xref: /linux/drivers/platform/mellanox/mlxbf-bootctl.c (revision 79790b6818e96c58fe2bffee1b418c16e64e7b80)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Mellanox boot control driver
4  *
5  * This driver provides a sysfs interface for systems management
6  * software to manage reset-time actions.
7  *
8  * Copyright (C) 2019 Mellanox Technologies
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/arm-smccc.h>
13 #include <linux/delay.h>
14 #include <linux/if_ether.h>
15 #include <linux/iopoll.h>
16 #include <linux/module.h>
17 #include <linux/platform_device.h>
18 
19 #include "mlxbf-bootctl.h"
20 
21 #define MLXBF_BOOTCTL_SB_SECURE_MASK		0x03
22 #define MLXBF_BOOTCTL_SB_TEST_MASK		0x0c
23 #define MLXBF_BOOTCTL_SB_DEV_MASK		BIT(4)
24 
25 #define MLXBF_SB_KEY_NUM			4
26 
27 /* UUID used to probe ATF service. */
28 static const char *mlxbf_bootctl_svc_uuid_str =
29 	"89c036b4-e7d7-11e6-8797-001aca00bfc4";
30 
31 struct mlxbf_bootctl_name {
32 	u32 value;
33 	const char *name;
34 };
35 
36 static struct mlxbf_bootctl_name boot_names[] = {
37 	{ MLXBF_BOOTCTL_EXTERNAL, "external" },
38 	{ MLXBF_BOOTCTL_EMMC, "emmc" },
39 	{ MLNX_BOOTCTL_SWAP_EMMC, "swap_emmc" },
40 	{ MLXBF_BOOTCTL_EMMC_LEGACY, "emmc_legacy" },
41 	{ MLXBF_BOOTCTL_NONE, "none" },
42 };
43 
44 enum {
45 	MLXBF_BOOTCTL_SB_LIFECYCLE_PRODUCTION = 0,
46 	MLXBF_BOOTCTL_SB_LIFECYCLE_GA_SECURE = 1,
47 	MLXBF_BOOTCTL_SB_LIFECYCLE_GA_NON_SECURE = 2,
48 	MLXBF_BOOTCTL_SB_LIFECYCLE_RMA = 3
49 };
50 
51 static const char * const mlxbf_bootctl_lifecycle_states[] = {
52 	[MLXBF_BOOTCTL_SB_LIFECYCLE_PRODUCTION] = "Production",
53 	[MLXBF_BOOTCTL_SB_LIFECYCLE_GA_SECURE] = "GA Secured",
54 	[MLXBF_BOOTCTL_SB_LIFECYCLE_GA_NON_SECURE] = "GA Non-Secured",
55 	[MLXBF_BOOTCTL_SB_LIFECYCLE_RMA] = "RMA",
56 };
57 
58 /* Log header format. */
59 #define MLXBF_RSH_LOG_TYPE_MASK		GENMASK_ULL(59, 56)
60 #define MLXBF_RSH_LOG_LEN_MASK		GENMASK_ULL(54, 48)
61 #define MLXBF_RSH_LOG_LEVEL_MASK	GENMASK_ULL(7, 0)
62 
63 /* Log module ID and type (only MSG type in Linux driver for now). */
64 #define MLXBF_RSH_LOG_TYPE_MSG		0x04ULL
65 
66 /* Log ctl/data register offset. */
67 #define MLXBF_RSH_SCRATCH_BUF_CTL_OFF	0
68 #define MLXBF_RSH_SCRATCH_BUF_DATA_OFF	0x10
69 
70 /* Log message levels. */
71 enum {
72 	MLXBF_RSH_LOG_INFO,
73 	MLXBF_RSH_LOG_WARN,
74 	MLXBF_RSH_LOG_ERR,
75 	MLXBF_RSH_LOG_ASSERT
76 };
77 
78 /* Mapped pointer for RSH_BOOT_FIFO_DATA and RSH_BOOT_FIFO_COUNT register. */
79 static void __iomem *mlxbf_rsh_boot_data;
80 static void __iomem *mlxbf_rsh_boot_cnt;
81 
82 /* Mapped pointer for rsh log semaphore/ctrl/data register. */
83 static void __iomem *mlxbf_rsh_semaphore;
84 static void __iomem *mlxbf_rsh_scratch_buf_ctl;
85 static void __iomem *mlxbf_rsh_scratch_buf_data;
86 
87 /* Rsh log levels. */
88 static const char * const mlxbf_rsh_log_level[] = {
89 	"INFO", "WARN", "ERR", "ASSERT"};
90 
91 static DEFINE_MUTEX(icm_ops_lock);
92 static DEFINE_MUTEX(os_up_lock);
93 static DEFINE_MUTEX(mfg_ops_lock);
94 
95 /*
96  * Objects are stored within the MFG partition per type.
97  * Type 0 is not supported.
98  */
99 enum {
100 	MLNX_MFG_TYPE_OOB_MAC = 1,
101 	MLNX_MFG_TYPE_OPN_0,
102 	MLNX_MFG_TYPE_OPN_1,
103 	MLNX_MFG_TYPE_OPN_2,
104 	MLNX_MFG_TYPE_SKU_0,
105 	MLNX_MFG_TYPE_SKU_1,
106 	MLNX_MFG_TYPE_SKU_2,
107 	MLNX_MFG_TYPE_MODL_0,
108 	MLNX_MFG_TYPE_MODL_1,
109 	MLNX_MFG_TYPE_MODL_2,
110 	MLNX_MFG_TYPE_SN_0,
111 	MLNX_MFG_TYPE_SN_1,
112 	MLNX_MFG_TYPE_SN_2,
113 	MLNX_MFG_TYPE_UUID_0,
114 	MLNX_MFG_TYPE_UUID_1,
115 	MLNX_MFG_TYPE_UUID_2,
116 	MLNX_MFG_TYPE_UUID_3,
117 	MLNX_MFG_TYPE_UUID_4,
118 	MLNX_MFG_TYPE_REV,
119 };
120 
121 #define MLNX_MFG_OPN_VAL_LEN         24
122 #define MLNX_MFG_SKU_VAL_LEN         24
123 #define MLNX_MFG_MODL_VAL_LEN        24
124 #define MLNX_MFG_SN_VAL_LEN          24
125 #define MLNX_MFG_UUID_VAL_LEN        40
126 #define MLNX_MFG_REV_VAL_LEN         8
127 #define MLNX_MFG_VAL_QWORD_CNT(type) \
128 	(MLNX_MFG_##type##_VAL_LEN / sizeof(u64))
129 
130 /*
131  * The MAC address consists of 6 bytes (2 digits each) separated by ':'.
132  * The expected format is: "XX:XX:XX:XX:XX:XX"
133  */
134 #define MLNX_MFG_OOB_MAC_FORMAT_LEN \
135 	((ETH_ALEN * 2) + (ETH_ALEN - 1))
136 
137 /* ARM SMC call which is atomic and no need for lock. */
mlxbf_bootctl_smc(unsigned int smc_op,int smc_arg)138 static int mlxbf_bootctl_smc(unsigned int smc_op, int smc_arg)
139 {
140 	struct arm_smccc_res res;
141 
142 	arm_smccc_smc(smc_op, smc_arg, 0, 0, 0, 0, 0, 0, &res);
143 
144 	return res.a0;
145 }
146 
147 /* Return the action in integer or an error code. */
mlxbf_bootctl_reset_action_to_val(const char * action)148 static int mlxbf_bootctl_reset_action_to_val(const char *action)
149 {
150 	int i;
151 
152 	for (i = 0; i < ARRAY_SIZE(boot_names); i++)
153 		if (sysfs_streq(boot_names[i].name, action))
154 			return boot_names[i].value;
155 
156 	return -EINVAL;
157 }
158 
159 /* Return the action in string. */
mlxbf_bootctl_action_to_string(int action)160 static const char *mlxbf_bootctl_action_to_string(int action)
161 {
162 	int i;
163 
164 	for (i = 0; i < ARRAY_SIZE(boot_names); i++)
165 		if (boot_names[i].value == action)
166 			return boot_names[i].name;
167 
168 	return "invalid action";
169 }
170 
post_reset_wdog_show(struct device * dev,struct device_attribute * attr,char * buf)171 static ssize_t post_reset_wdog_show(struct device *dev,
172 				    struct device_attribute *attr, char *buf)
173 {
174 	int ret;
175 
176 	ret = mlxbf_bootctl_smc(MLXBF_BOOTCTL_GET_POST_RESET_WDOG, 0);
177 	if (ret < 0)
178 		return ret;
179 
180 	return sprintf(buf, "%d\n", ret);
181 }
182 
post_reset_wdog_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)183 static ssize_t post_reset_wdog_store(struct device *dev,
184 				     struct device_attribute *attr,
185 				     const char *buf, size_t count)
186 {
187 	unsigned long value;
188 	int ret;
189 
190 	ret = kstrtoul(buf, 10, &value);
191 	if (ret)
192 		return ret;
193 
194 	ret = mlxbf_bootctl_smc(MLXBF_BOOTCTL_SET_POST_RESET_WDOG, value);
195 	if (ret < 0)
196 		return ret;
197 
198 	return count;
199 }
200 
mlxbf_bootctl_show(int smc_op,char * buf)201 static ssize_t mlxbf_bootctl_show(int smc_op, char *buf)
202 {
203 	int action;
204 
205 	action = mlxbf_bootctl_smc(smc_op, 0);
206 	if (action < 0)
207 		return action;
208 
209 	return sprintf(buf, "%s\n", mlxbf_bootctl_action_to_string(action));
210 }
211 
mlxbf_bootctl_store(int smc_op,const char * buf,size_t count)212 static int mlxbf_bootctl_store(int smc_op, const char *buf, size_t count)
213 {
214 	int ret, action;
215 
216 	action = mlxbf_bootctl_reset_action_to_val(buf);
217 	if (action < 0)
218 		return action;
219 
220 	ret = mlxbf_bootctl_smc(smc_op, action);
221 	if (ret < 0)
222 		return ret;
223 
224 	return count;
225 }
226 
reset_action_show(struct device * dev,struct device_attribute * attr,char * buf)227 static ssize_t reset_action_show(struct device *dev,
228 				 struct device_attribute *attr, char *buf)
229 {
230 	return mlxbf_bootctl_show(MLXBF_BOOTCTL_GET_RESET_ACTION, buf);
231 }
232 
reset_action_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)233 static ssize_t reset_action_store(struct device *dev,
234 				  struct device_attribute *attr,
235 				  const char *buf, size_t count)
236 {
237 	return mlxbf_bootctl_store(MLXBF_BOOTCTL_SET_RESET_ACTION, buf, count);
238 }
239 
second_reset_action_show(struct device * dev,struct device_attribute * attr,char * buf)240 static ssize_t second_reset_action_show(struct device *dev,
241 					struct device_attribute *attr,
242 					char *buf)
243 {
244 	return mlxbf_bootctl_show(MLXBF_BOOTCTL_GET_SECOND_RESET_ACTION, buf);
245 }
246 
second_reset_action_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)247 static ssize_t second_reset_action_store(struct device *dev,
248 					 struct device_attribute *attr,
249 					 const char *buf, size_t count)
250 {
251 	return mlxbf_bootctl_store(MLXBF_BOOTCTL_SET_SECOND_RESET_ACTION, buf,
252 				   count);
253 }
254 
lifecycle_state_show(struct device * dev,struct device_attribute * attr,char * buf)255 static ssize_t lifecycle_state_show(struct device *dev,
256 				    struct device_attribute *attr, char *buf)
257 {
258 	int status_bits;
259 	int use_dev_key;
260 	int test_state;
261 	int lc_state;
262 
263 	status_bits = mlxbf_bootctl_smc(MLXBF_BOOTCTL_GET_TBB_FUSE_STATUS,
264 					MLXBF_BOOTCTL_FUSE_STATUS_LIFECYCLE);
265 	if (status_bits < 0)
266 		return status_bits;
267 
268 	use_dev_key = status_bits & MLXBF_BOOTCTL_SB_DEV_MASK;
269 	test_state = status_bits & MLXBF_BOOTCTL_SB_TEST_MASK;
270 	lc_state = status_bits & MLXBF_BOOTCTL_SB_SECURE_MASK;
271 
272 	/*
273 	 * If the test bits are set, we specify that the current state may be
274 	 * due to using the test bits.
275 	 */
276 	if (test_state) {
277 		return sprintf(buf, "%s(test)\n",
278 			       mlxbf_bootctl_lifecycle_states[lc_state]);
279 	} else if (use_dev_key &&
280 		   (lc_state == MLXBF_BOOTCTL_SB_LIFECYCLE_GA_SECURE)) {
281 		return sprintf(buf, "Secured (development)\n");
282 	}
283 
284 	return sprintf(buf, "%s\n", mlxbf_bootctl_lifecycle_states[lc_state]);
285 }
286 
secure_boot_fuse_state_show(struct device * dev,struct device_attribute * attr,char * buf)287 static ssize_t secure_boot_fuse_state_show(struct device *dev,
288 					   struct device_attribute *attr,
289 					   char *buf)
290 {
291 	int burnt, valid, key, key_state, buf_len = 0, upper_key_used = 0;
292 	const char *status;
293 
294 	key_state = mlxbf_bootctl_smc(MLXBF_BOOTCTL_GET_TBB_FUSE_STATUS,
295 				      MLXBF_BOOTCTL_FUSE_STATUS_KEYS);
296 	if (key_state < 0)
297 		return key_state;
298 
299 	/*
300 	 * key_state contains the bits for 4 Key versions, loaded from eFuses
301 	 * after a hard reset. Lower 4 bits are a thermometer code indicating
302 	 * key programming has started for key n (0000 = none, 0001 = version 0,
303 	 * 0011 = version 1, 0111 = version 2, 1111 = version 3). Upper 4 bits
304 	 * are a thermometer code indicating key programming has completed for
305 	 * key n (same encodings as the start bits). This allows for detection
306 	 * of an interruption in the programming process which has left the key
307 	 * partially programmed (and thus invalid). The process is to burn the
308 	 * eFuse for the new key start bit, burn the key eFuses, then burn the
309 	 * eFuse for the new key complete bit.
310 	 *
311 	 * For example 0000_0000: no key valid, 0001_0001: key version 0 valid,
312 	 * 0011_0011: key 1 version valid, 0011_0111: key version 2 started
313 	 * programming but did not complete, etc. The most recent key for which
314 	 * both start and complete bit is set is loaded. On soft reset, this
315 	 * register is not modified.
316 	 */
317 	for (key = MLXBF_SB_KEY_NUM - 1; key >= 0; key--) {
318 		burnt = key_state & BIT(key);
319 		valid = key_state & BIT(key + MLXBF_SB_KEY_NUM);
320 
321 		if (burnt && valid)
322 			upper_key_used = 1;
323 
324 		if (upper_key_used) {
325 			if (burnt)
326 				status = valid ? "Used" : "Wasted";
327 			else
328 				status = valid ? "Invalid" : "Skipped";
329 		} else {
330 			if (burnt)
331 				status = valid ? "InUse" : "Incomplete";
332 			else
333 				status = valid ? "Invalid" : "Free";
334 		}
335 		buf_len += sprintf(buf + buf_len, "%d:%s ", key, status);
336 	}
337 	buf_len += sprintf(buf + buf_len, "\n");
338 
339 	return buf_len;
340 }
341 
fw_reset_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)342 static ssize_t fw_reset_store(struct device *dev,
343 			      struct device_attribute *attr,
344 			      const char *buf, size_t count)
345 {
346 	unsigned long key;
347 	int err;
348 
349 	err = kstrtoul(buf, 16, &key);
350 	if (err)
351 		return err;
352 
353 	if (mlxbf_bootctl_smc(MLXBF_BOOTCTL_FW_RESET, key) < 0)
354 		return -EINVAL;
355 
356 	return count;
357 }
358 
359 /* Size(8-byte words) of the log buffer. */
360 #define RSH_SCRATCH_BUF_CTL_IDX_MASK	0x7f
361 
362 /* 100ms timeout */
363 #define RSH_SCRATCH_BUF_POLL_TIMEOUT	100000
364 
mlxbf_rsh_log_sem_lock(void)365 static int mlxbf_rsh_log_sem_lock(void)
366 {
367 	unsigned long reg;
368 
369 	return readq_poll_timeout(mlxbf_rsh_semaphore, reg, !reg, 0,
370 				  RSH_SCRATCH_BUF_POLL_TIMEOUT);
371 }
372 
mlxbf_rsh_log_sem_unlock(void)373 static void mlxbf_rsh_log_sem_unlock(void)
374 {
375 	writeq(0, mlxbf_rsh_semaphore);
376 }
377 
rsh_log_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)378 static ssize_t rsh_log_store(struct device *dev,
379 			     struct device_attribute *attr,
380 			     const char *buf, size_t count)
381 {
382 	int rc, idx, num, len, level = MLXBF_RSH_LOG_INFO;
383 	size_t size = count;
384 	u64 data;
385 
386 	if (!size)
387 		return -EINVAL;
388 
389 	if (!mlxbf_rsh_semaphore || !mlxbf_rsh_scratch_buf_ctl)
390 		return -EOPNOTSUPP;
391 
392 	/* Ignore line break at the end. */
393 	if (buf[size - 1] == '\n')
394 		size--;
395 
396 	/* Check the message prefix. */
397 	for (idx = 0; idx < ARRAY_SIZE(mlxbf_rsh_log_level); idx++) {
398 		len = strlen(mlxbf_rsh_log_level[idx]);
399 		if (len + 1 < size &&
400 		    !strncmp(buf, mlxbf_rsh_log_level[idx], len)) {
401 			buf += len;
402 			size -= len;
403 			level = idx;
404 			break;
405 		}
406 	}
407 
408 	/* Ignore leading spaces. */
409 	while (size > 0 && buf[0] == ' ') {
410 		size--;
411 		buf++;
412 	}
413 
414 	/* Take the semaphore. */
415 	rc = mlxbf_rsh_log_sem_lock();
416 	if (rc)
417 		return rc;
418 
419 	/* Calculate how many words are available. */
420 	idx = readq(mlxbf_rsh_scratch_buf_ctl);
421 	num = min((int)DIV_ROUND_UP(size, sizeof(u64)),
422 		  RSH_SCRATCH_BUF_CTL_IDX_MASK - idx - 1);
423 	if (num <= 0)
424 		goto done;
425 
426 	/* Write Header. */
427 	data = FIELD_PREP(MLXBF_RSH_LOG_TYPE_MASK, MLXBF_RSH_LOG_TYPE_MSG);
428 	data |= FIELD_PREP(MLXBF_RSH_LOG_LEN_MASK, num);
429 	data |= FIELD_PREP(MLXBF_RSH_LOG_LEVEL_MASK, level);
430 	writeq(data, mlxbf_rsh_scratch_buf_data);
431 
432 	/* Write message. */
433 	for (idx = 0; idx < num && size > 0; idx++) {
434 		if (size < sizeof(u64)) {
435 			data = 0;
436 			memcpy(&data, buf, size);
437 			size = 0;
438 		} else {
439 			memcpy(&data, buf, sizeof(u64));
440 			size -= sizeof(u64);
441 			buf += sizeof(u64);
442 		}
443 		writeq(data, mlxbf_rsh_scratch_buf_data);
444 	}
445 
446 done:
447 	/* Release the semaphore. */
448 	mlxbf_rsh_log_sem_unlock();
449 
450 	/* Ignore the rest if no more space. */
451 	return count;
452 }
453 
large_icm_show(struct device * dev,struct device_attribute * attr,char * buf)454 static ssize_t large_icm_show(struct device *dev,
455 				struct device_attribute *attr, char *buf)
456 {
457 	struct arm_smccc_res res;
458 
459 	mutex_lock(&icm_ops_lock);
460 	arm_smccc_smc(MLNX_HANDLE_GET_ICM_INFO, 0, 0, 0, 0,
461 		      0, 0, 0, &res);
462 	mutex_unlock(&icm_ops_lock);
463 	if (res.a0)
464 		return -EPERM;
465 
466 	return sysfs_emit(buf, "0x%lx", res.a1);
467 }
468 
large_icm_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)469 static ssize_t large_icm_store(struct device *dev,
470 			       struct device_attribute *attr,
471 			       const char *buf, size_t count)
472 {
473 	struct arm_smccc_res res;
474 	unsigned long icm_data;
475 	int err;
476 
477 	err = kstrtoul(buf, MLXBF_LARGE_ICMC_MAX_STRING_SIZE, &icm_data);
478 	if (err)
479 		return err;
480 
481 	if ((icm_data != 0 && icm_data < MLXBF_LARGE_ICMC_SIZE_MIN) ||
482 	    icm_data > MLXBF_LARGE_ICMC_SIZE_MAX || icm_data % MLXBF_LARGE_ICMC_GRANULARITY)
483 		return -EPERM;
484 
485 	mutex_lock(&icm_ops_lock);
486 	arm_smccc_smc(MLNX_HANDLE_SET_ICM_INFO, icm_data, 0, 0, 0, 0, 0, 0, &res);
487 	mutex_unlock(&icm_ops_lock);
488 
489 	return res.a0 ? -EPERM : count;
490 }
491 
os_up_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)492 static ssize_t os_up_store(struct device *dev,
493 			   struct device_attribute *attr,
494 			   const char *buf, size_t count)
495 {
496 	struct arm_smccc_res res;
497 	unsigned long val;
498 	int err;
499 
500 	err = kstrtoul(buf, 10, &val);
501 	if (err)
502 		return err;
503 
504 	if (val != 1)
505 		return -EINVAL;
506 
507 	mutex_lock(&os_up_lock);
508 	arm_smccc_smc(MLNX_HANDLE_OS_UP, 0, 0, 0, 0, 0, 0, 0, &res);
509 	mutex_unlock(&os_up_lock);
510 
511 	return count;
512 }
513 
oob_mac_show(struct device * dev,struct device_attribute * attr,char * buf)514 static ssize_t oob_mac_show(struct device *dev,
515 			    struct device_attribute *attr, char *buf)
516 {
517 	struct arm_smccc_res res;
518 	u8 *mac_byte_ptr;
519 
520 	mutex_lock(&mfg_ops_lock);
521 	arm_smccc_smc(MLXBF_BOOTCTL_GET_MFG_INFO, MLNX_MFG_TYPE_OOB_MAC, 0, 0, 0,
522 		      0, 0, 0, &res);
523 	mutex_unlock(&mfg_ops_lock);
524 	if (res.a0)
525 		return -EPERM;
526 
527 	mac_byte_ptr = (u8 *)&res.a1;
528 
529 	return sysfs_format_mac(buf, mac_byte_ptr, ETH_ALEN);
530 }
531 
oob_mac_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)532 static ssize_t oob_mac_store(struct device *dev,
533 			     struct device_attribute *attr,
534 			     const char *buf, size_t count)
535 {
536 	unsigned int byte[MLNX_MFG_OOB_MAC_FORMAT_LEN] = { 0 };
537 	struct arm_smccc_res res;
538 	int byte_idx, len;
539 	u64 mac_addr = 0;
540 	u8 *mac_byte_ptr;
541 
542 	if ((count - 1) != MLNX_MFG_OOB_MAC_FORMAT_LEN)
543 		return -EINVAL;
544 
545 	len = sscanf(buf, "%02x:%02x:%02x:%02x:%02x:%02x",
546 		     &byte[0], &byte[1], &byte[2],
547 		     &byte[3], &byte[4], &byte[5]);
548 	if (len != ETH_ALEN)
549 		return -EINVAL;
550 
551 	mac_byte_ptr = (u8 *)&mac_addr;
552 
553 	for (byte_idx = 0; byte_idx < ETH_ALEN; byte_idx++)
554 		mac_byte_ptr[byte_idx] = (u8)byte[byte_idx];
555 
556 	mutex_lock(&mfg_ops_lock);
557 	arm_smccc_smc(MLXBF_BOOTCTL_SET_MFG_INFO, MLNX_MFG_TYPE_OOB_MAC,
558 		      ETH_ALEN, mac_addr, 0, 0, 0, 0, &res);
559 	mutex_unlock(&mfg_ops_lock);
560 
561 	return res.a0 ? -EPERM : count;
562 }
563 
opn_show(struct device * dev,struct device_attribute * attr,char * buf)564 static ssize_t opn_show(struct device *dev,
565 			struct device_attribute *attr, char *buf)
566 {
567 	u64 opn_data[MLNX_MFG_VAL_QWORD_CNT(OPN) + 1] = { 0 };
568 	struct arm_smccc_res res;
569 	int word;
570 
571 	mutex_lock(&mfg_ops_lock);
572 	for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(OPN); word++) {
573 		arm_smccc_smc(MLXBF_BOOTCTL_GET_MFG_INFO,
574 			      MLNX_MFG_TYPE_OPN_0 + word,
575 			      0, 0, 0, 0, 0, 0, &res);
576 		if (res.a0) {
577 			mutex_unlock(&mfg_ops_lock);
578 			return -EPERM;
579 		}
580 		opn_data[word] = res.a1;
581 	}
582 	mutex_unlock(&mfg_ops_lock);
583 
584 	return sysfs_emit(buf, "%s", (char *)opn_data);
585 }
586 
opn_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)587 static ssize_t opn_store(struct device *dev,
588 			 struct device_attribute *attr,
589 			 const char *buf, size_t count)
590 {
591 	u64 opn[MLNX_MFG_VAL_QWORD_CNT(OPN)] = { 0 };
592 	struct arm_smccc_res res;
593 	int word;
594 
595 	if (count > MLNX_MFG_OPN_VAL_LEN)
596 		return -EINVAL;
597 
598 	memcpy(opn, buf, count);
599 
600 	mutex_lock(&mfg_ops_lock);
601 	for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(OPN); word++) {
602 		arm_smccc_smc(MLXBF_BOOTCTL_SET_MFG_INFO,
603 			      MLNX_MFG_TYPE_OPN_0 + word,
604 			      sizeof(u64), opn[word], 0, 0, 0, 0, &res);
605 		if (res.a0) {
606 			mutex_unlock(&mfg_ops_lock);
607 			return -EPERM;
608 		}
609 	}
610 	mutex_unlock(&mfg_ops_lock);
611 
612 	return count;
613 }
614 
sku_show(struct device * dev,struct device_attribute * attr,char * buf)615 static ssize_t sku_show(struct device *dev,
616 			struct device_attribute *attr, char *buf)
617 {
618 	u64 sku_data[MLNX_MFG_VAL_QWORD_CNT(SKU) + 1] = { 0 };
619 	struct arm_smccc_res res;
620 	int word;
621 
622 	mutex_lock(&mfg_ops_lock);
623 	for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(SKU); word++) {
624 		arm_smccc_smc(MLXBF_BOOTCTL_GET_MFG_INFO,
625 			      MLNX_MFG_TYPE_SKU_0 + word,
626 			      0, 0, 0, 0, 0, 0, &res);
627 		if (res.a0) {
628 			mutex_unlock(&mfg_ops_lock);
629 			return -EPERM;
630 		}
631 		sku_data[word] = res.a1;
632 	}
633 	mutex_unlock(&mfg_ops_lock);
634 
635 	return sysfs_emit(buf, "%s", (char *)sku_data);
636 }
637 
sku_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)638 static ssize_t sku_store(struct device *dev,
639 			 struct device_attribute *attr,
640 			 const char *buf, size_t count)
641 {
642 	u64 sku[MLNX_MFG_VAL_QWORD_CNT(SKU)] = { 0 };
643 	struct arm_smccc_res res;
644 	int word;
645 
646 	if (count > MLNX_MFG_SKU_VAL_LEN)
647 		return -EINVAL;
648 
649 	memcpy(sku, buf, count);
650 
651 	mutex_lock(&mfg_ops_lock);
652 	for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(SKU); word++) {
653 		arm_smccc_smc(MLXBF_BOOTCTL_SET_MFG_INFO,
654 			      MLNX_MFG_TYPE_SKU_0 + word,
655 			      sizeof(u64), sku[word], 0, 0, 0, 0, &res);
656 		if (res.a0) {
657 			mutex_unlock(&mfg_ops_lock);
658 			return -EPERM;
659 		}
660 	}
661 	mutex_unlock(&mfg_ops_lock);
662 
663 	return count;
664 }
665 
modl_show(struct device * dev,struct device_attribute * attr,char * buf)666 static ssize_t modl_show(struct device *dev,
667 			 struct device_attribute *attr, char *buf)
668 {
669 	u64 modl_data[MLNX_MFG_VAL_QWORD_CNT(MODL) + 1] = { 0 };
670 	struct arm_smccc_res res;
671 	int word;
672 
673 	mutex_lock(&mfg_ops_lock);
674 	for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(MODL); word++) {
675 		arm_smccc_smc(MLXBF_BOOTCTL_GET_MFG_INFO,
676 			      MLNX_MFG_TYPE_MODL_0 + word,
677 			      0, 0, 0, 0, 0, 0, &res);
678 		if (res.a0) {
679 			mutex_unlock(&mfg_ops_lock);
680 			return -EPERM;
681 		}
682 		modl_data[word] = res.a1;
683 	}
684 	mutex_unlock(&mfg_ops_lock);
685 
686 	return sysfs_emit(buf, "%s", (char *)modl_data);
687 }
688 
modl_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)689 static ssize_t modl_store(struct device *dev,
690 			  struct device_attribute *attr,
691 			  const char *buf, size_t count)
692 {
693 	u64 modl[MLNX_MFG_VAL_QWORD_CNT(MODL)] = { 0 };
694 	struct arm_smccc_res res;
695 	int word;
696 
697 	if (count > MLNX_MFG_MODL_VAL_LEN)
698 		return -EINVAL;
699 
700 	memcpy(modl, buf, count);
701 
702 	mutex_lock(&mfg_ops_lock);
703 	for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(MODL); word++) {
704 		arm_smccc_smc(MLXBF_BOOTCTL_SET_MFG_INFO,
705 			      MLNX_MFG_TYPE_MODL_0 + word,
706 			      sizeof(u64), modl[word], 0, 0, 0, 0, &res);
707 		if (res.a0) {
708 			mutex_unlock(&mfg_ops_lock);
709 			return -EPERM;
710 		}
711 	}
712 	mutex_unlock(&mfg_ops_lock);
713 
714 	return count;
715 }
716 
sn_show(struct device * dev,struct device_attribute * attr,char * buf)717 static ssize_t sn_show(struct device *dev,
718 		       struct device_attribute *attr, char *buf)
719 {
720 	u64 sn_data[MLNX_MFG_VAL_QWORD_CNT(SN) + 1] = { 0 };
721 	struct arm_smccc_res res;
722 	int word;
723 
724 	mutex_lock(&mfg_ops_lock);
725 	for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(SN); word++) {
726 		arm_smccc_smc(MLXBF_BOOTCTL_GET_MFG_INFO,
727 			      MLNX_MFG_TYPE_SN_0 + word,
728 			      0, 0, 0, 0, 0, 0, &res);
729 		if (res.a0) {
730 			mutex_unlock(&mfg_ops_lock);
731 			return -EPERM;
732 		}
733 		sn_data[word] = res.a1;
734 	}
735 	mutex_unlock(&mfg_ops_lock);
736 
737 	return sysfs_emit(buf, "%s", (char *)sn_data);
738 }
739 
sn_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)740 static ssize_t sn_store(struct device *dev,
741 			struct device_attribute *attr,
742 			const char *buf, size_t count)
743 {
744 	u64 sn[MLNX_MFG_VAL_QWORD_CNT(SN)] = { 0 };
745 	struct arm_smccc_res res;
746 	int word;
747 
748 	if (count > MLNX_MFG_SN_VAL_LEN)
749 		return -EINVAL;
750 
751 	memcpy(sn, buf, count);
752 
753 	mutex_lock(&mfg_ops_lock);
754 	for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(SN); word++) {
755 		arm_smccc_smc(MLXBF_BOOTCTL_SET_MFG_INFO,
756 			      MLNX_MFG_TYPE_SN_0 + word,
757 			      sizeof(u64), sn[word], 0, 0, 0, 0, &res);
758 		if (res.a0) {
759 			mutex_unlock(&mfg_ops_lock);
760 			return -EPERM;
761 		}
762 	}
763 	mutex_unlock(&mfg_ops_lock);
764 
765 	return count;
766 }
767 
uuid_show(struct device * dev,struct device_attribute * attr,char * buf)768 static ssize_t uuid_show(struct device *dev,
769 			 struct device_attribute *attr, char *buf)
770 {
771 	u64 uuid_data[MLNX_MFG_VAL_QWORD_CNT(UUID) + 1] = { 0 };
772 	struct arm_smccc_res res;
773 	int word;
774 
775 	mutex_lock(&mfg_ops_lock);
776 	for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(UUID); word++) {
777 		arm_smccc_smc(MLXBF_BOOTCTL_GET_MFG_INFO,
778 			      MLNX_MFG_TYPE_UUID_0 + word,
779 			      0, 0, 0, 0, 0, 0, &res);
780 		if (res.a0) {
781 			mutex_unlock(&mfg_ops_lock);
782 			return -EPERM;
783 		}
784 		uuid_data[word] = res.a1;
785 	}
786 	mutex_unlock(&mfg_ops_lock);
787 
788 	return sysfs_emit(buf, "%s", (char *)uuid_data);
789 }
790 
uuid_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)791 static ssize_t uuid_store(struct device *dev,
792 			  struct device_attribute *attr,
793 			  const char *buf, size_t count)
794 {
795 	u64 uuid[MLNX_MFG_VAL_QWORD_CNT(UUID)] = { 0 };
796 	struct arm_smccc_res res;
797 	int word;
798 
799 	if (count > MLNX_MFG_UUID_VAL_LEN)
800 		return -EINVAL;
801 
802 	memcpy(uuid, buf, count);
803 
804 	mutex_lock(&mfg_ops_lock);
805 	for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(UUID); word++) {
806 		arm_smccc_smc(MLXBF_BOOTCTL_SET_MFG_INFO,
807 			      MLNX_MFG_TYPE_UUID_0 + word,
808 			      sizeof(u64), uuid[word], 0, 0, 0, 0, &res);
809 		if (res.a0) {
810 			mutex_unlock(&mfg_ops_lock);
811 			return -EPERM;
812 		}
813 	}
814 	mutex_unlock(&mfg_ops_lock);
815 
816 	return count;
817 }
818 
rev_show(struct device * dev,struct device_attribute * attr,char * buf)819 static ssize_t rev_show(struct device *dev,
820 			struct device_attribute *attr, char *buf)
821 {
822 	u64 rev_data[MLNX_MFG_VAL_QWORD_CNT(REV) + 1] = { 0 };
823 	struct arm_smccc_res res;
824 	int word;
825 
826 	mutex_lock(&mfg_ops_lock);
827 	for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(REV); word++) {
828 		arm_smccc_smc(MLXBF_BOOTCTL_GET_MFG_INFO,
829 			      MLNX_MFG_TYPE_REV + word,
830 			      0, 0, 0, 0, 0, 0, &res);
831 		if (res.a0) {
832 			mutex_unlock(&mfg_ops_lock);
833 			return -EPERM;
834 		}
835 		rev_data[word] = res.a1;
836 	}
837 	mutex_unlock(&mfg_ops_lock);
838 
839 	return sysfs_emit(buf, "%s", (char *)rev_data);
840 }
841 
rev_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)842 static ssize_t rev_store(struct device *dev,
843 			 struct device_attribute *attr,
844 			 const char *buf, size_t count)
845 {
846 	u64 rev[MLNX_MFG_VAL_QWORD_CNT(REV)] = { 0 };
847 	struct arm_smccc_res res;
848 	int word;
849 
850 	if (count > MLNX_MFG_REV_VAL_LEN)
851 		return -EINVAL;
852 
853 	memcpy(rev, buf, count);
854 
855 	mutex_lock(&mfg_ops_lock);
856 	for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(REV); word++) {
857 		arm_smccc_smc(MLXBF_BOOTCTL_SET_MFG_INFO,
858 			      MLNX_MFG_TYPE_REV + word,
859 			      sizeof(u64), rev[word], 0, 0, 0, 0, &res);
860 		if (res.a0) {
861 			mutex_unlock(&mfg_ops_lock);
862 			return -EPERM;
863 		}
864 	}
865 	mutex_unlock(&mfg_ops_lock);
866 
867 	return count;
868 }
869 
mfg_lock_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)870 static ssize_t mfg_lock_store(struct device *dev,
871 			      struct device_attribute *attr,
872 			      const char *buf, size_t count)
873 {
874 	struct arm_smccc_res res;
875 	unsigned long val;
876 	int err;
877 
878 	err = kstrtoul(buf, 10, &val);
879 	if (err)
880 		return err;
881 
882 	if (val != 1)
883 		return -EINVAL;
884 
885 	mutex_lock(&mfg_ops_lock);
886 	arm_smccc_smc(MLXBF_BOOTCTL_LOCK_MFG_INFO, 0, 0, 0, 0, 0, 0, 0, &res);
887 	mutex_unlock(&mfg_ops_lock);
888 
889 	return count;
890 }
891 
892 static DEVICE_ATTR_RW(post_reset_wdog);
893 static DEVICE_ATTR_RW(reset_action);
894 static DEVICE_ATTR_RW(second_reset_action);
895 static DEVICE_ATTR_RO(lifecycle_state);
896 static DEVICE_ATTR_RO(secure_boot_fuse_state);
897 static DEVICE_ATTR_WO(fw_reset);
898 static DEVICE_ATTR_WO(rsh_log);
899 static DEVICE_ATTR_RW(large_icm);
900 static DEVICE_ATTR_WO(os_up);
901 static DEVICE_ATTR_RW(oob_mac);
902 static DEVICE_ATTR_RW(opn);
903 static DEVICE_ATTR_RW(sku);
904 static DEVICE_ATTR_RW(modl);
905 static DEVICE_ATTR_RW(sn);
906 static DEVICE_ATTR_RW(uuid);
907 static DEVICE_ATTR_RW(rev);
908 static DEVICE_ATTR_WO(mfg_lock);
909 
910 static struct attribute *mlxbf_bootctl_attrs[] = {
911 	&dev_attr_post_reset_wdog.attr,
912 	&dev_attr_reset_action.attr,
913 	&dev_attr_second_reset_action.attr,
914 	&dev_attr_lifecycle_state.attr,
915 	&dev_attr_secure_boot_fuse_state.attr,
916 	&dev_attr_fw_reset.attr,
917 	&dev_attr_rsh_log.attr,
918 	&dev_attr_large_icm.attr,
919 	&dev_attr_os_up.attr,
920 	&dev_attr_oob_mac.attr,
921 	&dev_attr_opn.attr,
922 	&dev_attr_sku.attr,
923 	&dev_attr_modl.attr,
924 	&dev_attr_sn.attr,
925 	&dev_attr_uuid.attr,
926 	&dev_attr_rev.attr,
927 	&dev_attr_mfg_lock.attr,
928 	NULL
929 };
930 
931 ATTRIBUTE_GROUPS(mlxbf_bootctl);
932 
933 static const struct acpi_device_id mlxbf_bootctl_acpi_ids[] = {
934 	{"MLNXBF04", 0},
935 	{}
936 };
937 
938 MODULE_DEVICE_TABLE(acpi, mlxbf_bootctl_acpi_ids);
939 
mlxbf_bootctl_bootfifo_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t pos,size_t count)940 static ssize_t mlxbf_bootctl_bootfifo_read(struct file *filp,
941 					   struct kobject *kobj,
942 					   struct bin_attribute *bin_attr,
943 					   char *buf, loff_t pos,
944 					   size_t count)
945 {
946 	unsigned long timeout = msecs_to_jiffies(500);
947 	unsigned long expire = jiffies + timeout;
948 	u64 data, cnt = 0;
949 	char *p = buf;
950 
951 	while (count >= sizeof(data)) {
952 		/* Give up reading if no more data within 500ms. */
953 		if (!cnt) {
954 			cnt = readq(mlxbf_rsh_boot_cnt);
955 			if (!cnt) {
956 				if (time_after(jiffies, expire))
957 					break;
958 				usleep_range(10, 50);
959 				continue;
960 			}
961 		}
962 
963 		data = readq(mlxbf_rsh_boot_data);
964 		memcpy(p, &data, sizeof(data));
965 		count -= sizeof(data);
966 		p += sizeof(data);
967 		cnt--;
968 		expire = jiffies + timeout;
969 	}
970 
971 	return p - buf;
972 }
973 
974 static struct bin_attribute mlxbf_bootctl_bootfifo_sysfs_attr = {
975 	.attr = { .name = "bootfifo", .mode = 0400 },
976 	.read = mlxbf_bootctl_bootfifo_read,
977 };
978 
mlxbf_bootctl_guid_match(const guid_t * guid,const struct arm_smccc_res * res)979 static bool mlxbf_bootctl_guid_match(const guid_t *guid,
980 				     const struct arm_smccc_res *res)
981 {
982 	guid_t id = GUID_INIT(res->a0, res->a1, res->a1 >> 16,
983 			      res->a2, res->a2 >> 8, res->a2 >> 16,
984 			      res->a2 >> 24, res->a3, res->a3 >> 8,
985 			      res->a3 >> 16, res->a3 >> 24);
986 
987 	return guid_equal(guid, &id);
988 }
989 
mlxbf_bootctl_probe(struct platform_device * pdev)990 static int mlxbf_bootctl_probe(struct platform_device *pdev)
991 {
992 	struct arm_smccc_res res = { 0 };
993 	void __iomem *reg;
994 	guid_t guid;
995 	int ret;
996 
997 	/* Map the resource of the bootfifo data register. */
998 	mlxbf_rsh_boot_data = devm_platform_ioremap_resource(pdev, 0);
999 	if (IS_ERR(mlxbf_rsh_boot_data))
1000 		return PTR_ERR(mlxbf_rsh_boot_data);
1001 
1002 	/* Map the resource of the bootfifo counter register. */
1003 	mlxbf_rsh_boot_cnt = devm_platform_ioremap_resource(pdev, 1);
1004 	if (IS_ERR(mlxbf_rsh_boot_cnt))
1005 		return PTR_ERR(mlxbf_rsh_boot_cnt);
1006 
1007 	/* Map the resource of the rshim semaphore register. */
1008 	mlxbf_rsh_semaphore = devm_platform_ioremap_resource(pdev, 2);
1009 	if (IS_ERR(mlxbf_rsh_semaphore))
1010 		return PTR_ERR(mlxbf_rsh_semaphore);
1011 
1012 	/* Map the resource of the scratch buffer (log) registers. */
1013 	reg = devm_platform_ioremap_resource(pdev, 3);
1014 	if (IS_ERR(reg))
1015 		return PTR_ERR(reg);
1016 	mlxbf_rsh_scratch_buf_ctl = reg + MLXBF_RSH_SCRATCH_BUF_CTL_OFF;
1017 	mlxbf_rsh_scratch_buf_data = reg + MLXBF_RSH_SCRATCH_BUF_DATA_OFF;
1018 
1019 	/* Ensure we have the UUID we expect for this service. */
1020 	arm_smccc_smc(MLXBF_BOOTCTL_SIP_SVC_UID, 0, 0, 0, 0, 0, 0, 0, &res);
1021 	guid_parse(mlxbf_bootctl_svc_uuid_str, &guid);
1022 	if (!mlxbf_bootctl_guid_match(&guid, &res))
1023 		return -ENODEV;
1024 
1025 	/*
1026 	 * When watchdog is used, it sets boot mode to MLXBF_BOOTCTL_SWAP_EMMC
1027 	 * in case of boot failures. However it doesn't clear the state if there
1028 	 * is no failure. Restore the default boot mode here to avoid any
1029 	 * unnecessary boot partition swapping.
1030 	 */
1031 	ret = mlxbf_bootctl_smc(MLXBF_BOOTCTL_SET_RESET_ACTION,
1032 				MLXBF_BOOTCTL_EMMC);
1033 	if (ret < 0)
1034 		dev_warn(&pdev->dev, "Unable to reset the EMMC boot mode\n");
1035 
1036 	ret = sysfs_create_bin_file(&pdev->dev.kobj,
1037 				    &mlxbf_bootctl_bootfifo_sysfs_attr);
1038 	if (ret)
1039 		pr_err("Unable to create bootfifo sysfs file, error %d\n", ret);
1040 
1041 	return ret;
1042 }
1043 
mlxbf_bootctl_remove(struct platform_device * pdev)1044 static void mlxbf_bootctl_remove(struct platform_device *pdev)
1045 {
1046 	sysfs_remove_bin_file(&pdev->dev.kobj,
1047 			      &mlxbf_bootctl_bootfifo_sysfs_attr);
1048 }
1049 
1050 static struct platform_driver mlxbf_bootctl_driver = {
1051 	.probe = mlxbf_bootctl_probe,
1052 	.remove_new = mlxbf_bootctl_remove,
1053 	.driver = {
1054 		.name = "mlxbf-bootctl",
1055 		.dev_groups = mlxbf_bootctl_groups,
1056 		.acpi_match_table = mlxbf_bootctl_acpi_ids,
1057 	}
1058 };
1059 
1060 module_platform_driver(mlxbf_bootctl_driver);
1061 
1062 MODULE_DESCRIPTION("Mellanox boot control driver");
1063 MODULE_LICENSE("GPL v2");
1064 MODULE_AUTHOR("Mellanox Technologies");
1065