1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com>
4 * (C) Copyright 2007 Novell Inc.
5 */
6
7 #include <linux/pci.h>
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/device.h>
11 #include <linux/mempolicy.h>
12 #include <linux/string.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <linux/sched/isolation.h>
16 #include <linux/cpu.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/suspend.h>
19 #include <linux/kexec.h>
20 #include <linux/of_device.h>
21 #include <linux/acpi.h>
22 #include <linux/dma-map-ops.h>
23 #include <linux/iommu.h>
24 #include "pci.h"
25 #include "pcie/portdrv.h"
26
27 struct pci_dynid {
28 struct list_head node;
29 struct pci_device_id id;
30 };
31
32 /**
33 * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices
34 * @drv: target pci driver
35 * @vendor: PCI vendor ID
36 * @device: PCI device ID
37 * @subvendor: PCI subvendor ID
38 * @subdevice: PCI subdevice ID
39 * @class: PCI class
40 * @class_mask: PCI class mask
41 * @driver_data: private driver data
42 *
43 * Adds a new dynamic pci device ID to this driver and causes the
44 * driver to probe for all devices again. @drv must have been
45 * registered prior to calling this function.
46 *
47 * CONTEXT:
48 * Does GFP_KERNEL allocation.
49 *
50 * RETURNS:
51 * 0 on success, -errno on failure.
52 */
pci_add_dynid(struct pci_driver * drv,unsigned int vendor,unsigned int device,unsigned int subvendor,unsigned int subdevice,unsigned int class,unsigned int class_mask,unsigned long driver_data)53 int pci_add_dynid(struct pci_driver *drv,
54 unsigned int vendor, unsigned int device,
55 unsigned int subvendor, unsigned int subdevice,
56 unsigned int class, unsigned int class_mask,
57 unsigned long driver_data)
58 {
59 struct pci_dynid *dynid;
60
61 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
62 if (!dynid)
63 return -ENOMEM;
64
65 dynid->id.vendor = vendor;
66 dynid->id.device = device;
67 dynid->id.subvendor = subvendor;
68 dynid->id.subdevice = subdevice;
69 dynid->id.class = class;
70 dynid->id.class_mask = class_mask;
71 dynid->id.driver_data = driver_data;
72
73 spin_lock(&drv->dynids.lock);
74 list_add_tail(&dynid->node, &drv->dynids.list);
75 spin_unlock(&drv->dynids.lock);
76
77 return driver_attach(&drv->driver);
78 }
79 EXPORT_SYMBOL_GPL(pci_add_dynid);
80
pci_free_dynids(struct pci_driver * drv)81 static void pci_free_dynids(struct pci_driver *drv)
82 {
83 struct pci_dynid *dynid, *n;
84
85 spin_lock(&drv->dynids.lock);
86 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
87 list_del(&dynid->node);
88 kfree(dynid);
89 }
90 spin_unlock(&drv->dynids.lock);
91 }
92
93 /**
94 * pci_match_id - See if a PCI device matches a given pci_id table
95 * @ids: array of PCI device ID structures to search in
96 * @dev: the PCI device structure to match against.
97 *
98 * Used by a driver to check whether a PCI device is in its list of
99 * supported devices. Returns the matching pci_device_id structure or
100 * %NULL if there is no match.
101 *
102 * Deprecated; don't use this as it will not catch any dynamic IDs
103 * that a driver might want to check for.
104 */
pci_match_id(const struct pci_device_id * ids,struct pci_dev * dev)105 const struct pci_device_id *pci_match_id(const struct pci_device_id *ids,
106 struct pci_dev *dev)
107 {
108 if (ids) {
109 while (ids->vendor || ids->subvendor || ids->class_mask) {
110 if (pci_match_one_device(ids, dev))
111 return ids;
112 ids++;
113 }
114 }
115 return NULL;
116 }
117 EXPORT_SYMBOL(pci_match_id);
118
119 static const struct pci_device_id pci_device_id_any = {
120 .vendor = PCI_ANY_ID,
121 .device = PCI_ANY_ID,
122 .subvendor = PCI_ANY_ID,
123 .subdevice = PCI_ANY_ID,
124 };
125
126 /**
127 * pci_match_device - See if a device matches a driver's list of IDs
128 * @drv: the PCI driver to match against
129 * @dev: the PCI device structure to match against
130 *
131 * Used by a driver to check whether a PCI device is in its list of
132 * supported devices or in the dynids list, which may have been augmented
133 * via the sysfs "new_id" file. Returns the matching pci_device_id
134 * structure or %NULL if there is no match.
135 */
pci_match_device(struct pci_driver * drv,struct pci_dev * dev)136 static const struct pci_device_id *pci_match_device(struct pci_driver *drv,
137 struct pci_dev *dev)
138 {
139 struct pci_dynid *dynid;
140 const struct pci_device_id *found_id = NULL, *ids;
141
142 /* When driver_override is set, only bind to the matching driver */
143 if (dev->driver_override && strcmp(dev->driver_override, drv->name))
144 return NULL;
145
146 /* Look at the dynamic ids first, before the static ones */
147 spin_lock(&drv->dynids.lock);
148 list_for_each_entry(dynid, &drv->dynids.list, node) {
149 if (pci_match_one_device(&dynid->id, dev)) {
150 found_id = &dynid->id;
151 break;
152 }
153 }
154 spin_unlock(&drv->dynids.lock);
155
156 if (found_id)
157 return found_id;
158
159 for (ids = drv->id_table; (found_id = pci_match_id(ids, dev));
160 ids = found_id + 1) {
161 /*
162 * The match table is split based on driver_override.
163 * In case override_only was set, enforce driver_override
164 * matching.
165 */
166 if (found_id->override_only) {
167 if (dev->driver_override)
168 return found_id;
169 } else {
170 return found_id;
171 }
172 }
173
174 /* driver_override will always match, send a dummy id */
175 if (dev->driver_override)
176 return &pci_device_id_any;
177 return NULL;
178 }
179
180 /**
181 * new_id_store - sysfs frontend to pci_add_dynid()
182 * @driver: target device driver
183 * @buf: buffer for scanning device ID data
184 * @count: input size
185 *
186 * Allow PCI IDs to be added to an existing driver via sysfs.
187 */
new_id_store(struct device_driver * driver,const char * buf,size_t count)188 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
189 size_t count)
190 {
191 struct pci_driver *pdrv = to_pci_driver(driver);
192 const struct pci_device_id *ids = pdrv->id_table;
193 u32 vendor, device, subvendor = PCI_ANY_ID,
194 subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
195 unsigned long driver_data = 0;
196 int fields;
197 int retval = 0;
198
199 fields = sscanf(buf, "%x %x %x %x %x %x %lx",
200 &vendor, &device, &subvendor, &subdevice,
201 &class, &class_mask, &driver_data);
202 if (fields < 2)
203 return -EINVAL;
204
205 if (fields != 7) {
206 struct pci_dev *pdev = kzalloc(sizeof(*pdev), GFP_KERNEL);
207 if (!pdev)
208 return -ENOMEM;
209
210 pdev->vendor = vendor;
211 pdev->device = device;
212 pdev->subsystem_vendor = subvendor;
213 pdev->subsystem_device = subdevice;
214 pdev->class = class;
215
216 if (pci_match_device(pdrv, pdev))
217 retval = -EEXIST;
218
219 kfree(pdev);
220
221 if (retval)
222 return retval;
223 }
224
225 /* Only accept driver_data values that match an existing id_table
226 entry */
227 if (ids) {
228 retval = -EINVAL;
229 while (ids->vendor || ids->subvendor || ids->class_mask) {
230 if (driver_data == ids->driver_data) {
231 retval = 0;
232 break;
233 }
234 ids++;
235 }
236 if (retval) /* No match */
237 return retval;
238 }
239
240 retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice,
241 class, class_mask, driver_data);
242 if (retval)
243 return retval;
244 return count;
245 }
246 static DRIVER_ATTR_WO(new_id);
247
248 /**
249 * remove_id_store - remove a PCI device ID from this driver
250 * @driver: target device driver
251 * @buf: buffer for scanning device ID data
252 * @count: input size
253 *
254 * Removes a dynamic pci device ID to this driver.
255 */
remove_id_store(struct device_driver * driver,const char * buf,size_t count)256 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
257 size_t count)
258 {
259 struct pci_dynid *dynid, *n;
260 struct pci_driver *pdrv = to_pci_driver(driver);
261 u32 vendor, device, subvendor = PCI_ANY_ID,
262 subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
263 int fields;
264 size_t retval = -ENODEV;
265
266 fields = sscanf(buf, "%x %x %x %x %x %x",
267 &vendor, &device, &subvendor, &subdevice,
268 &class, &class_mask);
269 if (fields < 2)
270 return -EINVAL;
271
272 spin_lock(&pdrv->dynids.lock);
273 list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) {
274 struct pci_device_id *id = &dynid->id;
275 if ((id->vendor == vendor) &&
276 (id->device == device) &&
277 (subvendor == PCI_ANY_ID || id->subvendor == subvendor) &&
278 (subdevice == PCI_ANY_ID || id->subdevice == subdevice) &&
279 !((id->class ^ class) & class_mask)) {
280 list_del(&dynid->node);
281 kfree(dynid);
282 retval = count;
283 break;
284 }
285 }
286 spin_unlock(&pdrv->dynids.lock);
287
288 return retval;
289 }
290 static DRIVER_ATTR_WO(remove_id);
291
292 static struct attribute *pci_drv_attrs[] = {
293 &driver_attr_new_id.attr,
294 &driver_attr_remove_id.attr,
295 NULL,
296 };
297 ATTRIBUTE_GROUPS(pci_drv);
298
299 struct drv_dev_and_id {
300 struct pci_driver *drv;
301 struct pci_dev *dev;
302 const struct pci_device_id *id;
303 };
304
local_pci_probe(void * _ddi)305 static long local_pci_probe(void *_ddi)
306 {
307 struct drv_dev_and_id *ddi = _ddi;
308 struct pci_dev *pci_dev = ddi->dev;
309 struct pci_driver *pci_drv = ddi->drv;
310 struct device *dev = &pci_dev->dev;
311 int rc;
312
313 /*
314 * Unbound PCI devices are always put in D0, regardless of
315 * runtime PM status. During probe, the device is set to
316 * active and the usage count is incremented. If the driver
317 * supports runtime PM, it should call pm_runtime_put_noidle(),
318 * or any other runtime PM helper function decrementing the usage
319 * count, in its probe routine and pm_runtime_get_noresume() in
320 * its remove routine.
321 */
322 pm_runtime_get_sync(dev);
323 pci_dev->driver = pci_drv;
324 rc = pci_drv->probe(pci_dev, ddi->id);
325 if (!rc)
326 return rc;
327 if (rc < 0) {
328 pci_dev->driver = NULL;
329 pm_runtime_put_sync(dev);
330 return rc;
331 }
332 /*
333 * Probe function should return < 0 for failure, 0 for success
334 * Treat values > 0 as success, but warn.
335 */
336 pci_warn(pci_dev, "Driver probe function unexpectedly returned %d\n",
337 rc);
338 return 0;
339 }
340
pci_physfn_is_probed(struct pci_dev * dev)341 static bool pci_physfn_is_probed(struct pci_dev *dev)
342 {
343 #ifdef CONFIG_PCI_IOV
344 return dev->is_virtfn && dev->physfn->is_probed;
345 #else
346 return false;
347 #endif
348 }
349
pci_call_probe(struct pci_driver * drv,struct pci_dev * dev,const struct pci_device_id * id)350 static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev,
351 const struct pci_device_id *id)
352 {
353 int error, node, cpu;
354 struct drv_dev_and_id ddi = { drv, dev, id };
355
356 /*
357 * Execute driver initialization on node where the device is
358 * attached. This way the driver likely allocates its local memory
359 * on the right node.
360 */
361 node = dev_to_node(&dev->dev);
362 dev->is_probed = 1;
363
364 cpu_hotplug_disable();
365
366 /*
367 * Prevent nesting work_on_cpu() for the case where a Virtual Function
368 * device is probed from work_on_cpu() of the Physical device.
369 */
370 if (node < 0 || node >= MAX_NUMNODES || !node_online(node) ||
371 pci_physfn_is_probed(dev)) {
372 cpu = nr_cpu_ids;
373 } else {
374 cpumask_var_t wq_domain_mask;
375
376 if (!zalloc_cpumask_var(&wq_domain_mask, GFP_KERNEL)) {
377 error = -ENOMEM;
378 goto out;
379 }
380 cpumask_and(wq_domain_mask,
381 housekeeping_cpumask(HK_TYPE_WQ),
382 housekeeping_cpumask(HK_TYPE_DOMAIN));
383
384 cpu = cpumask_any_and(cpumask_of_node(node),
385 wq_domain_mask);
386 free_cpumask_var(wq_domain_mask);
387 }
388
389 if (cpu < nr_cpu_ids)
390 error = work_on_cpu(cpu, local_pci_probe, &ddi);
391 else
392 error = local_pci_probe(&ddi);
393 out:
394 dev->is_probed = 0;
395 cpu_hotplug_enable();
396 return error;
397 }
398
399 /**
400 * __pci_device_probe - check if a driver wants to claim a specific PCI device
401 * @drv: driver to call to check if it wants the PCI device
402 * @pci_dev: PCI device being probed
403 *
404 * returns 0 on success, else error.
405 * side-effect: pci_dev->driver is set to drv when drv claims pci_dev.
406 */
__pci_device_probe(struct pci_driver * drv,struct pci_dev * pci_dev)407 static int __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev)
408 {
409 const struct pci_device_id *id;
410 int error = 0;
411
412 if (drv->probe) {
413 error = -ENODEV;
414
415 id = pci_match_device(drv, pci_dev);
416 if (id)
417 error = pci_call_probe(drv, pci_dev, id);
418 }
419 return error;
420 }
421
422 #ifdef CONFIG_PCI_IOV
pci_device_can_probe(struct pci_dev * pdev)423 static inline bool pci_device_can_probe(struct pci_dev *pdev)
424 {
425 return (!pdev->is_virtfn || pdev->physfn->sriov->drivers_autoprobe ||
426 pdev->driver_override);
427 }
428 #else
pci_device_can_probe(struct pci_dev * pdev)429 static inline bool pci_device_can_probe(struct pci_dev *pdev)
430 {
431 return true;
432 }
433 #endif
434
pci_device_probe(struct device * dev)435 static int pci_device_probe(struct device *dev)
436 {
437 int error;
438 struct pci_dev *pci_dev = to_pci_dev(dev);
439 struct pci_driver *drv = to_pci_driver(dev->driver);
440
441 if (!pci_device_can_probe(pci_dev))
442 return -ENODEV;
443
444 pci_assign_irq(pci_dev);
445
446 error = pcibios_alloc_irq(pci_dev);
447 if (error < 0)
448 return error;
449
450 pci_dev_get(pci_dev);
451 error = __pci_device_probe(drv, pci_dev);
452 if (error) {
453 pcibios_free_irq(pci_dev);
454 pci_dev_put(pci_dev);
455 }
456
457 return error;
458 }
459
pci_device_remove(struct device * dev)460 static void pci_device_remove(struct device *dev)
461 {
462 struct pci_dev *pci_dev = to_pci_dev(dev);
463 struct pci_driver *drv = pci_dev->driver;
464
465 if (drv->remove) {
466 pm_runtime_get_sync(dev);
467 /*
468 * If the driver provides a .runtime_idle() callback and it has
469 * started to run already, it may continue to run in parallel
470 * with the code below, so wait until all of the runtime PM
471 * activity has completed.
472 */
473 pm_runtime_barrier(dev);
474 drv->remove(pci_dev);
475 pm_runtime_put_noidle(dev);
476 }
477 pcibios_free_irq(pci_dev);
478 pci_dev->driver = NULL;
479 pci_iov_remove(pci_dev);
480
481 /* Undo the runtime PM settings in local_pci_probe() */
482 pm_runtime_put_sync(dev);
483
484 /*
485 * If the device is still on, set the power state as "unknown",
486 * since it might change by the next time we load the driver.
487 */
488 if (pci_dev->current_state == PCI_D0)
489 pci_dev->current_state = PCI_UNKNOWN;
490
491 /*
492 * We would love to complain here if pci_dev->is_enabled is set, that
493 * the driver should have called pci_disable_device(), but the
494 * unfortunate fact is there are too many odd BIOS and bridge setups
495 * that don't like drivers doing that all of the time.
496 * Oh well, we can dream of sane hardware when we sleep, no matter how
497 * horrible the crap we have to deal with is when we are awake...
498 */
499
500 pci_dev_put(pci_dev);
501 }
502
pci_device_shutdown(struct device * dev)503 static void pci_device_shutdown(struct device *dev)
504 {
505 struct pci_dev *pci_dev = to_pci_dev(dev);
506 struct pci_driver *drv = pci_dev->driver;
507
508 pm_runtime_resume(dev);
509
510 if (drv && drv->shutdown)
511 drv->shutdown(pci_dev);
512
513 /*
514 * If this is a kexec reboot, turn off Bus Master bit on the
515 * device to tell it to not continue to do DMA. Don't touch
516 * devices in D3cold or unknown states.
517 * If it is not a kexec reboot, firmware will hit the PCI
518 * devices with big hammer and stop their DMA any way.
519 */
520 if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot))
521 pci_clear_master(pci_dev);
522 }
523
524 #ifdef CONFIG_PM_SLEEP
525
526 /* Auxiliary functions used for system resume */
527
528 /**
529 * pci_restore_standard_config - restore standard config registers of PCI device
530 * @pci_dev: PCI device to handle
531 */
pci_restore_standard_config(struct pci_dev * pci_dev)532 static int pci_restore_standard_config(struct pci_dev *pci_dev)
533 {
534 pci_update_current_state(pci_dev, PCI_UNKNOWN);
535
536 if (pci_dev->current_state != PCI_D0) {
537 int error = pci_set_power_state(pci_dev, PCI_D0);
538 if (error)
539 return error;
540 }
541
542 pci_restore_state(pci_dev);
543 pci_pme_restore(pci_dev);
544 return 0;
545 }
546 #endif /* CONFIG_PM_SLEEP */
547
548 #ifdef CONFIG_PM
549
550 /* Auxiliary functions used for system resume and run-time resume */
551
pci_pm_default_resume(struct pci_dev * pci_dev)552 static void pci_pm_default_resume(struct pci_dev *pci_dev)
553 {
554 pci_fixup_device(pci_fixup_resume, pci_dev);
555 pci_enable_wake(pci_dev, PCI_D0, false);
556 }
557
pci_pm_power_up_and_verify_state(struct pci_dev * pci_dev)558 static void pci_pm_power_up_and_verify_state(struct pci_dev *pci_dev)
559 {
560 pci_power_up(pci_dev);
561 pci_update_current_state(pci_dev, PCI_D0);
562 }
563
pci_pm_default_resume_early(struct pci_dev * pci_dev)564 static void pci_pm_default_resume_early(struct pci_dev *pci_dev)
565 {
566 pci_pm_power_up_and_verify_state(pci_dev);
567 pci_restore_state(pci_dev);
568 pci_pme_restore(pci_dev);
569 }
570
pci_pm_bridge_power_up_actions(struct pci_dev * pci_dev)571 static void pci_pm_bridge_power_up_actions(struct pci_dev *pci_dev)
572 {
573 int ret;
574
575 ret = pci_bridge_wait_for_secondary_bus(pci_dev, "resume");
576 if (ret) {
577 /*
578 * The downstream link failed to come up, so mark the
579 * devices below as disconnected to make sure we don't
580 * attempt to resume them.
581 */
582 pci_walk_bus(pci_dev->subordinate, pci_dev_set_disconnected,
583 NULL);
584 return;
585 }
586
587 /*
588 * When powering on a bridge from D3cold, the whole hierarchy may be
589 * powered on into D0uninitialized state, resume them to give them a
590 * chance to suspend again
591 */
592 pci_resume_bus(pci_dev->subordinate);
593 }
594
595 #endif /* CONFIG_PM */
596
597 #ifdef CONFIG_PM_SLEEP
598
599 /*
600 * Default "suspend" method for devices that have no driver provided suspend,
601 * or not even a driver at all (second part).
602 */
pci_pm_set_unknown_state(struct pci_dev * pci_dev)603 static void pci_pm_set_unknown_state(struct pci_dev *pci_dev)
604 {
605 /*
606 * mark its power state as "unknown", since we don't know if
607 * e.g. the BIOS will change its device state when we suspend.
608 */
609 if (pci_dev->current_state == PCI_D0)
610 pci_dev->current_state = PCI_UNKNOWN;
611 }
612
613 /*
614 * Default "resume" method for devices that have no driver provided resume,
615 * or not even a driver at all (second part).
616 */
pci_pm_reenable_device(struct pci_dev * pci_dev)617 static int pci_pm_reenable_device(struct pci_dev *pci_dev)
618 {
619 int retval;
620
621 /* if the device was enabled before suspend, re-enable */
622 retval = pci_reenable_device(pci_dev);
623 /*
624 * if the device was busmaster before the suspend, make it busmaster
625 * again
626 */
627 if (pci_dev->is_busmaster)
628 pci_set_master(pci_dev);
629
630 return retval;
631 }
632
pci_legacy_suspend(struct device * dev,pm_message_t state)633 static int pci_legacy_suspend(struct device *dev, pm_message_t state)
634 {
635 struct pci_dev *pci_dev = to_pci_dev(dev);
636 struct pci_driver *drv = pci_dev->driver;
637
638 if (drv && drv->suspend) {
639 pci_power_t prev = pci_dev->current_state;
640 int error;
641
642 error = drv->suspend(pci_dev, state);
643 suspend_report_result(dev, drv->suspend, error);
644 if (error)
645 return error;
646
647 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
648 && pci_dev->current_state != PCI_UNKNOWN) {
649 pci_WARN_ONCE(pci_dev, pci_dev->current_state != prev,
650 "PCI PM: Device state not saved by %pS\n",
651 drv->suspend);
652 }
653 }
654
655 pci_fixup_device(pci_fixup_suspend, pci_dev);
656
657 return 0;
658 }
659
pci_legacy_suspend_late(struct device * dev)660 static int pci_legacy_suspend_late(struct device *dev)
661 {
662 struct pci_dev *pci_dev = to_pci_dev(dev);
663
664 if (!pci_dev->state_saved)
665 pci_save_state(pci_dev);
666
667 pci_pm_set_unknown_state(pci_dev);
668
669 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
670
671 return 0;
672 }
673
pci_legacy_resume(struct device * dev)674 static int pci_legacy_resume(struct device *dev)
675 {
676 struct pci_dev *pci_dev = to_pci_dev(dev);
677 struct pci_driver *drv = pci_dev->driver;
678
679 pci_fixup_device(pci_fixup_resume, pci_dev);
680
681 return drv && drv->resume ?
682 drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev);
683 }
684
685 /* Auxiliary functions used by the new power management framework */
686
pci_pm_default_suspend(struct pci_dev * pci_dev)687 static void pci_pm_default_suspend(struct pci_dev *pci_dev)
688 {
689 /* Disable non-bridge devices without PM support */
690 if (!pci_has_subordinate(pci_dev))
691 pci_disable_enabled_device(pci_dev);
692 }
693
pci_has_legacy_pm_support(struct pci_dev * pci_dev)694 static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev)
695 {
696 struct pci_driver *drv = pci_dev->driver;
697 bool ret = drv && (drv->suspend || drv->resume);
698
699 /*
700 * Legacy PM support is used by default, so warn if the new framework is
701 * supported as well. Drivers are supposed to support either the
702 * former, or the latter, but not both at the same time.
703 */
704 pci_WARN(pci_dev, ret && drv->driver.pm, "device %04x:%04x\n",
705 pci_dev->vendor, pci_dev->device);
706
707 return ret;
708 }
709
710 /* New power management framework */
711
pci_pm_prepare(struct device * dev)712 static int pci_pm_prepare(struct device *dev)
713 {
714 struct pci_dev *pci_dev = to_pci_dev(dev);
715 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
716
717 if (pm && pm->prepare) {
718 int error = pm->prepare(dev);
719 if (error < 0)
720 return error;
721
722 if (!error && dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_PREPARE))
723 return 0;
724 }
725 if (pci_dev_need_resume(pci_dev))
726 return 0;
727
728 /*
729 * The PME setting needs to be adjusted here in case the direct-complete
730 * optimization is used with respect to this device.
731 */
732 pci_dev_adjust_pme(pci_dev);
733 return 1;
734 }
735
pci_pm_complete(struct device * dev)736 static void pci_pm_complete(struct device *dev)
737 {
738 struct pci_dev *pci_dev = to_pci_dev(dev);
739
740 pci_dev_complete_resume(pci_dev);
741 pm_generic_complete(dev);
742
743 /* Resume device if platform firmware has put it in reset-power-on */
744 if (pm_runtime_suspended(dev) && pm_resume_via_firmware()) {
745 pci_power_t pre_sleep_state = pci_dev->current_state;
746
747 pci_refresh_power_state(pci_dev);
748 /*
749 * On platforms with ACPI this check may also trigger for
750 * devices sharing power resources if one of those power
751 * resources has been activated as a result of a change of the
752 * power state of another device sharing it. However, in that
753 * case it is also better to resume the device, in general.
754 */
755 if (pci_dev->current_state < pre_sleep_state)
756 pm_request_resume(dev);
757 }
758 }
759
760 #else /* !CONFIG_PM_SLEEP */
761
762 #define pci_pm_prepare NULL
763 #define pci_pm_complete NULL
764
765 #endif /* !CONFIG_PM_SLEEP */
766
767 #ifdef CONFIG_SUSPEND
pcie_pme_root_status_cleanup(struct pci_dev * pci_dev)768 static void pcie_pme_root_status_cleanup(struct pci_dev *pci_dev)
769 {
770 /*
771 * Some BIOSes forget to clear Root PME Status bits after system
772 * wakeup, which breaks ACPI-based runtime wakeup on PCI Express.
773 * Clear those bits now just in case (shouldn't hurt).
774 */
775 if (pci_is_pcie(pci_dev) &&
776 (pci_pcie_type(pci_dev) == PCI_EXP_TYPE_ROOT_PORT ||
777 pci_pcie_type(pci_dev) == PCI_EXP_TYPE_RC_EC))
778 pcie_clear_root_pme_status(pci_dev);
779 }
780
pci_pm_suspend(struct device * dev)781 static int pci_pm_suspend(struct device *dev)
782 {
783 struct pci_dev *pci_dev = to_pci_dev(dev);
784 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
785
786 pci_dev->skip_bus_pm = false;
787
788 /*
789 * Disabling PTM allows some systems, e.g., Intel mobile chips
790 * since Coffee Lake, to enter a lower-power PM state.
791 */
792 pci_suspend_ptm(pci_dev);
793
794 if (pci_has_legacy_pm_support(pci_dev))
795 return pci_legacy_suspend(dev, PMSG_SUSPEND);
796
797 if (!pm) {
798 pci_pm_default_suspend(pci_dev);
799 return 0;
800 }
801
802 /*
803 * PCI devices suspended at run time may need to be resumed at this
804 * point, because in general it may be necessary to reconfigure them for
805 * system suspend. Namely, if the device is expected to wake up the
806 * system from the sleep state, it may have to be reconfigured for this
807 * purpose, or if the device is not expected to wake up the system from
808 * the sleep state, it should be prevented from signaling wakeup events
809 * going forward.
810 *
811 * Also if the driver of the device does not indicate that its system
812 * suspend callbacks can cope with runtime-suspended devices, it is
813 * better to resume the device from runtime suspend here.
814 */
815 if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) ||
816 pci_dev_need_resume(pci_dev)) {
817 pm_runtime_resume(dev);
818 pci_dev->state_saved = false;
819 } else {
820 pci_dev_adjust_pme(pci_dev);
821 }
822
823 if (pm->suspend) {
824 pci_power_t prev = pci_dev->current_state;
825 int error;
826
827 error = pm->suspend(dev);
828 suspend_report_result(dev, pm->suspend, error);
829 if (error)
830 return error;
831
832 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
833 && pci_dev->current_state != PCI_UNKNOWN) {
834 pci_WARN_ONCE(pci_dev, pci_dev->current_state != prev,
835 "PCI PM: State of device not saved by %pS\n",
836 pm->suspend);
837 }
838 }
839
840 return 0;
841 }
842
pci_pm_suspend_late(struct device * dev)843 static int pci_pm_suspend_late(struct device *dev)
844 {
845 if (dev_pm_skip_suspend(dev))
846 return 0;
847
848 pci_fixup_device(pci_fixup_suspend, to_pci_dev(dev));
849
850 return pm_generic_suspend_late(dev);
851 }
852
pci_pm_suspend_noirq(struct device * dev)853 static int pci_pm_suspend_noirq(struct device *dev)
854 {
855 struct pci_dev *pci_dev = to_pci_dev(dev);
856 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
857
858 if (dev_pm_skip_suspend(dev))
859 return 0;
860
861 if (pci_has_legacy_pm_support(pci_dev))
862 return pci_legacy_suspend_late(dev);
863
864 if (!pm) {
865 pci_save_state(pci_dev);
866 goto Fixup;
867 }
868
869 if (pm->suspend_noirq) {
870 pci_power_t prev = pci_dev->current_state;
871 int error;
872
873 error = pm->suspend_noirq(dev);
874 suspend_report_result(dev, pm->suspend_noirq, error);
875 if (error)
876 return error;
877
878 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
879 && pci_dev->current_state != PCI_UNKNOWN) {
880 pci_WARN_ONCE(pci_dev, pci_dev->current_state != prev,
881 "PCI PM: State of device not saved by %pS\n",
882 pm->suspend_noirq);
883 goto Fixup;
884 }
885 }
886
887 if (!pci_dev->state_saved) {
888 pci_save_state(pci_dev);
889
890 /*
891 * If the device is a bridge with a child in D0 below it,
892 * it needs to stay in D0, so check skip_bus_pm to avoid
893 * putting it into a low-power state in that case.
894 */
895 if (!pci_dev->skip_bus_pm && pci_power_manageable(pci_dev))
896 pci_prepare_to_sleep(pci_dev);
897 }
898
899 pci_dbg(pci_dev, "PCI PM: Suspend power state: %s\n",
900 pci_power_name(pci_dev->current_state));
901
902 if (pci_dev->current_state == PCI_D0) {
903 pci_dev->skip_bus_pm = true;
904 /*
905 * Per PCI PM r1.2, table 6-1, a bridge must be in D0 if any
906 * downstream device is in D0, so avoid changing the power state
907 * of the parent bridge by setting the skip_bus_pm flag for it.
908 */
909 if (pci_dev->bus->self)
910 pci_dev->bus->self->skip_bus_pm = true;
911 }
912
913 if (pci_dev->skip_bus_pm && pm_suspend_no_platform()) {
914 pci_dbg(pci_dev, "PCI PM: Skipped\n");
915 goto Fixup;
916 }
917
918 pci_pm_set_unknown_state(pci_dev);
919
920 /*
921 * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's
922 * PCI COMMAND register isn't 0, the BIOS assumes that the controller
923 * hasn't been quiesced and tries to turn it off. If the controller
924 * is already in D3, this can hang or cause memory corruption.
925 *
926 * Since the value of the COMMAND register doesn't matter once the
927 * device has been suspended, we can safely set it to 0 here.
928 */
929 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
930 pci_write_config_word(pci_dev, PCI_COMMAND, 0);
931
932 Fixup:
933 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
934
935 /*
936 * If the target system sleep state is suspend-to-idle, it is sufficient
937 * to check whether or not the device's wakeup settings are good for
938 * runtime PM. Otherwise, the pm_resume_via_firmware() check will cause
939 * pci_pm_complete() to take care of fixing up the device's state
940 * anyway, if need be.
941 */
942 if (device_can_wakeup(dev) && !device_may_wakeup(dev))
943 dev->power.may_skip_resume = false;
944
945 return 0;
946 }
947
pci_pm_resume_noirq(struct device * dev)948 static int pci_pm_resume_noirq(struct device *dev)
949 {
950 struct pci_dev *pci_dev = to_pci_dev(dev);
951 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
952 pci_power_t prev_state = pci_dev->current_state;
953 bool skip_bus_pm = pci_dev->skip_bus_pm;
954
955 if (dev_pm_skip_resume(dev))
956 return 0;
957
958 /*
959 * In the suspend-to-idle case, devices left in D0 during suspend will
960 * stay in D0, so it is not necessary to restore or update their
961 * configuration here and attempting to put them into D0 again is
962 * pointless, so avoid doing that.
963 */
964 if (!(skip_bus_pm && pm_suspend_no_platform()))
965 pci_pm_default_resume_early(pci_dev);
966
967 pci_fixup_device(pci_fixup_resume_early, pci_dev);
968 pcie_pme_root_status_cleanup(pci_dev);
969
970 if (!skip_bus_pm && prev_state == PCI_D3cold)
971 pci_pm_bridge_power_up_actions(pci_dev);
972
973 if (pci_has_legacy_pm_support(pci_dev))
974 return 0;
975
976 if (pm && pm->resume_noirq)
977 return pm->resume_noirq(dev);
978
979 return 0;
980 }
981
pci_pm_resume_early(struct device * dev)982 static int pci_pm_resume_early(struct device *dev)
983 {
984 if (dev_pm_skip_resume(dev))
985 return 0;
986
987 return pm_generic_resume_early(dev);
988 }
989
pci_pm_resume(struct device * dev)990 static int pci_pm_resume(struct device *dev)
991 {
992 struct pci_dev *pci_dev = to_pci_dev(dev);
993 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
994
995 /*
996 * This is necessary for the suspend error path in which resume is
997 * called without restoring the standard config registers of the device.
998 */
999 if (pci_dev->state_saved)
1000 pci_restore_standard_config(pci_dev);
1001
1002 pci_resume_ptm(pci_dev);
1003
1004 if (pci_has_legacy_pm_support(pci_dev))
1005 return pci_legacy_resume(dev);
1006
1007 pci_pm_default_resume(pci_dev);
1008
1009 if (pm) {
1010 if (pm->resume)
1011 return pm->resume(dev);
1012 } else {
1013 pci_pm_reenable_device(pci_dev);
1014 }
1015
1016 return 0;
1017 }
1018
1019 #else /* !CONFIG_SUSPEND */
1020
1021 #define pci_pm_suspend NULL
1022 #define pci_pm_suspend_late NULL
1023 #define pci_pm_suspend_noirq NULL
1024 #define pci_pm_resume NULL
1025 #define pci_pm_resume_early NULL
1026 #define pci_pm_resume_noirq NULL
1027
1028 #endif /* !CONFIG_SUSPEND */
1029
1030 #ifdef CONFIG_HIBERNATE_CALLBACKS
1031
pci_pm_freeze(struct device * dev)1032 static int pci_pm_freeze(struct device *dev)
1033 {
1034 struct pci_dev *pci_dev = to_pci_dev(dev);
1035 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1036
1037 if (pci_has_legacy_pm_support(pci_dev))
1038 return pci_legacy_suspend(dev, PMSG_FREEZE);
1039
1040 if (!pm) {
1041 pci_pm_default_suspend(pci_dev);
1042 return 0;
1043 }
1044
1045 /*
1046 * Resume all runtime-suspended devices before creating a snapshot
1047 * image of system memory, because the restore kernel generally cannot
1048 * be expected to always handle them consistently and they need to be
1049 * put into the runtime-active metastate during system resume anyway,
1050 * so it is better to ensure that the state saved in the image will be
1051 * always consistent with that.
1052 */
1053 pm_runtime_resume(dev);
1054 pci_dev->state_saved = false;
1055
1056 if (pm->freeze) {
1057 int error;
1058
1059 error = pm->freeze(dev);
1060 suspend_report_result(dev, pm->freeze, error);
1061 if (error)
1062 return error;
1063 }
1064
1065 return 0;
1066 }
1067
pci_pm_freeze_noirq(struct device * dev)1068 static int pci_pm_freeze_noirq(struct device *dev)
1069 {
1070 struct pci_dev *pci_dev = to_pci_dev(dev);
1071 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1072
1073 if (pci_has_legacy_pm_support(pci_dev))
1074 return pci_legacy_suspend_late(dev);
1075
1076 if (pm && pm->freeze_noirq) {
1077 int error;
1078
1079 error = pm->freeze_noirq(dev);
1080 suspend_report_result(dev, pm->freeze_noirq, error);
1081 if (error)
1082 return error;
1083 }
1084
1085 if (!pci_dev->state_saved)
1086 pci_save_state(pci_dev);
1087
1088 pci_pm_set_unknown_state(pci_dev);
1089
1090 return 0;
1091 }
1092
pci_pm_thaw_noirq(struct device * dev)1093 static int pci_pm_thaw_noirq(struct device *dev)
1094 {
1095 struct pci_dev *pci_dev = to_pci_dev(dev);
1096 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1097
1098 /*
1099 * The pm->thaw_noirq() callback assumes the device has been
1100 * returned to D0 and its config state has been restored.
1101 *
1102 * In addition, pci_restore_state() restores MSI-X state in MMIO
1103 * space, which requires the device to be in D0, so return it to D0
1104 * in case the driver's "freeze" callbacks put it into a low-power
1105 * state.
1106 */
1107 pci_pm_power_up_and_verify_state(pci_dev);
1108 pci_restore_state(pci_dev);
1109
1110 if (pci_has_legacy_pm_support(pci_dev))
1111 return 0;
1112
1113 if (pm && pm->thaw_noirq)
1114 return pm->thaw_noirq(dev);
1115
1116 return 0;
1117 }
1118
pci_pm_thaw(struct device * dev)1119 static int pci_pm_thaw(struct device *dev)
1120 {
1121 struct pci_dev *pci_dev = to_pci_dev(dev);
1122 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1123 int error = 0;
1124
1125 if (pci_has_legacy_pm_support(pci_dev))
1126 return pci_legacy_resume(dev);
1127
1128 if (pm) {
1129 if (pm->thaw)
1130 error = pm->thaw(dev);
1131 } else {
1132 pci_pm_reenable_device(pci_dev);
1133 }
1134
1135 pci_dev->state_saved = false;
1136
1137 return error;
1138 }
1139
pci_pm_poweroff(struct device * dev)1140 static int pci_pm_poweroff(struct device *dev)
1141 {
1142 struct pci_dev *pci_dev = to_pci_dev(dev);
1143 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1144
1145 if (pci_has_legacy_pm_support(pci_dev))
1146 return pci_legacy_suspend(dev, PMSG_HIBERNATE);
1147
1148 if (!pm) {
1149 pci_pm_default_suspend(pci_dev);
1150 return 0;
1151 }
1152
1153 /* The reason to do that is the same as in pci_pm_suspend(). */
1154 if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) ||
1155 pci_dev_need_resume(pci_dev)) {
1156 pm_runtime_resume(dev);
1157 pci_dev->state_saved = false;
1158 } else {
1159 pci_dev_adjust_pme(pci_dev);
1160 }
1161
1162 if (pm->poweroff) {
1163 int error;
1164
1165 error = pm->poweroff(dev);
1166 suspend_report_result(dev, pm->poweroff, error);
1167 if (error)
1168 return error;
1169 }
1170
1171 return 0;
1172 }
1173
pci_pm_poweroff_late(struct device * dev)1174 static int pci_pm_poweroff_late(struct device *dev)
1175 {
1176 if (dev_pm_skip_suspend(dev))
1177 return 0;
1178
1179 pci_fixup_device(pci_fixup_suspend, to_pci_dev(dev));
1180
1181 return pm_generic_poweroff_late(dev);
1182 }
1183
pci_pm_poweroff_noirq(struct device * dev)1184 static int pci_pm_poweroff_noirq(struct device *dev)
1185 {
1186 struct pci_dev *pci_dev = to_pci_dev(dev);
1187 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1188
1189 if (dev_pm_skip_suspend(dev))
1190 return 0;
1191
1192 if (pci_has_legacy_pm_support(pci_dev))
1193 return pci_legacy_suspend_late(dev);
1194
1195 if (!pm) {
1196 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1197 return 0;
1198 }
1199
1200 if (pm->poweroff_noirq) {
1201 int error;
1202
1203 error = pm->poweroff_noirq(dev);
1204 suspend_report_result(dev, pm->poweroff_noirq, error);
1205 if (error)
1206 return error;
1207 }
1208
1209 if (!pci_dev->state_saved && !pci_has_subordinate(pci_dev))
1210 pci_prepare_to_sleep(pci_dev);
1211
1212 /*
1213 * The reason for doing this here is the same as for the analogous code
1214 * in pci_pm_suspend_noirq().
1215 */
1216 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1217 pci_write_config_word(pci_dev, PCI_COMMAND, 0);
1218
1219 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1220
1221 return 0;
1222 }
1223
pci_pm_restore_noirq(struct device * dev)1224 static int pci_pm_restore_noirq(struct device *dev)
1225 {
1226 struct pci_dev *pci_dev = to_pci_dev(dev);
1227 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1228
1229 pci_pm_default_resume_early(pci_dev);
1230 pci_fixup_device(pci_fixup_resume_early, pci_dev);
1231
1232 if (pci_has_legacy_pm_support(pci_dev))
1233 return 0;
1234
1235 if (pm && pm->restore_noirq)
1236 return pm->restore_noirq(dev);
1237
1238 return 0;
1239 }
1240
pci_pm_restore(struct device * dev)1241 static int pci_pm_restore(struct device *dev)
1242 {
1243 struct pci_dev *pci_dev = to_pci_dev(dev);
1244 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1245
1246 /*
1247 * This is necessary for the hibernation error path in which restore is
1248 * called without restoring the standard config registers of the device.
1249 */
1250 if (pci_dev->state_saved)
1251 pci_restore_standard_config(pci_dev);
1252
1253 if (pci_has_legacy_pm_support(pci_dev))
1254 return pci_legacy_resume(dev);
1255
1256 pci_pm_default_resume(pci_dev);
1257
1258 if (pm) {
1259 if (pm->restore)
1260 return pm->restore(dev);
1261 } else {
1262 pci_pm_reenable_device(pci_dev);
1263 }
1264
1265 return 0;
1266 }
1267
1268 #else /* !CONFIG_HIBERNATE_CALLBACKS */
1269
1270 #define pci_pm_freeze NULL
1271 #define pci_pm_freeze_noirq NULL
1272 #define pci_pm_thaw NULL
1273 #define pci_pm_thaw_noirq NULL
1274 #define pci_pm_poweroff NULL
1275 #define pci_pm_poweroff_late NULL
1276 #define pci_pm_poweroff_noirq NULL
1277 #define pci_pm_restore NULL
1278 #define pci_pm_restore_noirq NULL
1279
1280 #endif /* !CONFIG_HIBERNATE_CALLBACKS */
1281
1282 #ifdef CONFIG_PM
1283
pci_pm_runtime_suspend(struct device * dev)1284 static int pci_pm_runtime_suspend(struct device *dev)
1285 {
1286 struct pci_dev *pci_dev = to_pci_dev(dev);
1287 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1288 pci_power_t prev = pci_dev->current_state;
1289 int error;
1290
1291 pci_suspend_ptm(pci_dev);
1292
1293 /*
1294 * If pci_dev->driver is not set (unbound), we leave the device in D0,
1295 * but it may go to D3cold when the bridge above it runtime suspends.
1296 * Save its config space in case that happens.
1297 */
1298 if (!pci_dev->driver) {
1299 pci_save_state(pci_dev);
1300 return 0;
1301 }
1302
1303 pci_dev->state_saved = false;
1304 if (pm && pm->runtime_suspend) {
1305 error = pm->runtime_suspend(dev);
1306 /*
1307 * -EBUSY and -EAGAIN is used to request the runtime PM core
1308 * to schedule a new suspend, so log the event only with debug
1309 * log level.
1310 */
1311 if (error == -EBUSY || error == -EAGAIN) {
1312 pci_dbg(pci_dev, "can't suspend now (%ps returned %d)\n",
1313 pm->runtime_suspend, error);
1314 return error;
1315 } else if (error) {
1316 pci_err(pci_dev, "can't suspend (%ps returned %d)\n",
1317 pm->runtime_suspend, error);
1318 return error;
1319 }
1320 }
1321
1322 pci_fixup_device(pci_fixup_suspend, pci_dev);
1323
1324 if (pm && pm->runtime_suspend
1325 && !pci_dev->state_saved && pci_dev->current_state != PCI_D0
1326 && pci_dev->current_state != PCI_UNKNOWN) {
1327 pci_WARN_ONCE(pci_dev, pci_dev->current_state != prev,
1328 "PCI PM: State of device not saved by %pS\n",
1329 pm->runtime_suspend);
1330 return 0;
1331 }
1332
1333 if (!pci_dev->state_saved) {
1334 pci_save_state(pci_dev);
1335 pci_finish_runtime_suspend(pci_dev);
1336 }
1337
1338 return 0;
1339 }
1340
pci_pm_runtime_resume(struct device * dev)1341 static int pci_pm_runtime_resume(struct device *dev)
1342 {
1343 struct pci_dev *pci_dev = to_pci_dev(dev);
1344 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1345 pci_power_t prev_state = pci_dev->current_state;
1346 int error = 0;
1347
1348 /*
1349 * Restoring config space is necessary even if the device is not bound
1350 * to a driver because although we left it in D0, it may have gone to
1351 * D3cold when the bridge above it runtime suspended.
1352 */
1353 pci_pm_default_resume_early(pci_dev);
1354 pci_resume_ptm(pci_dev);
1355
1356 if (!pci_dev->driver)
1357 return 0;
1358
1359 pci_fixup_device(pci_fixup_resume_early, pci_dev);
1360 pci_pm_default_resume(pci_dev);
1361
1362 if (prev_state == PCI_D3cold)
1363 pci_pm_bridge_power_up_actions(pci_dev);
1364
1365 if (pm && pm->runtime_resume)
1366 error = pm->runtime_resume(dev);
1367
1368 return error;
1369 }
1370
pci_pm_runtime_idle(struct device * dev)1371 static int pci_pm_runtime_idle(struct device *dev)
1372 {
1373 struct pci_dev *pci_dev = to_pci_dev(dev);
1374 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1375
1376 /*
1377 * If pci_dev->driver is not set (unbound), the device should
1378 * always remain in D0 regardless of the runtime PM status
1379 */
1380 if (!pci_dev->driver)
1381 return 0;
1382
1383 if (pm && pm->runtime_idle)
1384 return pm->runtime_idle(dev);
1385
1386 return 0;
1387 }
1388
1389 static const struct dev_pm_ops pci_dev_pm_ops = {
1390 .prepare = pci_pm_prepare,
1391 .complete = pci_pm_complete,
1392 .suspend = pci_pm_suspend,
1393 .suspend_late = pci_pm_suspend_late,
1394 .resume = pci_pm_resume,
1395 .resume_early = pci_pm_resume_early,
1396 .freeze = pci_pm_freeze,
1397 .thaw = pci_pm_thaw,
1398 .poweroff = pci_pm_poweroff,
1399 .poweroff_late = pci_pm_poweroff_late,
1400 .restore = pci_pm_restore,
1401 .suspend_noirq = pci_pm_suspend_noirq,
1402 .resume_noirq = pci_pm_resume_noirq,
1403 .freeze_noirq = pci_pm_freeze_noirq,
1404 .thaw_noirq = pci_pm_thaw_noirq,
1405 .poweroff_noirq = pci_pm_poweroff_noirq,
1406 .restore_noirq = pci_pm_restore_noirq,
1407 .runtime_suspend = pci_pm_runtime_suspend,
1408 .runtime_resume = pci_pm_runtime_resume,
1409 .runtime_idle = pci_pm_runtime_idle,
1410 };
1411
1412 #define PCI_PM_OPS_PTR (&pci_dev_pm_ops)
1413
1414 #else /* !CONFIG_PM */
1415
1416 #define pci_pm_runtime_suspend NULL
1417 #define pci_pm_runtime_resume NULL
1418 #define pci_pm_runtime_idle NULL
1419
1420 #define PCI_PM_OPS_PTR NULL
1421
1422 #endif /* !CONFIG_PM */
1423
1424 /**
1425 * __pci_register_driver - register a new pci driver
1426 * @drv: the driver structure to register
1427 * @owner: owner module of drv
1428 * @mod_name: module name string
1429 *
1430 * Adds the driver structure to the list of registered drivers.
1431 * Returns a negative value on error, otherwise 0.
1432 * If no error occurred, the driver remains registered even if
1433 * no device was claimed during registration.
1434 */
__pci_register_driver(struct pci_driver * drv,struct module * owner,const char * mod_name)1435 int __pci_register_driver(struct pci_driver *drv, struct module *owner,
1436 const char *mod_name)
1437 {
1438 /* initialize common driver fields */
1439 drv->driver.name = drv->name;
1440 drv->driver.bus = &pci_bus_type;
1441 drv->driver.owner = owner;
1442 drv->driver.mod_name = mod_name;
1443 drv->driver.groups = drv->groups;
1444 drv->driver.dev_groups = drv->dev_groups;
1445
1446 spin_lock_init(&drv->dynids.lock);
1447 INIT_LIST_HEAD(&drv->dynids.list);
1448
1449 /* register with core */
1450 return driver_register(&drv->driver);
1451 }
1452 EXPORT_SYMBOL(__pci_register_driver);
1453
1454 /**
1455 * pci_unregister_driver - unregister a pci driver
1456 * @drv: the driver structure to unregister
1457 *
1458 * Deletes the driver structure from the list of registered PCI drivers,
1459 * gives it a chance to clean up by calling its remove() function for
1460 * each device it was responsible for, and marks those devices as
1461 * driverless.
1462 */
1463
pci_unregister_driver(struct pci_driver * drv)1464 void pci_unregister_driver(struct pci_driver *drv)
1465 {
1466 driver_unregister(&drv->driver);
1467 pci_free_dynids(drv);
1468 }
1469 EXPORT_SYMBOL(pci_unregister_driver);
1470
1471 static struct pci_driver pci_compat_driver = {
1472 .name = "compat"
1473 };
1474
1475 /**
1476 * pci_dev_driver - get the pci_driver of a device
1477 * @dev: the device to query
1478 *
1479 * Returns the appropriate pci_driver structure or %NULL if there is no
1480 * registered driver for the device.
1481 */
pci_dev_driver(const struct pci_dev * dev)1482 struct pci_driver *pci_dev_driver(const struct pci_dev *dev)
1483 {
1484 int i;
1485
1486 if (dev->driver)
1487 return dev->driver;
1488
1489 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1490 if (dev->resource[i].flags & IORESOURCE_BUSY)
1491 return &pci_compat_driver;
1492
1493 return NULL;
1494 }
1495 EXPORT_SYMBOL(pci_dev_driver);
1496
1497 /**
1498 * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure
1499 * @dev: the PCI device structure to match against
1500 * @drv: the device driver to search for matching PCI device id structures
1501 *
1502 * Used by a driver to check whether a PCI device present in the
1503 * system is in its list of supported devices. Returns the matching
1504 * pci_device_id structure or %NULL if there is no match.
1505 */
pci_bus_match(struct device * dev,const struct device_driver * drv)1506 static int pci_bus_match(struct device *dev, const struct device_driver *drv)
1507 {
1508 struct pci_dev *pci_dev = to_pci_dev(dev);
1509 struct pci_driver *pci_drv;
1510 const struct pci_device_id *found_id;
1511
1512 if (!pci_dev->match_driver)
1513 return 0;
1514
1515 pci_drv = (struct pci_driver *)to_pci_driver(drv);
1516 found_id = pci_match_device(pci_drv, pci_dev);
1517 if (found_id)
1518 return 1;
1519
1520 return 0;
1521 }
1522
1523 /**
1524 * pci_dev_get - increments the reference count of the pci device structure
1525 * @dev: the device being referenced
1526 *
1527 * Each live reference to a device should be refcounted.
1528 *
1529 * Drivers for PCI devices should normally record such references in
1530 * their probe() methods, when they bind to a device, and release
1531 * them by calling pci_dev_put(), in their disconnect() methods.
1532 *
1533 * A pointer to the device with the incremented reference counter is returned.
1534 */
pci_dev_get(struct pci_dev * dev)1535 struct pci_dev *pci_dev_get(struct pci_dev *dev)
1536 {
1537 if (dev)
1538 get_device(&dev->dev);
1539 return dev;
1540 }
1541 EXPORT_SYMBOL(pci_dev_get);
1542
1543 /**
1544 * pci_dev_put - release a use of the pci device structure
1545 * @dev: device that's been disconnected
1546 *
1547 * Must be called when a user of a device is finished with it. When the last
1548 * user of the device calls this function, the memory of the device is freed.
1549 */
pci_dev_put(struct pci_dev * dev)1550 void pci_dev_put(struct pci_dev *dev)
1551 {
1552 if (dev)
1553 put_device(&dev->dev);
1554 }
1555 EXPORT_SYMBOL(pci_dev_put);
1556
pci_uevent(const struct device * dev,struct kobj_uevent_env * env)1557 static int pci_uevent(const struct device *dev, struct kobj_uevent_env *env)
1558 {
1559 const struct pci_dev *pdev;
1560
1561 if (!dev)
1562 return -ENODEV;
1563
1564 pdev = to_pci_dev(dev);
1565
1566 if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class))
1567 return -ENOMEM;
1568
1569 if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device))
1570 return -ENOMEM;
1571
1572 if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor,
1573 pdev->subsystem_device))
1574 return -ENOMEM;
1575
1576 if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev)))
1577 return -ENOMEM;
1578
1579 if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02X",
1580 pdev->vendor, pdev->device,
1581 pdev->subsystem_vendor, pdev->subsystem_device,
1582 (u8)(pdev->class >> 16), (u8)(pdev->class >> 8),
1583 (u8)(pdev->class)))
1584 return -ENOMEM;
1585
1586 return 0;
1587 }
1588
1589 #if defined(CONFIG_PCIEAER) || defined(CONFIG_EEH)
1590 /**
1591 * pci_uevent_ers - emit a uevent during recovery path of PCI device
1592 * @pdev: PCI device undergoing error recovery
1593 * @err_type: type of error event
1594 */
pci_uevent_ers(struct pci_dev * pdev,enum pci_ers_result err_type)1595 void pci_uevent_ers(struct pci_dev *pdev, enum pci_ers_result err_type)
1596 {
1597 int idx = 0;
1598 char *envp[3];
1599
1600 switch (err_type) {
1601 case PCI_ERS_RESULT_NONE:
1602 case PCI_ERS_RESULT_CAN_RECOVER:
1603 envp[idx++] = "ERROR_EVENT=BEGIN_RECOVERY";
1604 envp[idx++] = "DEVICE_ONLINE=0";
1605 break;
1606 case PCI_ERS_RESULT_RECOVERED:
1607 envp[idx++] = "ERROR_EVENT=SUCCESSFUL_RECOVERY";
1608 envp[idx++] = "DEVICE_ONLINE=1";
1609 break;
1610 case PCI_ERS_RESULT_DISCONNECT:
1611 envp[idx++] = "ERROR_EVENT=FAILED_RECOVERY";
1612 envp[idx++] = "DEVICE_ONLINE=0";
1613 break;
1614 default:
1615 break;
1616 }
1617
1618 if (idx > 0) {
1619 envp[idx++] = NULL;
1620 kobject_uevent_env(&pdev->dev.kobj, KOBJ_CHANGE, envp);
1621 }
1622 }
1623 #endif
1624
pci_bus_num_vf(struct device * dev)1625 static int pci_bus_num_vf(struct device *dev)
1626 {
1627 return pci_num_vf(to_pci_dev(dev));
1628 }
1629
1630 /**
1631 * pci_dma_configure - Setup DMA configuration
1632 * @dev: ptr to dev structure
1633 *
1634 * Function to update PCI devices's DMA configuration using the same
1635 * info from the OF node or ACPI node of host bridge's parent (if any).
1636 */
pci_dma_configure(struct device * dev)1637 static int pci_dma_configure(struct device *dev)
1638 {
1639 struct pci_driver *driver = to_pci_driver(dev->driver);
1640 struct device *bridge;
1641 int ret = 0;
1642
1643 bridge = pci_get_host_bridge_device(to_pci_dev(dev));
1644
1645 if (IS_ENABLED(CONFIG_OF) && bridge->parent &&
1646 bridge->parent->of_node) {
1647 ret = of_dma_configure(dev, bridge->parent->of_node, true);
1648 } else if (has_acpi_companion(bridge)) {
1649 struct acpi_device *adev = to_acpi_device_node(bridge->fwnode);
1650
1651 ret = acpi_dma_configure(dev, acpi_get_dma_attr(adev));
1652 }
1653
1654 pci_put_host_bridge_device(bridge);
1655
1656 if (!ret && !driver->driver_managed_dma) {
1657 ret = iommu_device_use_default_domain(dev);
1658 if (ret)
1659 arch_teardown_dma_ops(dev);
1660 }
1661
1662 return ret;
1663 }
1664
pci_dma_cleanup(struct device * dev)1665 static void pci_dma_cleanup(struct device *dev)
1666 {
1667 struct pci_driver *driver = to_pci_driver(dev->driver);
1668
1669 if (!driver->driver_managed_dma)
1670 iommu_device_unuse_default_domain(dev);
1671 }
1672
1673 const struct bus_type pci_bus_type = {
1674 .name = "pci",
1675 .match = pci_bus_match,
1676 .uevent = pci_uevent,
1677 .probe = pci_device_probe,
1678 .remove = pci_device_remove,
1679 .shutdown = pci_device_shutdown,
1680 .dev_groups = pci_dev_groups,
1681 .bus_groups = pci_bus_groups,
1682 .drv_groups = pci_drv_groups,
1683 .pm = PCI_PM_OPS_PTR,
1684 .num_vf = pci_bus_num_vf,
1685 .dma_configure = pci_dma_configure,
1686 .dma_cleanup = pci_dma_cleanup,
1687 };
1688 EXPORT_SYMBOL(pci_bus_type);
1689
1690 #ifdef CONFIG_PCIEPORTBUS
pcie_port_bus_match(struct device * dev,const struct device_driver * drv)1691 static int pcie_port_bus_match(struct device *dev, const struct device_driver *drv)
1692 {
1693 struct pcie_device *pciedev;
1694 const struct pcie_port_service_driver *driver;
1695
1696 if (drv->bus != &pcie_port_bus_type || dev->bus != &pcie_port_bus_type)
1697 return 0;
1698
1699 pciedev = to_pcie_device(dev);
1700 driver = to_service_driver(drv);
1701
1702 if (driver->service != pciedev->service)
1703 return 0;
1704
1705 if (driver->port_type != PCIE_ANY_PORT &&
1706 driver->port_type != pci_pcie_type(pciedev->port))
1707 return 0;
1708
1709 return 1;
1710 }
1711
1712 const struct bus_type pcie_port_bus_type = {
1713 .name = "pci_express",
1714 .match = pcie_port_bus_match,
1715 };
1716 #endif
1717
pci_driver_init(void)1718 static int __init pci_driver_init(void)
1719 {
1720 int ret;
1721
1722 ret = bus_register(&pci_bus_type);
1723 if (ret)
1724 return ret;
1725
1726 #ifdef CONFIG_PCIEPORTBUS
1727 ret = bus_register(&pcie_port_bus_type);
1728 if (ret)
1729 return ret;
1730 #endif
1731 dma_debug_add_bus(&pci_bus_type);
1732 return 0;
1733 }
1734 postcore_initcall(pci_driver_init);
1735