1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_32_PGTABLE_H
3 #define _ASM_POWERPC_BOOK3S_32_PGTABLE_H
4
5 #include <asm-generic/pgtable-nopmd.h>
6
7 /*
8 * The "classic" 32-bit implementation of the PowerPC MMU uses a hash
9 * table containing PTEs, together with a set of 16 segment registers,
10 * to define the virtual to physical address mapping.
11 *
12 * We use the hash table as an extended TLB, i.e. a cache of currently
13 * active mappings. We maintain a two-level page table tree, much
14 * like that used by the i386, for the sake of the Linux memory
15 * management code. Low-level assembler code in hash_low_32.S
16 * (procedure hash_page) is responsible for extracting ptes from the
17 * tree and putting them into the hash table when necessary, and
18 * updating the accessed and modified bits in the page table tree.
19 */
20
21 #define _PAGE_PRESENT 0x001 /* software: pte contains a translation */
22 #define _PAGE_HASHPTE 0x002 /* hash_page has made an HPTE for this pte */
23 #define _PAGE_READ 0x004 /* software: read access allowed */
24 #define _PAGE_GUARDED 0x008 /* G: prohibit speculative access */
25 #define _PAGE_COHERENT 0x010 /* M: enforce memory coherence (SMP systems) */
26 #define _PAGE_NO_CACHE 0x020 /* I: cache inhibit */
27 #define _PAGE_WRITETHRU 0x040 /* W: cache write-through */
28 #define _PAGE_DIRTY 0x080 /* C: page changed */
29 #define _PAGE_ACCESSED 0x100 /* R: page referenced */
30 #define _PAGE_EXEC 0x200 /* software: exec allowed */
31 #define _PAGE_WRITE 0x400 /* software: user write access allowed */
32 #define _PAGE_SPECIAL 0x800 /* software: Special page */
33
34 #ifdef CONFIG_PTE_64BIT
35 /* We never clear the high word of the pte */
36 #define _PTE_NONE_MASK (0xffffffff00000000ULL | _PAGE_HASHPTE)
37 #else
38 #define _PTE_NONE_MASK _PAGE_HASHPTE
39 #endif
40
41 #define _PMD_PRESENT 0
42 #define _PMD_PRESENT_MASK (PAGE_MASK)
43 #define _PMD_BAD (~PAGE_MASK)
44
45 /* We borrow the _PAGE_READ bit to store the exclusive marker in swap PTEs. */
46 #define _PAGE_SWP_EXCLUSIVE _PAGE_READ
47
48 /* And here we include common definitions */
49
50 #define _PAGE_HPTEFLAGS _PAGE_HASHPTE
51
52 /*
53 * Location of the PFN in the PTE. Most 32-bit platforms use the same
54 * as _PAGE_SHIFT here (ie, naturally aligned).
55 * Platform who don't just pre-define the value so we don't override it here.
56 */
57 #define PTE_RPN_SHIFT (PAGE_SHIFT)
58
59 /*
60 * The mask covered by the RPN must be a ULL on 32-bit platforms with
61 * 64-bit PTEs.
62 */
63 #ifdef CONFIG_PTE_64BIT
64 #define PTE_RPN_MASK (~((1ULL << PTE_RPN_SHIFT) - 1))
65 #define MAX_POSSIBLE_PHYSMEM_BITS 36
66 #else
67 #define PTE_RPN_MASK (~((1UL << PTE_RPN_SHIFT) - 1))
68 #define MAX_POSSIBLE_PHYSMEM_BITS 32
69 #endif
70
71 /*
72 * _PAGE_CHG_MASK masks of bits that are to be preserved across
73 * pgprot changes.
74 */
75 #define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HASHPTE | _PAGE_DIRTY | \
76 _PAGE_ACCESSED | _PAGE_SPECIAL)
77
78 /*
79 * We define 2 sets of base prot bits, one for basic pages (ie,
80 * cacheable kernel and user pages) and one for non cacheable
81 * pages. We always set _PAGE_COHERENT when SMP is enabled or
82 * the processor might need it for DMA coherency.
83 */
84 #define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED)
85 #define _PAGE_BASE (_PAGE_BASE_NC | _PAGE_COHERENT)
86
87 #include <asm/pgtable-masks.h>
88
89 /* Permission masks used for kernel mappings */
90 #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
91 #define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE)
92 #define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE | _PAGE_GUARDED)
93 #define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
94 #define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
95 #define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
96
97 #define PTE_INDEX_SIZE PTE_SHIFT
98 #define PMD_INDEX_SIZE 0
99 #define PUD_INDEX_SIZE 0
100 #define PGD_INDEX_SIZE (32 - PGDIR_SHIFT)
101
102 #define PMD_CACHE_INDEX PMD_INDEX_SIZE
103 #define PUD_CACHE_INDEX PUD_INDEX_SIZE
104
105 #ifndef __ASSEMBLY__
106 #define PTE_TABLE_SIZE (sizeof(pte_t) << PTE_INDEX_SIZE)
107 #define PMD_TABLE_SIZE 0
108 #define PUD_TABLE_SIZE 0
109 #define PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE)
110
111 /* Bits to mask out from a PMD to get to the PTE page */
112 #define PMD_MASKED_BITS (PTE_TABLE_SIZE - 1)
113 #endif /* __ASSEMBLY__ */
114
115 #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
116 #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
117
118 /*
119 * The normal case is that PTEs are 32-bits and we have a 1-page
120 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus
121 *
122 * For any >32-bit physical address platform, we can use the following
123 * two level page table layout where the pgdir is 8KB and the MS 13 bits
124 * are an index to the second level table. The combined pgdir/pmd first
125 * level has 2048 entries and the second level has 512 64-bit PTE entries.
126 * -Matt
127 */
128 /* PGDIR_SHIFT determines what a top-level page table entry can map */
129 #define PGDIR_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
130 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
131 #define PGDIR_MASK (~(PGDIR_SIZE-1))
132
133 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
134
135 #ifndef __ASSEMBLY__
136
137 int map_kernel_page(unsigned long va, phys_addr_t pa, pgprot_t prot);
138 void unmap_kernel_page(unsigned long va);
139
140 #endif /* !__ASSEMBLY__ */
141
142 /*
143 * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary
144 * value (for now) on others, from where we can start layout kernel
145 * virtual space that goes below PKMAP and FIXMAP
146 */
147
148 #define FIXADDR_SIZE 0
149 #ifdef CONFIG_KASAN
150 #include <asm/kasan.h>
151 #define FIXADDR_TOP (KASAN_SHADOW_START - PAGE_SIZE)
152 #else
153 #define FIXADDR_TOP ((unsigned long)(-PAGE_SIZE))
154 #endif
155
156 /*
157 * ioremap_bot starts at that address. Early ioremaps move down from there,
158 * until mem_init() at which point this becomes the top of the vmalloc
159 * and ioremap space
160 */
161 #ifdef CONFIG_HIGHMEM
162 #define IOREMAP_TOP PKMAP_BASE
163 #else
164 #define IOREMAP_TOP FIXADDR_START
165 #endif
166
167 /* PPC32 shares vmalloc area with ioremap */
168 #define IOREMAP_START VMALLOC_START
169 #define IOREMAP_END VMALLOC_END
170
171 /*
172 * Just any arbitrary offset to the start of the vmalloc VM area: the
173 * current 16MB value just means that there will be a 64MB "hole" after the
174 * physical memory until the kernel virtual memory starts. That means that
175 * any out-of-bounds memory accesses will hopefully be caught.
176 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
177 * area for the same reason. ;)
178 *
179 * We no longer map larger than phys RAM with the BATs so we don't have
180 * to worry about the VMALLOC_OFFSET causing problems. We do have to worry
181 * about clashes between our early calls to ioremap() that start growing down
182 * from ioremap_base being run into the VM area allocations (growing upwards
183 * from VMALLOC_START). For this reason we have ioremap_bot to check when
184 * we actually run into our mappings setup in the early boot with the VM
185 * system. This really does become a problem for machines with good amounts
186 * of RAM. -- Cort
187 */
188 #define VMALLOC_OFFSET (0x1000000) /* 16M */
189
190 #define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
191
192 #ifdef CONFIG_KASAN_VMALLOC
193 #define VMALLOC_END ALIGN_DOWN(ioremap_bot, PAGE_SIZE << KASAN_SHADOW_SCALE_SHIFT)
194 #else
195 #define VMALLOC_END ioremap_bot
196 #endif
197
198 #define MODULES_END ALIGN_DOWN(PAGE_OFFSET, SZ_256M)
199 #define MODULES_SIZE (CONFIG_MODULES_SIZE * SZ_1M)
200 #define MODULES_VADDR (MODULES_END - MODULES_SIZE)
201
202 #ifndef __ASSEMBLY__
203 #include <linux/sched.h>
204 #include <linux/threads.h>
205
206 /* Bits to mask out from a PGD to get to the PUD page */
207 #define PGD_MASKED_BITS 0
208
209 #define pgd_ERROR(e) \
210 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
211 /*
212 * Bits in a linux-style PTE. These match the bits in the
213 * (hardware-defined) PowerPC PTE as closely as possible.
214 */
215
216 #define pte_clear(mm, addr, ptep) \
217 do { pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, 0, 0); } while (0)
218
219 #define pmd_none(pmd) (!pmd_val(pmd))
220 #define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD)
221 #define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK)
pmd_clear(pmd_t * pmdp)222 static inline void pmd_clear(pmd_t *pmdp)
223 {
224 *pmdp = __pmd(0);
225 }
226
227
228 /*
229 * When flushing the tlb entry for a page, we also need to flush the hash
230 * table entry. flush_hash_pages is assembler (for speed) in hashtable.S.
231 */
232 extern int flush_hash_pages(unsigned context, unsigned long va,
233 unsigned long pmdval, int count);
234
235 /* Add an HPTE to the hash table */
236 extern void add_hash_page(unsigned context, unsigned long va,
237 unsigned long pmdval);
238
239 /* Flush an entry from the TLB/hash table */
flush_hash_entry(struct mm_struct * mm,pte_t * ptep,unsigned long addr)240 static inline void flush_hash_entry(struct mm_struct *mm, pte_t *ptep, unsigned long addr)
241 {
242 if (mmu_has_feature(MMU_FTR_HPTE_TABLE)) {
243 unsigned long ptephys = __pa(ptep) & PAGE_MASK;
244
245 flush_hash_pages(mm->context.id, addr, ptephys, 1);
246 }
247 }
248
249 /*
250 * PTE updates. This function is called whenever an existing
251 * valid PTE is updated. This does -not- include set_pte_at()
252 * which nowadays only sets a new PTE.
253 *
254 * Depending on the type of MMU, we may need to use atomic updates
255 * and the PTE may be either 32 or 64 bit wide. In the later case,
256 * when using atomic updates, only the low part of the PTE is
257 * accessed atomically.
258 */
pte_update(struct mm_struct * mm,unsigned long addr,pte_t * p,unsigned long clr,unsigned long set,int huge)259 static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p,
260 unsigned long clr, unsigned long set, int huge)
261 {
262 pte_basic_t old;
263
264 if (mmu_has_feature(MMU_FTR_HPTE_TABLE)) {
265 unsigned long tmp;
266
267 asm volatile(
268 #ifndef CONFIG_PTE_64BIT
269 "1: lwarx %0, 0, %3\n"
270 " andc %1, %0, %4\n"
271 #else
272 "1: lwarx %L0, 0, %3\n"
273 " lwz %0, -4(%3)\n"
274 " andc %1, %L0, %4\n"
275 #endif
276 " or %1, %1, %5\n"
277 " stwcx. %1, 0, %3\n"
278 " bne- 1b"
279 : "=&r" (old), "=&r" (tmp), "=m" (*p)
280 #ifndef CONFIG_PTE_64BIT
281 : "r" (p),
282 #else
283 : "b" ((unsigned long)(p) + 4),
284 #endif
285 "r" (clr), "r" (set), "m" (*p)
286 : "cc" );
287 } else {
288 old = pte_val(*p);
289
290 *p = __pte((old & ~(pte_basic_t)clr) | set);
291 }
292
293 return old;
294 }
295
296 /*
297 * 2.6 calls this without flushing the TLB entry; this is wrong
298 * for our hash-based implementation, we fix that up here.
299 */
300 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
__ptep_test_and_clear_young(struct mm_struct * mm,unsigned long addr,pte_t * ptep)301 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
302 unsigned long addr, pte_t *ptep)
303 {
304 unsigned long old;
305 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
306 if (old & _PAGE_HASHPTE)
307 flush_hash_entry(mm, ptep, addr);
308
309 return (old & _PAGE_ACCESSED) != 0;
310 }
311 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
312 __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep)
313
314 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)315 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
316 pte_t *ptep)
317 {
318 return __pte(pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, 0, 0));
319 }
320
321 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)322 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
323 pte_t *ptep)
324 {
325 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
326 }
327
__ptep_set_access_flags(struct vm_area_struct * vma,pte_t * ptep,pte_t entry,unsigned long address,int psize)328 static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
329 pte_t *ptep, pte_t entry,
330 unsigned long address,
331 int psize)
332 {
333 unsigned long set = pte_val(entry) &
334 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
335
336 pte_update(vma->vm_mm, address, ptep, 0, set, 0);
337
338 flush_tlb_page(vma, address);
339 }
340
341 #define __HAVE_ARCH_PTE_SAME
342 #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)
343
344 #define pmd_pfn(pmd) (pmd_val(pmd) >> PAGE_SHIFT)
345 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
346
347 /*
348 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
349 * are !pte_none() && !pte_present().
350 *
351 * Format of swap PTEs (32bit PTEs):
352 *
353 * 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
354 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
355 * <----------------- offset --------------------> < type -> E H P
356 *
357 * E is the exclusive marker that is not stored in swap entries.
358 * _PAGE_PRESENT (P) and __PAGE_HASHPTE (H) must be 0.
359 *
360 * For 64bit PTEs, the offset is extended by 32bit.
361 */
362 #define __swp_type(entry) ((entry).val & 0x1f)
363 #define __swp_offset(entry) ((entry).val >> 5)
364 #define __swp_entry(type, offset) ((swp_entry_t) { ((type) & 0x1f) | ((offset) << 5) })
365 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 })
366 #define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 })
367
pte_swp_exclusive(pte_t pte)368 static inline int pte_swp_exclusive(pte_t pte)
369 {
370 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
371 }
372
pte_swp_mkexclusive(pte_t pte)373 static inline pte_t pte_swp_mkexclusive(pte_t pte)
374 {
375 return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE);
376 }
377
pte_swp_clear_exclusive(pte_t pte)378 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
379 {
380 return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE);
381 }
382
383 /* Generic accessors to PTE bits */
pte_read(pte_t pte)384 static inline bool pte_read(pte_t pte)
385 {
386 return !!(pte_val(pte) & _PAGE_READ);
387 }
388
pte_write(pte_t pte)389 static inline bool pte_write(pte_t pte)
390 {
391 return !!(pte_val(pte) & _PAGE_WRITE);
392 }
393
pte_dirty(pte_t pte)394 static inline int pte_dirty(pte_t pte) { return !!(pte_val(pte) & _PAGE_DIRTY); }
pte_young(pte_t pte)395 static inline int pte_young(pte_t pte) { return !!(pte_val(pte) & _PAGE_ACCESSED); }
pte_special(pte_t pte)396 static inline int pte_special(pte_t pte) { return !!(pte_val(pte) & _PAGE_SPECIAL); }
pte_none(pte_t pte)397 static inline int pte_none(pte_t pte) { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
pte_exec(pte_t pte)398 static inline bool pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; }
399
pte_present(pte_t pte)400 static inline int pte_present(pte_t pte)
401 {
402 return pte_val(pte) & _PAGE_PRESENT;
403 }
404
pte_hw_valid(pte_t pte)405 static inline bool pte_hw_valid(pte_t pte)
406 {
407 return pte_val(pte) & _PAGE_PRESENT;
408 }
409
pte_hashpte(pte_t pte)410 static inline bool pte_hashpte(pte_t pte)
411 {
412 return !!(pte_val(pte) & _PAGE_HASHPTE);
413 }
414
pte_ci(pte_t pte)415 static inline bool pte_ci(pte_t pte)
416 {
417 return !!(pte_val(pte) & _PAGE_NO_CACHE);
418 }
419
420 /*
421 * We only find page table entry in the last level
422 * Hence no need for other accessors
423 */
424 #define pte_access_permitted pte_access_permitted
pte_access_permitted(pte_t pte,bool write)425 static inline bool pte_access_permitted(pte_t pte, bool write)
426 {
427 /*
428 * A read-only access is controlled by _PAGE_READ bit.
429 * We have _PAGE_READ set for WRITE
430 */
431 if (!pte_present(pte) || !pte_read(pte))
432 return false;
433
434 if (write && !pte_write(pte))
435 return false;
436
437 return true;
438 }
439
440 /* Conversion functions: convert a page and protection to a page entry,
441 * and a page entry and page directory to the page they refer to.
442 *
443 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
444 * long for now.
445 */
pfn_pte(unsigned long pfn,pgprot_t pgprot)446 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
447 {
448 return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
449 pgprot_val(pgprot));
450 }
451
452 /* Generic modifiers for PTE bits */
pte_wrprotect(pte_t pte)453 static inline pte_t pte_wrprotect(pte_t pte)
454 {
455 return __pte(pte_val(pte) & ~_PAGE_WRITE);
456 }
457
pte_exprotect(pte_t pte)458 static inline pte_t pte_exprotect(pte_t pte)
459 {
460 return __pte(pte_val(pte) & ~_PAGE_EXEC);
461 }
462
pte_mkclean(pte_t pte)463 static inline pte_t pte_mkclean(pte_t pte)
464 {
465 return __pte(pte_val(pte) & ~_PAGE_DIRTY);
466 }
467
pte_mkold(pte_t pte)468 static inline pte_t pte_mkold(pte_t pte)
469 {
470 return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
471 }
472
pte_mkexec(pte_t pte)473 static inline pte_t pte_mkexec(pte_t pte)
474 {
475 return __pte(pte_val(pte) | _PAGE_EXEC);
476 }
477
pte_mkpte(pte_t pte)478 static inline pte_t pte_mkpte(pte_t pte)
479 {
480 return pte;
481 }
482
pte_mkwrite_novma(pte_t pte)483 static inline pte_t pte_mkwrite_novma(pte_t pte)
484 {
485 /*
486 * write implies read, hence set both
487 */
488 return __pte(pte_val(pte) | _PAGE_RW);
489 }
490
pte_mkdirty(pte_t pte)491 static inline pte_t pte_mkdirty(pte_t pte)
492 {
493 return __pte(pte_val(pte) | _PAGE_DIRTY);
494 }
495
pte_mkyoung(pte_t pte)496 static inline pte_t pte_mkyoung(pte_t pte)
497 {
498 return __pte(pte_val(pte) | _PAGE_ACCESSED);
499 }
500
pte_mkspecial(pte_t pte)501 static inline pte_t pte_mkspecial(pte_t pte)
502 {
503 return __pte(pte_val(pte) | _PAGE_SPECIAL);
504 }
505
pte_mkhuge(pte_t pte)506 static inline pte_t pte_mkhuge(pte_t pte)
507 {
508 return pte;
509 }
510
pte_modify(pte_t pte,pgprot_t newprot)511 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
512 {
513 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
514 }
515
516
517
518 /* This low level function performs the actual PTE insertion
519 * Setting the PTE depends on the MMU type and other factors.
520 *
521 * First case is 32-bit in UP mode with 32-bit PTEs, we need to preserve
522 * the _PAGE_HASHPTE bit since we may not have invalidated the previous
523 * translation in the hash yet (done in a subsequent flush_tlb_xxx())
524 * and see we need to keep track that this PTE needs invalidating.
525 *
526 * Second case is 32-bit with 64-bit PTE. In this case, we
527 * can just store as long as we do the two halves in the right order
528 * with a barrier in between. This is possible because we take care,
529 * in the hash code, to pre-invalidate if the PTE was already hashed,
530 * which synchronizes us with any concurrent invalidation.
531 * In the percpu case, we fallback to the simple update preserving
532 * the hash bits (ie, same as the non-SMP case).
533 *
534 * Third case is 32-bit in SMP mode with 32-bit PTEs. We use the
535 * helper pte_update() which does an atomic update. We need to do that
536 * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a
537 * per-CPU PTE such as a kmap_atomic, we also do a simple update preserving
538 * the hash bits instead.
539 */
__set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte,int percpu)540 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
541 pte_t *ptep, pte_t pte, int percpu)
542 {
543 if ((!IS_ENABLED(CONFIG_SMP) && !IS_ENABLED(CONFIG_PTE_64BIT)) || percpu) {
544 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) |
545 (pte_val(pte) & ~_PAGE_HASHPTE));
546 } else if (IS_ENABLED(CONFIG_PTE_64BIT)) {
547 if (pte_val(*ptep) & _PAGE_HASHPTE)
548 flush_hash_entry(mm, ptep, addr);
549
550 asm volatile("stw%X0 %2,%0; eieio; stw%X1 %L2,%1" :
551 "=m" (*ptep), "=m" (*((unsigned char *)ptep+4)) :
552 "r" (pte) : "memory");
553 } else {
554 pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, pte_val(pte), 0);
555 }
556 }
557
558 /*
559 * Macro to mark a page protection value as "uncacheable".
560 */
561
562 #define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
563 _PAGE_WRITETHRU)
564
565 #define pgprot_noncached pgprot_noncached
pgprot_noncached(pgprot_t prot)566 static inline pgprot_t pgprot_noncached(pgprot_t prot)
567 {
568 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
569 _PAGE_NO_CACHE | _PAGE_GUARDED);
570 }
571
572 #define pgprot_noncached_wc pgprot_noncached_wc
pgprot_noncached_wc(pgprot_t prot)573 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
574 {
575 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
576 _PAGE_NO_CACHE);
577 }
578
579 #define pgprot_cached pgprot_cached
pgprot_cached(pgprot_t prot)580 static inline pgprot_t pgprot_cached(pgprot_t prot)
581 {
582 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
583 _PAGE_COHERENT);
584 }
585
586 #define pgprot_cached_wthru pgprot_cached_wthru
pgprot_cached_wthru(pgprot_t prot)587 static inline pgprot_t pgprot_cached_wthru(pgprot_t prot)
588 {
589 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
590 _PAGE_COHERENT | _PAGE_WRITETHRU);
591 }
592
593 #define pgprot_cached_noncoherent pgprot_cached_noncoherent
pgprot_cached_noncoherent(pgprot_t prot)594 static inline pgprot_t pgprot_cached_noncoherent(pgprot_t prot)
595 {
596 return __pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL);
597 }
598
599 #define pgprot_writecombine pgprot_writecombine
pgprot_writecombine(pgprot_t prot)600 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
601 {
602 return pgprot_noncached_wc(prot);
603 }
604
605 #endif /* !__ASSEMBLY__ */
606
607 #endif /* _ASM_POWERPC_BOOK3S_32_PGTABLE_H */
608