xref: /linux/tools/lib/bpf/libbpf.c (revision 3fd6c59042dbba50391e30862beac979491145fe)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * Common eBPF ELF object loading operations.
5  *
6  * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7  * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8  * Copyright (C) 2015 Huawei Inc.
9  * Copyright (C) 2017 Nicira, Inc.
10  * Copyright (C) 2019 Isovalent, Inc.
11  */
12 
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/limits.h>
35 #include <linux/perf_event.h>
36 #include <linux/bpf_perf_event.h>
37 #include <linux/ring_buffer.h>
38 #include <sys/epoll.h>
39 #include <sys/ioctl.h>
40 #include <sys/mman.h>
41 #include <sys/stat.h>
42 #include <sys/types.h>
43 #include <sys/vfs.h>
44 #include <sys/utsname.h>
45 #include <sys/resource.h>
46 #include <libelf.h>
47 #include <gelf.h>
48 #include <zlib.h>
49 
50 #include "libbpf.h"
51 #include "bpf.h"
52 #include "btf.h"
53 #include "str_error.h"
54 #include "libbpf_internal.h"
55 #include "hashmap.h"
56 #include "bpf_gen_internal.h"
57 #include "zip.h"
58 
59 #ifndef BPF_FS_MAGIC
60 #define BPF_FS_MAGIC		0xcafe4a11
61 #endif
62 
63 #define BPF_FS_DEFAULT_PATH "/sys/fs/bpf"
64 
65 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
66 
67 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
68  * compilation if user enables corresponding warning. Disable it explicitly.
69  */
70 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
71 
72 #define __printf(a, b)	__attribute__((format(printf, a, b)))
73 
74 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
75 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
76 static int map_set_def_max_entries(struct bpf_map *map);
77 
78 static const char * const attach_type_name[] = {
79 	[BPF_CGROUP_INET_INGRESS]	= "cgroup_inet_ingress",
80 	[BPF_CGROUP_INET_EGRESS]	= "cgroup_inet_egress",
81 	[BPF_CGROUP_INET_SOCK_CREATE]	= "cgroup_inet_sock_create",
82 	[BPF_CGROUP_INET_SOCK_RELEASE]	= "cgroup_inet_sock_release",
83 	[BPF_CGROUP_SOCK_OPS]		= "cgroup_sock_ops",
84 	[BPF_CGROUP_DEVICE]		= "cgroup_device",
85 	[BPF_CGROUP_INET4_BIND]		= "cgroup_inet4_bind",
86 	[BPF_CGROUP_INET6_BIND]		= "cgroup_inet6_bind",
87 	[BPF_CGROUP_INET4_CONNECT]	= "cgroup_inet4_connect",
88 	[BPF_CGROUP_INET6_CONNECT]	= "cgroup_inet6_connect",
89 	[BPF_CGROUP_UNIX_CONNECT]       = "cgroup_unix_connect",
90 	[BPF_CGROUP_INET4_POST_BIND]	= "cgroup_inet4_post_bind",
91 	[BPF_CGROUP_INET6_POST_BIND]	= "cgroup_inet6_post_bind",
92 	[BPF_CGROUP_INET4_GETPEERNAME]	= "cgroup_inet4_getpeername",
93 	[BPF_CGROUP_INET6_GETPEERNAME]	= "cgroup_inet6_getpeername",
94 	[BPF_CGROUP_UNIX_GETPEERNAME]	= "cgroup_unix_getpeername",
95 	[BPF_CGROUP_INET4_GETSOCKNAME]	= "cgroup_inet4_getsockname",
96 	[BPF_CGROUP_INET6_GETSOCKNAME]	= "cgroup_inet6_getsockname",
97 	[BPF_CGROUP_UNIX_GETSOCKNAME]	= "cgroup_unix_getsockname",
98 	[BPF_CGROUP_UDP4_SENDMSG]	= "cgroup_udp4_sendmsg",
99 	[BPF_CGROUP_UDP6_SENDMSG]	= "cgroup_udp6_sendmsg",
100 	[BPF_CGROUP_UNIX_SENDMSG]	= "cgroup_unix_sendmsg",
101 	[BPF_CGROUP_SYSCTL]		= "cgroup_sysctl",
102 	[BPF_CGROUP_UDP4_RECVMSG]	= "cgroup_udp4_recvmsg",
103 	[BPF_CGROUP_UDP6_RECVMSG]	= "cgroup_udp6_recvmsg",
104 	[BPF_CGROUP_UNIX_RECVMSG]	= "cgroup_unix_recvmsg",
105 	[BPF_CGROUP_GETSOCKOPT]		= "cgroup_getsockopt",
106 	[BPF_CGROUP_SETSOCKOPT]		= "cgroup_setsockopt",
107 	[BPF_SK_SKB_STREAM_PARSER]	= "sk_skb_stream_parser",
108 	[BPF_SK_SKB_STREAM_VERDICT]	= "sk_skb_stream_verdict",
109 	[BPF_SK_SKB_VERDICT]		= "sk_skb_verdict",
110 	[BPF_SK_MSG_VERDICT]		= "sk_msg_verdict",
111 	[BPF_LIRC_MODE2]		= "lirc_mode2",
112 	[BPF_FLOW_DISSECTOR]		= "flow_dissector",
113 	[BPF_TRACE_RAW_TP]		= "trace_raw_tp",
114 	[BPF_TRACE_FENTRY]		= "trace_fentry",
115 	[BPF_TRACE_FEXIT]		= "trace_fexit",
116 	[BPF_MODIFY_RETURN]		= "modify_return",
117 	[BPF_LSM_MAC]			= "lsm_mac",
118 	[BPF_LSM_CGROUP]		= "lsm_cgroup",
119 	[BPF_SK_LOOKUP]			= "sk_lookup",
120 	[BPF_TRACE_ITER]		= "trace_iter",
121 	[BPF_XDP_DEVMAP]		= "xdp_devmap",
122 	[BPF_XDP_CPUMAP]		= "xdp_cpumap",
123 	[BPF_XDP]			= "xdp",
124 	[BPF_SK_REUSEPORT_SELECT]	= "sk_reuseport_select",
125 	[BPF_SK_REUSEPORT_SELECT_OR_MIGRATE]	= "sk_reuseport_select_or_migrate",
126 	[BPF_PERF_EVENT]		= "perf_event",
127 	[BPF_TRACE_KPROBE_MULTI]	= "trace_kprobe_multi",
128 	[BPF_STRUCT_OPS]		= "struct_ops",
129 	[BPF_NETFILTER]			= "netfilter",
130 	[BPF_TCX_INGRESS]		= "tcx_ingress",
131 	[BPF_TCX_EGRESS]		= "tcx_egress",
132 	[BPF_TRACE_UPROBE_MULTI]	= "trace_uprobe_multi",
133 	[BPF_NETKIT_PRIMARY]		= "netkit_primary",
134 	[BPF_NETKIT_PEER]		= "netkit_peer",
135 	[BPF_TRACE_KPROBE_SESSION]	= "trace_kprobe_session",
136 	[BPF_TRACE_UPROBE_SESSION]	= "trace_uprobe_session",
137 };
138 
139 static const char * const link_type_name[] = {
140 	[BPF_LINK_TYPE_UNSPEC]			= "unspec",
141 	[BPF_LINK_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
142 	[BPF_LINK_TYPE_TRACING]			= "tracing",
143 	[BPF_LINK_TYPE_CGROUP]			= "cgroup",
144 	[BPF_LINK_TYPE_ITER]			= "iter",
145 	[BPF_LINK_TYPE_NETNS]			= "netns",
146 	[BPF_LINK_TYPE_XDP]			= "xdp",
147 	[BPF_LINK_TYPE_PERF_EVENT]		= "perf_event",
148 	[BPF_LINK_TYPE_KPROBE_MULTI]		= "kprobe_multi",
149 	[BPF_LINK_TYPE_STRUCT_OPS]		= "struct_ops",
150 	[BPF_LINK_TYPE_NETFILTER]		= "netfilter",
151 	[BPF_LINK_TYPE_TCX]			= "tcx",
152 	[BPF_LINK_TYPE_UPROBE_MULTI]		= "uprobe_multi",
153 	[BPF_LINK_TYPE_NETKIT]			= "netkit",
154 	[BPF_LINK_TYPE_SOCKMAP]			= "sockmap",
155 };
156 
157 static const char * const map_type_name[] = {
158 	[BPF_MAP_TYPE_UNSPEC]			= "unspec",
159 	[BPF_MAP_TYPE_HASH]			= "hash",
160 	[BPF_MAP_TYPE_ARRAY]			= "array",
161 	[BPF_MAP_TYPE_PROG_ARRAY]		= "prog_array",
162 	[BPF_MAP_TYPE_PERF_EVENT_ARRAY]		= "perf_event_array",
163 	[BPF_MAP_TYPE_PERCPU_HASH]		= "percpu_hash",
164 	[BPF_MAP_TYPE_PERCPU_ARRAY]		= "percpu_array",
165 	[BPF_MAP_TYPE_STACK_TRACE]		= "stack_trace",
166 	[BPF_MAP_TYPE_CGROUP_ARRAY]		= "cgroup_array",
167 	[BPF_MAP_TYPE_LRU_HASH]			= "lru_hash",
168 	[BPF_MAP_TYPE_LRU_PERCPU_HASH]		= "lru_percpu_hash",
169 	[BPF_MAP_TYPE_LPM_TRIE]			= "lpm_trie",
170 	[BPF_MAP_TYPE_ARRAY_OF_MAPS]		= "array_of_maps",
171 	[BPF_MAP_TYPE_HASH_OF_MAPS]		= "hash_of_maps",
172 	[BPF_MAP_TYPE_DEVMAP]			= "devmap",
173 	[BPF_MAP_TYPE_DEVMAP_HASH]		= "devmap_hash",
174 	[BPF_MAP_TYPE_SOCKMAP]			= "sockmap",
175 	[BPF_MAP_TYPE_CPUMAP]			= "cpumap",
176 	[BPF_MAP_TYPE_XSKMAP]			= "xskmap",
177 	[BPF_MAP_TYPE_SOCKHASH]			= "sockhash",
178 	[BPF_MAP_TYPE_CGROUP_STORAGE]		= "cgroup_storage",
179 	[BPF_MAP_TYPE_REUSEPORT_SOCKARRAY]	= "reuseport_sockarray",
180 	[BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE]	= "percpu_cgroup_storage",
181 	[BPF_MAP_TYPE_QUEUE]			= "queue",
182 	[BPF_MAP_TYPE_STACK]			= "stack",
183 	[BPF_MAP_TYPE_SK_STORAGE]		= "sk_storage",
184 	[BPF_MAP_TYPE_STRUCT_OPS]		= "struct_ops",
185 	[BPF_MAP_TYPE_RINGBUF]			= "ringbuf",
186 	[BPF_MAP_TYPE_INODE_STORAGE]		= "inode_storage",
187 	[BPF_MAP_TYPE_TASK_STORAGE]		= "task_storage",
188 	[BPF_MAP_TYPE_BLOOM_FILTER]		= "bloom_filter",
189 	[BPF_MAP_TYPE_USER_RINGBUF]             = "user_ringbuf",
190 	[BPF_MAP_TYPE_CGRP_STORAGE]		= "cgrp_storage",
191 	[BPF_MAP_TYPE_ARENA]			= "arena",
192 };
193 
194 static const char * const prog_type_name[] = {
195 	[BPF_PROG_TYPE_UNSPEC]			= "unspec",
196 	[BPF_PROG_TYPE_SOCKET_FILTER]		= "socket_filter",
197 	[BPF_PROG_TYPE_KPROBE]			= "kprobe",
198 	[BPF_PROG_TYPE_SCHED_CLS]		= "sched_cls",
199 	[BPF_PROG_TYPE_SCHED_ACT]		= "sched_act",
200 	[BPF_PROG_TYPE_TRACEPOINT]		= "tracepoint",
201 	[BPF_PROG_TYPE_XDP]			= "xdp",
202 	[BPF_PROG_TYPE_PERF_EVENT]		= "perf_event",
203 	[BPF_PROG_TYPE_CGROUP_SKB]		= "cgroup_skb",
204 	[BPF_PROG_TYPE_CGROUP_SOCK]		= "cgroup_sock",
205 	[BPF_PROG_TYPE_LWT_IN]			= "lwt_in",
206 	[BPF_PROG_TYPE_LWT_OUT]			= "lwt_out",
207 	[BPF_PROG_TYPE_LWT_XMIT]		= "lwt_xmit",
208 	[BPF_PROG_TYPE_SOCK_OPS]		= "sock_ops",
209 	[BPF_PROG_TYPE_SK_SKB]			= "sk_skb",
210 	[BPF_PROG_TYPE_CGROUP_DEVICE]		= "cgroup_device",
211 	[BPF_PROG_TYPE_SK_MSG]			= "sk_msg",
212 	[BPF_PROG_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
213 	[BPF_PROG_TYPE_CGROUP_SOCK_ADDR]	= "cgroup_sock_addr",
214 	[BPF_PROG_TYPE_LWT_SEG6LOCAL]		= "lwt_seg6local",
215 	[BPF_PROG_TYPE_LIRC_MODE2]		= "lirc_mode2",
216 	[BPF_PROG_TYPE_SK_REUSEPORT]		= "sk_reuseport",
217 	[BPF_PROG_TYPE_FLOW_DISSECTOR]		= "flow_dissector",
218 	[BPF_PROG_TYPE_CGROUP_SYSCTL]		= "cgroup_sysctl",
219 	[BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE]	= "raw_tracepoint_writable",
220 	[BPF_PROG_TYPE_CGROUP_SOCKOPT]		= "cgroup_sockopt",
221 	[BPF_PROG_TYPE_TRACING]			= "tracing",
222 	[BPF_PROG_TYPE_STRUCT_OPS]		= "struct_ops",
223 	[BPF_PROG_TYPE_EXT]			= "ext",
224 	[BPF_PROG_TYPE_LSM]			= "lsm",
225 	[BPF_PROG_TYPE_SK_LOOKUP]		= "sk_lookup",
226 	[BPF_PROG_TYPE_SYSCALL]			= "syscall",
227 	[BPF_PROG_TYPE_NETFILTER]		= "netfilter",
228 };
229 
__base_pr(enum libbpf_print_level level,const char * format,va_list args)230 static int __base_pr(enum libbpf_print_level level, const char *format,
231 		     va_list args)
232 {
233 	const char *env_var = "LIBBPF_LOG_LEVEL";
234 	static enum libbpf_print_level min_level = LIBBPF_INFO;
235 	static bool initialized;
236 
237 	if (!initialized) {
238 		char *verbosity;
239 
240 		initialized = true;
241 		verbosity = getenv(env_var);
242 		if (verbosity) {
243 			if (strcasecmp(verbosity, "warn") == 0)
244 				min_level = LIBBPF_WARN;
245 			else if (strcasecmp(verbosity, "debug") == 0)
246 				min_level = LIBBPF_DEBUG;
247 			else if (strcasecmp(verbosity, "info") == 0)
248 				min_level = LIBBPF_INFO;
249 			else
250 				fprintf(stderr, "libbpf: unrecognized '%s' envvar value: '%s', should be one of 'warn', 'debug', or 'info'.\n",
251 					env_var, verbosity);
252 		}
253 	}
254 
255 	/* if too verbose, skip logging  */
256 	if (level > min_level)
257 		return 0;
258 
259 	return vfprintf(stderr, format, args);
260 }
261 
262 static libbpf_print_fn_t __libbpf_pr = __base_pr;
263 
libbpf_set_print(libbpf_print_fn_t fn)264 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
265 {
266 	libbpf_print_fn_t old_print_fn;
267 
268 	old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED);
269 
270 	return old_print_fn;
271 }
272 
273 __printf(2, 3)
libbpf_print(enum libbpf_print_level level,const char * format,...)274 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
275 {
276 	va_list args;
277 	int old_errno;
278 	libbpf_print_fn_t print_fn;
279 
280 	print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED);
281 	if (!print_fn)
282 		return;
283 
284 	old_errno = errno;
285 
286 	va_start(args, format);
287 	__libbpf_pr(level, format, args);
288 	va_end(args);
289 
290 	errno = old_errno;
291 }
292 
pr_perm_msg(int err)293 static void pr_perm_msg(int err)
294 {
295 	struct rlimit limit;
296 	char buf[100];
297 
298 	if (err != -EPERM || geteuid() != 0)
299 		return;
300 
301 	err = getrlimit(RLIMIT_MEMLOCK, &limit);
302 	if (err)
303 		return;
304 
305 	if (limit.rlim_cur == RLIM_INFINITY)
306 		return;
307 
308 	if (limit.rlim_cur < 1024)
309 		snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
310 	else if (limit.rlim_cur < 1024*1024)
311 		snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
312 	else
313 		snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
314 
315 	pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
316 		buf);
317 }
318 
319 #define STRERR_BUFSIZE  128
320 
321 /* Copied from tools/perf/util/util.h */
322 #ifndef zfree
323 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
324 #endif
325 
326 #ifndef zclose
327 # define zclose(fd) ({			\
328 	int ___err = 0;			\
329 	if ((fd) >= 0)			\
330 		___err = close((fd));	\
331 	fd = -1;			\
332 	___err; })
333 #endif
334 
ptr_to_u64(const void * ptr)335 static inline __u64 ptr_to_u64(const void *ptr)
336 {
337 	return (__u64) (unsigned long) ptr;
338 }
339 
libbpf_set_strict_mode(enum libbpf_strict_mode mode)340 int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
341 {
342 	/* as of v1.0 libbpf_set_strict_mode() is a no-op */
343 	return 0;
344 }
345 
libbpf_major_version(void)346 __u32 libbpf_major_version(void)
347 {
348 	return LIBBPF_MAJOR_VERSION;
349 }
350 
libbpf_minor_version(void)351 __u32 libbpf_minor_version(void)
352 {
353 	return LIBBPF_MINOR_VERSION;
354 }
355 
libbpf_version_string(void)356 const char *libbpf_version_string(void)
357 {
358 #define __S(X) #X
359 #define _S(X) __S(X)
360 	return  "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
361 #undef _S
362 #undef __S
363 }
364 
365 enum reloc_type {
366 	RELO_LD64,
367 	RELO_CALL,
368 	RELO_DATA,
369 	RELO_EXTERN_LD64,
370 	RELO_EXTERN_CALL,
371 	RELO_SUBPROG_ADDR,
372 	RELO_CORE,
373 };
374 
375 struct reloc_desc {
376 	enum reloc_type type;
377 	int insn_idx;
378 	union {
379 		const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
380 		struct {
381 			int map_idx;
382 			int sym_off;
383 			int ext_idx;
384 		};
385 	};
386 };
387 
388 /* stored as sec_def->cookie for all libbpf-supported SEC()s */
389 enum sec_def_flags {
390 	SEC_NONE = 0,
391 	/* expected_attach_type is optional, if kernel doesn't support that */
392 	SEC_EXP_ATTACH_OPT = 1,
393 	/* legacy, only used by libbpf_get_type_names() and
394 	 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
395 	 * This used to be associated with cgroup (and few other) BPF programs
396 	 * that were attachable through BPF_PROG_ATTACH command. Pretty
397 	 * meaningless nowadays, though.
398 	 */
399 	SEC_ATTACHABLE = 2,
400 	SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
401 	/* attachment target is specified through BTF ID in either kernel or
402 	 * other BPF program's BTF object
403 	 */
404 	SEC_ATTACH_BTF = 4,
405 	/* BPF program type allows sleeping/blocking in kernel */
406 	SEC_SLEEPABLE = 8,
407 	/* BPF program support non-linear XDP buffer */
408 	SEC_XDP_FRAGS = 16,
409 	/* Setup proper attach type for usdt probes. */
410 	SEC_USDT = 32,
411 };
412 
413 struct bpf_sec_def {
414 	char *sec;
415 	enum bpf_prog_type prog_type;
416 	enum bpf_attach_type expected_attach_type;
417 	long cookie;
418 	int handler_id;
419 
420 	libbpf_prog_setup_fn_t prog_setup_fn;
421 	libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
422 	libbpf_prog_attach_fn_t prog_attach_fn;
423 };
424 
425 /*
426  * bpf_prog should be a better name but it has been used in
427  * linux/filter.h.
428  */
429 struct bpf_program {
430 	char *name;
431 	char *sec_name;
432 	size_t sec_idx;
433 	const struct bpf_sec_def *sec_def;
434 	/* this program's instruction offset (in number of instructions)
435 	 * within its containing ELF section
436 	 */
437 	size_t sec_insn_off;
438 	/* number of original instructions in ELF section belonging to this
439 	 * program, not taking into account subprogram instructions possible
440 	 * appended later during relocation
441 	 */
442 	size_t sec_insn_cnt;
443 	/* Offset (in number of instructions) of the start of instruction
444 	 * belonging to this BPF program  within its containing main BPF
445 	 * program. For the entry-point (main) BPF program, this is always
446 	 * zero. For a sub-program, this gets reset before each of main BPF
447 	 * programs are processed and relocated and is used to determined
448 	 * whether sub-program was already appended to the main program, and
449 	 * if yes, at which instruction offset.
450 	 */
451 	size_t sub_insn_off;
452 
453 	/* instructions that belong to BPF program; insns[0] is located at
454 	 * sec_insn_off instruction within its ELF section in ELF file, so
455 	 * when mapping ELF file instruction index to the local instruction,
456 	 * one needs to subtract sec_insn_off; and vice versa.
457 	 */
458 	struct bpf_insn *insns;
459 	/* actual number of instruction in this BPF program's image; for
460 	 * entry-point BPF programs this includes the size of main program
461 	 * itself plus all the used sub-programs, appended at the end
462 	 */
463 	size_t insns_cnt;
464 
465 	struct reloc_desc *reloc_desc;
466 	int nr_reloc;
467 
468 	/* BPF verifier log settings */
469 	char *log_buf;
470 	size_t log_size;
471 	__u32 log_level;
472 
473 	struct bpf_object *obj;
474 
475 	int fd;
476 	bool autoload;
477 	bool autoattach;
478 	bool sym_global;
479 	bool mark_btf_static;
480 	enum bpf_prog_type type;
481 	enum bpf_attach_type expected_attach_type;
482 	int exception_cb_idx;
483 
484 	int prog_ifindex;
485 	__u32 attach_btf_obj_fd;
486 	__u32 attach_btf_id;
487 	__u32 attach_prog_fd;
488 
489 	void *func_info;
490 	__u32 func_info_rec_size;
491 	__u32 func_info_cnt;
492 
493 	void *line_info;
494 	__u32 line_info_rec_size;
495 	__u32 line_info_cnt;
496 	__u32 prog_flags;
497 };
498 
499 struct bpf_struct_ops {
500 	struct bpf_program **progs;
501 	__u32 *kern_func_off;
502 	/* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
503 	void *data;
504 	/* e.g. struct bpf_struct_ops_tcp_congestion_ops in
505 	 *      btf_vmlinux's format.
506 	 * struct bpf_struct_ops_tcp_congestion_ops {
507 	 *	[... some other kernel fields ...]
508 	 *	struct tcp_congestion_ops data;
509 	 * }
510 	 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
511 	 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
512 	 * from "data".
513 	 */
514 	void *kern_vdata;
515 	__u32 type_id;
516 };
517 
518 #define DATA_SEC ".data"
519 #define BSS_SEC ".bss"
520 #define RODATA_SEC ".rodata"
521 #define KCONFIG_SEC ".kconfig"
522 #define KSYMS_SEC ".ksyms"
523 #define STRUCT_OPS_SEC ".struct_ops"
524 #define STRUCT_OPS_LINK_SEC ".struct_ops.link"
525 #define ARENA_SEC ".addr_space.1"
526 
527 enum libbpf_map_type {
528 	LIBBPF_MAP_UNSPEC,
529 	LIBBPF_MAP_DATA,
530 	LIBBPF_MAP_BSS,
531 	LIBBPF_MAP_RODATA,
532 	LIBBPF_MAP_KCONFIG,
533 };
534 
535 struct bpf_map_def {
536 	unsigned int type;
537 	unsigned int key_size;
538 	unsigned int value_size;
539 	unsigned int max_entries;
540 	unsigned int map_flags;
541 };
542 
543 struct bpf_map {
544 	struct bpf_object *obj;
545 	char *name;
546 	/* real_name is defined for special internal maps (.rodata*,
547 	 * .data*, .bss, .kconfig) and preserves their original ELF section
548 	 * name. This is important to be able to find corresponding BTF
549 	 * DATASEC information.
550 	 */
551 	char *real_name;
552 	int fd;
553 	int sec_idx;
554 	size_t sec_offset;
555 	int map_ifindex;
556 	int inner_map_fd;
557 	struct bpf_map_def def;
558 	__u32 numa_node;
559 	__u32 btf_var_idx;
560 	int mod_btf_fd;
561 	__u32 btf_key_type_id;
562 	__u32 btf_value_type_id;
563 	__u32 btf_vmlinux_value_type_id;
564 	enum libbpf_map_type libbpf_type;
565 	void *mmaped;
566 	struct bpf_struct_ops *st_ops;
567 	struct bpf_map *inner_map;
568 	void **init_slots;
569 	int init_slots_sz;
570 	char *pin_path;
571 	bool pinned;
572 	bool reused;
573 	bool autocreate;
574 	bool autoattach;
575 	__u64 map_extra;
576 };
577 
578 enum extern_type {
579 	EXT_UNKNOWN,
580 	EXT_KCFG,
581 	EXT_KSYM,
582 };
583 
584 enum kcfg_type {
585 	KCFG_UNKNOWN,
586 	KCFG_CHAR,
587 	KCFG_BOOL,
588 	KCFG_INT,
589 	KCFG_TRISTATE,
590 	KCFG_CHAR_ARR,
591 };
592 
593 struct extern_desc {
594 	enum extern_type type;
595 	int sym_idx;
596 	int btf_id;
597 	int sec_btf_id;
598 	const char *name;
599 	char *essent_name;
600 	bool is_set;
601 	bool is_weak;
602 	union {
603 		struct {
604 			enum kcfg_type type;
605 			int sz;
606 			int align;
607 			int data_off;
608 			bool is_signed;
609 		} kcfg;
610 		struct {
611 			unsigned long long addr;
612 
613 			/* target btf_id of the corresponding kernel var. */
614 			int kernel_btf_obj_fd;
615 			int kernel_btf_id;
616 
617 			/* local btf_id of the ksym extern's type. */
618 			__u32 type_id;
619 			/* BTF fd index to be patched in for insn->off, this is
620 			 * 0 for vmlinux BTF, index in obj->fd_array for module
621 			 * BTF
622 			 */
623 			__s16 btf_fd_idx;
624 		} ksym;
625 	};
626 };
627 
628 struct module_btf {
629 	struct btf *btf;
630 	char *name;
631 	__u32 id;
632 	int fd;
633 	int fd_array_idx;
634 };
635 
636 enum sec_type {
637 	SEC_UNUSED = 0,
638 	SEC_RELO,
639 	SEC_BSS,
640 	SEC_DATA,
641 	SEC_RODATA,
642 	SEC_ST_OPS,
643 };
644 
645 struct elf_sec_desc {
646 	enum sec_type sec_type;
647 	Elf64_Shdr *shdr;
648 	Elf_Data *data;
649 };
650 
651 struct elf_state {
652 	int fd;
653 	const void *obj_buf;
654 	size_t obj_buf_sz;
655 	Elf *elf;
656 	Elf64_Ehdr *ehdr;
657 	Elf_Data *symbols;
658 	Elf_Data *arena_data;
659 	size_t shstrndx; /* section index for section name strings */
660 	size_t strtabidx;
661 	struct elf_sec_desc *secs;
662 	size_t sec_cnt;
663 	int btf_maps_shndx;
664 	__u32 btf_maps_sec_btf_id;
665 	int text_shndx;
666 	int symbols_shndx;
667 	bool has_st_ops;
668 	int arena_data_shndx;
669 };
670 
671 struct usdt_manager;
672 
673 struct bpf_object {
674 	char name[BPF_OBJ_NAME_LEN];
675 	char license[64];
676 	__u32 kern_version;
677 
678 	struct bpf_program *programs;
679 	size_t nr_programs;
680 	struct bpf_map *maps;
681 	size_t nr_maps;
682 	size_t maps_cap;
683 
684 	char *kconfig;
685 	struct extern_desc *externs;
686 	int nr_extern;
687 	int kconfig_map_idx;
688 
689 	bool loaded;
690 	bool has_subcalls;
691 	bool has_rodata;
692 
693 	struct bpf_gen *gen_loader;
694 
695 	/* Information when doing ELF related work. Only valid if efile.elf is not NULL */
696 	struct elf_state efile;
697 
698 	unsigned char byteorder;
699 
700 	struct btf *btf;
701 	struct btf_ext *btf_ext;
702 
703 	/* Parse and load BTF vmlinux if any of the programs in the object need
704 	 * it at load time.
705 	 */
706 	struct btf *btf_vmlinux;
707 	/* Path to the custom BTF to be used for BPF CO-RE relocations as an
708 	 * override for vmlinux BTF.
709 	 */
710 	char *btf_custom_path;
711 	/* vmlinux BTF override for CO-RE relocations */
712 	struct btf *btf_vmlinux_override;
713 	/* Lazily initialized kernel module BTFs */
714 	struct module_btf *btf_modules;
715 	bool btf_modules_loaded;
716 	size_t btf_module_cnt;
717 	size_t btf_module_cap;
718 
719 	/* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
720 	char *log_buf;
721 	size_t log_size;
722 	__u32 log_level;
723 
724 	int *fd_array;
725 	size_t fd_array_cap;
726 	size_t fd_array_cnt;
727 
728 	struct usdt_manager *usdt_man;
729 
730 	struct bpf_map *arena_map;
731 	void *arena_data;
732 	size_t arena_data_sz;
733 
734 	struct kern_feature_cache *feat_cache;
735 	char *token_path;
736 	int token_fd;
737 
738 	char path[];
739 };
740 
741 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
742 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
743 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
744 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
745 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
746 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
747 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
748 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
749 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
750 
bpf_program__unload(struct bpf_program * prog)751 void bpf_program__unload(struct bpf_program *prog)
752 {
753 	if (!prog)
754 		return;
755 
756 	zclose(prog->fd);
757 
758 	zfree(&prog->func_info);
759 	zfree(&prog->line_info);
760 }
761 
bpf_program__exit(struct bpf_program * prog)762 static void bpf_program__exit(struct bpf_program *prog)
763 {
764 	if (!prog)
765 		return;
766 
767 	bpf_program__unload(prog);
768 	zfree(&prog->name);
769 	zfree(&prog->sec_name);
770 	zfree(&prog->insns);
771 	zfree(&prog->reloc_desc);
772 
773 	prog->nr_reloc = 0;
774 	prog->insns_cnt = 0;
775 	prog->sec_idx = -1;
776 }
777 
insn_is_subprog_call(const struct bpf_insn * insn)778 static bool insn_is_subprog_call(const struct bpf_insn *insn)
779 {
780 	return BPF_CLASS(insn->code) == BPF_JMP &&
781 	       BPF_OP(insn->code) == BPF_CALL &&
782 	       BPF_SRC(insn->code) == BPF_K &&
783 	       insn->src_reg == BPF_PSEUDO_CALL &&
784 	       insn->dst_reg == 0 &&
785 	       insn->off == 0;
786 }
787 
is_call_insn(const struct bpf_insn * insn)788 static bool is_call_insn(const struct bpf_insn *insn)
789 {
790 	return insn->code == (BPF_JMP | BPF_CALL);
791 }
792 
insn_is_pseudo_func(struct bpf_insn * insn)793 static bool insn_is_pseudo_func(struct bpf_insn *insn)
794 {
795 	return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
796 }
797 
798 static int
bpf_object__init_prog(struct bpf_object * obj,struct bpf_program * prog,const char * name,size_t sec_idx,const char * sec_name,size_t sec_off,void * insn_data,size_t insn_data_sz)799 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
800 		      const char *name, size_t sec_idx, const char *sec_name,
801 		      size_t sec_off, void *insn_data, size_t insn_data_sz)
802 {
803 	if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
804 		pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
805 			sec_name, name, sec_off, insn_data_sz);
806 		return -EINVAL;
807 	}
808 
809 	memset(prog, 0, sizeof(*prog));
810 	prog->obj = obj;
811 
812 	prog->sec_idx = sec_idx;
813 	prog->sec_insn_off = sec_off / BPF_INSN_SZ;
814 	prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
815 	/* insns_cnt can later be increased by appending used subprograms */
816 	prog->insns_cnt = prog->sec_insn_cnt;
817 
818 	prog->type = BPF_PROG_TYPE_UNSPEC;
819 	prog->fd = -1;
820 	prog->exception_cb_idx = -1;
821 
822 	/* libbpf's convention for SEC("?abc...") is that it's just like
823 	 * SEC("abc...") but the corresponding bpf_program starts out with
824 	 * autoload set to false.
825 	 */
826 	if (sec_name[0] == '?') {
827 		prog->autoload = false;
828 		/* from now on forget there was ? in section name */
829 		sec_name++;
830 	} else {
831 		prog->autoload = true;
832 	}
833 
834 	prog->autoattach = true;
835 
836 	/* inherit object's log_level */
837 	prog->log_level = obj->log_level;
838 
839 	prog->sec_name = strdup(sec_name);
840 	if (!prog->sec_name)
841 		goto errout;
842 
843 	prog->name = strdup(name);
844 	if (!prog->name)
845 		goto errout;
846 
847 	prog->insns = malloc(insn_data_sz);
848 	if (!prog->insns)
849 		goto errout;
850 	memcpy(prog->insns, insn_data, insn_data_sz);
851 
852 	return 0;
853 errout:
854 	pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
855 	bpf_program__exit(prog);
856 	return -ENOMEM;
857 }
858 
859 static int
bpf_object__add_programs(struct bpf_object * obj,Elf_Data * sec_data,const char * sec_name,int sec_idx)860 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
861 			 const char *sec_name, int sec_idx)
862 {
863 	Elf_Data *symbols = obj->efile.symbols;
864 	struct bpf_program *prog, *progs;
865 	void *data = sec_data->d_buf;
866 	size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
867 	int nr_progs, err, i;
868 	const char *name;
869 	Elf64_Sym *sym;
870 
871 	progs = obj->programs;
872 	nr_progs = obj->nr_programs;
873 	nr_syms = symbols->d_size / sizeof(Elf64_Sym);
874 
875 	for (i = 0; i < nr_syms; i++) {
876 		sym = elf_sym_by_idx(obj, i);
877 
878 		if (sym->st_shndx != sec_idx)
879 			continue;
880 		if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
881 			continue;
882 
883 		prog_sz = sym->st_size;
884 		sec_off = sym->st_value;
885 
886 		name = elf_sym_str(obj, sym->st_name);
887 		if (!name) {
888 			pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
889 				sec_name, sec_off);
890 			return -LIBBPF_ERRNO__FORMAT;
891 		}
892 
893 		if (sec_off + prog_sz > sec_sz) {
894 			pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
895 				sec_name, sec_off);
896 			return -LIBBPF_ERRNO__FORMAT;
897 		}
898 
899 		if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
900 			pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
901 			return -ENOTSUP;
902 		}
903 
904 		pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
905 			 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
906 
907 		progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
908 		if (!progs) {
909 			/*
910 			 * In this case the original obj->programs
911 			 * is still valid, so don't need special treat for
912 			 * bpf_close_object().
913 			 */
914 			pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
915 				sec_name, name);
916 			return -ENOMEM;
917 		}
918 		obj->programs = progs;
919 
920 		prog = &progs[nr_progs];
921 
922 		err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
923 					    sec_off, data + sec_off, prog_sz);
924 		if (err)
925 			return err;
926 
927 		if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL)
928 			prog->sym_global = true;
929 
930 		/* if function is a global/weak symbol, but has restricted
931 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
932 		 * as static to enable more permissive BPF verification mode
933 		 * with more outside context available to BPF verifier
934 		 */
935 		if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
936 		    || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
937 			prog->mark_btf_static = true;
938 
939 		nr_progs++;
940 		obj->nr_programs = nr_progs;
941 	}
942 
943 	return 0;
944 }
945 
bpf_object_bswap_progs(struct bpf_object * obj)946 static void bpf_object_bswap_progs(struct bpf_object *obj)
947 {
948 	struct bpf_program *prog = obj->programs;
949 	struct bpf_insn *insn;
950 	int p, i;
951 
952 	for (p = 0; p < obj->nr_programs; p++, prog++) {
953 		insn = prog->insns;
954 		for (i = 0; i < prog->insns_cnt; i++, insn++)
955 			bpf_insn_bswap(insn);
956 	}
957 	pr_debug("converted %zu BPF programs to native byte order\n", obj->nr_programs);
958 }
959 
960 static const struct btf_member *
find_member_by_offset(const struct btf_type * t,__u32 bit_offset)961 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
962 {
963 	struct btf_member *m;
964 	int i;
965 
966 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
967 		if (btf_member_bit_offset(t, i) == bit_offset)
968 			return m;
969 	}
970 
971 	return NULL;
972 }
973 
974 static const struct btf_member *
find_member_by_name(const struct btf * btf,const struct btf_type * t,const char * name)975 find_member_by_name(const struct btf *btf, const struct btf_type *t,
976 		    const char *name)
977 {
978 	struct btf_member *m;
979 	int i;
980 
981 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
982 		if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
983 			return m;
984 	}
985 
986 	return NULL;
987 }
988 
989 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
990 			    __u16 kind, struct btf **res_btf,
991 			    struct module_btf **res_mod_btf);
992 
993 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
994 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
995 				   const char *name, __u32 kind);
996 
997 static int
find_struct_ops_kern_types(struct bpf_object * obj,const char * tname_raw,struct module_btf ** mod_btf,const struct btf_type ** type,__u32 * type_id,const struct btf_type ** vtype,__u32 * vtype_id,const struct btf_member ** data_member)998 find_struct_ops_kern_types(struct bpf_object *obj, const char *tname_raw,
999 			   struct module_btf **mod_btf,
1000 			   const struct btf_type **type, __u32 *type_id,
1001 			   const struct btf_type **vtype, __u32 *vtype_id,
1002 			   const struct btf_member **data_member)
1003 {
1004 	const struct btf_type *kern_type, *kern_vtype;
1005 	const struct btf_member *kern_data_member;
1006 	struct btf *btf = NULL;
1007 	__s32 kern_vtype_id, kern_type_id;
1008 	char tname[256];
1009 	__u32 i;
1010 
1011 	snprintf(tname, sizeof(tname), "%.*s",
1012 		 (int)bpf_core_essential_name_len(tname_raw), tname_raw);
1013 
1014 	kern_type_id = find_ksym_btf_id(obj, tname, BTF_KIND_STRUCT,
1015 					&btf, mod_btf);
1016 	if (kern_type_id < 0) {
1017 		pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
1018 			tname);
1019 		return kern_type_id;
1020 	}
1021 	kern_type = btf__type_by_id(btf, kern_type_id);
1022 
1023 	/* Find the corresponding "map_value" type that will be used
1024 	 * in map_update(BPF_MAP_TYPE_STRUCT_OPS).  For example,
1025 	 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
1026 	 * btf_vmlinux.
1027 	 */
1028 	kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
1029 						tname, BTF_KIND_STRUCT);
1030 	if (kern_vtype_id < 0) {
1031 		pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
1032 			STRUCT_OPS_VALUE_PREFIX, tname);
1033 		return kern_vtype_id;
1034 	}
1035 	kern_vtype = btf__type_by_id(btf, kern_vtype_id);
1036 
1037 	/* Find "struct tcp_congestion_ops" from
1038 	 * struct bpf_struct_ops_tcp_congestion_ops {
1039 	 *	[ ... ]
1040 	 *	struct tcp_congestion_ops data;
1041 	 * }
1042 	 */
1043 	kern_data_member = btf_members(kern_vtype);
1044 	for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
1045 		if (kern_data_member->type == kern_type_id)
1046 			break;
1047 	}
1048 	if (i == btf_vlen(kern_vtype)) {
1049 		pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
1050 			tname, STRUCT_OPS_VALUE_PREFIX, tname);
1051 		return -EINVAL;
1052 	}
1053 
1054 	*type = kern_type;
1055 	*type_id = kern_type_id;
1056 	*vtype = kern_vtype;
1057 	*vtype_id = kern_vtype_id;
1058 	*data_member = kern_data_member;
1059 
1060 	return 0;
1061 }
1062 
bpf_map__is_struct_ops(const struct bpf_map * map)1063 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
1064 {
1065 	return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
1066 }
1067 
is_valid_st_ops_program(struct bpf_object * obj,const struct bpf_program * prog)1068 static bool is_valid_st_ops_program(struct bpf_object *obj,
1069 				    const struct bpf_program *prog)
1070 {
1071 	int i;
1072 
1073 	for (i = 0; i < obj->nr_programs; i++) {
1074 		if (&obj->programs[i] == prog)
1075 			return prog->type == BPF_PROG_TYPE_STRUCT_OPS;
1076 	}
1077 
1078 	return false;
1079 }
1080 
1081 /* For each struct_ops program P, referenced from some struct_ops map M,
1082  * enable P.autoload if there are Ms for which M.autocreate is true,
1083  * disable P.autoload if for all Ms M.autocreate is false.
1084  * Don't change P.autoload for programs that are not referenced from any maps.
1085  */
bpf_object_adjust_struct_ops_autoload(struct bpf_object * obj)1086 static int bpf_object_adjust_struct_ops_autoload(struct bpf_object *obj)
1087 {
1088 	struct bpf_program *prog, *slot_prog;
1089 	struct bpf_map *map;
1090 	int i, j, k, vlen;
1091 
1092 	for (i = 0; i < obj->nr_programs; ++i) {
1093 		int should_load = false;
1094 		int use_cnt = 0;
1095 
1096 		prog = &obj->programs[i];
1097 		if (prog->type != BPF_PROG_TYPE_STRUCT_OPS)
1098 			continue;
1099 
1100 		for (j = 0; j < obj->nr_maps; ++j) {
1101 			const struct btf_type *type;
1102 
1103 			map = &obj->maps[j];
1104 			if (!bpf_map__is_struct_ops(map))
1105 				continue;
1106 
1107 			type = btf__type_by_id(obj->btf, map->st_ops->type_id);
1108 			vlen = btf_vlen(type);
1109 			for (k = 0; k < vlen; ++k) {
1110 				slot_prog = map->st_ops->progs[k];
1111 				if (prog != slot_prog)
1112 					continue;
1113 
1114 				use_cnt++;
1115 				if (map->autocreate)
1116 					should_load = true;
1117 			}
1118 		}
1119 		if (use_cnt)
1120 			prog->autoload = should_load;
1121 	}
1122 
1123 	return 0;
1124 }
1125 
1126 /* Init the map's fields that depend on kern_btf */
bpf_map__init_kern_struct_ops(struct bpf_map * map)1127 static int bpf_map__init_kern_struct_ops(struct bpf_map *map)
1128 {
1129 	const struct btf_member *member, *kern_member, *kern_data_member;
1130 	const struct btf_type *type, *kern_type, *kern_vtype;
1131 	__u32 i, kern_type_id, kern_vtype_id, kern_data_off;
1132 	struct bpf_object *obj = map->obj;
1133 	const struct btf *btf = obj->btf;
1134 	struct bpf_struct_ops *st_ops;
1135 	const struct btf *kern_btf;
1136 	struct module_btf *mod_btf = NULL;
1137 	void *data, *kern_data;
1138 	const char *tname;
1139 	int err;
1140 
1141 	st_ops = map->st_ops;
1142 	type = btf__type_by_id(btf, st_ops->type_id);
1143 	tname = btf__name_by_offset(btf, type->name_off);
1144 	err = find_struct_ops_kern_types(obj, tname, &mod_btf,
1145 					 &kern_type, &kern_type_id,
1146 					 &kern_vtype, &kern_vtype_id,
1147 					 &kern_data_member);
1148 	if (err)
1149 		return err;
1150 
1151 	kern_btf = mod_btf ? mod_btf->btf : obj->btf_vmlinux;
1152 
1153 	pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1154 		 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1155 
1156 	map->mod_btf_fd = mod_btf ? mod_btf->fd : -1;
1157 	map->def.value_size = kern_vtype->size;
1158 	map->btf_vmlinux_value_type_id = kern_vtype_id;
1159 
1160 	st_ops->kern_vdata = calloc(1, kern_vtype->size);
1161 	if (!st_ops->kern_vdata)
1162 		return -ENOMEM;
1163 
1164 	data = st_ops->data;
1165 	kern_data_off = kern_data_member->offset / 8;
1166 	kern_data = st_ops->kern_vdata + kern_data_off;
1167 
1168 	member = btf_members(type);
1169 	for (i = 0; i < btf_vlen(type); i++, member++) {
1170 		const struct btf_type *mtype, *kern_mtype;
1171 		__u32 mtype_id, kern_mtype_id;
1172 		void *mdata, *kern_mdata;
1173 		struct bpf_program *prog;
1174 		__s64 msize, kern_msize;
1175 		__u32 moff, kern_moff;
1176 		__u32 kern_member_idx;
1177 		const char *mname;
1178 
1179 		mname = btf__name_by_offset(btf, member->name_off);
1180 		moff = member->offset / 8;
1181 		mdata = data + moff;
1182 		msize = btf__resolve_size(btf, member->type);
1183 		if (msize < 0) {
1184 			pr_warn("struct_ops init_kern %s: failed to resolve the size of member %s\n",
1185 				map->name, mname);
1186 			return msize;
1187 		}
1188 
1189 		kern_member = find_member_by_name(kern_btf, kern_type, mname);
1190 		if (!kern_member) {
1191 			if (!libbpf_is_mem_zeroed(mdata, msize)) {
1192 				pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1193 					map->name, mname);
1194 				return -ENOTSUP;
1195 			}
1196 
1197 			if (st_ops->progs[i]) {
1198 				/* If we had declaratively set struct_ops callback, we need to
1199 				 * force its autoload to false, because it doesn't have
1200 				 * a chance of succeeding from POV of the current struct_ops map.
1201 				 * If this program is still referenced somewhere else, though,
1202 				 * then bpf_object_adjust_struct_ops_autoload() will update its
1203 				 * autoload accordingly.
1204 				 */
1205 				st_ops->progs[i]->autoload = false;
1206 				st_ops->progs[i] = NULL;
1207 			}
1208 
1209 			/* Skip all-zero/NULL fields if they are not present in the kernel BTF */
1210 			pr_info("struct_ops %s: member %s not found in kernel, skipping it as it's set to zero\n",
1211 				map->name, mname);
1212 			continue;
1213 		}
1214 
1215 		kern_member_idx = kern_member - btf_members(kern_type);
1216 		if (btf_member_bitfield_size(type, i) ||
1217 		    btf_member_bitfield_size(kern_type, kern_member_idx)) {
1218 			pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1219 				map->name, mname);
1220 			return -ENOTSUP;
1221 		}
1222 
1223 		kern_moff = kern_member->offset / 8;
1224 		kern_mdata = kern_data + kern_moff;
1225 
1226 		mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1227 		kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1228 						    &kern_mtype_id);
1229 		if (BTF_INFO_KIND(mtype->info) !=
1230 		    BTF_INFO_KIND(kern_mtype->info)) {
1231 			pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1232 				map->name, mname, BTF_INFO_KIND(mtype->info),
1233 				BTF_INFO_KIND(kern_mtype->info));
1234 			return -ENOTSUP;
1235 		}
1236 
1237 		if (btf_is_ptr(mtype)) {
1238 			prog = *(void **)mdata;
1239 			/* just like for !kern_member case above, reset declaratively
1240 			 * set (at compile time) program's autload to false,
1241 			 * if user replaced it with another program or NULL
1242 			 */
1243 			if (st_ops->progs[i] && st_ops->progs[i] != prog)
1244 				st_ops->progs[i]->autoload = false;
1245 
1246 			/* Update the value from the shadow type */
1247 			st_ops->progs[i] = prog;
1248 			if (!prog)
1249 				continue;
1250 
1251 			if (!is_valid_st_ops_program(obj, prog)) {
1252 				pr_warn("struct_ops init_kern %s: member %s is not a struct_ops program\n",
1253 					map->name, mname);
1254 				return -ENOTSUP;
1255 			}
1256 
1257 			kern_mtype = skip_mods_and_typedefs(kern_btf,
1258 							    kern_mtype->type,
1259 							    &kern_mtype_id);
1260 
1261 			/* mtype->type must be a func_proto which was
1262 			 * guaranteed in bpf_object__collect_st_ops_relos(),
1263 			 * so only check kern_mtype for func_proto here.
1264 			 */
1265 			if (!btf_is_func_proto(kern_mtype)) {
1266 				pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1267 					map->name, mname);
1268 				return -ENOTSUP;
1269 			}
1270 
1271 			if (mod_btf)
1272 				prog->attach_btf_obj_fd = mod_btf->fd;
1273 
1274 			/* if we haven't yet processed this BPF program, record proper
1275 			 * attach_btf_id and member_idx
1276 			 */
1277 			if (!prog->attach_btf_id) {
1278 				prog->attach_btf_id = kern_type_id;
1279 				prog->expected_attach_type = kern_member_idx;
1280 			}
1281 
1282 			/* struct_ops BPF prog can be re-used between multiple
1283 			 * .struct_ops & .struct_ops.link as long as it's the
1284 			 * same struct_ops struct definition and the same
1285 			 * function pointer field
1286 			 */
1287 			if (prog->attach_btf_id != kern_type_id) {
1288 				pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: attach_btf_id %u != kern_type_id %u\n",
1289 					map->name, mname, prog->name, prog->sec_name, prog->type,
1290 					prog->attach_btf_id, kern_type_id);
1291 				return -EINVAL;
1292 			}
1293 			if (prog->expected_attach_type != kern_member_idx) {
1294 				pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: expected_attach_type %u != kern_member_idx %u\n",
1295 					map->name, mname, prog->name, prog->sec_name, prog->type,
1296 					prog->expected_attach_type, kern_member_idx);
1297 				return -EINVAL;
1298 			}
1299 
1300 			st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1301 
1302 			pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1303 				 map->name, mname, prog->name, moff,
1304 				 kern_moff);
1305 
1306 			continue;
1307 		}
1308 
1309 		kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1310 		if (kern_msize < 0 || msize != kern_msize) {
1311 			pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1312 				map->name, mname, (ssize_t)msize,
1313 				(ssize_t)kern_msize);
1314 			return -ENOTSUP;
1315 		}
1316 
1317 		pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1318 			 map->name, mname, (unsigned int)msize,
1319 			 moff, kern_moff);
1320 		memcpy(kern_mdata, mdata, msize);
1321 	}
1322 
1323 	return 0;
1324 }
1325 
bpf_object__init_kern_struct_ops_maps(struct bpf_object * obj)1326 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1327 {
1328 	struct bpf_map *map;
1329 	size_t i;
1330 	int err;
1331 
1332 	for (i = 0; i < obj->nr_maps; i++) {
1333 		map = &obj->maps[i];
1334 
1335 		if (!bpf_map__is_struct_ops(map))
1336 			continue;
1337 
1338 		if (!map->autocreate)
1339 			continue;
1340 
1341 		err = bpf_map__init_kern_struct_ops(map);
1342 		if (err)
1343 			return err;
1344 	}
1345 
1346 	return 0;
1347 }
1348 
init_struct_ops_maps(struct bpf_object * obj,const char * sec_name,int shndx,Elf_Data * data)1349 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name,
1350 				int shndx, Elf_Data *data)
1351 {
1352 	const struct btf_type *type, *datasec;
1353 	const struct btf_var_secinfo *vsi;
1354 	struct bpf_struct_ops *st_ops;
1355 	const char *tname, *var_name;
1356 	__s32 type_id, datasec_id;
1357 	const struct btf *btf;
1358 	struct bpf_map *map;
1359 	__u32 i;
1360 
1361 	if (shndx == -1)
1362 		return 0;
1363 
1364 	btf = obj->btf;
1365 	datasec_id = btf__find_by_name_kind(btf, sec_name,
1366 					    BTF_KIND_DATASEC);
1367 	if (datasec_id < 0) {
1368 		pr_warn("struct_ops init: DATASEC %s not found\n",
1369 			sec_name);
1370 		return -EINVAL;
1371 	}
1372 
1373 	datasec = btf__type_by_id(btf, datasec_id);
1374 	vsi = btf_var_secinfos(datasec);
1375 	for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1376 		type = btf__type_by_id(obj->btf, vsi->type);
1377 		var_name = btf__name_by_offset(obj->btf, type->name_off);
1378 
1379 		type_id = btf__resolve_type(obj->btf, vsi->type);
1380 		if (type_id < 0) {
1381 			pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1382 				vsi->type, sec_name);
1383 			return -EINVAL;
1384 		}
1385 
1386 		type = btf__type_by_id(obj->btf, type_id);
1387 		tname = btf__name_by_offset(obj->btf, type->name_off);
1388 		if (!tname[0]) {
1389 			pr_warn("struct_ops init: anonymous type is not supported\n");
1390 			return -ENOTSUP;
1391 		}
1392 		if (!btf_is_struct(type)) {
1393 			pr_warn("struct_ops init: %s is not a struct\n", tname);
1394 			return -EINVAL;
1395 		}
1396 
1397 		map = bpf_object__add_map(obj);
1398 		if (IS_ERR(map))
1399 			return PTR_ERR(map);
1400 
1401 		map->sec_idx = shndx;
1402 		map->sec_offset = vsi->offset;
1403 		map->name = strdup(var_name);
1404 		if (!map->name)
1405 			return -ENOMEM;
1406 		map->btf_value_type_id = type_id;
1407 
1408 		/* Follow same convention as for programs autoload:
1409 		 * SEC("?.struct_ops") means map is not created by default.
1410 		 */
1411 		if (sec_name[0] == '?') {
1412 			map->autocreate = false;
1413 			/* from now on forget there was ? in section name */
1414 			sec_name++;
1415 		}
1416 
1417 		map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1418 		map->def.key_size = sizeof(int);
1419 		map->def.value_size = type->size;
1420 		map->def.max_entries = 1;
1421 		map->def.map_flags = strcmp(sec_name, STRUCT_OPS_LINK_SEC) == 0 ? BPF_F_LINK : 0;
1422 		map->autoattach = true;
1423 
1424 		map->st_ops = calloc(1, sizeof(*map->st_ops));
1425 		if (!map->st_ops)
1426 			return -ENOMEM;
1427 		st_ops = map->st_ops;
1428 		st_ops->data = malloc(type->size);
1429 		st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1430 		st_ops->kern_func_off = malloc(btf_vlen(type) *
1431 					       sizeof(*st_ops->kern_func_off));
1432 		if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1433 			return -ENOMEM;
1434 
1435 		if (vsi->offset + type->size > data->d_size) {
1436 			pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1437 				var_name, sec_name);
1438 			return -EINVAL;
1439 		}
1440 
1441 		memcpy(st_ops->data,
1442 		       data->d_buf + vsi->offset,
1443 		       type->size);
1444 		st_ops->type_id = type_id;
1445 
1446 		pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1447 			 tname, type_id, var_name, vsi->offset);
1448 	}
1449 
1450 	return 0;
1451 }
1452 
bpf_object_init_struct_ops(struct bpf_object * obj)1453 static int bpf_object_init_struct_ops(struct bpf_object *obj)
1454 {
1455 	const char *sec_name;
1456 	int sec_idx, err;
1457 
1458 	for (sec_idx = 0; sec_idx < obj->efile.sec_cnt; ++sec_idx) {
1459 		struct elf_sec_desc *desc = &obj->efile.secs[sec_idx];
1460 
1461 		if (desc->sec_type != SEC_ST_OPS)
1462 			continue;
1463 
1464 		sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1465 		if (!sec_name)
1466 			return -LIBBPF_ERRNO__FORMAT;
1467 
1468 		err = init_struct_ops_maps(obj, sec_name, sec_idx, desc->data);
1469 		if (err)
1470 			return err;
1471 	}
1472 
1473 	return 0;
1474 }
1475 
bpf_object__new(const char * path,const void * obj_buf,size_t obj_buf_sz,const char * obj_name)1476 static struct bpf_object *bpf_object__new(const char *path,
1477 					  const void *obj_buf,
1478 					  size_t obj_buf_sz,
1479 					  const char *obj_name)
1480 {
1481 	struct bpf_object *obj;
1482 	char *end;
1483 
1484 	obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1485 	if (!obj) {
1486 		pr_warn("alloc memory failed for %s\n", path);
1487 		return ERR_PTR(-ENOMEM);
1488 	}
1489 
1490 	strcpy(obj->path, path);
1491 	if (obj_name) {
1492 		libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1493 	} else {
1494 		/* Using basename() GNU version which doesn't modify arg. */
1495 		libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1496 		end = strchr(obj->name, '.');
1497 		if (end)
1498 			*end = 0;
1499 	}
1500 
1501 	obj->efile.fd = -1;
1502 	/*
1503 	 * Caller of this function should also call
1504 	 * bpf_object__elf_finish() after data collection to return
1505 	 * obj_buf to user. If not, we should duplicate the buffer to
1506 	 * avoid user freeing them before elf finish.
1507 	 */
1508 	obj->efile.obj_buf = obj_buf;
1509 	obj->efile.obj_buf_sz = obj_buf_sz;
1510 	obj->efile.btf_maps_shndx = -1;
1511 	obj->kconfig_map_idx = -1;
1512 
1513 	obj->kern_version = get_kernel_version();
1514 	obj->loaded = false;
1515 
1516 	return obj;
1517 }
1518 
bpf_object__elf_finish(struct bpf_object * obj)1519 static void bpf_object__elf_finish(struct bpf_object *obj)
1520 {
1521 	if (!obj->efile.elf)
1522 		return;
1523 
1524 	elf_end(obj->efile.elf);
1525 	obj->efile.elf = NULL;
1526 	obj->efile.ehdr = NULL;
1527 	obj->efile.symbols = NULL;
1528 	obj->efile.arena_data = NULL;
1529 
1530 	zfree(&obj->efile.secs);
1531 	obj->efile.sec_cnt = 0;
1532 	zclose(obj->efile.fd);
1533 	obj->efile.obj_buf = NULL;
1534 	obj->efile.obj_buf_sz = 0;
1535 }
1536 
bpf_object__elf_init(struct bpf_object * obj)1537 static int bpf_object__elf_init(struct bpf_object *obj)
1538 {
1539 	Elf64_Ehdr *ehdr;
1540 	int err = 0;
1541 	Elf *elf;
1542 
1543 	if (obj->efile.elf) {
1544 		pr_warn("elf: init internal error\n");
1545 		return -LIBBPF_ERRNO__LIBELF;
1546 	}
1547 
1548 	if (obj->efile.obj_buf_sz > 0) {
1549 		/* obj_buf should have been validated by bpf_object__open_mem(). */
1550 		elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1551 	} else {
1552 		obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1553 		if (obj->efile.fd < 0) {
1554 			err = -errno;
1555 			pr_warn("elf: failed to open %s: %s\n", obj->path, errstr(err));
1556 			return err;
1557 		}
1558 
1559 		elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1560 	}
1561 
1562 	if (!elf) {
1563 		pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1564 		err = -LIBBPF_ERRNO__LIBELF;
1565 		goto errout;
1566 	}
1567 
1568 	obj->efile.elf = elf;
1569 
1570 	if (elf_kind(elf) != ELF_K_ELF) {
1571 		err = -LIBBPF_ERRNO__FORMAT;
1572 		pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1573 		goto errout;
1574 	}
1575 
1576 	if (gelf_getclass(elf) != ELFCLASS64) {
1577 		err = -LIBBPF_ERRNO__FORMAT;
1578 		pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1579 		goto errout;
1580 	}
1581 
1582 	obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1583 	if (!obj->efile.ehdr) {
1584 		pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1585 		err = -LIBBPF_ERRNO__FORMAT;
1586 		goto errout;
1587 	}
1588 
1589 	/* Validate ELF object endianness... */
1590 	if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB &&
1591 	    ehdr->e_ident[EI_DATA] != ELFDATA2MSB) {
1592 		err = -LIBBPF_ERRNO__ENDIAN;
1593 		pr_warn("elf: '%s' has unknown byte order\n", obj->path);
1594 		goto errout;
1595 	}
1596 	/* and save after bpf_object_open() frees ELF data */
1597 	obj->byteorder = ehdr->e_ident[EI_DATA];
1598 
1599 	if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1600 		pr_warn("elf: failed to get section names section index for %s: %s\n",
1601 			obj->path, elf_errmsg(-1));
1602 		err = -LIBBPF_ERRNO__FORMAT;
1603 		goto errout;
1604 	}
1605 
1606 	/* ELF is corrupted/truncated, avoid calling elf_strptr. */
1607 	if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1608 		pr_warn("elf: failed to get section names strings from %s: %s\n",
1609 			obj->path, elf_errmsg(-1));
1610 		err = -LIBBPF_ERRNO__FORMAT;
1611 		goto errout;
1612 	}
1613 
1614 	/* Old LLVM set e_machine to EM_NONE */
1615 	if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1616 		pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1617 		err = -LIBBPF_ERRNO__FORMAT;
1618 		goto errout;
1619 	}
1620 
1621 	return 0;
1622 errout:
1623 	bpf_object__elf_finish(obj);
1624 	return err;
1625 }
1626 
is_native_endianness(struct bpf_object * obj)1627 static bool is_native_endianness(struct bpf_object *obj)
1628 {
1629 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1630 	return obj->byteorder == ELFDATA2LSB;
1631 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1632 	return obj->byteorder == ELFDATA2MSB;
1633 #else
1634 # error "Unrecognized __BYTE_ORDER__"
1635 #endif
1636 }
1637 
1638 static int
bpf_object__init_license(struct bpf_object * obj,void * data,size_t size)1639 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1640 {
1641 	if (!data) {
1642 		pr_warn("invalid license section in %s\n", obj->path);
1643 		return -LIBBPF_ERRNO__FORMAT;
1644 	}
1645 	/* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1646 	 * go over allowed ELF data section buffer
1647 	 */
1648 	libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1649 	pr_debug("license of %s is %s\n", obj->path, obj->license);
1650 	return 0;
1651 }
1652 
1653 static int
bpf_object__init_kversion(struct bpf_object * obj,void * data,size_t size)1654 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1655 {
1656 	__u32 kver;
1657 
1658 	if (!data || size != sizeof(kver)) {
1659 		pr_warn("invalid kver section in %s\n", obj->path);
1660 		return -LIBBPF_ERRNO__FORMAT;
1661 	}
1662 	memcpy(&kver, data, sizeof(kver));
1663 	obj->kern_version = kver;
1664 	pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1665 	return 0;
1666 }
1667 
bpf_map_type__is_map_in_map(enum bpf_map_type type)1668 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1669 {
1670 	if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1671 	    type == BPF_MAP_TYPE_HASH_OF_MAPS)
1672 		return true;
1673 	return false;
1674 }
1675 
find_elf_sec_sz(const struct bpf_object * obj,const char * name,__u32 * size)1676 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1677 {
1678 	Elf_Data *data;
1679 	Elf_Scn *scn;
1680 
1681 	if (!name)
1682 		return -EINVAL;
1683 
1684 	scn = elf_sec_by_name(obj, name);
1685 	data = elf_sec_data(obj, scn);
1686 	if (data) {
1687 		*size = data->d_size;
1688 		return 0; /* found it */
1689 	}
1690 
1691 	return -ENOENT;
1692 }
1693 
find_elf_var_sym(const struct bpf_object * obj,const char * name)1694 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name)
1695 {
1696 	Elf_Data *symbols = obj->efile.symbols;
1697 	const char *sname;
1698 	size_t si;
1699 
1700 	for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1701 		Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1702 
1703 		if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1704 			continue;
1705 
1706 		if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1707 		    ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1708 			continue;
1709 
1710 		sname = elf_sym_str(obj, sym->st_name);
1711 		if (!sname) {
1712 			pr_warn("failed to get sym name string for var %s\n", name);
1713 			return ERR_PTR(-EIO);
1714 		}
1715 		if (strcmp(name, sname) == 0)
1716 			return sym;
1717 	}
1718 
1719 	return ERR_PTR(-ENOENT);
1720 }
1721 
1722 /* Some versions of Android don't provide memfd_create() in their libc
1723  * implementation, so avoid complications and just go straight to Linux
1724  * syscall.
1725  */
sys_memfd_create(const char * name,unsigned flags)1726 static int sys_memfd_create(const char *name, unsigned flags)
1727 {
1728 	return syscall(__NR_memfd_create, name, flags);
1729 }
1730 
1731 #ifndef MFD_CLOEXEC
1732 #define MFD_CLOEXEC 0x0001U
1733 #endif
1734 
create_placeholder_fd(void)1735 static int create_placeholder_fd(void)
1736 {
1737 	int fd;
1738 
1739 	fd = ensure_good_fd(sys_memfd_create("libbpf-placeholder-fd", MFD_CLOEXEC));
1740 	if (fd < 0)
1741 		return -errno;
1742 	return fd;
1743 }
1744 
bpf_object__add_map(struct bpf_object * obj)1745 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1746 {
1747 	struct bpf_map *map;
1748 	int err;
1749 
1750 	err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1751 				sizeof(*obj->maps), obj->nr_maps + 1);
1752 	if (err)
1753 		return ERR_PTR(err);
1754 
1755 	map = &obj->maps[obj->nr_maps++];
1756 	map->obj = obj;
1757 	/* Preallocate map FD without actually creating BPF map just yet.
1758 	 * These map FD "placeholders" will be reused later without changing
1759 	 * FD value when map is actually created in the kernel.
1760 	 *
1761 	 * This is useful to be able to perform BPF program relocations
1762 	 * without having to create BPF maps before that step. This allows us
1763 	 * to finalize and load BTF very late in BPF object's loading phase,
1764 	 * right before BPF maps have to be created and BPF programs have to
1765 	 * be loaded. By having these map FD placeholders we can perform all
1766 	 * the sanitizations, relocations, and any other adjustments before we
1767 	 * start creating actual BPF kernel objects (BTF, maps, progs).
1768 	 */
1769 	map->fd = create_placeholder_fd();
1770 	if (map->fd < 0)
1771 		return ERR_PTR(map->fd);
1772 	map->inner_map_fd = -1;
1773 	map->autocreate = true;
1774 
1775 	return map;
1776 }
1777 
array_map_mmap_sz(unsigned int value_sz,unsigned int max_entries)1778 static size_t array_map_mmap_sz(unsigned int value_sz, unsigned int max_entries)
1779 {
1780 	const long page_sz = sysconf(_SC_PAGE_SIZE);
1781 	size_t map_sz;
1782 
1783 	map_sz = (size_t)roundup(value_sz, 8) * max_entries;
1784 	map_sz = roundup(map_sz, page_sz);
1785 	return map_sz;
1786 }
1787 
bpf_map_mmap_sz(const struct bpf_map * map)1788 static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1789 {
1790 	const long page_sz = sysconf(_SC_PAGE_SIZE);
1791 
1792 	switch (map->def.type) {
1793 	case BPF_MAP_TYPE_ARRAY:
1794 		return array_map_mmap_sz(map->def.value_size, map->def.max_entries);
1795 	case BPF_MAP_TYPE_ARENA:
1796 		return page_sz * map->def.max_entries;
1797 	default:
1798 		return 0; /* not supported */
1799 	}
1800 }
1801 
bpf_map_mmap_resize(struct bpf_map * map,size_t old_sz,size_t new_sz)1802 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz)
1803 {
1804 	void *mmaped;
1805 
1806 	if (!map->mmaped)
1807 		return -EINVAL;
1808 
1809 	if (old_sz == new_sz)
1810 		return 0;
1811 
1812 	mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1813 	if (mmaped == MAP_FAILED)
1814 		return -errno;
1815 
1816 	memcpy(mmaped, map->mmaped, min(old_sz, new_sz));
1817 	munmap(map->mmaped, old_sz);
1818 	map->mmaped = mmaped;
1819 	return 0;
1820 }
1821 
internal_map_name(struct bpf_object * obj,const char * real_name)1822 static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1823 {
1824 	char map_name[BPF_OBJ_NAME_LEN], *p;
1825 	int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1826 
1827 	/* This is one of the more confusing parts of libbpf for various
1828 	 * reasons, some of which are historical. The original idea for naming
1829 	 * internal names was to include as much of BPF object name prefix as
1830 	 * possible, so that it can be distinguished from similar internal
1831 	 * maps of a different BPF object.
1832 	 * As an example, let's say we have bpf_object named 'my_object_name'
1833 	 * and internal map corresponding to '.rodata' ELF section. The final
1834 	 * map name advertised to user and to the kernel will be
1835 	 * 'my_objec.rodata', taking first 8 characters of object name and
1836 	 * entire 7 characters of '.rodata'.
1837 	 * Somewhat confusingly, if internal map ELF section name is shorter
1838 	 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1839 	 * for the suffix, even though we only have 4 actual characters, and
1840 	 * resulting map will be called 'my_objec.bss', not even using all 15
1841 	 * characters allowed by the kernel. Oh well, at least the truncated
1842 	 * object name is somewhat consistent in this case. But if the map
1843 	 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1844 	 * (8 chars) and thus will be left with only first 7 characters of the
1845 	 * object name ('my_obje'). Happy guessing, user, that the final map
1846 	 * name will be "my_obje.kconfig".
1847 	 * Now, with libbpf starting to support arbitrarily named .rodata.*
1848 	 * and .data.* data sections, it's possible that ELF section name is
1849 	 * longer than allowed 15 chars, so we now need to be careful to take
1850 	 * only up to 15 first characters of ELF name, taking no BPF object
1851 	 * name characters at all. So '.rodata.abracadabra' will result in
1852 	 * '.rodata.abracad' kernel and user-visible name.
1853 	 * We need to keep this convoluted logic intact for .data, .bss and
1854 	 * .rodata maps, but for new custom .data.custom and .rodata.custom
1855 	 * maps we use their ELF names as is, not prepending bpf_object name
1856 	 * in front. We still need to truncate them to 15 characters for the
1857 	 * kernel. Full name can be recovered for such maps by using DATASEC
1858 	 * BTF type associated with such map's value type, though.
1859 	 */
1860 	if (sfx_len >= BPF_OBJ_NAME_LEN)
1861 		sfx_len = BPF_OBJ_NAME_LEN - 1;
1862 
1863 	/* if there are two or more dots in map name, it's a custom dot map */
1864 	if (strchr(real_name + 1, '.') != NULL)
1865 		pfx_len = 0;
1866 	else
1867 		pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1868 
1869 	snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1870 		 sfx_len, real_name);
1871 
1872 	/* sanities map name to characters allowed by kernel */
1873 	for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1874 		if (!isalnum(*p) && *p != '_' && *p != '.')
1875 			*p = '_';
1876 
1877 	return strdup(map_name);
1878 }
1879 
1880 static int
1881 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map);
1882 
1883 /* Internal BPF map is mmap()'able only if at least one of corresponding
1884  * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL
1885  * variable and it's not marked as __hidden (which turns it into, effectively,
1886  * a STATIC variable).
1887  */
map_is_mmapable(struct bpf_object * obj,struct bpf_map * map)1888 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map)
1889 {
1890 	const struct btf_type *t, *vt;
1891 	struct btf_var_secinfo *vsi;
1892 	int i, n;
1893 
1894 	if (!map->btf_value_type_id)
1895 		return false;
1896 
1897 	t = btf__type_by_id(obj->btf, map->btf_value_type_id);
1898 	if (!btf_is_datasec(t))
1899 		return false;
1900 
1901 	vsi = btf_var_secinfos(t);
1902 	for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) {
1903 		vt = btf__type_by_id(obj->btf, vsi->type);
1904 		if (!btf_is_var(vt))
1905 			continue;
1906 
1907 		if (btf_var(vt)->linkage != BTF_VAR_STATIC)
1908 			return true;
1909 	}
1910 
1911 	return false;
1912 }
1913 
1914 static int
bpf_object__init_internal_map(struct bpf_object * obj,enum libbpf_map_type type,const char * real_name,int sec_idx,void * data,size_t data_sz)1915 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1916 			      const char *real_name, int sec_idx, void *data, size_t data_sz)
1917 {
1918 	struct bpf_map_def *def;
1919 	struct bpf_map *map;
1920 	size_t mmap_sz;
1921 	int err;
1922 
1923 	map = bpf_object__add_map(obj);
1924 	if (IS_ERR(map))
1925 		return PTR_ERR(map);
1926 
1927 	map->libbpf_type = type;
1928 	map->sec_idx = sec_idx;
1929 	map->sec_offset = 0;
1930 	map->real_name = strdup(real_name);
1931 	map->name = internal_map_name(obj, real_name);
1932 	if (!map->real_name || !map->name) {
1933 		zfree(&map->real_name);
1934 		zfree(&map->name);
1935 		return -ENOMEM;
1936 	}
1937 
1938 	def = &map->def;
1939 	def->type = BPF_MAP_TYPE_ARRAY;
1940 	def->key_size = sizeof(int);
1941 	def->value_size = data_sz;
1942 	def->max_entries = 1;
1943 	def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1944 		? BPF_F_RDONLY_PROG : 0;
1945 
1946 	/* failures are fine because of maps like .rodata.str1.1 */
1947 	(void) map_fill_btf_type_info(obj, map);
1948 
1949 	if (map_is_mmapable(obj, map))
1950 		def->map_flags |= BPF_F_MMAPABLE;
1951 
1952 	pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1953 		 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1954 
1955 	mmap_sz = bpf_map_mmap_sz(map);
1956 	map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE,
1957 			   MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1958 	if (map->mmaped == MAP_FAILED) {
1959 		err = -errno;
1960 		map->mmaped = NULL;
1961 		pr_warn("failed to alloc map '%s' content buffer: %s\n", map->name, errstr(err));
1962 		zfree(&map->real_name);
1963 		zfree(&map->name);
1964 		return err;
1965 	}
1966 
1967 	if (data)
1968 		memcpy(map->mmaped, data, data_sz);
1969 
1970 	pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1971 	return 0;
1972 }
1973 
bpf_object__init_global_data_maps(struct bpf_object * obj)1974 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1975 {
1976 	struct elf_sec_desc *sec_desc;
1977 	const char *sec_name;
1978 	int err = 0, sec_idx;
1979 
1980 	/*
1981 	 * Populate obj->maps with libbpf internal maps.
1982 	 */
1983 	for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1984 		sec_desc = &obj->efile.secs[sec_idx];
1985 
1986 		/* Skip recognized sections with size 0. */
1987 		if (!sec_desc->data || sec_desc->data->d_size == 0)
1988 			continue;
1989 
1990 		switch (sec_desc->sec_type) {
1991 		case SEC_DATA:
1992 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1993 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1994 							    sec_name, sec_idx,
1995 							    sec_desc->data->d_buf,
1996 							    sec_desc->data->d_size);
1997 			break;
1998 		case SEC_RODATA:
1999 			obj->has_rodata = true;
2000 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
2001 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
2002 							    sec_name, sec_idx,
2003 							    sec_desc->data->d_buf,
2004 							    sec_desc->data->d_size);
2005 			break;
2006 		case SEC_BSS:
2007 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
2008 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
2009 							    sec_name, sec_idx,
2010 							    NULL,
2011 							    sec_desc->data->d_size);
2012 			break;
2013 		default:
2014 			/* skip */
2015 			break;
2016 		}
2017 		if (err)
2018 			return err;
2019 	}
2020 	return 0;
2021 }
2022 
2023 
find_extern_by_name(const struct bpf_object * obj,const void * name)2024 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
2025 					       const void *name)
2026 {
2027 	int i;
2028 
2029 	for (i = 0; i < obj->nr_extern; i++) {
2030 		if (strcmp(obj->externs[i].name, name) == 0)
2031 			return &obj->externs[i];
2032 	}
2033 	return NULL;
2034 }
2035 
find_extern_by_name_with_len(const struct bpf_object * obj,const void * name,int len)2036 static struct extern_desc *find_extern_by_name_with_len(const struct bpf_object *obj,
2037 							const void *name, int len)
2038 {
2039 	const char *ext_name;
2040 	int i;
2041 
2042 	for (i = 0; i < obj->nr_extern; i++) {
2043 		ext_name = obj->externs[i].name;
2044 		if (strlen(ext_name) == len && strncmp(ext_name, name, len) == 0)
2045 			return &obj->externs[i];
2046 	}
2047 	return NULL;
2048 }
2049 
set_kcfg_value_tri(struct extern_desc * ext,void * ext_val,char value)2050 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
2051 			      char value)
2052 {
2053 	switch (ext->kcfg.type) {
2054 	case KCFG_BOOL:
2055 		if (value == 'm') {
2056 			pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
2057 				ext->name, value);
2058 			return -EINVAL;
2059 		}
2060 		*(bool *)ext_val = value == 'y' ? true : false;
2061 		break;
2062 	case KCFG_TRISTATE:
2063 		if (value == 'y')
2064 			*(enum libbpf_tristate *)ext_val = TRI_YES;
2065 		else if (value == 'm')
2066 			*(enum libbpf_tristate *)ext_val = TRI_MODULE;
2067 		else /* value == 'n' */
2068 			*(enum libbpf_tristate *)ext_val = TRI_NO;
2069 		break;
2070 	case KCFG_CHAR:
2071 		*(char *)ext_val = value;
2072 		break;
2073 	case KCFG_UNKNOWN:
2074 	case KCFG_INT:
2075 	case KCFG_CHAR_ARR:
2076 	default:
2077 		pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
2078 			ext->name, value);
2079 		return -EINVAL;
2080 	}
2081 	ext->is_set = true;
2082 	return 0;
2083 }
2084 
set_kcfg_value_str(struct extern_desc * ext,char * ext_val,const char * value)2085 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
2086 			      const char *value)
2087 {
2088 	size_t len;
2089 
2090 	if (ext->kcfg.type != KCFG_CHAR_ARR) {
2091 		pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
2092 			ext->name, value);
2093 		return -EINVAL;
2094 	}
2095 
2096 	len = strlen(value);
2097 	if (value[len - 1] != '"') {
2098 		pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
2099 			ext->name, value);
2100 		return -EINVAL;
2101 	}
2102 
2103 	/* strip quotes */
2104 	len -= 2;
2105 	if (len >= ext->kcfg.sz) {
2106 		pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
2107 			ext->name, value, len, ext->kcfg.sz - 1);
2108 		len = ext->kcfg.sz - 1;
2109 	}
2110 	memcpy(ext_val, value + 1, len);
2111 	ext_val[len] = '\0';
2112 	ext->is_set = true;
2113 	return 0;
2114 }
2115 
parse_u64(const char * value,__u64 * res)2116 static int parse_u64(const char *value, __u64 *res)
2117 {
2118 	char *value_end;
2119 	int err;
2120 
2121 	errno = 0;
2122 	*res = strtoull(value, &value_end, 0);
2123 	if (errno) {
2124 		err = -errno;
2125 		pr_warn("failed to parse '%s': %s\n", value, errstr(err));
2126 		return err;
2127 	}
2128 	if (*value_end) {
2129 		pr_warn("failed to parse '%s' as integer completely\n", value);
2130 		return -EINVAL;
2131 	}
2132 	return 0;
2133 }
2134 
is_kcfg_value_in_range(const struct extern_desc * ext,__u64 v)2135 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
2136 {
2137 	int bit_sz = ext->kcfg.sz * 8;
2138 
2139 	if (ext->kcfg.sz == 8)
2140 		return true;
2141 
2142 	/* Validate that value stored in u64 fits in integer of `ext->sz`
2143 	 * bytes size without any loss of information. If the target integer
2144 	 * is signed, we rely on the following limits of integer type of
2145 	 * Y bits and subsequent transformation:
2146 	 *
2147 	 *     -2^(Y-1) <= X           <= 2^(Y-1) - 1
2148 	 *            0 <= X + 2^(Y-1) <= 2^Y - 1
2149 	 *            0 <= X + 2^(Y-1) <  2^Y
2150 	 *
2151 	 *  For unsigned target integer, check that all the (64 - Y) bits are
2152 	 *  zero.
2153 	 */
2154 	if (ext->kcfg.is_signed)
2155 		return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
2156 	else
2157 		return (v >> bit_sz) == 0;
2158 }
2159 
set_kcfg_value_num(struct extern_desc * ext,void * ext_val,__u64 value)2160 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
2161 			      __u64 value)
2162 {
2163 	if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
2164 	    ext->kcfg.type != KCFG_BOOL) {
2165 		pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
2166 			ext->name, (unsigned long long)value);
2167 		return -EINVAL;
2168 	}
2169 	if (ext->kcfg.type == KCFG_BOOL && value > 1) {
2170 		pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
2171 			ext->name, (unsigned long long)value);
2172 		return -EINVAL;
2173 
2174 	}
2175 	if (!is_kcfg_value_in_range(ext, value)) {
2176 		pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
2177 			ext->name, (unsigned long long)value, ext->kcfg.sz);
2178 		return -ERANGE;
2179 	}
2180 	switch (ext->kcfg.sz) {
2181 	case 1:
2182 		*(__u8 *)ext_val = value;
2183 		break;
2184 	case 2:
2185 		*(__u16 *)ext_val = value;
2186 		break;
2187 	case 4:
2188 		*(__u32 *)ext_val = value;
2189 		break;
2190 	case 8:
2191 		*(__u64 *)ext_val = value;
2192 		break;
2193 	default:
2194 		return -EINVAL;
2195 	}
2196 	ext->is_set = true;
2197 	return 0;
2198 }
2199 
bpf_object__process_kconfig_line(struct bpf_object * obj,char * buf,void * data)2200 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
2201 					    char *buf, void *data)
2202 {
2203 	struct extern_desc *ext;
2204 	char *sep, *value;
2205 	int len, err = 0;
2206 	void *ext_val;
2207 	__u64 num;
2208 
2209 	if (!str_has_pfx(buf, "CONFIG_"))
2210 		return 0;
2211 
2212 	sep = strchr(buf, '=');
2213 	if (!sep) {
2214 		pr_warn("failed to parse '%s': no separator\n", buf);
2215 		return -EINVAL;
2216 	}
2217 
2218 	/* Trim ending '\n' */
2219 	len = strlen(buf);
2220 	if (buf[len - 1] == '\n')
2221 		buf[len - 1] = '\0';
2222 	/* Split on '=' and ensure that a value is present. */
2223 	*sep = '\0';
2224 	if (!sep[1]) {
2225 		*sep = '=';
2226 		pr_warn("failed to parse '%s': no value\n", buf);
2227 		return -EINVAL;
2228 	}
2229 
2230 	ext = find_extern_by_name(obj, buf);
2231 	if (!ext || ext->is_set)
2232 		return 0;
2233 
2234 	ext_val = data + ext->kcfg.data_off;
2235 	value = sep + 1;
2236 
2237 	switch (*value) {
2238 	case 'y': case 'n': case 'm':
2239 		err = set_kcfg_value_tri(ext, ext_val, *value);
2240 		break;
2241 	case '"':
2242 		err = set_kcfg_value_str(ext, ext_val, value);
2243 		break;
2244 	default:
2245 		/* assume integer */
2246 		err = parse_u64(value, &num);
2247 		if (err) {
2248 			pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
2249 			return err;
2250 		}
2251 		if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
2252 			pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
2253 			return -EINVAL;
2254 		}
2255 		err = set_kcfg_value_num(ext, ext_val, num);
2256 		break;
2257 	}
2258 	if (err)
2259 		return err;
2260 	pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
2261 	return 0;
2262 }
2263 
bpf_object__read_kconfig_file(struct bpf_object * obj,void * data)2264 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
2265 {
2266 	char buf[PATH_MAX];
2267 	struct utsname uts;
2268 	int len, err = 0;
2269 	gzFile file;
2270 
2271 	uname(&uts);
2272 	len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
2273 	if (len < 0)
2274 		return -EINVAL;
2275 	else if (len >= PATH_MAX)
2276 		return -ENAMETOOLONG;
2277 
2278 	/* gzopen also accepts uncompressed files. */
2279 	file = gzopen(buf, "re");
2280 	if (!file)
2281 		file = gzopen("/proc/config.gz", "re");
2282 
2283 	if (!file) {
2284 		pr_warn("failed to open system Kconfig\n");
2285 		return -ENOENT;
2286 	}
2287 
2288 	while (gzgets(file, buf, sizeof(buf))) {
2289 		err = bpf_object__process_kconfig_line(obj, buf, data);
2290 		if (err) {
2291 			pr_warn("error parsing system Kconfig line '%s': %s\n",
2292 				buf, errstr(err));
2293 			goto out;
2294 		}
2295 	}
2296 
2297 out:
2298 	gzclose(file);
2299 	return err;
2300 }
2301 
bpf_object__read_kconfig_mem(struct bpf_object * obj,const char * config,void * data)2302 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
2303 					const char *config, void *data)
2304 {
2305 	char buf[PATH_MAX];
2306 	int err = 0;
2307 	FILE *file;
2308 
2309 	file = fmemopen((void *)config, strlen(config), "r");
2310 	if (!file) {
2311 		err = -errno;
2312 		pr_warn("failed to open in-memory Kconfig: %s\n", errstr(err));
2313 		return err;
2314 	}
2315 
2316 	while (fgets(buf, sizeof(buf), file)) {
2317 		err = bpf_object__process_kconfig_line(obj, buf, data);
2318 		if (err) {
2319 			pr_warn("error parsing in-memory Kconfig line '%s': %s\n",
2320 				buf, errstr(err));
2321 			break;
2322 		}
2323 	}
2324 
2325 	fclose(file);
2326 	return err;
2327 }
2328 
bpf_object__init_kconfig_map(struct bpf_object * obj)2329 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
2330 {
2331 	struct extern_desc *last_ext = NULL, *ext;
2332 	size_t map_sz;
2333 	int i, err;
2334 
2335 	for (i = 0; i < obj->nr_extern; i++) {
2336 		ext = &obj->externs[i];
2337 		if (ext->type == EXT_KCFG)
2338 			last_ext = ext;
2339 	}
2340 
2341 	if (!last_ext)
2342 		return 0;
2343 
2344 	map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
2345 	err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
2346 					    ".kconfig", obj->efile.symbols_shndx,
2347 					    NULL, map_sz);
2348 	if (err)
2349 		return err;
2350 
2351 	obj->kconfig_map_idx = obj->nr_maps - 1;
2352 
2353 	return 0;
2354 }
2355 
2356 const struct btf_type *
skip_mods_and_typedefs(const struct btf * btf,__u32 id,__u32 * res_id)2357 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2358 {
2359 	const struct btf_type *t = btf__type_by_id(btf, id);
2360 
2361 	if (res_id)
2362 		*res_id = id;
2363 
2364 	while (btf_is_mod(t) || btf_is_typedef(t)) {
2365 		if (res_id)
2366 			*res_id = t->type;
2367 		t = btf__type_by_id(btf, t->type);
2368 	}
2369 
2370 	return t;
2371 }
2372 
2373 static const struct btf_type *
resolve_func_ptr(const struct btf * btf,__u32 id,__u32 * res_id)2374 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2375 {
2376 	const struct btf_type *t;
2377 
2378 	t = skip_mods_and_typedefs(btf, id, NULL);
2379 	if (!btf_is_ptr(t))
2380 		return NULL;
2381 
2382 	t = skip_mods_and_typedefs(btf, t->type, res_id);
2383 
2384 	return btf_is_func_proto(t) ? t : NULL;
2385 }
2386 
__btf_kind_str(__u16 kind)2387 static const char *__btf_kind_str(__u16 kind)
2388 {
2389 	switch (kind) {
2390 	case BTF_KIND_UNKN: return "void";
2391 	case BTF_KIND_INT: return "int";
2392 	case BTF_KIND_PTR: return "ptr";
2393 	case BTF_KIND_ARRAY: return "array";
2394 	case BTF_KIND_STRUCT: return "struct";
2395 	case BTF_KIND_UNION: return "union";
2396 	case BTF_KIND_ENUM: return "enum";
2397 	case BTF_KIND_FWD: return "fwd";
2398 	case BTF_KIND_TYPEDEF: return "typedef";
2399 	case BTF_KIND_VOLATILE: return "volatile";
2400 	case BTF_KIND_CONST: return "const";
2401 	case BTF_KIND_RESTRICT: return "restrict";
2402 	case BTF_KIND_FUNC: return "func";
2403 	case BTF_KIND_FUNC_PROTO: return "func_proto";
2404 	case BTF_KIND_VAR: return "var";
2405 	case BTF_KIND_DATASEC: return "datasec";
2406 	case BTF_KIND_FLOAT: return "float";
2407 	case BTF_KIND_DECL_TAG: return "decl_tag";
2408 	case BTF_KIND_TYPE_TAG: return "type_tag";
2409 	case BTF_KIND_ENUM64: return "enum64";
2410 	default: return "unknown";
2411 	}
2412 }
2413 
btf_kind_str(const struct btf_type * t)2414 const char *btf_kind_str(const struct btf_type *t)
2415 {
2416 	return __btf_kind_str(btf_kind(t));
2417 }
2418 
2419 /*
2420  * Fetch integer attribute of BTF map definition. Such attributes are
2421  * represented using a pointer to an array, in which dimensionality of array
2422  * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2423  * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2424  * type definition, while using only sizeof(void *) space in ELF data section.
2425  */
get_map_field_int(const char * map_name,const struct btf * btf,const struct btf_member * m,__u32 * res)2426 static bool get_map_field_int(const char *map_name, const struct btf *btf,
2427 			      const struct btf_member *m, __u32 *res)
2428 {
2429 	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2430 	const char *name = btf__name_by_offset(btf, m->name_off);
2431 	const struct btf_array *arr_info;
2432 	const struct btf_type *arr_t;
2433 
2434 	if (!btf_is_ptr(t)) {
2435 		pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2436 			map_name, name, btf_kind_str(t));
2437 		return false;
2438 	}
2439 
2440 	arr_t = btf__type_by_id(btf, t->type);
2441 	if (!arr_t) {
2442 		pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2443 			map_name, name, t->type);
2444 		return false;
2445 	}
2446 	if (!btf_is_array(arr_t)) {
2447 		pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2448 			map_name, name, btf_kind_str(arr_t));
2449 		return false;
2450 	}
2451 	arr_info = btf_array(arr_t);
2452 	*res = arr_info->nelems;
2453 	return true;
2454 }
2455 
get_map_field_long(const char * map_name,const struct btf * btf,const struct btf_member * m,__u64 * res)2456 static bool get_map_field_long(const char *map_name, const struct btf *btf,
2457 			       const struct btf_member *m, __u64 *res)
2458 {
2459 	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2460 	const char *name = btf__name_by_offset(btf, m->name_off);
2461 
2462 	if (btf_is_ptr(t)) {
2463 		__u32 res32;
2464 		bool ret;
2465 
2466 		ret = get_map_field_int(map_name, btf, m, &res32);
2467 		if (ret)
2468 			*res = (__u64)res32;
2469 		return ret;
2470 	}
2471 
2472 	if (!btf_is_enum(t) && !btf_is_enum64(t)) {
2473 		pr_warn("map '%s': attr '%s': expected ENUM or ENUM64, got %s.\n",
2474 			map_name, name, btf_kind_str(t));
2475 		return false;
2476 	}
2477 
2478 	if (btf_vlen(t) != 1) {
2479 		pr_warn("map '%s': attr '%s': invalid __ulong\n",
2480 			map_name, name);
2481 		return false;
2482 	}
2483 
2484 	if (btf_is_enum(t)) {
2485 		const struct btf_enum *e = btf_enum(t);
2486 
2487 		*res = e->val;
2488 	} else {
2489 		const struct btf_enum64 *e = btf_enum64(t);
2490 
2491 		*res = btf_enum64_value(e);
2492 	}
2493 	return true;
2494 }
2495 
pathname_concat(char * buf,size_t buf_sz,const char * path,const char * name)2496 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name)
2497 {
2498 	int len;
2499 
2500 	len = snprintf(buf, buf_sz, "%s/%s", path, name);
2501 	if (len < 0)
2502 		return -EINVAL;
2503 	if (len >= buf_sz)
2504 		return -ENAMETOOLONG;
2505 
2506 	return 0;
2507 }
2508 
build_map_pin_path(struct bpf_map * map,const char * path)2509 static int build_map_pin_path(struct bpf_map *map, const char *path)
2510 {
2511 	char buf[PATH_MAX];
2512 	int err;
2513 
2514 	if (!path)
2515 		path = BPF_FS_DEFAULT_PATH;
2516 
2517 	err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
2518 	if (err)
2519 		return err;
2520 
2521 	return bpf_map__set_pin_path(map, buf);
2522 }
2523 
2524 /* should match definition in bpf_helpers.h */
2525 enum libbpf_pin_type {
2526 	LIBBPF_PIN_NONE,
2527 	/* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2528 	LIBBPF_PIN_BY_NAME,
2529 };
2530 
parse_btf_map_def(const char * map_name,struct btf * btf,const struct btf_type * def_t,bool strict,struct btf_map_def * map_def,struct btf_map_def * inner_def)2531 int parse_btf_map_def(const char *map_name, struct btf *btf,
2532 		      const struct btf_type *def_t, bool strict,
2533 		      struct btf_map_def *map_def, struct btf_map_def *inner_def)
2534 {
2535 	const struct btf_type *t;
2536 	const struct btf_member *m;
2537 	bool is_inner = inner_def == NULL;
2538 	int vlen, i;
2539 
2540 	vlen = btf_vlen(def_t);
2541 	m = btf_members(def_t);
2542 	for (i = 0; i < vlen; i++, m++) {
2543 		const char *name = btf__name_by_offset(btf, m->name_off);
2544 
2545 		if (!name) {
2546 			pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2547 			return -EINVAL;
2548 		}
2549 		if (strcmp(name, "type") == 0) {
2550 			if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2551 				return -EINVAL;
2552 			map_def->parts |= MAP_DEF_MAP_TYPE;
2553 		} else if (strcmp(name, "max_entries") == 0) {
2554 			if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2555 				return -EINVAL;
2556 			map_def->parts |= MAP_DEF_MAX_ENTRIES;
2557 		} else if (strcmp(name, "map_flags") == 0) {
2558 			if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2559 				return -EINVAL;
2560 			map_def->parts |= MAP_DEF_MAP_FLAGS;
2561 		} else if (strcmp(name, "numa_node") == 0) {
2562 			if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2563 				return -EINVAL;
2564 			map_def->parts |= MAP_DEF_NUMA_NODE;
2565 		} else if (strcmp(name, "key_size") == 0) {
2566 			__u32 sz;
2567 
2568 			if (!get_map_field_int(map_name, btf, m, &sz))
2569 				return -EINVAL;
2570 			if (map_def->key_size && map_def->key_size != sz) {
2571 				pr_warn("map '%s': conflicting key size %u != %u.\n",
2572 					map_name, map_def->key_size, sz);
2573 				return -EINVAL;
2574 			}
2575 			map_def->key_size = sz;
2576 			map_def->parts |= MAP_DEF_KEY_SIZE;
2577 		} else if (strcmp(name, "key") == 0) {
2578 			__s64 sz;
2579 
2580 			t = btf__type_by_id(btf, m->type);
2581 			if (!t) {
2582 				pr_warn("map '%s': key type [%d] not found.\n",
2583 					map_name, m->type);
2584 				return -EINVAL;
2585 			}
2586 			if (!btf_is_ptr(t)) {
2587 				pr_warn("map '%s': key spec is not PTR: %s.\n",
2588 					map_name, btf_kind_str(t));
2589 				return -EINVAL;
2590 			}
2591 			sz = btf__resolve_size(btf, t->type);
2592 			if (sz < 0) {
2593 				pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2594 					map_name, t->type, (ssize_t)sz);
2595 				return sz;
2596 			}
2597 			if (map_def->key_size && map_def->key_size != sz) {
2598 				pr_warn("map '%s': conflicting key size %u != %zd.\n",
2599 					map_name, map_def->key_size, (ssize_t)sz);
2600 				return -EINVAL;
2601 			}
2602 			map_def->key_size = sz;
2603 			map_def->key_type_id = t->type;
2604 			map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2605 		} else if (strcmp(name, "value_size") == 0) {
2606 			__u32 sz;
2607 
2608 			if (!get_map_field_int(map_name, btf, m, &sz))
2609 				return -EINVAL;
2610 			if (map_def->value_size && map_def->value_size != sz) {
2611 				pr_warn("map '%s': conflicting value size %u != %u.\n",
2612 					map_name, map_def->value_size, sz);
2613 				return -EINVAL;
2614 			}
2615 			map_def->value_size = sz;
2616 			map_def->parts |= MAP_DEF_VALUE_SIZE;
2617 		} else if (strcmp(name, "value") == 0) {
2618 			__s64 sz;
2619 
2620 			t = btf__type_by_id(btf, m->type);
2621 			if (!t) {
2622 				pr_warn("map '%s': value type [%d] not found.\n",
2623 					map_name, m->type);
2624 				return -EINVAL;
2625 			}
2626 			if (!btf_is_ptr(t)) {
2627 				pr_warn("map '%s': value spec is not PTR: %s.\n",
2628 					map_name, btf_kind_str(t));
2629 				return -EINVAL;
2630 			}
2631 			sz = btf__resolve_size(btf, t->type);
2632 			if (sz < 0) {
2633 				pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2634 					map_name, t->type, (ssize_t)sz);
2635 				return sz;
2636 			}
2637 			if (map_def->value_size && map_def->value_size != sz) {
2638 				pr_warn("map '%s': conflicting value size %u != %zd.\n",
2639 					map_name, map_def->value_size, (ssize_t)sz);
2640 				return -EINVAL;
2641 			}
2642 			map_def->value_size = sz;
2643 			map_def->value_type_id = t->type;
2644 			map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2645 		}
2646 		else if (strcmp(name, "values") == 0) {
2647 			bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2648 			bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2649 			const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2650 			char inner_map_name[128];
2651 			int err;
2652 
2653 			if (is_inner) {
2654 				pr_warn("map '%s': multi-level inner maps not supported.\n",
2655 					map_name);
2656 				return -ENOTSUP;
2657 			}
2658 			if (i != vlen - 1) {
2659 				pr_warn("map '%s': '%s' member should be last.\n",
2660 					map_name, name);
2661 				return -EINVAL;
2662 			}
2663 			if (!is_map_in_map && !is_prog_array) {
2664 				pr_warn("map '%s': should be map-in-map or prog-array.\n",
2665 					map_name);
2666 				return -ENOTSUP;
2667 			}
2668 			if (map_def->value_size && map_def->value_size != 4) {
2669 				pr_warn("map '%s': conflicting value size %u != 4.\n",
2670 					map_name, map_def->value_size);
2671 				return -EINVAL;
2672 			}
2673 			map_def->value_size = 4;
2674 			t = btf__type_by_id(btf, m->type);
2675 			if (!t) {
2676 				pr_warn("map '%s': %s type [%d] not found.\n",
2677 					map_name, desc, m->type);
2678 				return -EINVAL;
2679 			}
2680 			if (!btf_is_array(t) || btf_array(t)->nelems) {
2681 				pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2682 					map_name, desc);
2683 				return -EINVAL;
2684 			}
2685 			t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2686 			if (!btf_is_ptr(t)) {
2687 				pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2688 					map_name, desc, btf_kind_str(t));
2689 				return -EINVAL;
2690 			}
2691 			t = skip_mods_and_typedefs(btf, t->type, NULL);
2692 			if (is_prog_array) {
2693 				if (!btf_is_func_proto(t)) {
2694 					pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2695 						map_name, btf_kind_str(t));
2696 					return -EINVAL;
2697 				}
2698 				continue;
2699 			}
2700 			if (!btf_is_struct(t)) {
2701 				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2702 					map_name, btf_kind_str(t));
2703 				return -EINVAL;
2704 			}
2705 
2706 			snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2707 			err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2708 			if (err)
2709 				return err;
2710 
2711 			map_def->parts |= MAP_DEF_INNER_MAP;
2712 		} else if (strcmp(name, "pinning") == 0) {
2713 			__u32 val;
2714 
2715 			if (is_inner) {
2716 				pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2717 				return -EINVAL;
2718 			}
2719 			if (!get_map_field_int(map_name, btf, m, &val))
2720 				return -EINVAL;
2721 			if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2722 				pr_warn("map '%s': invalid pinning value %u.\n",
2723 					map_name, val);
2724 				return -EINVAL;
2725 			}
2726 			map_def->pinning = val;
2727 			map_def->parts |= MAP_DEF_PINNING;
2728 		} else if (strcmp(name, "map_extra") == 0) {
2729 			__u64 map_extra;
2730 
2731 			if (!get_map_field_long(map_name, btf, m, &map_extra))
2732 				return -EINVAL;
2733 			map_def->map_extra = map_extra;
2734 			map_def->parts |= MAP_DEF_MAP_EXTRA;
2735 		} else {
2736 			if (strict) {
2737 				pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2738 				return -ENOTSUP;
2739 			}
2740 			pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2741 		}
2742 	}
2743 
2744 	if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2745 		pr_warn("map '%s': map type isn't specified.\n", map_name);
2746 		return -EINVAL;
2747 	}
2748 
2749 	return 0;
2750 }
2751 
adjust_ringbuf_sz(size_t sz)2752 static size_t adjust_ringbuf_sz(size_t sz)
2753 {
2754 	__u32 page_sz = sysconf(_SC_PAGE_SIZE);
2755 	__u32 mul;
2756 
2757 	/* if user forgot to set any size, make sure they see error */
2758 	if (sz == 0)
2759 		return 0;
2760 	/* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2761 	 * a power-of-2 multiple of kernel's page size. If user diligently
2762 	 * satisified these conditions, pass the size through.
2763 	 */
2764 	if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2765 		return sz;
2766 
2767 	/* Otherwise find closest (page_sz * power_of_2) product bigger than
2768 	 * user-set size to satisfy both user size request and kernel
2769 	 * requirements and substitute correct max_entries for map creation.
2770 	 */
2771 	for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2772 		if (mul * page_sz > sz)
2773 			return mul * page_sz;
2774 	}
2775 
2776 	/* if it's impossible to satisfy the conditions (i.e., user size is
2777 	 * very close to UINT_MAX but is not a power-of-2 multiple of
2778 	 * page_size) then just return original size and let kernel reject it
2779 	 */
2780 	return sz;
2781 }
2782 
map_is_ringbuf(const struct bpf_map * map)2783 static bool map_is_ringbuf(const struct bpf_map *map)
2784 {
2785 	return map->def.type == BPF_MAP_TYPE_RINGBUF ||
2786 	       map->def.type == BPF_MAP_TYPE_USER_RINGBUF;
2787 }
2788 
fill_map_from_def(struct bpf_map * map,const struct btf_map_def * def)2789 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2790 {
2791 	map->def.type = def->map_type;
2792 	map->def.key_size = def->key_size;
2793 	map->def.value_size = def->value_size;
2794 	map->def.max_entries = def->max_entries;
2795 	map->def.map_flags = def->map_flags;
2796 	map->map_extra = def->map_extra;
2797 
2798 	map->numa_node = def->numa_node;
2799 	map->btf_key_type_id = def->key_type_id;
2800 	map->btf_value_type_id = def->value_type_id;
2801 
2802 	/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2803 	if (map_is_ringbuf(map))
2804 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2805 
2806 	if (def->parts & MAP_DEF_MAP_TYPE)
2807 		pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2808 
2809 	if (def->parts & MAP_DEF_KEY_TYPE)
2810 		pr_debug("map '%s': found key [%u], sz = %u.\n",
2811 			 map->name, def->key_type_id, def->key_size);
2812 	else if (def->parts & MAP_DEF_KEY_SIZE)
2813 		pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2814 
2815 	if (def->parts & MAP_DEF_VALUE_TYPE)
2816 		pr_debug("map '%s': found value [%u], sz = %u.\n",
2817 			 map->name, def->value_type_id, def->value_size);
2818 	else if (def->parts & MAP_DEF_VALUE_SIZE)
2819 		pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2820 
2821 	if (def->parts & MAP_DEF_MAX_ENTRIES)
2822 		pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2823 	if (def->parts & MAP_DEF_MAP_FLAGS)
2824 		pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2825 	if (def->parts & MAP_DEF_MAP_EXTRA)
2826 		pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2827 			 (unsigned long long)def->map_extra);
2828 	if (def->parts & MAP_DEF_PINNING)
2829 		pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2830 	if (def->parts & MAP_DEF_NUMA_NODE)
2831 		pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2832 
2833 	if (def->parts & MAP_DEF_INNER_MAP)
2834 		pr_debug("map '%s': found inner map definition.\n", map->name);
2835 }
2836 
btf_var_linkage_str(__u32 linkage)2837 static const char *btf_var_linkage_str(__u32 linkage)
2838 {
2839 	switch (linkage) {
2840 	case BTF_VAR_STATIC: return "static";
2841 	case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2842 	case BTF_VAR_GLOBAL_EXTERN: return "extern";
2843 	default: return "unknown";
2844 	}
2845 }
2846 
bpf_object__init_user_btf_map(struct bpf_object * obj,const struct btf_type * sec,int var_idx,int sec_idx,const Elf_Data * data,bool strict,const char * pin_root_path)2847 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2848 					 const struct btf_type *sec,
2849 					 int var_idx, int sec_idx,
2850 					 const Elf_Data *data, bool strict,
2851 					 const char *pin_root_path)
2852 {
2853 	struct btf_map_def map_def = {}, inner_def = {};
2854 	const struct btf_type *var, *def;
2855 	const struct btf_var_secinfo *vi;
2856 	const struct btf_var *var_extra;
2857 	const char *map_name;
2858 	struct bpf_map *map;
2859 	int err;
2860 
2861 	vi = btf_var_secinfos(sec) + var_idx;
2862 	var = btf__type_by_id(obj->btf, vi->type);
2863 	var_extra = btf_var(var);
2864 	map_name = btf__name_by_offset(obj->btf, var->name_off);
2865 
2866 	if (map_name == NULL || map_name[0] == '\0') {
2867 		pr_warn("map #%d: empty name.\n", var_idx);
2868 		return -EINVAL;
2869 	}
2870 	if ((__u64)vi->offset + vi->size > data->d_size) {
2871 		pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2872 		return -EINVAL;
2873 	}
2874 	if (!btf_is_var(var)) {
2875 		pr_warn("map '%s': unexpected var kind %s.\n",
2876 			map_name, btf_kind_str(var));
2877 		return -EINVAL;
2878 	}
2879 	if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2880 		pr_warn("map '%s': unsupported map linkage %s.\n",
2881 			map_name, btf_var_linkage_str(var_extra->linkage));
2882 		return -EOPNOTSUPP;
2883 	}
2884 
2885 	def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2886 	if (!btf_is_struct(def)) {
2887 		pr_warn("map '%s': unexpected def kind %s.\n",
2888 			map_name, btf_kind_str(var));
2889 		return -EINVAL;
2890 	}
2891 	if (def->size > vi->size) {
2892 		pr_warn("map '%s': invalid def size.\n", map_name);
2893 		return -EINVAL;
2894 	}
2895 
2896 	map = bpf_object__add_map(obj);
2897 	if (IS_ERR(map))
2898 		return PTR_ERR(map);
2899 	map->name = strdup(map_name);
2900 	if (!map->name) {
2901 		pr_warn("map '%s': failed to alloc map name.\n", map_name);
2902 		return -ENOMEM;
2903 	}
2904 	map->libbpf_type = LIBBPF_MAP_UNSPEC;
2905 	map->def.type = BPF_MAP_TYPE_UNSPEC;
2906 	map->sec_idx = sec_idx;
2907 	map->sec_offset = vi->offset;
2908 	map->btf_var_idx = var_idx;
2909 	pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2910 		 map_name, map->sec_idx, map->sec_offset);
2911 
2912 	err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2913 	if (err)
2914 		return err;
2915 
2916 	fill_map_from_def(map, &map_def);
2917 
2918 	if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2919 		err = build_map_pin_path(map, pin_root_path);
2920 		if (err) {
2921 			pr_warn("map '%s': couldn't build pin path.\n", map->name);
2922 			return err;
2923 		}
2924 	}
2925 
2926 	if (map_def.parts & MAP_DEF_INNER_MAP) {
2927 		map->inner_map = calloc(1, sizeof(*map->inner_map));
2928 		if (!map->inner_map)
2929 			return -ENOMEM;
2930 		map->inner_map->fd = create_placeholder_fd();
2931 		if (map->inner_map->fd < 0)
2932 			return map->inner_map->fd;
2933 		map->inner_map->sec_idx = sec_idx;
2934 		map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2935 		if (!map->inner_map->name)
2936 			return -ENOMEM;
2937 		sprintf(map->inner_map->name, "%s.inner", map_name);
2938 
2939 		fill_map_from_def(map->inner_map, &inner_def);
2940 	}
2941 
2942 	err = map_fill_btf_type_info(obj, map);
2943 	if (err)
2944 		return err;
2945 
2946 	return 0;
2947 }
2948 
init_arena_map_data(struct bpf_object * obj,struct bpf_map * map,const char * sec_name,int sec_idx,void * data,size_t data_sz)2949 static int init_arena_map_data(struct bpf_object *obj, struct bpf_map *map,
2950 			       const char *sec_name, int sec_idx,
2951 			       void *data, size_t data_sz)
2952 {
2953 	const long page_sz = sysconf(_SC_PAGE_SIZE);
2954 	size_t mmap_sz;
2955 
2956 	mmap_sz = bpf_map_mmap_sz(obj->arena_map);
2957 	if (roundup(data_sz, page_sz) > mmap_sz) {
2958 		pr_warn("elf: sec '%s': declared ARENA map size (%zu) is too small to hold global __arena variables of size %zu\n",
2959 			sec_name, mmap_sz, data_sz);
2960 		return -E2BIG;
2961 	}
2962 
2963 	obj->arena_data = malloc(data_sz);
2964 	if (!obj->arena_data)
2965 		return -ENOMEM;
2966 	memcpy(obj->arena_data, data, data_sz);
2967 	obj->arena_data_sz = data_sz;
2968 
2969 	/* make bpf_map__init_value() work for ARENA maps */
2970 	map->mmaped = obj->arena_data;
2971 
2972 	return 0;
2973 }
2974 
bpf_object__init_user_btf_maps(struct bpf_object * obj,bool strict,const char * pin_root_path)2975 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2976 					  const char *pin_root_path)
2977 {
2978 	const struct btf_type *sec = NULL;
2979 	int nr_types, i, vlen, err;
2980 	const struct btf_type *t;
2981 	const char *name;
2982 	Elf_Data *data;
2983 	Elf_Scn *scn;
2984 
2985 	if (obj->efile.btf_maps_shndx < 0)
2986 		return 0;
2987 
2988 	scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2989 	data = elf_sec_data(obj, scn);
2990 	if (!scn || !data) {
2991 		pr_warn("elf: failed to get %s map definitions for %s\n",
2992 			MAPS_ELF_SEC, obj->path);
2993 		return -EINVAL;
2994 	}
2995 
2996 	nr_types = btf__type_cnt(obj->btf);
2997 	for (i = 1; i < nr_types; i++) {
2998 		t = btf__type_by_id(obj->btf, i);
2999 		if (!btf_is_datasec(t))
3000 			continue;
3001 		name = btf__name_by_offset(obj->btf, t->name_off);
3002 		if (strcmp(name, MAPS_ELF_SEC) == 0) {
3003 			sec = t;
3004 			obj->efile.btf_maps_sec_btf_id = i;
3005 			break;
3006 		}
3007 	}
3008 
3009 	if (!sec) {
3010 		pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
3011 		return -ENOENT;
3012 	}
3013 
3014 	vlen = btf_vlen(sec);
3015 	for (i = 0; i < vlen; i++) {
3016 		err = bpf_object__init_user_btf_map(obj, sec, i,
3017 						    obj->efile.btf_maps_shndx,
3018 						    data, strict,
3019 						    pin_root_path);
3020 		if (err)
3021 			return err;
3022 	}
3023 
3024 	for (i = 0; i < obj->nr_maps; i++) {
3025 		struct bpf_map *map = &obj->maps[i];
3026 
3027 		if (map->def.type != BPF_MAP_TYPE_ARENA)
3028 			continue;
3029 
3030 		if (obj->arena_map) {
3031 			pr_warn("map '%s': only single ARENA map is supported (map '%s' is also ARENA)\n",
3032 				map->name, obj->arena_map->name);
3033 			return -EINVAL;
3034 		}
3035 		obj->arena_map = map;
3036 
3037 		if (obj->efile.arena_data) {
3038 			err = init_arena_map_data(obj, map, ARENA_SEC, obj->efile.arena_data_shndx,
3039 						  obj->efile.arena_data->d_buf,
3040 						  obj->efile.arena_data->d_size);
3041 			if (err)
3042 				return err;
3043 		}
3044 	}
3045 	if (obj->efile.arena_data && !obj->arena_map) {
3046 		pr_warn("elf: sec '%s': to use global __arena variables the ARENA map should be explicitly declared in SEC(\".maps\")\n",
3047 			ARENA_SEC);
3048 		return -ENOENT;
3049 	}
3050 
3051 	return 0;
3052 }
3053 
bpf_object__init_maps(struct bpf_object * obj,const struct bpf_object_open_opts * opts)3054 static int bpf_object__init_maps(struct bpf_object *obj,
3055 				 const struct bpf_object_open_opts *opts)
3056 {
3057 	const char *pin_root_path;
3058 	bool strict;
3059 	int err = 0;
3060 
3061 	strict = !OPTS_GET(opts, relaxed_maps, false);
3062 	pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
3063 
3064 	err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
3065 	err = err ?: bpf_object__init_global_data_maps(obj);
3066 	err = err ?: bpf_object__init_kconfig_map(obj);
3067 	err = err ?: bpf_object_init_struct_ops(obj);
3068 
3069 	return err;
3070 }
3071 
section_have_execinstr(struct bpf_object * obj,int idx)3072 static bool section_have_execinstr(struct bpf_object *obj, int idx)
3073 {
3074 	Elf64_Shdr *sh;
3075 
3076 	sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
3077 	if (!sh)
3078 		return false;
3079 
3080 	return sh->sh_flags & SHF_EXECINSTR;
3081 }
3082 
starts_with_qmark(const char * s)3083 static bool starts_with_qmark(const char *s)
3084 {
3085 	return s && s[0] == '?';
3086 }
3087 
btf_needs_sanitization(struct bpf_object * obj)3088 static bool btf_needs_sanitization(struct bpf_object *obj)
3089 {
3090 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
3091 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
3092 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
3093 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
3094 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
3095 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
3096 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
3097 	bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC);
3098 
3099 	return !has_func || !has_datasec || !has_func_global || !has_float ||
3100 	       !has_decl_tag || !has_type_tag || !has_enum64 || !has_qmark_datasec;
3101 }
3102 
bpf_object__sanitize_btf(struct bpf_object * obj,struct btf * btf)3103 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
3104 {
3105 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
3106 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
3107 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
3108 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
3109 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
3110 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
3111 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
3112 	bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC);
3113 	int enum64_placeholder_id = 0;
3114 	struct btf_type *t;
3115 	int i, j, vlen;
3116 
3117 	for (i = 1; i < btf__type_cnt(btf); i++) {
3118 		t = (struct btf_type *)btf__type_by_id(btf, i);
3119 
3120 		if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
3121 			/* replace VAR/DECL_TAG with INT */
3122 			t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
3123 			/*
3124 			 * using size = 1 is the safest choice, 4 will be too
3125 			 * big and cause kernel BTF validation failure if
3126 			 * original variable took less than 4 bytes
3127 			 */
3128 			t->size = 1;
3129 			*(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
3130 		} else if (!has_datasec && btf_is_datasec(t)) {
3131 			/* replace DATASEC with STRUCT */
3132 			const struct btf_var_secinfo *v = btf_var_secinfos(t);
3133 			struct btf_member *m = btf_members(t);
3134 			struct btf_type *vt;
3135 			char *name;
3136 
3137 			name = (char *)btf__name_by_offset(btf, t->name_off);
3138 			while (*name) {
3139 				if (*name == '.' || *name == '?')
3140 					*name = '_';
3141 				name++;
3142 			}
3143 
3144 			vlen = btf_vlen(t);
3145 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
3146 			for (j = 0; j < vlen; j++, v++, m++) {
3147 				/* order of field assignments is important */
3148 				m->offset = v->offset * 8;
3149 				m->type = v->type;
3150 				/* preserve variable name as member name */
3151 				vt = (void *)btf__type_by_id(btf, v->type);
3152 				m->name_off = vt->name_off;
3153 			}
3154 		} else if (!has_qmark_datasec && btf_is_datasec(t) &&
3155 			   starts_with_qmark(btf__name_by_offset(btf, t->name_off))) {
3156 			/* replace '?' prefix with '_' for DATASEC names */
3157 			char *name;
3158 
3159 			name = (char *)btf__name_by_offset(btf, t->name_off);
3160 			if (name[0] == '?')
3161 				name[0] = '_';
3162 		} else if (!has_func && btf_is_func_proto(t)) {
3163 			/* replace FUNC_PROTO with ENUM */
3164 			vlen = btf_vlen(t);
3165 			t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
3166 			t->size = sizeof(__u32); /* kernel enforced */
3167 		} else if (!has_func && btf_is_func(t)) {
3168 			/* replace FUNC with TYPEDEF */
3169 			t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
3170 		} else if (!has_func_global && btf_is_func(t)) {
3171 			/* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
3172 			t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
3173 		} else if (!has_float && btf_is_float(t)) {
3174 			/* replace FLOAT with an equally-sized empty STRUCT;
3175 			 * since C compilers do not accept e.g. "float" as a
3176 			 * valid struct name, make it anonymous
3177 			 */
3178 			t->name_off = 0;
3179 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
3180 		} else if (!has_type_tag && btf_is_type_tag(t)) {
3181 			/* replace TYPE_TAG with a CONST */
3182 			t->name_off = 0;
3183 			t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
3184 		} else if (!has_enum64 && btf_is_enum(t)) {
3185 			/* clear the kflag */
3186 			t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
3187 		} else if (!has_enum64 && btf_is_enum64(t)) {
3188 			/* replace ENUM64 with a union */
3189 			struct btf_member *m;
3190 
3191 			if (enum64_placeholder_id == 0) {
3192 				enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
3193 				if (enum64_placeholder_id < 0)
3194 					return enum64_placeholder_id;
3195 
3196 				t = (struct btf_type *)btf__type_by_id(btf, i);
3197 			}
3198 
3199 			m = btf_members(t);
3200 			vlen = btf_vlen(t);
3201 			t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
3202 			for (j = 0; j < vlen; j++, m++) {
3203 				m->type = enum64_placeholder_id;
3204 				m->offset = 0;
3205 			}
3206 		}
3207 	}
3208 
3209 	return 0;
3210 }
3211 
libbpf_needs_btf(const struct bpf_object * obj)3212 static bool libbpf_needs_btf(const struct bpf_object *obj)
3213 {
3214 	return obj->efile.btf_maps_shndx >= 0 ||
3215 	       obj->efile.has_st_ops ||
3216 	       obj->nr_extern > 0;
3217 }
3218 
kernel_needs_btf(const struct bpf_object * obj)3219 static bool kernel_needs_btf(const struct bpf_object *obj)
3220 {
3221 	return obj->efile.has_st_ops;
3222 }
3223 
bpf_object__init_btf(struct bpf_object * obj,Elf_Data * btf_data,Elf_Data * btf_ext_data)3224 static int bpf_object__init_btf(struct bpf_object *obj,
3225 				Elf_Data *btf_data,
3226 				Elf_Data *btf_ext_data)
3227 {
3228 	int err = -ENOENT;
3229 
3230 	if (btf_data) {
3231 		obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
3232 		err = libbpf_get_error(obj->btf);
3233 		if (err) {
3234 			obj->btf = NULL;
3235 			pr_warn("Error loading ELF section %s: %s.\n", BTF_ELF_SEC, errstr(err));
3236 			goto out;
3237 		}
3238 		/* enforce 8-byte pointers for BPF-targeted BTFs */
3239 		btf__set_pointer_size(obj->btf, 8);
3240 	}
3241 	if (btf_ext_data) {
3242 		struct btf_ext_info *ext_segs[3];
3243 		int seg_num, sec_num;
3244 
3245 		if (!obj->btf) {
3246 			pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
3247 				 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
3248 			goto out;
3249 		}
3250 		obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
3251 		err = libbpf_get_error(obj->btf_ext);
3252 		if (err) {
3253 			pr_warn("Error loading ELF section %s: %s. Ignored and continue.\n",
3254 				BTF_EXT_ELF_SEC, errstr(err));
3255 			obj->btf_ext = NULL;
3256 			goto out;
3257 		}
3258 
3259 		/* setup .BTF.ext to ELF section mapping */
3260 		ext_segs[0] = &obj->btf_ext->func_info;
3261 		ext_segs[1] = &obj->btf_ext->line_info;
3262 		ext_segs[2] = &obj->btf_ext->core_relo_info;
3263 		for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
3264 			struct btf_ext_info *seg = ext_segs[seg_num];
3265 			const struct btf_ext_info_sec *sec;
3266 			const char *sec_name;
3267 			Elf_Scn *scn;
3268 
3269 			if (seg->sec_cnt == 0)
3270 				continue;
3271 
3272 			seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
3273 			if (!seg->sec_idxs) {
3274 				err = -ENOMEM;
3275 				goto out;
3276 			}
3277 
3278 			sec_num = 0;
3279 			for_each_btf_ext_sec(seg, sec) {
3280 				/* preventively increment index to avoid doing
3281 				 * this before every continue below
3282 				 */
3283 				sec_num++;
3284 
3285 				sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
3286 				if (str_is_empty(sec_name))
3287 					continue;
3288 				scn = elf_sec_by_name(obj, sec_name);
3289 				if (!scn)
3290 					continue;
3291 
3292 				seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
3293 			}
3294 		}
3295 	}
3296 out:
3297 	if (err && libbpf_needs_btf(obj)) {
3298 		pr_warn("BTF is required, but is missing or corrupted.\n");
3299 		return err;
3300 	}
3301 	return 0;
3302 }
3303 
compare_vsi_off(const void * _a,const void * _b)3304 static int compare_vsi_off(const void *_a, const void *_b)
3305 {
3306 	const struct btf_var_secinfo *a = _a;
3307 	const struct btf_var_secinfo *b = _b;
3308 
3309 	return a->offset - b->offset;
3310 }
3311 
btf_fixup_datasec(struct bpf_object * obj,struct btf * btf,struct btf_type * t)3312 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
3313 			     struct btf_type *t)
3314 {
3315 	__u32 size = 0, i, vars = btf_vlen(t);
3316 	const char *sec_name = btf__name_by_offset(btf, t->name_off);
3317 	struct btf_var_secinfo *vsi;
3318 	bool fixup_offsets = false;
3319 	int err;
3320 
3321 	if (!sec_name) {
3322 		pr_debug("No name found in string section for DATASEC kind.\n");
3323 		return -ENOENT;
3324 	}
3325 
3326 	/* Extern-backing datasecs (.ksyms, .kconfig) have their size and
3327 	 * variable offsets set at the previous step. Further, not every
3328 	 * extern BTF VAR has corresponding ELF symbol preserved, so we skip
3329 	 * all fixups altogether for such sections and go straight to sorting
3330 	 * VARs within their DATASEC.
3331 	 */
3332 	if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0)
3333 		goto sort_vars;
3334 
3335 	/* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to
3336 	 * fix this up. But BPF static linker already fixes this up and fills
3337 	 * all the sizes and offsets during static linking. So this step has
3338 	 * to be optional. But the STV_HIDDEN handling is non-optional for any
3339 	 * non-extern DATASEC, so the variable fixup loop below handles both
3340 	 * functions at the same time, paying the cost of BTF VAR <-> ELF
3341 	 * symbol matching just once.
3342 	 */
3343 	if (t->size == 0) {
3344 		err = find_elf_sec_sz(obj, sec_name, &size);
3345 		if (err || !size) {
3346 			pr_debug("sec '%s': failed to determine size from ELF: size %u, err %s\n",
3347 				 sec_name, size, errstr(err));
3348 			return -ENOENT;
3349 		}
3350 
3351 		t->size = size;
3352 		fixup_offsets = true;
3353 	}
3354 
3355 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
3356 		const struct btf_type *t_var;
3357 		struct btf_var *var;
3358 		const char *var_name;
3359 		Elf64_Sym *sym;
3360 
3361 		t_var = btf__type_by_id(btf, vsi->type);
3362 		if (!t_var || !btf_is_var(t_var)) {
3363 			pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name);
3364 			return -EINVAL;
3365 		}
3366 
3367 		var = btf_var(t_var);
3368 		if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN)
3369 			continue;
3370 
3371 		var_name = btf__name_by_offset(btf, t_var->name_off);
3372 		if (!var_name) {
3373 			pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n",
3374 				 sec_name, i);
3375 			return -ENOENT;
3376 		}
3377 
3378 		sym = find_elf_var_sym(obj, var_name);
3379 		if (IS_ERR(sym)) {
3380 			pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n",
3381 				 sec_name, var_name);
3382 			return -ENOENT;
3383 		}
3384 
3385 		if (fixup_offsets)
3386 			vsi->offset = sym->st_value;
3387 
3388 		/* if variable is a global/weak symbol, but has restricted
3389 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR
3390 		 * as static. This follows similar logic for functions (BPF
3391 		 * subprogs) and influences libbpf's further decisions about
3392 		 * whether to make global data BPF array maps as
3393 		 * BPF_F_MMAPABLE.
3394 		 */
3395 		if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
3396 		    || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)
3397 			var->linkage = BTF_VAR_STATIC;
3398 	}
3399 
3400 sort_vars:
3401 	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
3402 	return 0;
3403 }
3404 
bpf_object_fixup_btf(struct bpf_object * obj)3405 static int bpf_object_fixup_btf(struct bpf_object *obj)
3406 {
3407 	int i, n, err = 0;
3408 
3409 	if (!obj->btf)
3410 		return 0;
3411 
3412 	n = btf__type_cnt(obj->btf);
3413 	for (i = 1; i < n; i++) {
3414 		struct btf_type *t = btf_type_by_id(obj->btf, i);
3415 
3416 		/* Loader needs to fix up some of the things compiler
3417 		 * couldn't get its hands on while emitting BTF. This
3418 		 * is section size and global variable offset. We use
3419 		 * the info from the ELF itself for this purpose.
3420 		 */
3421 		if (btf_is_datasec(t)) {
3422 			err = btf_fixup_datasec(obj, obj->btf, t);
3423 			if (err)
3424 				return err;
3425 		}
3426 	}
3427 
3428 	return 0;
3429 }
3430 
prog_needs_vmlinux_btf(struct bpf_program * prog)3431 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
3432 {
3433 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
3434 	    prog->type == BPF_PROG_TYPE_LSM)
3435 		return true;
3436 
3437 	/* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
3438 	 * also need vmlinux BTF
3439 	 */
3440 	if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
3441 		return true;
3442 
3443 	return false;
3444 }
3445 
map_needs_vmlinux_btf(struct bpf_map * map)3446 static bool map_needs_vmlinux_btf(struct bpf_map *map)
3447 {
3448 	return bpf_map__is_struct_ops(map);
3449 }
3450 
obj_needs_vmlinux_btf(const struct bpf_object * obj)3451 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
3452 {
3453 	struct bpf_program *prog;
3454 	struct bpf_map *map;
3455 	int i;
3456 
3457 	/* CO-RE relocations need kernel BTF, only when btf_custom_path
3458 	 * is not specified
3459 	 */
3460 	if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
3461 		return true;
3462 
3463 	/* Support for typed ksyms needs kernel BTF */
3464 	for (i = 0; i < obj->nr_extern; i++) {
3465 		const struct extern_desc *ext;
3466 
3467 		ext = &obj->externs[i];
3468 		if (ext->type == EXT_KSYM && ext->ksym.type_id)
3469 			return true;
3470 	}
3471 
3472 	bpf_object__for_each_program(prog, obj) {
3473 		if (!prog->autoload)
3474 			continue;
3475 		if (prog_needs_vmlinux_btf(prog))
3476 			return true;
3477 	}
3478 
3479 	bpf_object__for_each_map(map, obj) {
3480 		if (map_needs_vmlinux_btf(map))
3481 			return true;
3482 	}
3483 
3484 	return false;
3485 }
3486 
bpf_object__load_vmlinux_btf(struct bpf_object * obj,bool force)3487 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
3488 {
3489 	int err;
3490 
3491 	/* btf_vmlinux could be loaded earlier */
3492 	if (obj->btf_vmlinux || obj->gen_loader)
3493 		return 0;
3494 
3495 	if (!force && !obj_needs_vmlinux_btf(obj))
3496 		return 0;
3497 
3498 	obj->btf_vmlinux = btf__load_vmlinux_btf();
3499 	err = libbpf_get_error(obj->btf_vmlinux);
3500 	if (err) {
3501 		pr_warn("Error loading vmlinux BTF: %s\n", errstr(err));
3502 		obj->btf_vmlinux = NULL;
3503 		return err;
3504 	}
3505 	return 0;
3506 }
3507 
bpf_object__sanitize_and_load_btf(struct bpf_object * obj)3508 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
3509 {
3510 	struct btf *kern_btf = obj->btf;
3511 	bool btf_mandatory, sanitize;
3512 	int i, err = 0;
3513 
3514 	if (!obj->btf)
3515 		return 0;
3516 
3517 	if (!kernel_supports(obj, FEAT_BTF)) {
3518 		if (kernel_needs_btf(obj)) {
3519 			err = -EOPNOTSUPP;
3520 			goto report;
3521 		}
3522 		pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3523 		return 0;
3524 	}
3525 
3526 	/* Even though some subprogs are global/weak, user might prefer more
3527 	 * permissive BPF verification process that BPF verifier performs for
3528 	 * static functions, taking into account more context from the caller
3529 	 * functions. In such case, they need to mark such subprogs with
3530 	 * __attribute__((visibility("hidden"))) and libbpf will adjust
3531 	 * corresponding FUNC BTF type to be marked as static and trigger more
3532 	 * involved BPF verification process.
3533 	 */
3534 	for (i = 0; i < obj->nr_programs; i++) {
3535 		struct bpf_program *prog = &obj->programs[i];
3536 		struct btf_type *t;
3537 		const char *name;
3538 		int j, n;
3539 
3540 		if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3541 			continue;
3542 
3543 		n = btf__type_cnt(obj->btf);
3544 		for (j = 1; j < n; j++) {
3545 			t = btf_type_by_id(obj->btf, j);
3546 			if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3547 				continue;
3548 
3549 			name = btf__str_by_offset(obj->btf, t->name_off);
3550 			if (strcmp(name, prog->name) != 0)
3551 				continue;
3552 
3553 			t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3554 			break;
3555 		}
3556 	}
3557 
3558 	sanitize = btf_needs_sanitization(obj);
3559 	if (sanitize) {
3560 		const void *raw_data;
3561 		__u32 sz;
3562 
3563 		/* clone BTF to sanitize a copy and leave the original intact */
3564 		raw_data = btf__raw_data(obj->btf, &sz);
3565 		kern_btf = btf__new(raw_data, sz);
3566 		err = libbpf_get_error(kern_btf);
3567 		if (err)
3568 			return err;
3569 
3570 		/* enforce 8-byte pointers for BPF-targeted BTFs */
3571 		btf__set_pointer_size(obj->btf, 8);
3572 		err = bpf_object__sanitize_btf(obj, kern_btf);
3573 		if (err)
3574 			return err;
3575 	}
3576 
3577 	if (obj->gen_loader) {
3578 		__u32 raw_size = 0;
3579 		const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3580 
3581 		if (!raw_data)
3582 			return -ENOMEM;
3583 		bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3584 		/* Pretend to have valid FD to pass various fd >= 0 checks.
3585 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3586 		 */
3587 		btf__set_fd(kern_btf, 0);
3588 	} else {
3589 		/* currently BPF_BTF_LOAD only supports log_level 1 */
3590 		err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3591 					   obj->log_level ? 1 : 0, obj->token_fd);
3592 	}
3593 	if (sanitize) {
3594 		if (!err) {
3595 			/* move fd to libbpf's BTF */
3596 			btf__set_fd(obj->btf, btf__fd(kern_btf));
3597 			btf__set_fd(kern_btf, -1);
3598 		}
3599 		btf__free(kern_btf);
3600 	}
3601 report:
3602 	if (err) {
3603 		btf_mandatory = kernel_needs_btf(obj);
3604 		if (btf_mandatory) {
3605 			pr_warn("Error loading .BTF into kernel: %s. BTF is mandatory, can't proceed.\n",
3606 				errstr(err));
3607 		} else {
3608 			pr_info("Error loading .BTF into kernel: %s. BTF is optional, ignoring.\n",
3609 				errstr(err));
3610 			err = 0;
3611 		}
3612 	}
3613 	return err;
3614 }
3615 
elf_sym_str(const struct bpf_object * obj,size_t off)3616 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3617 {
3618 	const char *name;
3619 
3620 	name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3621 	if (!name) {
3622 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3623 			off, obj->path, elf_errmsg(-1));
3624 		return NULL;
3625 	}
3626 
3627 	return name;
3628 }
3629 
elf_sec_str(const struct bpf_object * obj,size_t off)3630 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3631 {
3632 	const char *name;
3633 
3634 	name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3635 	if (!name) {
3636 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3637 			off, obj->path, elf_errmsg(-1));
3638 		return NULL;
3639 	}
3640 
3641 	return name;
3642 }
3643 
elf_sec_by_idx(const struct bpf_object * obj,size_t idx)3644 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3645 {
3646 	Elf_Scn *scn;
3647 
3648 	scn = elf_getscn(obj->efile.elf, idx);
3649 	if (!scn) {
3650 		pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3651 			idx, obj->path, elf_errmsg(-1));
3652 		return NULL;
3653 	}
3654 	return scn;
3655 }
3656 
elf_sec_by_name(const struct bpf_object * obj,const char * name)3657 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3658 {
3659 	Elf_Scn *scn = NULL;
3660 	Elf *elf = obj->efile.elf;
3661 	const char *sec_name;
3662 
3663 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3664 		sec_name = elf_sec_name(obj, scn);
3665 		if (!sec_name)
3666 			return NULL;
3667 
3668 		if (strcmp(sec_name, name) != 0)
3669 			continue;
3670 
3671 		return scn;
3672 	}
3673 	return NULL;
3674 }
3675 
elf_sec_hdr(const struct bpf_object * obj,Elf_Scn * scn)3676 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3677 {
3678 	Elf64_Shdr *shdr;
3679 
3680 	if (!scn)
3681 		return NULL;
3682 
3683 	shdr = elf64_getshdr(scn);
3684 	if (!shdr) {
3685 		pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3686 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3687 		return NULL;
3688 	}
3689 
3690 	return shdr;
3691 }
3692 
elf_sec_name(const struct bpf_object * obj,Elf_Scn * scn)3693 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3694 {
3695 	const char *name;
3696 	Elf64_Shdr *sh;
3697 
3698 	if (!scn)
3699 		return NULL;
3700 
3701 	sh = elf_sec_hdr(obj, scn);
3702 	if (!sh)
3703 		return NULL;
3704 
3705 	name = elf_sec_str(obj, sh->sh_name);
3706 	if (!name) {
3707 		pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3708 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3709 		return NULL;
3710 	}
3711 
3712 	return name;
3713 }
3714 
elf_sec_data(const struct bpf_object * obj,Elf_Scn * scn)3715 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3716 {
3717 	Elf_Data *data;
3718 
3719 	if (!scn)
3720 		return NULL;
3721 
3722 	data = elf_getdata(scn, 0);
3723 	if (!data) {
3724 		pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3725 			elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3726 			obj->path, elf_errmsg(-1));
3727 		return NULL;
3728 	}
3729 
3730 	return data;
3731 }
3732 
elf_sym_by_idx(const struct bpf_object * obj,size_t idx)3733 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3734 {
3735 	if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3736 		return NULL;
3737 
3738 	return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3739 }
3740 
elf_rel_by_idx(Elf_Data * data,size_t idx)3741 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3742 {
3743 	if (idx >= data->d_size / sizeof(Elf64_Rel))
3744 		return NULL;
3745 
3746 	return (Elf64_Rel *)data->d_buf + idx;
3747 }
3748 
is_sec_name_dwarf(const char * name)3749 static bool is_sec_name_dwarf(const char *name)
3750 {
3751 	/* approximation, but the actual list is too long */
3752 	return str_has_pfx(name, ".debug_");
3753 }
3754 
ignore_elf_section(Elf64_Shdr * hdr,const char * name)3755 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3756 {
3757 	/* no special handling of .strtab */
3758 	if (hdr->sh_type == SHT_STRTAB)
3759 		return true;
3760 
3761 	/* ignore .llvm_addrsig section as well */
3762 	if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3763 		return true;
3764 
3765 	/* no subprograms will lead to an empty .text section, ignore it */
3766 	if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3767 	    strcmp(name, ".text") == 0)
3768 		return true;
3769 
3770 	/* DWARF sections */
3771 	if (is_sec_name_dwarf(name))
3772 		return true;
3773 
3774 	if (str_has_pfx(name, ".rel")) {
3775 		name += sizeof(".rel") - 1;
3776 		/* DWARF section relocations */
3777 		if (is_sec_name_dwarf(name))
3778 			return true;
3779 
3780 		/* .BTF and .BTF.ext don't need relocations */
3781 		if (strcmp(name, BTF_ELF_SEC) == 0 ||
3782 		    strcmp(name, BTF_EXT_ELF_SEC) == 0)
3783 			return true;
3784 	}
3785 
3786 	return false;
3787 }
3788 
cmp_progs(const void * _a,const void * _b)3789 static int cmp_progs(const void *_a, const void *_b)
3790 {
3791 	const struct bpf_program *a = _a;
3792 	const struct bpf_program *b = _b;
3793 
3794 	if (a->sec_idx != b->sec_idx)
3795 		return a->sec_idx < b->sec_idx ? -1 : 1;
3796 
3797 	/* sec_insn_off can't be the same within the section */
3798 	return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3799 }
3800 
bpf_object__elf_collect(struct bpf_object * obj)3801 static int bpf_object__elf_collect(struct bpf_object *obj)
3802 {
3803 	struct elf_sec_desc *sec_desc;
3804 	Elf *elf = obj->efile.elf;
3805 	Elf_Data *btf_ext_data = NULL;
3806 	Elf_Data *btf_data = NULL;
3807 	int idx = 0, err = 0;
3808 	const char *name;
3809 	Elf_Data *data;
3810 	Elf_Scn *scn;
3811 	Elf64_Shdr *sh;
3812 
3813 	/* ELF section indices are 0-based, but sec #0 is special "invalid"
3814 	 * section. Since section count retrieved by elf_getshdrnum() does
3815 	 * include sec #0, it is already the necessary size of an array to keep
3816 	 * all the sections.
3817 	 */
3818 	if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) {
3819 		pr_warn("elf: failed to get the number of sections for %s: %s\n",
3820 			obj->path, elf_errmsg(-1));
3821 		return -LIBBPF_ERRNO__FORMAT;
3822 	}
3823 	obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3824 	if (!obj->efile.secs)
3825 		return -ENOMEM;
3826 
3827 	/* a bunch of ELF parsing functionality depends on processing symbols,
3828 	 * so do the first pass and find the symbol table
3829 	 */
3830 	scn = NULL;
3831 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3832 		sh = elf_sec_hdr(obj, scn);
3833 		if (!sh)
3834 			return -LIBBPF_ERRNO__FORMAT;
3835 
3836 		if (sh->sh_type == SHT_SYMTAB) {
3837 			if (obj->efile.symbols) {
3838 				pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3839 				return -LIBBPF_ERRNO__FORMAT;
3840 			}
3841 
3842 			data = elf_sec_data(obj, scn);
3843 			if (!data)
3844 				return -LIBBPF_ERRNO__FORMAT;
3845 
3846 			idx = elf_ndxscn(scn);
3847 
3848 			obj->efile.symbols = data;
3849 			obj->efile.symbols_shndx = idx;
3850 			obj->efile.strtabidx = sh->sh_link;
3851 		}
3852 	}
3853 
3854 	if (!obj->efile.symbols) {
3855 		pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3856 			obj->path);
3857 		return -ENOENT;
3858 	}
3859 
3860 	scn = NULL;
3861 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3862 		idx = elf_ndxscn(scn);
3863 		sec_desc = &obj->efile.secs[idx];
3864 
3865 		sh = elf_sec_hdr(obj, scn);
3866 		if (!sh)
3867 			return -LIBBPF_ERRNO__FORMAT;
3868 
3869 		name = elf_sec_str(obj, sh->sh_name);
3870 		if (!name)
3871 			return -LIBBPF_ERRNO__FORMAT;
3872 
3873 		if (ignore_elf_section(sh, name))
3874 			continue;
3875 
3876 		data = elf_sec_data(obj, scn);
3877 		if (!data)
3878 			return -LIBBPF_ERRNO__FORMAT;
3879 
3880 		pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3881 			 idx, name, (unsigned long)data->d_size,
3882 			 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3883 			 (int)sh->sh_type);
3884 
3885 		if (strcmp(name, "license") == 0) {
3886 			err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3887 			if (err)
3888 				return err;
3889 		} else if (strcmp(name, "version") == 0) {
3890 			err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3891 			if (err)
3892 				return err;
3893 		} else if (strcmp(name, "maps") == 0) {
3894 			pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n");
3895 			return -ENOTSUP;
3896 		} else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3897 			obj->efile.btf_maps_shndx = idx;
3898 		} else if (strcmp(name, BTF_ELF_SEC) == 0) {
3899 			if (sh->sh_type != SHT_PROGBITS)
3900 				return -LIBBPF_ERRNO__FORMAT;
3901 			btf_data = data;
3902 		} else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3903 			if (sh->sh_type != SHT_PROGBITS)
3904 				return -LIBBPF_ERRNO__FORMAT;
3905 			btf_ext_data = data;
3906 		} else if (sh->sh_type == SHT_SYMTAB) {
3907 			/* already processed during the first pass above */
3908 		} else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3909 			if (sh->sh_flags & SHF_EXECINSTR) {
3910 				if (strcmp(name, ".text") == 0)
3911 					obj->efile.text_shndx = idx;
3912 				err = bpf_object__add_programs(obj, data, name, idx);
3913 				if (err)
3914 					return err;
3915 			} else if (strcmp(name, DATA_SEC) == 0 ||
3916 				   str_has_pfx(name, DATA_SEC ".")) {
3917 				sec_desc->sec_type = SEC_DATA;
3918 				sec_desc->shdr = sh;
3919 				sec_desc->data = data;
3920 			} else if (strcmp(name, RODATA_SEC) == 0 ||
3921 				   str_has_pfx(name, RODATA_SEC ".")) {
3922 				sec_desc->sec_type = SEC_RODATA;
3923 				sec_desc->shdr = sh;
3924 				sec_desc->data = data;
3925 			} else if (strcmp(name, STRUCT_OPS_SEC) == 0 ||
3926 				   strcmp(name, STRUCT_OPS_LINK_SEC) == 0 ||
3927 				   strcmp(name, "?" STRUCT_OPS_SEC) == 0 ||
3928 				   strcmp(name, "?" STRUCT_OPS_LINK_SEC) == 0) {
3929 				sec_desc->sec_type = SEC_ST_OPS;
3930 				sec_desc->shdr = sh;
3931 				sec_desc->data = data;
3932 				obj->efile.has_st_ops = true;
3933 			} else if (strcmp(name, ARENA_SEC) == 0) {
3934 				obj->efile.arena_data = data;
3935 				obj->efile.arena_data_shndx = idx;
3936 			} else {
3937 				pr_info("elf: skipping unrecognized data section(%d) %s\n",
3938 					idx, name);
3939 			}
3940 		} else if (sh->sh_type == SHT_REL) {
3941 			int targ_sec_idx = sh->sh_info; /* points to other section */
3942 
3943 			if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3944 			    targ_sec_idx >= obj->efile.sec_cnt)
3945 				return -LIBBPF_ERRNO__FORMAT;
3946 
3947 			/* Only do relo for section with exec instructions */
3948 			if (!section_have_execinstr(obj, targ_sec_idx) &&
3949 			    strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3950 			    strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) &&
3951 			    strcmp(name, ".rel?" STRUCT_OPS_SEC) &&
3952 			    strcmp(name, ".rel?" STRUCT_OPS_LINK_SEC) &&
3953 			    strcmp(name, ".rel" MAPS_ELF_SEC)) {
3954 				pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3955 					idx, name, targ_sec_idx,
3956 					elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3957 				continue;
3958 			}
3959 
3960 			sec_desc->sec_type = SEC_RELO;
3961 			sec_desc->shdr = sh;
3962 			sec_desc->data = data;
3963 		} else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 ||
3964 							 str_has_pfx(name, BSS_SEC "."))) {
3965 			sec_desc->sec_type = SEC_BSS;
3966 			sec_desc->shdr = sh;
3967 			sec_desc->data = data;
3968 		} else {
3969 			pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3970 				(size_t)sh->sh_size);
3971 		}
3972 	}
3973 
3974 	if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3975 		pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3976 		return -LIBBPF_ERRNO__FORMAT;
3977 	}
3978 
3979 	/* change BPF program insns to native endianness for introspection */
3980 	if (!is_native_endianness(obj))
3981 		bpf_object_bswap_progs(obj);
3982 
3983 	/* sort BPF programs by section name and in-section instruction offset
3984 	 * for faster search
3985 	 */
3986 	if (obj->nr_programs)
3987 		qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3988 
3989 	return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3990 }
3991 
sym_is_extern(const Elf64_Sym * sym)3992 static bool sym_is_extern(const Elf64_Sym *sym)
3993 {
3994 	int bind = ELF64_ST_BIND(sym->st_info);
3995 	/* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3996 	return sym->st_shndx == SHN_UNDEF &&
3997 	       (bind == STB_GLOBAL || bind == STB_WEAK) &&
3998 	       ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3999 }
4000 
sym_is_subprog(const Elf64_Sym * sym,int text_shndx)4001 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
4002 {
4003 	int bind = ELF64_ST_BIND(sym->st_info);
4004 	int type = ELF64_ST_TYPE(sym->st_info);
4005 
4006 	/* in .text section */
4007 	if (sym->st_shndx != text_shndx)
4008 		return false;
4009 
4010 	/* local function */
4011 	if (bind == STB_LOCAL && type == STT_SECTION)
4012 		return true;
4013 
4014 	/* global function */
4015 	return (bind == STB_GLOBAL || bind == STB_WEAK) && type == STT_FUNC;
4016 }
4017 
find_extern_btf_id(const struct btf * btf,const char * ext_name)4018 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
4019 {
4020 	const struct btf_type *t;
4021 	const char *tname;
4022 	int i, n;
4023 
4024 	if (!btf)
4025 		return -ESRCH;
4026 
4027 	n = btf__type_cnt(btf);
4028 	for (i = 1; i < n; i++) {
4029 		t = btf__type_by_id(btf, i);
4030 
4031 		if (!btf_is_var(t) && !btf_is_func(t))
4032 			continue;
4033 
4034 		tname = btf__name_by_offset(btf, t->name_off);
4035 		if (strcmp(tname, ext_name))
4036 			continue;
4037 
4038 		if (btf_is_var(t) &&
4039 		    btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
4040 			return -EINVAL;
4041 
4042 		if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
4043 			return -EINVAL;
4044 
4045 		return i;
4046 	}
4047 
4048 	return -ENOENT;
4049 }
4050 
find_extern_sec_btf_id(struct btf * btf,int ext_btf_id)4051 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
4052 	const struct btf_var_secinfo *vs;
4053 	const struct btf_type *t;
4054 	int i, j, n;
4055 
4056 	if (!btf)
4057 		return -ESRCH;
4058 
4059 	n = btf__type_cnt(btf);
4060 	for (i = 1; i < n; i++) {
4061 		t = btf__type_by_id(btf, i);
4062 
4063 		if (!btf_is_datasec(t))
4064 			continue;
4065 
4066 		vs = btf_var_secinfos(t);
4067 		for (j = 0; j < btf_vlen(t); j++, vs++) {
4068 			if (vs->type == ext_btf_id)
4069 				return i;
4070 		}
4071 	}
4072 
4073 	return -ENOENT;
4074 }
4075 
find_kcfg_type(const struct btf * btf,int id,bool * is_signed)4076 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
4077 				     bool *is_signed)
4078 {
4079 	const struct btf_type *t;
4080 	const char *name;
4081 
4082 	t = skip_mods_and_typedefs(btf, id, NULL);
4083 	name = btf__name_by_offset(btf, t->name_off);
4084 
4085 	if (is_signed)
4086 		*is_signed = false;
4087 	switch (btf_kind(t)) {
4088 	case BTF_KIND_INT: {
4089 		int enc = btf_int_encoding(t);
4090 
4091 		if (enc & BTF_INT_BOOL)
4092 			return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
4093 		if (is_signed)
4094 			*is_signed = enc & BTF_INT_SIGNED;
4095 		if (t->size == 1)
4096 			return KCFG_CHAR;
4097 		if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
4098 			return KCFG_UNKNOWN;
4099 		return KCFG_INT;
4100 	}
4101 	case BTF_KIND_ENUM:
4102 		if (t->size != 4)
4103 			return KCFG_UNKNOWN;
4104 		if (strcmp(name, "libbpf_tristate"))
4105 			return KCFG_UNKNOWN;
4106 		return KCFG_TRISTATE;
4107 	case BTF_KIND_ENUM64:
4108 		if (strcmp(name, "libbpf_tristate"))
4109 			return KCFG_UNKNOWN;
4110 		return KCFG_TRISTATE;
4111 	case BTF_KIND_ARRAY:
4112 		if (btf_array(t)->nelems == 0)
4113 			return KCFG_UNKNOWN;
4114 		if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
4115 			return KCFG_UNKNOWN;
4116 		return KCFG_CHAR_ARR;
4117 	default:
4118 		return KCFG_UNKNOWN;
4119 	}
4120 }
4121 
cmp_externs(const void * _a,const void * _b)4122 static int cmp_externs(const void *_a, const void *_b)
4123 {
4124 	const struct extern_desc *a = _a;
4125 	const struct extern_desc *b = _b;
4126 
4127 	if (a->type != b->type)
4128 		return a->type < b->type ? -1 : 1;
4129 
4130 	if (a->type == EXT_KCFG) {
4131 		/* descending order by alignment requirements */
4132 		if (a->kcfg.align != b->kcfg.align)
4133 			return a->kcfg.align > b->kcfg.align ? -1 : 1;
4134 		/* ascending order by size, within same alignment class */
4135 		if (a->kcfg.sz != b->kcfg.sz)
4136 			return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
4137 	}
4138 
4139 	/* resolve ties by name */
4140 	return strcmp(a->name, b->name);
4141 }
4142 
find_int_btf_id(const struct btf * btf)4143 static int find_int_btf_id(const struct btf *btf)
4144 {
4145 	const struct btf_type *t;
4146 	int i, n;
4147 
4148 	n = btf__type_cnt(btf);
4149 	for (i = 1; i < n; i++) {
4150 		t = btf__type_by_id(btf, i);
4151 
4152 		if (btf_is_int(t) && btf_int_bits(t) == 32)
4153 			return i;
4154 	}
4155 
4156 	return 0;
4157 }
4158 
add_dummy_ksym_var(struct btf * btf)4159 static int add_dummy_ksym_var(struct btf *btf)
4160 {
4161 	int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
4162 	const struct btf_var_secinfo *vs;
4163 	const struct btf_type *sec;
4164 
4165 	if (!btf)
4166 		return 0;
4167 
4168 	sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
4169 					    BTF_KIND_DATASEC);
4170 	if (sec_btf_id < 0)
4171 		return 0;
4172 
4173 	sec = btf__type_by_id(btf, sec_btf_id);
4174 	vs = btf_var_secinfos(sec);
4175 	for (i = 0; i < btf_vlen(sec); i++, vs++) {
4176 		const struct btf_type *vt;
4177 
4178 		vt = btf__type_by_id(btf, vs->type);
4179 		if (btf_is_func(vt))
4180 			break;
4181 	}
4182 
4183 	/* No func in ksyms sec.  No need to add dummy var. */
4184 	if (i == btf_vlen(sec))
4185 		return 0;
4186 
4187 	int_btf_id = find_int_btf_id(btf);
4188 	dummy_var_btf_id = btf__add_var(btf,
4189 					"dummy_ksym",
4190 					BTF_VAR_GLOBAL_ALLOCATED,
4191 					int_btf_id);
4192 	if (dummy_var_btf_id < 0)
4193 		pr_warn("cannot create a dummy_ksym var\n");
4194 
4195 	return dummy_var_btf_id;
4196 }
4197 
bpf_object__collect_externs(struct bpf_object * obj)4198 static int bpf_object__collect_externs(struct bpf_object *obj)
4199 {
4200 	struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
4201 	const struct btf_type *t;
4202 	struct extern_desc *ext;
4203 	int i, n, off, dummy_var_btf_id;
4204 	const char *ext_name, *sec_name;
4205 	size_t ext_essent_len;
4206 	Elf_Scn *scn;
4207 	Elf64_Shdr *sh;
4208 
4209 	if (!obj->efile.symbols)
4210 		return 0;
4211 
4212 	scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
4213 	sh = elf_sec_hdr(obj, scn);
4214 	if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
4215 		return -LIBBPF_ERRNO__FORMAT;
4216 
4217 	dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
4218 	if (dummy_var_btf_id < 0)
4219 		return dummy_var_btf_id;
4220 
4221 	n = sh->sh_size / sh->sh_entsize;
4222 	pr_debug("looking for externs among %d symbols...\n", n);
4223 
4224 	for (i = 0; i < n; i++) {
4225 		Elf64_Sym *sym = elf_sym_by_idx(obj, i);
4226 
4227 		if (!sym)
4228 			return -LIBBPF_ERRNO__FORMAT;
4229 		if (!sym_is_extern(sym))
4230 			continue;
4231 		ext_name = elf_sym_str(obj, sym->st_name);
4232 		if (!ext_name || !ext_name[0])
4233 			continue;
4234 
4235 		ext = obj->externs;
4236 		ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
4237 		if (!ext)
4238 			return -ENOMEM;
4239 		obj->externs = ext;
4240 		ext = &ext[obj->nr_extern];
4241 		memset(ext, 0, sizeof(*ext));
4242 		obj->nr_extern++;
4243 
4244 		ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
4245 		if (ext->btf_id <= 0) {
4246 			pr_warn("failed to find BTF for extern '%s': %d\n",
4247 				ext_name, ext->btf_id);
4248 			return ext->btf_id;
4249 		}
4250 		t = btf__type_by_id(obj->btf, ext->btf_id);
4251 		ext->name = btf__name_by_offset(obj->btf, t->name_off);
4252 		ext->sym_idx = i;
4253 		ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
4254 
4255 		ext_essent_len = bpf_core_essential_name_len(ext->name);
4256 		ext->essent_name = NULL;
4257 		if (ext_essent_len != strlen(ext->name)) {
4258 			ext->essent_name = strndup(ext->name, ext_essent_len);
4259 			if (!ext->essent_name)
4260 				return -ENOMEM;
4261 		}
4262 
4263 		ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
4264 		if (ext->sec_btf_id <= 0) {
4265 			pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
4266 				ext_name, ext->btf_id, ext->sec_btf_id);
4267 			return ext->sec_btf_id;
4268 		}
4269 		sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
4270 		sec_name = btf__name_by_offset(obj->btf, sec->name_off);
4271 
4272 		if (strcmp(sec_name, KCONFIG_SEC) == 0) {
4273 			if (btf_is_func(t)) {
4274 				pr_warn("extern function %s is unsupported under %s section\n",
4275 					ext->name, KCONFIG_SEC);
4276 				return -ENOTSUP;
4277 			}
4278 			kcfg_sec = sec;
4279 			ext->type = EXT_KCFG;
4280 			ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
4281 			if (ext->kcfg.sz <= 0) {
4282 				pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
4283 					ext_name, ext->kcfg.sz);
4284 				return ext->kcfg.sz;
4285 			}
4286 			ext->kcfg.align = btf__align_of(obj->btf, t->type);
4287 			if (ext->kcfg.align <= 0) {
4288 				pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
4289 					ext_name, ext->kcfg.align);
4290 				return -EINVAL;
4291 			}
4292 			ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
4293 							&ext->kcfg.is_signed);
4294 			if (ext->kcfg.type == KCFG_UNKNOWN) {
4295 				pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
4296 				return -ENOTSUP;
4297 			}
4298 		} else if (strcmp(sec_name, KSYMS_SEC) == 0) {
4299 			ksym_sec = sec;
4300 			ext->type = EXT_KSYM;
4301 			skip_mods_and_typedefs(obj->btf, t->type,
4302 					       &ext->ksym.type_id);
4303 		} else {
4304 			pr_warn("unrecognized extern section '%s'\n", sec_name);
4305 			return -ENOTSUP;
4306 		}
4307 	}
4308 	pr_debug("collected %d externs total\n", obj->nr_extern);
4309 
4310 	if (!obj->nr_extern)
4311 		return 0;
4312 
4313 	/* sort externs by type, for kcfg ones also by (align, size, name) */
4314 	qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
4315 
4316 	/* for .ksyms section, we need to turn all externs into allocated
4317 	 * variables in BTF to pass kernel verification; we do this by
4318 	 * pretending that each extern is a 8-byte variable
4319 	 */
4320 	if (ksym_sec) {
4321 		/* find existing 4-byte integer type in BTF to use for fake
4322 		 * extern variables in DATASEC
4323 		 */
4324 		int int_btf_id = find_int_btf_id(obj->btf);
4325 		/* For extern function, a dummy_var added earlier
4326 		 * will be used to replace the vs->type and
4327 		 * its name string will be used to refill
4328 		 * the missing param's name.
4329 		 */
4330 		const struct btf_type *dummy_var;
4331 
4332 		dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
4333 		for (i = 0; i < obj->nr_extern; i++) {
4334 			ext = &obj->externs[i];
4335 			if (ext->type != EXT_KSYM)
4336 				continue;
4337 			pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
4338 				 i, ext->sym_idx, ext->name);
4339 		}
4340 
4341 		sec = ksym_sec;
4342 		n = btf_vlen(sec);
4343 		for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
4344 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4345 			struct btf_type *vt;
4346 
4347 			vt = (void *)btf__type_by_id(obj->btf, vs->type);
4348 			ext_name = btf__name_by_offset(obj->btf, vt->name_off);
4349 			ext = find_extern_by_name(obj, ext_name);
4350 			if (!ext) {
4351 				pr_warn("failed to find extern definition for BTF %s '%s'\n",
4352 					btf_kind_str(vt), ext_name);
4353 				return -ESRCH;
4354 			}
4355 			if (btf_is_func(vt)) {
4356 				const struct btf_type *func_proto;
4357 				struct btf_param *param;
4358 				int j;
4359 
4360 				func_proto = btf__type_by_id(obj->btf,
4361 							     vt->type);
4362 				param = btf_params(func_proto);
4363 				/* Reuse the dummy_var string if the
4364 				 * func proto does not have param name.
4365 				 */
4366 				for (j = 0; j < btf_vlen(func_proto); j++)
4367 					if (param[j].type && !param[j].name_off)
4368 						param[j].name_off =
4369 							dummy_var->name_off;
4370 				vs->type = dummy_var_btf_id;
4371 				vt->info &= ~0xffff;
4372 				vt->info |= BTF_FUNC_GLOBAL;
4373 			} else {
4374 				btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4375 				vt->type = int_btf_id;
4376 			}
4377 			vs->offset = off;
4378 			vs->size = sizeof(int);
4379 		}
4380 		sec->size = off;
4381 	}
4382 
4383 	if (kcfg_sec) {
4384 		sec = kcfg_sec;
4385 		/* for kcfg externs calculate their offsets within a .kconfig map */
4386 		off = 0;
4387 		for (i = 0; i < obj->nr_extern; i++) {
4388 			ext = &obj->externs[i];
4389 			if (ext->type != EXT_KCFG)
4390 				continue;
4391 
4392 			ext->kcfg.data_off = roundup(off, ext->kcfg.align);
4393 			off = ext->kcfg.data_off + ext->kcfg.sz;
4394 			pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
4395 				 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
4396 		}
4397 		sec->size = off;
4398 		n = btf_vlen(sec);
4399 		for (i = 0; i < n; i++) {
4400 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4401 
4402 			t = btf__type_by_id(obj->btf, vs->type);
4403 			ext_name = btf__name_by_offset(obj->btf, t->name_off);
4404 			ext = find_extern_by_name(obj, ext_name);
4405 			if (!ext) {
4406 				pr_warn("failed to find extern definition for BTF var '%s'\n",
4407 					ext_name);
4408 				return -ESRCH;
4409 			}
4410 			btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4411 			vs->offset = ext->kcfg.data_off;
4412 		}
4413 	}
4414 	return 0;
4415 }
4416 
prog_is_subprog(const struct bpf_object * obj,const struct bpf_program * prog)4417 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
4418 {
4419 	return prog->sec_idx == obj->efile.text_shndx;
4420 }
4421 
4422 struct bpf_program *
bpf_object__find_program_by_name(const struct bpf_object * obj,const char * name)4423 bpf_object__find_program_by_name(const struct bpf_object *obj,
4424 				 const char *name)
4425 {
4426 	struct bpf_program *prog;
4427 
4428 	bpf_object__for_each_program(prog, obj) {
4429 		if (prog_is_subprog(obj, prog))
4430 			continue;
4431 		if (!strcmp(prog->name, name))
4432 			return prog;
4433 	}
4434 	return errno = ENOENT, NULL;
4435 }
4436 
bpf_object__shndx_is_data(const struct bpf_object * obj,int shndx)4437 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
4438 				      int shndx)
4439 {
4440 	switch (obj->efile.secs[shndx].sec_type) {
4441 	case SEC_BSS:
4442 	case SEC_DATA:
4443 	case SEC_RODATA:
4444 		return true;
4445 	default:
4446 		return false;
4447 	}
4448 }
4449 
bpf_object__shndx_is_maps(const struct bpf_object * obj,int shndx)4450 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
4451 				      int shndx)
4452 {
4453 	return shndx == obj->efile.btf_maps_shndx;
4454 }
4455 
4456 static enum libbpf_map_type
bpf_object__section_to_libbpf_map_type(const struct bpf_object * obj,int shndx)4457 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
4458 {
4459 	if (shndx == obj->efile.symbols_shndx)
4460 		return LIBBPF_MAP_KCONFIG;
4461 
4462 	switch (obj->efile.secs[shndx].sec_type) {
4463 	case SEC_BSS:
4464 		return LIBBPF_MAP_BSS;
4465 	case SEC_DATA:
4466 		return LIBBPF_MAP_DATA;
4467 	case SEC_RODATA:
4468 		return LIBBPF_MAP_RODATA;
4469 	default:
4470 		return LIBBPF_MAP_UNSPEC;
4471 	}
4472 }
4473 
bpf_program__record_reloc(struct bpf_program * prog,struct reloc_desc * reloc_desc,__u32 insn_idx,const char * sym_name,const Elf64_Sym * sym,const Elf64_Rel * rel)4474 static int bpf_program__record_reloc(struct bpf_program *prog,
4475 				     struct reloc_desc *reloc_desc,
4476 				     __u32 insn_idx, const char *sym_name,
4477 				     const Elf64_Sym *sym, const Elf64_Rel *rel)
4478 {
4479 	struct bpf_insn *insn = &prog->insns[insn_idx];
4480 	size_t map_idx, nr_maps = prog->obj->nr_maps;
4481 	struct bpf_object *obj = prog->obj;
4482 	__u32 shdr_idx = sym->st_shndx;
4483 	enum libbpf_map_type type;
4484 	const char *sym_sec_name;
4485 	struct bpf_map *map;
4486 
4487 	if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
4488 		pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
4489 			prog->name, sym_name, insn_idx, insn->code);
4490 		return -LIBBPF_ERRNO__RELOC;
4491 	}
4492 
4493 	if (sym_is_extern(sym)) {
4494 		int sym_idx = ELF64_R_SYM(rel->r_info);
4495 		int i, n = obj->nr_extern;
4496 		struct extern_desc *ext;
4497 
4498 		for (i = 0; i < n; i++) {
4499 			ext = &obj->externs[i];
4500 			if (ext->sym_idx == sym_idx)
4501 				break;
4502 		}
4503 		if (i >= n) {
4504 			pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
4505 				prog->name, sym_name, sym_idx);
4506 			return -LIBBPF_ERRNO__RELOC;
4507 		}
4508 		pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
4509 			 prog->name, i, ext->name, ext->sym_idx, insn_idx);
4510 		if (insn->code == (BPF_JMP | BPF_CALL))
4511 			reloc_desc->type = RELO_EXTERN_CALL;
4512 		else
4513 			reloc_desc->type = RELO_EXTERN_LD64;
4514 		reloc_desc->insn_idx = insn_idx;
4515 		reloc_desc->ext_idx = i;
4516 		return 0;
4517 	}
4518 
4519 	/* sub-program call relocation */
4520 	if (is_call_insn(insn)) {
4521 		if (insn->src_reg != BPF_PSEUDO_CALL) {
4522 			pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
4523 			return -LIBBPF_ERRNO__RELOC;
4524 		}
4525 		/* text_shndx can be 0, if no default "main" program exists */
4526 		if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
4527 			sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4528 			pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
4529 				prog->name, sym_name, sym_sec_name);
4530 			return -LIBBPF_ERRNO__RELOC;
4531 		}
4532 		if (sym->st_value % BPF_INSN_SZ) {
4533 			pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4534 				prog->name, sym_name, (size_t)sym->st_value);
4535 			return -LIBBPF_ERRNO__RELOC;
4536 		}
4537 		reloc_desc->type = RELO_CALL;
4538 		reloc_desc->insn_idx = insn_idx;
4539 		reloc_desc->sym_off = sym->st_value;
4540 		return 0;
4541 	}
4542 
4543 	if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4544 		pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4545 			prog->name, sym_name, shdr_idx);
4546 		return -LIBBPF_ERRNO__RELOC;
4547 	}
4548 
4549 	/* loading subprog addresses */
4550 	if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4551 		/* global_func: sym->st_value = offset in the section, insn->imm = 0.
4552 		 * local_func: sym->st_value = 0, insn->imm = offset in the section.
4553 		 */
4554 		if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4555 			pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4556 				prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4557 			return -LIBBPF_ERRNO__RELOC;
4558 		}
4559 
4560 		reloc_desc->type = RELO_SUBPROG_ADDR;
4561 		reloc_desc->insn_idx = insn_idx;
4562 		reloc_desc->sym_off = sym->st_value;
4563 		return 0;
4564 	}
4565 
4566 	type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4567 	sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4568 
4569 	/* arena data relocation */
4570 	if (shdr_idx == obj->efile.arena_data_shndx) {
4571 		reloc_desc->type = RELO_DATA;
4572 		reloc_desc->insn_idx = insn_idx;
4573 		reloc_desc->map_idx = obj->arena_map - obj->maps;
4574 		reloc_desc->sym_off = sym->st_value;
4575 		return 0;
4576 	}
4577 
4578 	/* generic map reference relocation */
4579 	if (type == LIBBPF_MAP_UNSPEC) {
4580 		if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4581 			pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4582 				prog->name, sym_name, sym_sec_name);
4583 			return -LIBBPF_ERRNO__RELOC;
4584 		}
4585 		for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4586 			map = &obj->maps[map_idx];
4587 			if (map->libbpf_type != type ||
4588 			    map->sec_idx != sym->st_shndx ||
4589 			    map->sec_offset != sym->st_value)
4590 				continue;
4591 			pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4592 				 prog->name, map_idx, map->name, map->sec_idx,
4593 				 map->sec_offset, insn_idx);
4594 			break;
4595 		}
4596 		if (map_idx >= nr_maps) {
4597 			pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4598 				prog->name, sym_sec_name, (size_t)sym->st_value);
4599 			return -LIBBPF_ERRNO__RELOC;
4600 		}
4601 		reloc_desc->type = RELO_LD64;
4602 		reloc_desc->insn_idx = insn_idx;
4603 		reloc_desc->map_idx = map_idx;
4604 		reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4605 		return 0;
4606 	}
4607 
4608 	/* global data map relocation */
4609 	if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4610 		pr_warn("prog '%s': bad data relo against section '%s'\n",
4611 			prog->name, sym_sec_name);
4612 		return -LIBBPF_ERRNO__RELOC;
4613 	}
4614 	for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4615 		map = &obj->maps[map_idx];
4616 		if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4617 			continue;
4618 		pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4619 			 prog->name, map_idx, map->name, map->sec_idx,
4620 			 map->sec_offset, insn_idx);
4621 		break;
4622 	}
4623 	if (map_idx >= nr_maps) {
4624 		pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4625 			prog->name, sym_sec_name);
4626 		return -LIBBPF_ERRNO__RELOC;
4627 	}
4628 
4629 	reloc_desc->type = RELO_DATA;
4630 	reloc_desc->insn_idx = insn_idx;
4631 	reloc_desc->map_idx = map_idx;
4632 	reloc_desc->sym_off = sym->st_value;
4633 	return 0;
4634 }
4635 
prog_contains_insn(const struct bpf_program * prog,size_t insn_idx)4636 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4637 {
4638 	return insn_idx >= prog->sec_insn_off &&
4639 	       insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4640 }
4641 
find_prog_by_sec_insn(const struct bpf_object * obj,size_t sec_idx,size_t insn_idx)4642 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4643 						 size_t sec_idx, size_t insn_idx)
4644 {
4645 	int l = 0, r = obj->nr_programs - 1, m;
4646 	struct bpf_program *prog;
4647 
4648 	if (!obj->nr_programs)
4649 		return NULL;
4650 
4651 	while (l < r) {
4652 		m = l + (r - l + 1) / 2;
4653 		prog = &obj->programs[m];
4654 
4655 		if (prog->sec_idx < sec_idx ||
4656 		    (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4657 			l = m;
4658 		else
4659 			r = m - 1;
4660 	}
4661 	/* matching program could be at index l, but it still might be the
4662 	 * wrong one, so we need to double check conditions for the last time
4663 	 */
4664 	prog = &obj->programs[l];
4665 	if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4666 		return prog;
4667 	return NULL;
4668 }
4669 
4670 static int
bpf_object__collect_prog_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)4671 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4672 {
4673 	const char *relo_sec_name, *sec_name;
4674 	size_t sec_idx = shdr->sh_info, sym_idx;
4675 	struct bpf_program *prog;
4676 	struct reloc_desc *relos;
4677 	int err, i, nrels;
4678 	const char *sym_name;
4679 	__u32 insn_idx;
4680 	Elf_Scn *scn;
4681 	Elf_Data *scn_data;
4682 	Elf64_Sym *sym;
4683 	Elf64_Rel *rel;
4684 
4685 	if (sec_idx >= obj->efile.sec_cnt)
4686 		return -EINVAL;
4687 
4688 	scn = elf_sec_by_idx(obj, sec_idx);
4689 	scn_data = elf_sec_data(obj, scn);
4690 	if (!scn_data)
4691 		return -LIBBPF_ERRNO__FORMAT;
4692 
4693 	relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4694 	sec_name = elf_sec_name(obj, scn);
4695 	if (!relo_sec_name || !sec_name)
4696 		return -EINVAL;
4697 
4698 	pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4699 		 relo_sec_name, sec_idx, sec_name);
4700 	nrels = shdr->sh_size / shdr->sh_entsize;
4701 
4702 	for (i = 0; i < nrels; i++) {
4703 		rel = elf_rel_by_idx(data, i);
4704 		if (!rel) {
4705 			pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4706 			return -LIBBPF_ERRNO__FORMAT;
4707 		}
4708 
4709 		sym_idx = ELF64_R_SYM(rel->r_info);
4710 		sym = elf_sym_by_idx(obj, sym_idx);
4711 		if (!sym) {
4712 			pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4713 				relo_sec_name, sym_idx, i);
4714 			return -LIBBPF_ERRNO__FORMAT;
4715 		}
4716 
4717 		if (sym->st_shndx >= obj->efile.sec_cnt) {
4718 			pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4719 				relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4720 			return -LIBBPF_ERRNO__FORMAT;
4721 		}
4722 
4723 		if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4724 			pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4725 				relo_sec_name, (size_t)rel->r_offset, i);
4726 			return -LIBBPF_ERRNO__FORMAT;
4727 		}
4728 
4729 		insn_idx = rel->r_offset / BPF_INSN_SZ;
4730 		/* relocations against static functions are recorded as
4731 		 * relocations against the section that contains a function;
4732 		 * in such case, symbol will be STT_SECTION and sym.st_name
4733 		 * will point to empty string (0), so fetch section name
4734 		 * instead
4735 		 */
4736 		if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4737 			sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4738 		else
4739 			sym_name = elf_sym_str(obj, sym->st_name);
4740 		sym_name = sym_name ?: "<?";
4741 
4742 		pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4743 			 relo_sec_name, i, insn_idx, sym_name);
4744 
4745 		prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4746 		if (!prog) {
4747 			pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4748 				relo_sec_name, i, sec_name, insn_idx);
4749 			continue;
4750 		}
4751 
4752 		relos = libbpf_reallocarray(prog->reloc_desc,
4753 					    prog->nr_reloc + 1, sizeof(*relos));
4754 		if (!relos)
4755 			return -ENOMEM;
4756 		prog->reloc_desc = relos;
4757 
4758 		/* adjust insn_idx to local BPF program frame of reference */
4759 		insn_idx -= prog->sec_insn_off;
4760 		err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4761 						insn_idx, sym_name, sym, rel);
4762 		if (err)
4763 			return err;
4764 
4765 		prog->nr_reloc++;
4766 	}
4767 	return 0;
4768 }
4769 
map_fill_btf_type_info(struct bpf_object * obj,struct bpf_map * map)4770 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map)
4771 {
4772 	int id;
4773 
4774 	if (!obj->btf)
4775 		return -ENOENT;
4776 
4777 	/* if it's BTF-defined map, we don't need to search for type IDs.
4778 	 * For struct_ops map, it does not need btf_key_type_id and
4779 	 * btf_value_type_id.
4780 	 */
4781 	if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4782 		return 0;
4783 
4784 	/*
4785 	 * LLVM annotates global data differently in BTF, that is,
4786 	 * only as '.data', '.bss' or '.rodata'.
4787 	 */
4788 	if (!bpf_map__is_internal(map))
4789 		return -ENOENT;
4790 
4791 	id = btf__find_by_name(obj->btf, map->real_name);
4792 	if (id < 0)
4793 		return id;
4794 
4795 	map->btf_key_type_id = 0;
4796 	map->btf_value_type_id = id;
4797 	return 0;
4798 }
4799 
bpf_get_map_info_from_fdinfo(int fd,struct bpf_map_info * info)4800 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4801 {
4802 	char file[PATH_MAX], buff[4096];
4803 	FILE *fp;
4804 	__u32 val;
4805 	int err;
4806 
4807 	snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4808 	memset(info, 0, sizeof(*info));
4809 
4810 	fp = fopen(file, "re");
4811 	if (!fp) {
4812 		err = -errno;
4813 		pr_warn("failed to open %s: %s. No procfs support?\n", file,
4814 			errstr(err));
4815 		return err;
4816 	}
4817 
4818 	while (fgets(buff, sizeof(buff), fp)) {
4819 		if (sscanf(buff, "map_type:\t%u", &val) == 1)
4820 			info->type = val;
4821 		else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4822 			info->key_size = val;
4823 		else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4824 			info->value_size = val;
4825 		else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4826 			info->max_entries = val;
4827 		else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4828 			info->map_flags = val;
4829 	}
4830 
4831 	fclose(fp);
4832 
4833 	return 0;
4834 }
4835 
bpf_map__autocreate(const struct bpf_map * map)4836 bool bpf_map__autocreate(const struct bpf_map *map)
4837 {
4838 	return map->autocreate;
4839 }
4840 
bpf_map__set_autocreate(struct bpf_map * map,bool autocreate)4841 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4842 {
4843 	if (map->obj->loaded)
4844 		return libbpf_err(-EBUSY);
4845 
4846 	map->autocreate = autocreate;
4847 	return 0;
4848 }
4849 
bpf_map__set_autoattach(struct bpf_map * map,bool autoattach)4850 int bpf_map__set_autoattach(struct bpf_map *map, bool autoattach)
4851 {
4852 	if (!bpf_map__is_struct_ops(map))
4853 		return libbpf_err(-EINVAL);
4854 
4855 	map->autoattach = autoattach;
4856 	return 0;
4857 }
4858 
bpf_map__autoattach(const struct bpf_map * map)4859 bool bpf_map__autoattach(const struct bpf_map *map)
4860 {
4861 	return map->autoattach;
4862 }
4863 
bpf_map__reuse_fd(struct bpf_map * map,int fd)4864 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4865 {
4866 	struct bpf_map_info info;
4867 	__u32 len = sizeof(info), name_len;
4868 	int new_fd, err;
4869 	char *new_name;
4870 
4871 	memset(&info, 0, len);
4872 	err = bpf_map_get_info_by_fd(fd, &info, &len);
4873 	if (err && errno == EINVAL)
4874 		err = bpf_get_map_info_from_fdinfo(fd, &info);
4875 	if (err)
4876 		return libbpf_err(err);
4877 
4878 	name_len = strlen(info.name);
4879 	if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4880 		new_name = strdup(map->name);
4881 	else
4882 		new_name = strdup(info.name);
4883 
4884 	if (!new_name)
4885 		return libbpf_err(-errno);
4886 
4887 	/*
4888 	 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set.
4889 	 * This is similar to what we do in ensure_good_fd(), but without
4890 	 * closing original FD.
4891 	 */
4892 	new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3);
4893 	if (new_fd < 0) {
4894 		err = -errno;
4895 		goto err_free_new_name;
4896 	}
4897 
4898 	err = reuse_fd(map->fd, new_fd);
4899 	if (err)
4900 		goto err_free_new_name;
4901 
4902 	free(map->name);
4903 
4904 	map->name = new_name;
4905 	map->def.type = info.type;
4906 	map->def.key_size = info.key_size;
4907 	map->def.value_size = info.value_size;
4908 	map->def.max_entries = info.max_entries;
4909 	map->def.map_flags = info.map_flags;
4910 	map->btf_key_type_id = info.btf_key_type_id;
4911 	map->btf_value_type_id = info.btf_value_type_id;
4912 	map->reused = true;
4913 	map->map_extra = info.map_extra;
4914 
4915 	return 0;
4916 
4917 err_free_new_name:
4918 	free(new_name);
4919 	return libbpf_err(err);
4920 }
4921 
bpf_map__max_entries(const struct bpf_map * map)4922 __u32 bpf_map__max_entries(const struct bpf_map *map)
4923 {
4924 	return map->def.max_entries;
4925 }
4926 
bpf_map__inner_map(struct bpf_map * map)4927 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4928 {
4929 	if (!bpf_map_type__is_map_in_map(map->def.type))
4930 		return errno = EINVAL, NULL;
4931 
4932 	return map->inner_map;
4933 }
4934 
bpf_map__set_max_entries(struct bpf_map * map,__u32 max_entries)4935 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4936 {
4937 	if (map->obj->loaded)
4938 		return libbpf_err(-EBUSY);
4939 
4940 	map->def.max_entries = max_entries;
4941 
4942 	/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
4943 	if (map_is_ringbuf(map))
4944 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4945 
4946 	return 0;
4947 }
4948 
bpf_object_prepare_token(struct bpf_object * obj)4949 static int bpf_object_prepare_token(struct bpf_object *obj)
4950 {
4951 	const char *bpffs_path;
4952 	int bpffs_fd = -1, token_fd, err;
4953 	bool mandatory;
4954 	enum libbpf_print_level level;
4955 
4956 	/* token is explicitly prevented */
4957 	if (obj->token_path && obj->token_path[0] == '\0') {
4958 		pr_debug("object '%s': token is prevented, skipping...\n", obj->name);
4959 		return 0;
4960 	}
4961 
4962 	mandatory = obj->token_path != NULL;
4963 	level = mandatory ? LIBBPF_WARN : LIBBPF_DEBUG;
4964 
4965 	bpffs_path = obj->token_path ?: BPF_FS_DEFAULT_PATH;
4966 	bpffs_fd = open(bpffs_path, O_DIRECTORY, O_RDWR);
4967 	if (bpffs_fd < 0) {
4968 		err = -errno;
4969 		__pr(level, "object '%s': failed (%s) to open BPF FS mount at '%s'%s\n",
4970 		     obj->name, errstr(err), bpffs_path,
4971 		     mandatory ? "" : ", skipping optional step...");
4972 		return mandatory ? err : 0;
4973 	}
4974 
4975 	token_fd = bpf_token_create(bpffs_fd, 0);
4976 	close(bpffs_fd);
4977 	if (token_fd < 0) {
4978 		if (!mandatory && token_fd == -ENOENT) {
4979 			pr_debug("object '%s': BPF FS at '%s' doesn't have BPF token delegation set up, skipping...\n",
4980 				 obj->name, bpffs_path);
4981 			return 0;
4982 		}
4983 		__pr(level, "object '%s': failed (%d) to create BPF token from '%s'%s\n",
4984 		     obj->name, token_fd, bpffs_path,
4985 		     mandatory ? "" : ", skipping optional step...");
4986 		return mandatory ? token_fd : 0;
4987 	}
4988 
4989 	obj->feat_cache = calloc(1, sizeof(*obj->feat_cache));
4990 	if (!obj->feat_cache) {
4991 		close(token_fd);
4992 		return -ENOMEM;
4993 	}
4994 
4995 	obj->token_fd = token_fd;
4996 	obj->feat_cache->token_fd = token_fd;
4997 
4998 	return 0;
4999 }
5000 
5001 static int
bpf_object__probe_loading(struct bpf_object * obj)5002 bpf_object__probe_loading(struct bpf_object *obj)
5003 {
5004 	struct bpf_insn insns[] = {
5005 		BPF_MOV64_IMM(BPF_REG_0, 0),
5006 		BPF_EXIT_INSN(),
5007 	};
5008 	int ret, insn_cnt = ARRAY_SIZE(insns);
5009 	LIBBPF_OPTS(bpf_prog_load_opts, opts,
5010 		.token_fd = obj->token_fd,
5011 		.prog_flags = obj->token_fd ? BPF_F_TOKEN_FD : 0,
5012 	);
5013 
5014 	if (obj->gen_loader)
5015 		return 0;
5016 
5017 	ret = bump_rlimit_memlock();
5018 	if (ret)
5019 		pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %s), you might need to do it explicitly!\n",
5020 			errstr(ret));
5021 
5022 	/* make sure basic loading works */
5023 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, &opts);
5024 	if (ret < 0)
5025 		ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, &opts);
5026 	if (ret < 0) {
5027 		ret = errno;
5028 		pr_warn("Error in %s(): %s. Couldn't load trivial BPF program. Make sure your kernel supports BPF (CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is set to big enough value.\n",
5029 			__func__, errstr(ret));
5030 		return -ret;
5031 	}
5032 	close(ret);
5033 
5034 	return 0;
5035 }
5036 
kernel_supports(const struct bpf_object * obj,enum kern_feature_id feat_id)5037 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
5038 {
5039 	if (obj->gen_loader)
5040 		/* To generate loader program assume the latest kernel
5041 		 * to avoid doing extra prog_load, map_create syscalls.
5042 		 */
5043 		return true;
5044 
5045 	if (obj->token_fd)
5046 		return feat_supported(obj->feat_cache, feat_id);
5047 
5048 	return feat_supported(NULL, feat_id);
5049 }
5050 
map_is_reuse_compat(const struct bpf_map * map,int map_fd)5051 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
5052 {
5053 	struct bpf_map_info map_info;
5054 	__u32 map_info_len = sizeof(map_info);
5055 	int err;
5056 
5057 	memset(&map_info, 0, map_info_len);
5058 	err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len);
5059 	if (err && errno == EINVAL)
5060 		err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
5061 	if (err) {
5062 		pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
5063 			errstr(err));
5064 		return false;
5065 	}
5066 
5067 	return (map_info.type == map->def.type &&
5068 		map_info.key_size == map->def.key_size &&
5069 		map_info.value_size == map->def.value_size &&
5070 		map_info.max_entries == map->def.max_entries &&
5071 		map_info.map_flags == map->def.map_flags &&
5072 		map_info.map_extra == map->map_extra);
5073 }
5074 
5075 static int
bpf_object__reuse_map(struct bpf_map * map)5076 bpf_object__reuse_map(struct bpf_map *map)
5077 {
5078 	int err, pin_fd;
5079 
5080 	pin_fd = bpf_obj_get(map->pin_path);
5081 	if (pin_fd < 0) {
5082 		err = -errno;
5083 		if (err == -ENOENT) {
5084 			pr_debug("found no pinned map to reuse at '%s'\n",
5085 				 map->pin_path);
5086 			return 0;
5087 		}
5088 
5089 		pr_warn("couldn't retrieve pinned map '%s': %s\n",
5090 			map->pin_path, errstr(err));
5091 		return err;
5092 	}
5093 
5094 	if (!map_is_reuse_compat(map, pin_fd)) {
5095 		pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
5096 			map->pin_path);
5097 		close(pin_fd);
5098 		return -EINVAL;
5099 	}
5100 
5101 	err = bpf_map__reuse_fd(map, pin_fd);
5102 	close(pin_fd);
5103 	if (err)
5104 		return err;
5105 
5106 	map->pinned = true;
5107 	pr_debug("reused pinned map at '%s'\n", map->pin_path);
5108 
5109 	return 0;
5110 }
5111 
5112 static int
bpf_object__populate_internal_map(struct bpf_object * obj,struct bpf_map * map)5113 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
5114 {
5115 	enum libbpf_map_type map_type = map->libbpf_type;
5116 	int err, zero = 0;
5117 	size_t mmap_sz;
5118 
5119 	if (obj->gen_loader) {
5120 		bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
5121 					 map->mmaped, map->def.value_size);
5122 		if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
5123 			bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
5124 		return 0;
5125 	}
5126 
5127 	err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
5128 	if (err) {
5129 		err = -errno;
5130 		pr_warn("map '%s': failed to set initial contents: %s\n",
5131 			bpf_map__name(map), errstr(err));
5132 		return err;
5133 	}
5134 
5135 	/* Freeze .rodata and .kconfig map as read-only from syscall side. */
5136 	if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
5137 		err = bpf_map_freeze(map->fd);
5138 		if (err) {
5139 			err = -errno;
5140 			pr_warn("map '%s': failed to freeze as read-only: %s\n",
5141 				bpf_map__name(map), errstr(err));
5142 			return err;
5143 		}
5144 	}
5145 
5146 	/* Remap anonymous mmap()-ed "map initialization image" as
5147 	 * a BPF map-backed mmap()-ed memory, but preserving the same
5148 	 * memory address. This will cause kernel to change process'
5149 	 * page table to point to a different piece of kernel memory,
5150 	 * but from userspace point of view memory address (and its
5151 	 * contents, being identical at this point) will stay the
5152 	 * same. This mapping will be released by bpf_object__close()
5153 	 * as per normal clean up procedure.
5154 	 */
5155 	mmap_sz = bpf_map_mmap_sz(map);
5156 	if (map->def.map_flags & BPF_F_MMAPABLE) {
5157 		void *mmaped;
5158 		int prot;
5159 
5160 		if (map->def.map_flags & BPF_F_RDONLY_PROG)
5161 			prot = PROT_READ;
5162 		else
5163 			prot = PROT_READ | PROT_WRITE;
5164 		mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map->fd, 0);
5165 		if (mmaped == MAP_FAILED) {
5166 			err = -errno;
5167 			pr_warn("map '%s': failed to re-mmap() contents: %s\n",
5168 				bpf_map__name(map), errstr(err));
5169 			return err;
5170 		}
5171 		map->mmaped = mmaped;
5172 	} else if (map->mmaped) {
5173 		munmap(map->mmaped, mmap_sz);
5174 		map->mmaped = NULL;
5175 	}
5176 
5177 	return 0;
5178 }
5179 
5180 static void bpf_map__destroy(struct bpf_map *map);
5181 
map_is_created(const struct bpf_map * map)5182 static bool map_is_created(const struct bpf_map *map)
5183 {
5184 	return map->obj->loaded || map->reused;
5185 }
5186 
bpf_object__create_map(struct bpf_object * obj,struct bpf_map * map,bool is_inner)5187 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
5188 {
5189 	LIBBPF_OPTS(bpf_map_create_opts, create_attr);
5190 	struct bpf_map_def *def = &map->def;
5191 	const char *map_name = NULL;
5192 	int err = 0, map_fd;
5193 
5194 	if (kernel_supports(obj, FEAT_PROG_NAME))
5195 		map_name = map->name;
5196 	create_attr.map_ifindex = map->map_ifindex;
5197 	create_attr.map_flags = def->map_flags;
5198 	create_attr.numa_node = map->numa_node;
5199 	create_attr.map_extra = map->map_extra;
5200 	create_attr.token_fd = obj->token_fd;
5201 	if (obj->token_fd)
5202 		create_attr.map_flags |= BPF_F_TOKEN_FD;
5203 
5204 	if (bpf_map__is_struct_ops(map)) {
5205 		create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
5206 		if (map->mod_btf_fd >= 0) {
5207 			create_attr.value_type_btf_obj_fd = map->mod_btf_fd;
5208 			create_attr.map_flags |= BPF_F_VTYPE_BTF_OBJ_FD;
5209 		}
5210 	}
5211 
5212 	if (obj->btf && btf__fd(obj->btf) >= 0) {
5213 		create_attr.btf_fd = btf__fd(obj->btf);
5214 		create_attr.btf_key_type_id = map->btf_key_type_id;
5215 		create_attr.btf_value_type_id = map->btf_value_type_id;
5216 	}
5217 
5218 	if (bpf_map_type__is_map_in_map(def->type)) {
5219 		if (map->inner_map) {
5220 			err = map_set_def_max_entries(map->inner_map);
5221 			if (err)
5222 				return err;
5223 			err = bpf_object__create_map(obj, map->inner_map, true);
5224 			if (err) {
5225 				pr_warn("map '%s': failed to create inner map: %s\n",
5226 					map->name, errstr(err));
5227 				return err;
5228 			}
5229 			map->inner_map_fd = map->inner_map->fd;
5230 		}
5231 		if (map->inner_map_fd >= 0)
5232 			create_attr.inner_map_fd = map->inner_map_fd;
5233 	}
5234 
5235 	switch (def->type) {
5236 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5237 	case BPF_MAP_TYPE_CGROUP_ARRAY:
5238 	case BPF_MAP_TYPE_STACK_TRACE:
5239 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5240 	case BPF_MAP_TYPE_HASH_OF_MAPS:
5241 	case BPF_MAP_TYPE_DEVMAP:
5242 	case BPF_MAP_TYPE_DEVMAP_HASH:
5243 	case BPF_MAP_TYPE_CPUMAP:
5244 	case BPF_MAP_TYPE_XSKMAP:
5245 	case BPF_MAP_TYPE_SOCKMAP:
5246 	case BPF_MAP_TYPE_SOCKHASH:
5247 	case BPF_MAP_TYPE_QUEUE:
5248 	case BPF_MAP_TYPE_STACK:
5249 	case BPF_MAP_TYPE_ARENA:
5250 		create_attr.btf_fd = 0;
5251 		create_attr.btf_key_type_id = 0;
5252 		create_attr.btf_value_type_id = 0;
5253 		map->btf_key_type_id = 0;
5254 		map->btf_value_type_id = 0;
5255 		break;
5256 	case BPF_MAP_TYPE_STRUCT_OPS:
5257 		create_attr.btf_value_type_id = 0;
5258 		break;
5259 	default:
5260 		break;
5261 	}
5262 
5263 	if (obj->gen_loader) {
5264 		bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5265 				    def->key_size, def->value_size, def->max_entries,
5266 				    &create_attr, is_inner ? -1 : map - obj->maps);
5267 		/* We keep pretenting we have valid FD to pass various fd >= 0
5268 		 * checks by just keeping original placeholder FDs in place.
5269 		 * See bpf_object__add_map() comment.
5270 		 * This placeholder fd will not be used with any syscall and
5271 		 * will be reset to -1 eventually.
5272 		 */
5273 		map_fd = map->fd;
5274 	} else {
5275 		map_fd = bpf_map_create(def->type, map_name,
5276 					def->key_size, def->value_size,
5277 					def->max_entries, &create_attr);
5278 	}
5279 	if (map_fd < 0 && (create_attr.btf_key_type_id || create_attr.btf_value_type_id)) {
5280 		err = -errno;
5281 		pr_warn("Error in bpf_create_map_xattr(%s): %s. Retrying without BTF.\n",
5282 			map->name, errstr(err));
5283 		create_attr.btf_fd = 0;
5284 		create_attr.btf_key_type_id = 0;
5285 		create_attr.btf_value_type_id = 0;
5286 		map->btf_key_type_id = 0;
5287 		map->btf_value_type_id = 0;
5288 		map_fd = bpf_map_create(def->type, map_name,
5289 					def->key_size, def->value_size,
5290 					def->max_entries, &create_attr);
5291 	}
5292 
5293 	if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5294 		if (obj->gen_loader)
5295 			map->inner_map->fd = -1;
5296 		bpf_map__destroy(map->inner_map);
5297 		zfree(&map->inner_map);
5298 	}
5299 
5300 	if (map_fd < 0)
5301 		return map_fd;
5302 
5303 	/* obj->gen_loader case, prevent reuse_fd() from closing map_fd */
5304 	if (map->fd == map_fd)
5305 		return 0;
5306 
5307 	/* Keep placeholder FD value but now point it to the BPF map object.
5308 	 * This way everything that relied on this map's FD (e.g., relocated
5309 	 * ldimm64 instructions) will stay valid and won't need adjustments.
5310 	 * map->fd stays valid but now point to what map_fd points to.
5311 	 */
5312 	return reuse_fd(map->fd, map_fd);
5313 }
5314 
init_map_in_map_slots(struct bpf_object * obj,struct bpf_map * map)5315 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5316 {
5317 	const struct bpf_map *targ_map;
5318 	unsigned int i;
5319 	int fd, err = 0;
5320 
5321 	for (i = 0; i < map->init_slots_sz; i++) {
5322 		if (!map->init_slots[i])
5323 			continue;
5324 
5325 		targ_map = map->init_slots[i];
5326 		fd = targ_map->fd;
5327 
5328 		if (obj->gen_loader) {
5329 			bpf_gen__populate_outer_map(obj->gen_loader,
5330 						    map - obj->maps, i,
5331 						    targ_map - obj->maps);
5332 		} else {
5333 			err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5334 		}
5335 		if (err) {
5336 			err = -errno;
5337 			pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %s\n",
5338 				map->name, i, targ_map->name, fd, errstr(err));
5339 			return err;
5340 		}
5341 		pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5342 			 map->name, i, targ_map->name, fd);
5343 	}
5344 
5345 	zfree(&map->init_slots);
5346 	map->init_slots_sz = 0;
5347 
5348 	return 0;
5349 }
5350 
init_prog_array_slots(struct bpf_object * obj,struct bpf_map * map)5351 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5352 {
5353 	const struct bpf_program *targ_prog;
5354 	unsigned int i;
5355 	int fd, err;
5356 
5357 	if (obj->gen_loader)
5358 		return -ENOTSUP;
5359 
5360 	for (i = 0; i < map->init_slots_sz; i++) {
5361 		if (!map->init_slots[i])
5362 			continue;
5363 
5364 		targ_prog = map->init_slots[i];
5365 		fd = bpf_program__fd(targ_prog);
5366 
5367 		err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5368 		if (err) {
5369 			err = -errno;
5370 			pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %s\n",
5371 				map->name, i, targ_prog->name, fd, errstr(err));
5372 			return err;
5373 		}
5374 		pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5375 			 map->name, i, targ_prog->name, fd);
5376 	}
5377 
5378 	zfree(&map->init_slots);
5379 	map->init_slots_sz = 0;
5380 
5381 	return 0;
5382 }
5383 
bpf_object_init_prog_arrays(struct bpf_object * obj)5384 static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5385 {
5386 	struct bpf_map *map;
5387 	int i, err;
5388 
5389 	for (i = 0; i < obj->nr_maps; i++) {
5390 		map = &obj->maps[i];
5391 
5392 		if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5393 			continue;
5394 
5395 		err = init_prog_array_slots(obj, map);
5396 		if (err < 0)
5397 			return err;
5398 	}
5399 	return 0;
5400 }
5401 
map_set_def_max_entries(struct bpf_map * map)5402 static int map_set_def_max_entries(struct bpf_map *map)
5403 {
5404 	if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5405 		int nr_cpus;
5406 
5407 		nr_cpus = libbpf_num_possible_cpus();
5408 		if (nr_cpus < 0) {
5409 			pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5410 				map->name, nr_cpus);
5411 			return nr_cpus;
5412 		}
5413 		pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5414 		map->def.max_entries = nr_cpus;
5415 	}
5416 
5417 	return 0;
5418 }
5419 
5420 static int
bpf_object__create_maps(struct bpf_object * obj)5421 bpf_object__create_maps(struct bpf_object *obj)
5422 {
5423 	struct bpf_map *map;
5424 	unsigned int i, j;
5425 	int err;
5426 	bool retried;
5427 
5428 	for (i = 0; i < obj->nr_maps; i++) {
5429 		map = &obj->maps[i];
5430 
5431 		/* To support old kernels, we skip creating global data maps
5432 		 * (.rodata, .data, .kconfig, etc); later on, during program
5433 		 * loading, if we detect that at least one of the to-be-loaded
5434 		 * programs is referencing any global data map, we'll error
5435 		 * out with program name and relocation index logged.
5436 		 * This approach allows to accommodate Clang emitting
5437 		 * unnecessary .rodata.str1.1 sections for string literals,
5438 		 * but also it allows to have CO-RE applications that use
5439 		 * global variables in some of BPF programs, but not others.
5440 		 * If those global variable-using programs are not loaded at
5441 		 * runtime due to bpf_program__set_autoload(prog, false),
5442 		 * bpf_object loading will succeed just fine even on old
5443 		 * kernels.
5444 		 */
5445 		if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5446 			map->autocreate = false;
5447 
5448 		if (!map->autocreate) {
5449 			pr_debug("map '%s': skipped auto-creating...\n", map->name);
5450 			continue;
5451 		}
5452 
5453 		err = map_set_def_max_entries(map);
5454 		if (err)
5455 			goto err_out;
5456 
5457 		retried = false;
5458 retry:
5459 		if (map->pin_path) {
5460 			err = bpf_object__reuse_map(map);
5461 			if (err) {
5462 				pr_warn("map '%s': error reusing pinned map\n",
5463 					map->name);
5464 				goto err_out;
5465 			}
5466 			if (retried && map->fd < 0) {
5467 				pr_warn("map '%s': cannot find pinned map\n",
5468 					map->name);
5469 				err = -ENOENT;
5470 				goto err_out;
5471 			}
5472 		}
5473 
5474 		if (map->reused) {
5475 			pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5476 				 map->name, map->fd);
5477 		} else {
5478 			err = bpf_object__create_map(obj, map, false);
5479 			if (err)
5480 				goto err_out;
5481 
5482 			pr_debug("map '%s': created successfully, fd=%d\n",
5483 				 map->name, map->fd);
5484 
5485 			if (bpf_map__is_internal(map)) {
5486 				err = bpf_object__populate_internal_map(obj, map);
5487 				if (err < 0)
5488 					goto err_out;
5489 			} else if (map->def.type == BPF_MAP_TYPE_ARENA) {
5490 				map->mmaped = mmap((void *)(long)map->map_extra,
5491 						   bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
5492 						   map->map_extra ? MAP_SHARED | MAP_FIXED : MAP_SHARED,
5493 						   map->fd, 0);
5494 				if (map->mmaped == MAP_FAILED) {
5495 					err = -errno;
5496 					map->mmaped = NULL;
5497 					pr_warn("map '%s': failed to mmap arena: %s\n",
5498 						map->name, errstr(err));
5499 					return err;
5500 				}
5501 				if (obj->arena_data) {
5502 					memcpy(map->mmaped, obj->arena_data, obj->arena_data_sz);
5503 					zfree(&obj->arena_data);
5504 				}
5505 			}
5506 			if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5507 				err = init_map_in_map_slots(obj, map);
5508 				if (err < 0)
5509 					goto err_out;
5510 			}
5511 		}
5512 
5513 		if (map->pin_path && !map->pinned) {
5514 			err = bpf_map__pin(map, NULL);
5515 			if (err) {
5516 				if (!retried && err == -EEXIST) {
5517 					retried = true;
5518 					goto retry;
5519 				}
5520 				pr_warn("map '%s': failed to auto-pin at '%s': %s\n",
5521 					map->name, map->pin_path, errstr(err));
5522 				goto err_out;
5523 			}
5524 		}
5525 	}
5526 
5527 	return 0;
5528 
5529 err_out:
5530 	pr_warn("map '%s': failed to create: %s\n", map->name, errstr(err));
5531 	pr_perm_msg(err);
5532 	for (j = 0; j < i; j++)
5533 		zclose(obj->maps[j].fd);
5534 	return err;
5535 }
5536 
bpf_core_is_flavor_sep(const char * s)5537 static bool bpf_core_is_flavor_sep(const char *s)
5538 {
5539 	/* check X___Y name pattern, where X and Y are not underscores */
5540 	return s[0] != '_' &&				      /* X */
5541 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
5542 	       s[4] != '_';				      /* Y */
5543 }
5544 
5545 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
5546  * before last triple underscore. Struct name part after last triple
5547  * underscore is ignored by BPF CO-RE relocation during relocation matching.
5548  */
bpf_core_essential_name_len(const char * name)5549 size_t bpf_core_essential_name_len(const char *name)
5550 {
5551 	size_t n = strlen(name);
5552 	int i;
5553 
5554 	for (i = n - 5; i >= 0; i--) {
5555 		if (bpf_core_is_flavor_sep(name + i))
5556 			return i + 1;
5557 	}
5558 	return n;
5559 }
5560 
bpf_core_free_cands(struct bpf_core_cand_list * cands)5561 void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5562 {
5563 	if (!cands)
5564 		return;
5565 
5566 	free(cands->cands);
5567 	free(cands);
5568 }
5569 
bpf_core_add_cands(struct bpf_core_cand * local_cand,size_t local_essent_len,const struct btf * targ_btf,const char * targ_btf_name,int targ_start_id,struct bpf_core_cand_list * cands)5570 int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5571 		       size_t local_essent_len,
5572 		       const struct btf *targ_btf,
5573 		       const char *targ_btf_name,
5574 		       int targ_start_id,
5575 		       struct bpf_core_cand_list *cands)
5576 {
5577 	struct bpf_core_cand *new_cands, *cand;
5578 	const struct btf_type *t, *local_t;
5579 	const char *targ_name, *local_name;
5580 	size_t targ_essent_len;
5581 	int n, i;
5582 
5583 	local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5584 	local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5585 
5586 	n = btf__type_cnt(targ_btf);
5587 	for (i = targ_start_id; i < n; i++) {
5588 		t = btf__type_by_id(targ_btf, i);
5589 		if (!btf_kind_core_compat(t, local_t))
5590 			continue;
5591 
5592 		targ_name = btf__name_by_offset(targ_btf, t->name_off);
5593 		if (str_is_empty(targ_name))
5594 			continue;
5595 
5596 		targ_essent_len = bpf_core_essential_name_len(targ_name);
5597 		if (targ_essent_len != local_essent_len)
5598 			continue;
5599 
5600 		if (strncmp(local_name, targ_name, local_essent_len) != 0)
5601 			continue;
5602 
5603 		pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5604 			 local_cand->id, btf_kind_str(local_t),
5605 			 local_name, i, btf_kind_str(t), targ_name,
5606 			 targ_btf_name);
5607 		new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5608 					      sizeof(*cands->cands));
5609 		if (!new_cands)
5610 			return -ENOMEM;
5611 
5612 		cand = &new_cands[cands->len];
5613 		cand->btf = targ_btf;
5614 		cand->id = i;
5615 
5616 		cands->cands = new_cands;
5617 		cands->len++;
5618 	}
5619 	return 0;
5620 }
5621 
load_module_btfs(struct bpf_object * obj)5622 static int load_module_btfs(struct bpf_object *obj)
5623 {
5624 	struct bpf_btf_info info;
5625 	struct module_btf *mod_btf;
5626 	struct btf *btf;
5627 	char name[64];
5628 	__u32 id = 0, len;
5629 	int err, fd;
5630 
5631 	if (obj->btf_modules_loaded)
5632 		return 0;
5633 
5634 	if (obj->gen_loader)
5635 		return 0;
5636 
5637 	/* don't do this again, even if we find no module BTFs */
5638 	obj->btf_modules_loaded = true;
5639 
5640 	/* kernel too old to support module BTFs */
5641 	if (!kernel_supports(obj, FEAT_MODULE_BTF))
5642 		return 0;
5643 
5644 	while (true) {
5645 		err = bpf_btf_get_next_id(id, &id);
5646 		if (err && errno == ENOENT)
5647 			return 0;
5648 		if (err && errno == EPERM) {
5649 			pr_debug("skipping module BTFs loading, missing privileges\n");
5650 			return 0;
5651 		}
5652 		if (err) {
5653 			err = -errno;
5654 			pr_warn("failed to iterate BTF objects: %s\n", errstr(err));
5655 			return err;
5656 		}
5657 
5658 		fd = bpf_btf_get_fd_by_id(id);
5659 		if (fd < 0) {
5660 			if (errno == ENOENT)
5661 				continue; /* expected race: BTF was unloaded */
5662 			err = -errno;
5663 			pr_warn("failed to get BTF object #%d FD: %s\n", id, errstr(err));
5664 			return err;
5665 		}
5666 
5667 		len = sizeof(info);
5668 		memset(&info, 0, sizeof(info));
5669 		info.name = ptr_to_u64(name);
5670 		info.name_len = sizeof(name);
5671 
5672 		err = bpf_btf_get_info_by_fd(fd, &info, &len);
5673 		if (err) {
5674 			err = -errno;
5675 			pr_warn("failed to get BTF object #%d info: %s\n", id, errstr(err));
5676 			goto err_out;
5677 		}
5678 
5679 		/* ignore non-module BTFs */
5680 		if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5681 			close(fd);
5682 			continue;
5683 		}
5684 
5685 		btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5686 		err = libbpf_get_error(btf);
5687 		if (err) {
5688 			pr_warn("failed to load module [%s]'s BTF object #%d: %s\n",
5689 				name, id, errstr(err));
5690 			goto err_out;
5691 		}
5692 
5693 		err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5694 					sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5695 		if (err)
5696 			goto err_out;
5697 
5698 		mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5699 
5700 		mod_btf->btf = btf;
5701 		mod_btf->id = id;
5702 		mod_btf->fd = fd;
5703 		mod_btf->name = strdup(name);
5704 		if (!mod_btf->name) {
5705 			err = -ENOMEM;
5706 			goto err_out;
5707 		}
5708 		continue;
5709 
5710 err_out:
5711 		close(fd);
5712 		return err;
5713 	}
5714 
5715 	return 0;
5716 }
5717 
5718 static struct bpf_core_cand_list *
bpf_core_find_cands(struct bpf_object * obj,const struct btf * local_btf,__u32 local_type_id)5719 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5720 {
5721 	struct bpf_core_cand local_cand = {};
5722 	struct bpf_core_cand_list *cands;
5723 	const struct btf *main_btf;
5724 	const struct btf_type *local_t;
5725 	const char *local_name;
5726 	size_t local_essent_len;
5727 	int err, i;
5728 
5729 	local_cand.btf = local_btf;
5730 	local_cand.id = local_type_id;
5731 	local_t = btf__type_by_id(local_btf, local_type_id);
5732 	if (!local_t)
5733 		return ERR_PTR(-EINVAL);
5734 
5735 	local_name = btf__name_by_offset(local_btf, local_t->name_off);
5736 	if (str_is_empty(local_name))
5737 		return ERR_PTR(-EINVAL);
5738 	local_essent_len = bpf_core_essential_name_len(local_name);
5739 
5740 	cands = calloc(1, sizeof(*cands));
5741 	if (!cands)
5742 		return ERR_PTR(-ENOMEM);
5743 
5744 	/* Attempt to find target candidates in vmlinux BTF first */
5745 	main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5746 	err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5747 	if (err)
5748 		goto err_out;
5749 
5750 	/* if vmlinux BTF has any candidate, don't got for module BTFs */
5751 	if (cands->len)
5752 		return cands;
5753 
5754 	/* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5755 	if (obj->btf_vmlinux_override)
5756 		return cands;
5757 
5758 	/* now look through module BTFs, trying to still find candidates */
5759 	err = load_module_btfs(obj);
5760 	if (err)
5761 		goto err_out;
5762 
5763 	for (i = 0; i < obj->btf_module_cnt; i++) {
5764 		err = bpf_core_add_cands(&local_cand, local_essent_len,
5765 					 obj->btf_modules[i].btf,
5766 					 obj->btf_modules[i].name,
5767 					 btf__type_cnt(obj->btf_vmlinux),
5768 					 cands);
5769 		if (err)
5770 			goto err_out;
5771 	}
5772 
5773 	return cands;
5774 err_out:
5775 	bpf_core_free_cands(cands);
5776 	return ERR_PTR(err);
5777 }
5778 
5779 /* Check local and target types for compatibility. This check is used for
5780  * type-based CO-RE relocations and follow slightly different rules than
5781  * field-based relocations. This function assumes that root types were already
5782  * checked for name match. Beyond that initial root-level name check, names
5783  * are completely ignored. Compatibility rules are as follows:
5784  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5785  *     kind should match for local and target types (i.e., STRUCT is not
5786  *     compatible with UNION);
5787  *   - for ENUMs, the size is ignored;
5788  *   - for INT, size and signedness are ignored;
5789  *   - for ARRAY, dimensionality is ignored, element types are checked for
5790  *     compatibility recursively;
5791  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
5792  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5793  *   - FUNC_PROTOs are compatible if they have compatible signature: same
5794  *     number of input args and compatible return and argument types.
5795  * These rules are not set in stone and probably will be adjusted as we get
5796  * more experience with using BPF CO-RE relocations.
5797  */
bpf_core_types_are_compat(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)5798 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5799 			      const struct btf *targ_btf, __u32 targ_id)
5800 {
5801 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
5802 }
5803 
bpf_core_types_match(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)5804 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
5805 			 const struct btf *targ_btf, __u32 targ_id)
5806 {
5807 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
5808 }
5809 
bpf_core_hash_fn(const long key,void * ctx)5810 static size_t bpf_core_hash_fn(const long key, void *ctx)
5811 {
5812 	return key;
5813 }
5814 
bpf_core_equal_fn(const long k1,const long k2,void * ctx)5815 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx)
5816 {
5817 	return k1 == k2;
5818 }
5819 
record_relo_core(struct bpf_program * prog,const struct bpf_core_relo * core_relo,int insn_idx)5820 static int record_relo_core(struct bpf_program *prog,
5821 			    const struct bpf_core_relo *core_relo, int insn_idx)
5822 {
5823 	struct reloc_desc *relos, *relo;
5824 
5825 	relos = libbpf_reallocarray(prog->reloc_desc,
5826 				    prog->nr_reloc + 1, sizeof(*relos));
5827 	if (!relos)
5828 		return -ENOMEM;
5829 	relo = &relos[prog->nr_reloc];
5830 	relo->type = RELO_CORE;
5831 	relo->insn_idx = insn_idx;
5832 	relo->core_relo = core_relo;
5833 	prog->reloc_desc = relos;
5834 	prog->nr_reloc++;
5835 	return 0;
5836 }
5837 
find_relo_core(struct bpf_program * prog,int insn_idx)5838 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5839 {
5840 	struct reloc_desc *relo;
5841 	int i;
5842 
5843 	for (i = 0; i < prog->nr_reloc; i++) {
5844 		relo = &prog->reloc_desc[i];
5845 		if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5846 			continue;
5847 
5848 		return relo->core_relo;
5849 	}
5850 
5851 	return NULL;
5852 }
5853 
bpf_core_resolve_relo(struct bpf_program * prog,const struct bpf_core_relo * relo,int relo_idx,const struct btf * local_btf,struct hashmap * cand_cache,struct bpf_core_relo_res * targ_res)5854 static int bpf_core_resolve_relo(struct bpf_program *prog,
5855 				 const struct bpf_core_relo *relo,
5856 				 int relo_idx,
5857 				 const struct btf *local_btf,
5858 				 struct hashmap *cand_cache,
5859 				 struct bpf_core_relo_res *targ_res)
5860 {
5861 	struct bpf_core_spec specs_scratch[3] = {};
5862 	struct bpf_core_cand_list *cands = NULL;
5863 	const char *prog_name = prog->name;
5864 	const struct btf_type *local_type;
5865 	const char *local_name;
5866 	__u32 local_id = relo->type_id;
5867 	int err;
5868 
5869 	local_type = btf__type_by_id(local_btf, local_id);
5870 	if (!local_type)
5871 		return -EINVAL;
5872 
5873 	local_name = btf__name_by_offset(local_btf, local_type->name_off);
5874 	if (!local_name)
5875 		return -EINVAL;
5876 
5877 	if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5878 	    !hashmap__find(cand_cache, local_id, &cands)) {
5879 		cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5880 		if (IS_ERR(cands)) {
5881 			pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5882 				prog_name, relo_idx, local_id, btf_kind_str(local_type),
5883 				local_name, PTR_ERR(cands));
5884 			return PTR_ERR(cands);
5885 		}
5886 		err = hashmap__set(cand_cache, local_id, cands, NULL, NULL);
5887 		if (err) {
5888 			bpf_core_free_cands(cands);
5889 			return err;
5890 		}
5891 	}
5892 
5893 	return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5894 				       targ_res);
5895 }
5896 
5897 static int
bpf_object__relocate_core(struct bpf_object * obj,const char * targ_btf_path)5898 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5899 {
5900 	const struct btf_ext_info_sec *sec;
5901 	struct bpf_core_relo_res targ_res;
5902 	const struct bpf_core_relo *rec;
5903 	const struct btf_ext_info *seg;
5904 	struct hashmap_entry *entry;
5905 	struct hashmap *cand_cache = NULL;
5906 	struct bpf_program *prog;
5907 	struct bpf_insn *insn;
5908 	const char *sec_name;
5909 	int i, err = 0, insn_idx, sec_idx, sec_num;
5910 
5911 	if (obj->btf_ext->core_relo_info.len == 0)
5912 		return 0;
5913 
5914 	if (targ_btf_path) {
5915 		obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5916 		err = libbpf_get_error(obj->btf_vmlinux_override);
5917 		if (err) {
5918 			pr_warn("failed to parse target BTF: %s\n", errstr(err));
5919 			return err;
5920 		}
5921 	}
5922 
5923 	cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5924 	if (IS_ERR(cand_cache)) {
5925 		err = PTR_ERR(cand_cache);
5926 		goto out;
5927 	}
5928 
5929 	seg = &obj->btf_ext->core_relo_info;
5930 	sec_num = 0;
5931 	for_each_btf_ext_sec(seg, sec) {
5932 		sec_idx = seg->sec_idxs[sec_num];
5933 		sec_num++;
5934 
5935 		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5936 		if (str_is_empty(sec_name)) {
5937 			err = -EINVAL;
5938 			goto out;
5939 		}
5940 
5941 		pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
5942 
5943 		for_each_btf_ext_rec(seg, sec, i, rec) {
5944 			if (rec->insn_off % BPF_INSN_SZ)
5945 				return -EINVAL;
5946 			insn_idx = rec->insn_off / BPF_INSN_SZ;
5947 			prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5948 			if (!prog) {
5949 				/* When __weak subprog is "overridden" by another instance
5950 				 * of the subprog from a different object file, linker still
5951 				 * appends all the .BTF.ext info that used to belong to that
5952 				 * eliminated subprogram.
5953 				 * This is similar to what x86-64 linker does for relocations.
5954 				 * So just ignore such relocations just like we ignore
5955 				 * subprog instructions when discovering subprograms.
5956 				 */
5957 				pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5958 					 sec_name, i, insn_idx);
5959 				continue;
5960 			}
5961 			/* no need to apply CO-RE relocation if the program is
5962 			 * not going to be loaded
5963 			 */
5964 			if (!prog->autoload)
5965 				continue;
5966 
5967 			/* adjust insn_idx from section frame of reference to the local
5968 			 * program's frame of reference; (sub-)program code is not yet
5969 			 * relocated, so it's enough to just subtract in-section offset
5970 			 */
5971 			insn_idx = insn_idx - prog->sec_insn_off;
5972 			if (insn_idx >= prog->insns_cnt)
5973 				return -EINVAL;
5974 			insn = &prog->insns[insn_idx];
5975 
5976 			err = record_relo_core(prog, rec, insn_idx);
5977 			if (err) {
5978 				pr_warn("prog '%s': relo #%d: failed to record relocation: %s\n",
5979 					prog->name, i, errstr(err));
5980 				goto out;
5981 			}
5982 
5983 			if (prog->obj->gen_loader)
5984 				continue;
5985 
5986 			err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
5987 			if (err) {
5988 				pr_warn("prog '%s': relo #%d: failed to relocate: %s\n",
5989 					prog->name, i, errstr(err));
5990 				goto out;
5991 			}
5992 
5993 			err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
5994 			if (err) {
5995 				pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %s\n",
5996 					prog->name, i, insn_idx, errstr(err));
5997 				goto out;
5998 			}
5999 		}
6000 	}
6001 
6002 out:
6003 	/* obj->btf_vmlinux and module BTFs are freed after object load */
6004 	btf__free(obj->btf_vmlinux_override);
6005 	obj->btf_vmlinux_override = NULL;
6006 
6007 	if (!IS_ERR_OR_NULL(cand_cache)) {
6008 		hashmap__for_each_entry(cand_cache, entry, i) {
6009 			bpf_core_free_cands(entry->pvalue);
6010 		}
6011 		hashmap__free(cand_cache);
6012 	}
6013 	return err;
6014 }
6015 
6016 /* base map load ldimm64 special constant, used also for log fixup logic */
6017 #define POISON_LDIMM64_MAP_BASE 2001000000
6018 #define POISON_LDIMM64_MAP_PFX "200100"
6019 
poison_map_ldimm64(struct bpf_program * prog,int relo_idx,int insn_idx,struct bpf_insn * insn,int map_idx,const struct bpf_map * map)6020 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
6021 			       int insn_idx, struct bpf_insn *insn,
6022 			       int map_idx, const struct bpf_map *map)
6023 {
6024 	int i;
6025 
6026 	pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
6027 		 prog->name, relo_idx, insn_idx, map_idx, map->name);
6028 
6029 	/* we turn single ldimm64 into two identical invalid calls */
6030 	for (i = 0; i < 2; i++) {
6031 		insn->code = BPF_JMP | BPF_CALL;
6032 		insn->dst_reg = 0;
6033 		insn->src_reg = 0;
6034 		insn->off = 0;
6035 		/* if this instruction is reachable (not a dead code),
6036 		 * verifier will complain with something like:
6037 		 * invalid func unknown#2001000123
6038 		 * where lower 123 is map index into obj->maps[] array
6039 		 */
6040 		insn->imm = POISON_LDIMM64_MAP_BASE + map_idx;
6041 
6042 		insn++;
6043 	}
6044 }
6045 
6046 /* unresolved kfunc call special constant, used also for log fixup logic */
6047 #define POISON_CALL_KFUNC_BASE 2002000000
6048 #define POISON_CALL_KFUNC_PFX "2002"
6049 
poison_kfunc_call(struct bpf_program * prog,int relo_idx,int insn_idx,struct bpf_insn * insn,int ext_idx,const struct extern_desc * ext)6050 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx,
6051 			      int insn_idx, struct bpf_insn *insn,
6052 			      int ext_idx, const struct extern_desc *ext)
6053 {
6054 	pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n",
6055 		 prog->name, relo_idx, insn_idx, ext->name);
6056 
6057 	/* we turn kfunc call into invalid helper call with identifiable constant */
6058 	insn->code = BPF_JMP | BPF_CALL;
6059 	insn->dst_reg = 0;
6060 	insn->src_reg = 0;
6061 	insn->off = 0;
6062 	/* if this instruction is reachable (not a dead code),
6063 	 * verifier will complain with something like:
6064 	 * invalid func unknown#2001000123
6065 	 * where lower 123 is extern index into obj->externs[] array
6066 	 */
6067 	insn->imm = POISON_CALL_KFUNC_BASE + ext_idx;
6068 }
6069 
6070 /* Relocate data references within program code:
6071  *  - map references;
6072  *  - global variable references;
6073  *  - extern references.
6074  */
6075 static int
bpf_object__relocate_data(struct bpf_object * obj,struct bpf_program * prog)6076 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
6077 {
6078 	int i;
6079 
6080 	for (i = 0; i < prog->nr_reloc; i++) {
6081 		struct reloc_desc *relo = &prog->reloc_desc[i];
6082 		struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6083 		const struct bpf_map *map;
6084 		struct extern_desc *ext;
6085 
6086 		switch (relo->type) {
6087 		case RELO_LD64:
6088 			map = &obj->maps[relo->map_idx];
6089 			if (obj->gen_loader) {
6090 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
6091 				insn[0].imm = relo->map_idx;
6092 			} else if (map->autocreate) {
6093 				insn[0].src_reg = BPF_PSEUDO_MAP_FD;
6094 				insn[0].imm = map->fd;
6095 			} else {
6096 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
6097 						   relo->map_idx, map);
6098 			}
6099 			break;
6100 		case RELO_DATA:
6101 			map = &obj->maps[relo->map_idx];
6102 			insn[1].imm = insn[0].imm + relo->sym_off;
6103 			if (obj->gen_loader) {
6104 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6105 				insn[0].imm = relo->map_idx;
6106 			} else if (map->autocreate) {
6107 				insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6108 				insn[0].imm = map->fd;
6109 			} else {
6110 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
6111 						   relo->map_idx, map);
6112 			}
6113 			break;
6114 		case RELO_EXTERN_LD64:
6115 			ext = &obj->externs[relo->ext_idx];
6116 			if (ext->type == EXT_KCFG) {
6117 				if (obj->gen_loader) {
6118 					insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6119 					insn[0].imm = obj->kconfig_map_idx;
6120 				} else {
6121 					insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6122 					insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
6123 				}
6124 				insn[1].imm = ext->kcfg.data_off;
6125 			} else /* EXT_KSYM */ {
6126 				if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
6127 					insn[0].src_reg = BPF_PSEUDO_BTF_ID;
6128 					insn[0].imm = ext->ksym.kernel_btf_id;
6129 					insn[1].imm = ext->ksym.kernel_btf_obj_fd;
6130 				} else { /* typeless ksyms or unresolved typed ksyms */
6131 					insn[0].imm = (__u32)ext->ksym.addr;
6132 					insn[1].imm = ext->ksym.addr >> 32;
6133 				}
6134 			}
6135 			break;
6136 		case RELO_EXTERN_CALL:
6137 			ext = &obj->externs[relo->ext_idx];
6138 			insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
6139 			if (ext->is_set) {
6140 				insn[0].imm = ext->ksym.kernel_btf_id;
6141 				insn[0].off = ext->ksym.btf_fd_idx;
6142 			} else { /* unresolved weak kfunc call */
6143 				poison_kfunc_call(prog, i, relo->insn_idx, insn,
6144 						  relo->ext_idx, ext);
6145 			}
6146 			break;
6147 		case RELO_SUBPROG_ADDR:
6148 			if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
6149 				pr_warn("prog '%s': relo #%d: bad insn\n",
6150 					prog->name, i);
6151 				return -EINVAL;
6152 			}
6153 			/* handled already */
6154 			break;
6155 		case RELO_CALL:
6156 			/* handled already */
6157 			break;
6158 		case RELO_CORE:
6159 			/* will be handled by bpf_program_record_relos() */
6160 			break;
6161 		default:
6162 			pr_warn("prog '%s': relo #%d: bad relo type %d\n",
6163 				prog->name, i, relo->type);
6164 			return -EINVAL;
6165 		}
6166 	}
6167 
6168 	return 0;
6169 }
6170 
adjust_prog_btf_ext_info(const struct bpf_object * obj,const struct bpf_program * prog,const struct btf_ext_info * ext_info,void ** prog_info,__u32 * prog_rec_cnt,__u32 * prog_rec_sz)6171 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
6172 				    const struct bpf_program *prog,
6173 				    const struct btf_ext_info *ext_info,
6174 				    void **prog_info, __u32 *prog_rec_cnt,
6175 				    __u32 *prog_rec_sz)
6176 {
6177 	void *copy_start = NULL, *copy_end = NULL;
6178 	void *rec, *rec_end, *new_prog_info;
6179 	const struct btf_ext_info_sec *sec;
6180 	size_t old_sz, new_sz;
6181 	int i, sec_num, sec_idx, off_adj;
6182 
6183 	sec_num = 0;
6184 	for_each_btf_ext_sec(ext_info, sec) {
6185 		sec_idx = ext_info->sec_idxs[sec_num];
6186 		sec_num++;
6187 		if (prog->sec_idx != sec_idx)
6188 			continue;
6189 
6190 		for_each_btf_ext_rec(ext_info, sec, i, rec) {
6191 			__u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6192 
6193 			if (insn_off < prog->sec_insn_off)
6194 				continue;
6195 			if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6196 				break;
6197 
6198 			if (!copy_start)
6199 				copy_start = rec;
6200 			copy_end = rec + ext_info->rec_size;
6201 		}
6202 
6203 		if (!copy_start)
6204 			return -ENOENT;
6205 
6206 		/* append func/line info of a given (sub-)program to the main
6207 		 * program func/line info
6208 		 */
6209 		old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6210 		new_sz = old_sz + (copy_end - copy_start);
6211 		new_prog_info = realloc(*prog_info, new_sz);
6212 		if (!new_prog_info)
6213 			return -ENOMEM;
6214 		*prog_info = new_prog_info;
6215 		*prog_rec_cnt = new_sz / ext_info->rec_size;
6216 		memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6217 
6218 		/* Kernel instruction offsets are in units of 8-byte
6219 		 * instructions, while .BTF.ext instruction offsets generated
6220 		 * by Clang are in units of bytes. So convert Clang offsets
6221 		 * into kernel offsets and adjust offset according to program
6222 		 * relocated position.
6223 		 */
6224 		off_adj = prog->sub_insn_off - prog->sec_insn_off;
6225 		rec = new_prog_info + old_sz;
6226 		rec_end = new_prog_info + new_sz;
6227 		for (; rec < rec_end; rec += ext_info->rec_size) {
6228 			__u32 *insn_off = rec;
6229 
6230 			*insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6231 		}
6232 		*prog_rec_sz = ext_info->rec_size;
6233 		return 0;
6234 	}
6235 
6236 	return -ENOENT;
6237 }
6238 
6239 static int
reloc_prog_func_and_line_info(const struct bpf_object * obj,struct bpf_program * main_prog,const struct bpf_program * prog)6240 reloc_prog_func_and_line_info(const struct bpf_object *obj,
6241 			      struct bpf_program *main_prog,
6242 			      const struct bpf_program *prog)
6243 {
6244 	int err;
6245 
6246 	/* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6247 	 * support func/line info
6248 	 */
6249 	if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
6250 		return 0;
6251 
6252 	/* only attempt func info relocation if main program's func_info
6253 	 * relocation was successful
6254 	 */
6255 	if (main_prog != prog && !main_prog->func_info)
6256 		goto line_info;
6257 
6258 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6259 				       &main_prog->func_info,
6260 				       &main_prog->func_info_cnt,
6261 				       &main_prog->func_info_rec_size);
6262 	if (err) {
6263 		if (err != -ENOENT) {
6264 			pr_warn("prog '%s': error relocating .BTF.ext function info: %s\n",
6265 				prog->name, errstr(err));
6266 			return err;
6267 		}
6268 		if (main_prog->func_info) {
6269 			/*
6270 			 * Some info has already been found but has problem
6271 			 * in the last btf_ext reloc. Must have to error out.
6272 			 */
6273 			pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6274 			return err;
6275 		}
6276 		/* Have problem loading the very first info. Ignore the rest. */
6277 		pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6278 			prog->name);
6279 	}
6280 
6281 line_info:
6282 	/* don't relocate line info if main program's relocation failed */
6283 	if (main_prog != prog && !main_prog->line_info)
6284 		return 0;
6285 
6286 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6287 				       &main_prog->line_info,
6288 				       &main_prog->line_info_cnt,
6289 				       &main_prog->line_info_rec_size);
6290 	if (err) {
6291 		if (err != -ENOENT) {
6292 			pr_warn("prog '%s': error relocating .BTF.ext line info: %s\n",
6293 				prog->name, errstr(err));
6294 			return err;
6295 		}
6296 		if (main_prog->line_info) {
6297 			/*
6298 			 * Some info has already been found but has problem
6299 			 * in the last btf_ext reloc. Must have to error out.
6300 			 */
6301 			pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6302 			return err;
6303 		}
6304 		/* Have problem loading the very first info. Ignore the rest. */
6305 		pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6306 			prog->name);
6307 	}
6308 	return 0;
6309 }
6310 
cmp_relo_by_insn_idx(const void * key,const void * elem)6311 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6312 {
6313 	size_t insn_idx = *(const size_t *)key;
6314 	const struct reloc_desc *relo = elem;
6315 
6316 	if (insn_idx == relo->insn_idx)
6317 		return 0;
6318 	return insn_idx < relo->insn_idx ? -1 : 1;
6319 }
6320 
find_prog_insn_relo(const struct bpf_program * prog,size_t insn_idx)6321 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6322 {
6323 	if (!prog->nr_reloc)
6324 		return NULL;
6325 	return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6326 		       sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6327 }
6328 
append_subprog_relos(struct bpf_program * main_prog,struct bpf_program * subprog)6329 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6330 {
6331 	int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6332 	struct reloc_desc *relos;
6333 	int i;
6334 
6335 	if (main_prog == subprog)
6336 		return 0;
6337 	relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6338 	/* if new count is zero, reallocarray can return a valid NULL result;
6339 	 * in this case the previous pointer will be freed, so we *have to*
6340 	 * reassign old pointer to the new value (even if it's NULL)
6341 	 */
6342 	if (!relos && new_cnt)
6343 		return -ENOMEM;
6344 	if (subprog->nr_reloc)
6345 		memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6346 		       sizeof(*relos) * subprog->nr_reloc);
6347 
6348 	for (i = main_prog->nr_reloc; i < new_cnt; i++)
6349 		relos[i].insn_idx += subprog->sub_insn_off;
6350 	/* After insn_idx adjustment the 'relos' array is still sorted
6351 	 * by insn_idx and doesn't break bsearch.
6352 	 */
6353 	main_prog->reloc_desc = relos;
6354 	main_prog->nr_reloc = new_cnt;
6355 	return 0;
6356 }
6357 
6358 static int
bpf_object__append_subprog_code(struct bpf_object * obj,struct bpf_program * main_prog,struct bpf_program * subprog)6359 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog,
6360 				struct bpf_program *subprog)
6361 {
6362        struct bpf_insn *insns;
6363        size_t new_cnt;
6364        int err;
6365 
6366        subprog->sub_insn_off = main_prog->insns_cnt;
6367 
6368        new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6369        insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6370        if (!insns) {
6371                pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6372                return -ENOMEM;
6373        }
6374        main_prog->insns = insns;
6375        main_prog->insns_cnt = new_cnt;
6376 
6377        memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6378               subprog->insns_cnt * sizeof(*insns));
6379 
6380        pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6381                 main_prog->name, subprog->insns_cnt, subprog->name);
6382 
6383        /* The subprog insns are now appended. Append its relos too. */
6384        err = append_subprog_relos(main_prog, subprog);
6385        if (err)
6386                return err;
6387        return 0;
6388 }
6389 
6390 static int
bpf_object__reloc_code(struct bpf_object * obj,struct bpf_program * main_prog,struct bpf_program * prog)6391 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6392 		       struct bpf_program *prog)
6393 {
6394 	size_t sub_insn_idx, insn_idx;
6395 	struct bpf_program *subprog;
6396 	struct reloc_desc *relo;
6397 	struct bpf_insn *insn;
6398 	int err;
6399 
6400 	err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6401 	if (err)
6402 		return err;
6403 
6404 	for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6405 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6406 		if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6407 			continue;
6408 
6409 		relo = find_prog_insn_relo(prog, insn_idx);
6410 		if (relo && relo->type == RELO_EXTERN_CALL)
6411 			/* kfunc relocations will be handled later
6412 			 * in bpf_object__relocate_data()
6413 			 */
6414 			continue;
6415 		if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6416 			pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6417 				prog->name, insn_idx, relo->type);
6418 			return -LIBBPF_ERRNO__RELOC;
6419 		}
6420 		if (relo) {
6421 			/* sub-program instruction index is a combination of
6422 			 * an offset of a symbol pointed to by relocation and
6423 			 * call instruction's imm field; for global functions,
6424 			 * call always has imm = -1, but for static functions
6425 			 * relocation is against STT_SECTION and insn->imm
6426 			 * points to a start of a static function
6427 			 *
6428 			 * for subprog addr relocation, the relo->sym_off + insn->imm is
6429 			 * the byte offset in the corresponding section.
6430 			 */
6431 			if (relo->type == RELO_CALL)
6432 				sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6433 			else
6434 				sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6435 		} else if (insn_is_pseudo_func(insn)) {
6436 			/*
6437 			 * RELO_SUBPROG_ADDR relo is always emitted even if both
6438 			 * functions are in the same section, so it shouldn't reach here.
6439 			 */
6440 			pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6441 				prog->name, insn_idx);
6442 			return -LIBBPF_ERRNO__RELOC;
6443 		} else {
6444 			/* if subprogram call is to a static function within
6445 			 * the same ELF section, there won't be any relocation
6446 			 * emitted, but it also means there is no additional
6447 			 * offset necessary, insns->imm is relative to
6448 			 * instruction's original position within the section
6449 			 */
6450 			sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6451 		}
6452 
6453 		/* we enforce that sub-programs should be in .text section */
6454 		subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6455 		if (!subprog) {
6456 			pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6457 				prog->name);
6458 			return -LIBBPF_ERRNO__RELOC;
6459 		}
6460 
6461 		/* if it's the first call instruction calling into this
6462 		 * subprogram (meaning this subprog hasn't been processed
6463 		 * yet) within the context of current main program:
6464 		 *   - append it at the end of main program's instructions blog;
6465 		 *   - process is recursively, while current program is put on hold;
6466 		 *   - if that subprogram calls some other not yet processes
6467 		 *   subprogram, same thing will happen recursively until
6468 		 *   there are no more unprocesses subprograms left to append
6469 		 *   and relocate.
6470 		 */
6471 		if (subprog->sub_insn_off == 0) {
6472 			err = bpf_object__append_subprog_code(obj, main_prog, subprog);
6473 			if (err)
6474 				return err;
6475 			err = bpf_object__reloc_code(obj, main_prog, subprog);
6476 			if (err)
6477 				return err;
6478 		}
6479 
6480 		/* main_prog->insns memory could have been re-allocated, so
6481 		 * calculate pointer again
6482 		 */
6483 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6484 		/* calculate correct instruction position within current main
6485 		 * prog; each main prog can have a different set of
6486 		 * subprograms appended (potentially in different order as
6487 		 * well), so position of any subprog can be different for
6488 		 * different main programs
6489 		 */
6490 		insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6491 
6492 		pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6493 			 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6494 	}
6495 
6496 	return 0;
6497 }
6498 
6499 /*
6500  * Relocate sub-program calls.
6501  *
6502  * Algorithm operates as follows. Each entry-point BPF program (referred to as
6503  * main prog) is processed separately. For each subprog (non-entry functions,
6504  * that can be called from either entry progs or other subprogs) gets their
6505  * sub_insn_off reset to zero. This serves as indicator that this subprogram
6506  * hasn't been yet appended and relocated within current main prog. Once its
6507  * relocated, sub_insn_off will point at the position within current main prog
6508  * where given subprog was appended. This will further be used to relocate all
6509  * the call instructions jumping into this subprog.
6510  *
6511  * We start with main program and process all call instructions. If the call
6512  * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6513  * is zero), subprog instructions are appended at the end of main program's
6514  * instruction array. Then main program is "put on hold" while we recursively
6515  * process newly appended subprogram. If that subprogram calls into another
6516  * subprogram that hasn't been appended, new subprogram is appended again to
6517  * the *main* prog's instructions (subprog's instructions are always left
6518  * untouched, as they need to be in unmodified state for subsequent main progs
6519  * and subprog instructions are always sent only as part of a main prog) and
6520  * the process continues recursively. Once all the subprogs called from a main
6521  * prog or any of its subprogs are appended (and relocated), all their
6522  * positions within finalized instructions array are known, so it's easy to
6523  * rewrite call instructions with correct relative offsets, corresponding to
6524  * desired target subprog.
6525  *
6526  * Its important to realize that some subprogs might not be called from some
6527  * main prog and any of its called/used subprogs. Those will keep their
6528  * subprog->sub_insn_off as zero at all times and won't be appended to current
6529  * main prog and won't be relocated within the context of current main prog.
6530  * They might still be used from other main progs later.
6531  *
6532  * Visually this process can be shown as below. Suppose we have two main
6533  * programs mainA and mainB and BPF object contains three subprogs: subA,
6534  * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6535  * subC both call subB:
6536  *
6537  *        +--------+ +-------+
6538  *        |        v v       |
6539  *     +--+---+ +--+-+-+ +---+--+
6540  *     | subA | | subB | | subC |
6541  *     +--+---+ +------+ +---+--+
6542  *        ^                  ^
6543  *        |                  |
6544  *    +---+-------+   +------+----+
6545  *    |   mainA   |   |   mainB   |
6546  *    +-----------+   +-----------+
6547  *
6548  * We'll start relocating mainA, will find subA, append it and start
6549  * processing sub A recursively:
6550  *
6551  *    +-----------+------+
6552  *    |   mainA   | subA |
6553  *    +-----------+------+
6554  *
6555  * At this point we notice that subB is used from subA, so we append it and
6556  * relocate (there are no further subcalls from subB):
6557  *
6558  *    +-----------+------+------+
6559  *    |   mainA   | subA | subB |
6560  *    +-----------+------+------+
6561  *
6562  * At this point, we relocate subA calls, then go one level up and finish with
6563  * relocatin mainA calls. mainA is done.
6564  *
6565  * For mainB process is similar but results in different order. We start with
6566  * mainB and skip subA and subB, as mainB never calls them (at least
6567  * directly), but we see subC is needed, so we append and start processing it:
6568  *
6569  *    +-----------+------+
6570  *    |   mainB   | subC |
6571  *    +-----------+------+
6572  * Now we see subC needs subB, so we go back to it, append and relocate it:
6573  *
6574  *    +-----------+------+------+
6575  *    |   mainB   | subC | subB |
6576  *    +-----------+------+------+
6577  *
6578  * At this point we unwind recursion, relocate calls in subC, then in mainB.
6579  */
6580 static int
bpf_object__relocate_calls(struct bpf_object * obj,struct bpf_program * prog)6581 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6582 {
6583 	struct bpf_program *subprog;
6584 	int i, err;
6585 
6586 	/* mark all subprogs as not relocated (yet) within the context of
6587 	 * current main program
6588 	 */
6589 	for (i = 0; i < obj->nr_programs; i++) {
6590 		subprog = &obj->programs[i];
6591 		if (!prog_is_subprog(obj, subprog))
6592 			continue;
6593 
6594 		subprog->sub_insn_off = 0;
6595 	}
6596 
6597 	err = bpf_object__reloc_code(obj, prog, prog);
6598 	if (err)
6599 		return err;
6600 
6601 	return 0;
6602 }
6603 
6604 static void
bpf_object__free_relocs(struct bpf_object * obj)6605 bpf_object__free_relocs(struct bpf_object *obj)
6606 {
6607 	struct bpf_program *prog;
6608 	int i;
6609 
6610 	/* free up relocation descriptors */
6611 	for (i = 0; i < obj->nr_programs; i++) {
6612 		prog = &obj->programs[i];
6613 		zfree(&prog->reloc_desc);
6614 		prog->nr_reloc = 0;
6615 	}
6616 }
6617 
cmp_relocs(const void * _a,const void * _b)6618 static int cmp_relocs(const void *_a, const void *_b)
6619 {
6620 	const struct reloc_desc *a = _a;
6621 	const struct reloc_desc *b = _b;
6622 
6623 	if (a->insn_idx != b->insn_idx)
6624 		return a->insn_idx < b->insn_idx ? -1 : 1;
6625 
6626 	/* no two relocations should have the same insn_idx, but ... */
6627 	if (a->type != b->type)
6628 		return a->type < b->type ? -1 : 1;
6629 
6630 	return 0;
6631 }
6632 
bpf_object__sort_relos(struct bpf_object * obj)6633 static void bpf_object__sort_relos(struct bpf_object *obj)
6634 {
6635 	int i;
6636 
6637 	for (i = 0; i < obj->nr_programs; i++) {
6638 		struct bpf_program *p = &obj->programs[i];
6639 
6640 		if (!p->nr_reloc)
6641 			continue;
6642 
6643 		qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6644 	}
6645 }
6646 
bpf_prog_assign_exc_cb(struct bpf_object * obj,struct bpf_program * prog)6647 static int bpf_prog_assign_exc_cb(struct bpf_object *obj, struct bpf_program *prog)
6648 {
6649 	const char *str = "exception_callback:";
6650 	size_t pfx_len = strlen(str);
6651 	int i, j, n;
6652 
6653 	if (!obj->btf || !kernel_supports(obj, FEAT_BTF_DECL_TAG))
6654 		return 0;
6655 
6656 	n = btf__type_cnt(obj->btf);
6657 	for (i = 1; i < n; i++) {
6658 		const char *name;
6659 		struct btf_type *t;
6660 
6661 		t = btf_type_by_id(obj->btf, i);
6662 		if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1)
6663 			continue;
6664 
6665 		name = btf__str_by_offset(obj->btf, t->name_off);
6666 		if (strncmp(name, str, pfx_len) != 0)
6667 			continue;
6668 
6669 		t = btf_type_by_id(obj->btf, t->type);
6670 		if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
6671 			pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n",
6672 				prog->name);
6673 			return -EINVAL;
6674 		}
6675 		if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)) != 0)
6676 			continue;
6677 		/* Multiple callbacks are specified for the same prog,
6678 		 * the verifier will eventually return an error for this
6679 		 * case, hence simply skip appending a subprog.
6680 		 */
6681 		if (prog->exception_cb_idx >= 0) {
6682 			prog->exception_cb_idx = -1;
6683 			break;
6684 		}
6685 
6686 		name += pfx_len;
6687 		if (str_is_empty(name)) {
6688 			pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n",
6689 				prog->name);
6690 			return -EINVAL;
6691 		}
6692 
6693 		for (j = 0; j < obj->nr_programs; j++) {
6694 			struct bpf_program *subprog = &obj->programs[j];
6695 
6696 			if (!prog_is_subprog(obj, subprog))
6697 				continue;
6698 			if (strcmp(name, subprog->name) != 0)
6699 				continue;
6700 			/* Enforce non-hidden, as from verifier point of
6701 			 * view it expects global functions, whereas the
6702 			 * mark_btf_static fixes up linkage as static.
6703 			 */
6704 			if (!subprog->sym_global || subprog->mark_btf_static) {
6705 				pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n",
6706 					prog->name, subprog->name);
6707 				return -EINVAL;
6708 			}
6709 			/* Let's see if we already saw a static exception callback with the same name */
6710 			if (prog->exception_cb_idx >= 0) {
6711 				pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n",
6712 					prog->name, subprog->name);
6713 				return -EINVAL;
6714 			}
6715 			prog->exception_cb_idx = j;
6716 			break;
6717 		}
6718 
6719 		if (prog->exception_cb_idx >= 0)
6720 			continue;
6721 
6722 		pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name);
6723 		return -ENOENT;
6724 	}
6725 
6726 	return 0;
6727 }
6728 
6729 static struct {
6730 	enum bpf_prog_type prog_type;
6731 	const char *ctx_name;
6732 } global_ctx_map[] = {
6733 	{ BPF_PROG_TYPE_CGROUP_DEVICE,           "bpf_cgroup_dev_ctx" },
6734 	{ BPF_PROG_TYPE_CGROUP_SKB,              "__sk_buff" },
6735 	{ BPF_PROG_TYPE_CGROUP_SOCK,             "bpf_sock" },
6736 	{ BPF_PROG_TYPE_CGROUP_SOCK_ADDR,        "bpf_sock_addr" },
6737 	{ BPF_PROG_TYPE_CGROUP_SOCKOPT,          "bpf_sockopt" },
6738 	{ BPF_PROG_TYPE_CGROUP_SYSCTL,           "bpf_sysctl" },
6739 	{ BPF_PROG_TYPE_FLOW_DISSECTOR,          "__sk_buff" },
6740 	{ BPF_PROG_TYPE_KPROBE,                  "bpf_user_pt_regs_t" },
6741 	{ BPF_PROG_TYPE_LWT_IN,                  "__sk_buff" },
6742 	{ BPF_PROG_TYPE_LWT_OUT,                 "__sk_buff" },
6743 	{ BPF_PROG_TYPE_LWT_SEG6LOCAL,           "__sk_buff" },
6744 	{ BPF_PROG_TYPE_LWT_XMIT,                "__sk_buff" },
6745 	{ BPF_PROG_TYPE_NETFILTER,               "bpf_nf_ctx" },
6746 	{ BPF_PROG_TYPE_PERF_EVENT,              "bpf_perf_event_data" },
6747 	{ BPF_PROG_TYPE_RAW_TRACEPOINT,          "bpf_raw_tracepoint_args" },
6748 	{ BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, "bpf_raw_tracepoint_args" },
6749 	{ BPF_PROG_TYPE_SCHED_ACT,               "__sk_buff" },
6750 	{ BPF_PROG_TYPE_SCHED_CLS,               "__sk_buff" },
6751 	{ BPF_PROG_TYPE_SK_LOOKUP,               "bpf_sk_lookup" },
6752 	{ BPF_PROG_TYPE_SK_MSG,                  "sk_msg_md" },
6753 	{ BPF_PROG_TYPE_SK_REUSEPORT,            "sk_reuseport_md" },
6754 	{ BPF_PROG_TYPE_SK_SKB,                  "__sk_buff" },
6755 	{ BPF_PROG_TYPE_SOCK_OPS,                "bpf_sock_ops" },
6756 	{ BPF_PROG_TYPE_SOCKET_FILTER,           "__sk_buff" },
6757 	{ BPF_PROG_TYPE_XDP,                     "xdp_md" },
6758 	/* all other program types don't have "named" context structs */
6759 };
6760 
6761 /* forward declarations for arch-specific underlying types of bpf_user_pt_regs_t typedef,
6762  * for below __builtin_types_compatible_p() checks;
6763  * with this approach we don't need any extra arch-specific #ifdef guards
6764  */
6765 struct pt_regs;
6766 struct user_pt_regs;
6767 struct user_regs_struct;
6768 
need_func_arg_type_fixup(const struct btf * btf,const struct bpf_program * prog,const char * subprog_name,int arg_idx,int arg_type_id,const char * ctx_name)6769 static bool need_func_arg_type_fixup(const struct btf *btf, const struct bpf_program *prog,
6770 				     const char *subprog_name, int arg_idx,
6771 				     int arg_type_id, const char *ctx_name)
6772 {
6773 	const struct btf_type *t;
6774 	const char *tname;
6775 
6776 	/* check if existing parameter already matches verifier expectations */
6777 	t = skip_mods_and_typedefs(btf, arg_type_id, NULL);
6778 	if (!btf_is_ptr(t))
6779 		goto out_warn;
6780 
6781 	/* typedef bpf_user_pt_regs_t is a special PITA case, valid for kprobe
6782 	 * and perf_event programs, so check this case early on and forget
6783 	 * about it for subsequent checks
6784 	 */
6785 	while (btf_is_mod(t))
6786 		t = btf__type_by_id(btf, t->type);
6787 	if (btf_is_typedef(t) &&
6788 	    (prog->type == BPF_PROG_TYPE_KPROBE || prog->type == BPF_PROG_TYPE_PERF_EVENT)) {
6789 		tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>";
6790 		if (strcmp(tname, "bpf_user_pt_regs_t") == 0)
6791 			return false; /* canonical type for kprobe/perf_event */
6792 	}
6793 
6794 	/* now we can ignore typedefs moving forward */
6795 	t = skip_mods_and_typedefs(btf, t->type, NULL);
6796 
6797 	/* if it's `void *`, definitely fix up BTF info */
6798 	if (btf_is_void(t))
6799 		return true;
6800 
6801 	/* if it's already proper canonical type, no need to fix up */
6802 	tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>";
6803 	if (btf_is_struct(t) && strcmp(tname, ctx_name) == 0)
6804 		return false;
6805 
6806 	/* special cases */
6807 	switch (prog->type) {
6808 	case BPF_PROG_TYPE_KPROBE:
6809 		/* `struct pt_regs *` is expected, but we need to fix up */
6810 		if (btf_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6811 			return true;
6812 		break;
6813 	case BPF_PROG_TYPE_PERF_EVENT:
6814 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) &&
6815 		    btf_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6816 			return true;
6817 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) &&
6818 		    btf_is_struct(t) && strcmp(tname, "user_pt_regs") == 0)
6819 			return true;
6820 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) &&
6821 		    btf_is_struct(t) && strcmp(tname, "user_regs_struct") == 0)
6822 			return true;
6823 		break;
6824 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
6825 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
6826 		/* allow u64* as ctx */
6827 		if (btf_is_int(t) && t->size == 8)
6828 			return true;
6829 		break;
6830 	default:
6831 		break;
6832 	}
6833 
6834 out_warn:
6835 	pr_warn("prog '%s': subprog '%s' arg#%d is expected to be of `struct %s *` type\n",
6836 		prog->name, subprog_name, arg_idx, ctx_name);
6837 	return false;
6838 }
6839 
clone_func_btf_info(struct btf * btf,int orig_fn_id,struct bpf_program * prog)6840 static int clone_func_btf_info(struct btf *btf, int orig_fn_id, struct bpf_program *prog)
6841 {
6842 	int fn_id, fn_proto_id, ret_type_id, orig_proto_id;
6843 	int i, err, arg_cnt, fn_name_off, linkage;
6844 	struct btf_type *fn_t, *fn_proto_t, *t;
6845 	struct btf_param *p;
6846 
6847 	/* caller already validated FUNC -> FUNC_PROTO validity */
6848 	fn_t = btf_type_by_id(btf, orig_fn_id);
6849 	fn_proto_t = btf_type_by_id(btf, fn_t->type);
6850 
6851 	/* Note that each btf__add_xxx() operation invalidates
6852 	 * all btf_type and string pointers, so we need to be
6853 	 * very careful when cloning BTF types. BTF type
6854 	 * pointers have to be always refetched. And to avoid
6855 	 * problems with invalidated string pointers, we
6856 	 * add empty strings initially, then just fix up
6857 	 * name_off offsets in place. Offsets are stable for
6858 	 * existing strings, so that works out.
6859 	 */
6860 	fn_name_off = fn_t->name_off; /* we are about to invalidate fn_t */
6861 	linkage = btf_func_linkage(fn_t);
6862 	orig_proto_id = fn_t->type; /* original FUNC_PROTO ID */
6863 	ret_type_id = fn_proto_t->type; /* fn_proto_t will be invalidated */
6864 	arg_cnt = btf_vlen(fn_proto_t);
6865 
6866 	/* clone FUNC_PROTO and its params */
6867 	fn_proto_id = btf__add_func_proto(btf, ret_type_id);
6868 	if (fn_proto_id < 0)
6869 		return -EINVAL;
6870 
6871 	for (i = 0; i < arg_cnt; i++) {
6872 		int name_off;
6873 
6874 		/* copy original parameter data */
6875 		t = btf_type_by_id(btf, orig_proto_id);
6876 		p = &btf_params(t)[i];
6877 		name_off = p->name_off;
6878 
6879 		err = btf__add_func_param(btf, "", p->type);
6880 		if (err)
6881 			return err;
6882 
6883 		fn_proto_t = btf_type_by_id(btf, fn_proto_id);
6884 		p = &btf_params(fn_proto_t)[i];
6885 		p->name_off = name_off; /* use remembered str offset */
6886 	}
6887 
6888 	/* clone FUNC now, btf__add_func() enforces non-empty name, so use
6889 	 * entry program's name as a placeholder, which we replace immediately
6890 	 * with original name_off
6891 	 */
6892 	fn_id = btf__add_func(btf, prog->name, linkage, fn_proto_id);
6893 	if (fn_id < 0)
6894 		return -EINVAL;
6895 
6896 	fn_t = btf_type_by_id(btf, fn_id);
6897 	fn_t->name_off = fn_name_off; /* reuse original string */
6898 
6899 	return fn_id;
6900 }
6901 
6902 /* Check if main program or global subprog's function prototype has `arg:ctx`
6903  * argument tags, and, if necessary, substitute correct type to match what BPF
6904  * verifier would expect, taking into account specific program type. This
6905  * allows to support __arg_ctx tag transparently on old kernels that don't yet
6906  * have a native support for it in the verifier, making user's life much
6907  * easier.
6908  */
bpf_program_fixup_func_info(struct bpf_object * obj,struct bpf_program * prog)6909 static int bpf_program_fixup_func_info(struct bpf_object *obj, struct bpf_program *prog)
6910 {
6911 	const char *ctx_name = NULL, *ctx_tag = "arg:ctx", *fn_name;
6912 	struct bpf_func_info_min *func_rec;
6913 	struct btf_type *fn_t, *fn_proto_t;
6914 	struct btf *btf = obj->btf;
6915 	const struct btf_type *t;
6916 	struct btf_param *p;
6917 	int ptr_id = 0, struct_id, tag_id, orig_fn_id;
6918 	int i, n, arg_idx, arg_cnt, err, rec_idx;
6919 	int *orig_ids;
6920 
6921 	/* no .BTF.ext, no problem */
6922 	if (!obj->btf_ext || !prog->func_info)
6923 		return 0;
6924 
6925 	/* don't do any fix ups if kernel natively supports __arg_ctx */
6926 	if (kernel_supports(obj, FEAT_ARG_CTX_TAG))
6927 		return 0;
6928 
6929 	/* some BPF program types just don't have named context structs, so
6930 	 * this fallback mechanism doesn't work for them
6931 	 */
6932 	for (i = 0; i < ARRAY_SIZE(global_ctx_map); i++) {
6933 		if (global_ctx_map[i].prog_type != prog->type)
6934 			continue;
6935 		ctx_name = global_ctx_map[i].ctx_name;
6936 		break;
6937 	}
6938 	if (!ctx_name)
6939 		return 0;
6940 
6941 	/* remember original func BTF IDs to detect if we already cloned them */
6942 	orig_ids = calloc(prog->func_info_cnt, sizeof(*orig_ids));
6943 	if (!orig_ids)
6944 		return -ENOMEM;
6945 	for (i = 0; i < prog->func_info_cnt; i++) {
6946 		func_rec = prog->func_info + prog->func_info_rec_size * i;
6947 		orig_ids[i] = func_rec->type_id;
6948 	}
6949 
6950 	/* go through each DECL_TAG with "arg:ctx" and see if it points to one
6951 	 * of our subprogs; if yes and subprog is global and needs adjustment,
6952 	 * clone and adjust FUNC -> FUNC_PROTO combo
6953 	 */
6954 	for (i = 1, n = btf__type_cnt(btf); i < n; i++) {
6955 		/* only DECL_TAG with "arg:ctx" value are interesting */
6956 		t = btf__type_by_id(btf, i);
6957 		if (!btf_is_decl_tag(t))
6958 			continue;
6959 		if (strcmp(btf__str_by_offset(btf, t->name_off), ctx_tag) != 0)
6960 			continue;
6961 
6962 		/* only global funcs need adjustment, if at all */
6963 		orig_fn_id = t->type;
6964 		fn_t = btf_type_by_id(btf, orig_fn_id);
6965 		if (!btf_is_func(fn_t) || btf_func_linkage(fn_t) != BTF_FUNC_GLOBAL)
6966 			continue;
6967 
6968 		/* sanity check FUNC -> FUNC_PROTO chain, just in case */
6969 		fn_proto_t = btf_type_by_id(btf, fn_t->type);
6970 		if (!fn_proto_t || !btf_is_func_proto(fn_proto_t))
6971 			continue;
6972 
6973 		/* find corresponding func_info record */
6974 		func_rec = NULL;
6975 		for (rec_idx = 0; rec_idx < prog->func_info_cnt; rec_idx++) {
6976 			if (orig_ids[rec_idx] == t->type) {
6977 				func_rec = prog->func_info + prog->func_info_rec_size * rec_idx;
6978 				break;
6979 			}
6980 		}
6981 		/* current main program doesn't call into this subprog */
6982 		if (!func_rec)
6983 			continue;
6984 
6985 		/* some more sanity checking of DECL_TAG */
6986 		arg_cnt = btf_vlen(fn_proto_t);
6987 		arg_idx = btf_decl_tag(t)->component_idx;
6988 		if (arg_idx < 0 || arg_idx >= arg_cnt)
6989 			continue;
6990 
6991 		/* check if we should fix up argument type */
6992 		p = &btf_params(fn_proto_t)[arg_idx];
6993 		fn_name = btf__str_by_offset(btf, fn_t->name_off) ?: "<anon>";
6994 		if (!need_func_arg_type_fixup(btf, prog, fn_name, arg_idx, p->type, ctx_name))
6995 			continue;
6996 
6997 		/* clone fn/fn_proto, unless we already did it for another arg */
6998 		if (func_rec->type_id == orig_fn_id) {
6999 			int fn_id;
7000 
7001 			fn_id = clone_func_btf_info(btf, orig_fn_id, prog);
7002 			if (fn_id < 0) {
7003 				err = fn_id;
7004 				goto err_out;
7005 			}
7006 
7007 			/* point func_info record to a cloned FUNC type */
7008 			func_rec->type_id = fn_id;
7009 		}
7010 
7011 		/* create PTR -> STRUCT type chain to mark PTR_TO_CTX argument;
7012 		 * we do it just once per main BPF program, as all global
7013 		 * funcs share the same program type, so need only PTR ->
7014 		 * STRUCT type chain
7015 		 */
7016 		if (ptr_id == 0) {
7017 			struct_id = btf__add_struct(btf, ctx_name, 0);
7018 			ptr_id = btf__add_ptr(btf, struct_id);
7019 			if (ptr_id < 0 || struct_id < 0) {
7020 				err = -EINVAL;
7021 				goto err_out;
7022 			}
7023 		}
7024 
7025 		/* for completeness, clone DECL_TAG and point it to cloned param */
7026 		tag_id = btf__add_decl_tag(btf, ctx_tag, func_rec->type_id, arg_idx);
7027 		if (tag_id < 0) {
7028 			err = -EINVAL;
7029 			goto err_out;
7030 		}
7031 
7032 		/* all the BTF manipulations invalidated pointers, refetch them */
7033 		fn_t = btf_type_by_id(btf, func_rec->type_id);
7034 		fn_proto_t = btf_type_by_id(btf, fn_t->type);
7035 
7036 		/* fix up type ID pointed to by param */
7037 		p = &btf_params(fn_proto_t)[arg_idx];
7038 		p->type = ptr_id;
7039 	}
7040 
7041 	free(orig_ids);
7042 	return 0;
7043 err_out:
7044 	free(orig_ids);
7045 	return err;
7046 }
7047 
bpf_object__relocate(struct bpf_object * obj,const char * targ_btf_path)7048 static int bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
7049 {
7050 	struct bpf_program *prog;
7051 	size_t i, j;
7052 	int err;
7053 
7054 	if (obj->btf_ext) {
7055 		err = bpf_object__relocate_core(obj, targ_btf_path);
7056 		if (err) {
7057 			pr_warn("failed to perform CO-RE relocations: %s\n",
7058 				errstr(err));
7059 			return err;
7060 		}
7061 		bpf_object__sort_relos(obj);
7062 	}
7063 
7064 	/* Before relocating calls pre-process relocations and mark
7065 	 * few ld_imm64 instructions that points to subprogs.
7066 	 * Otherwise bpf_object__reloc_code() later would have to consider
7067 	 * all ld_imm64 insns as relocation candidates. That would
7068 	 * reduce relocation speed, since amount of find_prog_insn_relo()
7069 	 * would increase and most of them will fail to find a relo.
7070 	 */
7071 	for (i = 0; i < obj->nr_programs; i++) {
7072 		prog = &obj->programs[i];
7073 		for (j = 0; j < prog->nr_reloc; j++) {
7074 			struct reloc_desc *relo = &prog->reloc_desc[j];
7075 			struct bpf_insn *insn = &prog->insns[relo->insn_idx];
7076 
7077 			/* mark the insn, so it's recognized by insn_is_pseudo_func() */
7078 			if (relo->type == RELO_SUBPROG_ADDR)
7079 				insn[0].src_reg = BPF_PSEUDO_FUNC;
7080 		}
7081 	}
7082 
7083 	/* relocate subprogram calls and append used subprograms to main
7084 	 * programs; each copy of subprogram code needs to be relocated
7085 	 * differently for each main program, because its code location might
7086 	 * have changed.
7087 	 * Append subprog relos to main programs to allow data relos to be
7088 	 * processed after text is completely relocated.
7089 	 */
7090 	for (i = 0; i < obj->nr_programs; i++) {
7091 		prog = &obj->programs[i];
7092 		/* sub-program's sub-calls are relocated within the context of
7093 		 * its main program only
7094 		 */
7095 		if (prog_is_subprog(obj, prog))
7096 			continue;
7097 		if (!prog->autoload)
7098 			continue;
7099 
7100 		err = bpf_object__relocate_calls(obj, prog);
7101 		if (err) {
7102 			pr_warn("prog '%s': failed to relocate calls: %s\n",
7103 				prog->name, errstr(err));
7104 			return err;
7105 		}
7106 
7107 		err = bpf_prog_assign_exc_cb(obj, prog);
7108 		if (err)
7109 			return err;
7110 		/* Now, also append exception callback if it has not been done already. */
7111 		if (prog->exception_cb_idx >= 0) {
7112 			struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx];
7113 
7114 			/* Calling exception callback directly is disallowed, which the
7115 			 * verifier will reject later. In case it was processed already,
7116 			 * we can skip this step, otherwise for all other valid cases we
7117 			 * have to append exception callback now.
7118 			 */
7119 			if (subprog->sub_insn_off == 0) {
7120 				err = bpf_object__append_subprog_code(obj, prog, subprog);
7121 				if (err)
7122 					return err;
7123 				err = bpf_object__reloc_code(obj, prog, subprog);
7124 				if (err)
7125 					return err;
7126 			}
7127 		}
7128 	}
7129 	for (i = 0; i < obj->nr_programs; i++) {
7130 		prog = &obj->programs[i];
7131 		if (prog_is_subprog(obj, prog))
7132 			continue;
7133 		if (!prog->autoload)
7134 			continue;
7135 
7136 		/* Process data relos for main programs */
7137 		err = bpf_object__relocate_data(obj, prog);
7138 		if (err) {
7139 			pr_warn("prog '%s': failed to relocate data references: %s\n",
7140 				prog->name, errstr(err));
7141 			return err;
7142 		}
7143 
7144 		/* Fix up .BTF.ext information, if necessary */
7145 		err = bpf_program_fixup_func_info(obj, prog);
7146 		if (err) {
7147 			pr_warn("prog '%s': failed to perform .BTF.ext fix ups: %s\n",
7148 				prog->name, errstr(err));
7149 			return err;
7150 		}
7151 	}
7152 
7153 	return 0;
7154 }
7155 
7156 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
7157 					    Elf64_Shdr *shdr, Elf_Data *data);
7158 
bpf_object__collect_map_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)7159 static int bpf_object__collect_map_relos(struct bpf_object *obj,
7160 					 Elf64_Shdr *shdr, Elf_Data *data)
7161 {
7162 	const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
7163 	int i, j, nrels, new_sz;
7164 	const struct btf_var_secinfo *vi = NULL;
7165 	const struct btf_type *sec, *var, *def;
7166 	struct bpf_map *map = NULL, *targ_map = NULL;
7167 	struct bpf_program *targ_prog = NULL;
7168 	bool is_prog_array, is_map_in_map;
7169 	const struct btf_member *member;
7170 	const char *name, *mname, *type;
7171 	unsigned int moff;
7172 	Elf64_Sym *sym;
7173 	Elf64_Rel *rel;
7174 	void *tmp;
7175 
7176 	if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
7177 		return -EINVAL;
7178 	sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
7179 	if (!sec)
7180 		return -EINVAL;
7181 
7182 	nrels = shdr->sh_size / shdr->sh_entsize;
7183 	for (i = 0; i < nrels; i++) {
7184 		rel = elf_rel_by_idx(data, i);
7185 		if (!rel) {
7186 			pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
7187 			return -LIBBPF_ERRNO__FORMAT;
7188 		}
7189 
7190 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
7191 		if (!sym) {
7192 			pr_warn(".maps relo #%d: symbol %zx not found\n",
7193 				i, (size_t)ELF64_R_SYM(rel->r_info));
7194 			return -LIBBPF_ERRNO__FORMAT;
7195 		}
7196 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
7197 
7198 		pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
7199 			 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
7200 			 (size_t)rel->r_offset, sym->st_name, name);
7201 
7202 		for (j = 0; j < obj->nr_maps; j++) {
7203 			map = &obj->maps[j];
7204 			if (map->sec_idx != obj->efile.btf_maps_shndx)
7205 				continue;
7206 
7207 			vi = btf_var_secinfos(sec) + map->btf_var_idx;
7208 			if (vi->offset <= rel->r_offset &&
7209 			    rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
7210 				break;
7211 		}
7212 		if (j == obj->nr_maps) {
7213 			pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
7214 				i, name, (size_t)rel->r_offset);
7215 			return -EINVAL;
7216 		}
7217 
7218 		is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
7219 		is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
7220 		type = is_map_in_map ? "map" : "prog";
7221 		if (is_map_in_map) {
7222 			if (sym->st_shndx != obj->efile.btf_maps_shndx) {
7223 				pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
7224 					i, name);
7225 				return -LIBBPF_ERRNO__RELOC;
7226 			}
7227 			if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
7228 			    map->def.key_size != sizeof(int)) {
7229 				pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
7230 					i, map->name, sizeof(int));
7231 				return -EINVAL;
7232 			}
7233 			targ_map = bpf_object__find_map_by_name(obj, name);
7234 			if (!targ_map) {
7235 				pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
7236 					i, name);
7237 				return -ESRCH;
7238 			}
7239 		} else if (is_prog_array) {
7240 			targ_prog = bpf_object__find_program_by_name(obj, name);
7241 			if (!targ_prog) {
7242 				pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
7243 					i, name);
7244 				return -ESRCH;
7245 			}
7246 			if (targ_prog->sec_idx != sym->st_shndx ||
7247 			    targ_prog->sec_insn_off * 8 != sym->st_value ||
7248 			    prog_is_subprog(obj, targ_prog)) {
7249 				pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
7250 					i, name);
7251 				return -LIBBPF_ERRNO__RELOC;
7252 			}
7253 		} else {
7254 			return -EINVAL;
7255 		}
7256 
7257 		var = btf__type_by_id(obj->btf, vi->type);
7258 		def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
7259 		if (btf_vlen(def) == 0)
7260 			return -EINVAL;
7261 		member = btf_members(def) + btf_vlen(def) - 1;
7262 		mname = btf__name_by_offset(obj->btf, member->name_off);
7263 		if (strcmp(mname, "values"))
7264 			return -EINVAL;
7265 
7266 		moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
7267 		if (rel->r_offset - vi->offset < moff)
7268 			return -EINVAL;
7269 
7270 		moff = rel->r_offset - vi->offset - moff;
7271 		/* here we use BPF pointer size, which is always 64 bit, as we
7272 		 * are parsing ELF that was built for BPF target
7273 		 */
7274 		if (moff % bpf_ptr_sz)
7275 			return -EINVAL;
7276 		moff /= bpf_ptr_sz;
7277 		if (moff >= map->init_slots_sz) {
7278 			new_sz = moff + 1;
7279 			tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
7280 			if (!tmp)
7281 				return -ENOMEM;
7282 			map->init_slots = tmp;
7283 			memset(map->init_slots + map->init_slots_sz, 0,
7284 			       (new_sz - map->init_slots_sz) * host_ptr_sz);
7285 			map->init_slots_sz = new_sz;
7286 		}
7287 		map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
7288 
7289 		pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
7290 			 i, map->name, moff, type, name);
7291 	}
7292 
7293 	return 0;
7294 }
7295 
bpf_object__collect_relos(struct bpf_object * obj)7296 static int bpf_object__collect_relos(struct bpf_object *obj)
7297 {
7298 	int i, err;
7299 
7300 	for (i = 0; i < obj->efile.sec_cnt; i++) {
7301 		struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
7302 		Elf64_Shdr *shdr;
7303 		Elf_Data *data;
7304 		int idx;
7305 
7306 		if (sec_desc->sec_type != SEC_RELO)
7307 			continue;
7308 
7309 		shdr = sec_desc->shdr;
7310 		data = sec_desc->data;
7311 		idx = shdr->sh_info;
7312 
7313 		if (shdr->sh_type != SHT_REL || idx < 0 || idx >= obj->efile.sec_cnt) {
7314 			pr_warn("internal error at %d\n", __LINE__);
7315 			return -LIBBPF_ERRNO__INTERNAL;
7316 		}
7317 
7318 		if (obj->efile.secs[idx].sec_type == SEC_ST_OPS)
7319 			err = bpf_object__collect_st_ops_relos(obj, shdr, data);
7320 		else if (idx == obj->efile.btf_maps_shndx)
7321 			err = bpf_object__collect_map_relos(obj, shdr, data);
7322 		else
7323 			err = bpf_object__collect_prog_relos(obj, shdr, data);
7324 		if (err)
7325 			return err;
7326 	}
7327 
7328 	bpf_object__sort_relos(obj);
7329 	return 0;
7330 }
7331 
insn_is_helper_call(struct bpf_insn * insn,enum bpf_func_id * func_id)7332 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
7333 {
7334 	if (BPF_CLASS(insn->code) == BPF_JMP &&
7335 	    BPF_OP(insn->code) == BPF_CALL &&
7336 	    BPF_SRC(insn->code) == BPF_K &&
7337 	    insn->src_reg == 0 &&
7338 	    insn->dst_reg == 0) {
7339 		    *func_id = insn->imm;
7340 		    return true;
7341 	}
7342 	return false;
7343 }
7344 
bpf_object__sanitize_prog(struct bpf_object * obj,struct bpf_program * prog)7345 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
7346 {
7347 	struct bpf_insn *insn = prog->insns;
7348 	enum bpf_func_id func_id;
7349 	int i;
7350 
7351 	if (obj->gen_loader)
7352 		return 0;
7353 
7354 	for (i = 0; i < prog->insns_cnt; i++, insn++) {
7355 		if (!insn_is_helper_call(insn, &func_id))
7356 			continue;
7357 
7358 		/* on kernels that don't yet support
7359 		 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
7360 		 * to bpf_probe_read() which works well for old kernels
7361 		 */
7362 		switch (func_id) {
7363 		case BPF_FUNC_probe_read_kernel:
7364 		case BPF_FUNC_probe_read_user:
7365 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7366 				insn->imm = BPF_FUNC_probe_read;
7367 			break;
7368 		case BPF_FUNC_probe_read_kernel_str:
7369 		case BPF_FUNC_probe_read_user_str:
7370 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7371 				insn->imm = BPF_FUNC_probe_read_str;
7372 			break;
7373 		default:
7374 			break;
7375 		}
7376 	}
7377 	return 0;
7378 }
7379 
7380 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
7381 				     int *btf_obj_fd, int *btf_type_id);
7382 
7383 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
libbpf_prepare_prog_load(struct bpf_program * prog,struct bpf_prog_load_opts * opts,long cookie)7384 static int libbpf_prepare_prog_load(struct bpf_program *prog,
7385 				    struct bpf_prog_load_opts *opts, long cookie)
7386 {
7387 	enum sec_def_flags def = cookie;
7388 
7389 	/* old kernels might not support specifying expected_attach_type */
7390 	if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
7391 		opts->expected_attach_type = 0;
7392 
7393 	if (def & SEC_SLEEPABLE)
7394 		opts->prog_flags |= BPF_F_SLEEPABLE;
7395 
7396 	if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
7397 		opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
7398 
7399 	/* special check for usdt to use uprobe_multi link */
7400 	if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK)) {
7401 		/* for BPF_TRACE_UPROBE_MULTI, user might want to query expected_attach_type
7402 		 * in prog, and expected_attach_type we set in kernel is from opts, so we
7403 		 * update both.
7404 		 */
7405 		prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI;
7406 		opts->expected_attach_type = BPF_TRACE_UPROBE_MULTI;
7407 	}
7408 
7409 	if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
7410 		int btf_obj_fd = 0, btf_type_id = 0, err;
7411 		const char *attach_name;
7412 
7413 		attach_name = strchr(prog->sec_name, '/');
7414 		if (!attach_name) {
7415 			/* if BPF program is annotated with just SEC("fentry")
7416 			 * (or similar) without declaratively specifying
7417 			 * target, then it is expected that target will be
7418 			 * specified with bpf_program__set_attach_target() at
7419 			 * runtime before BPF object load step. If not, then
7420 			 * there is nothing to load into the kernel as BPF
7421 			 * verifier won't be able to validate BPF program
7422 			 * correctness anyways.
7423 			 */
7424 			pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
7425 				prog->name);
7426 			return -EINVAL;
7427 		}
7428 		attach_name++; /* skip over / */
7429 
7430 		err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
7431 		if (err)
7432 			return err;
7433 
7434 		/* cache resolved BTF FD and BTF type ID in the prog */
7435 		prog->attach_btf_obj_fd = btf_obj_fd;
7436 		prog->attach_btf_id = btf_type_id;
7437 
7438 		/* but by now libbpf common logic is not utilizing
7439 		 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
7440 		 * this callback is called after opts were populated by
7441 		 * libbpf, so this callback has to update opts explicitly here
7442 		 */
7443 		opts->attach_btf_obj_fd = btf_obj_fd;
7444 		opts->attach_btf_id = btf_type_id;
7445 	}
7446 	return 0;
7447 }
7448 
7449 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
7450 
bpf_object_load_prog(struct bpf_object * obj,struct bpf_program * prog,struct bpf_insn * insns,int insns_cnt,const char * license,__u32 kern_version,int * prog_fd)7451 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
7452 				struct bpf_insn *insns, int insns_cnt,
7453 				const char *license, __u32 kern_version, int *prog_fd)
7454 {
7455 	LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
7456 	const char *prog_name = NULL;
7457 	size_t log_buf_size = 0;
7458 	char *log_buf = NULL, *tmp;
7459 	bool own_log_buf = true;
7460 	__u32 log_level = prog->log_level;
7461 	int ret, err;
7462 
7463 	/* Be more helpful by rejecting programs that can't be validated early
7464 	 * with more meaningful and actionable error message.
7465 	 */
7466 	switch (prog->type) {
7467 	case BPF_PROG_TYPE_UNSPEC:
7468 		/*
7469 		 * The program type must be set.  Most likely we couldn't find a proper
7470 		 * section definition at load time, and thus we didn't infer the type.
7471 		 */
7472 		pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
7473 			prog->name, prog->sec_name);
7474 		return -EINVAL;
7475 	case BPF_PROG_TYPE_STRUCT_OPS:
7476 		if (prog->attach_btf_id == 0) {
7477 			pr_warn("prog '%s': SEC(\"struct_ops\") program isn't referenced anywhere, did you forget to use it?\n",
7478 				prog->name);
7479 			return -EINVAL;
7480 		}
7481 		break;
7482 	default:
7483 		break;
7484 	}
7485 
7486 	if (!insns || !insns_cnt)
7487 		return -EINVAL;
7488 
7489 	if (kernel_supports(obj, FEAT_PROG_NAME))
7490 		prog_name = prog->name;
7491 	load_attr.attach_prog_fd = prog->attach_prog_fd;
7492 	load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
7493 	load_attr.attach_btf_id = prog->attach_btf_id;
7494 	load_attr.kern_version = kern_version;
7495 	load_attr.prog_ifindex = prog->prog_ifindex;
7496 	load_attr.expected_attach_type = prog->expected_attach_type;
7497 
7498 	/* specify func_info/line_info only if kernel supports them */
7499 	if (obj->btf && btf__fd(obj->btf) >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
7500 		load_attr.prog_btf_fd = btf__fd(obj->btf);
7501 		load_attr.func_info = prog->func_info;
7502 		load_attr.func_info_rec_size = prog->func_info_rec_size;
7503 		load_attr.func_info_cnt = prog->func_info_cnt;
7504 		load_attr.line_info = prog->line_info;
7505 		load_attr.line_info_rec_size = prog->line_info_rec_size;
7506 		load_attr.line_info_cnt = prog->line_info_cnt;
7507 	}
7508 	load_attr.log_level = log_level;
7509 	load_attr.prog_flags = prog->prog_flags;
7510 	load_attr.fd_array = obj->fd_array;
7511 
7512 	load_attr.token_fd = obj->token_fd;
7513 	if (obj->token_fd)
7514 		load_attr.prog_flags |= BPF_F_TOKEN_FD;
7515 
7516 	/* adjust load_attr if sec_def provides custom preload callback */
7517 	if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
7518 		err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
7519 		if (err < 0) {
7520 			pr_warn("prog '%s': failed to prepare load attributes: %s\n",
7521 				prog->name, errstr(err));
7522 			return err;
7523 		}
7524 		insns = prog->insns;
7525 		insns_cnt = prog->insns_cnt;
7526 	}
7527 
7528 	if (obj->gen_loader) {
7529 		bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
7530 				   license, insns, insns_cnt, &load_attr,
7531 				   prog - obj->programs);
7532 		*prog_fd = -1;
7533 		return 0;
7534 	}
7535 
7536 retry_load:
7537 	/* if log_level is zero, we don't request logs initially even if
7538 	 * custom log_buf is specified; if the program load fails, then we'll
7539 	 * bump log_level to 1 and use either custom log_buf or we'll allocate
7540 	 * our own and retry the load to get details on what failed
7541 	 */
7542 	if (log_level) {
7543 		if (prog->log_buf) {
7544 			log_buf = prog->log_buf;
7545 			log_buf_size = prog->log_size;
7546 			own_log_buf = false;
7547 		} else if (obj->log_buf) {
7548 			log_buf = obj->log_buf;
7549 			log_buf_size = obj->log_size;
7550 			own_log_buf = false;
7551 		} else {
7552 			log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
7553 			tmp = realloc(log_buf, log_buf_size);
7554 			if (!tmp) {
7555 				ret = -ENOMEM;
7556 				goto out;
7557 			}
7558 			log_buf = tmp;
7559 			log_buf[0] = '\0';
7560 			own_log_buf = true;
7561 		}
7562 	}
7563 
7564 	load_attr.log_buf = log_buf;
7565 	load_attr.log_size = log_buf_size;
7566 	load_attr.log_level = log_level;
7567 
7568 	ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
7569 	if (ret >= 0) {
7570 		if (log_level && own_log_buf) {
7571 			pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7572 				 prog->name, log_buf);
7573 		}
7574 
7575 		if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
7576 			struct bpf_map *map;
7577 			int i;
7578 
7579 			for (i = 0; i < obj->nr_maps; i++) {
7580 				map = &prog->obj->maps[i];
7581 				if (map->libbpf_type != LIBBPF_MAP_RODATA)
7582 					continue;
7583 
7584 				if (bpf_prog_bind_map(ret, map->fd, NULL)) {
7585 					pr_warn("prog '%s': failed to bind map '%s': %s\n",
7586 						prog->name, map->real_name, errstr(errno));
7587 					/* Don't fail hard if can't bind rodata. */
7588 				}
7589 			}
7590 		}
7591 
7592 		*prog_fd = ret;
7593 		ret = 0;
7594 		goto out;
7595 	}
7596 
7597 	if (log_level == 0) {
7598 		log_level = 1;
7599 		goto retry_load;
7600 	}
7601 	/* On ENOSPC, increase log buffer size and retry, unless custom
7602 	 * log_buf is specified.
7603 	 * Be careful to not overflow u32, though. Kernel's log buf size limit
7604 	 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
7605 	 * multiply by 2 unless we are sure we'll fit within 32 bits.
7606 	 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
7607 	 */
7608 	if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
7609 		goto retry_load;
7610 
7611 	ret = -errno;
7612 
7613 	/* post-process verifier log to improve error descriptions */
7614 	fixup_verifier_log(prog, log_buf, log_buf_size);
7615 
7616 	pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, errstr(errno));
7617 	pr_perm_msg(ret);
7618 
7619 	if (own_log_buf && log_buf && log_buf[0] != '\0') {
7620 		pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7621 			prog->name, log_buf);
7622 	}
7623 
7624 out:
7625 	if (own_log_buf)
7626 		free(log_buf);
7627 	return ret;
7628 }
7629 
find_prev_line(char * buf,char * cur)7630 static char *find_prev_line(char *buf, char *cur)
7631 {
7632 	char *p;
7633 
7634 	if (cur == buf) /* end of a log buf */
7635 		return NULL;
7636 
7637 	p = cur - 1;
7638 	while (p - 1 >= buf && *(p - 1) != '\n')
7639 		p--;
7640 
7641 	return p;
7642 }
7643 
patch_log(char * buf,size_t buf_sz,size_t log_sz,char * orig,size_t orig_sz,const char * patch)7644 static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
7645 		      char *orig, size_t orig_sz, const char *patch)
7646 {
7647 	/* size of the remaining log content to the right from the to-be-replaced part */
7648 	size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
7649 	size_t patch_sz = strlen(patch);
7650 
7651 	if (patch_sz != orig_sz) {
7652 		/* If patch line(s) are longer than original piece of verifier log,
7653 		 * shift log contents by (patch_sz - orig_sz) bytes to the right
7654 		 * starting from after to-be-replaced part of the log.
7655 		 *
7656 		 * If patch line(s) are shorter than original piece of verifier log,
7657 		 * shift log contents by (orig_sz - patch_sz) bytes to the left
7658 		 * starting from after to-be-replaced part of the log
7659 		 *
7660 		 * We need to be careful about not overflowing available
7661 		 * buf_sz capacity. If that's the case, we'll truncate the end
7662 		 * of the original log, as necessary.
7663 		 */
7664 		if (patch_sz > orig_sz) {
7665 			if (orig + patch_sz >= buf + buf_sz) {
7666 				/* patch is big enough to cover remaining space completely */
7667 				patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
7668 				rem_sz = 0;
7669 			} else if (patch_sz - orig_sz > buf_sz - log_sz) {
7670 				/* patch causes part of remaining log to be truncated */
7671 				rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
7672 			}
7673 		}
7674 		/* shift remaining log to the right by calculated amount */
7675 		memmove(orig + patch_sz, orig + orig_sz, rem_sz);
7676 	}
7677 
7678 	memcpy(orig, patch, patch_sz);
7679 }
7680 
fixup_log_failed_core_relo(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7681 static void fixup_log_failed_core_relo(struct bpf_program *prog,
7682 				       char *buf, size_t buf_sz, size_t log_sz,
7683 				       char *line1, char *line2, char *line3)
7684 {
7685 	/* Expected log for failed and not properly guarded CO-RE relocation:
7686 	 * line1 -> 123: (85) call unknown#195896080
7687 	 * line2 -> invalid func unknown#195896080
7688 	 * line3 -> <anything else or end of buffer>
7689 	 *
7690 	 * "123" is the index of the instruction that was poisoned. We extract
7691 	 * instruction index to find corresponding CO-RE relocation and
7692 	 * replace this part of the log with more relevant information about
7693 	 * failed CO-RE relocation.
7694 	 */
7695 	const struct bpf_core_relo *relo;
7696 	struct bpf_core_spec spec;
7697 	char patch[512], spec_buf[256];
7698 	int insn_idx, err, spec_len;
7699 
7700 	if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
7701 		return;
7702 
7703 	relo = find_relo_core(prog, insn_idx);
7704 	if (!relo)
7705 		return;
7706 
7707 	err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
7708 	if (err)
7709 		return;
7710 
7711 	spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
7712 	snprintf(patch, sizeof(patch),
7713 		 "%d: <invalid CO-RE relocation>\n"
7714 		 "failed to resolve CO-RE relocation %s%s\n",
7715 		 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
7716 
7717 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7718 }
7719 
fixup_log_missing_map_load(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7720 static void fixup_log_missing_map_load(struct bpf_program *prog,
7721 				       char *buf, size_t buf_sz, size_t log_sz,
7722 				       char *line1, char *line2, char *line3)
7723 {
7724 	/* Expected log for failed and not properly guarded map reference:
7725 	 * line1 -> 123: (85) call unknown#2001000345
7726 	 * line2 -> invalid func unknown#2001000345
7727 	 * line3 -> <anything else or end of buffer>
7728 	 *
7729 	 * "123" is the index of the instruction that was poisoned.
7730 	 * "345" in "2001000345" is a map index in obj->maps to fetch map name.
7731 	 */
7732 	struct bpf_object *obj = prog->obj;
7733 	const struct bpf_map *map;
7734 	int insn_idx, map_idx;
7735 	char patch[128];
7736 
7737 	if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
7738 		return;
7739 
7740 	map_idx -= POISON_LDIMM64_MAP_BASE;
7741 	if (map_idx < 0 || map_idx >= obj->nr_maps)
7742 		return;
7743 	map = &obj->maps[map_idx];
7744 
7745 	snprintf(patch, sizeof(patch),
7746 		 "%d: <invalid BPF map reference>\n"
7747 		 "BPF map '%s' is referenced but wasn't created\n",
7748 		 insn_idx, map->name);
7749 
7750 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7751 }
7752 
fixup_log_missing_kfunc_call(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7753 static void fixup_log_missing_kfunc_call(struct bpf_program *prog,
7754 					 char *buf, size_t buf_sz, size_t log_sz,
7755 					 char *line1, char *line2, char *line3)
7756 {
7757 	/* Expected log for failed and not properly guarded kfunc call:
7758 	 * line1 -> 123: (85) call unknown#2002000345
7759 	 * line2 -> invalid func unknown#2002000345
7760 	 * line3 -> <anything else or end of buffer>
7761 	 *
7762 	 * "123" is the index of the instruction that was poisoned.
7763 	 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name.
7764 	 */
7765 	struct bpf_object *obj = prog->obj;
7766 	const struct extern_desc *ext;
7767 	int insn_idx, ext_idx;
7768 	char patch[128];
7769 
7770 	if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2)
7771 		return;
7772 
7773 	ext_idx -= POISON_CALL_KFUNC_BASE;
7774 	if (ext_idx < 0 || ext_idx >= obj->nr_extern)
7775 		return;
7776 	ext = &obj->externs[ext_idx];
7777 
7778 	snprintf(patch, sizeof(patch),
7779 		 "%d: <invalid kfunc call>\n"
7780 		 "kfunc '%s' is referenced but wasn't resolved\n",
7781 		 insn_idx, ext->name);
7782 
7783 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7784 }
7785 
fixup_verifier_log(struct bpf_program * prog,char * buf,size_t buf_sz)7786 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
7787 {
7788 	/* look for familiar error patterns in last N lines of the log */
7789 	const size_t max_last_line_cnt = 10;
7790 	char *prev_line, *cur_line, *next_line;
7791 	size_t log_sz;
7792 	int i;
7793 
7794 	if (!buf)
7795 		return;
7796 
7797 	log_sz = strlen(buf) + 1;
7798 	next_line = buf + log_sz - 1;
7799 
7800 	for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
7801 		cur_line = find_prev_line(buf, next_line);
7802 		if (!cur_line)
7803 			return;
7804 
7805 		if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
7806 			prev_line = find_prev_line(buf, cur_line);
7807 			if (!prev_line)
7808 				continue;
7809 
7810 			/* failed CO-RE relocation case */
7811 			fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
7812 						   prev_line, cur_line, next_line);
7813 			return;
7814 		} else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) {
7815 			prev_line = find_prev_line(buf, cur_line);
7816 			if (!prev_line)
7817 				continue;
7818 
7819 			/* reference to uncreated BPF map */
7820 			fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
7821 						   prev_line, cur_line, next_line);
7822 			return;
7823 		} else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) {
7824 			prev_line = find_prev_line(buf, cur_line);
7825 			if (!prev_line)
7826 				continue;
7827 
7828 			/* reference to unresolved kfunc */
7829 			fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz,
7830 						     prev_line, cur_line, next_line);
7831 			return;
7832 		}
7833 	}
7834 }
7835 
bpf_program_record_relos(struct bpf_program * prog)7836 static int bpf_program_record_relos(struct bpf_program *prog)
7837 {
7838 	struct bpf_object *obj = prog->obj;
7839 	int i;
7840 
7841 	for (i = 0; i < prog->nr_reloc; i++) {
7842 		struct reloc_desc *relo = &prog->reloc_desc[i];
7843 		struct extern_desc *ext = &obj->externs[relo->ext_idx];
7844 		int kind;
7845 
7846 		switch (relo->type) {
7847 		case RELO_EXTERN_LD64:
7848 			if (ext->type != EXT_KSYM)
7849 				continue;
7850 			kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ?
7851 				BTF_KIND_VAR : BTF_KIND_FUNC;
7852 			bpf_gen__record_extern(obj->gen_loader, ext->name,
7853 					       ext->is_weak, !ext->ksym.type_id,
7854 					       true, kind, relo->insn_idx);
7855 			break;
7856 		case RELO_EXTERN_CALL:
7857 			bpf_gen__record_extern(obj->gen_loader, ext->name,
7858 					       ext->is_weak, false, false, BTF_KIND_FUNC,
7859 					       relo->insn_idx);
7860 			break;
7861 		case RELO_CORE: {
7862 			struct bpf_core_relo cr = {
7863 				.insn_off = relo->insn_idx * 8,
7864 				.type_id = relo->core_relo->type_id,
7865 				.access_str_off = relo->core_relo->access_str_off,
7866 				.kind = relo->core_relo->kind,
7867 			};
7868 
7869 			bpf_gen__record_relo_core(obj->gen_loader, &cr);
7870 			break;
7871 		}
7872 		default:
7873 			continue;
7874 		}
7875 	}
7876 	return 0;
7877 }
7878 
7879 static int
bpf_object__load_progs(struct bpf_object * obj,int log_level)7880 bpf_object__load_progs(struct bpf_object *obj, int log_level)
7881 {
7882 	struct bpf_program *prog;
7883 	size_t i;
7884 	int err;
7885 
7886 	for (i = 0; i < obj->nr_programs; i++) {
7887 		prog = &obj->programs[i];
7888 		err = bpf_object__sanitize_prog(obj, prog);
7889 		if (err)
7890 			return err;
7891 	}
7892 
7893 	for (i = 0; i < obj->nr_programs; i++) {
7894 		prog = &obj->programs[i];
7895 		if (prog_is_subprog(obj, prog))
7896 			continue;
7897 		if (!prog->autoload) {
7898 			pr_debug("prog '%s': skipped loading\n", prog->name);
7899 			continue;
7900 		}
7901 		prog->log_level |= log_level;
7902 
7903 		if (obj->gen_loader)
7904 			bpf_program_record_relos(prog);
7905 
7906 		err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7907 					   obj->license, obj->kern_version, &prog->fd);
7908 		if (err) {
7909 			pr_warn("prog '%s': failed to load: %s\n", prog->name, errstr(err));
7910 			return err;
7911 		}
7912 	}
7913 
7914 	bpf_object__free_relocs(obj);
7915 	return 0;
7916 }
7917 
7918 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7919 
bpf_object_init_progs(struct bpf_object * obj,const struct bpf_object_open_opts * opts)7920 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7921 {
7922 	struct bpf_program *prog;
7923 	int err;
7924 
7925 	bpf_object__for_each_program(prog, obj) {
7926 		prog->sec_def = find_sec_def(prog->sec_name);
7927 		if (!prog->sec_def) {
7928 			/* couldn't guess, but user might manually specify */
7929 			pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7930 				prog->name, prog->sec_name);
7931 			continue;
7932 		}
7933 
7934 		prog->type = prog->sec_def->prog_type;
7935 		prog->expected_attach_type = prog->sec_def->expected_attach_type;
7936 
7937 		/* sec_def can have custom callback which should be called
7938 		 * after bpf_program is initialized to adjust its properties
7939 		 */
7940 		if (prog->sec_def->prog_setup_fn) {
7941 			err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7942 			if (err < 0) {
7943 				pr_warn("prog '%s': failed to initialize: %s\n",
7944 					prog->name, errstr(err));
7945 				return err;
7946 			}
7947 		}
7948 	}
7949 
7950 	return 0;
7951 }
7952 
bpf_object_open(const char * path,const void * obj_buf,size_t obj_buf_sz,const char * obj_name,const struct bpf_object_open_opts * opts)7953 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7954 					  const char *obj_name,
7955 					  const struct bpf_object_open_opts *opts)
7956 {
7957 	const char *kconfig, *btf_tmp_path, *token_path;
7958 	struct bpf_object *obj;
7959 	int err;
7960 	char *log_buf;
7961 	size_t log_size;
7962 	__u32 log_level;
7963 
7964 	if (obj_buf && !obj_name)
7965 		return ERR_PTR(-EINVAL);
7966 
7967 	if (elf_version(EV_CURRENT) == EV_NONE) {
7968 		pr_warn("failed to init libelf for %s\n",
7969 			path ? : "(mem buf)");
7970 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7971 	}
7972 
7973 	if (!OPTS_VALID(opts, bpf_object_open_opts))
7974 		return ERR_PTR(-EINVAL);
7975 
7976 	obj_name = OPTS_GET(opts, object_name, NULL) ?: obj_name;
7977 	if (obj_buf) {
7978 		path = obj_name;
7979 		pr_debug("loading object '%s' from buffer\n", obj_name);
7980 	} else {
7981 		pr_debug("loading object from %s\n", path);
7982 	}
7983 
7984 	log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
7985 	log_size = OPTS_GET(opts, kernel_log_size, 0);
7986 	log_level = OPTS_GET(opts, kernel_log_level, 0);
7987 	if (log_size > UINT_MAX)
7988 		return ERR_PTR(-EINVAL);
7989 	if (log_size && !log_buf)
7990 		return ERR_PTR(-EINVAL);
7991 
7992 	token_path = OPTS_GET(opts, bpf_token_path, NULL);
7993 	/* if user didn't specify bpf_token_path explicitly, check if
7994 	 * LIBBPF_BPF_TOKEN_PATH envvar was set and treat it as bpf_token_path
7995 	 * option
7996 	 */
7997 	if (!token_path)
7998 		token_path = getenv("LIBBPF_BPF_TOKEN_PATH");
7999 	if (token_path && strlen(token_path) >= PATH_MAX)
8000 		return ERR_PTR(-ENAMETOOLONG);
8001 
8002 	obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
8003 	if (IS_ERR(obj))
8004 		return obj;
8005 
8006 	obj->log_buf = log_buf;
8007 	obj->log_size = log_size;
8008 	obj->log_level = log_level;
8009 
8010 	if (token_path) {
8011 		obj->token_path = strdup(token_path);
8012 		if (!obj->token_path) {
8013 			err = -ENOMEM;
8014 			goto out;
8015 		}
8016 	}
8017 
8018 	btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
8019 	if (btf_tmp_path) {
8020 		if (strlen(btf_tmp_path) >= PATH_MAX) {
8021 			err = -ENAMETOOLONG;
8022 			goto out;
8023 		}
8024 		obj->btf_custom_path = strdup(btf_tmp_path);
8025 		if (!obj->btf_custom_path) {
8026 			err = -ENOMEM;
8027 			goto out;
8028 		}
8029 	}
8030 
8031 	kconfig = OPTS_GET(opts, kconfig, NULL);
8032 	if (kconfig) {
8033 		obj->kconfig = strdup(kconfig);
8034 		if (!obj->kconfig) {
8035 			err = -ENOMEM;
8036 			goto out;
8037 		}
8038 	}
8039 
8040 	err = bpf_object__elf_init(obj);
8041 	err = err ? : bpf_object__elf_collect(obj);
8042 	err = err ? : bpf_object__collect_externs(obj);
8043 	err = err ? : bpf_object_fixup_btf(obj);
8044 	err = err ? : bpf_object__init_maps(obj, opts);
8045 	err = err ? : bpf_object_init_progs(obj, opts);
8046 	err = err ? : bpf_object__collect_relos(obj);
8047 	if (err)
8048 		goto out;
8049 
8050 	bpf_object__elf_finish(obj);
8051 
8052 	return obj;
8053 out:
8054 	bpf_object__close(obj);
8055 	return ERR_PTR(err);
8056 }
8057 
8058 struct bpf_object *
bpf_object__open_file(const char * path,const struct bpf_object_open_opts * opts)8059 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
8060 {
8061 	if (!path)
8062 		return libbpf_err_ptr(-EINVAL);
8063 
8064 	return libbpf_ptr(bpf_object_open(path, NULL, 0, NULL, opts));
8065 }
8066 
bpf_object__open(const char * path)8067 struct bpf_object *bpf_object__open(const char *path)
8068 {
8069 	return bpf_object__open_file(path, NULL);
8070 }
8071 
8072 struct bpf_object *
bpf_object__open_mem(const void * obj_buf,size_t obj_buf_sz,const struct bpf_object_open_opts * opts)8073 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
8074 		     const struct bpf_object_open_opts *opts)
8075 {
8076 	char tmp_name[64];
8077 
8078 	if (!obj_buf || obj_buf_sz == 0)
8079 		return libbpf_err_ptr(-EINVAL);
8080 
8081 	/* create a (quite useless) default "name" for this memory buffer object */
8082 	snprintf(tmp_name, sizeof(tmp_name), "%lx-%zx", (unsigned long)obj_buf, obj_buf_sz);
8083 
8084 	return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, tmp_name, opts));
8085 }
8086 
bpf_object_unload(struct bpf_object * obj)8087 static int bpf_object_unload(struct bpf_object *obj)
8088 {
8089 	size_t i;
8090 
8091 	if (!obj)
8092 		return libbpf_err(-EINVAL);
8093 
8094 	for (i = 0; i < obj->nr_maps; i++) {
8095 		zclose(obj->maps[i].fd);
8096 		if (obj->maps[i].st_ops)
8097 			zfree(&obj->maps[i].st_ops->kern_vdata);
8098 	}
8099 
8100 	for (i = 0; i < obj->nr_programs; i++)
8101 		bpf_program__unload(&obj->programs[i]);
8102 
8103 	return 0;
8104 }
8105 
bpf_object__sanitize_maps(struct bpf_object * obj)8106 static int bpf_object__sanitize_maps(struct bpf_object *obj)
8107 {
8108 	struct bpf_map *m;
8109 
8110 	bpf_object__for_each_map(m, obj) {
8111 		if (!bpf_map__is_internal(m))
8112 			continue;
8113 		if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
8114 			m->def.map_flags &= ~BPF_F_MMAPABLE;
8115 	}
8116 
8117 	return 0;
8118 }
8119 
8120 typedef int (*kallsyms_cb_t)(unsigned long long sym_addr, char sym_type,
8121 			     const char *sym_name, void *ctx);
8122 
libbpf_kallsyms_parse(kallsyms_cb_t cb,void * ctx)8123 static int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
8124 {
8125 	char sym_type, sym_name[500];
8126 	unsigned long long sym_addr;
8127 	int ret, err = 0;
8128 	FILE *f;
8129 
8130 	f = fopen("/proc/kallsyms", "re");
8131 	if (!f) {
8132 		err = -errno;
8133 		pr_warn("failed to open /proc/kallsyms: %s\n", errstr(err));
8134 		return err;
8135 	}
8136 
8137 	while (true) {
8138 		ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
8139 			     &sym_addr, &sym_type, sym_name);
8140 		if (ret == EOF && feof(f))
8141 			break;
8142 		if (ret != 3) {
8143 			pr_warn("failed to read kallsyms entry: %d\n", ret);
8144 			err = -EINVAL;
8145 			break;
8146 		}
8147 
8148 		err = cb(sym_addr, sym_type, sym_name, ctx);
8149 		if (err)
8150 			break;
8151 	}
8152 
8153 	fclose(f);
8154 	return err;
8155 }
8156 
kallsyms_cb(unsigned long long sym_addr,char sym_type,const char * sym_name,void * ctx)8157 static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
8158 		       const char *sym_name, void *ctx)
8159 {
8160 	struct bpf_object *obj = ctx;
8161 	const struct btf_type *t;
8162 	struct extern_desc *ext;
8163 	char *res;
8164 
8165 	res = strstr(sym_name, ".llvm.");
8166 	if (sym_type == 'd' && res)
8167 		ext = find_extern_by_name_with_len(obj, sym_name, res - sym_name);
8168 	else
8169 		ext = find_extern_by_name(obj, sym_name);
8170 	if (!ext || ext->type != EXT_KSYM)
8171 		return 0;
8172 
8173 	t = btf__type_by_id(obj->btf, ext->btf_id);
8174 	if (!btf_is_var(t))
8175 		return 0;
8176 
8177 	if (ext->is_set && ext->ksym.addr != sym_addr) {
8178 		pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
8179 			sym_name, ext->ksym.addr, sym_addr);
8180 		return -EINVAL;
8181 	}
8182 	if (!ext->is_set) {
8183 		ext->is_set = true;
8184 		ext->ksym.addr = sym_addr;
8185 		pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
8186 	}
8187 	return 0;
8188 }
8189 
bpf_object__read_kallsyms_file(struct bpf_object * obj)8190 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
8191 {
8192 	return libbpf_kallsyms_parse(kallsyms_cb, obj);
8193 }
8194 
find_ksym_btf_id(struct bpf_object * obj,const char * ksym_name,__u16 kind,struct btf ** res_btf,struct module_btf ** res_mod_btf)8195 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
8196 			    __u16 kind, struct btf **res_btf,
8197 			    struct module_btf **res_mod_btf)
8198 {
8199 	struct module_btf *mod_btf;
8200 	struct btf *btf;
8201 	int i, id, err;
8202 
8203 	btf = obj->btf_vmlinux;
8204 	mod_btf = NULL;
8205 	id = btf__find_by_name_kind(btf, ksym_name, kind);
8206 
8207 	if (id == -ENOENT) {
8208 		err = load_module_btfs(obj);
8209 		if (err)
8210 			return err;
8211 
8212 		for (i = 0; i < obj->btf_module_cnt; i++) {
8213 			/* we assume module_btf's BTF FD is always >0 */
8214 			mod_btf = &obj->btf_modules[i];
8215 			btf = mod_btf->btf;
8216 			id = btf__find_by_name_kind_own(btf, ksym_name, kind);
8217 			if (id != -ENOENT)
8218 				break;
8219 		}
8220 	}
8221 	if (id <= 0)
8222 		return -ESRCH;
8223 
8224 	*res_btf = btf;
8225 	*res_mod_btf = mod_btf;
8226 	return id;
8227 }
8228 
bpf_object__resolve_ksym_var_btf_id(struct bpf_object * obj,struct extern_desc * ext)8229 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
8230 					       struct extern_desc *ext)
8231 {
8232 	const struct btf_type *targ_var, *targ_type;
8233 	__u32 targ_type_id, local_type_id;
8234 	struct module_btf *mod_btf = NULL;
8235 	const char *targ_var_name;
8236 	struct btf *btf = NULL;
8237 	int id, err;
8238 
8239 	id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
8240 	if (id < 0) {
8241 		if (id == -ESRCH && ext->is_weak)
8242 			return 0;
8243 		pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
8244 			ext->name);
8245 		return id;
8246 	}
8247 
8248 	/* find local type_id */
8249 	local_type_id = ext->ksym.type_id;
8250 
8251 	/* find target type_id */
8252 	targ_var = btf__type_by_id(btf, id);
8253 	targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
8254 	targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
8255 
8256 	err = bpf_core_types_are_compat(obj->btf, local_type_id,
8257 					btf, targ_type_id);
8258 	if (err <= 0) {
8259 		const struct btf_type *local_type;
8260 		const char *targ_name, *local_name;
8261 
8262 		local_type = btf__type_by_id(obj->btf, local_type_id);
8263 		local_name = btf__name_by_offset(obj->btf, local_type->name_off);
8264 		targ_name = btf__name_by_offset(btf, targ_type->name_off);
8265 
8266 		pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
8267 			ext->name, local_type_id,
8268 			btf_kind_str(local_type), local_name, targ_type_id,
8269 			btf_kind_str(targ_type), targ_name);
8270 		return -EINVAL;
8271 	}
8272 
8273 	ext->is_set = true;
8274 	ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
8275 	ext->ksym.kernel_btf_id = id;
8276 	pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
8277 		 ext->name, id, btf_kind_str(targ_var), targ_var_name);
8278 
8279 	return 0;
8280 }
8281 
bpf_object__resolve_ksym_func_btf_id(struct bpf_object * obj,struct extern_desc * ext)8282 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
8283 						struct extern_desc *ext)
8284 {
8285 	int local_func_proto_id, kfunc_proto_id, kfunc_id;
8286 	struct module_btf *mod_btf = NULL;
8287 	const struct btf_type *kern_func;
8288 	struct btf *kern_btf = NULL;
8289 	int ret;
8290 
8291 	local_func_proto_id = ext->ksym.type_id;
8292 
8293 	kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf,
8294 				    &mod_btf);
8295 	if (kfunc_id < 0) {
8296 		if (kfunc_id == -ESRCH && ext->is_weak)
8297 			return 0;
8298 		pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
8299 			ext->name);
8300 		return kfunc_id;
8301 	}
8302 
8303 	kern_func = btf__type_by_id(kern_btf, kfunc_id);
8304 	kfunc_proto_id = kern_func->type;
8305 
8306 	ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
8307 					kern_btf, kfunc_proto_id);
8308 	if (ret <= 0) {
8309 		if (ext->is_weak)
8310 			return 0;
8311 
8312 		pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n",
8313 			ext->name, local_func_proto_id,
8314 			mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id);
8315 		return -EINVAL;
8316 	}
8317 
8318 	/* set index for module BTF fd in fd_array, if unset */
8319 	if (mod_btf && !mod_btf->fd_array_idx) {
8320 		/* insn->off is s16 */
8321 		if (obj->fd_array_cnt == INT16_MAX) {
8322 			pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
8323 				ext->name, mod_btf->fd_array_idx);
8324 			return -E2BIG;
8325 		}
8326 		/* Cannot use index 0 for module BTF fd */
8327 		if (!obj->fd_array_cnt)
8328 			obj->fd_array_cnt = 1;
8329 
8330 		ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
8331 					obj->fd_array_cnt + 1);
8332 		if (ret)
8333 			return ret;
8334 		mod_btf->fd_array_idx = obj->fd_array_cnt;
8335 		/* we assume module BTF FD is always >0 */
8336 		obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
8337 	}
8338 
8339 	ext->is_set = true;
8340 	ext->ksym.kernel_btf_id = kfunc_id;
8341 	ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
8342 	/* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data()
8343 	 * populates FD into ld_imm64 insn when it's used to point to kfunc.
8344 	 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call.
8345 	 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64.
8346 	 */
8347 	ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
8348 	pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n",
8349 		 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id);
8350 
8351 	return 0;
8352 }
8353 
bpf_object__resolve_ksyms_btf_id(struct bpf_object * obj)8354 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
8355 {
8356 	const struct btf_type *t;
8357 	struct extern_desc *ext;
8358 	int i, err;
8359 
8360 	for (i = 0; i < obj->nr_extern; i++) {
8361 		ext = &obj->externs[i];
8362 		if (ext->type != EXT_KSYM || !ext->ksym.type_id)
8363 			continue;
8364 
8365 		if (obj->gen_loader) {
8366 			ext->is_set = true;
8367 			ext->ksym.kernel_btf_obj_fd = 0;
8368 			ext->ksym.kernel_btf_id = 0;
8369 			continue;
8370 		}
8371 		t = btf__type_by_id(obj->btf, ext->btf_id);
8372 		if (btf_is_var(t))
8373 			err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
8374 		else
8375 			err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
8376 		if (err)
8377 			return err;
8378 	}
8379 	return 0;
8380 }
8381 
bpf_object__resolve_externs(struct bpf_object * obj,const char * extra_kconfig)8382 static int bpf_object__resolve_externs(struct bpf_object *obj,
8383 				       const char *extra_kconfig)
8384 {
8385 	bool need_config = false, need_kallsyms = false;
8386 	bool need_vmlinux_btf = false;
8387 	struct extern_desc *ext;
8388 	void *kcfg_data = NULL;
8389 	int err, i;
8390 
8391 	if (obj->nr_extern == 0)
8392 		return 0;
8393 
8394 	if (obj->kconfig_map_idx >= 0)
8395 		kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
8396 
8397 	for (i = 0; i < obj->nr_extern; i++) {
8398 		ext = &obj->externs[i];
8399 
8400 		if (ext->type == EXT_KSYM) {
8401 			if (ext->ksym.type_id)
8402 				need_vmlinux_btf = true;
8403 			else
8404 				need_kallsyms = true;
8405 			continue;
8406 		} else if (ext->type == EXT_KCFG) {
8407 			void *ext_ptr = kcfg_data + ext->kcfg.data_off;
8408 			__u64 value = 0;
8409 
8410 			/* Kconfig externs need actual /proc/config.gz */
8411 			if (str_has_pfx(ext->name, "CONFIG_")) {
8412 				need_config = true;
8413 				continue;
8414 			}
8415 
8416 			/* Virtual kcfg externs are customly handled by libbpf */
8417 			if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
8418 				value = get_kernel_version();
8419 				if (!value) {
8420 					pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
8421 					return -EINVAL;
8422 				}
8423 			} else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
8424 				value = kernel_supports(obj, FEAT_BPF_COOKIE);
8425 			} else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
8426 				value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
8427 			} else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
8428 				/* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
8429 				 * __kconfig externs, where LINUX_ ones are virtual and filled out
8430 				 * customly by libbpf (their values don't come from Kconfig).
8431 				 * If LINUX_xxx variable is not recognized by libbpf, but is marked
8432 				 * __weak, it defaults to zero value, just like for CONFIG_xxx
8433 				 * externs.
8434 				 */
8435 				pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
8436 				return -EINVAL;
8437 			}
8438 
8439 			err = set_kcfg_value_num(ext, ext_ptr, value);
8440 			if (err)
8441 				return err;
8442 			pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
8443 				 ext->name, (long long)value);
8444 		} else {
8445 			pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
8446 			return -EINVAL;
8447 		}
8448 	}
8449 	if (need_config && extra_kconfig) {
8450 		err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
8451 		if (err)
8452 			return -EINVAL;
8453 		need_config = false;
8454 		for (i = 0; i < obj->nr_extern; i++) {
8455 			ext = &obj->externs[i];
8456 			if (ext->type == EXT_KCFG && !ext->is_set) {
8457 				need_config = true;
8458 				break;
8459 			}
8460 		}
8461 	}
8462 	if (need_config) {
8463 		err = bpf_object__read_kconfig_file(obj, kcfg_data);
8464 		if (err)
8465 			return -EINVAL;
8466 	}
8467 	if (need_kallsyms) {
8468 		err = bpf_object__read_kallsyms_file(obj);
8469 		if (err)
8470 			return -EINVAL;
8471 	}
8472 	if (need_vmlinux_btf) {
8473 		err = bpf_object__resolve_ksyms_btf_id(obj);
8474 		if (err)
8475 			return -EINVAL;
8476 	}
8477 	for (i = 0; i < obj->nr_extern; i++) {
8478 		ext = &obj->externs[i];
8479 
8480 		if (!ext->is_set && !ext->is_weak) {
8481 			pr_warn("extern '%s' (strong): not resolved\n", ext->name);
8482 			return -ESRCH;
8483 		} else if (!ext->is_set) {
8484 			pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
8485 				 ext->name);
8486 		}
8487 	}
8488 
8489 	return 0;
8490 }
8491 
bpf_map_prepare_vdata(const struct bpf_map * map)8492 static void bpf_map_prepare_vdata(const struct bpf_map *map)
8493 {
8494 	const struct btf_type *type;
8495 	struct bpf_struct_ops *st_ops;
8496 	__u32 i;
8497 
8498 	st_ops = map->st_ops;
8499 	type = btf__type_by_id(map->obj->btf, st_ops->type_id);
8500 	for (i = 0; i < btf_vlen(type); i++) {
8501 		struct bpf_program *prog = st_ops->progs[i];
8502 		void *kern_data;
8503 		int prog_fd;
8504 
8505 		if (!prog)
8506 			continue;
8507 
8508 		prog_fd = bpf_program__fd(prog);
8509 		kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
8510 		*(unsigned long *)kern_data = prog_fd;
8511 	}
8512 }
8513 
bpf_object_prepare_struct_ops(struct bpf_object * obj)8514 static int bpf_object_prepare_struct_ops(struct bpf_object *obj)
8515 {
8516 	struct bpf_map *map;
8517 	int i;
8518 
8519 	for (i = 0; i < obj->nr_maps; i++) {
8520 		map = &obj->maps[i];
8521 
8522 		if (!bpf_map__is_struct_ops(map))
8523 			continue;
8524 
8525 		if (!map->autocreate)
8526 			continue;
8527 
8528 		bpf_map_prepare_vdata(map);
8529 	}
8530 
8531 	return 0;
8532 }
8533 
bpf_object_load(struct bpf_object * obj,int extra_log_level,const char * target_btf_path)8534 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
8535 {
8536 	int err, i;
8537 
8538 	if (!obj)
8539 		return libbpf_err(-EINVAL);
8540 
8541 	if (obj->loaded) {
8542 		pr_warn("object '%s': load can't be attempted twice\n", obj->name);
8543 		return libbpf_err(-EINVAL);
8544 	}
8545 
8546 	/* Disallow kernel loading programs of non-native endianness but
8547 	 * permit cross-endian creation of "light skeleton".
8548 	 */
8549 	if (obj->gen_loader) {
8550 		bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
8551 	} else if (!is_native_endianness(obj)) {
8552 		pr_warn("object '%s': loading non-native endianness is unsupported\n", obj->name);
8553 		return libbpf_err(-LIBBPF_ERRNO__ENDIAN);
8554 	}
8555 
8556 	err = bpf_object_prepare_token(obj);
8557 	err = err ? : bpf_object__probe_loading(obj);
8558 	err = err ? : bpf_object__load_vmlinux_btf(obj, false);
8559 	err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
8560 	err = err ? : bpf_object__sanitize_maps(obj);
8561 	err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
8562 	err = err ? : bpf_object_adjust_struct_ops_autoload(obj);
8563 	err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
8564 	err = err ? : bpf_object__sanitize_and_load_btf(obj);
8565 	err = err ? : bpf_object__create_maps(obj);
8566 	err = err ? : bpf_object__load_progs(obj, extra_log_level);
8567 	err = err ? : bpf_object_init_prog_arrays(obj);
8568 	err = err ? : bpf_object_prepare_struct_ops(obj);
8569 
8570 	if (obj->gen_loader) {
8571 		/* reset FDs */
8572 		if (obj->btf)
8573 			btf__set_fd(obj->btf, -1);
8574 		if (!err)
8575 			err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
8576 	}
8577 
8578 	/* clean up fd_array */
8579 	zfree(&obj->fd_array);
8580 
8581 	/* clean up module BTFs */
8582 	for (i = 0; i < obj->btf_module_cnt; i++) {
8583 		close(obj->btf_modules[i].fd);
8584 		btf__free(obj->btf_modules[i].btf);
8585 		free(obj->btf_modules[i].name);
8586 	}
8587 	free(obj->btf_modules);
8588 
8589 	/* clean up vmlinux BTF */
8590 	btf__free(obj->btf_vmlinux);
8591 	obj->btf_vmlinux = NULL;
8592 
8593 	obj->loaded = true; /* doesn't matter if successfully or not */
8594 
8595 	if (err)
8596 		goto out;
8597 
8598 	return 0;
8599 out:
8600 	/* unpin any maps that were auto-pinned during load */
8601 	for (i = 0; i < obj->nr_maps; i++)
8602 		if (obj->maps[i].pinned && !obj->maps[i].reused)
8603 			bpf_map__unpin(&obj->maps[i], NULL);
8604 
8605 	bpf_object_unload(obj);
8606 	pr_warn("failed to load object '%s'\n", obj->path);
8607 	return libbpf_err(err);
8608 }
8609 
bpf_object__load(struct bpf_object * obj)8610 int bpf_object__load(struct bpf_object *obj)
8611 {
8612 	return bpf_object_load(obj, 0, NULL);
8613 }
8614 
make_parent_dir(const char * path)8615 static int make_parent_dir(const char *path)
8616 {
8617 	char *dname, *dir;
8618 	int err = 0;
8619 
8620 	dname = strdup(path);
8621 	if (dname == NULL)
8622 		return -ENOMEM;
8623 
8624 	dir = dirname(dname);
8625 	if (mkdir(dir, 0700) && errno != EEXIST)
8626 		err = -errno;
8627 
8628 	free(dname);
8629 	if (err) {
8630 		pr_warn("failed to mkdir %s: %s\n", path, errstr(err));
8631 	}
8632 	return err;
8633 }
8634 
check_path(const char * path)8635 static int check_path(const char *path)
8636 {
8637 	struct statfs st_fs;
8638 	char *dname, *dir;
8639 	int err = 0;
8640 
8641 	if (path == NULL)
8642 		return -EINVAL;
8643 
8644 	dname = strdup(path);
8645 	if (dname == NULL)
8646 		return -ENOMEM;
8647 
8648 	dir = dirname(dname);
8649 	if (statfs(dir, &st_fs)) {
8650 		pr_warn("failed to statfs %s: %s\n", dir, errstr(errno));
8651 		err = -errno;
8652 	}
8653 	free(dname);
8654 
8655 	if (!err && st_fs.f_type != BPF_FS_MAGIC) {
8656 		pr_warn("specified path %s is not on BPF FS\n", path);
8657 		err = -EINVAL;
8658 	}
8659 
8660 	return err;
8661 }
8662 
bpf_program__pin(struct bpf_program * prog,const char * path)8663 int bpf_program__pin(struct bpf_program *prog, const char *path)
8664 {
8665 	int err;
8666 
8667 	if (prog->fd < 0) {
8668 		pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
8669 		return libbpf_err(-EINVAL);
8670 	}
8671 
8672 	err = make_parent_dir(path);
8673 	if (err)
8674 		return libbpf_err(err);
8675 
8676 	err = check_path(path);
8677 	if (err)
8678 		return libbpf_err(err);
8679 
8680 	if (bpf_obj_pin(prog->fd, path)) {
8681 		err = -errno;
8682 		pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, errstr(err));
8683 		return libbpf_err(err);
8684 	}
8685 
8686 	pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
8687 	return 0;
8688 }
8689 
bpf_program__unpin(struct bpf_program * prog,const char * path)8690 int bpf_program__unpin(struct bpf_program *prog, const char *path)
8691 {
8692 	int err;
8693 
8694 	if (prog->fd < 0) {
8695 		pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
8696 		return libbpf_err(-EINVAL);
8697 	}
8698 
8699 	err = check_path(path);
8700 	if (err)
8701 		return libbpf_err(err);
8702 
8703 	err = unlink(path);
8704 	if (err)
8705 		return libbpf_err(-errno);
8706 
8707 	pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
8708 	return 0;
8709 }
8710 
bpf_map__pin(struct bpf_map * map,const char * path)8711 int bpf_map__pin(struct bpf_map *map, const char *path)
8712 {
8713 	int err;
8714 
8715 	if (map == NULL) {
8716 		pr_warn("invalid map pointer\n");
8717 		return libbpf_err(-EINVAL);
8718 	}
8719 
8720 	if (map->fd < 0) {
8721 		pr_warn("map '%s': can't pin BPF map without FD (was it created?)\n", map->name);
8722 		return libbpf_err(-EINVAL);
8723 	}
8724 
8725 	if (map->pin_path) {
8726 		if (path && strcmp(path, map->pin_path)) {
8727 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8728 				bpf_map__name(map), map->pin_path, path);
8729 			return libbpf_err(-EINVAL);
8730 		} else if (map->pinned) {
8731 			pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
8732 				 bpf_map__name(map), map->pin_path);
8733 			return 0;
8734 		}
8735 	} else {
8736 		if (!path) {
8737 			pr_warn("missing a path to pin map '%s' at\n",
8738 				bpf_map__name(map));
8739 			return libbpf_err(-EINVAL);
8740 		} else if (map->pinned) {
8741 			pr_warn("map '%s' already pinned\n", bpf_map__name(map));
8742 			return libbpf_err(-EEXIST);
8743 		}
8744 
8745 		map->pin_path = strdup(path);
8746 		if (!map->pin_path) {
8747 			err = -errno;
8748 			goto out_err;
8749 		}
8750 	}
8751 
8752 	err = make_parent_dir(map->pin_path);
8753 	if (err)
8754 		return libbpf_err(err);
8755 
8756 	err = check_path(map->pin_path);
8757 	if (err)
8758 		return libbpf_err(err);
8759 
8760 	if (bpf_obj_pin(map->fd, map->pin_path)) {
8761 		err = -errno;
8762 		goto out_err;
8763 	}
8764 
8765 	map->pinned = true;
8766 	pr_debug("pinned map '%s'\n", map->pin_path);
8767 
8768 	return 0;
8769 
8770 out_err:
8771 	pr_warn("failed to pin map: %s\n", errstr(err));
8772 	return libbpf_err(err);
8773 }
8774 
bpf_map__unpin(struct bpf_map * map,const char * path)8775 int bpf_map__unpin(struct bpf_map *map, const char *path)
8776 {
8777 	int err;
8778 
8779 	if (map == NULL) {
8780 		pr_warn("invalid map pointer\n");
8781 		return libbpf_err(-EINVAL);
8782 	}
8783 
8784 	if (map->pin_path) {
8785 		if (path && strcmp(path, map->pin_path)) {
8786 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8787 				bpf_map__name(map), map->pin_path, path);
8788 			return libbpf_err(-EINVAL);
8789 		}
8790 		path = map->pin_path;
8791 	} else if (!path) {
8792 		pr_warn("no path to unpin map '%s' from\n",
8793 			bpf_map__name(map));
8794 		return libbpf_err(-EINVAL);
8795 	}
8796 
8797 	err = check_path(path);
8798 	if (err)
8799 		return libbpf_err(err);
8800 
8801 	err = unlink(path);
8802 	if (err != 0)
8803 		return libbpf_err(-errno);
8804 
8805 	map->pinned = false;
8806 	pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
8807 
8808 	return 0;
8809 }
8810 
bpf_map__set_pin_path(struct bpf_map * map,const char * path)8811 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
8812 {
8813 	char *new = NULL;
8814 
8815 	if (path) {
8816 		new = strdup(path);
8817 		if (!new)
8818 			return libbpf_err(-errno);
8819 	}
8820 
8821 	free(map->pin_path);
8822 	map->pin_path = new;
8823 	return 0;
8824 }
8825 
8826 __alias(bpf_map__pin_path)
8827 const char *bpf_map__get_pin_path(const struct bpf_map *map);
8828 
bpf_map__pin_path(const struct bpf_map * map)8829 const char *bpf_map__pin_path(const struct bpf_map *map)
8830 {
8831 	return map->pin_path;
8832 }
8833 
bpf_map__is_pinned(const struct bpf_map * map)8834 bool bpf_map__is_pinned(const struct bpf_map *map)
8835 {
8836 	return map->pinned;
8837 }
8838 
sanitize_pin_path(char * s)8839 static void sanitize_pin_path(char *s)
8840 {
8841 	/* bpffs disallows periods in path names */
8842 	while (*s) {
8843 		if (*s == '.')
8844 			*s = '_';
8845 		s++;
8846 	}
8847 }
8848 
bpf_object__pin_maps(struct bpf_object * obj,const char * path)8849 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
8850 {
8851 	struct bpf_map *map;
8852 	int err;
8853 
8854 	if (!obj)
8855 		return libbpf_err(-ENOENT);
8856 
8857 	if (!obj->loaded) {
8858 		pr_warn("object not yet loaded; load it first\n");
8859 		return libbpf_err(-ENOENT);
8860 	}
8861 
8862 	bpf_object__for_each_map(map, obj) {
8863 		char *pin_path = NULL;
8864 		char buf[PATH_MAX];
8865 
8866 		if (!map->autocreate)
8867 			continue;
8868 
8869 		if (path) {
8870 			err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8871 			if (err)
8872 				goto err_unpin_maps;
8873 			sanitize_pin_path(buf);
8874 			pin_path = buf;
8875 		} else if (!map->pin_path) {
8876 			continue;
8877 		}
8878 
8879 		err = bpf_map__pin(map, pin_path);
8880 		if (err)
8881 			goto err_unpin_maps;
8882 	}
8883 
8884 	return 0;
8885 
8886 err_unpin_maps:
8887 	while ((map = bpf_object__prev_map(obj, map))) {
8888 		if (!map->pin_path)
8889 			continue;
8890 
8891 		bpf_map__unpin(map, NULL);
8892 	}
8893 
8894 	return libbpf_err(err);
8895 }
8896 
bpf_object__unpin_maps(struct bpf_object * obj,const char * path)8897 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8898 {
8899 	struct bpf_map *map;
8900 	int err;
8901 
8902 	if (!obj)
8903 		return libbpf_err(-ENOENT);
8904 
8905 	bpf_object__for_each_map(map, obj) {
8906 		char *pin_path = NULL;
8907 		char buf[PATH_MAX];
8908 
8909 		if (path) {
8910 			err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8911 			if (err)
8912 				return libbpf_err(err);
8913 			sanitize_pin_path(buf);
8914 			pin_path = buf;
8915 		} else if (!map->pin_path) {
8916 			continue;
8917 		}
8918 
8919 		err = bpf_map__unpin(map, pin_path);
8920 		if (err)
8921 			return libbpf_err(err);
8922 	}
8923 
8924 	return 0;
8925 }
8926 
bpf_object__pin_programs(struct bpf_object * obj,const char * path)8927 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8928 {
8929 	struct bpf_program *prog;
8930 	char buf[PATH_MAX];
8931 	int err;
8932 
8933 	if (!obj)
8934 		return libbpf_err(-ENOENT);
8935 
8936 	if (!obj->loaded) {
8937 		pr_warn("object not yet loaded; load it first\n");
8938 		return libbpf_err(-ENOENT);
8939 	}
8940 
8941 	bpf_object__for_each_program(prog, obj) {
8942 		err = pathname_concat(buf, sizeof(buf), path, prog->name);
8943 		if (err)
8944 			goto err_unpin_programs;
8945 
8946 		err = bpf_program__pin(prog, buf);
8947 		if (err)
8948 			goto err_unpin_programs;
8949 	}
8950 
8951 	return 0;
8952 
8953 err_unpin_programs:
8954 	while ((prog = bpf_object__prev_program(obj, prog))) {
8955 		if (pathname_concat(buf, sizeof(buf), path, prog->name))
8956 			continue;
8957 
8958 		bpf_program__unpin(prog, buf);
8959 	}
8960 
8961 	return libbpf_err(err);
8962 }
8963 
bpf_object__unpin_programs(struct bpf_object * obj,const char * path)8964 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8965 {
8966 	struct bpf_program *prog;
8967 	int err;
8968 
8969 	if (!obj)
8970 		return libbpf_err(-ENOENT);
8971 
8972 	bpf_object__for_each_program(prog, obj) {
8973 		char buf[PATH_MAX];
8974 
8975 		err = pathname_concat(buf, sizeof(buf), path, prog->name);
8976 		if (err)
8977 			return libbpf_err(err);
8978 
8979 		err = bpf_program__unpin(prog, buf);
8980 		if (err)
8981 			return libbpf_err(err);
8982 	}
8983 
8984 	return 0;
8985 }
8986 
bpf_object__pin(struct bpf_object * obj,const char * path)8987 int bpf_object__pin(struct bpf_object *obj, const char *path)
8988 {
8989 	int err;
8990 
8991 	err = bpf_object__pin_maps(obj, path);
8992 	if (err)
8993 		return libbpf_err(err);
8994 
8995 	err = bpf_object__pin_programs(obj, path);
8996 	if (err) {
8997 		bpf_object__unpin_maps(obj, path);
8998 		return libbpf_err(err);
8999 	}
9000 
9001 	return 0;
9002 }
9003 
bpf_object__unpin(struct bpf_object * obj,const char * path)9004 int bpf_object__unpin(struct bpf_object *obj, const char *path)
9005 {
9006 	int err;
9007 
9008 	err = bpf_object__unpin_programs(obj, path);
9009 	if (err)
9010 		return libbpf_err(err);
9011 
9012 	err = bpf_object__unpin_maps(obj, path);
9013 	if (err)
9014 		return libbpf_err(err);
9015 
9016 	return 0;
9017 }
9018 
bpf_map__destroy(struct bpf_map * map)9019 static void bpf_map__destroy(struct bpf_map *map)
9020 {
9021 	if (map->inner_map) {
9022 		bpf_map__destroy(map->inner_map);
9023 		zfree(&map->inner_map);
9024 	}
9025 
9026 	zfree(&map->init_slots);
9027 	map->init_slots_sz = 0;
9028 
9029 	if (map->mmaped && map->mmaped != map->obj->arena_data)
9030 		munmap(map->mmaped, bpf_map_mmap_sz(map));
9031 	map->mmaped = NULL;
9032 
9033 	if (map->st_ops) {
9034 		zfree(&map->st_ops->data);
9035 		zfree(&map->st_ops->progs);
9036 		zfree(&map->st_ops->kern_func_off);
9037 		zfree(&map->st_ops);
9038 	}
9039 
9040 	zfree(&map->name);
9041 	zfree(&map->real_name);
9042 	zfree(&map->pin_path);
9043 
9044 	if (map->fd >= 0)
9045 		zclose(map->fd);
9046 }
9047 
bpf_object__close(struct bpf_object * obj)9048 void bpf_object__close(struct bpf_object *obj)
9049 {
9050 	size_t i;
9051 
9052 	if (IS_ERR_OR_NULL(obj))
9053 		return;
9054 
9055 	usdt_manager_free(obj->usdt_man);
9056 	obj->usdt_man = NULL;
9057 
9058 	bpf_gen__free(obj->gen_loader);
9059 	bpf_object__elf_finish(obj);
9060 	bpf_object_unload(obj);
9061 	btf__free(obj->btf);
9062 	btf__free(obj->btf_vmlinux);
9063 	btf_ext__free(obj->btf_ext);
9064 
9065 	for (i = 0; i < obj->nr_maps; i++)
9066 		bpf_map__destroy(&obj->maps[i]);
9067 
9068 	zfree(&obj->btf_custom_path);
9069 	zfree(&obj->kconfig);
9070 
9071 	for (i = 0; i < obj->nr_extern; i++)
9072 		zfree(&obj->externs[i].essent_name);
9073 
9074 	zfree(&obj->externs);
9075 	obj->nr_extern = 0;
9076 
9077 	zfree(&obj->maps);
9078 	obj->nr_maps = 0;
9079 
9080 	if (obj->programs && obj->nr_programs) {
9081 		for (i = 0; i < obj->nr_programs; i++)
9082 			bpf_program__exit(&obj->programs[i]);
9083 	}
9084 	zfree(&obj->programs);
9085 
9086 	zfree(&obj->feat_cache);
9087 	zfree(&obj->token_path);
9088 	if (obj->token_fd > 0)
9089 		close(obj->token_fd);
9090 
9091 	zfree(&obj->arena_data);
9092 
9093 	free(obj);
9094 }
9095 
bpf_object__name(const struct bpf_object * obj)9096 const char *bpf_object__name(const struct bpf_object *obj)
9097 {
9098 	return obj ? obj->name : libbpf_err_ptr(-EINVAL);
9099 }
9100 
bpf_object__kversion(const struct bpf_object * obj)9101 unsigned int bpf_object__kversion(const struct bpf_object *obj)
9102 {
9103 	return obj ? obj->kern_version : 0;
9104 }
9105 
bpf_object__token_fd(const struct bpf_object * obj)9106 int bpf_object__token_fd(const struct bpf_object *obj)
9107 {
9108 	return obj->token_fd ?: -1;
9109 }
9110 
bpf_object__btf(const struct bpf_object * obj)9111 struct btf *bpf_object__btf(const struct bpf_object *obj)
9112 {
9113 	return obj ? obj->btf : NULL;
9114 }
9115 
bpf_object__btf_fd(const struct bpf_object * obj)9116 int bpf_object__btf_fd(const struct bpf_object *obj)
9117 {
9118 	return obj->btf ? btf__fd(obj->btf) : -1;
9119 }
9120 
bpf_object__set_kversion(struct bpf_object * obj,__u32 kern_version)9121 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
9122 {
9123 	if (obj->loaded)
9124 		return libbpf_err(-EINVAL);
9125 
9126 	obj->kern_version = kern_version;
9127 
9128 	return 0;
9129 }
9130 
bpf_object__gen_loader(struct bpf_object * obj,struct gen_loader_opts * opts)9131 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
9132 {
9133 	struct bpf_gen *gen;
9134 
9135 	if (!opts)
9136 		return -EFAULT;
9137 	if (!OPTS_VALID(opts, gen_loader_opts))
9138 		return -EINVAL;
9139 	gen = calloc(sizeof(*gen), 1);
9140 	if (!gen)
9141 		return -ENOMEM;
9142 	gen->opts = opts;
9143 	gen->swapped_endian = !is_native_endianness(obj);
9144 	obj->gen_loader = gen;
9145 	return 0;
9146 }
9147 
9148 static struct bpf_program *
__bpf_program__iter(const struct bpf_program * p,const struct bpf_object * obj,bool forward)9149 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
9150 		    bool forward)
9151 {
9152 	size_t nr_programs = obj->nr_programs;
9153 	ssize_t idx;
9154 
9155 	if (!nr_programs)
9156 		return NULL;
9157 
9158 	if (!p)
9159 		/* Iter from the beginning */
9160 		return forward ? &obj->programs[0] :
9161 			&obj->programs[nr_programs - 1];
9162 
9163 	if (p->obj != obj) {
9164 		pr_warn("error: program handler doesn't match object\n");
9165 		return errno = EINVAL, NULL;
9166 	}
9167 
9168 	idx = (p - obj->programs) + (forward ? 1 : -1);
9169 	if (idx >= obj->nr_programs || idx < 0)
9170 		return NULL;
9171 	return &obj->programs[idx];
9172 }
9173 
9174 struct bpf_program *
bpf_object__next_program(const struct bpf_object * obj,struct bpf_program * prev)9175 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
9176 {
9177 	struct bpf_program *prog = prev;
9178 
9179 	do {
9180 		prog = __bpf_program__iter(prog, obj, true);
9181 	} while (prog && prog_is_subprog(obj, prog));
9182 
9183 	return prog;
9184 }
9185 
9186 struct bpf_program *
bpf_object__prev_program(const struct bpf_object * obj,struct bpf_program * next)9187 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
9188 {
9189 	struct bpf_program *prog = next;
9190 
9191 	do {
9192 		prog = __bpf_program__iter(prog, obj, false);
9193 	} while (prog && prog_is_subprog(obj, prog));
9194 
9195 	return prog;
9196 }
9197 
bpf_program__set_ifindex(struct bpf_program * prog,__u32 ifindex)9198 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
9199 {
9200 	prog->prog_ifindex = ifindex;
9201 }
9202 
bpf_program__name(const struct bpf_program * prog)9203 const char *bpf_program__name(const struct bpf_program *prog)
9204 {
9205 	return prog->name;
9206 }
9207 
bpf_program__section_name(const struct bpf_program * prog)9208 const char *bpf_program__section_name(const struct bpf_program *prog)
9209 {
9210 	return prog->sec_name;
9211 }
9212 
bpf_program__autoload(const struct bpf_program * prog)9213 bool bpf_program__autoload(const struct bpf_program *prog)
9214 {
9215 	return prog->autoload;
9216 }
9217 
bpf_program__set_autoload(struct bpf_program * prog,bool autoload)9218 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
9219 {
9220 	if (prog->obj->loaded)
9221 		return libbpf_err(-EINVAL);
9222 
9223 	prog->autoload = autoload;
9224 	return 0;
9225 }
9226 
bpf_program__autoattach(const struct bpf_program * prog)9227 bool bpf_program__autoattach(const struct bpf_program *prog)
9228 {
9229 	return prog->autoattach;
9230 }
9231 
bpf_program__set_autoattach(struct bpf_program * prog,bool autoattach)9232 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach)
9233 {
9234 	prog->autoattach = autoattach;
9235 }
9236 
bpf_program__insns(const struct bpf_program * prog)9237 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
9238 {
9239 	return prog->insns;
9240 }
9241 
bpf_program__insn_cnt(const struct bpf_program * prog)9242 size_t bpf_program__insn_cnt(const struct bpf_program *prog)
9243 {
9244 	return prog->insns_cnt;
9245 }
9246 
bpf_program__set_insns(struct bpf_program * prog,struct bpf_insn * new_insns,size_t new_insn_cnt)9247 int bpf_program__set_insns(struct bpf_program *prog,
9248 			   struct bpf_insn *new_insns, size_t new_insn_cnt)
9249 {
9250 	struct bpf_insn *insns;
9251 
9252 	if (prog->obj->loaded)
9253 		return -EBUSY;
9254 
9255 	insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
9256 	/* NULL is a valid return from reallocarray if the new count is zero */
9257 	if (!insns && new_insn_cnt) {
9258 		pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
9259 		return -ENOMEM;
9260 	}
9261 	memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
9262 
9263 	prog->insns = insns;
9264 	prog->insns_cnt = new_insn_cnt;
9265 	return 0;
9266 }
9267 
bpf_program__fd(const struct bpf_program * prog)9268 int bpf_program__fd(const struct bpf_program *prog)
9269 {
9270 	if (!prog)
9271 		return libbpf_err(-EINVAL);
9272 
9273 	if (prog->fd < 0)
9274 		return libbpf_err(-ENOENT);
9275 
9276 	return prog->fd;
9277 }
9278 
9279 __alias(bpf_program__type)
9280 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
9281 
bpf_program__type(const struct bpf_program * prog)9282 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
9283 {
9284 	return prog->type;
9285 }
9286 
9287 static size_t custom_sec_def_cnt;
9288 static struct bpf_sec_def *custom_sec_defs;
9289 static struct bpf_sec_def custom_fallback_def;
9290 static bool has_custom_fallback_def;
9291 static int last_custom_sec_def_handler_id;
9292 
bpf_program__set_type(struct bpf_program * prog,enum bpf_prog_type type)9293 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
9294 {
9295 	if (prog->obj->loaded)
9296 		return libbpf_err(-EBUSY);
9297 
9298 	/* if type is not changed, do nothing */
9299 	if (prog->type == type)
9300 		return 0;
9301 
9302 	prog->type = type;
9303 
9304 	/* If a program type was changed, we need to reset associated SEC()
9305 	 * handler, as it will be invalid now. The only exception is a generic
9306 	 * fallback handler, which by definition is program type-agnostic and
9307 	 * is a catch-all custom handler, optionally set by the application,
9308 	 * so should be able to handle any type of BPF program.
9309 	 */
9310 	if (prog->sec_def != &custom_fallback_def)
9311 		prog->sec_def = NULL;
9312 	return 0;
9313 }
9314 
9315 __alias(bpf_program__expected_attach_type)
9316 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
9317 
bpf_program__expected_attach_type(const struct bpf_program * prog)9318 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
9319 {
9320 	return prog->expected_attach_type;
9321 }
9322 
bpf_program__set_expected_attach_type(struct bpf_program * prog,enum bpf_attach_type type)9323 int bpf_program__set_expected_attach_type(struct bpf_program *prog,
9324 					   enum bpf_attach_type type)
9325 {
9326 	if (prog->obj->loaded)
9327 		return libbpf_err(-EBUSY);
9328 
9329 	prog->expected_attach_type = type;
9330 	return 0;
9331 }
9332 
bpf_program__flags(const struct bpf_program * prog)9333 __u32 bpf_program__flags(const struct bpf_program *prog)
9334 {
9335 	return prog->prog_flags;
9336 }
9337 
bpf_program__set_flags(struct bpf_program * prog,__u32 flags)9338 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
9339 {
9340 	if (prog->obj->loaded)
9341 		return libbpf_err(-EBUSY);
9342 
9343 	prog->prog_flags = flags;
9344 	return 0;
9345 }
9346 
bpf_program__log_level(const struct bpf_program * prog)9347 __u32 bpf_program__log_level(const struct bpf_program *prog)
9348 {
9349 	return prog->log_level;
9350 }
9351 
bpf_program__set_log_level(struct bpf_program * prog,__u32 log_level)9352 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
9353 {
9354 	if (prog->obj->loaded)
9355 		return libbpf_err(-EBUSY);
9356 
9357 	prog->log_level = log_level;
9358 	return 0;
9359 }
9360 
bpf_program__log_buf(const struct bpf_program * prog,size_t * log_size)9361 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
9362 {
9363 	*log_size = prog->log_size;
9364 	return prog->log_buf;
9365 }
9366 
bpf_program__set_log_buf(struct bpf_program * prog,char * log_buf,size_t log_size)9367 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
9368 {
9369 	if (log_size && !log_buf)
9370 		return -EINVAL;
9371 	if (prog->log_size > UINT_MAX)
9372 		return -EINVAL;
9373 	if (prog->obj->loaded)
9374 		return -EBUSY;
9375 
9376 	prog->log_buf = log_buf;
9377 	prog->log_size = log_size;
9378 	return 0;
9379 }
9380 
9381 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) {			    \
9382 	.sec = (char *)sec_pfx,						    \
9383 	.prog_type = BPF_PROG_TYPE_##ptype,				    \
9384 	.expected_attach_type = atype,					    \
9385 	.cookie = (long)(flags),					    \
9386 	.prog_prepare_load_fn = libbpf_prepare_prog_load,		    \
9387 	__VA_ARGS__							    \
9388 }
9389 
9390 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9391 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9392 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9393 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9394 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9395 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9396 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9397 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9398 static int attach_kprobe_session(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9399 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9400 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9401 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9402 
9403 static const struct bpf_sec_def section_defs[] = {
9404 	SEC_DEF("socket",		SOCKET_FILTER, 0, SEC_NONE),
9405 	SEC_DEF("sk_reuseport/migrate",	SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
9406 	SEC_DEF("sk_reuseport",		SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
9407 	SEC_DEF("kprobe+",		KPROBE,	0, SEC_NONE, attach_kprobe),
9408 	SEC_DEF("uprobe+",		KPROBE,	0, SEC_NONE, attach_uprobe),
9409 	SEC_DEF("uprobe.s+",		KPROBE,	0, SEC_SLEEPABLE, attach_uprobe),
9410 	SEC_DEF("kretprobe+",		KPROBE, 0, SEC_NONE, attach_kprobe),
9411 	SEC_DEF("uretprobe+",		KPROBE, 0, SEC_NONE, attach_uprobe),
9412 	SEC_DEF("uretprobe.s+",		KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
9413 	SEC_DEF("kprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9414 	SEC_DEF("kretprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9415 	SEC_DEF("kprobe.session+",	KPROBE,	BPF_TRACE_KPROBE_SESSION, SEC_NONE, attach_kprobe_session),
9416 	SEC_DEF("uprobe.multi+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
9417 	SEC_DEF("uretprobe.multi+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
9418 	SEC_DEF("uprobe.session+",	KPROBE,	BPF_TRACE_UPROBE_SESSION, SEC_NONE, attach_uprobe_multi),
9419 	SEC_DEF("uprobe.multi.s+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
9420 	SEC_DEF("uretprobe.multi.s+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
9421 	SEC_DEF("uprobe.session.s+",	KPROBE,	BPF_TRACE_UPROBE_SESSION, SEC_SLEEPABLE, attach_uprobe_multi),
9422 	SEC_DEF("ksyscall+",		KPROBE,	0, SEC_NONE, attach_ksyscall),
9423 	SEC_DEF("kretsyscall+",		KPROBE, 0, SEC_NONE, attach_ksyscall),
9424 	SEC_DEF("usdt+",		KPROBE,	0, SEC_USDT, attach_usdt),
9425 	SEC_DEF("usdt.s+",		KPROBE,	0, SEC_USDT | SEC_SLEEPABLE, attach_usdt),
9426 	SEC_DEF("tc/ingress",		SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */
9427 	SEC_DEF("tc/egress",		SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),  /* alias for tcx */
9428 	SEC_DEF("tcx/ingress",		SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE),
9429 	SEC_DEF("tcx/egress",		SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),
9430 	SEC_DEF("tc",			SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9431 	SEC_DEF("classifier",		SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9432 	SEC_DEF("action",		SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9433 	SEC_DEF("netkit/primary",	SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE),
9434 	SEC_DEF("netkit/peer",		SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE),
9435 	SEC_DEF("tracepoint+",		TRACEPOINT, 0, SEC_NONE, attach_tp),
9436 	SEC_DEF("tp+",			TRACEPOINT, 0, SEC_NONE, attach_tp),
9437 	SEC_DEF("raw_tracepoint+",	RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9438 	SEC_DEF("raw_tp+",		RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9439 	SEC_DEF("raw_tracepoint.w+",	RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9440 	SEC_DEF("raw_tp.w+",		RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9441 	SEC_DEF("tp_btf+",		TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
9442 	SEC_DEF("fentry+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
9443 	SEC_DEF("fmod_ret+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
9444 	SEC_DEF("fexit+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
9445 	SEC_DEF("fentry.s+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9446 	SEC_DEF("fmod_ret.s+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9447 	SEC_DEF("fexit.s+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9448 	SEC_DEF("freplace+",		EXT, 0, SEC_ATTACH_BTF, attach_trace),
9449 	SEC_DEF("lsm+",			LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
9450 	SEC_DEF("lsm.s+",		LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
9451 	SEC_DEF("lsm_cgroup+",		LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
9452 	SEC_DEF("iter+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
9453 	SEC_DEF("iter.s+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
9454 	SEC_DEF("syscall",		SYSCALL, 0, SEC_SLEEPABLE),
9455 	SEC_DEF("xdp.frags/devmap",	XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
9456 	SEC_DEF("xdp/devmap",		XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
9457 	SEC_DEF("xdp.frags/cpumap",	XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
9458 	SEC_DEF("xdp/cpumap",		XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
9459 	SEC_DEF("xdp.frags",		XDP, BPF_XDP, SEC_XDP_FRAGS),
9460 	SEC_DEF("xdp",			XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
9461 	SEC_DEF("perf_event",		PERF_EVENT, 0, SEC_NONE),
9462 	SEC_DEF("lwt_in",		LWT_IN, 0, SEC_NONE),
9463 	SEC_DEF("lwt_out",		LWT_OUT, 0, SEC_NONE),
9464 	SEC_DEF("lwt_xmit",		LWT_XMIT, 0, SEC_NONE),
9465 	SEC_DEF("lwt_seg6local",	LWT_SEG6LOCAL, 0, SEC_NONE),
9466 	SEC_DEF("sockops",		SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
9467 	SEC_DEF("sk_skb/stream_parser",	SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
9468 	SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
9469 	SEC_DEF("sk_skb/verdict",	SK_SKB, BPF_SK_SKB_VERDICT, SEC_ATTACHABLE_OPT),
9470 	SEC_DEF("sk_skb",		SK_SKB, 0, SEC_NONE),
9471 	SEC_DEF("sk_msg",		SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
9472 	SEC_DEF("lirc_mode2",		LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
9473 	SEC_DEF("flow_dissector",	FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
9474 	SEC_DEF("cgroup_skb/ingress",	CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
9475 	SEC_DEF("cgroup_skb/egress",	CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
9476 	SEC_DEF("cgroup/skb",		CGROUP_SKB, 0, SEC_NONE),
9477 	SEC_DEF("cgroup/sock_create",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
9478 	SEC_DEF("cgroup/sock_release",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
9479 	SEC_DEF("cgroup/sock",		CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
9480 	SEC_DEF("cgroup/post_bind4",	CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
9481 	SEC_DEF("cgroup/post_bind6",	CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
9482 	SEC_DEF("cgroup/bind4",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
9483 	SEC_DEF("cgroup/bind6",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
9484 	SEC_DEF("cgroup/connect4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
9485 	SEC_DEF("cgroup/connect6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
9486 	SEC_DEF("cgroup/connect_unix",	CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE),
9487 	SEC_DEF("cgroup/sendmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
9488 	SEC_DEF("cgroup/sendmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
9489 	SEC_DEF("cgroup/sendmsg_unix",	CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE),
9490 	SEC_DEF("cgroup/recvmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
9491 	SEC_DEF("cgroup/recvmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
9492 	SEC_DEF("cgroup/recvmsg_unix",	CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE),
9493 	SEC_DEF("cgroup/getpeername4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
9494 	SEC_DEF("cgroup/getpeername6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
9495 	SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE),
9496 	SEC_DEF("cgroup/getsockname4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
9497 	SEC_DEF("cgroup/getsockname6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
9498 	SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE),
9499 	SEC_DEF("cgroup/sysctl",	CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
9500 	SEC_DEF("cgroup/getsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
9501 	SEC_DEF("cgroup/setsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
9502 	SEC_DEF("cgroup/dev",		CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
9503 	SEC_DEF("struct_ops+",		STRUCT_OPS, 0, SEC_NONE),
9504 	SEC_DEF("struct_ops.s+",	STRUCT_OPS, 0, SEC_SLEEPABLE),
9505 	SEC_DEF("sk_lookup",		SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
9506 	SEC_DEF("netfilter",		NETFILTER, BPF_NETFILTER, SEC_NONE),
9507 };
9508 
libbpf_register_prog_handler(const char * sec,enum bpf_prog_type prog_type,enum bpf_attach_type exp_attach_type,const struct libbpf_prog_handler_opts * opts)9509 int libbpf_register_prog_handler(const char *sec,
9510 				 enum bpf_prog_type prog_type,
9511 				 enum bpf_attach_type exp_attach_type,
9512 				 const struct libbpf_prog_handler_opts *opts)
9513 {
9514 	struct bpf_sec_def *sec_def;
9515 
9516 	if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
9517 		return libbpf_err(-EINVAL);
9518 
9519 	if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
9520 		return libbpf_err(-E2BIG);
9521 
9522 	if (sec) {
9523 		sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
9524 					      sizeof(*sec_def));
9525 		if (!sec_def)
9526 			return libbpf_err(-ENOMEM);
9527 
9528 		custom_sec_defs = sec_def;
9529 		sec_def = &custom_sec_defs[custom_sec_def_cnt];
9530 	} else {
9531 		if (has_custom_fallback_def)
9532 			return libbpf_err(-EBUSY);
9533 
9534 		sec_def = &custom_fallback_def;
9535 	}
9536 
9537 	sec_def->sec = sec ? strdup(sec) : NULL;
9538 	if (sec && !sec_def->sec)
9539 		return libbpf_err(-ENOMEM);
9540 
9541 	sec_def->prog_type = prog_type;
9542 	sec_def->expected_attach_type = exp_attach_type;
9543 	sec_def->cookie = OPTS_GET(opts, cookie, 0);
9544 
9545 	sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
9546 	sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
9547 	sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
9548 
9549 	sec_def->handler_id = ++last_custom_sec_def_handler_id;
9550 
9551 	if (sec)
9552 		custom_sec_def_cnt++;
9553 	else
9554 		has_custom_fallback_def = true;
9555 
9556 	return sec_def->handler_id;
9557 }
9558 
libbpf_unregister_prog_handler(int handler_id)9559 int libbpf_unregister_prog_handler(int handler_id)
9560 {
9561 	struct bpf_sec_def *sec_defs;
9562 	int i;
9563 
9564 	if (handler_id <= 0)
9565 		return libbpf_err(-EINVAL);
9566 
9567 	if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
9568 		memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
9569 		has_custom_fallback_def = false;
9570 		return 0;
9571 	}
9572 
9573 	for (i = 0; i < custom_sec_def_cnt; i++) {
9574 		if (custom_sec_defs[i].handler_id == handler_id)
9575 			break;
9576 	}
9577 
9578 	if (i == custom_sec_def_cnt)
9579 		return libbpf_err(-ENOENT);
9580 
9581 	free(custom_sec_defs[i].sec);
9582 	for (i = i + 1; i < custom_sec_def_cnt; i++)
9583 		custom_sec_defs[i - 1] = custom_sec_defs[i];
9584 	custom_sec_def_cnt--;
9585 
9586 	/* try to shrink the array, but it's ok if we couldn't */
9587 	sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
9588 	/* if new count is zero, reallocarray can return a valid NULL result;
9589 	 * in this case the previous pointer will be freed, so we *have to*
9590 	 * reassign old pointer to the new value (even if it's NULL)
9591 	 */
9592 	if (sec_defs || custom_sec_def_cnt == 0)
9593 		custom_sec_defs = sec_defs;
9594 
9595 	return 0;
9596 }
9597 
sec_def_matches(const struct bpf_sec_def * sec_def,const char * sec_name)9598 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
9599 {
9600 	size_t len = strlen(sec_def->sec);
9601 
9602 	/* "type/" always has to have proper SEC("type/extras") form */
9603 	if (sec_def->sec[len - 1] == '/') {
9604 		if (str_has_pfx(sec_name, sec_def->sec))
9605 			return true;
9606 		return false;
9607 	}
9608 
9609 	/* "type+" means it can be either exact SEC("type") or
9610 	 * well-formed SEC("type/extras") with proper '/' separator
9611 	 */
9612 	if (sec_def->sec[len - 1] == '+') {
9613 		len--;
9614 		/* not even a prefix */
9615 		if (strncmp(sec_name, sec_def->sec, len) != 0)
9616 			return false;
9617 		/* exact match or has '/' separator */
9618 		if (sec_name[len] == '\0' || sec_name[len] == '/')
9619 			return true;
9620 		return false;
9621 	}
9622 
9623 	return strcmp(sec_name, sec_def->sec) == 0;
9624 }
9625 
find_sec_def(const char * sec_name)9626 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
9627 {
9628 	const struct bpf_sec_def *sec_def;
9629 	int i, n;
9630 
9631 	n = custom_sec_def_cnt;
9632 	for (i = 0; i < n; i++) {
9633 		sec_def = &custom_sec_defs[i];
9634 		if (sec_def_matches(sec_def, sec_name))
9635 			return sec_def;
9636 	}
9637 
9638 	n = ARRAY_SIZE(section_defs);
9639 	for (i = 0; i < n; i++) {
9640 		sec_def = &section_defs[i];
9641 		if (sec_def_matches(sec_def, sec_name))
9642 			return sec_def;
9643 	}
9644 
9645 	if (has_custom_fallback_def)
9646 		return &custom_fallback_def;
9647 
9648 	return NULL;
9649 }
9650 
9651 #define MAX_TYPE_NAME_SIZE 32
9652 
libbpf_get_type_names(bool attach_type)9653 static char *libbpf_get_type_names(bool attach_type)
9654 {
9655 	int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
9656 	char *buf;
9657 
9658 	buf = malloc(len);
9659 	if (!buf)
9660 		return NULL;
9661 
9662 	buf[0] = '\0';
9663 	/* Forge string buf with all available names */
9664 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9665 		const struct bpf_sec_def *sec_def = &section_defs[i];
9666 
9667 		if (attach_type) {
9668 			if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9669 				continue;
9670 
9671 			if (!(sec_def->cookie & SEC_ATTACHABLE))
9672 				continue;
9673 		}
9674 
9675 		if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
9676 			free(buf);
9677 			return NULL;
9678 		}
9679 		strcat(buf, " ");
9680 		strcat(buf, section_defs[i].sec);
9681 	}
9682 
9683 	return buf;
9684 }
9685 
libbpf_prog_type_by_name(const char * name,enum bpf_prog_type * prog_type,enum bpf_attach_type * expected_attach_type)9686 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
9687 			     enum bpf_attach_type *expected_attach_type)
9688 {
9689 	const struct bpf_sec_def *sec_def;
9690 	char *type_names;
9691 
9692 	if (!name)
9693 		return libbpf_err(-EINVAL);
9694 
9695 	sec_def = find_sec_def(name);
9696 	if (sec_def) {
9697 		*prog_type = sec_def->prog_type;
9698 		*expected_attach_type = sec_def->expected_attach_type;
9699 		return 0;
9700 	}
9701 
9702 	pr_debug("failed to guess program type from ELF section '%s'\n", name);
9703 	type_names = libbpf_get_type_names(false);
9704 	if (type_names != NULL) {
9705 		pr_debug("supported section(type) names are:%s\n", type_names);
9706 		free(type_names);
9707 	}
9708 
9709 	return libbpf_err(-ESRCH);
9710 }
9711 
libbpf_bpf_attach_type_str(enum bpf_attach_type t)9712 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
9713 {
9714 	if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
9715 		return NULL;
9716 
9717 	return attach_type_name[t];
9718 }
9719 
libbpf_bpf_link_type_str(enum bpf_link_type t)9720 const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
9721 {
9722 	if (t < 0 || t >= ARRAY_SIZE(link_type_name))
9723 		return NULL;
9724 
9725 	return link_type_name[t];
9726 }
9727 
libbpf_bpf_map_type_str(enum bpf_map_type t)9728 const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
9729 {
9730 	if (t < 0 || t >= ARRAY_SIZE(map_type_name))
9731 		return NULL;
9732 
9733 	return map_type_name[t];
9734 }
9735 
libbpf_bpf_prog_type_str(enum bpf_prog_type t)9736 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
9737 {
9738 	if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
9739 		return NULL;
9740 
9741 	return prog_type_name[t];
9742 }
9743 
find_struct_ops_map_by_offset(struct bpf_object * obj,int sec_idx,size_t offset)9744 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
9745 						     int sec_idx,
9746 						     size_t offset)
9747 {
9748 	struct bpf_map *map;
9749 	size_t i;
9750 
9751 	for (i = 0; i < obj->nr_maps; i++) {
9752 		map = &obj->maps[i];
9753 		if (!bpf_map__is_struct_ops(map))
9754 			continue;
9755 		if (map->sec_idx == sec_idx &&
9756 		    map->sec_offset <= offset &&
9757 		    offset - map->sec_offset < map->def.value_size)
9758 			return map;
9759 	}
9760 
9761 	return NULL;
9762 }
9763 
9764 /* Collect the reloc from ELF, populate the st_ops->progs[], and update
9765  * st_ops->data for shadow type.
9766  */
bpf_object__collect_st_ops_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)9767 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
9768 					    Elf64_Shdr *shdr, Elf_Data *data)
9769 {
9770 	const struct btf_type *type;
9771 	const struct btf_member *member;
9772 	struct bpf_struct_ops *st_ops;
9773 	struct bpf_program *prog;
9774 	unsigned int shdr_idx;
9775 	const struct btf *btf;
9776 	struct bpf_map *map;
9777 	unsigned int moff, insn_idx;
9778 	const char *name;
9779 	__u32 member_idx;
9780 	Elf64_Sym *sym;
9781 	Elf64_Rel *rel;
9782 	int i, nrels;
9783 
9784 	btf = obj->btf;
9785 	nrels = shdr->sh_size / shdr->sh_entsize;
9786 	for (i = 0; i < nrels; i++) {
9787 		rel = elf_rel_by_idx(data, i);
9788 		if (!rel) {
9789 			pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
9790 			return -LIBBPF_ERRNO__FORMAT;
9791 		}
9792 
9793 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
9794 		if (!sym) {
9795 			pr_warn("struct_ops reloc: symbol %zx not found\n",
9796 				(size_t)ELF64_R_SYM(rel->r_info));
9797 			return -LIBBPF_ERRNO__FORMAT;
9798 		}
9799 
9800 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
9801 		map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset);
9802 		if (!map) {
9803 			pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
9804 				(size_t)rel->r_offset);
9805 			return -EINVAL;
9806 		}
9807 
9808 		moff = rel->r_offset - map->sec_offset;
9809 		shdr_idx = sym->st_shndx;
9810 		st_ops = map->st_ops;
9811 		pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
9812 			 map->name,
9813 			 (long long)(rel->r_info >> 32),
9814 			 (long long)sym->st_value,
9815 			 shdr_idx, (size_t)rel->r_offset,
9816 			 map->sec_offset, sym->st_name, name);
9817 
9818 		if (shdr_idx >= SHN_LORESERVE) {
9819 			pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
9820 				map->name, (size_t)rel->r_offset, shdr_idx);
9821 			return -LIBBPF_ERRNO__RELOC;
9822 		}
9823 		if (sym->st_value % BPF_INSN_SZ) {
9824 			pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
9825 				map->name, (unsigned long long)sym->st_value);
9826 			return -LIBBPF_ERRNO__FORMAT;
9827 		}
9828 		insn_idx = sym->st_value / BPF_INSN_SZ;
9829 
9830 		type = btf__type_by_id(btf, st_ops->type_id);
9831 		member = find_member_by_offset(type, moff * 8);
9832 		if (!member) {
9833 			pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
9834 				map->name, moff);
9835 			return -EINVAL;
9836 		}
9837 		member_idx = member - btf_members(type);
9838 		name = btf__name_by_offset(btf, member->name_off);
9839 
9840 		if (!resolve_func_ptr(btf, member->type, NULL)) {
9841 			pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
9842 				map->name, name);
9843 			return -EINVAL;
9844 		}
9845 
9846 		prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
9847 		if (!prog) {
9848 			pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
9849 				map->name, shdr_idx, name);
9850 			return -EINVAL;
9851 		}
9852 
9853 		/* prevent the use of BPF prog with invalid type */
9854 		if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9855 			pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
9856 				map->name, prog->name);
9857 			return -EINVAL;
9858 		}
9859 
9860 		st_ops->progs[member_idx] = prog;
9861 
9862 		/* st_ops->data will be exposed to users, being returned by
9863 		 * bpf_map__initial_value() as a pointer to the shadow
9864 		 * type. All function pointers in the original struct type
9865 		 * should be converted to a pointer to struct bpf_program
9866 		 * in the shadow type.
9867 		 */
9868 		*((struct bpf_program **)(st_ops->data + moff)) = prog;
9869 	}
9870 
9871 	return 0;
9872 }
9873 
9874 #define BTF_TRACE_PREFIX "btf_trace_"
9875 #define BTF_LSM_PREFIX "bpf_lsm_"
9876 #define BTF_ITER_PREFIX "bpf_iter_"
9877 #define BTF_MAX_NAME_SIZE 128
9878 
btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,const char ** prefix,int * kind)9879 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
9880 				const char **prefix, int *kind)
9881 {
9882 	switch (attach_type) {
9883 	case BPF_TRACE_RAW_TP:
9884 		*prefix = BTF_TRACE_PREFIX;
9885 		*kind = BTF_KIND_TYPEDEF;
9886 		break;
9887 	case BPF_LSM_MAC:
9888 	case BPF_LSM_CGROUP:
9889 		*prefix = BTF_LSM_PREFIX;
9890 		*kind = BTF_KIND_FUNC;
9891 		break;
9892 	case BPF_TRACE_ITER:
9893 		*prefix = BTF_ITER_PREFIX;
9894 		*kind = BTF_KIND_FUNC;
9895 		break;
9896 	default:
9897 		*prefix = "";
9898 		*kind = BTF_KIND_FUNC;
9899 	}
9900 }
9901 
find_btf_by_prefix_kind(const struct btf * btf,const char * prefix,const char * name,__u32 kind)9902 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
9903 				   const char *name, __u32 kind)
9904 {
9905 	char btf_type_name[BTF_MAX_NAME_SIZE];
9906 	int ret;
9907 
9908 	ret = snprintf(btf_type_name, sizeof(btf_type_name),
9909 		       "%s%s", prefix, name);
9910 	/* snprintf returns the number of characters written excluding the
9911 	 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
9912 	 * indicates truncation.
9913 	 */
9914 	if (ret < 0 || ret >= sizeof(btf_type_name))
9915 		return -ENAMETOOLONG;
9916 	return btf__find_by_name_kind(btf, btf_type_name, kind);
9917 }
9918 
find_attach_btf_id(struct btf * btf,const char * name,enum bpf_attach_type attach_type)9919 static inline int find_attach_btf_id(struct btf *btf, const char *name,
9920 				     enum bpf_attach_type attach_type)
9921 {
9922 	const char *prefix;
9923 	int kind;
9924 
9925 	btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
9926 	return find_btf_by_prefix_kind(btf, prefix, name, kind);
9927 }
9928 
libbpf_find_vmlinux_btf_id(const char * name,enum bpf_attach_type attach_type)9929 int libbpf_find_vmlinux_btf_id(const char *name,
9930 			       enum bpf_attach_type attach_type)
9931 {
9932 	struct btf *btf;
9933 	int err;
9934 
9935 	btf = btf__load_vmlinux_btf();
9936 	err = libbpf_get_error(btf);
9937 	if (err) {
9938 		pr_warn("vmlinux BTF is not found\n");
9939 		return libbpf_err(err);
9940 	}
9941 
9942 	err = find_attach_btf_id(btf, name, attach_type);
9943 	if (err <= 0)
9944 		pr_warn("%s is not found in vmlinux BTF\n", name);
9945 
9946 	btf__free(btf);
9947 	return libbpf_err(err);
9948 }
9949 
libbpf_find_prog_btf_id(const char * name,__u32 attach_prog_fd)9950 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
9951 {
9952 	struct bpf_prog_info info;
9953 	__u32 info_len = sizeof(info);
9954 	struct btf *btf;
9955 	int err;
9956 
9957 	memset(&info, 0, info_len);
9958 	err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len);
9959 	if (err) {
9960 		pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %s\n",
9961 			attach_prog_fd, errstr(err));
9962 		return err;
9963 	}
9964 
9965 	err = -EINVAL;
9966 	if (!info.btf_id) {
9967 		pr_warn("The target program doesn't have BTF\n");
9968 		goto out;
9969 	}
9970 	btf = btf__load_from_kernel_by_id(info.btf_id);
9971 	err = libbpf_get_error(btf);
9972 	if (err) {
9973 		pr_warn("Failed to get BTF %d of the program: %s\n", info.btf_id, errstr(err));
9974 		goto out;
9975 	}
9976 	err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9977 	btf__free(btf);
9978 	if (err <= 0) {
9979 		pr_warn("%s is not found in prog's BTF\n", name);
9980 		goto out;
9981 	}
9982 out:
9983 	return err;
9984 }
9985 
find_kernel_btf_id(struct bpf_object * obj,const char * attach_name,enum bpf_attach_type attach_type,int * btf_obj_fd,int * btf_type_id)9986 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9987 			      enum bpf_attach_type attach_type,
9988 			      int *btf_obj_fd, int *btf_type_id)
9989 {
9990 	int ret, i, mod_len;
9991 	const char *fn_name, *mod_name = NULL;
9992 
9993 	fn_name = strchr(attach_name, ':');
9994 	if (fn_name) {
9995 		mod_name = attach_name;
9996 		mod_len = fn_name - mod_name;
9997 		fn_name++;
9998 	}
9999 
10000 	if (!mod_name || strncmp(mod_name, "vmlinux", mod_len) == 0) {
10001 		ret = find_attach_btf_id(obj->btf_vmlinux,
10002 					 mod_name ? fn_name : attach_name,
10003 					 attach_type);
10004 		if (ret > 0) {
10005 			*btf_obj_fd = 0; /* vmlinux BTF */
10006 			*btf_type_id = ret;
10007 			return 0;
10008 		}
10009 		if (ret != -ENOENT)
10010 			return ret;
10011 	}
10012 
10013 	ret = load_module_btfs(obj);
10014 	if (ret)
10015 		return ret;
10016 
10017 	for (i = 0; i < obj->btf_module_cnt; i++) {
10018 		const struct module_btf *mod = &obj->btf_modules[i];
10019 
10020 		if (mod_name && strncmp(mod->name, mod_name, mod_len) != 0)
10021 			continue;
10022 
10023 		ret = find_attach_btf_id(mod->btf,
10024 					 mod_name ? fn_name : attach_name,
10025 					 attach_type);
10026 		if (ret > 0) {
10027 			*btf_obj_fd = mod->fd;
10028 			*btf_type_id = ret;
10029 			return 0;
10030 		}
10031 		if (ret == -ENOENT)
10032 			continue;
10033 
10034 		return ret;
10035 	}
10036 
10037 	return -ESRCH;
10038 }
10039 
libbpf_find_attach_btf_id(struct bpf_program * prog,const char * attach_name,int * btf_obj_fd,int * btf_type_id)10040 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
10041 				     int *btf_obj_fd, int *btf_type_id)
10042 {
10043 	enum bpf_attach_type attach_type = prog->expected_attach_type;
10044 	__u32 attach_prog_fd = prog->attach_prog_fd;
10045 	int err = 0;
10046 
10047 	/* BPF program's BTF ID */
10048 	if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) {
10049 		if (!attach_prog_fd) {
10050 			pr_warn("prog '%s': attach program FD is not set\n", prog->name);
10051 			return -EINVAL;
10052 		}
10053 		err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
10054 		if (err < 0) {
10055 			pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %s\n",
10056 				prog->name, attach_prog_fd, attach_name, errstr(err));
10057 			return err;
10058 		}
10059 		*btf_obj_fd = 0;
10060 		*btf_type_id = err;
10061 		return 0;
10062 	}
10063 
10064 	/* kernel/module BTF ID */
10065 	if (prog->obj->gen_loader) {
10066 		bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
10067 		*btf_obj_fd = 0;
10068 		*btf_type_id = 1;
10069 	} else {
10070 		err = find_kernel_btf_id(prog->obj, attach_name,
10071 					 attach_type, btf_obj_fd,
10072 					 btf_type_id);
10073 	}
10074 	if (err) {
10075 		pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %s\n",
10076 			prog->name, attach_name, errstr(err));
10077 		return err;
10078 	}
10079 	return 0;
10080 }
10081 
libbpf_attach_type_by_name(const char * name,enum bpf_attach_type * attach_type)10082 int libbpf_attach_type_by_name(const char *name,
10083 			       enum bpf_attach_type *attach_type)
10084 {
10085 	char *type_names;
10086 	const struct bpf_sec_def *sec_def;
10087 
10088 	if (!name)
10089 		return libbpf_err(-EINVAL);
10090 
10091 	sec_def = find_sec_def(name);
10092 	if (!sec_def) {
10093 		pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
10094 		type_names = libbpf_get_type_names(true);
10095 		if (type_names != NULL) {
10096 			pr_debug("attachable section(type) names are:%s\n", type_names);
10097 			free(type_names);
10098 		}
10099 
10100 		return libbpf_err(-EINVAL);
10101 	}
10102 
10103 	if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
10104 		return libbpf_err(-EINVAL);
10105 	if (!(sec_def->cookie & SEC_ATTACHABLE))
10106 		return libbpf_err(-EINVAL);
10107 
10108 	*attach_type = sec_def->expected_attach_type;
10109 	return 0;
10110 }
10111 
bpf_map__fd(const struct bpf_map * map)10112 int bpf_map__fd(const struct bpf_map *map)
10113 {
10114 	if (!map)
10115 		return libbpf_err(-EINVAL);
10116 	if (!map_is_created(map))
10117 		return -1;
10118 	return map->fd;
10119 }
10120 
map_uses_real_name(const struct bpf_map * map)10121 static bool map_uses_real_name(const struct bpf_map *map)
10122 {
10123 	/* Since libbpf started to support custom .data.* and .rodata.* maps,
10124 	 * their user-visible name differs from kernel-visible name. Users see
10125 	 * such map's corresponding ELF section name as a map name.
10126 	 * This check distinguishes .data/.rodata from .data.* and .rodata.*
10127 	 * maps to know which name has to be returned to the user.
10128 	 */
10129 	if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
10130 		return true;
10131 	if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
10132 		return true;
10133 	return false;
10134 }
10135 
bpf_map__name(const struct bpf_map * map)10136 const char *bpf_map__name(const struct bpf_map *map)
10137 {
10138 	if (!map)
10139 		return NULL;
10140 
10141 	if (map_uses_real_name(map))
10142 		return map->real_name;
10143 
10144 	return map->name;
10145 }
10146 
bpf_map__type(const struct bpf_map * map)10147 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
10148 {
10149 	return map->def.type;
10150 }
10151 
bpf_map__set_type(struct bpf_map * map,enum bpf_map_type type)10152 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
10153 {
10154 	if (map_is_created(map))
10155 		return libbpf_err(-EBUSY);
10156 	map->def.type = type;
10157 	return 0;
10158 }
10159 
bpf_map__map_flags(const struct bpf_map * map)10160 __u32 bpf_map__map_flags(const struct bpf_map *map)
10161 {
10162 	return map->def.map_flags;
10163 }
10164 
bpf_map__set_map_flags(struct bpf_map * map,__u32 flags)10165 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
10166 {
10167 	if (map_is_created(map))
10168 		return libbpf_err(-EBUSY);
10169 	map->def.map_flags = flags;
10170 	return 0;
10171 }
10172 
bpf_map__map_extra(const struct bpf_map * map)10173 __u64 bpf_map__map_extra(const struct bpf_map *map)
10174 {
10175 	return map->map_extra;
10176 }
10177 
bpf_map__set_map_extra(struct bpf_map * map,__u64 map_extra)10178 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
10179 {
10180 	if (map_is_created(map))
10181 		return libbpf_err(-EBUSY);
10182 	map->map_extra = map_extra;
10183 	return 0;
10184 }
10185 
bpf_map__numa_node(const struct bpf_map * map)10186 __u32 bpf_map__numa_node(const struct bpf_map *map)
10187 {
10188 	return map->numa_node;
10189 }
10190 
bpf_map__set_numa_node(struct bpf_map * map,__u32 numa_node)10191 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
10192 {
10193 	if (map_is_created(map))
10194 		return libbpf_err(-EBUSY);
10195 	map->numa_node = numa_node;
10196 	return 0;
10197 }
10198 
bpf_map__key_size(const struct bpf_map * map)10199 __u32 bpf_map__key_size(const struct bpf_map *map)
10200 {
10201 	return map->def.key_size;
10202 }
10203 
bpf_map__set_key_size(struct bpf_map * map,__u32 size)10204 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
10205 {
10206 	if (map_is_created(map))
10207 		return libbpf_err(-EBUSY);
10208 	map->def.key_size = size;
10209 	return 0;
10210 }
10211 
bpf_map__value_size(const struct bpf_map * map)10212 __u32 bpf_map__value_size(const struct bpf_map *map)
10213 {
10214 	return map->def.value_size;
10215 }
10216 
map_btf_datasec_resize(struct bpf_map * map,__u32 size)10217 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size)
10218 {
10219 	struct btf *btf;
10220 	struct btf_type *datasec_type, *var_type;
10221 	struct btf_var_secinfo *var;
10222 	const struct btf_type *array_type;
10223 	const struct btf_array *array;
10224 	int vlen, element_sz, new_array_id;
10225 	__u32 nr_elements;
10226 
10227 	/* check btf existence */
10228 	btf = bpf_object__btf(map->obj);
10229 	if (!btf)
10230 		return -ENOENT;
10231 
10232 	/* verify map is datasec */
10233 	datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map));
10234 	if (!btf_is_datasec(datasec_type)) {
10235 		pr_warn("map '%s': cannot be resized, map value type is not a datasec\n",
10236 			bpf_map__name(map));
10237 		return -EINVAL;
10238 	}
10239 
10240 	/* verify datasec has at least one var */
10241 	vlen = btf_vlen(datasec_type);
10242 	if (vlen == 0) {
10243 		pr_warn("map '%s': cannot be resized, map value datasec is empty\n",
10244 			bpf_map__name(map));
10245 		return -EINVAL;
10246 	}
10247 
10248 	/* verify last var in the datasec is an array */
10249 	var = &btf_var_secinfos(datasec_type)[vlen - 1];
10250 	var_type = btf_type_by_id(btf, var->type);
10251 	array_type = skip_mods_and_typedefs(btf, var_type->type, NULL);
10252 	if (!btf_is_array(array_type)) {
10253 		pr_warn("map '%s': cannot be resized, last var must be an array\n",
10254 			bpf_map__name(map));
10255 		return -EINVAL;
10256 	}
10257 
10258 	/* verify request size aligns with array */
10259 	array = btf_array(array_type);
10260 	element_sz = btf__resolve_size(btf, array->type);
10261 	if (element_sz <= 0 || (size - var->offset) % element_sz != 0) {
10262 		pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n",
10263 			bpf_map__name(map), element_sz, size);
10264 		return -EINVAL;
10265 	}
10266 
10267 	/* create a new array based on the existing array, but with new length */
10268 	nr_elements = (size - var->offset) / element_sz;
10269 	new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements);
10270 	if (new_array_id < 0)
10271 		return new_array_id;
10272 
10273 	/* adding a new btf type invalidates existing pointers to btf objects,
10274 	 * so refresh pointers before proceeding
10275 	 */
10276 	datasec_type = btf_type_by_id(btf, map->btf_value_type_id);
10277 	var = &btf_var_secinfos(datasec_type)[vlen - 1];
10278 	var_type = btf_type_by_id(btf, var->type);
10279 
10280 	/* finally update btf info */
10281 	datasec_type->size = size;
10282 	var->size = size - var->offset;
10283 	var_type->type = new_array_id;
10284 
10285 	return 0;
10286 }
10287 
bpf_map__set_value_size(struct bpf_map * map,__u32 size)10288 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
10289 {
10290 	if (map->obj->loaded || map->reused)
10291 		return libbpf_err(-EBUSY);
10292 
10293 	if (map->mmaped) {
10294 		size_t mmap_old_sz, mmap_new_sz;
10295 		int err;
10296 
10297 		if (map->def.type != BPF_MAP_TYPE_ARRAY)
10298 			return -EOPNOTSUPP;
10299 
10300 		mmap_old_sz = bpf_map_mmap_sz(map);
10301 		mmap_new_sz = array_map_mmap_sz(size, map->def.max_entries);
10302 		err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz);
10303 		if (err) {
10304 			pr_warn("map '%s': failed to resize memory-mapped region: %s\n",
10305 				bpf_map__name(map), errstr(err));
10306 			return err;
10307 		}
10308 		err = map_btf_datasec_resize(map, size);
10309 		if (err && err != -ENOENT) {
10310 			pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %s\n",
10311 				bpf_map__name(map), errstr(err));
10312 			map->btf_value_type_id = 0;
10313 			map->btf_key_type_id = 0;
10314 		}
10315 	}
10316 
10317 	map->def.value_size = size;
10318 	return 0;
10319 }
10320 
bpf_map__btf_key_type_id(const struct bpf_map * map)10321 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
10322 {
10323 	return map ? map->btf_key_type_id : 0;
10324 }
10325 
bpf_map__btf_value_type_id(const struct bpf_map * map)10326 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
10327 {
10328 	return map ? map->btf_value_type_id : 0;
10329 }
10330 
bpf_map__set_initial_value(struct bpf_map * map,const void * data,size_t size)10331 int bpf_map__set_initial_value(struct bpf_map *map,
10332 			       const void *data, size_t size)
10333 {
10334 	size_t actual_sz;
10335 
10336 	if (map->obj->loaded || map->reused)
10337 		return libbpf_err(-EBUSY);
10338 
10339 	if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG)
10340 		return libbpf_err(-EINVAL);
10341 
10342 	if (map->def.type == BPF_MAP_TYPE_ARENA)
10343 		actual_sz = map->obj->arena_data_sz;
10344 	else
10345 		actual_sz = map->def.value_size;
10346 	if (size != actual_sz)
10347 		return libbpf_err(-EINVAL);
10348 
10349 	memcpy(map->mmaped, data, size);
10350 	return 0;
10351 }
10352 
bpf_map__initial_value(const struct bpf_map * map,size_t * psize)10353 void *bpf_map__initial_value(const struct bpf_map *map, size_t *psize)
10354 {
10355 	if (bpf_map__is_struct_ops(map)) {
10356 		if (psize)
10357 			*psize = map->def.value_size;
10358 		return map->st_ops->data;
10359 	}
10360 
10361 	if (!map->mmaped)
10362 		return NULL;
10363 
10364 	if (map->def.type == BPF_MAP_TYPE_ARENA)
10365 		*psize = map->obj->arena_data_sz;
10366 	else
10367 		*psize = map->def.value_size;
10368 
10369 	return map->mmaped;
10370 }
10371 
bpf_map__is_internal(const struct bpf_map * map)10372 bool bpf_map__is_internal(const struct bpf_map *map)
10373 {
10374 	return map->libbpf_type != LIBBPF_MAP_UNSPEC;
10375 }
10376 
bpf_map__ifindex(const struct bpf_map * map)10377 __u32 bpf_map__ifindex(const struct bpf_map *map)
10378 {
10379 	return map->map_ifindex;
10380 }
10381 
bpf_map__set_ifindex(struct bpf_map * map,__u32 ifindex)10382 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
10383 {
10384 	if (map_is_created(map))
10385 		return libbpf_err(-EBUSY);
10386 	map->map_ifindex = ifindex;
10387 	return 0;
10388 }
10389 
bpf_map__set_inner_map_fd(struct bpf_map * map,int fd)10390 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
10391 {
10392 	if (!bpf_map_type__is_map_in_map(map->def.type)) {
10393 		pr_warn("error: unsupported map type\n");
10394 		return libbpf_err(-EINVAL);
10395 	}
10396 	if (map->inner_map_fd != -1) {
10397 		pr_warn("error: inner_map_fd already specified\n");
10398 		return libbpf_err(-EINVAL);
10399 	}
10400 	if (map->inner_map) {
10401 		bpf_map__destroy(map->inner_map);
10402 		zfree(&map->inner_map);
10403 	}
10404 	map->inner_map_fd = fd;
10405 	return 0;
10406 }
10407 
10408 static struct bpf_map *
__bpf_map__iter(const struct bpf_map * m,const struct bpf_object * obj,int i)10409 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
10410 {
10411 	ssize_t idx;
10412 	struct bpf_map *s, *e;
10413 
10414 	if (!obj || !obj->maps)
10415 		return errno = EINVAL, NULL;
10416 
10417 	s = obj->maps;
10418 	e = obj->maps + obj->nr_maps;
10419 
10420 	if ((m < s) || (m >= e)) {
10421 		pr_warn("error in %s: map handler doesn't belong to object\n",
10422 			 __func__);
10423 		return errno = EINVAL, NULL;
10424 	}
10425 
10426 	idx = (m - obj->maps) + i;
10427 	if (idx >= obj->nr_maps || idx < 0)
10428 		return NULL;
10429 	return &obj->maps[idx];
10430 }
10431 
10432 struct bpf_map *
bpf_object__next_map(const struct bpf_object * obj,const struct bpf_map * prev)10433 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
10434 {
10435 	if (prev == NULL && obj != NULL)
10436 		return obj->maps;
10437 
10438 	return __bpf_map__iter(prev, obj, 1);
10439 }
10440 
10441 struct bpf_map *
bpf_object__prev_map(const struct bpf_object * obj,const struct bpf_map * next)10442 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
10443 {
10444 	if (next == NULL && obj != NULL) {
10445 		if (!obj->nr_maps)
10446 			return NULL;
10447 		return obj->maps + obj->nr_maps - 1;
10448 	}
10449 
10450 	return __bpf_map__iter(next, obj, -1);
10451 }
10452 
10453 struct bpf_map *
bpf_object__find_map_by_name(const struct bpf_object * obj,const char * name)10454 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
10455 {
10456 	struct bpf_map *pos;
10457 
10458 	bpf_object__for_each_map(pos, obj) {
10459 		/* if it's a special internal map name (which always starts
10460 		 * with dot) then check if that special name matches the
10461 		 * real map name (ELF section name)
10462 		 */
10463 		if (name[0] == '.') {
10464 			if (pos->real_name && strcmp(pos->real_name, name) == 0)
10465 				return pos;
10466 			continue;
10467 		}
10468 		/* otherwise map name has to be an exact match */
10469 		if (map_uses_real_name(pos)) {
10470 			if (strcmp(pos->real_name, name) == 0)
10471 				return pos;
10472 			continue;
10473 		}
10474 		if (strcmp(pos->name, name) == 0)
10475 			return pos;
10476 	}
10477 	return errno = ENOENT, NULL;
10478 }
10479 
10480 int
bpf_object__find_map_fd_by_name(const struct bpf_object * obj,const char * name)10481 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
10482 {
10483 	return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
10484 }
10485 
validate_map_op(const struct bpf_map * map,size_t key_sz,size_t value_sz,bool check_value_sz)10486 static int validate_map_op(const struct bpf_map *map, size_t key_sz,
10487 			   size_t value_sz, bool check_value_sz)
10488 {
10489 	if (!map_is_created(map)) /* map is not yet created */
10490 		return -ENOENT;
10491 
10492 	if (map->def.key_size != key_sz) {
10493 		pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
10494 			map->name, key_sz, map->def.key_size);
10495 		return -EINVAL;
10496 	}
10497 
10498 	if (map->fd < 0) {
10499 		pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name);
10500 		return -EINVAL;
10501 	}
10502 
10503 	if (!check_value_sz)
10504 		return 0;
10505 
10506 	switch (map->def.type) {
10507 	case BPF_MAP_TYPE_PERCPU_ARRAY:
10508 	case BPF_MAP_TYPE_PERCPU_HASH:
10509 	case BPF_MAP_TYPE_LRU_PERCPU_HASH:
10510 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
10511 		int num_cpu = libbpf_num_possible_cpus();
10512 		size_t elem_sz = roundup(map->def.value_size, 8);
10513 
10514 		if (value_sz != num_cpu * elem_sz) {
10515 			pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
10516 				map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
10517 			return -EINVAL;
10518 		}
10519 		break;
10520 	}
10521 	default:
10522 		if (map->def.value_size != value_sz) {
10523 			pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
10524 				map->name, value_sz, map->def.value_size);
10525 			return -EINVAL;
10526 		}
10527 		break;
10528 	}
10529 	return 0;
10530 }
10531 
bpf_map__lookup_elem(const struct bpf_map * map,const void * key,size_t key_sz,void * value,size_t value_sz,__u64 flags)10532 int bpf_map__lookup_elem(const struct bpf_map *map,
10533 			 const void *key, size_t key_sz,
10534 			 void *value, size_t value_sz, __u64 flags)
10535 {
10536 	int err;
10537 
10538 	err = validate_map_op(map, key_sz, value_sz, true);
10539 	if (err)
10540 		return libbpf_err(err);
10541 
10542 	return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
10543 }
10544 
bpf_map__update_elem(const struct bpf_map * map,const void * key,size_t key_sz,const void * value,size_t value_sz,__u64 flags)10545 int bpf_map__update_elem(const struct bpf_map *map,
10546 			 const void *key, size_t key_sz,
10547 			 const void *value, size_t value_sz, __u64 flags)
10548 {
10549 	int err;
10550 
10551 	err = validate_map_op(map, key_sz, value_sz, true);
10552 	if (err)
10553 		return libbpf_err(err);
10554 
10555 	return bpf_map_update_elem(map->fd, key, value, flags);
10556 }
10557 
bpf_map__delete_elem(const struct bpf_map * map,const void * key,size_t key_sz,__u64 flags)10558 int bpf_map__delete_elem(const struct bpf_map *map,
10559 			 const void *key, size_t key_sz, __u64 flags)
10560 {
10561 	int err;
10562 
10563 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10564 	if (err)
10565 		return libbpf_err(err);
10566 
10567 	return bpf_map_delete_elem_flags(map->fd, key, flags);
10568 }
10569 
bpf_map__lookup_and_delete_elem(const struct bpf_map * map,const void * key,size_t key_sz,void * value,size_t value_sz,__u64 flags)10570 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
10571 				    const void *key, size_t key_sz,
10572 				    void *value, size_t value_sz, __u64 flags)
10573 {
10574 	int err;
10575 
10576 	err = validate_map_op(map, key_sz, value_sz, true);
10577 	if (err)
10578 		return libbpf_err(err);
10579 
10580 	return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
10581 }
10582 
bpf_map__get_next_key(const struct bpf_map * map,const void * cur_key,void * next_key,size_t key_sz)10583 int bpf_map__get_next_key(const struct bpf_map *map,
10584 			  const void *cur_key, void *next_key, size_t key_sz)
10585 {
10586 	int err;
10587 
10588 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10589 	if (err)
10590 		return libbpf_err(err);
10591 
10592 	return bpf_map_get_next_key(map->fd, cur_key, next_key);
10593 }
10594 
libbpf_get_error(const void * ptr)10595 long libbpf_get_error(const void *ptr)
10596 {
10597 	if (!IS_ERR_OR_NULL(ptr))
10598 		return 0;
10599 
10600 	if (IS_ERR(ptr))
10601 		errno = -PTR_ERR(ptr);
10602 
10603 	/* If ptr == NULL, then errno should be already set by the failing
10604 	 * API, because libbpf never returns NULL on success and it now always
10605 	 * sets errno on error. So no extra errno handling for ptr == NULL
10606 	 * case.
10607 	 */
10608 	return -errno;
10609 }
10610 
10611 /* Replace link's underlying BPF program with the new one */
bpf_link__update_program(struct bpf_link * link,struct bpf_program * prog)10612 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
10613 {
10614 	int ret;
10615 	int prog_fd = bpf_program__fd(prog);
10616 
10617 	if (prog_fd < 0) {
10618 		pr_warn("prog '%s': can't use BPF program without FD (was it loaded?)\n",
10619 			prog->name);
10620 		return libbpf_err(-EINVAL);
10621 	}
10622 
10623 	ret = bpf_link_update(bpf_link__fd(link), prog_fd, NULL);
10624 	return libbpf_err_errno(ret);
10625 }
10626 
10627 /* Release "ownership" of underlying BPF resource (typically, BPF program
10628  * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
10629  * link, when destructed through bpf_link__destroy() call won't attempt to
10630  * detach/unregisted that BPF resource. This is useful in situations where,
10631  * say, attached BPF program has to outlive userspace program that attached it
10632  * in the system. Depending on type of BPF program, though, there might be
10633  * additional steps (like pinning BPF program in BPF FS) necessary to ensure
10634  * exit of userspace program doesn't trigger automatic detachment and clean up
10635  * inside the kernel.
10636  */
bpf_link__disconnect(struct bpf_link * link)10637 void bpf_link__disconnect(struct bpf_link *link)
10638 {
10639 	link->disconnected = true;
10640 }
10641 
bpf_link__destroy(struct bpf_link * link)10642 int bpf_link__destroy(struct bpf_link *link)
10643 {
10644 	int err = 0;
10645 
10646 	if (IS_ERR_OR_NULL(link))
10647 		return 0;
10648 
10649 	if (!link->disconnected && link->detach)
10650 		err = link->detach(link);
10651 	if (link->pin_path)
10652 		free(link->pin_path);
10653 	if (link->dealloc)
10654 		link->dealloc(link);
10655 	else
10656 		free(link);
10657 
10658 	return libbpf_err(err);
10659 }
10660 
bpf_link__fd(const struct bpf_link * link)10661 int bpf_link__fd(const struct bpf_link *link)
10662 {
10663 	return link->fd;
10664 }
10665 
bpf_link__pin_path(const struct bpf_link * link)10666 const char *bpf_link__pin_path(const struct bpf_link *link)
10667 {
10668 	return link->pin_path;
10669 }
10670 
bpf_link__detach_fd(struct bpf_link * link)10671 static int bpf_link__detach_fd(struct bpf_link *link)
10672 {
10673 	return libbpf_err_errno(close(link->fd));
10674 }
10675 
bpf_link__open(const char * path)10676 struct bpf_link *bpf_link__open(const char *path)
10677 {
10678 	struct bpf_link *link;
10679 	int fd;
10680 
10681 	fd = bpf_obj_get(path);
10682 	if (fd < 0) {
10683 		fd = -errno;
10684 		pr_warn("failed to open link at %s: %d\n", path, fd);
10685 		return libbpf_err_ptr(fd);
10686 	}
10687 
10688 	link = calloc(1, sizeof(*link));
10689 	if (!link) {
10690 		close(fd);
10691 		return libbpf_err_ptr(-ENOMEM);
10692 	}
10693 	link->detach = &bpf_link__detach_fd;
10694 	link->fd = fd;
10695 
10696 	link->pin_path = strdup(path);
10697 	if (!link->pin_path) {
10698 		bpf_link__destroy(link);
10699 		return libbpf_err_ptr(-ENOMEM);
10700 	}
10701 
10702 	return link;
10703 }
10704 
bpf_link__detach(struct bpf_link * link)10705 int bpf_link__detach(struct bpf_link *link)
10706 {
10707 	return bpf_link_detach(link->fd) ? -errno : 0;
10708 }
10709 
bpf_link__pin(struct bpf_link * link,const char * path)10710 int bpf_link__pin(struct bpf_link *link, const char *path)
10711 {
10712 	int err;
10713 
10714 	if (link->pin_path)
10715 		return libbpf_err(-EBUSY);
10716 	err = make_parent_dir(path);
10717 	if (err)
10718 		return libbpf_err(err);
10719 	err = check_path(path);
10720 	if (err)
10721 		return libbpf_err(err);
10722 
10723 	link->pin_path = strdup(path);
10724 	if (!link->pin_path)
10725 		return libbpf_err(-ENOMEM);
10726 
10727 	if (bpf_obj_pin(link->fd, link->pin_path)) {
10728 		err = -errno;
10729 		zfree(&link->pin_path);
10730 		return libbpf_err(err);
10731 	}
10732 
10733 	pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
10734 	return 0;
10735 }
10736 
bpf_link__unpin(struct bpf_link * link)10737 int bpf_link__unpin(struct bpf_link *link)
10738 {
10739 	int err;
10740 
10741 	if (!link->pin_path)
10742 		return libbpf_err(-EINVAL);
10743 
10744 	err = unlink(link->pin_path);
10745 	if (err != 0)
10746 		return -errno;
10747 
10748 	pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
10749 	zfree(&link->pin_path);
10750 	return 0;
10751 }
10752 
10753 struct bpf_link_perf {
10754 	struct bpf_link link;
10755 	int perf_event_fd;
10756 	/* legacy kprobe support: keep track of probe identifier and type */
10757 	char *legacy_probe_name;
10758 	bool legacy_is_kprobe;
10759 	bool legacy_is_retprobe;
10760 };
10761 
10762 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
10763 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
10764 
bpf_link_perf_detach(struct bpf_link * link)10765 static int bpf_link_perf_detach(struct bpf_link *link)
10766 {
10767 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10768 	int err = 0;
10769 
10770 	if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
10771 		err = -errno;
10772 
10773 	if (perf_link->perf_event_fd != link->fd)
10774 		close(perf_link->perf_event_fd);
10775 	close(link->fd);
10776 
10777 	/* legacy uprobe/kprobe needs to be removed after perf event fd closure */
10778 	if (perf_link->legacy_probe_name) {
10779 		if (perf_link->legacy_is_kprobe) {
10780 			err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
10781 							 perf_link->legacy_is_retprobe);
10782 		} else {
10783 			err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
10784 							 perf_link->legacy_is_retprobe);
10785 		}
10786 	}
10787 
10788 	return err;
10789 }
10790 
bpf_link_perf_dealloc(struct bpf_link * link)10791 static void bpf_link_perf_dealloc(struct bpf_link *link)
10792 {
10793 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10794 
10795 	free(perf_link->legacy_probe_name);
10796 	free(perf_link);
10797 }
10798 
bpf_program__attach_perf_event_opts(const struct bpf_program * prog,int pfd,const struct bpf_perf_event_opts * opts)10799 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
10800 						     const struct bpf_perf_event_opts *opts)
10801 {
10802 	struct bpf_link_perf *link;
10803 	int prog_fd, link_fd = -1, err;
10804 	bool force_ioctl_attach;
10805 
10806 	if (!OPTS_VALID(opts, bpf_perf_event_opts))
10807 		return libbpf_err_ptr(-EINVAL);
10808 
10809 	if (pfd < 0) {
10810 		pr_warn("prog '%s': invalid perf event FD %d\n",
10811 			prog->name, pfd);
10812 		return libbpf_err_ptr(-EINVAL);
10813 	}
10814 	prog_fd = bpf_program__fd(prog);
10815 	if (prog_fd < 0) {
10816 		pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
10817 			prog->name);
10818 		return libbpf_err_ptr(-EINVAL);
10819 	}
10820 
10821 	link = calloc(1, sizeof(*link));
10822 	if (!link)
10823 		return libbpf_err_ptr(-ENOMEM);
10824 	link->link.detach = &bpf_link_perf_detach;
10825 	link->link.dealloc = &bpf_link_perf_dealloc;
10826 	link->perf_event_fd = pfd;
10827 
10828 	force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false);
10829 	if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) {
10830 		DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
10831 			.perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
10832 
10833 		link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
10834 		if (link_fd < 0) {
10835 			err = -errno;
10836 			pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %s\n",
10837 				prog->name, pfd, errstr(err));
10838 			goto err_out;
10839 		}
10840 		link->link.fd = link_fd;
10841 	} else {
10842 		if (OPTS_GET(opts, bpf_cookie, 0)) {
10843 			pr_warn("prog '%s': user context value is not supported\n", prog->name);
10844 			err = -EOPNOTSUPP;
10845 			goto err_out;
10846 		}
10847 
10848 		if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
10849 			err = -errno;
10850 			pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
10851 				prog->name, pfd, errstr(err));
10852 			if (err == -EPROTO)
10853 				pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
10854 					prog->name, pfd);
10855 			goto err_out;
10856 		}
10857 		link->link.fd = pfd;
10858 	}
10859 	if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10860 		err = -errno;
10861 		pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
10862 			prog->name, pfd, errstr(err));
10863 		goto err_out;
10864 	}
10865 
10866 	return &link->link;
10867 err_out:
10868 	if (link_fd >= 0)
10869 		close(link_fd);
10870 	free(link);
10871 	return libbpf_err_ptr(err);
10872 }
10873 
bpf_program__attach_perf_event(const struct bpf_program * prog,int pfd)10874 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
10875 {
10876 	return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
10877 }
10878 
10879 /*
10880  * this function is expected to parse integer in the range of [0, 2^31-1] from
10881  * given file using scanf format string fmt. If actual parsed value is
10882  * negative, the result might be indistinguishable from error
10883  */
parse_uint_from_file(const char * file,const char * fmt)10884 static int parse_uint_from_file(const char *file, const char *fmt)
10885 {
10886 	int err, ret;
10887 	FILE *f;
10888 
10889 	f = fopen(file, "re");
10890 	if (!f) {
10891 		err = -errno;
10892 		pr_debug("failed to open '%s': %s\n", file, errstr(err));
10893 		return err;
10894 	}
10895 	err = fscanf(f, fmt, &ret);
10896 	if (err != 1) {
10897 		err = err == EOF ? -EIO : -errno;
10898 		pr_debug("failed to parse '%s': %s\n", file, errstr(err));
10899 		fclose(f);
10900 		return err;
10901 	}
10902 	fclose(f);
10903 	return ret;
10904 }
10905 
determine_kprobe_perf_type(void)10906 static int determine_kprobe_perf_type(void)
10907 {
10908 	const char *file = "/sys/bus/event_source/devices/kprobe/type";
10909 
10910 	return parse_uint_from_file(file, "%d\n");
10911 }
10912 
determine_uprobe_perf_type(void)10913 static int determine_uprobe_perf_type(void)
10914 {
10915 	const char *file = "/sys/bus/event_source/devices/uprobe/type";
10916 
10917 	return parse_uint_from_file(file, "%d\n");
10918 }
10919 
determine_kprobe_retprobe_bit(void)10920 static int determine_kprobe_retprobe_bit(void)
10921 {
10922 	const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
10923 
10924 	return parse_uint_from_file(file, "config:%d\n");
10925 }
10926 
determine_uprobe_retprobe_bit(void)10927 static int determine_uprobe_retprobe_bit(void)
10928 {
10929 	const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
10930 
10931 	return parse_uint_from_file(file, "config:%d\n");
10932 }
10933 
10934 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
10935 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
10936 
perf_event_open_probe(bool uprobe,bool retprobe,const char * name,uint64_t offset,int pid,size_t ref_ctr_off)10937 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
10938 				 uint64_t offset, int pid, size_t ref_ctr_off)
10939 {
10940 	const size_t attr_sz = sizeof(struct perf_event_attr);
10941 	struct perf_event_attr attr;
10942 	int type, pfd;
10943 
10944 	if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
10945 		return -EINVAL;
10946 
10947 	memset(&attr, 0, attr_sz);
10948 
10949 	type = uprobe ? determine_uprobe_perf_type()
10950 		      : determine_kprobe_perf_type();
10951 	if (type < 0) {
10952 		pr_warn("failed to determine %s perf type: %s\n",
10953 			uprobe ? "uprobe" : "kprobe",
10954 			errstr(type));
10955 		return type;
10956 	}
10957 	if (retprobe) {
10958 		int bit = uprobe ? determine_uprobe_retprobe_bit()
10959 				 : determine_kprobe_retprobe_bit();
10960 
10961 		if (bit < 0) {
10962 			pr_warn("failed to determine %s retprobe bit: %s\n",
10963 				uprobe ? "uprobe" : "kprobe",
10964 				errstr(bit));
10965 			return bit;
10966 		}
10967 		attr.config |= 1 << bit;
10968 	}
10969 	attr.size = attr_sz;
10970 	attr.type = type;
10971 	attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10972 	attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
10973 	attr.config2 = offset;		 /* kprobe_addr or probe_offset */
10974 
10975 	/* pid filter is meaningful only for uprobes */
10976 	pfd = syscall(__NR_perf_event_open, &attr,
10977 		      pid < 0 ? -1 : pid /* pid */,
10978 		      pid == -1 ? 0 : -1 /* cpu */,
10979 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10980 	return pfd >= 0 ? pfd : -errno;
10981 }
10982 
append_to_file(const char * file,const char * fmt,...)10983 static int append_to_file(const char *file, const char *fmt, ...)
10984 {
10985 	int fd, n, err = 0;
10986 	va_list ap;
10987 	char buf[1024];
10988 
10989 	va_start(ap, fmt);
10990 	n = vsnprintf(buf, sizeof(buf), fmt, ap);
10991 	va_end(ap);
10992 
10993 	if (n < 0 || n >= sizeof(buf))
10994 		return -EINVAL;
10995 
10996 	fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
10997 	if (fd < 0)
10998 		return -errno;
10999 
11000 	if (write(fd, buf, n) < 0)
11001 		err = -errno;
11002 
11003 	close(fd);
11004 	return err;
11005 }
11006 
11007 #define DEBUGFS "/sys/kernel/debug/tracing"
11008 #define TRACEFS "/sys/kernel/tracing"
11009 
use_debugfs(void)11010 static bool use_debugfs(void)
11011 {
11012 	static int has_debugfs = -1;
11013 
11014 	if (has_debugfs < 0)
11015 		has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0;
11016 
11017 	return has_debugfs == 1;
11018 }
11019 
tracefs_path(void)11020 static const char *tracefs_path(void)
11021 {
11022 	return use_debugfs() ? DEBUGFS : TRACEFS;
11023 }
11024 
tracefs_kprobe_events(void)11025 static const char *tracefs_kprobe_events(void)
11026 {
11027 	return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
11028 }
11029 
tracefs_uprobe_events(void)11030 static const char *tracefs_uprobe_events(void)
11031 {
11032 	return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
11033 }
11034 
tracefs_available_filter_functions(void)11035 static const char *tracefs_available_filter_functions(void)
11036 {
11037 	return use_debugfs() ? DEBUGFS"/available_filter_functions"
11038 			     : TRACEFS"/available_filter_functions";
11039 }
11040 
tracefs_available_filter_functions_addrs(void)11041 static const char *tracefs_available_filter_functions_addrs(void)
11042 {
11043 	return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs"
11044 			     : TRACEFS"/available_filter_functions_addrs";
11045 }
11046 
gen_kprobe_legacy_event_name(char * buf,size_t buf_sz,const char * kfunc_name,size_t offset)11047 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
11048 					 const char *kfunc_name, size_t offset)
11049 {
11050 	static int index = 0;
11051 	int i;
11052 
11053 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset,
11054 		 __sync_fetch_and_add(&index, 1));
11055 
11056 	/* sanitize binary_path in the probe name */
11057 	for (i = 0; buf[i]; i++) {
11058 		if (!isalnum(buf[i]))
11059 			buf[i] = '_';
11060 	}
11061 }
11062 
add_kprobe_event_legacy(const char * probe_name,bool retprobe,const char * kfunc_name,size_t offset)11063 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
11064 				   const char *kfunc_name, size_t offset)
11065 {
11066 	return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
11067 			      retprobe ? 'r' : 'p',
11068 			      retprobe ? "kretprobes" : "kprobes",
11069 			      probe_name, kfunc_name, offset);
11070 }
11071 
remove_kprobe_event_legacy(const char * probe_name,bool retprobe)11072 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
11073 {
11074 	return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
11075 			      retprobe ? "kretprobes" : "kprobes", probe_name);
11076 }
11077 
determine_kprobe_perf_type_legacy(const char * probe_name,bool retprobe)11078 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
11079 {
11080 	char file[256];
11081 
11082 	snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11083 		 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
11084 
11085 	return parse_uint_from_file(file, "%d\n");
11086 }
11087 
perf_event_kprobe_open_legacy(const char * probe_name,bool retprobe,const char * kfunc_name,size_t offset,int pid)11088 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
11089 					 const char *kfunc_name, size_t offset, int pid)
11090 {
11091 	const size_t attr_sz = sizeof(struct perf_event_attr);
11092 	struct perf_event_attr attr;
11093 	int type, pfd, err;
11094 
11095 	err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
11096 	if (err < 0) {
11097 		pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
11098 			kfunc_name, offset,
11099 			errstr(err));
11100 		return err;
11101 	}
11102 	type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
11103 	if (type < 0) {
11104 		err = type;
11105 		pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
11106 			kfunc_name, offset,
11107 			errstr(err));
11108 		goto err_clean_legacy;
11109 	}
11110 
11111 	memset(&attr, 0, attr_sz);
11112 	attr.size = attr_sz;
11113 	attr.config = type;
11114 	attr.type = PERF_TYPE_TRACEPOINT;
11115 
11116 	pfd = syscall(__NR_perf_event_open, &attr,
11117 		      pid < 0 ? -1 : pid, /* pid */
11118 		      pid == -1 ? 0 : -1, /* cpu */
11119 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
11120 	if (pfd < 0) {
11121 		err = -errno;
11122 		pr_warn("legacy kprobe perf_event_open() failed: %s\n",
11123 			errstr(err));
11124 		goto err_clean_legacy;
11125 	}
11126 	return pfd;
11127 
11128 err_clean_legacy:
11129 	/* Clear the newly added legacy kprobe_event */
11130 	remove_kprobe_event_legacy(probe_name, retprobe);
11131 	return err;
11132 }
11133 
arch_specific_syscall_pfx(void)11134 static const char *arch_specific_syscall_pfx(void)
11135 {
11136 #if defined(__x86_64__)
11137 	return "x64";
11138 #elif defined(__i386__)
11139 	return "ia32";
11140 #elif defined(__s390x__)
11141 	return "s390x";
11142 #elif defined(__s390__)
11143 	return "s390";
11144 #elif defined(__arm__)
11145 	return "arm";
11146 #elif defined(__aarch64__)
11147 	return "arm64";
11148 #elif defined(__mips__)
11149 	return "mips";
11150 #elif defined(__riscv)
11151 	return "riscv";
11152 #elif defined(__powerpc__)
11153 	return "powerpc";
11154 #elif defined(__powerpc64__)
11155 	return "powerpc64";
11156 #else
11157 	return NULL;
11158 #endif
11159 }
11160 
probe_kern_syscall_wrapper(int token_fd)11161 int probe_kern_syscall_wrapper(int token_fd)
11162 {
11163 	char syscall_name[64];
11164 	const char *ksys_pfx;
11165 
11166 	ksys_pfx = arch_specific_syscall_pfx();
11167 	if (!ksys_pfx)
11168 		return 0;
11169 
11170 	snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
11171 
11172 	if (determine_kprobe_perf_type() >= 0) {
11173 		int pfd;
11174 
11175 		pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
11176 		if (pfd >= 0)
11177 			close(pfd);
11178 
11179 		return pfd >= 0 ? 1 : 0;
11180 	} else { /* legacy mode */
11181 		char probe_name[128];
11182 
11183 		gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
11184 		if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
11185 			return 0;
11186 
11187 		(void)remove_kprobe_event_legacy(probe_name, false);
11188 		return 1;
11189 	}
11190 }
11191 
11192 struct bpf_link *
bpf_program__attach_kprobe_opts(const struct bpf_program * prog,const char * func_name,const struct bpf_kprobe_opts * opts)11193 bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
11194 				const char *func_name,
11195 				const struct bpf_kprobe_opts *opts)
11196 {
11197 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11198 	enum probe_attach_mode attach_mode;
11199 	char *legacy_probe = NULL;
11200 	struct bpf_link *link;
11201 	size_t offset;
11202 	bool retprobe, legacy;
11203 	int pfd, err;
11204 
11205 	if (!OPTS_VALID(opts, bpf_kprobe_opts))
11206 		return libbpf_err_ptr(-EINVAL);
11207 
11208 	attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
11209 	retprobe = OPTS_GET(opts, retprobe, false);
11210 	offset = OPTS_GET(opts, offset, 0);
11211 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11212 
11213 	legacy = determine_kprobe_perf_type() < 0;
11214 	switch (attach_mode) {
11215 	case PROBE_ATTACH_MODE_LEGACY:
11216 		legacy = true;
11217 		pe_opts.force_ioctl_attach = true;
11218 		break;
11219 	case PROBE_ATTACH_MODE_PERF:
11220 		if (legacy)
11221 			return libbpf_err_ptr(-ENOTSUP);
11222 		pe_opts.force_ioctl_attach = true;
11223 		break;
11224 	case PROBE_ATTACH_MODE_LINK:
11225 		if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
11226 			return libbpf_err_ptr(-ENOTSUP);
11227 		break;
11228 	case PROBE_ATTACH_MODE_DEFAULT:
11229 		break;
11230 	default:
11231 		return libbpf_err_ptr(-EINVAL);
11232 	}
11233 
11234 	if (!legacy) {
11235 		pfd = perf_event_open_probe(false /* uprobe */, retprobe,
11236 					    func_name, offset,
11237 					    -1 /* pid */, 0 /* ref_ctr_off */);
11238 	} else {
11239 		char probe_name[256];
11240 
11241 		gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
11242 					     func_name, offset);
11243 
11244 		legacy_probe = strdup(probe_name);
11245 		if (!legacy_probe)
11246 			return libbpf_err_ptr(-ENOMEM);
11247 
11248 		pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
11249 						    offset, -1 /* pid */);
11250 	}
11251 	if (pfd < 0) {
11252 		err = -errno;
11253 		pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
11254 			prog->name, retprobe ? "kretprobe" : "kprobe",
11255 			func_name, offset,
11256 			errstr(err));
11257 		goto err_out;
11258 	}
11259 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11260 	err = libbpf_get_error(link);
11261 	if (err) {
11262 		close(pfd);
11263 		pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
11264 			prog->name, retprobe ? "kretprobe" : "kprobe",
11265 			func_name, offset,
11266 			errstr(err));
11267 		goto err_clean_legacy;
11268 	}
11269 	if (legacy) {
11270 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11271 
11272 		perf_link->legacy_probe_name = legacy_probe;
11273 		perf_link->legacy_is_kprobe = true;
11274 		perf_link->legacy_is_retprobe = retprobe;
11275 	}
11276 
11277 	return link;
11278 
11279 err_clean_legacy:
11280 	if (legacy)
11281 		remove_kprobe_event_legacy(legacy_probe, retprobe);
11282 err_out:
11283 	free(legacy_probe);
11284 	return libbpf_err_ptr(err);
11285 }
11286 
bpf_program__attach_kprobe(const struct bpf_program * prog,bool retprobe,const char * func_name)11287 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
11288 					    bool retprobe,
11289 					    const char *func_name)
11290 {
11291 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
11292 		.retprobe = retprobe,
11293 	);
11294 
11295 	return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
11296 }
11297 
bpf_program__attach_ksyscall(const struct bpf_program * prog,const char * syscall_name,const struct bpf_ksyscall_opts * opts)11298 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
11299 					      const char *syscall_name,
11300 					      const struct bpf_ksyscall_opts *opts)
11301 {
11302 	LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
11303 	char func_name[128];
11304 
11305 	if (!OPTS_VALID(opts, bpf_ksyscall_opts))
11306 		return libbpf_err_ptr(-EINVAL);
11307 
11308 	if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
11309 		/* arch_specific_syscall_pfx() should never return NULL here
11310 		 * because it is guarded by kernel_supports(). However, since
11311 		 * compiler does not know that we have an explicit conditional
11312 		 * as well.
11313 		 */
11314 		snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
11315 			 arch_specific_syscall_pfx() ? : "", syscall_name);
11316 	} else {
11317 		snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
11318 	}
11319 
11320 	kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
11321 	kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11322 
11323 	return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
11324 }
11325 
11326 /* Adapted from perf/util/string.c */
glob_match(const char * str,const char * pat)11327 bool glob_match(const char *str, const char *pat)
11328 {
11329 	while (*str && *pat && *pat != '*') {
11330 		if (*pat == '?') {      /* Matches any single character */
11331 			str++;
11332 			pat++;
11333 			continue;
11334 		}
11335 		if (*str != *pat)
11336 			return false;
11337 		str++;
11338 		pat++;
11339 	}
11340 	/* Check wild card */
11341 	if (*pat == '*') {
11342 		while (*pat == '*')
11343 			pat++;
11344 		if (!*pat) /* Tail wild card matches all */
11345 			return true;
11346 		while (*str)
11347 			if (glob_match(str++, pat))
11348 				return true;
11349 	}
11350 	return !*str && !*pat;
11351 }
11352 
11353 struct kprobe_multi_resolve {
11354 	const char *pattern;
11355 	unsigned long *addrs;
11356 	size_t cap;
11357 	size_t cnt;
11358 };
11359 
11360 struct avail_kallsyms_data {
11361 	char **syms;
11362 	size_t cnt;
11363 	struct kprobe_multi_resolve *res;
11364 };
11365 
avail_func_cmp(const void * a,const void * b)11366 static int avail_func_cmp(const void *a, const void *b)
11367 {
11368 	return strcmp(*(const char **)a, *(const char **)b);
11369 }
11370 
avail_kallsyms_cb(unsigned long long sym_addr,char sym_type,const char * sym_name,void * ctx)11371 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type,
11372 			     const char *sym_name, void *ctx)
11373 {
11374 	struct avail_kallsyms_data *data = ctx;
11375 	struct kprobe_multi_resolve *res = data->res;
11376 	int err;
11377 
11378 	if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp))
11379 		return 0;
11380 
11381 	err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1);
11382 	if (err)
11383 		return err;
11384 
11385 	res->addrs[res->cnt++] = (unsigned long)sym_addr;
11386 	return 0;
11387 }
11388 
libbpf_available_kallsyms_parse(struct kprobe_multi_resolve * res)11389 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res)
11390 {
11391 	const char *available_functions_file = tracefs_available_filter_functions();
11392 	struct avail_kallsyms_data data;
11393 	char sym_name[500];
11394 	FILE *f;
11395 	int err = 0, ret, i;
11396 	char **syms = NULL;
11397 	size_t cap = 0, cnt = 0;
11398 
11399 	f = fopen(available_functions_file, "re");
11400 	if (!f) {
11401 		err = -errno;
11402 		pr_warn("failed to open %s: %s\n", available_functions_file, errstr(err));
11403 		return err;
11404 	}
11405 
11406 	while (true) {
11407 		char *name;
11408 
11409 		ret = fscanf(f, "%499s%*[^\n]\n", sym_name);
11410 		if (ret == EOF && feof(f))
11411 			break;
11412 
11413 		if (ret != 1) {
11414 			pr_warn("failed to parse available_filter_functions entry: %d\n", ret);
11415 			err = -EINVAL;
11416 			goto cleanup;
11417 		}
11418 
11419 		if (!glob_match(sym_name, res->pattern))
11420 			continue;
11421 
11422 		err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1);
11423 		if (err)
11424 			goto cleanup;
11425 
11426 		name = strdup(sym_name);
11427 		if (!name) {
11428 			err = -errno;
11429 			goto cleanup;
11430 		}
11431 
11432 		syms[cnt++] = name;
11433 	}
11434 
11435 	/* no entries found, bail out */
11436 	if (cnt == 0) {
11437 		err = -ENOENT;
11438 		goto cleanup;
11439 	}
11440 
11441 	/* sort available functions */
11442 	qsort(syms, cnt, sizeof(*syms), avail_func_cmp);
11443 
11444 	data.syms = syms;
11445 	data.res = res;
11446 	data.cnt = cnt;
11447 	libbpf_kallsyms_parse(avail_kallsyms_cb, &data);
11448 
11449 	if (res->cnt == 0)
11450 		err = -ENOENT;
11451 
11452 cleanup:
11453 	for (i = 0; i < cnt; i++)
11454 		free((char *)syms[i]);
11455 	free(syms);
11456 
11457 	fclose(f);
11458 	return err;
11459 }
11460 
has_available_filter_functions_addrs(void)11461 static bool has_available_filter_functions_addrs(void)
11462 {
11463 	return access(tracefs_available_filter_functions_addrs(), R_OK) != -1;
11464 }
11465 
libbpf_available_kprobes_parse(struct kprobe_multi_resolve * res)11466 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res)
11467 {
11468 	const char *available_path = tracefs_available_filter_functions_addrs();
11469 	char sym_name[500];
11470 	FILE *f;
11471 	int ret, err = 0;
11472 	unsigned long long sym_addr;
11473 
11474 	f = fopen(available_path, "re");
11475 	if (!f) {
11476 		err = -errno;
11477 		pr_warn("failed to open %s: %s\n", available_path, errstr(err));
11478 		return err;
11479 	}
11480 
11481 	while (true) {
11482 		ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name);
11483 		if (ret == EOF && feof(f))
11484 			break;
11485 
11486 		if (ret != 2) {
11487 			pr_warn("failed to parse available_filter_functions_addrs entry: %d\n",
11488 				ret);
11489 			err = -EINVAL;
11490 			goto cleanup;
11491 		}
11492 
11493 		if (!glob_match(sym_name, res->pattern))
11494 			continue;
11495 
11496 		err = libbpf_ensure_mem((void **)&res->addrs, &res->cap,
11497 					sizeof(*res->addrs), res->cnt + 1);
11498 		if (err)
11499 			goto cleanup;
11500 
11501 		res->addrs[res->cnt++] = (unsigned long)sym_addr;
11502 	}
11503 
11504 	if (res->cnt == 0)
11505 		err = -ENOENT;
11506 
11507 cleanup:
11508 	fclose(f);
11509 	return err;
11510 }
11511 
11512 struct bpf_link *
bpf_program__attach_kprobe_multi_opts(const struct bpf_program * prog,const char * pattern,const struct bpf_kprobe_multi_opts * opts)11513 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
11514 				      const char *pattern,
11515 				      const struct bpf_kprobe_multi_opts *opts)
11516 {
11517 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
11518 	struct kprobe_multi_resolve res = {
11519 		.pattern = pattern,
11520 	};
11521 	enum bpf_attach_type attach_type;
11522 	struct bpf_link *link = NULL;
11523 	const unsigned long *addrs;
11524 	int err, link_fd, prog_fd;
11525 	bool retprobe, session;
11526 	const __u64 *cookies;
11527 	const char **syms;
11528 	size_t cnt;
11529 
11530 	if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
11531 		return libbpf_err_ptr(-EINVAL);
11532 
11533 	prog_fd = bpf_program__fd(prog);
11534 	if (prog_fd < 0) {
11535 		pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
11536 			prog->name);
11537 		return libbpf_err_ptr(-EINVAL);
11538 	}
11539 
11540 	syms    = OPTS_GET(opts, syms, false);
11541 	addrs   = OPTS_GET(opts, addrs, false);
11542 	cnt     = OPTS_GET(opts, cnt, false);
11543 	cookies = OPTS_GET(opts, cookies, false);
11544 
11545 	if (!pattern && !addrs && !syms)
11546 		return libbpf_err_ptr(-EINVAL);
11547 	if (pattern && (addrs || syms || cookies || cnt))
11548 		return libbpf_err_ptr(-EINVAL);
11549 	if (!pattern && !cnt)
11550 		return libbpf_err_ptr(-EINVAL);
11551 	if (addrs && syms)
11552 		return libbpf_err_ptr(-EINVAL);
11553 
11554 	if (pattern) {
11555 		if (has_available_filter_functions_addrs())
11556 			err = libbpf_available_kprobes_parse(&res);
11557 		else
11558 			err = libbpf_available_kallsyms_parse(&res);
11559 		if (err)
11560 			goto error;
11561 		addrs = res.addrs;
11562 		cnt = res.cnt;
11563 	}
11564 
11565 	retprobe = OPTS_GET(opts, retprobe, false);
11566 	session  = OPTS_GET(opts, session, false);
11567 
11568 	if (retprobe && session)
11569 		return libbpf_err_ptr(-EINVAL);
11570 
11571 	attach_type = session ? BPF_TRACE_KPROBE_SESSION : BPF_TRACE_KPROBE_MULTI;
11572 
11573 	lopts.kprobe_multi.syms = syms;
11574 	lopts.kprobe_multi.addrs = addrs;
11575 	lopts.kprobe_multi.cookies = cookies;
11576 	lopts.kprobe_multi.cnt = cnt;
11577 	lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
11578 
11579 	link = calloc(1, sizeof(*link));
11580 	if (!link) {
11581 		err = -ENOMEM;
11582 		goto error;
11583 	}
11584 	link->detach = &bpf_link__detach_fd;
11585 
11586 	link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts);
11587 	if (link_fd < 0) {
11588 		err = -errno;
11589 		pr_warn("prog '%s': failed to attach: %s\n",
11590 			prog->name, errstr(err));
11591 		goto error;
11592 	}
11593 	link->fd = link_fd;
11594 	free(res.addrs);
11595 	return link;
11596 
11597 error:
11598 	free(link);
11599 	free(res.addrs);
11600 	return libbpf_err_ptr(err);
11601 }
11602 
attach_kprobe(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11603 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11604 {
11605 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
11606 	unsigned long offset = 0;
11607 	const char *func_name;
11608 	char *func;
11609 	int n;
11610 
11611 	*link = NULL;
11612 
11613 	/* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
11614 	if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
11615 		return 0;
11616 
11617 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
11618 	if (opts.retprobe)
11619 		func_name = prog->sec_name + sizeof("kretprobe/") - 1;
11620 	else
11621 		func_name = prog->sec_name + sizeof("kprobe/") - 1;
11622 
11623 	n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
11624 	if (n < 1) {
11625 		pr_warn("kprobe name is invalid: %s\n", func_name);
11626 		return -EINVAL;
11627 	}
11628 	if (opts.retprobe && offset != 0) {
11629 		free(func);
11630 		pr_warn("kretprobes do not support offset specification\n");
11631 		return -EINVAL;
11632 	}
11633 
11634 	opts.offset = offset;
11635 	*link = bpf_program__attach_kprobe_opts(prog, func, &opts);
11636 	free(func);
11637 	return libbpf_get_error(*link);
11638 }
11639 
attach_ksyscall(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11640 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11641 {
11642 	LIBBPF_OPTS(bpf_ksyscall_opts, opts);
11643 	const char *syscall_name;
11644 
11645 	*link = NULL;
11646 
11647 	/* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
11648 	if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
11649 		return 0;
11650 
11651 	opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
11652 	if (opts.retprobe)
11653 		syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
11654 	else
11655 		syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
11656 
11657 	*link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
11658 	return *link ? 0 : -errno;
11659 }
11660 
attach_kprobe_multi(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11661 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11662 {
11663 	LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
11664 	const char *spec;
11665 	char *pattern;
11666 	int n;
11667 
11668 	*link = NULL;
11669 
11670 	/* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
11671 	if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
11672 	    strcmp(prog->sec_name, "kretprobe.multi") == 0)
11673 		return 0;
11674 
11675 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
11676 	if (opts.retprobe)
11677 		spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
11678 	else
11679 		spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
11680 
11681 	n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
11682 	if (n < 1) {
11683 		pr_warn("kprobe multi pattern is invalid: %s\n", spec);
11684 		return -EINVAL;
11685 	}
11686 
11687 	*link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
11688 	free(pattern);
11689 	return libbpf_get_error(*link);
11690 }
11691 
attach_kprobe_session(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11692 static int attach_kprobe_session(const struct bpf_program *prog, long cookie,
11693 				 struct bpf_link **link)
11694 {
11695 	LIBBPF_OPTS(bpf_kprobe_multi_opts, opts, .session = true);
11696 	const char *spec;
11697 	char *pattern;
11698 	int n;
11699 
11700 	*link = NULL;
11701 
11702 	/* no auto-attach for SEC("kprobe.session") */
11703 	if (strcmp(prog->sec_name, "kprobe.session") == 0)
11704 		return 0;
11705 
11706 	spec = prog->sec_name + sizeof("kprobe.session/") - 1;
11707 	n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
11708 	if (n < 1) {
11709 		pr_warn("kprobe session pattern is invalid: %s\n", spec);
11710 		return -EINVAL;
11711 	}
11712 
11713 	*link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
11714 	free(pattern);
11715 	return *link ? 0 : -errno;
11716 }
11717 
attach_uprobe_multi(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11718 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11719 {
11720 	char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
11721 	LIBBPF_OPTS(bpf_uprobe_multi_opts, opts);
11722 	int n, ret = -EINVAL;
11723 
11724 	*link = NULL;
11725 
11726 	n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
11727 		   &probe_type, &binary_path, &func_name);
11728 	switch (n) {
11729 	case 1:
11730 		/* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11731 		ret = 0;
11732 		break;
11733 	case 3:
11734 		opts.session = str_has_pfx(probe_type, "uprobe.session");
11735 		opts.retprobe = str_has_pfx(probe_type, "uretprobe.multi");
11736 
11737 		*link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts);
11738 		ret = libbpf_get_error(*link);
11739 		break;
11740 	default:
11741 		pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11742 			prog->sec_name);
11743 		break;
11744 	}
11745 	free(probe_type);
11746 	free(binary_path);
11747 	free(func_name);
11748 	return ret;
11749 }
11750 
gen_uprobe_legacy_event_name(char * buf,size_t buf_sz,const char * binary_path,uint64_t offset)11751 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
11752 					 const char *binary_path, uint64_t offset)
11753 {
11754 	int i;
11755 
11756 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
11757 
11758 	/* sanitize binary_path in the probe name */
11759 	for (i = 0; buf[i]; i++) {
11760 		if (!isalnum(buf[i]))
11761 			buf[i] = '_';
11762 	}
11763 }
11764 
add_uprobe_event_legacy(const char * probe_name,bool retprobe,const char * binary_path,size_t offset)11765 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
11766 					  const char *binary_path, size_t offset)
11767 {
11768 	return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
11769 			      retprobe ? 'r' : 'p',
11770 			      retprobe ? "uretprobes" : "uprobes",
11771 			      probe_name, binary_path, offset);
11772 }
11773 
remove_uprobe_event_legacy(const char * probe_name,bool retprobe)11774 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
11775 {
11776 	return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
11777 			      retprobe ? "uretprobes" : "uprobes", probe_name);
11778 }
11779 
determine_uprobe_perf_type_legacy(const char * probe_name,bool retprobe)11780 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
11781 {
11782 	char file[512];
11783 
11784 	snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11785 		 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
11786 
11787 	return parse_uint_from_file(file, "%d\n");
11788 }
11789 
perf_event_uprobe_open_legacy(const char * probe_name,bool retprobe,const char * binary_path,size_t offset,int pid)11790 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
11791 					 const char *binary_path, size_t offset, int pid)
11792 {
11793 	const size_t attr_sz = sizeof(struct perf_event_attr);
11794 	struct perf_event_attr attr;
11795 	int type, pfd, err;
11796 
11797 	err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
11798 	if (err < 0) {
11799 		pr_warn("failed to add legacy uprobe event for %s:0x%zx: %s\n",
11800 			binary_path, (size_t)offset, errstr(err));
11801 		return err;
11802 	}
11803 	type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
11804 	if (type < 0) {
11805 		err = type;
11806 		pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %s\n",
11807 			binary_path, offset, errstr(err));
11808 		goto err_clean_legacy;
11809 	}
11810 
11811 	memset(&attr, 0, attr_sz);
11812 	attr.size = attr_sz;
11813 	attr.config = type;
11814 	attr.type = PERF_TYPE_TRACEPOINT;
11815 
11816 	pfd = syscall(__NR_perf_event_open, &attr,
11817 		      pid < 0 ? -1 : pid, /* pid */
11818 		      pid == -1 ? 0 : -1, /* cpu */
11819 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
11820 	if (pfd < 0) {
11821 		err = -errno;
11822 		pr_warn("legacy uprobe perf_event_open() failed: %s\n", errstr(err));
11823 		goto err_clean_legacy;
11824 	}
11825 	return pfd;
11826 
11827 err_clean_legacy:
11828 	/* Clear the newly added legacy uprobe_event */
11829 	remove_uprobe_event_legacy(probe_name, retprobe);
11830 	return err;
11831 }
11832 
11833 /* Find offset of function name in archive specified by path. Currently
11834  * supported are .zip files that do not compress their contents, as used on
11835  * Android in the form of APKs, for example. "file_name" is the name of the ELF
11836  * file inside the archive. "func_name" matches symbol name or name@@LIB for
11837  * library functions.
11838  *
11839  * An overview of the APK format specifically provided here:
11840  * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents
11841  */
elf_find_func_offset_from_archive(const char * archive_path,const char * file_name,const char * func_name)11842 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name,
11843 					      const char *func_name)
11844 {
11845 	struct zip_archive *archive;
11846 	struct zip_entry entry;
11847 	long ret;
11848 	Elf *elf;
11849 
11850 	archive = zip_archive_open(archive_path);
11851 	if (IS_ERR(archive)) {
11852 		ret = PTR_ERR(archive);
11853 		pr_warn("zip: failed to open %s: %ld\n", archive_path, ret);
11854 		return ret;
11855 	}
11856 
11857 	ret = zip_archive_find_entry(archive, file_name, &entry);
11858 	if (ret) {
11859 		pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name,
11860 			archive_path, ret);
11861 		goto out;
11862 	}
11863 	pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path,
11864 		 (unsigned long)entry.data_offset);
11865 
11866 	if (entry.compression) {
11867 		pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name,
11868 			archive_path);
11869 		ret = -LIBBPF_ERRNO__FORMAT;
11870 		goto out;
11871 	}
11872 
11873 	elf = elf_memory((void *)entry.data, entry.data_length);
11874 	if (!elf) {
11875 		pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path,
11876 			elf_errmsg(-1));
11877 		ret = -LIBBPF_ERRNO__LIBELF;
11878 		goto out;
11879 	}
11880 
11881 	ret = elf_find_func_offset(elf, file_name, func_name);
11882 	if (ret > 0) {
11883 		pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n",
11884 			 func_name, file_name, archive_path, entry.data_offset, ret,
11885 			 ret + entry.data_offset);
11886 		ret += entry.data_offset;
11887 	}
11888 	elf_end(elf);
11889 
11890 out:
11891 	zip_archive_close(archive);
11892 	return ret;
11893 }
11894 
arch_specific_lib_paths(void)11895 static const char *arch_specific_lib_paths(void)
11896 {
11897 	/*
11898 	 * Based on https://packages.debian.org/sid/libc6.
11899 	 *
11900 	 * Assume that the traced program is built for the same architecture
11901 	 * as libbpf, which should cover the vast majority of cases.
11902 	 */
11903 #if defined(__x86_64__)
11904 	return "/lib/x86_64-linux-gnu";
11905 #elif defined(__i386__)
11906 	return "/lib/i386-linux-gnu";
11907 #elif defined(__s390x__)
11908 	return "/lib/s390x-linux-gnu";
11909 #elif defined(__s390__)
11910 	return "/lib/s390-linux-gnu";
11911 #elif defined(__arm__) && defined(__SOFTFP__)
11912 	return "/lib/arm-linux-gnueabi";
11913 #elif defined(__arm__) && !defined(__SOFTFP__)
11914 	return "/lib/arm-linux-gnueabihf";
11915 #elif defined(__aarch64__)
11916 	return "/lib/aarch64-linux-gnu";
11917 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
11918 	return "/lib/mips64el-linux-gnuabi64";
11919 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
11920 	return "/lib/mipsel-linux-gnu";
11921 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
11922 	return "/lib/powerpc64le-linux-gnu";
11923 #elif defined(__sparc__) && defined(__arch64__)
11924 	return "/lib/sparc64-linux-gnu";
11925 #elif defined(__riscv) && __riscv_xlen == 64
11926 	return "/lib/riscv64-linux-gnu";
11927 #else
11928 	return NULL;
11929 #endif
11930 }
11931 
11932 /* Get full path to program/shared library. */
resolve_full_path(const char * file,char * result,size_t result_sz)11933 static int resolve_full_path(const char *file, char *result, size_t result_sz)
11934 {
11935 	const char *search_paths[3] = {};
11936 	int i, perm;
11937 
11938 	if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
11939 		search_paths[0] = getenv("LD_LIBRARY_PATH");
11940 		search_paths[1] = "/usr/lib64:/usr/lib";
11941 		search_paths[2] = arch_specific_lib_paths();
11942 		perm = R_OK;
11943 	} else {
11944 		search_paths[0] = getenv("PATH");
11945 		search_paths[1] = "/usr/bin:/usr/sbin";
11946 		perm = R_OK | X_OK;
11947 	}
11948 
11949 	for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
11950 		const char *s;
11951 
11952 		if (!search_paths[i])
11953 			continue;
11954 		for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
11955 			char *next_path;
11956 			int seg_len;
11957 
11958 			if (s[0] == ':')
11959 				s++;
11960 			next_path = strchr(s, ':');
11961 			seg_len = next_path ? next_path - s : strlen(s);
11962 			if (!seg_len)
11963 				continue;
11964 			snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
11965 			/* ensure it has required permissions */
11966 			if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0)
11967 				continue;
11968 			pr_debug("resolved '%s' to '%s'\n", file, result);
11969 			return 0;
11970 		}
11971 	}
11972 	return -ENOENT;
11973 }
11974 
11975 struct bpf_link *
bpf_program__attach_uprobe_multi(const struct bpf_program * prog,pid_t pid,const char * path,const char * func_pattern,const struct bpf_uprobe_multi_opts * opts)11976 bpf_program__attach_uprobe_multi(const struct bpf_program *prog,
11977 				 pid_t pid,
11978 				 const char *path,
11979 				 const char *func_pattern,
11980 				 const struct bpf_uprobe_multi_opts *opts)
11981 {
11982 	const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL;
11983 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
11984 	unsigned long *resolved_offsets = NULL;
11985 	enum bpf_attach_type attach_type;
11986 	int err = 0, link_fd, prog_fd;
11987 	struct bpf_link *link = NULL;
11988 	char full_path[PATH_MAX];
11989 	bool retprobe, session;
11990 	const __u64 *cookies;
11991 	const char **syms;
11992 	size_t cnt;
11993 
11994 	if (!OPTS_VALID(opts, bpf_uprobe_multi_opts))
11995 		return libbpf_err_ptr(-EINVAL);
11996 
11997 	prog_fd = bpf_program__fd(prog);
11998 	if (prog_fd < 0) {
11999 		pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
12000 			prog->name);
12001 		return libbpf_err_ptr(-EINVAL);
12002 	}
12003 
12004 	syms = OPTS_GET(opts, syms, NULL);
12005 	offsets = OPTS_GET(opts, offsets, NULL);
12006 	ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL);
12007 	cookies = OPTS_GET(opts, cookies, NULL);
12008 	cnt = OPTS_GET(opts, cnt, 0);
12009 	retprobe = OPTS_GET(opts, retprobe, false);
12010 	session  = OPTS_GET(opts, session, false);
12011 
12012 	/*
12013 	 * User can specify 2 mutually exclusive set of inputs:
12014 	 *
12015 	 * 1) use only path/func_pattern/pid arguments
12016 	 *
12017 	 * 2) use path/pid with allowed combinations of:
12018 	 *    syms/offsets/ref_ctr_offsets/cookies/cnt
12019 	 *
12020 	 *    - syms and offsets are mutually exclusive
12021 	 *    - ref_ctr_offsets and cookies are optional
12022 	 *
12023 	 * Any other usage results in error.
12024 	 */
12025 
12026 	if (!path)
12027 		return libbpf_err_ptr(-EINVAL);
12028 	if (!func_pattern && cnt == 0)
12029 		return libbpf_err_ptr(-EINVAL);
12030 
12031 	if (func_pattern) {
12032 		if (syms || offsets || ref_ctr_offsets || cookies || cnt)
12033 			return libbpf_err_ptr(-EINVAL);
12034 	} else {
12035 		if (!!syms == !!offsets)
12036 			return libbpf_err_ptr(-EINVAL);
12037 	}
12038 
12039 	if (retprobe && session)
12040 		return libbpf_err_ptr(-EINVAL);
12041 
12042 	if (func_pattern) {
12043 		if (!strchr(path, '/')) {
12044 			err = resolve_full_path(path, full_path, sizeof(full_path));
12045 			if (err) {
12046 				pr_warn("prog '%s': failed to resolve full path for '%s': %s\n",
12047 					prog->name, path, errstr(err));
12048 				return libbpf_err_ptr(err);
12049 			}
12050 			path = full_path;
12051 		}
12052 
12053 		err = elf_resolve_pattern_offsets(path, func_pattern,
12054 						  &resolved_offsets, &cnt);
12055 		if (err < 0)
12056 			return libbpf_err_ptr(err);
12057 		offsets = resolved_offsets;
12058 	} else if (syms) {
12059 		err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets, STT_FUNC);
12060 		if (err < 0)
12061 			return libbpf_err_ptr(err);
12062 		offsets = resolved_offsets;
12063 	}
12064 
12065 	attach_type = session ? BPF_TRACE_UPROBE_SESSION : BPF_TRACE_UPROBE_MULTI;
12066 
12067 	lopts.uprobe_multi.path = path;
12068 	lopts.uprobe_multi.offsets = offsets;
12069 	lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets;
12070 	lopts.uprobe_multi.cookies = cookies;
12071 	lopts.uprobe_multi.cnt = cnt;
12072 	lopts.uprobe_multi.flags = retprobe ? BPF_F_UPROBE_MULTI_RETURN : 0;
12073 
12074 	if (pid == 0)
12075 		pid = getpid();
12076 	if (pid > 0)
12077 		lopts.uprobe_multi.pid = pid;
12078 
12079 	link = calloc(1, sizeof(*link));
12080 	if (!link) {
12081 		err = -ENOMEM;
12082 		goto error;
12083 	}
12084 	link->detach = &bpf_link__detach_fd;
12085 
12086 	link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts);
12087 	if (link_fd < 0) {
12088 		err = -errno;
12089 		pr_warn("prog '%s': failed to attach multi-uprobe: %s\n",
12090 			prog->name, errstr(err));
12091 		goto error;
12092 	}
12093 	link->fd = link_fd;
12094 	free(resolved_offsets);
12095 	return link;
12096 
12097 error:
12098 	free(resolved_offsets);
12099 	free(link);
12100 	return libbpf_err_ptr(err);
12101 }
12102 
12103 LIBBPF_API struct bpf_link *
bpf_program__attach_uprobe_opts(const struct bpf_program * prog,pid_t pid,const char * binary_path,size_t func_offset,const struct bpf_uprobe_opts * opts)12104 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
12105 				const char *binary_path, size_t func_offset,
12106 				const struct bpf_uprobe_opts *opts)
12107 {
12108 	const char *archive_path = NULL, *archive_sep = NULL;
12109 	char *legacy_probe = NULL;
12110 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
12111 	enum probe_attach_mode attach_mode;
12112 	char full_path[PATH_MAX];
12113 	struct bpf_link *link;
12114 	size_t ref_ctr_off;
12115 	int pfd, err;
12116 	bool retprobe, legacy;
12117 	const char *func_name;
12118 
12119 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
12120 		return libbpf_err_ptr(-EINVAL);
12121 
12122 	attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
12123 	retprobe = OPTS_GET(opts, retprobe, false);
12124 	ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
12125 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
12126 
12127 	if (!binary_path)
12128 		return libbpf_err_ptr(-EINVAL);
12129 
12130 	/* Check if "binary_path" refers to an archive. */
12131 	archive_sep = strstr(binary_path, "!/");
12132 	if (archive_sep) {
12133 		full_path[0] = '\0';
12134 		libbpf_strlcpy(full_path, binary_path,
12135 			       min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1)));
12136 		archive_path = full_path;
12137 		binary_path = archive_sep + 2;
12138 	} else if (!strchr(binary_path, '/')) {
12139 		err = resolve_full_path(binary_path, full_path, sizeof(full_path));
12140 		if (err) {
12141 			pr_warn("prog '%s': failed to resolve full path for '%s': %s\n",
12142 				prog->name, binary_path, errstr(err));
12143 			return libbpf_err_ptr(err);
12144 		}
12145 		binary_path = full_path;
12146 	}
12147 	func_name = OPTS_GET(opts, func_name, NULL);
12148 	if (func_name) {
12149 		long sym_off;
12150 
12151 		if (archive_path) {
12152 			sym_off = elf_find_func_offset_from_archive(archive_path, binary_path,
12153 								    func_name);
12154 			binary_path = archive_path;
12155 		} else {
12156 			sym_off = elf_find_func_offset_from_file(binary_path, func_name);
12157 		}
12158 		if (sym_off < 0)
12159 			return libbpf_err_ptr(sym_off);
12160 		func_offset += sym_off;
12161 	}
12162 
12163 	legacy = determine_uprobe_perf_type() < 0;
12164 	switch (attach_mode) {
12165 	case PROBE_ATTACH_MODE_LEGACY:
12166 		legacy = true;
12167 		pe_opts.force_ioctl_attach = true;
12168 		break;
12169 	case PROBE_ATTACH_MODE_PERF:
12170 		if (legacy)
12171 			return libbpf_err_ptr(-ENOTSUP);
12172 		pe_opts.force_ioctl_attach = true;
12173 		break;
12174 	case PROBE_ATTACH_MODE_LINK:
12175 		if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
12176 			return libbpf_err_ptr(-ENOTSUP);
12177 		break;
12178 	case PROBE_ATTACH_MODE_DEFAULT:
12179 		break;
12180 	default:
12181 		return libbpf_err_ptr(-EINVAL);
12182 	}
12183 
12184 	if (!legacy) {
12185 		pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
12186 					    func_offset, pid, ref_ctr_off);
12187 	} else {
12188 		char probe_name[PATH_MAX + 64];
12189 
12190 		if (ref_ctr_off)
12191 			return libbpf_err_ptr(-EINVAL);
12192 
12193 		gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
12194 					     binary_path, func_offset);
12195 
12196 		legacy_probe = strdup(probe_name);
12197 		if (!legacy_probe)
12198 			return libbpf_err_ptr(-ENOMEM);
12199 
12200 		pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
12201 						    binary_path, func_offset, pid);
12202 	}
12203 	if (pfd < 0) {
12204 		err = -errno;
12205 		pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
12206 			prog->name, retprobe ? "uretprobe" : "uprobe",
12207 			binary_path, func_offset,
12208 			errstr(err));
12209 		goto err_out;
12210 	}
12211 
12212 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
12213 	err = libbpf_get_error(link);
12214 	if (err) {
12215 		close(pfd);
12216 		pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
12217 			prog->name, retprobe ? "uretprobe" : "uprobe",
12218 			binary_path, func_offset,
12219 			errstr(err));
12220 		goto err_clean_legacy;
12221 	}
12222 	if (legacy) {
12223 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
12224 
12225 		perf_link->legacy_probe_name = legacy_probe;
12226 		perf_link->legacy_is_kprobe = false;
12227 		perf_link->legacy_is_retprobe = retprobe;
12228 	}
12229 	return link;
12230 
12231 err_clean_legacy:
12232 	if (legacy)
12233 		remove_uprobe_event_legacy(legacy_probe, retprobe);
12234 err_out:
12235 	free(legacy_probe);
12236 	return libbpf_err_ptr(err);
12237 }
12238 
12239 /* Format of u[ret]probe section definition supporting auto-attach:
12240  * u[ret]probe/binary:function[+offset]
12241  *
12242  * binary can be an absolute/relative path or a filename; the latter is resolved to a
12243  * full binary path via bpf_program__attach_uprobe_opts.
12244  *
12245  * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
12246  * specified (and auto-attach is not possible) or the above format is specified for
12247  * auto-attach.
12248  */
attach_uprobe(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12249 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12250 {
12251 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
12252 	char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off;
12253 	int n, c, ret = -EINVAL;
12254 	long offset = 0;
12255 
12256 	*link = NULL;
12257 
12258 	n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
12259 		   &probe_type, &binary_path, &func_name);
12260 	switch (n) {
12261 	case 1:
12262 		/* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
12263 		ret = 0;
12264 		break;
12265 	case 2:
12266 		pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
12267 			prog->name, prog->sec_name);
12268 		break;
12269 	case 3:
12270 		/* check if user specifies `+offset`, if yes, this should be
12271 		 * the last part of the string, make sure sscanf read to EOL
12272 		 */
12273 		func_off = strrchr(func_name, '+');
12274 		if (func_off) {
12275 			n = sscanf(func_off, "+%li%n", &offset, &c);
12276 			if (n == 1 && *(func_off + c) == '\0')
12277 				func_off[0] = '\0';
12278 			else
12279 				offset = 0;
12280 		}
12281 		opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
12282 				strcmp(probe_type, "uretprobe.s") == 0;
12283 		if (opts.retprobe && offset != 0) {
12284 			pr_warn("prog '%s': uretprobes do not support offset specification\n",
12285 				prog->name);
12286 			break;
12287 		}
12288 		opts.func_name = func_name;
12289 		*link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
12290 		ret = libbpf_get_error(*link);
12291 		break;
12292 	default:
12293 		pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
12294 			prog->sec_name);
12295 		break;
12296 	}
12297 	free(probe_type);
12298 	free(binary_path);
12299 	free(func_name);
12300 
12301 	return ret;
12302 }
12303 
bpf_program__attach_uprobe(const struct bpf_program * prog,bool retprobe,pid_t pid,const char * binary_path,size_t func_offset)12304 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
12305 					    bool retprobe, pid_t pid,
12306 					    const char *binary_path,
12307 					    size_t func_offset)
12308 {
12309 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
12310 
12311 	return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
12312 }
12313 
bpf_program__attach_usdt(const struct bpf_program * prog,pid_t pid,const char * binary_path,const char * usdt_provider,const char * usdt_name,const struct bpf_usdt_opts * opts)12314 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
12315 					  pid_t pid, const char *binary_path,
12316 					  const char *usdt_provider, const char *usdt_name,
12317 					  const struct bpf_usdt_opts *opts)
12318 {
12319 	char resolved_path[512];
12320 	struct bpf_object *obj = prog->obj;
12321 	struct bpf_link *link;
12322 	__u64 usdt_cookie;
12323 	int err;
12324 
12325 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
12326 		return libbpf_err_ptr(-EINVAL);
12327 
12328 	if (bpf_program__fd(prog) < 0) {
12329 		pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
12330 			prog->name);
12331 		return libbpf_err_ptr(-EINVAL);
12332 	}
12333 
12334 	if (!binary_path)
12335 		return libbpf_err_ptr(-EINVAL);
12336 
12337 	if (!strchr(binary_path, '/')) {
12338 		err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
12339 		if (err) {
12340 			pr_warn("prog '%s': failed to resolve full path for '%s': %s\n",
12341 				prog->name, binary_path, errstr(err));
12342 			return libbpf_err_ptr(err);
12343 		}
12344 		binary_path = resolved_path;
12345 	}
12346 
12347 	/* USDT manager is instantiated lazily on first USDT attach. It will
12348 	 * be destroyed together with BPF object in bpf_object__close().
12349 	 */
12350 	if (IS_ERR(obj->usdt_man))
12351 		return libbpf_ptr(obj->usdt_man);
12352 	if (!obj->usdt_man) {
12353 		obj->usdt_man = usdt_manager_new(obj);
12354 		if (IS_ERR(obj->usdt_man))
12355 			return libbpf_ptr(obj->usdt_man);
12356 	}
12357 
12358 	usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
12359 	link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
12360 					usdt_provider, usdt_name, usdt_cookie);
12361 	err = libbpf_get_error(link);
12362 	if (err)
12363 		return libbpf_err_ptr(err);
12364 	return link;
12365 }
12366 
attach_usdt(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12367 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12368 {
12369 	char *path = NULL, *provider = NULL, *name = NULL;
12370 	const char *sec_name;
12371 	int n, err;
12372 
12373 	sec_name = bpf_program__section_name(prog);
12374 	if (strcmp(sec_name, "usdt") == 0) {
12375 		/* no auto-attach for just SEC("usdt") */
12376 		*link = NULL;
12377 		return 0;
12378 	}
12379 
12380 	n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
12381 	if (n != 3) {
12382 		pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
12383 			sec_name);
12384 		err = -EINVAL;
12385 	} else {
12386 		*link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
12387 						 provider, name, NULL);
12388 		err = libbpf_get_error(*link);
12389 	}
12390 	free(path);
12391 	free(provider);
12392 	free(name);
12393 	return err;
12394 }
12395 
determine_tracepoint_id(const char * tp_category,const char * tp_name)12396 static int determine_tracepoint_id(const char *tp_category,
12397 				   const char *tp_name)
12398 {
12399 	char file[PATH_MAX];
12400 	int ret;
12401 
12402 	ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
12403 		       tracefs_path(), tp_category, tp_name);
12404 	if (ret < 0)
12405 		return -errno;
12406 	if (ret >= sizeof(file)) {
12407 		pr_debug("tracepoint %s/%s path is too long\n",
12408 			 tp_category, tp_name);
12409 		return -E2BIG;
12410 	}
12411 	return parse_uint_from_file(file, "%d\n");
12412 }
12413 
perf_event_open_tracepoint(const char * tp_category,const char * tp_name)12414 static int perf_event_open_tracepoint(const char *tp_category,
12415 				      const char *tp_name)
12416 {
12417 	const size_t attr_sz = sizeof(struct perf_event_attr);
12418 	struct perf_event_attr attr;
12419 	int tp_id, pfd, err;
12420 
12421 	tp_id = determine_tracepoint_id(tp_category, tp_name);
12422 	if (tp_id < 0) {
12423 		pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
12424 			tp_category, tp_name,
12425 			errstr(tp_id));
12426 		return tp_id;
12427 	}
12428 
12429 	memset(&attr, 0, attr_sz);
12430 	attr.type = PERF_TYPE_TRACEPOINT;
12431 	attr.size = attr_sz;
12432 	attr.config = tp_id;
12433 
12434 	pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
12435 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
12436 	if (pfd < 0) {
12437 		err = -errno;
12438 		pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
12439 			tp_category, tp_name,
12440 			errstr(err));
12441 		return err;
12442 	}
12443 	return pfd;
12444 }
12445 
bpf_program__attach_tracepoint_opts(const struct bpf_program * prog,const char * tp_category,const char * tp_name,const struct bpf_tracepoint_opts * opts)12446 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
12447 						     const char *tp_category,
12448 						     const char *tp_name,
12449 						     const struct bpf_tracepoint_opts *opts)
12450 {
12451 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
12452 	struct bpf_link *link;
12453 	int pfd, err;
12454 
12455 	if (!OPTS_VALID(opts, bpf_tracepoint_opts))
12456 		return libbpf_err_ptr(-EINVAL);
12457 
12458 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
12459 
12460 	pfd = perf_event_open_tracepoint(tp_category, tp_name);
12461 	if (pfd < 0) {
12462 		pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
12463 			prog->name, tp_category, tp_name,
12464 			errstr(pfd));
12465 		return libbpf_err_ptr(pfd);
12466 	}
12467 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
12468 	err = libbpf_get_error(link);
12469 	if (err) {
12470 		close(pfd);
12471 		pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
12472 			prog->name, tp_category, tp_name,
12473 			errstr(err));
12474 		return libbpf_err_ptr(err);
12475 	}
12476 	return link;
12477 }
12478 
bpf_program__attach_tracepoint(const struct bpf_program * prog,const char * tp_category,const char * tp_name)12479 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
12480 						const char *tp_category,
12481 						const char *tp_name)
12482 {
12483 	return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
12484 }
12485 
attach_tp(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12486 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12487 {
12488 	char *sec_name, *tp_cat, *tp_name;
12489 
12490 	*link = NULL;
12491 
12492 	/* no auto-attach for SEC("tp") or SEC("tracepoint") */
12493 	if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
12494 		return 0;
12495 
12496 	sec_name = strdup(prog->sec_name);
12497 	if (!sec_name)
12498 		return -ENOMEM;
12499 
12500 	/* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
12501 	if (str_has_pfx(prog->sec_name, "tp/"))
12502 		tp_cat = sec_name + sizeof("tp/") - 1;
12503 	else
12504 		tp_cat = sec_name + sizeof("tracepoint/") - 1;
12505 	tp_name = strchr(tp_cat, '/');
12506 	if (!tp_name) {
12507 		free(sec_name);
12508 		return -EINVAL;
12509 	}
12510 	*tp_name = '\0';
12511 	tp_name++;
12512 
12513 	*link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
12514 	free(sec_name);
12515 	return libbpf_get_error(*link);
12516 }
12517 
12518 struct bpf_link *
bpf_program__attach_raw_tracepoint_opts(const struct bpf_program * prog,const char * tp_name,struct bpf_raw_tracepoint_opts * opts)12519 bpf_program__attach_raw_tracepoint_opts(const struct bpf_program *prog,
12520 					const char *tp_name,
12521 					struct bpf_raw_tracepoint_opts *opts)
12522 {
12523 	LIBBPF_OPTS(bpf_raw_tp_opts, raw_opts);
12524 	struct bpf_link *link;
12525 	int prog_fd, pfd;
12526 
12527 	if (!OPTS_VALID(opts, bpf_raw_tracepoint_opts))
12528 		return libbpf_err_ptr(-EINVAL);
12529 
12530 	prog_fd = bpf_program__fd(prog);
12531 	if (prog_fd < 0) {
12532 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12533 		return libbpf_err_ptr(-EINVAL);
12534 	}
12535 
12536 	link = calloc(1, sizeof(*link));
12537 	if (!link)
12538 		return libbpf_err_ptr(-ENOMEM);
12539 	link->detach = &bpf_link__detach_fd;
12540 
12541 	raw_opts.tp_name = tp_name;
12542 	raw_opts.cookie = OPTS_GET(opts, cookie, 0);
12543 	pfd = bpf_raw_tracepoint_open_opts(prog_fd, &raw_opts);
12544 	if (pfd < 0) {
12545 		pfd = -errno;
12546 		free(link);
12547 		pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
12548 			prog->name, tp_name, errstr(pfd));
12549 		return libbpf_err_ptr(pfd);
12550 	}
12551 	link->fd = pfd;
12552 	return link;
12553 }
12554 
bpf_program__attach_raw_tracepoint(const struct bpf_program * prog,const char * tp_name)12555 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
12556 						    const char *tp_name)
12557 {
12558 	return bpf_program__attach_raw_tracepoint_opts(prog, tp_name, NULL);
12559 }
12560 
attach_raw_tp(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12561 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12562 {
12563 	static const char *const prefixes[] = {
12564 		"raw_tp",
12565 		"raw_tracepoint",
12566 		"raw_tp.w",
12567 		"raw_tracepoint.w",
12568 	};
12569 	size_t i;
12570 	const char *tp_name = NULL;
12571 
12572 	*link = NULL;
12573 
12574 	for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
12575 		size_t pfx_len;
12576 
12577 		if (!str_has_pfx(prog->sec_name, prefixes[i]))
12578 			continue;
12579 
12580 		pfx_len = strlen(prefixes[i]);
12581 		/* no auto-attach case of, e.g., SEC("raw_tp") */
12582 		if (prog->sec_name[pfx_len] == '\0')
12583 			return 0;
12584 
12585 		if (prog->sec_name[pfx_len] != '/')
12586 			continue;
12587 
12588 		tp_name = prog->sec_name + pfx_len + 1;
12589 		break;
12590 	}
12591 
12592 	if (!tp_name) {
12593 		pr_warn("prog '%s': invalid section name '%s'\n",
12594 			prog->name, prog->sec_name);
12595 		return -EINVAL;
12596 	}
12597 
12598 	*link = bpf_program__attach_raw_tracepoint(prog, tp_name);
12599 	return libbpf_get_error(*link);
12600 }
12601 
12602 /* Common logic for all BPF program types that attach to a btf_id */
bpf_program__attach_btf_id(const struct bpf_program * prog,const struct bpf_trace_opts * opts)12603 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
12604 						   const struct bpf_trace_opts *opts)
12605 {
12606 	LIBBPF_OPTS(bpf_link_create_opts, link_opts);
12607 	struct bpf_link *link;
12608 	int prog_fd, pfd;
12609 
12610 	if (!OPTS_VALID(opts, bpf_trace_opts))
12611 		return libbpf_err_ptr(-EINVAL);
12612 
12613 	prog_fd = bpf_program__fd(prog);
12614 	if (prog_fd < 0) {
12615 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12616 		return libbpf_err_ptr(-EINVAL);
12617 	}
12618 
12619 	link = calloc(1, sizeof(*link));
12620 	if (!link)
12621 		return libbpf_err_ptr(-ENOMEM);
12622 	link->detach = &bpf_link__detach_fd;
12623 
12624 	/* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
12625 	link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
12626 	pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
12627 	if (pfd < 0) {
12628 		pfd = -errno;
12629 		free(link);
12630 		pr_warn("prog '%s': failed to attach: %s\n",
12631 			prog->name, errstr(pfd));
12632 		return libbpf_err_ptr(pfd);
12633 	}
12634 	link->fd = pfd;
12635 	return link;
12636 }
12637 
bpf_program__attach_trace(const struct bpf_program * prog)12638 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
12639 {
12640 	return bpf_program__attach_btf_id(prog, NULL);
12641 }
12642 
bpf_program__attach_trace_opts(const struct bpf_program * prog,const struct bpf_trace_opts * opts)12643 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
12644 						const struct bpf_trace_opts *opts)
12645 {
12646 	return bpf_program__attach_btf_id(prog, opts);
12647 }
12648 
bpf_program__attach_lsm(const struct bpf_program * prog)12649 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
12650 {
12651 	return bpf_program__attach_btf_id(prog, NULL);
12652 }
12653 
attach_trace(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12654 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12655 {
12656 	*link = bpf_program__attach_trace(prog);
12657 	return libbpf_get_error(*link);
12658 }
12659 
attach_lsm(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12660 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12661 {
12662 	*link = bpf_program__attach_lsm(prog);
12663 	return libbpf_get_error(*link);
12664 }
12665 
12666 static struct bpf_link *
bpf_program_attach_fd(const struct bpf_program * prog,int target_fd,const char * target_name,const struct bpf_link_create_opts * opts)12667 bpf_program_attach_fd(const struct bpf_program *prog,
12668 		      int target_fd, const char *target_name,
12669 		      const struct bpf_link_create_opts *opts)
12670 {
12671 	enum bpf_attach_type attach_type;
12672 	struct bpf_link *link;
12673 	int prog_fd, link_fd;
12674 
12675 	prog_fd = bpf_program__fd(prog);
12676 	if (prog_fd < 0) {
12677 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12678 		return libbpf_err_ptr(-EINVAL);
12679 	}
12680 
12681 	link = calloc(1, sizeof(*link));
12682 	if (!link)
12683 		return libbpf_err_ptr(-ENOMEM);
12684 	link->detach = &bpf_link__detach_fd;
12685 
12686 	attach_type = bpf_program__expected_attach_type(prog);
12687 	link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts);
12688 	if (link_fd < 0) {
12689 		link_fd = -errno;
12690 		free(link);
12691 		pr_warn("prog '%s': failed to attach to %s: %s\n",
12692 			prog->name, target_name,
12693 			errstr(link_fd));
12694 		return libbpf_err_ptr(link_fd);
12695 	}
12696 	link->fd = link_fd;
12697 	return link;
12698 }
12699 
12700 struct bpf_link *
bpf_program__attach_cgroup(const struct bpf_program * prog,int cgroup_fd)12701 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
12702 {
12703 	return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL);
12704 }
12705 
12706 struct bpf_link *
bpf_program__attach_netns(const struct bpf_program * prog,int netns_fd)12707 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
12708 {
12709 	return bpf_program_attach_fd(prog, netns_fd, "netns", NULL);
12710 }
12711 
12712 struct bpf_link *
bpf_program__attach_sockmap(const struct bpf_program * prog,int map_fd)12713 bpf_program__attach_sockmap(const struct bpf_program *prog, int map_fd)
12714 {
12715 	return bpf_program_attach_fd(prog, map_fd, "sockmap", NULL);
12716 }
12717 
bpf_program__attach_xdp(const struct bpf_program * prog,int ifindex)12718 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
12719 {
12720 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
12721 	return bpf_program_attach_fd(prog, ifindex, "xdp", NULL);
12722 }
12723 
12724 struct bpf_link *
bpf_program__attach_tcx(const struct bpf_program * prog,int ifindex,const struct bpf_tcx_opts * opts)12725 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex,
12726 			const struct bpf_tcx_opts *opts)
12727 {
12728 	LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12729 	__u32 relative_id;
12730 	int relative_fd;
12731 
12732 	if (!OPTS_VALID(opts, bpf_tcx_opts))
12733 		return libbpf_err_ptr(-EINVAL);
12734 
12735 	relative_id = OPTS_GET(opts, relative_id, 0);
12736 	relative_fd = OPTS_GET(opts, relative_fd, 0);
12737 
12738 	/* validate we don't have unexpected combinations of non-zero fields */
12739 	if (!ifindex) {
12740 		pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12741 			prog->name);
12742 		return libbpf_err_ptr(-EINVAL);
12743 	}
12744 	if (relative_fd && relative_id) {
12745 		pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12746 			prog->name);
12747 		return libbpf_err_ptr(-EINVAL);
12748 	}
12749 
12750 	link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0);
12751 	link_create_opts.tcx.relative_fd = relative_fd;
12752 	link_create_opts.tcx.relative_id = relative_id;
12753 	link_create_opts.flags = OPTS_GET(opts, flags, 0);
12754 
12755 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
12756 	return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts);
12757 }
12758 
12759 struct bpf_link *
bpf_program__attach_netkit(const struct bpf_program * prog,int ifindex,const struct bpf_netkit_opts * opts)12760 bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex,
12761 			   const struct bpf_netkit_opts *opts)
12762 {
12763 	LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12764 	__u32 relative_id;
12765 	int relative_fd;
12766 
12767 	if (!OPTS_VALID(opts, bpf_netkit_opts))
12768 		return libbpf_err_ptr(-EINVAL);
12769 
12770 	relative_id = OPTS_GET(opts, relative_id, 0);
12771 	relative_fd = OPTS_GET(opts, relative_fd, 0);
12772 
12773 	/* validate we don't have unexpected combinations of non-zero fields */
12774 	if (!ifindex) {
12775 		pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12776 			prog->name);
12777 		return libbpf_err_ptr(-EINVAL);
12778 	}
12779 	if (relative_fd && relative_id) {
12780 		pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12781 			prog->name);
12782 		return libbpf_err_ptr(-EINVAL);
12783 	}
12784 
12785 	link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0);
12786 	link_create_opts.netkit.relative_fd = relative_fd;
12787 	link_create_opts.netkit.relative_id = relative_id;
12788 	link_create_opts.flags = OPTS_GET(opts, flags, 0);
12789 
12790 	return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts);
12791 }
12792 
bpf_program__attach_freplace(const struct bpf_program * prog,int target_fd,const char * attach_func_name)12793 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
12794 					      int target_fd,
12795 					      const char *attach_func_name)
12796 {
12797 	int btf_id;
12798 
12799 	if (!!target_fd != !!attach_func_name) {
12800 		pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
12801 			prog->name);
12802 		return libbpf_err_ptr(-EINVAL);
12803 	}
12804 
12805 	if (prog->type != BPF_PROG_TYPE_EXT) {
12806 		pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace\n",
12807 			prog->name);
12808 		return libbpf_err_ptr(-EINVAL);
12809 	}
12810 
12811 	if (target_fd) {
12812 		LIBBPF_OPTS(bpf_link_create_opts, target_opts);
12813 
12814 		btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
12815 		if (btf_id < 0)
12816 			return libbpf_err_ptr(btf_id);
12817 
12818 		target_opts.target_btf_id = btf_id;
12819 
12820 		return bpf_program_attach_fd(prog, target_fd, "freplace",
12821 					     &target_opts);
12822 	} else {
12823 		/* no target, so use raw_tracepoint_open for compatibility
12824 		 * with old kernels
12825 		 */
12826 		return bpf_program__attach_trace(prog);
12827 	}
12828 }
12829 
12830 struct bpf_link *
bpf_program__attach_iter(const struct bpf_program * prog,const struct bpf_iter_attach_opts * opts)12831 bpf_program__attach_iter(const struct bpf_program *prog,
12832 			 const struct bpf_iter_attach_opts *opts)
12833 {
12834 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12835 	struct bpf_link *link;
12836 	int prog_fd, link_fd;
12837 	__u32 target_fd = 0;
12838 
12839 	if (!OPTS_VALID(opts, bpf_iter_attach_opts))
12840 		return libbpf_err_ptr(-EINVAL);
12841 
12842 	link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
12843 	link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
12844 
12845 	prog_fd = bpf_program__fd(prog);
12846 	if (prog_fd < 0) {
12847 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12848 		return libbpf_err_ptr(-EINVAL);
12849 	}
12850 
12851 	link = calloc(1, sizeof(*link));
12852 	if (!link)
12853 		return libbpf_err_ptr(-ENOMEM);
12854 	link->detach = &bpf_link__detach_fd;
12855 
12856 	link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
12857 				  &link_create_opts);
12858 	if (link_fd < 0) {
12859 		link_fd = -errno;
12860 		free(link);
12861 		pr_warn("prog '%s': failed to attach to iterator: %s\n",
12862 			prog->name, errstr(link_fd));
12863 		return libbpf_err_ptr(link_fd);
12864 	}
12865 	link->fd = link_fd;
12866 	return link;
12867 }
12868 
attach_iter(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12869 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12870 {
12871 	*link = bpf_program__attach_iter(prog, NULL);
12872 	return libbpf_get_error(*link);
12873 }
12874 
bpf_program__attach_netfilter(const struct bpf_program * prog,const struct bpf_netfilter_opts * opts)12875 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog,
12876 					       const struct bpf_netfilter_opts *opts)
12877 {
12878 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
12879 	struct bpf_link *link;
12880 	int prog_fd, link_fd;
12881 
12882 	if (!OPTS_VALID(opts, bpf_netfilter_opts))
12883 		return libbpf_err_ptr(-EINVAL);
12884 
12885 	prog_fd = bpf_program__fd(prog);
12886 	if (prog_fd < 0) {
12887 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12888 		return libbpf_err_ptr(-EINVAL);
12889 	}
12890 
12891 	link = calloc(1, sizeof(*link));
12892 	if (!link)
12893 		return libbpf_err_ptr(-ENOMEM);
12894 
12895 	link->detach = &bpf_link__detach_fd;
12896 
12897 	lopts.netfilter.pf = OPTS_GET(opts, pf, 0);
12898 	lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0);
12899 	lopts.netfilter.priority = OPTS_GET(opts, priority, 0);
12900 	lopts.netfilter.flags = OPTS_GET(opts, flags, 0);
12901 
12902 	link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts);
12903 	if (link_fd < 0) {
12904 		link_fd = -errno;
12905 		free(link);
12906 		pr_warn("prog '%s': failed to attach to netfilter: %s\n",
12907 			prog->name, errstr(link_fd));
12908 		return libbpf_err_ptr(link_fd);
12909 	}
12910 	link->fd = link_fd;
12911 
12912 	return link;
12913 }
12914 
bpf_program__attach(const struct bpf_program * prog)12915 struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
12916 {
12917 	struct bpf_link *link = NULL;
12918 	int err;
12919 
12920 	if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
12921 		return libbpf_err_ptr(-EOPNOTSUPP);
12922 
12923 	if (bpf_program__fd(prog) < 0) {
12924 		pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
12925 			prog->name);
12926 		return libbpf_err_ptr(-EINVAL);
12927 	}
12928 
12929 	err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
12930 	if (err)
12931 		return libbpf_err_ptr(err);
12932 
12933 	/* When calling bpf_program__attach() explicitly, auto-attach support
12934 	 * is expected to work, so NULL returned link is considered an error.
12935 	 * This is different for skeleton's attach, see comment in
12936 	 * bpf_object__attach_skeleton().
12937 	 */
12938 	if (!link)
12939 		return libbpf_err_ptr(-EOPNOTSUPP);
12940 
12941 	return link;
12942 }
12943 
12944 struct bpf_link_struct_ops {
12945 	struct bpf_link link;
12946 	int map_fd;
12947 };
12948 
bpf_link__detach_struct_ops(struct bpf_link * link)12949 static int bpf_link__detach_struct_ops(struct bpf_link *link)
12950 {
12951 	struct bpf_link_struct_ops *st_link;
12952 	__u32 zero = 0;
12953 
12954 	st_link = container_of(link, struct bpf_link_struct_ops, link);
12955 
12956 	if (st_link->map_fd < 0)
12957 		/* w/o a real link */
12958 		return bpf_map_delete_elem(link->fd, &zero);
12959 
12960 	return close(link->fd);
12961 }
12962 
bpf_map__attach_struct_ops(const struct bpf_map * map)12963 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
12964 {
12965 	struct bpf_link_struct_ops *link;
12966 	__u32 zero = 0;
12967 	int err, fd;
12968 
12969 	if (!bpf_map__is_struct_ops(map)) {
12970 		pr_warn("map '%s': can't attach non-struct_ops map\n", map->name);
12971 		return libbpf_err_ptr(-EINVAL);
12972 	}
12973 
12974 	if (map->fd < 0) {
12975 		pr_warn("map '%s': can't attach BPF map without FD (was it created?)\n", map->name);
12976 		return libbpf_err_ptr(-EINVAL);
12977 	}
12978 
12979 	link = calloc(1, sizeof(*link));
12980 	if (!link)
12981 		return libbpf_err_ptr(-EINVAL);
12982 
12983 	/* kern_vdata should be prepared during the loading phase. */
12984 	err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12985 	/* It can be EBUSY if the map has been used to create or
12986 	 * update a link before.  We don't allow updating the value of
12987 	 * a struct_ops once it is set.  That ensures that the value
12988 	 * never changed.  So, it is safe to skip EBUSY.
12989 	 */
12990 	if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) {
12991 		free(link);
12992 		return libbpf_err_ptr(err);
12993 	}
12994 
12995 	link->link.detach = bpf_link__detach_struct_ops;
12996 
12997 	if (!(map->def.map_flags & BPF_F_LINK)) {
12998 		/* w/o a real link */
12999 		link->link.fd = map->fd;
13000 		link->map_fd = -1;
13001 		return &link->link;
13002 	}
13003 
13004 	fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL);
13005 	if (fd < 0) {
13006 		free(link);
13007 		return libbpf_err_ptr(fd);
13008 	}
13009 
13010 	link->link.fd = fd;
13011 	link->map_fd = map->fd;
13012 
13013 	return &link->link;
13014 }
13015 
13016 /*
13017  * Swap the back struct_ops of a link with a new struct_ops map.
13018  */
bpf_link__update_map(struct bpf_link * link,const struct bpf_map * map)13019 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map)
13020 {
13021 	struct bpf_link_struct_ops *st_ops_link;
13022 	__u32 zero = 0;
13023 	int err;
13024 
13025 	if (!bpf_map__is_struct_ops(map))
13026 		return -EINVAL;
13027 
13028 	if (map->fd < 0) {
13029 		pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name);
13030 		return -EINVAL;
13031 	}
13032 
13033 	st_ops_link = container_of(link, struct bpf_link_struct_ops, link);
13034 	/* Ensure the type of a link is correct */
13035 	if (st_ops_link->map_fd < 0)
13036 		return -EINVAL;
13037 
13038 	err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
13039 	/* It can be EBUSY if the map has been used to create or
13040 	 * update a link before.  We don't allow updating the value of
13041 	 * a struct_ops once it is set.  That ensures that the value
13042 	 * never changed.  So, it is safe to skip EBUSY.
13043 	 */
13044 	if (err && err != -EBUSY)
13045 		return err;
13046 
13047 	err = bpf_link_update(link->fd, map->fd, NULL);
13048 	if (err < 0)
13049 		return err;
13050 
13051 	st_ops_link->map_fd = map->fd;
13052 
13053 	return 0;
13054 }
13055 
13056 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
13057 							  void *private_data);
13058 
13059 static enum bpf_perf_event_ret
perf_event_read_simple(void * mmap_mem,size_t mmap_size,size_t page_size,void ** copy_mem,size_t * copy_size,bpf_perf_event_print_t fn,void * private_data)13060 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
13061 		       void **copy_mem, size_t *copy_size,
13062 		       bpf_perf_event_print_t fn, void *private_data)
13063 {
13064 	struct perf_event_mmap_page *header = mmap_mem;
13065 	__u64 data_head = ring_buffer_read_head(header);
13066 	__u64 data_tail = header->data_tail;
13067 	void *base = ((__u8 *)header) + page_size;
13068 	int ret = LIBBPF_PERF_EVENT_CONT;
13069 	struct perf_event_header *ehdr;
13070 	size_t ehdr_size;
13071 
13072 	while (data_head != data_tail) {
13073 		ehdr = base + (data_tail & (mmap_size - 1));
13074 		ehdr_size = ehdr->size;
13075 
13076 		if (((void *)ehdr) + ehdr_size > base + mmap_size) {
13077 			void *copy_start = ehdr;
13078 			size_t len_first = base + mmap_size - copy_start;
13079 			size_t len_secnd = ehdr_size - len_first;
13080 
13081 			if (*copy_size < ehdr_size) {
13082 				free(*copy_mem);
13083 				*copy_mem = malloc(ehdr_size);
13084 				if (!*copy_mem) {
13085 					*copy_size = 0;
13086 					ret = LIBBPF_PERF_EVENT_ERROR;
13087 					break;
13088 				}
13089 				*copy_size = ehdr_size;
13090 			}
13091 
13092 			memcpy(*copy_mem, copy_start, len_first);
13093 			memcpy(*copy_mem + len_first, base, len_secnd);
13094 			ehdr = *copy_mem;
13095 		}
13096 
13097 		ret = fn(ehdr, private_data);
13098 		data_tail += ehdr_size;
13099 		if (ret != LIBBPF_PERF_EVENT_CONT)
13100 			break;
13101 	}
13102 
13103 	ring_buffer_write_tail(header, data_tail);
13104 	return libbpf_err(ret);
13105 }
13106 
13107 struct perf_buffer;
13108 
13109 struct perf_buffer_params {
13110 	struct perf_event_attr *attr;
13111 	/* if event_cb is specified, it takes precendence */
13112 	perf_buffer_event_fn event_cb;
13113 	/* sample_cb and lost_cb are higher-level common-case callbacks */
13114 	perf_buffer_sample_fn sample_cb;
13115 	perf_buffer_lost_fn lost_cb;
13116 	void *ctx;
13117 	int cpu_cnt;
13118 	int *cpus;
13119 	int *map_keys;
13120 };
13121 
13122 struct perf_cpu_buf {
13123 	struct perf_buffer *pb;
13124 	void *base; /* mmap()'ed memory */
13125 	void *buf; /* for reconstructing segmented data */
13126 	size_t buf_size;
13127 	int fd;
13128 	int cpu;
13129 	int map_key;
13130 };
13131 
13132 struct perf_buffer {
13133 	perf_buffer_event_fn event_cb;
13134 	perf_buffer_sample_fn sample_cb;
13135 	perf_buffer_lost_fn lost_cb;
13136 	void *ctx; /* passed into callbacks */
13137 
13138 	size_t page_size;
13139 	size_t mmap_size;
13140 	struct perf_cpu_buf **cpu_bufs;
13141 	struct epoll_event *events;
13142 	int cpu_cnt; /* number of allocated CPU buffers */
13143 	int epoll_fd; /* perf event FD */
13144 	int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
13145 };
13146 
perf_buffer__free_cpu_buf(struct perf_buffer * pb,struct perf_cpu_buf * cpu_buf)13147 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
13148 				      struct perf_cpu_buf *cpu_buf)
13149 {
13150 	if (!cpu_buf)
13151 		return;
13152 	if (cpu_buf->base &&
13153 	    munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
13154 		pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
13155 	if (cpu_buf->fd >= 0) {
13156 		ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
13157 		close(cpu_buf->fd);
13158 	}
13159 	free(cpu_buf->buf);
13160 	free(cpu_buf);
13161 }
13162 
perf_buffer__free(struct perf_buffer * pb)13163 void perf_buffer__free(struct perf_buffer *pb)
13164 {
13165 	int i;
13166 
13167 	if (IS_ERR_OR_NULL(pb))
13168 		return;
13169 	if (pb->cpu_bufs) {
13170 		for (i = 0; i < pb->cpu_cnt; i++) {
13171 			struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
13172 
13173 			if (!cpu_buf)
13174 				continue;
13175 
13176 			bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
13177 			perf_buffer__free_cpu_buf(pb, cpu_buf);
13178 		}
13179 		free(pb->cpu_bufs);
13180 	}
13181 	if (pb->epoll_fd >= 0)
13182 		close(pb->epoll_fd);
13183 	free(pb->events);
13184 	free(pb);
13185 }
13186 
13187 static struct perf_cpu_buf *
perf_buffer__open_cpu_buf(struct perf_buffer * pb,struct perf_event_attr * attr,int cpu,int map_key)13188 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
13189 			  int cpu, int map_key)
13190 {
13191 	struct perf_cpu_buf *cpu_buf;
13192 	int err;
13193 
13194 	cpu_buf = calloc(1, sizeof(*cpu_buf));
13195 	if (!cpu_buf)
13196 		return ERR_PTR(-ENOMEM);
13197 
13198 	cpu_buf->pb = pb;
13199 	cpu_buf->cpu = cpu;
13200 	cpu_buf->map_key = map_key;
13201 
13202 	cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
13203 			      -1, PERF_FLAG_FD_CLOEXEC);
13204 	if (cpu_buf->fd < 0) {
13205 		err = -errno;
13206 		pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
13207 			cpu, errstr(err));
13208 		goto error;
13209 	}
13210 
13211 	cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
13212 			     PROT_READ | PROT_WRITE, MAP_SHARED,
13213 			     cpu_buf->fd, 0);
13214 	if (cpu_buf->base == MAP_FAILED) {
13215 		cpu_buf->base = NULL;
13216 		err = -errno;
13217 		pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
13218 			cpu, errstr(err));
13219 		goto error;
13220 	}
13221 
13222 	if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
13223 		err = -errno;
13224 		pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
13225 			cpu, errstr(err));
13226 		goto error;
13227 	}
13228 
13229 	return cpu_buf;
13230 
13231 error:
13232 	perf_buffer__free_cpu_buf(pb, cpu_buf);
13233 	return (struct perf_cpu_buf *)ERR_PTR(err);
13234 }
13235 
13236 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
13237 					      struct perf_buffer_params *p);
13238 
perf_buffer__new(int map_fd,size_t page_cnt,perf_buffer_sample_fn sample_cb,perf_buffer_lost_fn lost_cb,void * ctx,const struct perf_buffer_opts * opts)13239 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
13240 				     perf_buffer_sample_fn sample_cb,
13241 				     perf_buffer_lost_fn lost_cb,
13242 				     void *ctx,
13243 				     const struct perf_buffer_opts *opts)
13244 {
13245 	const size_t attr_sz = sizeof(struct perf_event_attr);
13246 	struct perf_buffer_params p = {};
13247 	struct perf_event_attr attr;
13248 	__u32 sample_period;
13249 
13250 	if (!OPTS_VALID(opts, perf_buffer_opts))
13251 		return libbpf_err_ptr(-EINVAL);
13252 
13253 	sample_period = OPTS_GET(opts, sample_period, 1);
13254 	if (!sample_period)
13255 		sample_period = 1;
13256 
13257 	memset(&attr, 0, attr_sz);
13258 	attr.size = attr_sz;
13259 	attr.config = PERF_COUNT_SW_BPF_OUTPUT;
13260 	attr.type = PERF_TYPE_SOFTWARE;
13261 	attr.sample_type = PERF_SAMPLE_RAW;
13262 	attr.sample_period = sample_period;
13263 	attr.wakeup_events = sample_period;
13264 
13265 	p.attr = &attr;
13266 	p.sample_cb = sample_cb;
13267 	p.lost_cb = lost_cb;
13268 	p.ctx = ctx;
13269 
13270 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
13271 }
13272 
perf_buffer__new_raw(int map_fd,size_t page_cnt,struct perf_event_attr * attr,perf_buffer_event_fn event_cb,void * ctx,const struct perf_buffer_raw_opts * opts)13273 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
13274 					 struct perf_event_attr *attr,
13275 					 perf_buffer_event_fn event_cb, void *ctx,
13276 					 const struct perf_buffer_raw_opts *opts)
13277 {
13278 	struct perf_buffer_params p = {};
13279 
13280 	if (!attr)
13281 		return libbpf_err_ptr(-EINVAL);
13282 
13283 	if (!OPTS_VALID(opts, perf_buffer_raw_opts))
13284 		return libbpf_err_ptr(-EINVAL);
13285 
13286 	p.attr = attr;
13287 	p.event_cb = event_cb;
13288 	p.ctx = ctx;
13289 	p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
13290 	p.cpus = OPTS_GET(opts, cpus, NULL);
13291 	p.map_keys = OPTS_GET(opts, map_keys, NULL);
13292 
13293 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
13294 }
13295 
__perf_buffer__new(int map_fd,size_t page_cnt,struct perf_buffer_params * p)13296 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
13297 					      struct perf_buffer_params *p)
13298 {
13299 	const char *online_cpus_file = "/sys/devices/system/cpu/online";
13300 	struct bpf_map_info map;
13301 	struct perf_buffer *pb;
13302 	bool *online = NULL;
13303 	__u32 map_info_len;
13304 	int err, i, j, n;
13305 
13306 	if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
13307 		pr_warn("page count should be power of two, but is %zu\n",
13308 			page_cnt);
13309 		return ERR_PTR(-EINVAL);
13310 	}
13311 
13312 	/* best-effort sanity checks */
13313 	memset(&map, 0, sizeof(map));
13314 	map_info_len = sizeof(map);
13315 	err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len);
13316 	if (err) {
13317 		err = -errno;
13318 		/* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
13319 		 * -EBADFD, -EFAULT, or -E2BIG on real error
13320 		 */
13321 		if (err != -EINVAL) {
13322 			pr_warn("failed to get map info for map FD %d: %s\n",
13323 				map_fd, errstr(err));
13324 			return ERR_PTR(err);
13325 		}
13326 		pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
13327 			 map_fd);
13328 	} else {
13329 		if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
13330 			pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
13331 				map.name);
13332 			return ERR_PTR(-EINVAL);
13333 		}
13334 	}
13335 
13336 	pb = calloc(1, sizeof(*pb));
13337 	if (!pb)
13338 		return ERR_PTR(-ENOMEM);
13339 
13340 	pb->event_cb = p->event_cb;
13341 	pb->sample_cb = p->sample_cb;
13342 	pb->lost_cb = p->lost_cb;
13343 	pb->ctx = p->ctx;
13344 
13345 	pb->page_size = getpagesize();
13346 	pb->mmap_size = pb->page_size * page_cnt;
13347 	pb->map_fd = map_fd;
13348 
13349 	pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
13350 	if (pb->epoll_fd < 0) {
13351 		err = -errno;
13352 		pr_warn("failed to create epoll instance: %s\n",
13353 			errstr(err));
13354 		goto error;
13355 	}
13356 
13357 	if (p->cpu_cnt > 0) {
13358 		pb->cpu_cnt = p->cpu_cnt;
13359 	} else {
13360 		pb->cpu_cnt = libbpf_num_possible_cpus();
13361 		if (pb->cpu_cnt < 0) {
13362 			err = pb->cpu_cnt;
13363 			goto error;
13364 		}
13365 		if (map.max_entries && map.max_entries < pb->cpu_cnt)
13366 			pb->cpu_cnt = map.max_entries;
13367 	}
13368 
13369 	pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
13370 	if (!pb->events) {
13371 		err = -ENOMEM;
13372 		pr_warn("failed to allocate events: out of memory\n");
13373 		goto error;
13374 	}
13375 	pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
13376 	if (!pb->cpu_bufs) {
13377 		err = -ENOMEM;
13378 		pr_warn("failed to allocate buffers: out of memory\n");
13379 		goto error;
13380 	}
13381 
13382 	err = parse_cpu_mask_file(online_cpus_file, &online, &n);
13383 	if (err) {
13384 		pr_warn("failed to get online CPU mask: %s\n", errstr(err));
13385 		goto error;
13386 	}
13387 
13388 	for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
13389 		struct perf_cpu_buf *cpu_buf;
13390 		int cpu, map_key;
13391 
13392 		cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
13393 		map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
13394 
13395 		/* in case user didn't explicitly requested particular CPUs to
13396 		 * be attached to, skip offline/not present CPUs
13397 		 */
13398 		if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
13399 			continue;
13400 
13401 		cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
13402 		if (IS_ERR(cpu_buf)) {
13403 			err = PTR_ERR(cpu_buf);
13404 			goto error;
13405 		}
13406 
13407 		pb->cpu_bufs[j] = cpu_buf;
13408 
13409 		err = bpf_map_update_elem(pb->map_fd, &map_key,
13410 					  &cpu_buf->fd, 0);
13411 		if (err) {
13412 			err = -errno;
13413 			pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
13414 				cpu, map_key, cpu_buf->fd,
13415 				errstr(err));
13416 			goto error;
13417 		}
13418 
13419 		pb->events[j].events = EPOLLIN;
13420 		pb->events[j].data.ptr = cpu_buf;
13421 		if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
13422 			      &pb->events[j]) < 0) {
13423 			err = -errno;
13424 			pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
13425 				cpu, cpu_buf->fd,
13426 				errstr(err));
13427 			goto error;
13428 		}
13429 		j++;
13430 	}
13431 	pb->cpu_cnt = j;
13432 	free(online);
13433 
13434 	return pb;
13435 
13436 error:
13437 	free(online);
13438 	if (pb)
13439 		perf_buffer__free(pb);
13440 	return ERR_PTR(err);
13441 }
13442 
13443 struct perf_sample_raw {
13444 	struct perf_event_header header;
13445 	uint32_t size;
13446 	char data[];
13447 };
13448 
13449 struct perf_sample_lost {
13450 	struct perf_event_header header;
13451 	uint64_t id;
13452 	uint64_t lost;
13453 	uint64_t sample_id;
13454 };
13455 
13456 static enum bpf_perf_event_ret
perf_buffer__process_record(struct perf_event_header * e,void * ctx)13457 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
13458 {
13459 	struct perf_cpu_buf *cpu_buf = ctx;
13460 	struct perf_buffer *pb = cpu_buf->pb;
13461 	void *data = e;
13462 
13463 	/* user wants full control over parsing perf event */
13464 	if (pb->event_cb)
13465 		return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
13466 
13467 	switch (e->type) {
13468 	case PERF_RECORD_SAMPLE: {
13469 		struct perf_sample_raw *s = data;
13470 
13471 		if (pb->sample_cb)
13472 			pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
13473 		break;
13474 	}
13475 	case PERF_RECORD_LOST: {
13476 		struct perf_sample_lost *s = data;
13477 
13478 		if (pb->lost_cb)
13479 			pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
13480 		break;
13481 	}
13482 	default:
13483 		pr_warn("unknown perf sample type %d\n", e->type);
13484 		return LIBBPF_PERF_EVENT_ERROR;
13485 	}
13486 	return LIBBPF_PERF_EVENT_CONT;
13487 }
13488 
perf_buffer__process_records(struct perf_buffer * pb,struct perf_cpu_buf * cpu_buf)13489 static int perf_buffer__process_records(struct perf_buffer *pb,
13490 					struct perf_cpu_buf *cpu_buf)
13491 {
13492 	enum bpf_perf_event_ret ret;
13493 
13494 	ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
13495 				     pb->page_size, &cpu_buf->buf,
13496 				     &cpu_buf->buf_size,
13497 				     perf_buffer__process_record, cpu_buf);
13498 	if (ret != LIBBPF_PERF_EVENT_CONT)
13499 		return ret;
13500 	return 0;
13501 }
13502 
perf_buffer__epoll_fd(const struct perf_buffer * pb)13503 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
13504 {
13505 	return pb->epoll_fd;
13506 }
13507 
perf_buffer__poll(struct perf_buffer * pb,int timeout_ms)13508 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
13509 {
13510 	int i, cnt, err;
13511 
13512 	cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
13513 	if (cnt < 0)
13514 		return -errno;
13515 
13516 	for (i = 0; i < cnt; i++) {
13517 		struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
13518 
13519 		err = perf_buffer__process_records(pb, cpu_buf);
13520 		if (err) {
13521 			pr_warn("error while processing records: %s\n", errstr(err));
13522 			return libbpf_err(err);
13523 		}
13524 	}
13525 	return cnt;
13526 }
13527 
13528 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
13529  * manager.
13530  */
perf_buffer__buffer_cnt(const struct perf_buffer * pb)13531 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
13532 {
13533 	return pb->cpu_cnt;
13534 }
13535 
13536 /*
13537  * Return perf_event FD of a ring buffer in *buf_idx* slot of
13538  * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
13539  * select()/poll()/epoll() Linux syscalls.
13540  */
perf_buffer__buffer_fd(const struct perf_buffer * pb,size_t buf_idx)13541 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
13542 {
13543 	struct perf_cpu_buf *cpu_buf;
13544 
13545 	if (buf_idx >= pb->cpu_cnt)
13546 		return libbpf_err(-EINVAL);
13547 
13548 	cpu_buf = pb->cpu_bufs[buf_idx];
13549 	if (!cpu_buf)
13550 		return libbpf_err(-ENOENT);
13551 
13552 	return cpu_buf->fd;
13553 }
13554 
perf_buffer__buffer(struct perf_buffer * pb,int buf_idx,void ** buf,size_t * buf_size)13555 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
13556 {
13557 	struct perf_cpu_buf *cpu_buf;
13558 
13559 	if (buf_idx >= pb->cpu_cnt)
13560 		return libbpf_err(-EINVAL);
13561 
13562 	cpu_buf = pb->cpu_bufs[buf_idx];
13563 	if (!cpu_buf)
13564 		return libbpf_err(-ENOENT);
13565 
13566 	*buf = cpu_buf->base;
13567 	*buf_size = pb->mmap_size;
13568 	return 0;
13569 }
13570 
13571 /*
13572  * Consume data from perf ring buffer corresponding to slot *buf_idx* in
13573  * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
13574  * consume, do nothing and return success.
13575  * Returns:
13576  *   - 0 on success;
13577  *   - <0 on failure.
13578  */
perf_buffer__consume_buffer(struct perf_buffer * pb,size_t buf_idx)13579 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
13580 {
13581 	struct perf_cpu_buf *cpu_buf;
13582 
13583 	if (buf_idx >= pb->cpu_cnt)
13584 		return libbpf_err(-EINVAL);
13585 
13586 	cpu_buf = pb->cpu_bufs[buf_idx];
13587 	if (!cpu_buf)
13588 		return libbpf_err(-ENOENT);
13589 
13590 	return perf_buffer__process_records(pb, cpu_buf);
13591 }
13592 
perf_buffer__consume(struct perf_buffer * pb)13593 int perf_buffer__consume(struct perf_buffer *pb)
13594 {
13595 	int i, err;
13596 
13597 	for (i = 0; i < pb->cpu_cnt; i++) {
13598 		struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
13599 
13600 		if (!cpu_buf)
13601 			continue;
13602 
13603 		err = perf_buffer__process_records(pb, cpu_buf);
13604 		if (err) {
13605 			pr_warn("perf_buffer: failed to process records in buffer #%d: %s\n",
13606 				i, errstr(err));
13607 			return libbpf_err(err);
13608 		}
13609 	}
13610 	return 0;
13611 }
13612 
bpf_program__set_attach_target(struct bpf_program * prog,int attach_prog_fd,const char * attach_func_name)13613 int bpf_program__set_attach_target(struct bpf_program *prog,
13614 				   int attach_prog_fd,
13615 				   const char *attach_func_name)
13616 {
13617 	int btf_obj_fd = 0, btf_id = 0, err;
13618 
13619 	if (!prog || attach_prog_fd < 0)
13620 		return libbpf_err(-EINVAL);
13621 
13622 	if (prog->obj->loaded)
13623 		return libbpf_err(-EINVAL);
13624 
13625 	if (attach_prog_fd && !attach_func_name) {
13626 		/* remember attach_prog_fd and let bpf_program__load() find
13627 		 * BTF ID during the program load
13628 		 */
13629 		prog->attach_prog_fd = attach_prog_fd;
13630 		return 0;
13631 	}
13632 
13633 	if (attach_prog_fd) {
13634 		btf_id = libbpf_find_prog_btf_id(attach_func_name,
13635 						 attach_prog_fd);
13636 		if (btf_id < 0)
13637 			return libbpf_err(btf_id);
13638 	} else {
13639 		if (!attach_func_name)
13640 			return libbpf_err(-EINVAL);
13641 
13642 		/* load btf_vmlinux, if not yet */
13643 		err = bpf_object__load_vmlinux_btf(prog->obj, true);
13644 		if (err)
13645 			return libbpf_err(err);
13646 		err = find_kernel_btf_id(prog->obj, attach_func_name,
13647 					 prog->expected_attach_type,
13648 					 &btf_obj_fd, &btf_id);
13649 		if (err)
13650 			return libbpf_err(err);
13651 	}
13652 
13653 	prog->attach_btf_id = btf_id;
13654 	prog->attach_btf_obj_fd = btf_obj_fd;
13655 	prog->attach_prog_fd = attach_prog_fd;
13656 	return 0;
13657 }
13658 
parse_cpu_mask_str(const char * s,bool ** mask,int * mask_sz)13659 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
13660 {
13661 	int err = 0, n, len, start, end = -1;
13662 	bool *tmp;
13663 
13664 	*mask = NULL;
13665 	*mask_sz = 0;
13666 
13667 	/* Each sub string separated by ',' has format \d+-\d+ or \d+ */
13668 	while (*s) {
13669 		if (*s == ',' || *s == '\n') {
13670 			s++;
13671 			continue;
13672 		}
13673 		n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
13674 		if (n <= 0 || n > 2) {
13675 			pr_warn("Failed to get CPU range %s: %d\n", s, n);
13676 			err = -EINVAL;
13677 			goto cleanup;
13678 		} else if (n == 1) {
13679 			end = start;
13680 		}
13681 		if (start < 0 || start > end) {
13682 			pr_warn("Invalid CPU range [%d,%d] in %s\n",
13683 				start, end, s);
13684 			err = -EINVAL;
13685 			goto cleanup;
13686 		}
13687 		tmp = realloc(*mask, end + 1);
13688 		if (!tmp) {
13689 			err = -ENOMEM;
13690 			goto cleanup;
13691 		}
13692 		*mask = tmp;
13693 		memset(tmp + *mask_sz, 0, start - *mask_sz);
13694 		memset(tmp + start, 1, end - start + 1);
13695 		*mask_sz = end + 1;
13696 		s += len;
13697 	}
13698 	if (!*mask_sz) {
13699 		pr_warn("Empty CPU range\n");
13700 		return -EINVAL;
13701 	}
13702 	return 0;
13703 cleanup:
13704 	free(*mask);
13705 	*mask = NULL;
13706 	return err;
13707 }
13708 
parse_cpu_mask_file(const char * fcpu,bool ** mask,int * mask_sz)13709 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
13710 {
13711 	int fd, err = 0, len;
13712 	char buf[128];
13713 
13714 	fd = open(fcpu, O_RDONLY | O_CLOEXEC);
13715 	if (fd < 0) {
13716 		err = -errno;
13717 		pr_warn("Failed to open cpu mask file %s: %s\n", fcpu, errstr(err));
13718 		return err;
13719 	}
13720 	len = read(fd, buf, sizeof(buf));
13721 	close(fd);
13722 	if (len <= 0) {
13723 		err = len ? -errno : -EINVAL;
13724 		pr_warn("Failed to read cpu mask from %s: %s\n", fcpu, errstr(err));
13725 		return err;
13726 	}
13727 	if (len >= sizeof(buf)) {
13728 		pr_warn("CPU mask is too big in file %s\n", fcpu);
13729 		return -E2BIG;
13730 	}
13731 	buf[len] = '\0';
13732 
13733 	return parse_cpu_mask_str(buf, mask, mask_sz);
13734 }
13735 
libbpf_num_possible_cpus(void)13736 int libbpf_num_possible_cpus(void)
13737 {
13738 	static const char *fcpu = "/sys/devices/system/cpu/possible";
13739 	static int cpus;
13740 	int err, n, i, tmp_cpus;
13741 	bool *mask;
13742 
13743 	tmp_cpus = READ_ONCE(cpus);
13744 	if (tmp_cpus > 0)
13745 		return tmp_cpus;
13746 
13747 	err = parse_cpu_mask_file(fcpu, &mask, &n);
13748 	if (err)
13749 		return libbpf_err(err);
13750 
13751 	tmp_cpus = 0;
13752 	for (i = 0; i < n; i++) {
13753 		if (mask[i])
13754 			tmp_cpus++;
13755 	}
13756 	free(mask);
13757 
13758 	WRITE_ONCE(cpus, tmp_cpus);
13759 	return tmp_cpus;
13760 }
13761 
populate_skeleton_maps(const struct bpf_object * obj,struct bpf_map_skeleton * maps,size_t map_cnt,size_t map_skel_sz)13762 static int populate_skeleton_maps(const struct bpf_object *obj,
13763 				  struct bpf_map_skeleton *maps,
13764 				  size_t map_cnt, size_t map_skel_sz)
13765 {
13766 	int i;
13767 
13768 	for (i = 0; i < map_cnt; i++) {
13769 		struct bpf_map_skeleton *map_skel = (void *)maps + i * map_skel_sz;
13770 		struct bpf_map **map = map_skel->map;
13771 		const char *name = map_skel->name;
13772 		void **mmaped = map_skel->mmaped;
13773 
13774 		*map = bpf_object__find_map_by_name(obj, name);
13775 		if (!*map) {
13776 			pr_warn("failed to find skeleton map '%s'\n", name);
13777 			return -ESRCH;
13778 		}
13779 
13780 		/* externs shouldn't be pre-setup from user code */
13781 		if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
13782 			*mmaped = (*map)->mmaped;
13783 	}
13784 	return 0;
13785 }
13786 
populate_skeleton_progs(const struct bpf_object * obj,struct bpf_prog_skeleton * progs,size_t prog_cnt,size_t prog_skel_sz)13787 static int populate_skeleton_progs(const struct bpf_object *obj,
13788 				   struct bpf_prog_skeleton *progs,
13789 				   size_t prog_cnt, size_t prog_skel_sz)
13790 {
13791 	int i;
13792 
13793 	for (i = 0; i < prog_cnt; i++) {
13794 		struct bpf_prog_skeleton *prog_skel = (void *)progs + i * prog_skel_sz;
13795 		struct bpf_program **prog = prog_skel->prog;
13796 		const char *name = prog_skel->name;
13797 
13798 		*prog = bpf_object__find_program_by_name(obj, name);
13799 		if (!*prog) {
13800 			pr_warn("failed to find skeleton program '%s'\n", name);
13801 			return -ESRCH;
13802 		}
13803 	}
13804 	return 0;
13805 }
13806 
bpf_object__open_skeleton(struct bpf_object_skeleton * s,const struct bpf_object_open_opts * opts)13807 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
13808 			      const struct bpf_object_open_opts *opts)
13809 {
13810 	struct bpf_object *obj;
13811 	int err;
13812 
13813 	obj = bpf_object_open(NULL, s->data, s->data_sz, s->name, opts);
13814 	if (IS_ERR(obj)) {
13815 		err = PTR_ERR(obj);
13816 		pr_warn("failed to initialize skeleton BPF object '%s': %s\n",
13817 			s->name, errstr(err));
13818 		return libbpf_err(err);
13819 	}
13820 
13821 	*s->obj = obj;
13822 	err = populate_skeleton_maps(obj, s->maps, s->map_cnt, s->map_skel_sz);
13823 	if (err) {
13824 		pr_warn("failed to populate skeleton maps for '%s': %s\n", s->name, errstr(err));
13825 		return libbpf_err(err);
13826 	}
13827 
13828 	err = populate_skeleton_progs(obj, s->progs, s->prog_cnt, s->prog_skel_sz);
13829 	if (err) {
13830 		pr_warn("failed to populate skeleton progs for '%s': %s\n", s->name, errstr(err));
13831 		return libbpf_err(err);
13832 	}
13833 
13834 	return 0;
13835 }
13836 
bpf_object__open_subskeleton(struct bpf_object_subskeleton * s)13837 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
13838 {
13839 	int err, len, var_idx, i;
13840 	const char *var_name;
13841 	const struct bpf_map *map;
13842 	struct btf *btf;
13843 	__u32 map_type_id;
13844 	const struct btf_type *map_type, *var_type;
13845 	const struct bpf_var_skeleton *var_skel;
13846 	struct btf_var_secinfo *var;
13847 
13848 	if (!s->obj)
13849 		return libbpf_err(-EINVAL);
13850 
13851 	btf = bpf_object__btf(s->obj);
13852 	if (!btf) {
13853 		pr_warn("subskeletons require BTF at runtime (object %s)\n",
13854 			bpf_object__name(s->obj));
13855 		return libbpf_err(-errno);
13856 	}
13857 
13858 	err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt, s->map_skel_sz);
13859 	if (err) {
13860 		pr_warn("failed to populate subskeleton maps: %s\n", errstr(err));
13861 		return libbpf_err(err);
13862 	}
13863 
13864 	err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt, s->prog_skel_sz);
13865 	if (err) {
13866 		pr_warn("failed to populate subskeleton maps: %s\n", errstr(err));
13867 		return libbpf_err(err);
13868 	}
13869 
13870 	for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
13871 		var_skel = (void *)s->vars + var_idx * s->var_skel_sz;
13872 		map = *var_skel->map;
13873 		map_type_id = bpf_map__btf_value_type_id(map);
13874 		map_type = btf__type_by_id(btf, map_type_id);
13875 
13876 		if (!btf_is_datasec(map_type)) {
13877 			pr_warn("type for map '%1$s' is not a datasec: %2$s\n",
13878 				bpf_map__name(map),
13879 				__btf_kind_str(btf_kind(map_type)));
13880 			return libbpf_err(-EINVAL);
13881 		}
13882 
13883 		len = btf_vlen(map_type);
13884 		var = btf_var_secinfos(map_type);
13885 		for (i = 0; i < len; i++, var++) {
13886 			var_type = btf__type_by_id(btf, var->type);
13887 			var_name = btf__name_by_offset(btf, var_type->name_off);
13888 			if (strcmp(var_name, var_skel->name) == 0) {
13889 				*var_skel->addr = map->mmaped + var->offset;
13890 				break;
13891 			}
13892 		}
13893 	}
13894 	return 0;
13895 }
13896 
bpf_object__destroy_subskeleton(struct bpf_object_subskeleton * s)13897 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
13898 {
13899 	if (!s)
13900 		return;
13901 	free(s->maps);
13902 	free(s->progs);
13903 	free(s->vars);
13904 	free(s);
13905 }
13906 
bpf_object__load_skeleton(struct bpf_object_skeleton * s)13907 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
13908 {
13909 	int i, err;
13910 
13911 	err = bpf_object__load(*s->obj);
13912 	if (err) {
13913 		pr_warn("failed to load BPF skeleton '%s': %s\n", s->name, errstr(err));
13914 		return libbpf_err(err);
13915 	}
13916 
13917 	for (i = 0; i < s->map_cnt; i++) {
13918 		struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz;
13919 		struct bpf_map *map = *map_skel->map;
13920 
13921 		if (!map_skel->mmaped)
13922 			continue;
13923 
13924 		*map_skel->mmaped = map->mmaped;
13925 	}
13926 
13927 	return 0;
13928 }
13929 
bpf_object__attach_skeleton(struct bpf_object_skeleton * s)13930 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
13931 {
13932 	int i, err;
13933 
13934 	for (i = 0; i < s->prog_cnt; i++) {
13935 		struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz;
13936 		struct bpf_program *prog = *prog_skel->prog;
13937 		struct bpf_link **link = prog_skel->link;
13938 
13939 		if (!prog->autoload || !prog->autoattach)
13940 			continue;
13941 
13942 		/* auto-attaching not supported for this program */
13943 		if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
13944 			continue;
13945 
13946 		/* if user already set the link manually, don't attempt auto-attach */
13947 		if (*link)
13948 			continue;
13949 
13950 		err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
13951 		if (err) {
13952 			pr_warn("prog '%s': failed to auto-attach: %s\n",
13953 				bpf_program__name(prog), errstr(err));
13954 			return libbpf_err(err);
13955 		}
13956 
13957 		/* It's possible that for some SEC() definitions auto-attach
13958 		 * is supported in some cases (e.g., if definition completely
13959 		 * specifies target information), but is not in other cases.
13960 		 * SEC("uprobe") is one such case. If user specified target
13961 		 * binary and function name, such BPF program can be
13962 		 * auto-attached. But if not, it shouldn't trigger skeleton's
13963 		 * attach to fail. It should just be skipped.
13964 		 * attach_fn signals such case with returning 0 (no error) and
13965 		 * setting link to NULL.
13966 		 */
13967 	}
13968 
13969 
13970 	for (i = 0; i < s->map_cnt; i++) {
13971 		struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz;
13972 		struct bpf_map *map = *map_skel->map;
13973 		struct bpf_link **link;
13974 
13975 		if (!map->autocreate || !map->autoattach)
13976 			continue;
13977 
13978 		/* only struct_ops maps can be attached */
13979 		if (!bpf_map__is_struct_ops(map))
13980 			continue;
13981 
13982 		/* skeleton is created with earlier version of bpftool, notify user */
13983 		if (s->map_skel_sz < offsetofend(struct bpf_map_skeleton, link)) {
13984 			pr_warn("map '%s': BPF skeleton version is old, skipping map auto-attachment...\n",
13985 				bpf_map__name(map));
13986 			continue;
13987 		}
13988 
13989 		link = map_skel->link;
13990 		if (*link)
13991 			continue;
13992 
13993 		*link = bpf_map__attach_struct_ops(map);
13994 		if (!*link) {
13995 			err = -errno;
13996 			pr_warn("map '%s': failed to auto-attach: %s\n",
13997 				bpf_map__name(map), errstr(err));
13998 			return libbpf_err(err);
13999 		}
14000 	}
14001 
14002 	return 0;
14003 }
14004 
bpf_object__detach_skeleton(struct bpf_object_skeleton * s)14005 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
14006 {
14007 	int i;
14008 
14009 	for (i = 0; i < s->prog_cnt; i++) {
14010 		struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz;
14011 		struct bpf_link **link = prog_skel->link;
14012 
14013 		bpf_link__destroy(*link);
14014 		*link = NULL;
14015 	}
14016 
14017 	if (s->map_skel_sz < sizeof(struct bpf_map_skeleton))
14018 		return;
14019 
14020 	for (i = 0; i < s->map_cnt; i++) {
14021 		struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz;
14022 		struct bpf_link **link = map_skel->link;
14023 
14024 		if (link) {
14025 			bpf_link__destroy(*link);
14026 			*link = NULL;
14027 		}
14028 	}
14029 }
14030 
bpf_object__destroy_skeleton(struct bpf_object_skeleton * s)14031 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
14032 {
14033 	if (!s)
14034 		return;
14035 
14036 	bpf_object__detach_skeleton(s);
14037 	if (s->obj)
14038 		bpf_object__close(*s->obj);
14039 	free(s->maps);
14040 	free(s->progs);
14041 	free(s);
14042 }
14043