;
2434 
2435 	for (i = 0; i < rbio->nr_data * rbio->stripe_nsectors; i++) {
2436 		phys_addr_t paddr = rbio->stripe_paddrs[i * rbio->sector_nsteps];
2437 
2438 		/*
2439 		 * We have a sector which doesn't have page nor uptodate,
2440 		 * thus this rbio can not be cached one, as cached one must
2441 		 * have all its data sectors present and uptodate.
2442 		 */
2443 		if (paddr == INVALID_PADDR ||
2444 		    !test_bit(i, rbio->stripe_uptodate_bitmap))
2445 			return true;
2446 	}
2447 	return false;
2448 }
2449 
rmw_rbio(struct btrfs_raid_bio * rbio)2450 static void rmw_rbio(struct btrfs_raid_bio *rbio)
2451 {
2452 	struct bio_list bio_list;
2453 	int sectornr;
2454 	int ret = 0;
2455 
2456 	/*
2457 	 * Allocate the pages for parity first, as P/Q pages will always be
2458 	 * needed for both full-stripe and sub-stripe writes.
2459 	 */
2460 	ret = alloc_rbio_parity_pages(rbio);
2461 	if (ret < 0)
2462 		goto out;
2463 
2464 	/*
2465 	 * Either full stripe write, or we have every data sector already
2466 	 * cached, can go to write path immediately.
2467 	 */
2468 	if (!rbio_is_full(rbio) && need_read_stripe_sectors(rbio)) {
2469 		/*
2470 		 * Now we're doing sub-stripe write, also need all data stripes
2471 		 * to do the full RMW.
2472 		 */
2473 		ret = alloc_rbio_data_pages(rbio);
2474 		if (ret < 0)
2475 			goto out;
2476 
2477 		index_rbio_pages(rbio);
2478 
2479 		ret = rmw_read_wait_recover(rbio);
2480 		if (ret < 0)
2481 			goto out;
2482 	}
2483 
2484 	/*
2485 	 * At this stage we're not allowed to add any new bios to the
2486 	 * bio list any more, anyone else that wants to change this stripe
2487 	 * needs to do their own rmw.
2488 	 */
2489 	spin_lock(&rbio->bio_list_lock);
2490 	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
2491 	spin_unlock(&rbio->bio_list_lock);
2492 
2493 	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2494 
2495 	index_rbio_pages(rbio);
2496 
2497 	/*
2498 	 * We don't cache full rbios because we're assuming
2499 	 * the higher layers are unlikely to use this area of
2500 	 * the disk again soon.  If they do use it again,
2501 	 * hopefully they will send another full bio.
2502 	 */
2503 	if (!rbio_is_full(rbio))
2504 		cache_rbio_pages(rbio);
2505 	else
2506 		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2507 
2508 	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++)
2509 		generate_pq_vertical(rbio, sectornr);
2510 
2511 	bio_list_init(&bio_list);
2512 	ret = rmw_assemble_write_bios(rbio, &bio_list);
2513 	if (ret < 0)
2514 		goto out;
2515 
2516 	/* We should have at least one bio assembled. */
2517 	ASSERT(bio_list_size(&bio_list));
2518 	submit_write_bios(rbio, &bio_list);
2519 	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2520 
2521 	/* We may have more errors than our tolerance during the read. */
2522 	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
2523 		int found_errors;
2524 
2525 		found_errors = get_rbio_vertical_errors(rbio, sectornr, NULL, NULL);
2526 		if (unlikely(found_errors > rbio->bioc->max_errors)) {
2527 			ret = -EIO;
2528 			break;
2529 		}
2530 	}
2531 out:
2532 	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2533 }
2534 
rmw_rbio_work(struct work_struct * work)2535 static void rmw_rbio_work(struct work_struct *work)
2536 {
2537 	struct btrfs_raid_bio *rbio;
2538 
2539 	rbio = container_of(work, struct btrfs_raid_bio, work);
2540 	if (lock_stripe_add(rbio) == 0)
2541 		rmw_rbio(rbio);
2542 }
2543 
rmw_rbio_work_locked(struct work_struct * work)2544 static void rmw_rbio_work_locked(struct work_struct *work)
2545 {
2546 	rmw_rbio(container_of(work, struct btrfs_raid_bio, work));
2547 }
2548 
2549 /*
2550  * The following code is used to scrub/replace the parity stripe
2551  *
2552  * Caller must have already increased bio_counter for getting @bioc.
2553  *
2554  * Note: We need make sure all the pages that add into the scrub/replace
2555  * raid bio are correct and not be changed during the scrub/replace. That
2556  * is those pages just hold metadata or file data with checksum.
2557  */
2558 
raid56_parity_alloc_scrub_rbio(struct bio * bio,struct btrfs_io_context * bioc,struct btrfs_device * scrub_dev,unsigned long * dbitmap,int stripe_nsectors)2559 struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio,
2560 				struct btrfs_io_context *bioc,
2561 				struct btrfs_device *scrub_dev,
2562 				unsigned long *dbitmap, int stripe_nsectors)
2563 {
2564 	struct btrfs_fs_info *fs_info = bioc->fs_info;
2565 	struct btrfs_raid_bio *rbio;
2566 	int i;
2567 
2568 	rbio = alloc_rbio(fs_info, bioc);
2569 	if (IS_ERR(rbio))
2570 		return NULL;
2571 	bio_list_add(&rbio->bio_list, bio);
2572 	/*
2573 	 * This is a special bio which is used to hold the completion handler
2574 	 * and make the scrub rbio is similar to the other types
2575 	 */
2576 	ASSERT(!bio->bi_iter.bi_size);
2577 	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2578 
2579 	/*
2580 	 * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted
2581 	 * to the end position, so this search can start from the first parity
2582 	 * stripe.
2583 	 */
2584 	for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2585 		if (bioc->stripes[i].dev == scrub_dev) {
2586 			rbio->scrubp = i;
2587 			break;
2588 		}
2589 	}
2590 	ASSERT_RBIO_STRIPE(i < rbio->real_stripes, rbio, i);
2591 
2592 	bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors);
2593 	return rbio;
2594 }
2595 
alloc_rbio_sector_pages(struct btrfs_raid_bio * rbio,int sector_nr)2596 static int alloc_rbio_sector_pages(struct btrfs_raid_bio *rbio,
2597 				  int sector_nr)
2598 {
2599 	const u32 step = min(PAGE_SIZE, rbio->bioc->fs_info->sectorsize);
2600 	const u32 base = sector_nr * rbio->sector_nsteps;
2601 
2602 	for (int i = base; i < base + rbio->sector_nsteps; i++) {
2603 		const unsigned int page_index = (i * step) >> PAGE_SHIFT;
2604 		struct page *page;
2605 
2606 		if (rbio->stripe_pages[page_index])
2607 			continue;
2608 		page = alloc_page(GFP_NOFS);
2609 		if (!page)
2610 			return -ENOMEM;
2611 		rbio->stripe_pages[page_index] = page;
2612 	}
2613 	return 0;
2614 }
2615 
2616 /*
2617  * We just scrub the parity that we have correct data on the same horizontal,
2618  * so we needn't allocate all pages for all the stripes.
2619  */
alloc_rbio_essential_pages(struct btrfs_raid_bio * rbio)2620 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2621 {
2622 	int total_sector_nr;
2623 
2624 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2625 	     total_sector_nr++) {
2626 		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2627 		int ret;
2628 
2629 		if (!test_bit(sectornr, &rbio->dbitmap))
2630 			continue;
2631 		ret = alloc_rbio_sector_pages(rbio, total_sector_nr);
2632 		if (ret < 0)
2633 			return ret;
2634 	}
2635 	index_stripe_sectors(rbio);
2636 	return 0;
2637 }
2638 
2639 /* Return true if the content of the step matches the caclulated one. */
verify_one_parity_step(struct btrfs_raid_bio * rbio,void * pointers[],unsigned int sector_nr,unsigned int step_nr)2640 static bool verify_one_parity_step(struct btrfs_raid_bio *rbio,
2641 				   void *pointers[], unsigned int sector_nr,
2642 				   unsigned int step_nr)
2643 {
2644 	const unsigned int nr_data = rbio->nr_data;
2645 	const bool has_qstripe = (rbio->real_stripes - rbio->nr_data == 2);
2646 	const u32 step = min(rbio->bioc->fs_info->sectorsize, PAGE_SIZE);
2647 	void *parity;
2648 	bool ret = false;
2649 
2650 	ASSERT(step_nr < rbio->sector_nsteps);
2651 
2652 	/* First collect one page from each data stripe. */
2653 	for (int stripe = 0; stripe < nr_data; stripe++)
2654 		pointers[stripe] = kmap_local_paddr(
2655 				sector_paddr_in_rbio(rbio, stripe, sector_nr,
2656 						     step_nr, 0));
2657 
2658 	if (has_qstripe) {
2659 		assert_rbio(rbio);
2660 		/* RAID6, call the library function to fill in our P/Q. */
2661 		raid6_call.gen_syndrome(rbio->real_stripes, step, pointers);
2662 	} else {
2663 		/* RAID5. */
2664 		memcpy(pointers[nr_data], pointers[0], step);
2665 		run_xor(pointers + 1, nr_data - 1, step);
2666 	}
2667 
2668 	/* Check scrubbing parity and repair it. */
2669 	parity = kmap_local_paddr(rbio_stripe_paddr(rbio, rbio->scrubp, sector_nr, step_nr));
2670 	if (memcmp(parity, pointers[rbio->scrubp], step) != 0)
2671 		memcpy(parity, pointers[rbio->scrubp], step);
2672 	else
2673 		ret = true;
2674 	kunmap_local(parity);
2675 
2676 	for (int stripe = nr_data - 1; stripe >= 0; stripe--)
2677 		kunmap_local(pointers[stripe]);
2678 	return ret;
2679 }
2680 
2681 /*
2682  * The @pointers array should have the P/Q parity already mapped.
2683  */
verify_one_parity_sector(struct btrfs_raid_bio * rbio,void * pointers[],unsigned int sector_nr)2684 static void verify_one_parity_sector(struct btrfs_raid_bio *rbio,
2685 				     void *pointers[], unsigned int sector_nr)
2686 {
2687 	bool found_error = false;
2688 
2689 	for (int step_nr = 0; step_nr < rbio->sector_nsteps; step_nr++) {
2690 		bool match;
2691 
2692 		match = verify_one_parity_step(rbio, pointers, sector_nr, step_nr);
2693 		if (!match)
2694 			found_error = true;
2695 	}
2696 	if (!found_error)
2697 		bitmap_clear(&rbio->dbitmap, sector_nr, 1);
2698 }
2699 
finish_parity_scrub(struct btrfs_raid_bio * rbio)2700 static int finish_parity_scrub(struct btrfs_raid_bio *rbio)
2701 {
2702 	struct btrfs_io_context *bioc = rbio->bioc;
2703 	void **pointers = rbio->finish_pointers;
2704 	unsigned long *pbitmap = &rbio->finish_pbitmap;
2705 	int nr_data = rbio->nr_data;
2706 	int sectornr;
2707 	bool has_qstripe;
2708 	struct page *page;
2709 	phys_addr_t p_paddr = INVALID_PADDR;
2710 	phys_addr_t q_paddr = INVALID_PADDR;
2711 	struct bio_list bio_list;
2712 	int is_replace = 0;
2713 	int ret;
2714 
2715 	bio_list_init(&bio_list);
2716 
2717 	if (rbio->real_stripes - rbio->nr_data == 1)
2718 		has_qstripe = false;
2719 	else if (rbio->real_stripes - rbio->nr_data == 2)
2720 		has_qstripe = true;
2721 	else
2722 		BUG();
2723 
2724 	/*
2725 	 * Replace is running and our P/Q stripe is being replaced, then we
2726 	 * need to duplicate the final write to replace target.
2727 	 */
2728 	if (bioc->replace_nr_stripes && bioc->replace_stripe_src == rbio->scrubp) {
2729 		is_replace = 1;
2730 		bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors);
2731 	}
2732 
2733 	/*
2734 	 * Because the higher layers(scrubber) are unlikely to
2735 	 * use this area of the disk again soon, so don't cache
2736 	 * it.
2737 	 */
2738 	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2739 
2740 	page = alloc_page(GFP_NOFS);
2741 	if (!page)
2742 		return -ENOMEM;
2743 	p_paddr = page_to_phys(page);
2744 	page = NULL;
2745 	pointers[nr_data] = kmap_local_paddr(p_paddr);
2746 
2747 	if (has_qstripe) {
2748 		/* RAID6, allocate and map temp space for the Q stripe */
2749 		page = alloc_page(GFP_NOFS);
2750 		if (!page) {
2751 			__free_page(phys_to_page(p_paddr));
2752 			p_paddr = INVALID_PADDR;
2753 			return -ENOMEM;
2754 		}
2755 		q_paddr = page_to_phys(page);
2756 		page = NULL;
2757 		pointers[rbio->real_stripes - 1] = kmap_local_paddr(q_paddr);
2758 	}
2759 
2760 	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2761 
2762 	/* Map the parity stripe just once */
2763 
2764 	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors)
2765 		verify_one_parity_sector(rbio, pointers, sectornr);
2766 
2767 	kunmap_local(pointers[nr_data]);
2768 	__free_page(phys_to_page(p_paddr));
2769 	p_paddr = INVALID_PADDR;
2770 	if (q_paddr != INVALID_PADDR) {
2771 		__free_page(phys_to_page(q_paddr));
2772 		q_paddr = INVALID_PADDR;
2773 	}
2774 
2775 	/*
2776 	 * time to start writing.  Make bios for everything from the
2777 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2778 	 * everything else.
2779 	 */
2780 	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2781 		phys_addr_t *paddrs;
2782 
2783 		paddrs = rbio_stripe_paddrs(rbio, rbio->scrubp, sectornr);
2784 		ret = rbio_add_io_paddrs(rbio, &bio_list, paddrs, rbio->scrubp,
2785 					 sectornr, REQ_OP_WRITE);
2786 		if (ret)
2787 			goto cleanup;
2788 	}
2789 
2790 	if (!is_replace)
2791 		goto submit_write;
2792 
2793 	/*
2794 	 * Replace is running and our parity stripe needs to be duplicated to
2795 	 * the target device.  Check we have a valid source stripe number.
2796 	 */
2797 	ASSERT_RBIO(rbio->bioc->replace_stripe_src >= 0, rbio);
2798 	for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) {
2799 		phys_addr_t *paddrs;
2800 
2801 		paddrs = rbio_stripe_paddrs(rbio, rbio->scrubp, sectornr);
2802 		ret = rbio_add_io_paddrs(rbio, &bio_list, paddrs, rbio->real_stripes,
2803 					 sectornr, REQ_OP_WRITE);
2804 		if (ret)
2805 			goto cleanup;
2806 	}
2807 
2808 submit_write:
2809 	submit_write_bios(rbio, &bio_list);
2810 	return 0;
2811 
2812 cleanup:
2813 	bio_list_put(&bio_list);
2814 	return ret;
2815 }
2816 
is_data_stripe(struct btrfs_raid_bio * rbio,int stripe)2817 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2818 {
2819 	if (stripe >= 0 && stripe < rbio->nr_data)
2820 		return 1;
2821 	return 0;
2822 }
2823 
recover_scrub_rbio(struct btrfs_raid_bio * rbio)2824 static int recover_scrub_rbio(struct btrfs_raid_bio *rbio)
2825 {
2826 	void **pointers = NULL;
2827 	void **unmap_array = NULL;
2828 	int sector_nr;
2829 	int ret = 0;
2830 
2831 	/*
2832 	 * @pointers array stores the pointer for each sector.
2833 	 *
2834 	 * @unmap_array stores copy of pointers that does not get reordered
2835 	 * during reconstruction so that kunmap_local works.
2836 	 */
2837 	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2838 	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2839 	if (!pointers || !unmap_array) {
2840 		ret = -ENOMEM;
2841 		goto out;
2842 	}
2843 
2844 	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2845 		int dfail = 0, failp = -1;
2846 		int faila;
2847 		int failb;
2848 		int found_errors;
2849 
2850 		found_errors = get_rbio_vertical_errors(rbio, sector_nr,
2851 							 &faila, &failb);
2852 		if (unlikely(found_errors > rbio->bioc->max_errors)) {
2853 			ret = -EIO;
2854 			goto out;
2855 		}
2856 		if (found_errors == 0)
2857 			continue;
2858 
2859 		/* We should have at least one error here. */
2860 		ASSERT(faila >= 0 || failb >= 0);
2861 
2862 		if (is_data_stripe(rbio, faila))
2863 			dfail++;
2864 		else if (is_parity_stripe(faila))
2865 			failp = faila;
2866 
2867 		if (is_data_stripe(rbio, failb))
2868 			dfail++;
2869 		else if (is_parity_stripe(failb))
2870 			failp = failb;
2871 		/*
2872 		 * Because we can not use a scrubbing parity to repair the
2873 		 * data, so the capability of the repair is declined.  (In the
2874 		 * case of RAID5, we can not repair anything.)
2875 		 */
2876 		if (unlikely(dfail > rbio->bioc->max_errors - 1)) {
2877 			ret = -EIO;
2878 			goto out;
2879 		}
2880 		/*
2881 		 * If all data is good, only parity is correctly, just repair
2882 		 * the parity, no need to recover data stripes.
2883 		 */
2884 		if (dfail == 0)
2885 			continue;
2886 
2887 		/*
2888 		 * Here means we got one corrupted data stripe and one
2889 		 * corrupted parity on RAID6, if the corrupted parity is
2890 		 * scrubbing parity, luckily, use the other one to repair the
2891 		 * data, or we can not repair the data stripe.
2892 		 */
2893 		if (unlikely(failp != rbio->scrubp)) {
2894 			ret = -EIO;
2895 			goto out;
2896 		}
2897 
2898 		ret = recover_vertical(rbio, sector_nr, pointers, unmap_array);
2899 		if (ret < 0)
2900 			goto out;
2901 	}
2902 out:
2903 	kfree(pointers);
2904 	kfree(unmap_array);
2905 	return ret;
2906 }
2907 
scrub_assemble_read_bios(struct btrfs_raid_bio * rbio)2908 static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio)
2909 {
2910 	struct bio_list bio_list = BIO_EMPTY_LIST;
2911 	int total_sector_nr;
2912 	int ret = 0;
2913 
2914 	/* Build a list of bios to read all the missing parts. */
2915 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2916 	     total_sector_nr++) {
2917 		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2918 		int stripe = total_sector_nr / rbio->stripe_nsectors;
2919 		phys_addr_t *paddrs;
2920 
2921 		/* No data in the vertical stripe, no need to read. */
2922 		if (!test_bit(sectornr, &rbio->dbitmap))
2923 			continue;
2924 
2925 		/*
2926 		 * We want to find all the sectors missing from the rbio and
2927 		 * read them from the disk. If sector_paddr_in_rbio() finds a sector
2928 		 * in the bio list we don't need to read it off the stripe.
2929 		 */
2930 		paddrs = sector_paddrs_in_rbio(rbio, stripe, sectornr, 1);
2931 		if (paddrs == NULL)
2932 			continue;
2933 
2934 		paddrs = rbio_stripe_paddrs(rbio, stripe, sectornr);
2935 		/*
2936 		 * The bio cache may have handed us an uptodate sector.  If so,
2937 		 * use it.
2938 		 */
2939 		if (test_bit(rbio_sector_index(rbio, stripe, sectornr),
2940 			     rbio->stripe_uptodate_bitmap))
2941 			continue;
2942 
2943 		ret = rbio_add_io_paddrs(rbio, &bio_list, paddrs, stripe,
2944 					 sectornr, REQ_OP_READ);
2945 		if (ret) {
2946 			bio_list_put(&bio_list);
2947 			return ret;
2948 		}
2949 	}
2950 
2951 	submit_read_wait_bio_list(rbio, &bio_list);
2952 	return 0;
2953 }
2954 
scrub_rbio(struct btrfs_raid_bio * rbio)2955 static void scrub_rbio(struct btrfs_raid_bio *rbio)
2956 {
2957 	int sector_nr;
2958 	int ret;
2959 
2960 	ret = alloc_rbio_essential_pages(rbio);
2961 	if (ret)
2962 		goto out;
2963 
2964 	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2965 
2966 	ret = scrub_assemble_read_bios(rbio);
2967 	if (ret < 0)
2968 		goto out;
2969 
2970 	/* We may have some failures, recover the failed sectors first. */
2971 	ret = recover_scrub_rbio(rbio);
2972 	if (ret < 0)
2973 		goto out;
2974 
2975 	/*
2976 	 * We have every sector properly prepared. Can finish the scrub
2977 	 * and writeback the good content.
2978 	 */
2979 	ret = finish_parity_scrub(rbio);
2980 	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2981 	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2982 		int found_errors;
2983 
2984 		found_errors = get_rbio_vertical_errors(rbio, sector_nr, NULL, NULL);
2985 		if (unlikely(found_errors > rbio->bioc->max_errors)) {
2986 			ret = -EIO;
2987 			break;
2988 		}
2989 	}
2990 out:
2991 	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2992 }
2993 
scrub_rbio_work_locked(struct work_struct * work)2994 static void scrub_rbio_work_locked(struct work_struct *work)
2995 {
2996 	scrub_rbio(container_of(work, struct btrfs_raid_bio, work));
2997 }
2998 
raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio * rbio)2999 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
3000 {
3001 	if (!lock_stripe_add(rbio))
3002 		start_async_work(rbio, scrub_rbio_work_locked);
3003 }
3004 
3005 /*
3006  * This is for scrub call sites where we already have correct data contents.
3007  * This allows us to avoid reading data stripes again.
3008  *
3009  * Unfortunately here we have to do folio copy, other than reusing the pages.
3010  * This is due to the fact rbio has its own page management for its cache.
3011  */
raid56_parity_cache_data_folios(struct btrfs_raid_bio * rbio,struct folio ** data_folios,u64 data_logical)3012 void raid56_parity_cache_data_folios(struct btrfs_raid_bio *rbio,
3013 				     struct folio **data_folios, u64 data_logical)
3014 {
3015 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
3016 	const u64 offset_in_full_stripe = data_logical -
3017 					  rbio->bioc->full_stripe_logical;
3018 	unsigned int findex = 0;
3019 	unsigned int foffset = 0;
3020 	int ret;
3021 
3022 	/*
3023 	 * If we hit ENOMEM temporarily, but later at
3024 	 * raid56_parity_submit_scrub_rbio() time it succeeded, we just do
3025 	 * the extra read, not a big deal.
3026 	 *
3027 	 * If we hit ENOMEM later at raid56_parity_submit_scrub_rbio() time,
3028 	 * the bio would got proper error number set.
3029 	 */
3030 	ret = alloc_rbio_data_pages(rbio);
3031 	if (ret < 0)
3032 		return;
3033 
3034 	/* data_logical must be at stripe boundary and inside the full stripe. */
3035 	ASSERT(IS_ALIGNED(offset_in_full_stripe, BTRFS_STRIPE_LEN));
3036 	ASSERT(offset_in_full_stripe < (rbio->nr_data << BTRFS_STRIPE_LEN_SHIFT));
3037 
3038 	for (unsigned int cur_off = offset_in_full_stripe;
3039 	     cur_off < offset_in_full_stripe + BTRFS_STRIPE_LEN;
3040 	     cur_off += PAGE_SIZE) {
3041 		const unsigned int pindex = cur_off >> PAGE_SHIFT;
3042 		void *kaddr;
3043 
3044 		kaddr = kmap_local_page(rbio->stripe_pages[pindex]);
3045 		memcpy_from_folio(kaddr, data_folios[findex], foffset, PAGE_SIZE);
3046 		kunmap_local(kaddr);
3047 
3048 		foffset += PAGE_SIZE;
3049 		ASSERT(foffset <= folio_size(data_folios[findex]));
3050 		if (foffset == folio_size(data_folios[findex])) {
3051 			findex++;
3052 			foffset = 0;
3053 		}
3054 	}
3055 	bitmap_set(rbio->stripe_uptodate_bitmap,
3056 		   offset_in_full_stripe >> fs_info->sectorsize_bits,
3057 		   BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
3058 }
3059