1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
4 * Copyright 2012 Google, Inc.
5 */
6
7 #include "bcachefs.h"
8 #include "alloc_foreground.h"
9 #include "bkey_buf.h"
10 #include "bset.h"
11 #include "btree_update.h"
12 #include "buckets.h"
13 #include "checksum.h"
14 #include "clock.h"
15 #include "compress.h"
16 #include "debug.h"
17 #include "ec.h"
18 #include "error.h"
19 #include "extent_update.h"
20 #include "inode.h"
21 #include "io_write.h"
22 #include "journal.h"
23 #include "keylist.h"
24 #include "move.h"
25 #include "nocow_locking.h"
26 #include "rebalance.h"
27 #include "subvolume.h"
28 #include "super.h"
29 #include "super-io.h"
30 #include "trace.h"
31
32 #include <linux/blkdev.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/sched/mm.h>
36
37 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT
38
bch2_congested_acct(struct bch_dev * ca,u64 io_latency,u64 now,int rw)39 static inline void bch2_congested_acct(struct bch_dev *ca, u64 io_latency,
40 u64 now, int rw)
41 {
42 u64 latency_capable =
43 ca->io_latency[rw].quantiles.entries[QUANTILE_IDX(1)].m;
44 /* ideally we'd be taking into account the device's variance here: */
45 u64 latency_threshold = latency_capable << (rw == READ ? 2 : 3);
46 s64 latency_over = io_latency - latency_threshold;
47
48 if (latency_threshold && latency_over > 0) {
49 /*
50 * bump up congested by approximately latency_over * 4 /
51 * latency_threshold - we don't need much accuracy here so don't
52 * bother with the divide:
53 */
54 if (atomic_read(&ca->congested) < CONGESTED_MAX)
55 atomic_add(latency_over >>
56 max_t(int, ilog2(latency_threshold) - 2, 0),
57 &ca->congested);
58
59 ca->congested_last = now;
60 } else if (atomic_read(&ca->congested) > 0) {
61 atomic_dec(&ca->congested);
62 }
63 }
64
bch2_latency_acct(struct bch_dev * ca,u64 submit_time,int rw)65 void bch2_latency_acct(struct bch_dev *ca, u64 submit_time, int rw)
66 {
67 atomic64_t *latency = &ca->cur_latency[rw];
68 u64 now = local_clock();
69 u64 io_latency = time_after64(now, submit_time)
70 ? now - submit_time
71 : 0;
72 u64 old, new;
73
74 old = atomic64_read(latency);
75 do {
76 /*
77 * If the io latency was reasonably close to the current
78 * latency, skip doing the update and atomic operation - most of
79 * the time:
80 */
81 if (abs((int) (old - io_latency)) < (old >> 1) &&
82 now & ~(~0U << 5))
83 break;
84
85 new = ewma_add(old, io_latency, 5);
86 } while (!atomic64_try_cmpxchg(latency, &old, new));
87
88 bch2_congested_acct(ca, io_latency, now, rw);
89
90 __bch2_time_stats_update(&ca->io_latency[rw].stats, submit_time, now);
91 }
92
93 #endif
94
95 /* Allocate, free from mempool: */
96
bch2_bio_free_pages_pool(struct bch_fs * c,struct bio * bio)97 void bch2_bio_free_pages_pool(struct bch_fs *c, struct bio *bio)
98 {
99 struct bvec_iter_all iter;
100 struct bio_vec *bv;
101
102 bio_for_each_segment_all(bv, bio, iter)
103 if (bv->bv_page != ZERO_PAGE(0))
104 mempool_free(bv->bv_page, &c->bio_bounce_pages);
105 bio->bi_vcnt = 0;
106 }
107
__bio_alloc_page_pool(struct bch_fs * c,bool * using_mempool)108 static struct page *__bio_alloc_page_pool(struct bch_fs *c, bool *using_mempool)
109 {
110 struct page *page;
111
112 if (likely(!*using_mempool)) {
113 page = alloc_page(GFP_NOFS);
114 if (unlikely(!page)) {
115 mutex_lock(&c->bio_bounce_pages_lock);
116 *using_mempool = true;
117 goto pool_alloc;
118
119 }
120 } else {
121 pool_alloc:
122 page = mempool_alloc(&c->bio_bounce_pages, GFP_NOFS);
123 }
124
125 return page;
126 }
127
bch2_bio_alloc_pages_pool(struct bch_fs * c,struct bio * bio,size_t size)128 void bch2_bio_alloc_pages_pool(struct bch_fs *c, struct bio *bio,
129 size_t size)
130 {
131 bool using_mempool = false;
132
133 while (size) {
134 struct page *page = __bio_alloc_page_pool(c, &using_mempool);
135 unsigned len = min_t(size_t, PAGE_SIZE, size);
136
137 BUG_ON(!bio_add_page(bio, page, len, 0));
138 size -= len;
139 }
140
141 if (using_mempool)
142 mutex_unlock(&c->bio_bounce_pages_lock);
143 }
144
145 /* Extent update path: */
146
bch2_sum_sector_overwrites(struct btree_trans * trans,struct btree_iter * extent_iter,struct bkey_i * new,bool * usage_increasing,s64 * i_sectors_delta,s64 * disk_sectors_delta)147 int bch2_sum_sector_overwrites(struct btree_trans *trans,
148 struct btree_iter *extent_iter,
149 struct bkey_i *new,
150 bool *usage_increasing,
151 s64 *i_sectors_delta,
152 s64 *disk_sectors_delta)
153 {
154 struct bch_fs *c = trans->c;
155 struct btree_iter iter;
156 struct bkey_s_c old;
157 unsigned new_replicas = bch2_bkey_replicas(c, bkey_i_to_s_c(new));
158 bool new_compressed = bch2_bkey_sectors_compressed(bkey_i_to_s_c(new));
159 int ret = 0;
160
161 *usage_increasing = false;
162 *i_sectors_delta = 0;
163 *disk_sectors_delta = 0;
164
165 bch2_trans_copy_iter(&iter, extent_iter);
166
167 for_each_btree_key_upto_continue_norestart(iter,
168 new->k.p, BTREE_ITER_slots, old, ret) {
169 s64 sectors = min(new->k.p.offset, old.k->p.offset) -
170 max(bkey_start_offset(&new->k),
171 bkey_start_offset(old.k));
172
173 *i_sectors_delta += sectors *
174 (bkey_extent_is_allocation(&new->k) -
175 bkey_extent_is_allocation(old.k));
176
177 *disk_sectors_delta += sectors * bch2_bkey_nr_ptrs_allocated(bkey_i_to_s_c(new));
178 *disk_sectors_delta -= new->k.p.snapshot == old.k->p.snapshot
179 ? sectors * bch2_bkey_nr_ptrs_fully_allocated(old)
180 : 0;
181
182 if (!*usage_increasing &&
183 (new->k.p.snapshot != old.k->p.snapshot ||
184 new_replicas > bch2_bkey_replicas(c, old) ||
185 (!new_compressed && bch2_bkey_sectors_compressed(old))))
186 *usage_increasing = true;
187
188 if (bkey_ge(old.k->p, new->k.p))
189 break;
190 }
191
192 bch2_trans_iter_exit(trans, &iter);
193 return ret;
194 }
195
bch2_extent_update_i_size_sectors(struct btree_trans * trans,struct btree_iter * extent_iter,u64 new_i_size,s64 i_sectors_delta)196 static inline int bch2_extent_update_i_size_sectors(struct btree_trans *trans,
197 struct btree_iter *extent_iter,
198 u64 new_i_size,
199 s64 i_sectors_delta)
200 {
201 /*
202 * Crazy performance optimization:
203 * Every extent update needs to also update the inode: the inode trigger
204 * will set bi->journal_seq to the journal sequence number of this
205 * transaction - for fsync.
206 *
207 * But if that's the only reason we're updating the inode (we're not
208 * updating bi_size or bi_sectors), then we don't need the inode update
209 * to be journalled - if we crash, the bi_journal_seq update will be
210 * lost, but that's fine.
211 */
212 unsigned inode_update_flags = BTREE_UPDATE_nojournal;
213
214 struct btree_iter iter;
215 struct bkey_s_c k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_inodes,
216 SPOS(0,
217 extent_iter->pos.inode,
218 extent_iter->snapshot),
219 BTREE_ITER_cached);
220 int ret = bkey_err(k);
221 if (unlikely(ret))
222 return ret;
223
224 /*
225 * varint_decode_fast(), in the inode .invalid method, reads up to 7
226 * bytes past the end of the buffer:
227 */
228 struct bkey_i *k_mut = bch2_trans_kmalloc_nomemzero(trans, bkey_bytes(k.k) + 8);
229 ret = PTR_ERR_OR_ZERO(k_mut);
230 if (unlikely(ret))
231 goto err;
232
233 bkey_reassemble(k_mut, k);
234
235 if (unlikely(k_mut->k.type != KEY_TYPE_inode_v3)) {
236 k_mut = bch2_inode_to_v3(trans, k_mut);
237 ret = PTR_ERR_OR_ZERO(k_mut);
238 if (unlikely(ret))
239 goto err;
240 }
241
242 struct bkey_i_inode_v3 *inode = bkey_i_to_inode_v3(k_mut);
243
244 if (!(le64_to_cpu(inode->v.bi_flags) & BCH_INODE_i_size_dirty) &&
245 new_i_size > le64_to_cpu(inode->v.bi_size)) {
246 inode->v.bi_size = cpu_to_le64(new_i_size);
247 inode_update_flags = 0;
248 }
249
250 if (i_sectors_delta) {
251 le64_add_cpu(&inode->v.bi_sectors, i_sectors_delta);
252 inode_update_flags = 0;
253 }
254
255 if (inode->k.p.snapshot != iter.snapshot) {
256 inode->k.p.snapshot = iter.snapshot;
257 inode_update_flags = 0;
258 }
259
260 ret = bch2_trans_update(trans, &iter, &inode->k_i,
261 BTREE_UPDATE_internal_snapshot_node|
262 inode_update_flags);
263 err:
264 bch2_trans_iter_exit(trans, &iter);
265 return ret;
266 }
267
bch2_extent_update(struct btree_trans * trans,subvol_inum inum,struct btree_iter * iter,struct bkey_i * k,struct disk_reservation * disk_res,u64 new_i_size,s64 * i_sectors_delta_total,bool check_enospc)268 int bch2_extent_update(struct btree_trans *trans,
269 subvol_inum inum,
270 struct btree_iter *iter,
271 struct bkey_i *k,
272 struct disk_reservation *disk_res,
273 u64 new_i_size,
274 s64 *i_sectors_delta_total,
275 bool check_enospc)
276 {
277 struct bpos next_pos;
278 bool usage_increasing;
279 s64 i_sectors_delta = 0, disk_sectors_delta = 0;
280 int ret;
281
282 /*
283 * This traverses us the iterator without changing iter->path->pos to
284 * search_key() (which is pos + 1 for extents): we want there to be a
285 * path already traversed at iter->pos because
286 * bch2_trans_extent_update() will use it to attempt extent merging
287 */
288 ret = __bch2_btree_iter_traverse(iter);
289 if (ret)
290 return ret;
291
292 ret = bch2_extent_trim_atomic(trans, iter, k);
293 if (ret)
294 return ret;
295
296 next_pos = k->k.p;
297
298 ret = bch2_sum_sector_overwrites(trans, iter, k,
299 &usage_increasing,
300 &i_sectors_delta,
301 &disk_sectors_delta);
302 if (ret)
303 return ret;
304
305 if (disk_res &&
306 disk_sectors_delta > (s64) disk_res->sectors) {
307 ret = bch2_disk_reservation_add(trans->c, disk_res,
308 disk_sectors_delta - disk_res->sectors,
309 !check_enospc || !usage_increasing
310 ? BCH_DISK_RESERVATION_NOFAIL : 0);
311 if (ret)
312 return ret;
313 }
314
315 /*
316 * Note:
317 * We always have to do an inode update - even when i_size/i_sectors
318 * aren't changing - for fsync to work properly; fsync relies on
319 * inode->bi_journal_seq which is updated by the trigger code:
320 */
321 ret = bch2_extent_update_i_size_sectors(trans, iter,
322 min(k->k.p.offset << 9, new_i_size),
323 i_sectors_delta) ?:
324 bch2_trans_update(trans, iter, k, 0) ?:
325 bch2_trans_commit(trans, disk_res, NULL,
326 BCH_TRANS_COMMIT_no_check_rw|
327 BCH_TRANS_COMMIT_no_enospc);
328 if (unlikely(ret))
329 return ret;
330
331 if (i_sectors_delta_total)
332 *i_sectors_delta_total += i_sectors_delta;
333 bch2_btree_iter_set_pos(iter, next_pos);
334 return 0;
335 }
336
bch2_write_index_default(struct bch_write_op * op)337 static int bch2_write_index_default(struct bch_write_op *op)
338 {
339 struct bch_fs *c = op->c;
340 struct bkey_buf sk;
341 struct keylist *keys = &op->insert_keys;
342 struct bkey_i *k = bch2_keylist_front(keys);
343 struct btree_trans *trans = bch2_trans_get(c);
344 struct btree_iter iter;
345 subvol_inum inum = {
346 .subvol = op->subvol,
347 .inum = k->k.p.inode,
348 };
349 int ret;
350
351 BUG_ON(!inum.subvol);
352
353 bch2_bkey_buf_init(&sk);
354
355 do {
356 bch2_trans_begin(trans);
357
358 k = bch2_keylist_front(keys);
359 bch2_bkey_buf_copy(&sk, c, k);
360
361 ret = bch2_subvolume_get_snapshot(trans, inum.subvol,
362 &sk.k->k.p.snapshot);
363 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
364 continue;
365 if (ret)
366 break;
367
368 bch2_trans_iter_init(trans, &iter, BTREE_ID_extents,
369 bkey_start_pos(&sk.k->k),
370 BTREE_ITER_slots|BTREE_ITER_intent);
371
372 ret = bch2_bkey_set_needs_rebalance(c, sk.k, &op->opts) ?:
373 bch2_extent_update(trans, inum, &iter, sk.k,
374 &op->res,
375 op->new_i_size, &op->i_sectors_delta,
376 op->flags & BCH_WRITE_CHECK_ENOSPC);
377 bch2_trans_iter_exit(trans, &iter);
378
379 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
380 continue;
381 if (ret)
382 break;
383
384 if (bkey_ge(iter.pos, k->k.p))
385 bch2_keylist_pop_front(&op->insert_keys);
386 else
387 bch2_cut_front(iter.pos, k);
388 } while (!bch2_keylist_empty(keys));
389
390 bch2_trans_put(trans);
391 bch2_bkey_buf_exit(&sk, c);
392
393 return ret;
394 }
395
396 /* Writes */
397
bch2_submit_wbio_replicas(struct bch_write_bio * wbio,struct bch_fs * c,enum bch_data_type type,const struct bkey_i * k,bool nocow)398 void bch2_submit_wbio_replicas(struct bch_write_bio *wbio, struct bch_fs *c,
399 enum bch_data_type type,
400 const struct bkey_i *k,
401 bool nocow)
402 {
403 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(bkey_i_to_s_c(k));
404 struct bch_write_bio *n;
405
406 BUG_ON(c->opts.nochanges);
407
408 bkey_for_each_ptr(ptrs, ptr) {
409 struct bch_dev *ca = nocow
410 ? bch2_dev_have_ref(c, ptr->dev)
411 : bch2_dev_get_ioref(c, ptr->dev, type == BCH_DATA_btree ? READ : WRITE);
412
413 if (to_entry(ptr + 1) < ptrs.end) {
414 n = to_wbio(bio_alloc_clone(NULL, &wbio->bio, GFP_NOFS, &c->replica_set));
415
416 n->bio.bi_end_io = wbio->bio.bi_end_io;
417 n->bio.bi_private = wbio->bio.bi_private;
418 n->parent = wbio;
419 n->split = true;
420 n->bounce = false;
421 n->put_bio = true;
422 n->bio.bi_opf = wbio->bio.bi_opf;
423 bio_inc_remaining(&wbio->bio);
424 } else {
425 n = wbio;
426 n->split = false;
427 }
428
429 n->c = c;
430 n->dev = ptr->dev;
431 n->have_ioref = ca != NULL;
432 n->nocow = nocow;
433 n->submit_time = local_clock();
434 n->inode_offset = bkey_start_offset(&k->k);
435 if (nocow)
436 n->nocow_bucket = PTR_BUCKET_NR(ca, ptr);
437 n->bio.bi_iter.bi_sector = ptr->offset;
438
439 if (likely(n->have_ioref)) {
440 this_cpu_add(ca->io_done->sectors[WRITE][type],
441 bio_sectors(&n->bio));
442
443 bio_set_dev(&n->bio, ca->disk_sb.bdev);
444
445 if (type != BCH_DATA_btree && unlikely(c->opts.no_data_io)) {
446 bio_endio(&n->bio);
447 continue;
448 }
449
450 submit_bio(&n->bio);
451 } else {
452 n->bio.bi_status = BLK_STS_REMOVED;
453 bio_endio(&n->bio);
454 }
455 }
456 }
457
458 static void __bch2_write(struct bch_write_op *);
459
bch2_write_done(struct closure * cl)460 static void bch2_write_done(struct closure *cl)
461 {
462 struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
463 struct bch_fs *c = op->c;
464
465 EBUG_ON(op->open_buckets.nr);
466
467 bch2_time_stats_update(&c->times[BCH_TIME_data_write], op->start_time);
468 bch2_disk_reservation_put(c, &op->res);
469
470 if (!(op->flags & BCH_WRITE_MOVE))
471 bch2_write_ref_put(c, BCH_WRITE_REF_write);
472 bch2_keylist_free(&op->insert_keys, op->inline_keys);
473
474 EBUG_ON(cl->parent);
475 closure_debug_destroy(cl);
476 if (op->end_io)
477 op->end_io(op);
478 }
479
bch2_write_drop_io_error_ptrs(struct bch_write_op * op)480 static noinline int bch2_write_drop_io_error_ptrs(struct bch_write_op *op)
481 {
482 struct keylist *keys = &op->insert_keys;
483 struct bkey_i *src, *dst = keys->keys, *n;
484
485 for (src = keys->keys; src != keys->top; src = n) {
486 n = bkey_next(src);
487
488 if (bkey_extent_is_direct_data(&src->k)) {
489 bch2_bkey_drop_ptrs(bkey_i_to_s(src), ptr,
490 test_bit(ptr->dev, op->failed.d));
491
492 if (!bch2_bkey_nr_ptrs(bkey_i_to_s_c(src)))
493 return -EIO;
494 }
495
496 if (dst != src)
497 memmove_u64s_down(dst, src, src->k.u64s);
498 dst = bkey_next(dst);
499 }
500
501 keys->top = dst;
502 return 0;
503 }
504
505 /**
506 * __bch2_write_index - after a write, update index to point to new data
507 * @op: bch_write_op to process
508 */
__bch2_write_index(struct bch_write_op * op)509 static void __bch2_write_index(struct bch_write_op *op)
510 {
511 struct bch_fs *c = op->c;
512 struct keylist *keys = &op->insert_keys;
513 unsigned dev;
514 int ret = 0;
515
516 if (unlikely(op->flags & BCH_WRITE_IO_ERROR)) {
517 ret = bch2_write_drop_io_error_ptrs(op);
518 if (ret)
519 goto err;
520 }
521
522 if (!bch2_keylist_empty(keys)) {
523 u64 sectors_start = keylist_sectors(keys);
524
525 ret = !(op->flags & BCH_WRITE_MOVE)
526 ? bch2_write_index_default(op)
527 : bch2_data_update_index_update(op);
528
529 BUG_ON(bch2_err_matches(ret, BCH_ERR_transaction_restart));
530 BUG_ON(keylist_sectors(keys) && !ret);
531
532 op->written += sectors_start - keylist_sectors(keys);
533
534 if (ret && !bch2_err_matches(ret, EROFS)) {
535 struct bkey_i *insert = bch2_keylist_front(&op->insert_keys);
536
537 bch_err_inum_offset_ratelimited(c,
538 insert->k.p.inode, insert->k.p.offset << 9,
539 "%s write error while doing btree update: %s",
540 op->flags & BCH_WRITE_MOVE ? "move" : "user",
541 bch2_err_str(ret));
542 }
543
544 if (ret)
545 goto err;
546 }
547 out:
548 /* If some a bucket wasn't written, we can't erasure code it: */
549 for_each_set_bit(dev, op->failed.d, BCH_SB_MEMBERS_MAX)
550 bch2_open_bucket_write_error(c, &op->open_buckets, dev);
551
552 bch2_open_buckets_put(c, &op->open_buckets);
553 return;
554 err:
555 keys->top = keys->keys;
556 op->error = ret;
557 op->flags |= BCH_WRITE_SUBMITTED;
558 goto out;
559 }
560
__wp_update_state(struct write_point * wp,enum write_point_state state)561 static inline void __wp_update_state(struct write_point *wp, enum write_point_state state)
562 {
563 if (state != wp->state) {
564 u64 now = ktime_get_ns();
565
566 if (wp->last_state_change &&
567 time_after64(now, wp->last_state_change))
568 wp->time[wp->state] += now - wp->last_state_change;
569 wp->state = state;
570 wp->last_state_change = now;
571 }
572 }
573
wp_update_state(struct write_point * wp,bool running)574 static inline void wp_update_state(struct write_point *wp, bool running)
575 {
576 enum write_point_state state;
577
578 state = running ? WRITE_POINT_running :
579 !list_empty(&wp->writes) ? WRITE_POINT_waiting_io
580 : WRITE_POINT_stopped;
581
582 __wp_update_state(wp, state);
583 }
584
CLOSURE_CALLBACK(bch2_write_index)585 static CLOSURE_CALLBACK(bch2_write_index)
586 {
587 closure_type(op, struct bch_write_op, cl);
588 struct write_point *wp = op->wp;
589 struct workqueue_struct *wq = index_update_wq(op);
590 unsigned long flags;
591
592 if ((op->flags & BCH_WRITE_SUBMITTED) &&
593 (op->flags & BCH_WRITE_MOVE))
594 bch2_bio_free_pages_pool(op->c, &op->wbio.bio);
595
596 spin_lock_irqsave(&wp->writes_lock, flags);
597 if (wp->state == WRITE_POINT_waiting_io)
598 __wp_update_state(wp, WRITE_POINT_waiting_work);
599 list_add_tail(&op->wp_list, &wp->writes);
600 spin_unlock_irqrestore (&wp->writes_lock, flags);
601
602 queue_work(wq, &wp->index_update_work);
603 }
604
bch2_write_queue(struct bch_write_op * op,struct write_point * wp)605 static inline void bch2_write_queue(struct bch_write_op *op, struct write_point *wp)
606 {
607 op->wp = wp;
608
609 if (wp->state == WRITE_POINT_stopped) {
610 spin_lock_irq(&wp->writes_lock);
611 __wp_update_state(wp, WRITE_POINT_waiting_io);
612 spin_unlock_irq(&wp->writes_lock);
613 }
614 }
615
bch2_write_point_do_index_updates(struct work_struct * work)616 void bch2_write_point_do_index_updates(struct work_struct *work)
617 {
618 struct write_point *wp =
619 container_of(work, struct write_point, index_update_work);
620 struct bch_write_op *op;
621
622 while (1) {
623 spin_lock_irq(&wp->writes_lock);
624 op = list_first_entry_or_null(&wp->writes, struct bch_write_op, wp_list);
625 if (op)
626 list_del(&op->wp_list);
627 wp_update_state(wp, op != NULL);
628 spin_unlock_irq(&wp->writes_lock);
629
630 if (!op)
631 break;
632
633 op->flags |= BCH_WRITE_IN_WORKER;
634
635 __bch2_write_index(op);
636
637 if (!(op->flags & BCH_WRITE_SUBMITTED))
638 __bch2_write(op);
639 else
640 bch2_write_done(&op->cl);
641 }
642 }
643
bch2_write_endio(struct bio * bio)644 static void bch2_write_endio(struct bio *bio)
645 {
646 struct closure *cl = bio->bi_private;
647 struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
648 struct bch_write_bio *wbio = to_wbio(bio);
649 struct bch_write_bio *parent = wbio->split ? wbio->parent : NULL;
650 struct bch_fs *c = wbio->c;
651 struct bch_dev *ca = wbio->have_ioref
652 ? bch2_dev_have_ref(c, wbio->dev)
653 : NULL;
654
655 if (bch2_dev_inum_io_err_on(bio->bi_status, ca, BCH_MEMBER_ERROR_write,
656 op->pos.inode,
657 wbio->inode_offset << 9,
658 "data write error: %s",
659 bch2_blk_status_to_str(bio->bi_status))) {
660 set_bit(wbio->dev, op->failed.d);
661 op->flags |= BCH_WRITE_IO_ERROR;
662 }
663
664 if (wbio->nocow) {
665 bch2_bucket_nocow_unlock(&c->nocow_locks,
666 POS(ca->dev_idx, wbio->nocow_bucket),
667 BUCKET_NOCOW_LOCK_UPDATE);
668 set_bit(wbio->dev, op->devs_need_flush->d);
669 }
670
671 if (wbio->have_ioref) {
672 bch2_latency_acct(ca, wbio->submit_time, WRITE);
673 percpu_ref_put(&ca->io_ref);
674 }
675
676 if (wbio->bounce)
677 bch2_bio_free_pages_pool(c, bio);
678
679 if (wbio->put_bio)
680 bio_put(bio);
681
682 if (parent)
683 bio_endio(&parent->bio);
684 else
685 closure_put(cl);
686 }
687
init_append_extent(struct bch_write_op * op,struct write_point * wp,struct bversion version,struct bch_extent_crc_unpacked crc)688 static void init_append_extent(struct bch_write_op *op,
689 struct write_point *wp,
690 struct bversion version,
691 struct bch_extent_crc_unpacked crc)
692 {
693 struct bkey_i_extent *e;
694
695 op->pos.offset += crc.uncompressed_size;
696
697 e = bkey_extent_init(op->insert_keys.top);
698 e->k.p = op->pos;
699 e->k.size = crc.uncompressed_size;
700 e->k.bversion = version;
701
702 if (crc.csum_type ||
703 crc.compression_type ||
704 crc.nonce)
705 bch2_extent_crc_append(&e->k_i, crc);
706
707 bch2_alloc_sectors_append_ptrs_inlined(op->c, wp, &e->k_i, crc.compressed_size,
708 op->flags & BCH_WRITE_CACHED);
709
710 bch2_keylist_push(&op->insert_keys);
711 }
712
bch2_write_bio_alloc(struct bch_fs * c,struct write_point * wp,struct bio * src,bool * page_alloc_failed,void * buf)713 static struct bio *bch2_write_bio_alloc(struct bch_fs *c,
714 struct write_point *wp,
715 struct bio *src,
716 bool *page_alloc_failed,
717 void *buf)
718 {
719 struct bch_write_bio *wbio;
720 struct bio *bio;
721 unsigned output_available =
722 min(wp->sectors_free << 9, src->bi_iter.bi_size);
723 unsigned pages = DIV_ROUND_UP(output_available +
724 (buf
725 ? ((unsigned long) buf & (PAGE_SIZE - 1))
726 : 0), PAGE_SIZE);
727
728 pages = min(pages, BIO_MAX_VECS);
729
730 bio = bio_alloc_bioset(NULL, pages, 0,
731 GFP_NOFS, &c->bio_write);
732 wbio = wbio_init(bio);
733 wbio->put_bio = true;
734 /* copy WRITE_SYNC flag */
735 wbio->bio.bi_opf = src->bi_opf;
736
737 if (buf) {
738 bch2_bio_map(bio, buf, output_available);
739 return bio;
740 }
741
742 wbio->bounce = true;
743
744 /*
745 * We can't use mempool for more than c->sb.encoded_extent_max
746 * worth of pages, but we'd like to allocate more if we can:
747 */
748 bch2_bio_alloc_pages_pool(c, bio,
749 min_t(unsigned, output_available,
750 c->opts.encoded_extent_max));
751
752 if (bio->bi_iter.bi_size < output_available)
753 *page_alloc_failed =
754 bch2_bio_alloc_pages(bio,
755 output_available -
756 bio->bi_iter.bi_size,
757 GFP_NOFS) != 0;
758
759 return bio;
760 }
761
bch2_write_rechecksum(struct bch_fs * c,struct bch_write_op * op,unsigned new_csum_type)762 static int bch2_write_rechecksum(struct bch_fs *c,
763 struct bch_write_op *op,
764 unsigned new_csum_type)
765 {
766 struct bio *bio = &op->wbio.bio;
767 struct bch_extent_crc_unpacked new_crc;
768 int ret;
769
770 /* bch2_rechecksum_bio() can't encrypt or decrypt data: */
771
772 if (bch2_csum_type_is_encryption(op->crc.csum_type) !=
773 bch2_csum_type_is_encryption(new_csum_type))
774 new_csum_type = op->crc.csum_type;
775
776 ret = bch2_rechecksum_bio(c, bio, op->version, op->crc,
777 NULL, &new_crc,
778 op->crc.offset, op->crc.live_size,
779 new_csum_type);
780 if (ret)
781 return ret;
782
783 bio_advance(bio, op->crc.offset << 9);
784 bio->bi_iter.bi_size = op->crc.live_size << 9;
785 op->crc = new_crc;
786 return 0;
787 }
788
bch2_write_decrypt(struct bch_write_op * op)789 static int bch2_write_decrypt(struct bch_write_op *op)
790 {
791 struct bch_fs *c = op->c;
792 struct nonce nonce = extent_nonce(op->version, op->crc);
793 struct bch_csum csum;
794 int ret;
795
796 if (!bch2_csum_type_is_encryption(op->crc.csum_type))
797 return 0;
798
799 /*
800 * If we need to decrypt data in the write path, we'll no longer be able
801 * to verify the existing checksum (poly1305 mac, in this case) after
802 * it's decrypted - this is the last point we'll be able to reverify the
803 * checksum:
804 */
805 csum = bch2_checksum_bio(c, op->crc.csum_type, nonce, &op->wbio.bio);
806 if (bch2_crc_cmp(op->crc.csum, csum) && !c->opts.no_data_io)
807 return -EIO;
808
809 ret = bch2_encrypt_bio(c, op->crc.csum_type, nonce, &op->wbio.bio);
810 op->crc.csum_type = 0;
811 op->crc.csum = (struct bch_csum) { 0, 0 };
812 return ret;
813 }
814
815 static enum prep_encoded_ret {
816 PREP_ENCODED_OK,
817 PREP_ENCODED_ERR,
818 PREP_ENCODED_CHECKSUM_ERR,
819 PREP_ENCODED_DO_WRITE,
bch2_write_prep_encoded_data(struct bch_write_op * op,struct write_point * wp)820 } bch2_write_prep_encoded_data(struct bch_write_op *op, struct write_point *wp)
821 {
822 struct bch_fs *c = op->c;
823 struct bio *bio = &op->wbio.bio;
824
825 if (!(op->flags & BCH_WRITE_DATA_ENCODED))
826 return PREP_ENCODED_OK;
827
828 BUG_ON(bio_sectors(bio) != op->crc.compressed_size);
829
830 /* Can we just write the entire extent as is? */
831 if (op->crc.uncompressed_size == op->crc.live_size &&
832 op->crc.uncompressed_size <= c->opts.encoded_extent_max >> 9 &&
833 op->crc.compressed_size <= wp->sectors_free &&
834 (op->crc.compression_type == bch2_compression_opt_to_type(op->compression_opt) ||
835 op->incompressible)) {
836 if (!crc_is_compressed(op->crc) &&
837 op->csum_type != op->crc.csum_type &&
838 bch2_write_rechecksum(c, op, op->csum_type) &&
839 !c->opts.no_data_io)
840 return PREP_ENCODED_CHECKSUM_ERR;
841
842 return PREP_ENCODED_DO_WRITE;
843 }
844
845 /*
846 * If the data is compressed and we couldn't write the entire extent as
847 * is, we have to decompress it:
848 */
849 if (crc_is_compressed(op->crc)) {
850 struct bch_csum csum;
851
852 if (bch2_write_decrypt(op))
853 return PREP_ENCODED_CHECKSUM_ERR;
854
855 /* Last point we can still verify checksum: */
856 csum = bch2_checksum_bio(c, op->crc.csum_type,
857 extent_nonce(op->version, op->crc),
858 bio);
859 if (bch2_crc_cmp(op->crc.csum, csum) && !c->opts.no_data_io)
860 return PREP_ENCODED_CHECKSUM_ERR;
861
862 if (bch2_bio_uncompress_inplace(c, bio, &op->crc))
863 return PREP_ENCODED_ERR;
864 }
865
866 /*
867 * No longer have compressed data after this point - data might be
868 * encrypted:
869 */
870
871 /*
872 * If the data is checksummed and we're only writing a subset,
873 * rechecksum and adjust bio to point to currently live data:
874 */
875 if ((op->crc.live_size != op->crc.uncompressed_size ||
876 op->crc.csum_type != op->csum_type) &&
877 bch2_write_rechecksum(c, op, op->csum_type) &&
878 !c->opts.no_data_io)
879 return PREP_ENCODED_CHECKSUM_ERR;
880
881 /*
882 * If we want to compress the data, it has to be decrypted:
883 */
884 if ((op->compression_opt ||
885 bch2_csum_type_is_encryption(op->crc.csum_type) !=
886 bch2_csum_type_is_encryption(op->csum_type)) &&
887 bch2_write_decrypt(op))
888 return PREP_ENCODED_CHECKSUM_ERR;
889
890 return PREP_ENCODED_OK;
891 }
892
bch2_write_extent(struct bch_write_op * op,struct write_point * wp,struct bio ** _dst)893 static int bch2_write_extent(struct bch_write_op *op, struct write_point *wp,
894 struct bio **_dst)
895 {
896 struct bch_fs *c = op->c;
897 struct bio *src = &op->wbio.bio, *dst = src;
898 struct bvec_iter saved_iter;
899 void *ec_buf;
900 unsigned total_output = 0, total_input = 0;
901 bool bounce = false;
902 bool page_alloc_failed = false;
903 int ret, more = 0;
904
905 BUG_ON(!bio_sectors(src));
906
907 ec_buf = bch2_writepoint_ec_buf(c, wp);
908
909 switch (bch2_write_prep_encoded_data(op, wp)) {
910 case PREP_ENCODED_OK:
911 break;
912 case PREP_ENCODED_ERR:
913 ret = -EIO;
914 goto err;
915 case PREP_ENCODED_CHECKSUM_ERR:
916 goto csum_err;
917 case PREP_ENCODED_DO_WRITE:
918 /* XXX look for bug here */
919 if (ec_buf) {
920 dst = bch2_write_bio_alloc(c, wp, src,
921 &page_alloc_failed,
922 ec_buf);
923 bio_copy_data(dst, src);
924 bounce = true;
925 }
926 init_append_extent(op, wp, op->version, op->crc);
927 goto do_write;
928 }
929
930 if (ec_buf ||
931 op->compression_opt ||
932 (op->csum_type &&
933 !(op->flags & BCH_WRITE_PAGES_STABLE)) ||
934 (bch2_csum_type_is_encryption(op->csum_type) &&
935 !(op->flags & BCH_WRITE_PAGES_OWNED))) {
936 dst = bch2_write_bio_alloc(c, wp, src,
937 &page_alloc_failed,
938 ec_buf);
939 bounce = true;
940 }
941
942 saved_iter = dst->bi_iter;
943
944 do {
945 struct bch_extent_crc_unpacked crc = { 0 };
946 struct bversion version = op->version;
947 size_t dst_len = 0, src_len = 0;
948
949 if (page_alloc_failed &&
950 dst->bi_iter.bi_size < (wp->sectors_free << 9) &&
951 dst->bi_iter.bi_size < c->opts.encoded_extent_max)
952 break;
953
954 BUG_ON(op->compression_opt &&
955 (op->flags & BCH_WRITE_DATA_ENCODED) &&
956 bch2_csum_type_is_encryption(op->crc.csum_type));
957 BUG_ON(op->compression_opt && !bounce);
958
959 crc.compression_type = op->incompressible
960 ? BCH_COMPRESSION_TYPE_incompressible
961 : op->compression_opt
962 ? bch2_bio_compress(c, dst, &dst_len, src, &src_len,
963 op->compression_opt)
964 : 0;
965 if (!crc_is_compressed(crc)) {
966 dst_len = min(dst->bi_iter.bi_size, src->bi_iter.bi_size);
967 dst_len = min_t(unsigned, dst_len, wp->sectors_free << 9);
968
969 if (op->csum_type)
970 dst_len = min_t(unsigned, dst_len,
971 c->opts.encoded_extent_max);
972
973 if (bounce) {
974 swap(dst->bi_iter.bi_size, dst_len);
975 bio_copy_data(dst, src);
976 swap(dst->bi_iter.bi_size, dst_len);
977 }
978
979 src_len = dst_len;
980 }
981
982 BUG_ON(!src_len || !dst_len);
983
984 if (bch2_csum_type_is_encryption(op->csum_type)) {
985 if (bversion_zero(version)) {
986 version.lo = atomic64_inc_return(&c->key_version);
987 } else {
988 crc.nonce = op->nonce;
989 op->nonce += src_len >> 9;
990 }
991 }
992
993 if ((op->flags & BCH_WRITE_DATA_ENCODED) &&
994 !crc_is_compressed(crc) &&
995 bch2_csum_type_is_encryption(op->crc.csum_type) ==
996 bch2_csum_type_is_encryption(op->csum_type)) {
997 u8 compression_type = crc.compression_type;
998 u16 nonce = crc.nonce;
999 /*
1000 * Note: when we're using rechecksum(), we need to be
1001 * checksumming @src because it has all the data our
1002 * existing checksum covers - if we bounced (because we
1003 * were trying to compress), @dst will only have the
1004 * part of the data the new checksum will cover.
1005 *
1006 * But normally we want to be checksumming post bounce,
1007 * because part of the reason for bouncing is so the
1008 * data can't be modified (by userspace) while it's in
1009 * flight.
1010 */
1011 if (bch2_rechecksum_bio(c, src, version, op->crc,
1012 &crc, &op->crc,
1013 src_len >> 9,
1014 bio_sectors(src) - (src_len >> 9),
1015 op->csum_type))
1016 goto csum_err;
1017 /*
1018 * rchecksum_bio sets compression_type on crc from op->crc,
1019 * this isn't always correct as sometimes we're changing
1020 * an extent from uncompressed to incompressible.
1021 */
1022 crc.compression_type = compression_type;
1023 crc.nonce = nonce;
1024 } else {
1025 if ((op->flags & BCH_WRITE_DATA_ENCODED) &&
1026 bch2_rechecksum_bio(c, src, version, op->crc,
1027 NULL, &op->crc,
1028 src_len >> 9,
1029 bio_sectors(src) - (src_len >> 9),
1030 op->crc.csum_type))
1031 goto csum_err;
1032
1033 crc.compressed_size = dst_len >> 9;
1034 crc.uncompressed_size = src_len >> 9;
1035 crc.live_size = src_len >> 9;
1036
1037 swap(dst->bi_iter.bi_size, dst_len);
1038 ret = bch2_encrypt_bio(c, op->csum_type,
1039 extent_nonce(version, crc), dst);
1040 if (ret)
1041 goto err;
1042
1043 crc.csum = bch2_checksum_bio(c, op->csum_type,
1044 extent_nonce(version, crc), dst);
1045 crc.csum_type = op->csum_type;
1046 swap(dst->bi_iter.bi_size, dst_len);
1047 }
1048
1049 init_append_extent(op, wp, version, crc);
1050
1051 if (dst != src)
1052 bio_advance(dst, dst_len);
1053 bio_advance(src, src_len);
1054 total_output += dst_len;
1055 total_input += src_len;
1056 } while (dst->bi_iter.bi_size &&
1057 src->bi_iter.bi_size &&
1058 wp->sectors_free &&
1059 !bch2_keylist_realloc(&op->insert_keys,
1060 op->inline_keys,
1061 ARRAY_SIZE(op->inline_keys),
1062 BKEY_EXTENT_U64s_MAX));
1063
1064 more = src->bi_iter.bi_size != 0;
1065
1066 dst->bi_iter = saved_iter;
1067
1068 if (dst == src && more) {
1069 BUG_ON(total_output != total_input);
1070
1071 dst = bio_split(src, total_input >> 9,
1072 GFP_NOFS, &c->bio_write);
1073 wbio_init(dst)->put_bio = true;
1074 /* copy WRITE_SYNC flag */
1075 dst->bi_opf = src->bi_opf;
1076 }
1077
1078 dst->bi_iter.bi_size = total_output;
1079 do_write:
1080 *_dst = dst;
1081 return more;
1082 csum_err:
1083 bch_err_inum_offset_ratelimited(c,
1084 op->pos.inode,
1085 op->pos.offset << 9,
1086 "%s write error: error verifying existing checksum while rewriting existing data (memory corruption?)",
1087 op->flags & BCH_WRITE_MOVE ? "move" : "user");
1088 ret = -EIO;
1089 err:
1090 if (to_wbio(dst)->bounce)
1091 bch2_bio_free_pages_pool(c, dst);
1092 if (to_wbio(dst)->put_bio)
1093 bio_put(dst);
1094
1095 return ret;
1096 }
1097
bch2_extent_is_writeable(struct bch_write_op * op,struct bkey_s_c k)1098 static bool bch2_extent_is_writeable(struct bch_write_op *op,
1099 struct bkey_s_c k)
1100 {
1101 struct bch_fs *c = op->c;
1102 struct bkey_s_c_extent e;
1103 struct extent_ptr_decoded p;
1104 const union bch_extent_entry *entry;
1105 unsigned replicas = 0;
1106
1107 if (k.k->type != KEY_TYPE_extent)
1108 return false;
1109
1110 e = bkey_s_c_to_extent(k);
1111
1112 rcu_read_lock();
1113 extent_for_each_ptr_decode(e, p, entry) {
1114 if (crc_is_encoded(p.crc) || p.has_ec) {
1115 rcu_read_unlock();
1116 return false;
1117 }
1118
1119 replicas += bch2_extent_ptr_durability(c, &p);
1120 }
1121 rcu_read_unlock();
1122
1123 return replicas >= op->opts.data_replicas;
1124 }
1125
bch2_nocow_write_convert_one_unwritten(struct btree_trans * trans,struct btree_iter * iter,struct bkey_i * orig,struct bkey_s_c k,u64 new_i_size)1126 static int bch2_nocow_write_convert_one_unwritten(struct btree_trans *trans,
1127 struct btree_iter *iter,
1128 struct bkey_i *orig,
1129 struct bkey_s_c k,
1130 u64 new_i_size)
1131 {
1132 if (!bch2_extents_match(bkey_i_to_s_c(orig), k)) {
1133 /* trace this */
1134 return 0;
1135 }
1136
1137 struct bkey_i *new = bch2_bkey_make_mut_noupdate(trans, k);
1138 int ret = PTR_ERR_OR_ZERO(new);
1139 if (ret)
1140 return ret;
1141
1142 bch2_cut_front(bkey_start_pos(&orig->k), new);
1143 bch2_cut_back(orig->k.p, new);
1144
1145 struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(new));
1146 bkey_for_each_ptr(ptrs, ptr)
1147 ptr->unwritten = 0;
1148
1149 /*
1150 * Note that we're not calling bch2_subvol_get_snapshot() in this path -
1151 * that was done when we kicked off the write, and here it's important
1152 * that we update the extent that we wrote to - even if a snapshot has
1153 * since been created. The write is still outstanding, so we're ok
1154 * w.r.t. snapshot atomicity:
1155 */
1156 return bch2_extent_update_i_size_sectors(trans, iter,
1157 min(new->k.p.offset << 9, new_i_size), 0) ?:
1158 bch2_trans_update(trans, iter, new,
1159 BTREE_UPDATE_internal_snapshot_node);
1160 }
1161
bch2_nocow_write_convert_unwritten(struct bch_write_op * op)1162 static void bch2_nocow_write_convert_unwritten(struct bch_write_op *op)
1163 {
1164 struct bch_fs *c = op->c;
1165 struct btree_trans *trans = bch2_trans_get(c);
1166
1167 for_each_keylist_key(&op->insert_keys, orig) {
1168 int ret = for_each_btree_key_upto_commit(trans, iter, BTREE_ID_extents,
1169 bkey_start_pos(&orig->k), orig->k.p,
1170 BTREE_ITER_intent, k,
1171 NULL, NULL, BCH_TRANS_COMMIT_no_enospc, ({
1172 bch2_nocow_write_convert_one_unwritten(trans, &iter, orig, k, op->new_i_size);
1173 }));
1174
1175 if (ret && !bch2_err_matches(ret, EROFS)) {
1176 struct bkey_i *insert = bch2_keylist_front(&op->insert_keys);
1177
1178 bch_err_inum_offset_ratelimited(c,
1179 insert->k.p.inode, insert->k.p.offset << 9,
1180 "%s write error while doing btree update: %s",
1181 op->flags & BCH_WRITE_MOVE ? "move" : "user",
1182 bch2_err_str(ret));
1183 }
1184
1185 if (ret) {
1186 op->error = ret;
1187 break;
1188 }
1189 }
1190
1191 bch2_trans_put(trans);
1192 }
1193
__bch2_nocow_write_done(struct bch_write_op * op)1194 static void __bch2_nocow_write_done(struct bch_write_op *op)
1195 {
1196 if (unlikely(op->flags & BCH_WRITE_IO_ERROR)) {
1197 op->error = -EIO;
1198 } else if (unlikely(op->flags & BCH_WRITE_CONVERT_UNWRITTEN))
1199 bch2_nocow_write_convert_unwritten(op);
1200 }
1201
CLOSURE_CALLBACK(bch2_nocow_write_done)1202 static CLOSURE_CALLBACK(bch2_nocow_write_done)
1203 {
1204 closure_type(op, struct bch_write_op, cl);
1205
1206 __bch2_nocow_write_done(op);
1207 bch2_write_done(cl);
1208 }
1209
1210 struct bucket_to_lock {
1211 struct bpos b;
1212 unsigned gen;
1213 struct nocow_lock_bucket *l;
1214 };
1215
bch2_nocow_write(struct bch_write_op * op)1216 static void bch2_nocow_write(struct bch_write_op *op)
1217 {
1218 struct bch_fs *c = op->c;
1219 struct btree_trans *trans;
1220 struct btree_iter iter;
1221 struct bkey_s_c k;
1222 DARRAY_PREALLOCATED(struct bucket_to_lock, 3) buckets;
1223 u32 snapshot;
1224 struct bucket_to_lock *stale_at;
1225 int stale, ret;
1226
1227 if (op->flags & BCH_WRITE_MOVE)
1228 return;
1229
1230 darray_init(&buckets);
1231 trans = bch2_trans_get(c);
1232 retry:
1233 bch2_trans_begin(trans);
1234
1235 ret = bch2_subvolume_get_snapshot(trans, op->subvol, &snapshot);
1236 if (unlikely(ret))
1237 goto err;
1238
1239 bch2_trans_iter_init(trans, &iter, BTREE_ID_extents,
1240 SPOS(op->pos.inode, op->pos.offset, snapshot),
1241 BTREE_ITER_slots);
1242 while (1) {
1243 struct bio *bio = &op->wbio.bio;
1244
1245 buckets.nr = 0;
1246
1247 ret = bch2_trans_relock(trans);
1248 if (ret)
1249 break;
1250
1251 k = bch2_btree_iter_peek_slot(&iter);
1252 ret = bkey_err(k);
1253 if (ret)
1254 break;
1255
1256 /* fall back to normal cow write path? */
1257 if (unlikely(k.k->p.snapshot != snapshot ||
1258 !bch2_extent_is_writeable(op, k)))
1259 break;
1260
1261 if (bch2_keylist_realloc(&op->insert_keys,
1262 op->inline_keys,
1263 ARRAY_SIZE(op->inline_keys),
1264 k.k->u64s))
1265 break;
1266
1267 /* Get iorefs before dropping btree locks: */
1268 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1269 bkey_for_each_ptr(ptrs, ptr) {
1270 struct bch_dev *ca = bch2_dev_get_ioref(c, ptr->dev, WRITE);
1271 if (unlikely(!ca))
1272 goto err_get_ioref;
1273
1274 struct bpos b = PTR_BUCKET_POS(ca, ptr);
1275 struct nocow_lock_bucket *l =
1276 bucket_nocow_lock(&c->nocow_locks, bucket_to_u64(b));
1277 prefetch(l);
1278
1279 /* XXX allocating memory with btree locks held - rare */
1280 darray_push_gfp(&buckets, ((struct bucket_to_lock) {
1281 .b = b, .gen = ptr->gen, .l = l,
1282 }), GFP_KERNEL|__GFP_NOFAIL);
1283
1284 if (ptr->unwritten)
1285 op->flags |= BCH_WRITE_CONVERT_UNWRITTEN;
1286 }
1287
1288 /* Unlock before taking nocow locks, doing IO: */
1289 bkey_reassemble(op->insert_keys.top, k);
1290 bch2_trans_unlock(trans);
1291
1292 bch2_cut_front(op->pos, op->insert_keys.top);
1293 if (op->flags & BCH_WRITE_CONVERT_UNWRITTEN)
1294 bch2_cut_back(POS(op->pos.inode, op->pos.offset + bio_sectors(bio)), op->insert_keys.top);
1295
1296 darray_for_each(buckets, i) {
1297 struct bch_dev *ca = bch2_dev_have_ref(c, i->b.inode);
1298
1299 __bch2_bucket_nocow_lock(&c->nocow_locks, i->l,
1300 bucket_to_u64(i->b),
1301 BUCKET_NOCOW_LOCK_UPDATE);
1302
1303 int gen = bucket_gen_get(ca, i->b.offset);
1304 stale = gen < 0 ? gen : gen_after(gen, i->gen);
1305 if (unlikely(stale)) {
1306 stale_at = i;
1307 goto err_bucket_stale;
1308 }
1309 }
1310
1311 bio = &op->wbio.bio;
1312 if (k.k->p.offset < op->pos.offset + bio_sectors(bio)) {
1313 bio = bio_split(bio, k.k->p.offset - op->pos.offset,
1314 GFP_KERNEL, &c->bio_write);
1315 wbio_init(bio)->put_bio = true;
1316 bio->bi_opf = op->wbio.bio.bi_opf;
1317 } else {
1318 op->flags |= BCH_WRITE_SUBMITTED;
1319 }
1320
1321 op->pos.offset += bio_sectors(bio);
1322 op->written += bio_sectors(bio);
1323
1324 bio->bi_end_io = bch2_write_endio;
1325 bio->bi_private = &op->cl;
1326 bio->bi_opf |= REQ_OP_WRITE;
1327 closure_get(&op->cl);
1328 bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user,
1329 op->insert_keys.top, true);
1330
1331 bch2_keylist_push(&op->insert_keys);
1332 if (op->flags & BCH_WRITE_SUBMITTED)
1333 break;
1334 bch2_btree_iter_advance(&iter);
1335 }
1336 out:
1337 bch2_trans_iter_exit(trans, &iter);
1338 err:
1339 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
1340 goto retry;
1341
1342 if (ret) {
1343 bch_err_inum_offset_ratelimited(c,
1344 op->pos.inode, op->pos.offset << 9,
1345 "%s: btree lookup error %s", __func__, bch2_err_str(ret));
1346 op->error = ret;
1347 op->flags |= BCH_WRITE_SUBMITTED;
1348 }
1349
1350 bch2_trans_put(trans);
1351 darray_exit(&buckets);
1352
1353 /* fallback to cow write path? */
1354 if (!(op->flags & BCH_WRITE_SUBMITTED)) {
1355 closure_sync(&op->cl);
1356 __bch2_nocow_write_done(op);
1357 op->insert_keys.top = op->insert_keys.keys;
1358 } else if (op->flags & BCH_WRITE_SYNC) {
1359 closure_sync(&op->cl);
1360 bch2_nocow_write_done(&op->cl.work);
1361 } else {
1362 /*
1363 * XXX
1364 * needs to run out of process context because ei_quota_lock is
1365 * a mutex
1366 */
1367 continue_at(&op->cl, bch2_nocow_write_done, index_update_wq(op));
1368 }
1369 return;
1370 err_get_ioref:
1371 darray_for_each(buckets, i)
1372 percpu_ref_put(&bch2_dev_have_ref(c, i->b.inode)->io_ref);
1373
1374 /* Fall back to COW path: */
1375 goto out;
1376 err_bucket_stale:
1377 darray_for_each(buckets, i) {
1378 bch2_bucket_nocow_unlock(&c->nocow_locks, i->b, BUCKET_NOCOW_LOCK_UPDATE);
1379 if (i == stale_at)
1380 break;
1381 }
1382
1383 struct printbuf buf = PRINTBUF;
1384 if (bch2_fs_inconsistent_on(stale < 0, c,
1385 "pointer to invalid bucket in nocow path on device %llu\n %s",
1386 stale_at->b.inode,
1387 (bch2_bkey_val_to_text(&buf, c, k), buf.buf))) {
1388 ret = -EIO;
1389 } else {
1390 /* We can retry this: */
1391 ret = -BCH_ERR_transaction_restart;
1392 }
1393 printbuf_exit(&buf);
1394
1395 goto err_get_ioref;
1396 }
1397
__bch2_write(struct bch_write_op * op)1398 static void __bch2_write(struct bch_write_op *op)
1399 {
1400 struct bch_fs *c = op->c;
1401 struct write_point *wp = NULL;
1402 struct bio *bio = NULL;
1403 unsigned nofs_flags;
1404 int ret;
1405
1406 nofs_flags = memalloc_nofs_save();
1407
1408 if (unlikely(op->opts.nocow && c->opts.nocow_enabled)) {
1409 bch2_nocow_write(op);
1410 if (op->flags & BCH_WRITE_SUBMITTED)
1411 goto out_nofs_restore;
1412 }
1413 again:
1414 memset(&op->failed, 0, sizeof(op->failed));
1415
1416 do {
1417 struct bkey_i *key_to_write;
1418 unsigned key_to_write_offset = op->insert_keys.top_p -
1419 op->insert_keys.keys_p;
1420
1421 /* +1 for possible cache device: */
1422 if (op->open_buckets.nr + op->nr_replicas + 1 >
1423 ARRAY_SIZE(op->open_buckets.v))
1424 break;
1425
1426 if (bch2_keylist_realloc(&op->insert_keys,
1427 op->inline_keys,
1428 ARRAY_SIZE(op->inline_keys),
1429 BKEY_EXTENT_U64s_MAX))
1430 break;
1431
1432 /*
1433 * The copygc thread is now global, which means it's no longer
1434 * freeing up space on specific disks, which means that
1435 * allocations for specific disks may hang arbitrarily long:
1436 */
1437 ret = bch2_trans_run(c, lockrestart_do(trans,
1438 bch2_alloc_sectors_start_trans(trans,
1439 op->target,
1440 op->opts.erasure_code && !(op->flags & BCH_WRITE_CACHED),
1441 op->write_point,
1442 &op->devs_have,
1443 op->nr_replicas,
1444 op->nr_replicas_required,
1445 op->watermark,
1446 op->flags,
1447 &op->cl, &wp)));
1448 if (unlikely(ret)) {
1449 if (bch2_err_matches(ret, BCH_ERR_operation_blocked))
1450 break;
1451
1452 goto err;
1453 }
1454
1455 EBUG_ON(!wp);
1456
1457 bch2_open_bucket_get(c, wp, &op->open_buckets);
1458 ret = bch2_write_extent(op, wp, &bio);
1459
1460 bch2_alloc_sectors_done_inlined(c, wp);
1461 err:
1462 if (ret <= 0) {
1463 op->flags |= BCH_WRITE_SUBMITTED;
1464
1465 if (ret < 0) {
1466 if (!(op->flags & BCH_WRITE_ALLOC_NOWAIT))
1467 bch_err_inum_offset_ratelimited(c,
1468 op->pos.inode,
1469 op->pos.offset << 9,
1470 "%s(): %s error: %s", __func__,
1471 op->flags & BCH_WRITE_MOVE ? "move" : "user",
1472 bch2_err_str(ret));
1473 op->error = ret;
1474 break;
1475 }
1476 }
1477
1478 bio->bi_end_io = bch2_write_endio;
1479 bio->bi_private = &op->cl;
1480 bio->bi_opf |= REQ_OP_WRITE;
1481
1482 closure_get(bio->bi_private);
1483
1484 key_to_write = (void *) (op->insert_keys.keys_p +
1485 key_to_write_offset);
1486
1487 bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user,
1488 key_to_write, false);
1489 } while (ret);
1490
1491 /*
1492 * Sync or no?
1493 *
1494 * If we're running asynchronously, wne may still want to block
1495 * synchronously here if we weren't able to submit all of the IO at
1496 * once, as that signals backpressure to the caller.
1497 */
1498 if ((op->flags & BCH_WRITE_SYNC) ||
1499 (!(op->flags & BCH_WRITE_SUBMITTED) &&
1500 !(op->flags & BCH_WRITE_IN_WORKER))) {
1501 bch2_wait_on_allocator(c, &op->cl);
1502
1503 __bch2_write_index(op);
1504
1505 if (!(op->flags & BCH_WRITE_SUBMITTED))
1506 goto again;
1507 bch2_write_done(&op->cl);
1508 } else {
1509 bch2_write_queue(op, wp);
1510 continue_at(&op->cl, bch2_write_index, NULL);
1511 }
1512 out_nofs_restore:
1513 memalloc_nofs_restore(nofs_flags);
1514 }
1515
bch2_write_data_inline(struct bch_write_op * op,unsigned data_len)1516 static void bch2_write_data_inline(struct bch_write_op *op, unsigned data_len)
1517 {
1518 struct bio *bio = &op->wbio.bio;
1519 struct bvec_iter iter;
1520 struct bkey_i_inline_data *id;
1521 unsigned sectors;
1522 int ret;
1523
1524 memset(&op->failed, 0, sizeof(op->failed));
1525
1526 op->flags |= BCH_WRITE_WROTE_DATA_INLINE;
1527 op->flags |= BCH_WRITE_SUBMITTED;
1528
1529 bch2_check_set_feature(op->c, BCH_FEATURE_inline_data);
1530
1531 ret = bch2_keylist_realloc(&op->insert_keys, op->inline_keys,
1532 ARRAY_SIZE(op->inline_keys),
1533 BKEY_U64s + DIV_ROUND_UP(data_len, 8));
1534 if (ret) {
1535 op->error = ret;
1536 goto err;
1537 }
1538
1539 sectors = bio_sectors(bio);
1540 op->pos.offset += sectors;
1541
1542 id = bkey_inline_data_init(op->insert_keys.top);
1543 id->k.p = op->pos;
1544 id->k.bversion = op->version;
1545 id->k.size = sectors;
1546
1547 iter = bio->bi_iter;
1548 iter.bi_size = data_len;
1549 memcpy_from_bio(id->v.data, bio, iter);
1550
1551 while (data_len & 7)
1552 id->v.data[data_len++] = '\0';
1553 set_bkey_val_bytes(&id->k, data_len);
1554 bch2_keylist_push(&op->insert_keys);
1555
1556 __bch2_write_index(op);
1557 err:
1558 bch2_write_done(&op->cl);
1559 }
1560
1561 /**
1562 * bch2_write() - handle a write to a cache device or flash only volume
1563 * @cl: &bch_write_op->cl
1564 *
1565 * This is the starting point for any data to end up in a cache device; it could
1566 * be from a normal write, or a writeback write, or a write to a flash only
1567 * volume - it's also used by the moving garbage collector to compact data in
1568 * mostly empty buckets.
1569 *
1570 * It first writes the data to the cache, creating a list of keys to be inserted
1571 * (if the data won't fit in a single open bucket, there will be multiple keys);
1572 * after the data is written it calls bch_journal, and after the keys have been
1573 * added to the next journal write they're inserted into the btree.
1574 *
1575 * If op->discard is true, instead of inserting the data it invalidates the
1576 * region of the cache represented by op->bio and op->inode.
1577 */
CLOSURE_CALLBACK(bch2_write)1578 CLOSURE_CALLBACK(bch2_write)
1579 {
1580 closure_type(op, struct bch_write_op, cl);
1581 struct bio *bio = &op->wbio.bio;
1582 struct bch_fs *c = op->c;
1583 unsigned data_len;
1584
1585 EBUG_ON(op->cl.parent);
1586 BUG_ON(!op->nr_replicas);
1587 BUG_ON(!op->write_point.v);
1588 BUG_ON(bkey_eq(op->pos, POS_MAX));
1589
1590 if (op->flags & BCH_WRITE_ONLY_SPECIFIED_DEVS)
1591 op->flags |= BCH_WRITE_ALLOC_NOWAIT;
1592
1593 op->nr_replicas_required = min_t(unsigned, op->nr_replicas_required, op->nr_replicas);
1594 op->start_time = local_clock();
1595 bch2_keylist_init(&op->insert_keys, op->inline_keys);
1596 wbio_init(bio)->put_bio = false;
1597
1598 if (bio->bi_iter.bi_size & (c->opts.block_size - 1)) {
1599 bch_err_inum_offset_ratelimited(c,
1600 op->pos.inode,
1601 op->pos.offset << 9,
1602 "%s write error: misaligned write",
1603 op->flags & BCH_WRITE_MOVE ? "move" : "user");
1604 op->error = -EIO;
1605 goto err;
1606 }
1607
1608 if (c->opts.nochanges) {
1609 op->error = -BCH_ERR_erofs_no_writes;
1610 goto err;
1611 }
1612
1613 if (!(op->flags & BCH_WRITE_MOVE) &&
1614 !bch2_write_ref_tryget(c, BCH_WRITE_REF_write)) {
1615 op->error = -BCH_ERR_erofs_no_writes;
1616 goto err;
1617 }
1618
1619 this_cpu_add(c->counters[BCH_COUNTER_io_write], bio_sectors(bio));
1620 bch2_increment_clock(c, bio_sectors(bio), WRITE);
1621
1622 data_len = min_t(u64, bio->bi_iter.bi_size,
1623 op->new_i_size - (op->pos.offset << 9));
1624
1625 if (c->opts.inline_data &&
1626 data_len <= min(block_bytes(c) / 2, 1024U)) {
1627 bch2_write_data_inline(op, data_len);
1628 return;
1629 }
1630
1631 __bch2_write(op);
1632 return;
1633 err:
1634 bch2_disk_reservation_put(c, &op->res);
1635
1636 closure_debug_destroy(&op->cl);
1637 if (op->end_io)
1638 op->end_io(op);
1639 }
1640
1641 static const char * const bch2_write_flags[] = {
1642 #define x(f) #f,
1643 BCH_WRITE_FLAGS()
1644 #undef x
1645 NULL
1646 };
1647
bch2_write_op_to_text(struct printbuf * out,struct bch_write_op * op)1648 void bch2_write_op_to_text(struct printbuf *out, struct bch_write_op *op)
1649 {
1650 prt_str(out, "pos: ");
1651 bch2_bpos_to_text(out, op->pos);
1652 prt_newline(out);
1653 printbuf_indent_add(out, 2);
1654
1655 prt_str(out, "started: ");
1656 bch2_pr_time_units(out, local_clock() - op->start_time);
1657 prt_newline(out);
1658
1659 prt_str(out, "flags: ");
1660 prt_bitflags(out, bch2_write_flags, op->flags);
1661 prt_newline(out);
1662
1663 prt_printf(out, "ref: %u\n", closure_nr_remaining(&op->cl));
1664
1665 printbuf_indent_sub(out, 2);
1666 }
1667
bch2_fs_io_write_exit(struct bch_fs * c)1668 void bch2_fs_io_write_exit(struct bch_fs *c)
1669 {
1670 mempool_exit(&c->bio_bounce_pages);
1671 bioset_exit(&c->replica_set);
1672 bioset_exit(&c->bio_write);
1673 }
1674
bch2_fs_io_write_init(struct bch_fs * c)1675 int bch2_fs_io_write_init(struct bch_fs *c)
1676 {
1677 if (bioset_init(&c->bio_write, 1, offsetof(struct bch_write_bio, bio), BIOSET_NEED_BVECS) ||
1678 bioset_init(&c->replica_set, 4, offsetof(struct bch_write_bio, bio), 0))
1679 return -BCH_ERR_ENOMEM_bio_write_init;
1680
1681 if (mempool_init_page_pool(&c->bio_bounce_pages,
1682 max_t(unsigned,
1683 c->opts.btree_node_size,
1684 c->opts.encoded_extent_max) /
1685 PAGE_SIZE, 0))
1686 return -BCH_ERR_ENOMEM_bio_bounce_pages_init;
1687
1688 return 0;
1689 }
1690