xref: /linux/include/linux/mmzone.h (revision c3f2d783a459980eafd24c5af94ccd56a615961f)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/list_nulls.h>
11 #include <linux/wait.h>
12 #include <linux/bitops.h>
13 #include <linux/cache.h>
14 #include <linux/threads.h>
15 #include <linux/numa.h>
16 #include <linux/init.h>
17 #include <linux/seqlock.h>
18 #include <linux/nodemask.h>
19 #include <linux/pageblock-flags.h>
20 #include <linux/page-flags-layout.h>
21 #include <linux/atomic.h>
22 #include <linux/mm_types.h>
23 #include <linux/page-flags.h>
24 #include <linux/local_lock.h>
25 #include <linux/zswap.h>
26 #include <asm/page.h>
27 
28 /* Free memory management - zoned buddy allocator.  */
29 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER
30 #define MAX_PAGE_ORDER 10
31 #else
32 #define MAX_PAGE_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
33 #endif
34 #define MAX_ORDER_NR_PAGES (1 << MAX_PAGE_ORDER)
35 
36 #define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES)
37 
38 #define NR_PAGE_ORDERS (MAX_PAGE_ORDER + 1)
39 
40 /*
41  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
42  * costly to service.  That is between allocation orders which should
43  * coalesce naturally under reasonable reclaim pressure and those which
44  * will not.
45  */
46 #define PAGE_ALLOC_COSTLY_ORDER 3
47 
48 enum migratetype {
49 	MIGRATE_UNMOVABLE,
50 	MIGRATE_MOVABLE,
51 	MIGRATE_RECLAIMABLE,
52 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
53 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
54 #ifdef CONFIG_CMA
55 	/*
56 	 * MIGRATE_CMA migration type is designed to mimic the way
57 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
58 	 * from MIGRATE_CMA pageblocks and page allocator never
59 	 * implicitly change migration type of MIGRATE_CMA pageblock.
60 	 *
61 	 * The way to use it is to change migratetype of a range of
62 	 * pageblocks to MIGRATE_CMA which can be done by
63 	 * __free_pageblock_cma() function.
64 	 */
65 	MIGRATE_CMA,
66 #endif
67 #ifdef CONFIG_MEMORY_ISOLATION
68 	MIGRATE_ISOLATE,	/* can't allocate from here */
69 #endif
70 	MIGRATE_TYPES
71 };
72 
73 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
74 extern const char * const migratetype_names[MIGRATE_TYPES];
75 
76 #ifdef CONFIG_CMA
77 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
78 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
79 #  define is_migrate_cma_folio(folio, pfn)	(MIGRATE_CMA ==		\
80 	get_pfnblock_flags_mask(&folio->page, pfn, MIGRATETYPE_MASK))
81 #else
82 #  define is_migrate_cma(migratetype) false
83 #  define is_migrate_cma_page(_page) false
84 #  define is_migrate_cma_folio(folio, pfn) false
85 #endif
86 
is_migrate_movable(int mt)87 static inline bool is_migrate_movable(int mt)
88 {
89 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
90 }
91 
92 /*
93  * Check whether a migratetype can be merged with another migratetype.
94  *
95  * It is only mergeable when it can fall back to other migratetypes for
96  * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
97  */
migratetype_is_mergeable(int mt)98 static inline bool migratetype_is_mergeable(int mt)
99 {
100 	return mt < MIGRATE_PCPTYPES;
101 }
102 
103 #define for_each_migratetype_order(order, type) \
104 	for (order = 0; order < NR_PAGE_ORDERS; order++) \
105 		for (type = 0; type < MIGRATE_TYPES; type++)
106 
107 extern int page_group_by_mobility_disabled;
108 
109 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
110 
111 #define get_pageblock_migratetype(page)					\
112 	get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
113 
114 #define folio_migratetype(folio)				\
115 	get_pfnblock_flags_mask(&folio->page, folio_pfn(folio),		\
116 			MIGRATETYPE_MASK)
117 struct free_area {
118 	struct list_head	free_list[MIGRATE_TYPES];
119 	unsigned long		nr_free;
120 };
121 
122 struct pglist_data;
123 
124 #ifdef CONFIG_NUMA
125 enum numa_stat_item {
126 	NUMA_HIT,		/* allocated in intended node */
127 	NUMA_MISS,		/* allocated in non intended node */
128 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
129 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
130 	NUMA_LOCAL,		/* allocation from local node */
131 	NUMA_OTHER,		/* allocation from other node */
132 	NR_VM_NUMA_EVENT_ITEMS
133 };
134 #else
135 #define NR_VM_NUMA_EVENT_ITEMS 0
136 #endif
137 
138 enum zone_stat_item {
139 	/* First 128 byte cacheline (assuming 64 bit words) */
140 	NR_FREE_PAGES,
141 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
142 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
143 	NR_ZONE_ACTIVE_ANON,
144 	NR_ZONE_INACTIVE_FILE,
145 	NR_ZONE_ACTIVE_FILE,
146 	NR_ZONE_UNEVICTABLE,
147 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
148 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
149 	/* Second 128 byte cacheline */
150 	NR_BOUNCE,
151 #if IS_ENABLED(CONFIG_ZSMALLOC)
152 	NR_ZSPAGES,		/* allocated in zsmalloc */
153 #endif
154 	NR_FREE_CMA_PAGES,
155 #ifdef CONFIG_UNACCEPTED_MEMORY
156 	NR_UNACCEPTED,
157 #endif
158 	NR_VM_ZONE_STAT_ITEMS };
159 
160 enum node_stat_item {
161 	NR_LRU_BASE,
162 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
163 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
164 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
165 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
166 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
167 	NR_SLAB_RECLAIMABLE_B,
168 	NR_SLAB_UNRECLAIMABLE_B,
169 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
170 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
171 	WORKINGSET_NODES,
172 	WORKINGSET_REFAULT_BASE,
173 	WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
174 	WORKINGSET_REFAULT_FILE,
175 	WORKINGSET_ACTIVATE_BASE,
176 	WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
177 	WORKINGSET_ACTIVATE_FILE,
178 	WORKINGSET_RESTORE_BASE,
179 	WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
180 	WORKINGSET_RESTORE_FILE,
181 	WORKINGSET_NODERECLAIM,
182 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
183 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
184 			   only modified from process context */
185 	NR_FILE_PAGES,
186 	NR_FILE_DIRTY,
187 	NR_WRITEBACK,
188 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
189 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
190 	NR_SHMEM_THPS,
191 	NR_SHMEM_PMDMAPPED,
192 	NR_FILE_THPS,
193 	NR_FILE_PMDMAPPED,
194 	NR_ANON_THPS,
195 	NR_VMSCAN_WRITE,
196 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
197 	NR_DIRTIED,		/* page dirtyings since bootup */
198 	NR_WRITTEN,		/* page writings since bootup */
199 	NR_THROTTLED_WRITTEN,	/* NR_WRITTEN while reclaim throttled */
200 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
201 	NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */
202 	NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */
203 	NR_KERNEL_STACK_KB,	/* measured in KiB */
204 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
205 	NR_KERNEL_SCS_KB,	/* measured in KiB */
206 #endif
207 	NR_PAGETABLE,		/* used for pagetables */
208 	NR_SECONDARY_PAGETABLE, /* secondary pagetables, KVM & IOMMU */
209 #ifdef CONFIG_IOMMU_SUPPORT
210 	NR_IOMMU_PAGES,		/* # of pages allocated by IOMMU */
211 #endif
212 #ifdef CONFIG_SWAP
213 	NR_SWAPCACHE,
214 #endif
215 #ifdef CONFIG_NUMA_BALANCING
216 	PGPROMOTE_SUCCESS,	/* promote successfully */
217 	PGPROMOTE_CANDIDATE,	/* candidate pages to promote */
218 #endif
219 	/* PGDEMOTE_*: pages demoted */
220 	PGDEMOTE_KSWAPD,
221 	PGDEMOTE_DIRECT,
222 	PGDEMOTE_KHUGEPAGED,
223 	NR_VM_NODE_STAT_ITEMS
224 };
225 
226 /*
227  * Returns true if the item should be printed in THPs (/proc/vmstat
228  * currently prints number of anon, file and shmem THPs. But the item
229  * is charged in pages).
230  */
vmstat_item_print_in_thp(enum node_stat_item item)231 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
232 {
233 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
234 		return false;
235 
236 	return item == NR_ANON_THPS ||
237 	       item == NR_FILE_THPS ||
238 	       item == NR_SHMEM_THPS ||
239 	       item == NR_SHMEM_PMDMAPPED ||
240 	       item == NR_FILE_PMDMAPPED;
241 }
242 
243 /*
244  * Returns true if the value is measured in bytes (most vmstat values are
245  * measured in pages). This defines the API part, the internal representation
246  * might be different.
247  */
vmstat_item_in_bytes(int idx)248 static __always_inline bool vmstat_item_in_bytes(int idx)
249 {
250 	/*
251 	 * Global and per-node slab counters track slab pages.
252 	 * It's expected that changes are multiples of PAGE_SIZE.
253 	 * Internally values are stored in pages.
254 	 *
255 	 * Per-memcg and per-lruvec counters track memory, consumed
256 	 * by individual slab objects. These counters are actually
257 	 * byte-precise.
258 	 */
259 	return (idx == NR_SLAB_RECLAIMABLE_B ||
260 		idx == NR_SLAB_UNRECLAIMABLE_B);
261 }
262 
263 /*
264  * We do arithmetic on the LRU lists in various places in the code,
265  * so it is important to keep the active lists LRU_ACTIVE higher in
266  * the array than the corresponding inactive lists, and to keep
267  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
268  *
269  * This has to be kept in sync with the statistics in zone_stat_item
270  * above and the descriptions in vmstat_text in mm/vmstat.c
271  */
272 #define LRU_BASE 0
273 #define LRU_ACTIVE 1
274 #define LRU_FILE 2
275 
276 enum lru_list {
277 	LRU_INACTIVE_ANON = LRU_BASE,
278 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
279 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
280 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
281 	LRU_UNEVICTABLE,
282 	NR_LRU_LISTS
283 };
284 
285 enum vmscan_throttle_state {
286 	VMSCAN_THROTTLE_WRITEBACK,
287 	VMSCAN_THROTTLE_ISOLATED,
288 	VMSCAN_THROTTLE_NOPROGRESS,
289 	VMSCAN_THROTTLE_CONGESTED,
290 	NR_VMSCAN_THROTTLE,
291 };
292 
293 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
294 
295 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
296 
is_file_lru(enum lru_list lru)297 static inline bool is_file_lru(enum lru_list lru)
298 {
299 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
300 }
301 
is_active_lru(enum lru_list lru)302 static inline bool is_active_lru(enum lru_list lru)
303 {
304 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
305 }
306 
307 #define WORKINGSET_ANON 0
308 #define WORKINGSET_FILE 1
309 #define ANON_AND_FILE 2
310 
311 enum lruvec_flags {
312 	/*
313 	 * An lruvec has many dirty pages backed by a congested BDI:
314 	 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim.
315 	 *    It can be cleared by cgroup reclaim or kswapd.
316 	 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim.
317 	 *    It can only be cleared by kswapd.
318 	 *
319 	 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup
320 	 * reclaim, but not vice versa. This only applies to the root cgroup.
321 	 * The goal is to prevent cgroup reclaim on the root cgroup (e.g.
322 	 * memory.reclaim) to unthrottle an unbalanced node (that was throttled
323 	 * by kswapd).
324 	 */
325 	LRUVEC_CGROUP_CONGESTED,
326 	LRUVEC_NODE_CONGESTED,
327 };
328 
329 #endif /* !__GENERATING_BOUNDS_H */
330 
331 /*
332  * Evictable pages are divided into multiple generations. The youngest and the
333  * oldest generation numbers, max_seq and min_seq, are monotonically increasing.
334  * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
335  * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
336  * corresponding generation. The gen counter in folio->flags stores gen+1 while
337  * a page is on one of lrugen->folios[]. Otherwise it stores 0.
338  *
339  * A page is added to the youngest generation on faulting. The aging needs to
340  * check the accessed bit at least twice before handing this page over to the
341  * eviction. The first check takes care of the accessed bit set on the initial
342  * fault; the second check makes sure this page hasn't been used since then.
343  * This process, AKA second chance, requires a minimum of two generations,
344  * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive
345  * LRU, e.g., /proc/vmstat, these two generations are considered active; the
346  * rest of generations, if they exist, are considered inactive. See
347  * lru_gen_is_active().
348  *
349  * PG_active is always cleared while a page is on one of lrugen->folios[] so
350  * that the aging needs not to worry about it. And it's set again when a page
351  * considered active is isolated for non-reclaiming purposes, e.g., migration.
352  * See lru_gen_add_folio() and lru_gen_del_folio().
353  *
354  * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
355  * number of categories of the active/inactive LRU when keeping track of
356  * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
357  * in folio->flags.
358  */
359 #define MIN_NR_GENS		2U
360 #define MAX_NR_GENS		4U
361 
362 /*
363  * Each generation is divided into multiple tiers. A page accessed N times
364  * through file descriptors is in tier order_base_2(N). A page in the first tier
365  * (N=0,1) is marked by PG_referenced unless it was faulted in through page
366  * tables or read ahead. A page in any other tier (N>1) is marked by
367  * PG_referenced and PG_workingset. This implies a minimum of two tiers is
368  * supported without using additional bits in folio->flags.
369  *
370  * In contrast to moving across generations which requires the LRU lock, moving
371  * across tiers only involves atomic operations on folio->flags and therefore
372  * has a negligible cost in the buffered access path. In the eviction path,
373  * comparisons of refaulted/(evicted+protected) from the first tier and the
374  * rest infer whether pages accessed multiple times through file descriptors
375  * are statistically hot and thus worth protecting.
376  *
377  * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
378  * number of categories of the active/inactive LRU when keeping track of
379  * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
380  * folio->flags.
381  */
382 #define MAX_NR_TIERS		4U
383 
384 #ifndef __GENERATING_BOUNDS_H
385 
386 struct lruvec;
387 struct page_vma_mapped_walk;
388 
389 #define LRU_GEN_MASK		((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
390 #define LRU_REFS_MASK		((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
391 
392 #ifdef CONFIG_LRU_GEN
393 
394 enum {
395 	LRU_GEN_ANON,
396 	LRU_GEN_FILE,
397 };
398 
399 enum {
400 	LRU_GEN_CORE,
401 	LRU_GEN_MM_WALK,
402 	LRU_GEN_NONLEAF_YOUNG,
403 	NR_LRU_GEN_CAPS
404 };
405 
406 #define MIN_LRU_BATCH		BITS_PER_LONG
407 #define MAX_LRU_BATCH		(MIN_LRU_BATCH * 64)
408 
409 /* whether to keep historical stats from evicted generations */
410 #ifdef CONFIG_LRU_GEN_STATS
411 #define NR_HIST_GENS		MAX_NR_GENS
412 #else
413 #define NR_HIST_GENS		1U
414 #endif
415 
416 /*
417  * The youngest generation number is stored in max_seq for both anon and file
418  * types as they are aged on an equal footing. The oldest generation numbers are
419  * stored in min_seq[] separately for anon and file types as clean file pages
420  * can be evicted regardless of swap constraints.
421  *
422  * Normally anon and file min_seq are in sync. But if swapping is constrained,
423  * e.g., out of swap space, file min_seq is allowed to advance and leave anon
424  * min_seq behind.
425  *
426  * The number of pages in each generation is eventually consistent and therefore
427  * can be transiently negative when reset_batch_size() is pending.
428  */
429 struct lru_gen_folio {
430 	/* the aging increments the youngest generation number */
431 	unsigned long max_seq;
432 	/* the eviction increments the oldest generation numbers */
433 	unsigned long min_seq[ANON_AND_FILE];
434 	/* the birth time of each generation in jiffies */
435 	unsigned long timestamps[MAX_NR_GENS];
436 	/* the multi-gen LRU lists, lazily sorted on eviction */
437 	struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
438 	/* the multi-gen LRU sizes, eventually consistent */
439 	long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
440 	/* the exponential moving average of refaulted */
441 	unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
442 	/* the exponential moving average of evicted+protected */
443 	unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
444 	/* the first tier doesn't need protection, hence the minus one */
445 	unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1];
446 	/* can be modified without holding the LRU lock */
447 	atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
448 	atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
449 	/* whether the multi-gen LRU is enabled */
450 	bool enabled;
451 	/* the memcg generation this lru_gen_folio belongs to */
452 	u8 gen;
453 	/* the list segment this lru_gen_folio belongs to */
454 	u8 seg;
455 	/* per-node lru_gen_folio list for global reclaim */
456 	struct hlist_nulls_node list;
457 };
458 
459 enum {
460 	MM_LEAF_TOTAL,		/* total leaf entries */
461 	MM_LEAF_OLD,		/* old leaf entries */
462 	MM_LEAF_YOUNG,		/* young leaf entries */
463 	MM_NONLEAF_TOTAL,	/* total non-leaf entries */
464 	MM_NONLEAF_FOUND,	/* non-leaf entries found in Bloom filters */
465 	MM_NONLEAF_ADDED,	/* non-leaf entries added to Bloom filters */
466 	NR_MM_STATS
467 };
468 
469 /* double-buffering Bloom filters */
470 #define NR_BLOOM_FILTERS	2
471 
472 struct lru_gen_mm_state {
473 	/* synced with max_seq after each iteration */
474 	unsigned long seq;
475 	/* where the current iteration continues after */
476 	struct list_head *head;
477 	/* where the last iteration ended before */
478 	struct list_head *tail;
479 	/* Bloom filters flip after each iteration */
480 	unsigned long *filters[NR_BLOOM_FILTERS];
481 	/* the mm stats for debugging */
482 	unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
483 };
484 
485 struct lru_gen_mm_walk {
486 	/* the lruvec under reclaim */
487 	struct lruvec *lruvec;
488 	/* max_seq from lru_gen_folio: can be out of date */
489 	unsigned long seq;
490 	/* the next address within an mm to scan */
491 	unsigned long next_addr;
492 	/* to batch promoted pages */
493 	int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
494 	/* to batch the mm stats */
495 	int mm_stats[NR_MM_STATS];
496 	/* total batched items */
497 	int batched;
498 	bool can_swap;
499 	bool force_scan;
500 };
501 
502 /*
503  * For each node, memcgs are divided into two generations: the old and the
504  * young. For each generation, memcgs are randomly sharded into multiple bins
505  * to improve scalability. For each bin, the hlist_nulls is virtually divided
506  * into three segments: the head, the tail and the default.
507  *
508  * An onlining memcg is added to the tail of a random bin in the old generation.
509  * The eviction starts at the head of a random bin in the old generation. The
510  * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes
511  * the old generation, is incremented when all its bins become empty.
512  *
513  * There are four operations:
514  * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its
515  *    current generation (old or young) and updates its "seg" to "head";
516  * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its
517  *    current generation (old or young) and updates its "seg" to "tail";
518  * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old
519  *    generation, updates its "gen" to "old" and resets its "seg" to "default";
520  * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the
521  *    young generation, updates its "gen" to "young" and resets its "seg" to
522  *    "default".
523  *
524  * The events that trigger the above operations are:
525  * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
526  * 2. The first attempt to reclaim a memcg below low, which triggers
527  *    MEMCG_LRU_TAIL;
528  * 3. The first attempt to reclaim a memcg offlined or below reclaimable size
529  *    threshold, which triggers MEMCG_LRU_TAIL;
530  * 4. The second attempt to reclaim a memcg offlined or below reclaimable size
531  *    threshold, which triggers MEMCG_LRU_YOUNG;
532  * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG;
533  * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG;
534  * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD.
535  *
536  * Notes:
537  * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing
538  *    of their max_seq counters ensures the eventual fairness to all eligible
539  *    memcgs. For memcg reclaim, it still relies on mem_cgroup_iter().
540  * 2. There are only two valid generations: old (seq) and young (seq+1).
541  *    MEMCG_NR_GENS is set to three so that when reading the generation counter
542  *    locklessly, a stale value (seq-1) does not wraparound to young.
543  */
544 #define MEMCG_NR_GENS	3
545 #define MEMCG_NR_BINS	8
546 
547 struct lru_gen_memcg {
548 	/* the per-node memcg generation counter */
549 	unsigned long seq;
550 	/* each memcg has one lru_gen_folio per node */
551 	unsigned long nr_memcgs[MEMCG_NR_GENS];
552 	/* per-node lru_gen_folio list for global reclaim */
553 	struct hlist_nulls_head	fifo[MEMCG_NR_GENS][MEMCG_NR_BINS];
554 	/* protects the above */
555 	spinlock_t lock;
556 };
557 
558 void lru_gen_init_pgdat(struct pglist_data *pgdat);
559 void lru_gen_init_lruvec(struct lruvec *lruvec);
560 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
561 
562 void lru_gen_init_memcg(struct mem_cgroup *memcg);
563 void lru_gen_exit_memcg(struct mem_cgroup *memcg);
564 void lru_gen_online_memcg(struct mem_cgroup *memcg);
565 void lru_gen_offline_memcg(struct mem_cgroup *memcg);
566 void lru_gen_release_memcg(struct mem_cgroup *memcg);
567 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid);
568 
569 #else /* !CONFIG_LRU_GEN */
570 
lru_gen_init_pgdat(struct pglist_data * pgdat)571 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
572 {
573 }
574 
lru_gen_init_lruvec(struct lruvec * lruvec)575 static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
576 {
577 }
578 
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)579 static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
580 {
581 }
582 
lru_gen_init_memcg(struct mem_cgroup * memcg)583 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
584 {
585 }
586 
lru_gen_exit_memcg(struct mem_cgroup * memcg)587 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
588 {
589 }
590 
lru_gen_online_memcg(struct mem_cgroup * memcg)591 static inline void lru_gen_online_memcg(struct mem_cgroup *memcg)
592 {
593 }
594 
lru_gen_offline_memcg(struct mem_cgroup * memcg)595 static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg)
596 {
597 }
598 
lru_gen_release_memcg(struct mem_cgroup * memcg)599 static inline void lru_gen_release_memcg(struct mem_cgroup *memcg)
600 {
601 }
602 
lru_gen_soft_reclaim(struct mem_cgroup * memcg,int nid)603 static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
604 {
605 }
606 
607 #endif /* CONFIG_LRU_GEN */
608 
609 struct lruvec {
610 	struct list_head		lists[NR_LRU_LISTS];
611 	/* per lruvec lru_lock for memcg */
612 	spinlock_t			lru_lock;
613 	/*
614 	 * These track the cost of reclaiming one LRU - file or anon -
615 	 * over the other. As the observed cost of reclaiming one LRU
616 	 * increases, the reclaim scan balance tips toward the other.
617 	 */
618 	unsigned long			anon_cost;
619 	unsigned long			file_cost;
620 	/* Non-resident age, driven by LRU movement */
621 	atomic_long_t			nonresident_age;
622 	/* Refaults at the time of last reclaim cycle */
623 	unsigned long			refaults[ANON_AND_FILE];
624 	/* Various lruvec state flags (enum lruvec_flags) */
625 	unsigned long			flags;
626 #ifdef CONFIG_LRU_GEN
627 	/* evictable pages divided into generations */
628 	struct lru_gen_folio		lrugen;
629 #ifdef CONFIG_LRU_GEN_WALKS_MMU
630 	/* to concurrently iterate lru_gen_mm_list */
631 	struct lru_gen_mm_state		mm_state;
632 #endif
633 #endif /* CONFIG_LRU_GEN */
634 #ifdef CONFIG_MEMCG
635 	struct pglist_data *pgdat;
636 #endif
637 	struct zswap_lruvec_state zswap_lruvec_state;
638 };
639 
640 /* Isolate for asynchronous migration */
641 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
642 /* Isolate unevictable pages */
643 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
644 
645 /* LRU Isolation modes. */
646 typedef unsigned __bitwise isolate_mode_t;
647 
648 enum zone_watermarks {
649 	WMARK_MIN,
650 	WMARK_LOW,
651 	WMARK_HIGH,
652 	WMARK_PROMO,
653 	NR_WMARK
654 };
655 
656 /*
657  * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. Two additional lists
658  * are added for THP. One PCP list is used by GPF_MOVABLE, and the other PCP list
659  * is used by GFP_UNMOVABLE and GFP_RECLAIMABLE.
660  */
661 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
662 #define NR_PCP_THP 2
663 #else
664 #define NR_PCP_THP 0
665 #endif
666 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
667 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
668 
669 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
670 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
671 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
672 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
673 
674 /*
675  * Flags used in pcp->flags field.
676  *
677  * PCPF_PREV_FREE_HIGH_ORDER: a high-order page is freed in the
678  * previous page freeing.  To avoid to drain PCP for an accident
679  * high-order page freeing.
680  *
681  * PCPF_FREE_HIGH_BATCH: preserve "pcp->batch" pages in PCP before
682  * draining PCP for consecutive high-order pages freeing without
683  * allocation if data cache slice of CPU is large enough.  To reduce
684  * zone lock contention and keep cache-hot pages reusing.
685  */
686 #define	PCPF_PREV_FREE_HIGH_ORDER	BIT(0)
687 #define	PCPF_FREE_HIGH_BATCH		BIT(1)
688 
689 struct per_cpu_pages {
690 	spinlock_t lock;	/* Protects lists field */
691 	int count;		/* number of pages in the list */
692 	int high;		/* high watermark, emptying needed */
693 	int high_min;		/* min high watermark */
694 	int high_max;		/* max high watermark */
695 	int batch;		/* chunk size for buddy add/remove */
696 	u8 flags;		/* protected by pcp->lock */
697 	u8 alloc_factor;	/* batch scaling factor during allocate */
698 #ifdef CONFIG_NUMA
699 	u8 expire;		/* When 0, remote pagesets are drained */
700 #endif
701 	short free_count;	/* consecutive free count */
702 
703 	/* Lists of pages, one per migrate type stored on the pcp-lists */
704 	struct list_head lists[NR_PCP_LISTS];
705 } ____cacheline_aligned_in_smp;
706 
707 struct per_cpu_zonestat {
708 #ifdef CONFIG_SMP
709 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
710 	s8 stat_threshold;
711 #endif
712 #ifdef CONFIG_NUMA
713 	/*
714 	 * Low priority inaccurate counters that are only folded
715 	 * on demand. Use a large type to avoid the overhead of
716 	 * folding during refresh_cpu_vm_stats.
717 	 */
718 	unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
719 #endif
720 };
721 
722 struct per_cpu_nodestat {
723 	s8 stat_threshold;
724 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
725 };
726 
727 #endif /* !__GENERATING_BOUNDS.H */
728 
729 enum zone_type {
730 	/*
731 	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
732 	 * to DMA to all of the addressable memory (ZONE_NORMAL).
733 	 * On architectures where this area covers the whole 32 bit address
734 	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
735 	 * DMA addressing constraints. This distinction is important as a 32bit
736 	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
737 	 * platforms may need both zones as they support peripherals with
738 	 * different DMA addressing limitations.
739 	 */
740 #ifdef CONFIG_ZONE_DMA
741 	ZONE_DMA,
742 #endif
743 #ifdef CONFIG_ZONE_DMA32
744 	ZONE_DMA32,
745 #endif
746 	/*
747 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
748 	 * performed on pages in ZONE_NORMAL if the DMA devices support
749 	 * transfers to all addressable memory.
750 	 */
751 	ZONE_NORMAL,
752 #ifdef CONFIG_HIGHMEM
753 	/*
754 	 * A memory area that is only addressable by the kernel through
755 	 * mapping portions into its own address space. This is for example
756 	 * used by i386 to allow the kernel to address the memory beyond
757 	 * 900MB. The kernel will set up special mappings (page
758 	 * table entries on i386) for each page that the kernel needs to
759 	 * access.
760 	 */
761 	ZONE_HIGHMEM,
762 #endif
763 	/*
764 	 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
765 	 * movable pages with few exceptional cases described below. Main use
766 	 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
767 	 * likely to succeed, and to locally limit unmovable allocations - e.g.,
768 	 * to increase the number of THP/huge pages. Notable special cases are:
769 	 *
770 	 * 1. Pinned pages: (long-term) pinning of movable pages might
771 	 *    essentially turn such pages unmovable. Therefore, we do not allow
772 	 *    pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
773 	 *    faulted, they come from the right zone right away. However, it is
774 	 *    still possible that address space already has pages in
775 	 *    ZONE_MOVABLE at the time when pages are pinned (i.e. user has
776 	 *    touches that memory before pinning). In such case we migrate them
777 	 *    to a different zone. When migration fails - pinning fails.
778 	 * 2. memblock allocations: kernelcore/movablecore setups might create
779 	 *    situations where ZONE_MOVABLE contains unmovable allocations
780 	 *    after boot. Memory offlining and allocations fail early.
781 	 * 3. Memory holes: kernelcore/movablecore setups might create very rare
782 	 *    situations where ZONE_MOVABLE contains memory holes after boot,
783 	 *    for example, if we have sections that are only partially
784 	 *    populated. Memory offlining and allocations fail early.
785 	 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
786 	 *    memory offlining, such pages cannot be allocated.
787 	 * 5. Unmovable PG_offline pages: in paravirtualized environments,
788 	 *    hotplugged memory blocks might only partially be managed by the
789 	 *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
790 	 *    parts not manged by the buddy are unmovable PG_offline pages. In
791 	 *    some cases (virtio-mem), such pages can be skipped during
792 	 *    memory offlining, however, cannot be moved/allocated. These
793 	 *    techniques might use alloc_contig_range() to hide previously
794 	 *    exposed pages from the buddy again (e.g., to implement some sort
795 	 *    of memory unplug in virtio-mem).
796 	 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
797 	 *    situations where ZERO_PAGE(0) which is allocated differently
798 	 *    on different platforms may end up in a movable zone. ZERO_PAGE(0)
799 	 *    cannot be migrated.
800 	 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
801 	 *    memory to the MOVABLE zone, the vmemmap pages are also placed in
802 	 *    such zone. Such pages cannot be really moved around as they are
803 	 *    self-stored in the range, but they are treated as movable when
804 	 *    the range they describe is about to be offlined.
805 	 *
806 	 * In general, no unmovable allocations that degrade memory offlining
807 	 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
808 	 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
809 	 * if has_unmovable_pages() states that there are no unmovable pages,
810 	 * there can be false negatives).
811 	 */
812 	ZONE_MOVABLE,
813 #ifdef CONFIG_ZONE_DEVICE
814 	ZONE_DEVICE,
815 #endif
816 	__MAX_NR_ZONES
817 
818 };
819 
820 #ifndef __GENERATING_BOUNDS_H
821 
822 #define ASYNC_AND_SYNC 2
823 
824 struct zone {
825 	/* Read-mostly fields */
826 
827 	/* zone watermarks, access with *_wmark_pages(zone) macros */
828 	unsigned long _watermark[NR_WMARK];
829 	unsigned long watermark_boost;
830 
831 	unsigned long nr_reserved_highatomic;
832 
833 	/*
834 	 * We don't know if the memory that we're going to allocate will be
835 	 * freeable or/and it will be released eventually, so to avoid totally
836 	 * wasting several GB of ram we must reserve some of the lower zone
837 	 * memory (otherwise we risk to run OOM on the lower zones despite
838 	 * there being tons of freeable ram on the higher zones).  This array is
839 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
840 	 * changes.
841 	 */
842 	long lowmem_reserve[MAX_NR_ZONES];
843 
844 #ifdef CONFIG_NUMA
845 	int node;
846 #endif
847 	struct pglist_data	*zone_pgdat;
848 	struct per_cpu_pages	__percpu *per_cpu_pageset;
849 	struct per_cpu_zonestat	__percpu *per_cpu_zonestats;
850 	/*
851 	 * the high and batch values are copied to individual pagesets for
852 	 * faster access
853 	 */
854 	int pageset_high_min;
855 	int pageset_high_max;
856 	int pageset_batch;
857 
858 #ifndef CONFIG_SPARSEMEM
859 	/*
860 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
861 	 * In SPARSEMEM, this map is stored in struct mem_section
862 	 */
863 	unsigned long		*pageblock_flags;
864 #endif /* CONFIG_SPARSEMEM */
865 
866 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
867 	unsigned long		zone_start_pfn;
868 
869 	/*
870 	 * spanned_pages is the total pages spanned by the zone, including
871 	 * holes, which is calculated as:
872 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
873 	 *
874 	 * present_pages is physical pages existing within the zone, which
875 	 * is calculated as:
876 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
877 	 *
878 	 * present_early_pages is present pages existing within the zone
879 	 * located on memory available since early boot, excluding hotplugged
880 	 * memory.
881 	 *
882 	 * managed_pages is present pages managed by the buddy system, which
883 	 * is calculated as (reserved_pages includes pages allocated by the
884 	 * bootmem allocator):
885 	 *	managed_pages = present_pages - reserved_pages;
886 	 *
887 	 * cma pages is present pages that are assigned for CMA use
888 	 * (MIGRATE_CMA).
889 	 *
890 	 * So present_pages may be used by memory hotplug or memory power
891 	 * management logic to figure out unmanaged pages by checking
892 	 * (present_pages - managed_pages). And managed_pages should be used
893 	 * by page allocator and vm scanner to calculate all kinds of watermarks
894 	 * and thresholds.
895 	 *
896 	 * Locking rules:
897 	 *
898 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
899 	 * It is a seqlock because it has to be read outside of zone->lock,
900 	 * and it is done in the main allocator path.  But, it is written
901 	 * quite infrequently.
902 	 *
903 	 * The span_seq lock is declared along with zone->lock because it is
904 	 * frequently read in proximity to zone->lock.  It's good to
905 	 * give them a chance of being in the same cacheline.
906 	 *
907 	 * Write access to present_pages at runtime should be protected by
908 	 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
909 	 * present_pages should use get_online_mems() to get a stable value.
910 	 */
911 	atomic_long_t		managed_pages;
912 	unsigned long		spanned_pages;
913 	unsigned long		present_pages;
914 #if defined(CONFIG_MEMORY_HOTPLUG)
915 	unsigned long		present_early_pages;
916 #endif
917 #ifdef CONFIG_CMA
918 	unsigned long		cma_pages;
919 #endif
920 
921 	const char		*name;
922 
923 #ifdef CONFIG_MEMORY_ISOLATION
924 	/*
925 	 * Number of isolated pageblock. It is used to solve incorrect
926 	 * freepage counting problem due to racy retrieving migratetype
927 	 * of pageblock. Protected by zone->lock.
928 	 */
929 	unsigned long		nr_isolate_pageblock;
930 #endif
931 
932 #ifdef CONFIG_MEMORY_HOTPLUG
933 	/* see spanned/present_pages for more description */
934 	seqlock_t		span_seqlock;
935 #endif
936 
937 	int initialized;
938 
939 	/* Write-intensive fields used from the page allocator */
940 	CACHELINE_PADDING(_pad1_);
941 
942 	/* free areas of different sizes */
943 	struct free_area	free_area[NR_PAGE_ORDERS];
944 
945 #ifdef CONFIG_UNACCEPTED_MEMORY
946 	/* Pages to be accepted. All pages on the list are MAX_PAGE_ORDER */
947 	struct list_head	unaccepted_pages;
948 #endif
949 
950 	/* zone flags, see below */
951 	unsigned long		flags;
952 
953 	/* Primarily protects free_area */
954 	spinlock_t		lock;
955 
956 	/* Write-intensive fields used by compaction and vmstats. */
957 	CACHELINE_PADDING(_pad2_);
958 
959 	/*
960 	 * When free pages are below this point, additional steps are taken
961 	 * when reading the number of free pages to avoid per-cpu counter
962 	 * drift allowing watermarks to be breached
963 	 */
964 	unsigned long percpu_drift_mark;
965 
966 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
967 	/* pfn where compaction free scanner should start */
968 	unsigned long		compact_cached_free_pfn;
969 	/* pfn where compaction migration scanner should start */
970 	unsigned long		compact_cached_migrate_pfn[ASYNC_AND_SYNC];
971 	unsigned long		compact_init_migrate_pfn;
972 	unsigned long		compact_init_free_pfn;
973 #endif
974 
975 #ifdef CONFIG_COMPACTION
976 	/*
977 	 * On compaction failure, 1<<compact_defer_shift compactions
978 	 * are skipped before trying again. The number attempted since
979 	 * last failure is tracked with compact_considered.
980 	 * compact_order_failed is the minimum compaction failed order.
981 	 */
982 	unsigned int		compact_considered;
983 	unsigned int		compact_defer_shift;
984 	int			compact_order_failed;
985 #endif
986 
987 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
988 	/* Set to true when the PG_migrate_skip bits should be cleared */
989 	bool			compact_blockskip_flush;
990 #endif
991 
992 	bool			contiguous;
993 
994 	CACHELINE_PADDING(_pad3_);
995 	/* Zone statistics */
996 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
997 	atomic_long_t		vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
998 } ____cacheline_internodealigned_in_smp;
999 
1000 enum pgdat_flags {
1001 	PGDAT_DIRTY,			/* reclaim scanning has recently found
1002 					 * many dirty file pages at the tail
1003 					 * of the LRU.
1004 					 */
1005 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
1006 					 * many pages under writeback
1007 					 */
1008 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
1009 };
1010 
1011 enum zone_flags {
1012 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
1013 					 * Cleared when kswapd is woken.
1014 					 */
1015 	ZONE_RECLAIM_ACTIVE,		/* kswapd may be scanning the zone. */
1016 	ZONE_BELOW_HIGH,		/* zone is below high watermark. */
1017 };
1018 
zone_managed_pages(struct zone * zone)1019 static inline unsigned long zone_managed_pages(struct zone *zone)
1020 {
1021 	return (unsigned long)atomic_long_read(&zone->managed_pages);
1022 }
1023 
zone_cma_pages(struct zone * zone)1024 static inline unsigned long zone_cma_pages(struct zone *zone)
1025 {
1026 #ifdef CONFIG_CMA
1027 	return zone->cma_pages;
1028 #else
1029 	return 0;
1030 #endif
1031 }
1032 
zone_end_pfn(const struct zone * zone)1033 static inline unsigned long zone_end_pfn(const struct zone *zone)
1034 {
1035 	return zone->zone_start_pfn + zone->spanned_pages;
1036 }
1037 
zone_spans_pfn(const struct zone * zone,unsigned long pfn)1038 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
1039 {
1040 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
1041 }
1042 
zone_is_initialized(struct zone * zone)1043 static inline bool zone_is_initialized(struct zone *zone)
1044 {
1045 	return zone->initialized;
1046 }
1047 
zone_is_empty(struct zone * zone)1048 static inline bool zone_is_empty(struct zone *zone)
1049 {
1050 	return zone->spanned_pages == 0;
1051 }
1052 
1053 #ifndef BUILD_VDSO32_64
1054 /*
1055  * The zone field is never updated after free_area_init_core()
1056  * sets it, so none of the operations on it need to be atomic.
1057  */
1058 
1059 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1060 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1061 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1062 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1063 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1064 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1065 #define LRU_GEN_PGOFF		(KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
1066 #define LRU_REFS_PGOFF		(LRU_GEN_PGOFF - LRU_REFS_WIDTH)
1067 
1068 /*
1069  * Define the bit shifts to access each section.  For non-existent
1070  * sections we define the shift as 0; that plus a 0 mask ensures
1071  * the compiler will optimise away reference to them.
1072  */
1073 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1074 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1075 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1076 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1077 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1078 
1079 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1080 #ifdef NODE_NOT_IN_PAGE_FLAGS
1081 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1082 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF) ? \
1083 						SECTIONS_PGOFF : ZONES_PGOFF)
1084 #else
1085 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1086 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF) ? \
1087 						NODES_PGOFF : ZONES_PGOFF)
1088 #endif
1089 
1090 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1091 
1092 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1093 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1094 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1095 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1096 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1097 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1098 
page_zonenum(const struct page * page)1099 static inline enum zone_type page_zonenum(const struct page *page)
1100 {
1101 	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1102 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1103 }
1104 
folio_zonenum(const struct folio * folio)1105 static inline enum zone_type folio_zonenum(const struct folio *folio)
1106 {
1107 	return page_zonenum(&folio->page);
1108 }
1109 
1110 #ifdef CONFIG_ZONE_DEVICE
is_zone_device_page(const struct page * page)1111 static inline bool is_zone_device_page(const struct page *page)
1112 {
1113 	return page_zonenum(page) == ZONE_DEVICE;
1114 }
1115 
1116 /*
1117  * Consecutive zone device pages should not be merged into the same sgl
1118  * or bvec segment with other types of pages or if they belong to different
1119  * pgmaps. Otherwise getting the pgmap of a given segment is not possible
1120  * without scanning the entire segment. This helper returns true either if
1121  * both pages are not zone device pages or both pages are zone device pages
1122  * with the same pgmap.
1123  */
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1124 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1125 						     const struct page *b)
1126 {
1127 	if (is_zone_device_page(a) != is_zone_device_page(b))
1128 		return false;
1129 	if (!is_zone_device_page(a))
1130 		return true;
1131 	return a->pgmap == b->pgmap;
1132 }
1133 
1134 extern void memmap_init_zone_device(struct zone *, unsigned long,
1135 				    unsigned long, struct dev_pagemap *);
1136 #else
is_zone_device_page(const struct page * page)1137 static inline bool is_zone_device_page(const struct page *page)
1138 {
1139 	return false;
1140 }
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1141 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1142 						     const struct page *b)
1143 {
1144 	return true;
1145 }
1146 #endif
1147 
folio_is_zone_device(const struct folio * folio)1148 static inline bool folio_is_zone_device(const struct folio *folio)
1149 {
1150 	return is_zone_device_page(&folio->page);
1151 }
1152 
is_zone_movable_page(const struct page * page)1153 static inline bool is_zone_movable_page(const struct page *page)
1154 {
1155 	return page_zonenum(page) == ZONE_MOVABLE;
1156 }
1157 
folio_is_zone_movable(const struct folio * folio)1158 static inline bool folio_is_zone_movable(const struct folio *folio)
1159 {
1160 	return folio_zonenum(folio) == ZONE_MOVABLE;
1161 }
1162 #endif
1163 
1164 /*
1165  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
1166  * intersection with the given zone
1167  */
zone_intersects(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)1168 static inline bool zone_intersects(struct zone *zone,
1169 		unsigned long start_pfn, unsigned long nr_pages)
1170 {
1171 	if (zone_is_empty(zone))
1172 		return false;
1173 	if (start_pfn >= zone_end_pfn(zone) ||
1174 	    start_pfn + nr_pages <= zone->zone_start_pfn)
1175 		return false;
1176 
1177 	return true;
1178 }
1179 
1180 /*
1181  * The "priority" of VM scanning is how much of the queues we will scan in one
1182  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
1183  * queues ("queue_length >> 12") during an aging round.
1184  */
1185 #define DEF_PRIORITY 12
1186 
1187 /* Maximum number of zones on a zonelist */
1188 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
1189 
1190 enum {
1191 	ZONELIST_FALLBACK,	/* zonelist with fallback */
1192 #ifdef CONFIG_NUMA
1193 	/*
1194 	 * The NUMA zonelists are doubled because we need zonelists that
1195 	 * restrict the allocations to a single node for __GFP_THISNODE.
1196 	 */
1197 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
1198 #endif
1199 	MAX_ZONELISTS
1200 };
1201 
1202 /*
1203  * This struct contains information about a zone in a zonelist. It is stored
1204  * here to avoid dereferences into large structures and lookups of tables
1205  */
1206 struct zoneref {
1207 	struct zone *zone;	/* Pointer to actual zone */
1208 	int zone_idx;		/* zone_idx(zoneref->zone) */
1209 };
1210 
1211 /*
1212  * One allocation request operates on a zonelist. A zonelist
1213  * is a list of zones, the first one is the 'goal' of the
1214  * allocation, the other zones are fallback zones, in decreasing
1215  * priority.
1216  *
1217  * To speed the reading of the zonelist, the zonerefs contain the zone index
1218  * of the entry being read. Helper functions to access information given
1219  * a struct zoneref are
1220  *
1221  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
1222  * zonelist_zone_idx()	- Return the index of the zone for an entry
1223  * zonelist_node_idx()	- Return the index of the node for an entry
1224  */
1225 struct zonelist {
1226 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1227 };
1228 
1229 /*
1230  * The array of struct pages for flatmem.
1231  * It must be declared for SPARSEMEM as well because there are configurations
1232  * that rely on that.
1233  */
1234 extern struct page *mem_map;
1235 
1236 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1237 struct deferred_split {
1238 	spinlock_t split_queue_lock;
1239 	struct list_head split_queue;
1240 	unsigned long split_queue_len;
1241 };
1242 #endif
1243 
1244 #ifdef CONFIG_MEMORY_FAILURE
1245 /*
1246  * Per NUMA node memory failure handling statistics.
1247  */
1248 struct memory_failure_stats {
1249 	/*
1250 	 * Number of raw pages poisoned.
1251 	 * Cases not accounted: memory outside kernel control, offline page,
1252 	 * arch-specific memory_failure (SGX), hwpoison_filter() filtered
1253 	 * error events, and unpoison actions from hwpoison_unpoison.
1254 	 */
1255 	unsigned long total;
1256 	/*
1257 	 * Recovery results of poisoned raw pages handled by memory_failure,
1258 	 * in sync with mf_result.
1259 	 * total = ignored + failed + delayed + recovered.
1260 	 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted.
1261 	 */
1262 	unsigned long ignored;
1263 	unsigned long failed;
1264 	unsigned long delayed;
1265 	unsigned long recovered;
1266 };
1267 #endif
1268 
1269 /*
1270  * On NUMA machines, each NUMA node would have a pg_data_t to describe
1271  * it's memory layout. On UMA machines there is a single pglist_data which
1272  * describes the whole memory.
1273  *
1274  * Memory statistics and page replacement data structures are maintained on a
1275  * per-zone basis.
1276  */
1277 typedef struct pglist_data {
1278 	/*
1279 	 * node_zones contains just the zones for THIS node. Not all of the
1280 	 * zones may be populated, but it is the full list. It is referenced by
1281 	 * this node's node_zonelists as well as other node's node_zonelists.
1282 	 */
1283 	struct zone node_zones[MAX_NR_ZONES];
1284 
1285 	/*
1286 	 * node_zonelists contains references to all zones in all nodes.
1287 	 * Generally the first zones will be references to this node's
1288 	 * node_zones.
1289 	 */
1290 	struct zonelist node_zonelists[MAX_ZONELISTS];
1291 
1292 	int nr_zones; /* number of populated zones in this node */
1293 #ifdef CONFIG_FLATMEM	/* means !SPARSEMEM */
1294 	struct page *node_mem_map;
1295 #ifdef CONFIG_PAGE_EXTENSION
1296 	struct page_ext *node_page_ext;
1297 #endif
1298 #endif
1299 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
1300 	/*
1301 	 * Must be held any time you expect node_start_pfn,
1302 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
1303 	 * Also synchronizes pgdat->first_deferred_pfn during deferred page
1304 	 * init.
1305 	 *
1306 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
1307 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
1308 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
1309 	 *
1310 	 * Nests above zone->lock and zone->span_seqlock
1311 	 */
1312 	spinlock_t node_size_lock;
1313 #endif
1314 	unsigned long node_start_pfn;
1315 	unsigned long node_present_pages; /* total number of physical pages */
1316 	unsigned long node_spanned_pages; /* total size of physical page
1317 					     range, including holes */
1318 	int node_id;
1319 	wait_queue_head_t kswapd_wait;
1320 	wait_queue_head_t pfmemalloc_wait;
1321 
1322 	/* workqueues for throttling reclaim for different reasons. */
1323 	wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
1324 
1325 	atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
1326 	unsigned long nr_reclaim_start;	/* nr pages written while throttled
1327 					 * when throttling started. */
1328 #ifdef CONFIG_MEMORY_HOTPLUG
1329 	struct mutex kswapd_lock;
1330 #endif
1331 	struct task_struct *kswapd;	/* Protected by kswapd_lock */
1332 	int kswapd_order;
1333 	enum zone_type kswapd_highest_zoneidx;
1334 
1335 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
1336 
1337 #ifdef CONFIG_COMPACTION
1338 	int kcompactd_max_order;
1339 	enum zone_type kcompactd_highest_zoneidx;
1340 	wait_queue_head_t kcompactd_wait;
1341 	struct task_struct *kcompactd;
1342 	bool proactive_compact_trigger;
1343 #endif
1344 	/*
1345 	 * This is a per-node reserve of pages that are not available
1346 	 * to userspace allocations.
1347 	 */
1348 	unsigned long		totalreserve_pages;
1349 
1350 #ifdef CONFIG_NUMA
1351 	/*
1352 	 * node reclaim becomes active if more unmapped pages exist.
1353 	 */
1354 	unsigned long		min_unmapped_pages;
1355 	unsigned long		min_slab_pages;
1356 #endif /* CONFIG_NUMA */
1357 
1358 	/* Write-intensive fields used by page reclaim */
1359 	CACHELINE_PADDING(_pad1_);
1360 
1361 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1362 	/*
1363 	 * If memory initialisation on large machines is deferred then this
1364 	 * is the first PFN that needs to be initialised.
1365 	 */
1366 	unsigned long first_deferred_pfn;
1367 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1368 
1369 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1370 	struct deferred_split deferred_split_queue;
1371 #endif
1372 
1373 #ifdef CONFIG_NUMA_BALANCING
1374 	/* start time in ms of current promote rate limit period */
1375 	unsigned int nbp_rl_start;
1376 	/* number of promote candidate pages at start time of current rate limit period */
1377 	unsigned long nbp_rl_nr_cand;
1378 	/* promote threshold in ms */
1379 	unsigned int nbp_threshold;
1380 	/* start time in ms of current promote threshold adjustment period */
1381 	unsigned int nbp_th_start;
1382 	/*
1383 	 * number of promote candidate pages at start time of current promote
1384 	 * threshold adjustment period
1385 	 */
1386 	unsigned long nbp_th_nr_cand;
1387 #endif
1388 	/* Fields commonly accessed by the page reclaim scanner */
1389 
1390 	/*
1391 	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1392 	 *
1393 	 * Use mem_cgroup_lruvec() to look up lruvecs.
1394 	 */
1395 	struct lruvec		__lruvec;
1396 
1397 	unsigned long		flags;
1398 
1399 #ifdef CONFIG_LRU_GEN
1400 	/* kswap mm walk data */
1401 	struct lru_gen_mm_walk mm_walk;
1402 	/* lru_gen_folio list */
1403 	struct lru_gen_memcg memcg_lru;
1404 #endif
1405 
1406 	CACHELINE_PADDING(_pad2_);
1407 
1408 	/* Per-node vmstats */
1409 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1410 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
1411 #ifdef CONFIG_NUMA
1412 	struct memory_tier __rcu *memtier;
1413 #endif
1414 #ifdef CONFIG_MEMORY_FAILURE
1415 	struct memory_failure_stats mf_stats;
1416 #endif
1417 } pg_data_t;
1418 
1419 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
1420 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
1421 
1422 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
1423 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
1424 
pgdat_end_pfn(pg_data_t * pgdat)1425 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1426 {
1427 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1428 }
1429 
1430 #include <linux/memory_hotplug.h>
1431 
1432 void build_all_zonelists(pg_data_t *pgdat);
1433 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
1434 		   enum zone_type highest_zoneidx);
1435 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1436 			 int highest_zoneidx, unsigned int alloc_flags,
1437 			 long free_pages);
1438 bool zone_watermark_ok(struct zone *z, unsigned int order,
1439 		unsigned long mark, int highest_zoneidx,
1440 		unsigned int alloc_flags);
1441 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1442 		unsigned long mark, int highest_zoneidx);
1443 /*
1444  * Memory initialization context, use to differentiate memory added by
1445  * the platform statically or via memory hotplug interface.
1446  */
1447 enum meminit_context {
1448 	MEMINIT_EARLY,
1449 	MEMINIT_HOTPLUG,
1450 };
1451 
1452 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
1453 				     unsigned long size);
1454 
1455 extern void lruvec_init(struct lruvec *lruvec);
1456 
lruvec_pgdat(struct lruvec * lruvec)1457 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
1458 {
1459 #ifdef CONFIG_MEMCG
1460 	return lruvec->pgdat;
1461 #else
1462 	return container_of(lruvec, struct pglist_data, __lruvec);
1463 #endif
1464 }
1465 
1466 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
1467 int local_memory_node(int node_id);
1468 #else
local_memory_node(int node_id)1469 static inline int local_memory_node(int node_id) { return node_id; };
1470 #endif
1471 
1472 /*
1473  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1474  */
1475 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
1476 
1477 #ifdef CONFIG_ZONE_DEVICE
zone_is_zone_device(struct zone * zone)1478 static inline bool zone_is_zone_device(struct zone *zone)
1479 {
1480 	return zone_idx(zone) == ZONE_DEVICE;
1481 }
1482 #else
zone_is_zone_device(struct zone * zone)1483 static inline bool zone_is_zone_device(struct zone *zone)
1484 {
1485 	return false;
1486 }
1487 #endif
1488 
1489 /*
1490  * Returns true if a zone has pages managed by the buddy allocator.
1491  * All the reclaim decisions have to use this function rather than
1492  * populated_zone(). If the whole zone is reserved then we can easily
1493  * end up with populated_zone() && !managed_zone().
1494  */
managed_zone(struct zone * zone)1495 static inline bool managed_zone(struct zone *zone)
1496 {
1497 	return zone_managed_pages(zone);
1498 }
1499 
1500 /* Returns true if a zone has memory */
populated_zone(struct zone * zone)1501 static inline bool populated_zone(struct zone *zone)
1502 {
1503 	return zone->present_pages;
1504 }
1505 
1506 #ifdef CONFIG_NUMA
zone_to_nid(struct zone * zone)1507 static inline int zone_to_nid(struct zone *zone)
1508 {
1509 	return zone->node;
1510 }
1511 
zone_set_nid(struct zone * zone,int nid)1512 static inline void zone_set_nid(struct zone *zone, int nid)
1513 {
1514 	zone->node = nid;
1515 }
1516 #else
zone_to_nid(struct zone * zone)1517 static inline int zone_to_nid(struct zone *zone)
1518 {
1519 	return 0;
1520 }
1521 
zone_set_nid(struct zone * zone,int nid)1522 static inline void zone_set_nid(struct zone *zone, int nid) {}
1523 #endif
1524 
1525 extern int movable_zone;
1526 
is_highmem_idx(enum zone_type idx)1527 static inline int is_highmem_idx(enum zone_type idx)
1528 {
1529 #ifdef CONFIG_HIGHMEM
1530 	return (idx == ZONE_HIGHMEM ||
1531 		(idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
1532 #else
1533 	return 0;
1534 #endif
1535 }
1536 
1537 /**
1538  * is_highmem - helper function to quickly check if a struct zone is a
1539  *              highmem zone or not.  This is an attempt to keep references
1540  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1541  * @zone: pointer to struct zone variable
1542  * Return: 1 for a highmem zone, 0 otherwise
1543  */
is_highmem(struct zone * zone)1544 static inline int is_highmem(struct zone *zone)
1545 {
1546 	return is_highmem_idx(zone_idx(zone));
1547 }
1548 
1549 #ifdef CONFIG_ZONE_DMA
1550 bool has_managed_dma(void);
1551 #else
has_managed_dma(void)1552 static inline bool has_managed_dma(void)
1553 {
1554 	return false;
1555 }
1556 #endif
1557 
1558 
1559 #ifndef CONFIG_NUMA
1560 
1561 extern struct pglist_data contig_page_data;
NODE_DATA(int nid)1562 static inline struct pglist_data *NODE_DATA(int nid)
1563 {
1564 	return &contig_page_data;
1565 }
1566 
1567 #else /* CONFIG_NUMA */
1568 
1569 #include <asm/mmzone.h>
1570 
1571 #endif /* !CONFIG_NUMA */
1572 
1573 extern struct pglist_data *first_online_pgdat(void);
1574 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1575 extern struct zone *next_zone(struct zone *zone);
1576 
1577 /**
1578  * for_each_online_pgdat - helper macro to iterate over all online nodes
1579  * @pgdat: pointer to a pg_data_t variable
1580  */
1581 #define for_each_online_pgdat(pgdat)			\
1582 	for (pgdat = first_online_pgdat();		\
1583 	     pgdat;					\
1584 	     pgdat = next_online_pgdat(pgdat))
1585 /**
1586  * for_each_zone - helper macro to iterate over all memory zones
1587  * @zone: pointer to struct zone variable
1588  *
1589  * The user only needs to declare the zone variable, for_each_zone
1590  * fills it in.
1591  */
1592 #define for_each_zone(zone)			        \
1593 	for (zone = (first_online_pgdat())->node_zones; \
1594 	     zone;					\
1595 	     zone = next_zone(zone))
1596 
1597 #define for_each_populated_zone(zone)		        \
1598 	for (zone = (first_online_pgdat())->node_zones; \
1599 	     zone;					\
1600 	     zone = next_zone(zone))			\
1601 		if (!populated_zone(zone))		\
1602 			; /* do nothing */		\
1603 		else
1604 
zonelist_zone(struct zoneref * zoneref)1605 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1606 {
1607 	return zoneref->zone;
1608 }
1609 
zonelist_zone_idx(struct zoneref * zoneref)1610 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1611 {
1612 	return zoneref->zone_idx;
1613 }
1614 
zonelist_node_idx(struct zoneref * zoneref)1615 static inline int zonelist_node_idx(struct zoneref *zoneref)
1616 {
1617 	return zone_to_nid(zoneref->zone);
1618 }
1619 
1620 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1621 					enum zone_type highest_zoneidx,
1622 					nodemask_t *nodes);
1623 
1624 /**
1625  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1626  * @z: The cursor used as a starting point for the search
1627  * @highest_zoneidx: The zone index of the highest zone to return
1628  * @nodes: An optional nodemask to filter the zonelist with
1629  *
1630  * This function returns the next zone at or below a given zone index that is
1631  * within the allowed nodemask using a cursor as the starting point for the
1632  * search. The zoneref returned is a cursor that represents the current zone
1633  * being examined. It should be advanced by one before calling
1634  * next_zones_zonelist again.
1635  *
1636  * Return: the next zone at or below highest_zoneidx within the allowed
1637  * nodemask using a cursor within a zonelist as a starting point
1638  */
next_zones_zonelist(struct zoneref * z,enum zone_type highest_zoneidx,nodemask_t * nodes)1639 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1640 					enum zone_type highest_zoneidx,
1641 					nodemask_t *nodes)
1642 {
1643 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1644 		return z;
1645 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1646 }
1647 
1648 /**
1649  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1650  * @zonelist: The zonelist to search for a suitable zone
1651  * @highest_zoneidx: The zone index of the highest zone to return
1652  * @nodes: An optional nodemask to filter the zonelist with
1653  *
1654  * This function returns the first zone at or below a given zone index that is
1655  * within the allowed nodemask. The zoneref returned is a cursor that can be
1656  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1657  * one before calling.
1658  *
1659  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1660  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1661  * update due to cpuset modification.
1662  *
1663  * Return: Zoneref pointer for the first suitable zone found
1664  */
first_zones_zonelist(struct zonelist * zonelist,enum zone_type highest_zoneidx,nodemask_t * nodes)1665 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1666 					enum zone_type highest_zoneidx,
1667 					nodemask_t *nodes)
1668 {
1669 	return next_zones_zonelist(zonelist->_zonerefs,
1670 							highest_zoneidx, nodes);
1671 }
1672 
1673 /**
1674  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1675  * @zone: The current zone in the iterator
1676  * @z: The current pointer within zonelist->_zonerefs being iterated
1677  * @zlist: The zonelist being iterated
1678  * @highidx: The zone index of the highest zone to return
1679  * @nodemask: Nodemask allowed by the allocator
1680  *
1681  * This iterator iterates though all zones at or below a given zone index and
1682  * within a given nodemask
1683  */
1684 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1685 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1686 		zone;							\
1687 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1688 			zone = zonelist_zone(z))
1689 
1690 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1691 	for (zone = z->zone;	\
1692 		zone;							\
1693 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1694 			zone = zonelist_zone(z))
1695 
1696 
1697 /**
1698  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1699  * @zone: The current zone in the iterator
1700  * @z: The current pointer within zonelist->zones being iterated
1701  * @zlist: The zonelist being iterated
1702  * @highidx: The zone index of the highest zone to return
1703  *
1704  * This iterator iterates though all zones at or below a given zone index.
1705  */
1706 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1707 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1708 
1709 /* Whether the 'nodes' are all movable nodes */
movable_only_nodes(nodemask_t * nodes)1710 static inline bool movable_only_nodes(nodemask_t *nodes)
1711 {
1712 	struct zonelist *zonelist;
1713 	struct zoneref *z;
1714 	int nid;
1715 
1716 	if (nodes_empty(*nodes))
1717 		return false;
1718 
1719 	/*
1720 	 * We can chose arbitrary node from the nodemask to get a
1721 	 * zonelist as they are interlinked. We just need to find
1722 	 * at least one zone that can satisfy kernel allocations.
1723 	 */
1724 	nid = first_node(*nodes);
1725 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1726 	z = first_zones_zonelist(zonelist, ZONE_NORMAL,	nodes);
1727 	return (!z->zone) ? true : false;
1728 }
1729 
1730 
1731 #ifdef CONFIG_SPARSEMEM
1732 #include <asm/sparsemem.h>
1733 #endif
1734 
1735 #ifdef CONFIG_FLATMEM
1736 #define pfn_to_nid(pfn)		(0)
1737 #endif
1738 
1739 #ifdef CONFIG_SPARSEMEM
1740 
1741 /*
1742  * PA_SECTION_SHIFT		physical address to/from section number
1743  * PFN_SECTION_SHIFT		pfn to/from section number
1744  */
1745 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1746 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1747 
1748 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1749 
1750 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1751 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1752 
1753 #define SECTION_BLOCKFLAGS_BITS \
1754 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1755 
1756 #if (MAX_PAGE_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS
1757 #error Allocator MAX_PAGE_ORDER exceeds SECTION_SIZE
1758 #endif
1759 
pfn_to_section_nr(unsigned long pfn)1760 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1761 {
1762 	return pfn >> PFN_SECTION_SHIFT;
1763 }
section_nr_to_pfn(unsigned long sec)1764 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1765 {
1766 	return sec << PFN_SECTION_SHIFT;
1767 }
1768 
1769 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1770 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1771 
1772 #define SUBSECTION_SHIFT 21
1773 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1774 
1775 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1776 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1777 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1778 
1779 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1780 #error Subsection size exceeds section size
1781 #else
1782 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1783 #endif
1784 
1785 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1786 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1787 
1788 struct mem_section_usage {
1789 	struct rcu_head rcu;
1790 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1791 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1792 #endif
1793 	/* See declaration of similar field in struct zone */
1794 	unsigned long pageblock_flags[0];
1795 };
1796 
1797 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1798 
1799 struct page;
1800 struct page_ext;
1801 struct mem_section {
1802 	/*
1803 	 * This is, logically, a pointer to an array of struct
1804 	 * pages.  However, it is stored with some other magic.
1805 	 * (see sparse.c::sparse_init_one_section())
1806 	 *
1807 	 * Additionally during early boot we encode node id of
1808 	 * the location of the section here to guide allocation.
1809 	 * (see sparse.c::memory_present())
1810 	 *
1811 	 * Making it a UL at least makes someone do a cast
1812 	 * before using it wrong.
1813 	 */
1814 	unsigned long section_mem_map;
1815 
1816 	struct mem_section_usage *usage;
1817 #ifdef CONFIG_PAGE_EXTENSION
1818 	/*
1819 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1820 	 * section. (see page_ext.h about this.)
1821 	 */
1822 	struct page_ext *page_ext;
1823 	unsigned long pad;
1824 #endif
1825 	/*
1826 	 * WARNING: mem_section must be a power-of-2 in size for the
1827 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1828 	 */
1829 };
1830 
1831 #ifdef CONFIG_SPARSEMEM_EXTREME
1832 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1833 #else
1834 #define SECTIONS_PER_ROOT	1
1835 #endif
1836 
1837 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1838 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1839 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1840 
1841 #ifdef CONFIG_SPARSEMEM_EXTREME
1842 extern struct mem_section **mem_section;
1843 #else
1844 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1845 #endif
1846 
section_to_usemap(struct mem_section * ms)1847 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1848 {
1849 	return ms->usage->pageblock_flags;
1850 }
1851 
__nr_to_section(unsigned long nr)1852 static inline struct mem_section *__nr_to_section(unsigned long nr)
1853 {
1854 	unsigned long root = SECTION_NR_TO_ROOT(nr);
1855 
1856 	if (unlikely(root >= NR_SECTION_ROOTS))
1857 		return NULL;
1858 
1859 #ifdef CONFIG_SPARSEMEM_EXTREME
1860 	if (!mem_section || !mem_section[root])
1861 		return NULL;
1862 #endif
1863 	return &mem_section[root][nr & SECTION_ROOT_MASK];
1864 }
1865 extern size_t mem_section_usage_size(void);
1866 
1867 /*
1868  * We use the lower bits of the mem_map pointer to store
1869  * a little bit of information.  The pointer is calculated
1870  * as mem_map - section_nr_to_pfn(pnum).  The result is
1871  * aligned to the minimum alignment of the two values:
1872  *   1. All mem_map arrays are page-aligned.
1873  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1874  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1875  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1876  *      worst combination is powerpc with 256k pages,
1877  *      which results in PFN_SECTION_SHIFT equal 6.
1878  * To sum it up, at least 6 bits are available on all architectures.
1879  * However, we can exceed 6 bits on some other architectures except
1880  * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1881  * with the worst case of 64K pages on arm64) if we make sure the
1882  * exceeded bit is not applicable to powerpc.
1883  */
1884 enum {
1885 	SECTION_MARKED_PRESENT_BIT,
1886 	SECTION_HAS_MEM_MAP_BIT,
1887 	SECTION_IS_ONLINE_BIT,
1888 	SECTION_IS_EARLY_BIT,
1889 #ifdef CONFIG_ZONE_DEVICE
1890 	SECTION_TAINT_ZONE_DEVICE_BIT,
1891 #endif
1892 	SECTION_MAP_LAST_BIT,
1893 };
1894 
1895 #define SECTION_MARKED_PRESENT		BIT(SECTION_MARKED_PRESENT_BIT)
1896 #define SECTION_HAS_MEM_MAP		BIT(SECTION_HAS_MEM_MAP_BIT)
1897 #define SECTION_IS_ONLINE		BIT(SECTION_IS_ONLINE_BIT)
1898 #define SECTION_IS_EARLY		BIT(SECTION_IS_EARLY_BIT)
1899 #ifdef CONFIG_ZONE_DEVICE
1900 #define SECTION_TAINT_ZONE_DEVICE	BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
1901 #endif
1902 #define SECTION_MAP_MASK		(~(BIT(SECTION_MAP_LAST_BIT) - 1))
1903 #define SECTION_NID_SHIFT		SECTION_MAP_LAST_BIT
1904 
__section_mem_map_addr(struct mem_section * section)1905 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1906 {
1907 	unsigned long map = section->section_mem_map;
1908 	map &= SECTION_MAP_MASK;
1909 	return (struct page *)map;
1910 }
1911 
present_section(struct mem_section * section)1912 static inline int present_section(struct mem_section *section)
1913 {
1914 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1915 }
1916 
present_section_nr(unsigned long nr)1917 static inline int present_section_nr(unsigned long nr)
1918 {
1919 	return present_section(__nr_to_section(nr));
1920 }
1921 
valid_section(struct mem_section * section)1922 static inline int valid_section(struct mem_section *section)
1923 {
1924 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1925 }
1926 
early_section(struct mem_section * section)1927 static inline int early_section(struct mem_section *section)
1928 {
1929 	return (section && (section->section_mem_map & SECTION_IS_EARLY));
1930 }
1931 
valid_section_nr(unsigned long nr)1932 static inline int valid_section_nr(unsigned long nr)
1933 {
1934 	return valid_section(__nr_to_section(nr));
1935 }
1936 
online_section(struct mem_section * section)1937 static inline int online_section(struct mem_section *section)
1938 {
1939 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1940 }
1941 
1942 #ifdef CONFIG_ZONE_DEVICE
online_device_section(struct mem_section * section)1943 static inline int online_device_section(struct mem_section *section)
1944 {
1945 	unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1946 
1947 	return section && ((section->section_mem_map & flags) == flags);
1948 }
1949 #else
online_device_section(struct mem_section * section)1950 static inline int online_device_section(struct mem_section *section)
1951 {
1952 	return 0;
1953 }
1954 #endif
1955 
online_section_nr(unsigned long nr)1956 static inline int online_section_nr(unsigned long nr)
1957 {
1958 	return online_section(__nr_to_section(nr));
1959 }
1960 
1961 #ifdef CONFIG_MEMORY_HOTPLUG
1962 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1963 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1964 #endif
1965 
__pfn_to_section(unsigned long pfn)1966 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1967 {
1968 	return __nr_to_section(pfn_to_section_nr(pfn));
1969 }
1970 
1971 extern unsigned long __highest_present_section_nr;
1972 
subsection_map_index(unsigned long pfn)1973 static inline int subsection_map_index(unsigned long pfn)
1974 {
1975 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1976 }
1977 
1978 #ifdef CONFIG_SPARSEMEM_VMEMMAP
pfn_section_valid(struct mem_section * ms,unsigned long pfn)1979 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1980 {
1981 	int idx = subsection_map_index(pfn);
1982 	struct mem_section_usage *usage = READ_ONCE(ms->usage);
1983 
1984 	return usage ? test_bit(idx, usage->subsection_map) : 0;
1985 }
1986 #else
pfn_section_valid(struct mem_section * ms,unsigned long pfn)1987 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1988 {
1989 	return 1;
1990 }
1991 #endif
1992 
1993 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1994 /**
1995  * pfn_valid - check if there is a valid memory map entry for a PFN
1996  * @pfn: the page frame number to check
1997  *
1998  * Check if there is a valid memory map entry aka struct page for the @pfn.
1999  * Note, that availability of the memory map entry does not imply that
2000  * there is actual usable memory at that @pfn. The struct page may
2001  * represent a hole or an unusable page frame.
2002  *
2003  * Return: 1 for PFNs that have memory map entries and 0 otherwise
2004  */
pfn_valid(unsigned long pfn)2005 static inline int pfn_valid(unsigned long pfn)
2006 {
2007 	struct mem_section *ms;
2008 	int ret;
2009 
2010 	/*
2011 	 * Ensure the upper PAGE_SHIFT bits are clear in the
2012 	 * pfn. Else it might lead to false positives when
2013 	 * some of the upper bits are set, but the lower bits
2014 	 * match a valid pfn.
2015 	 */
2016 	if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
2017 		return 0;
2018 
2019 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2020 		return 0;
2021 	ms = __pfn_to_section(pfn);
2022 	rcu_read_lock_sched();
2023 	if (!valid_section(ms)) {
2024 		rcu_read_unlock_sched();
2025 		return 0;
2026 	}
2027 	/*
2028 	 * Traditionally early sections always returned pfn_valid() for
2029 	 * the entire section-sized span.
2030 	 */
2031 	ret = early_section(ms) || pfn_section_valid(ms, pfn);
2032 	rcu_read_unlock_sched();
2033 
2034 	return ret;
2035 }
2036 #endif
2037 
pfn_in_present_section(unsigned long pfn)2038 static inline int pfn_in_present_section(unsigned long pfn)
2039 {
2040 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2041 		return 0;
2042 	return present_section(__pfn_to_section(pfn));
2043 }
2044 
next_present_section_nr(unsigned long section_nr)2045 static inline unsigned long next_present_section_nr(unsigned long section_nr)
2046 {
2047 	while (++section_nr <= __highest_present_section_nr) {
2048 		if (present_section_nr(section_nr))
2049 			return section_nr;
2050 	}
2051 
2052 	return -1;
2053 }
2054 
2055 /*
2056  * These are _only_ used during initialisation, therefore they
2057  * can use __initdata ...  They could have names to indicate
2058  * this restriction.
2059  */
2060 #ifdef CONFIG_NUMA
2061 #define pfn_to_nid(pfn)							\
2062 ({									\
2063 	unsigned long __pfn_to_nid_pfn = (pfn);				\
2064 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
2065 })
2066 #else
2067 #define pfn_to_nid(pfn)		(0)
2068 #endif
2069 
2070 void sparse_init(void);
2071 #else
2072 #define sparse_init()	do {} while (0)
2073 #define sparse_index_init(_sec, _nid)  do {} while (0)
2074 #define pfn_in_present_section pfn_valid
2075 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
2076 #endif /* CONFIG_SPARSEMEM */
2077 
2078 #endif /* !__GENERATING_BOUNDS.H */
2079 #endif /* !__ASSEMBLY__ */
2080 #endif /* _LINUX_MMZONE_H */
2081