xref: /linux/rust/kernel/page.rs (revision a1ff5a7d78a036d6c2178ee5acd6ba4946243800)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Kernel page allocation and management.
4 
5 use crate::{
6     alloc::{AllocError, Flags},
7     bindings,
8     error::code::*,
9     error::Result,
10     uaccess::UserSliceReader,
11 };
12 use core::ptr::{self, NonNull};
13 
14 /// A bitwise shift for the page size.
15 pub const PAGE_SHIFT: usize = bindings::PAGE_SHIFT as usize;
16 
17 /// The number of bytes in a page.
18 pub const PAGE_SIZE: usize = bindings::PAGE_SIZE;
19 
20 /// A bitmask that gives the page containing a given address.
21 pub const PAGE_MASK: usize = !(PAGE_SIZE - 1);
22 
23 /// A pointer to a page that owns the page allocation.
24 ///
25 /// # Invariants
26 ///
27 /// The pointer is valid, and has ownership over the page.
28 pub struct Page {
29     page: NonNull<bindings::page>,
30 }
31 
32 // SAFETY: Pages have no logic that relies on them staying on a given thread, so moving them across
33 // threads is safe.
34 unsafe impl Send for Page {}
35 
36 // SAFETY: Pages have no logic that relies on them not being accessed concurrently, so accessing
37 // them concurrently is safe.
38 unsafe impl Sync for Page {}
39 
40 impl Page {
41     /// Allocates a new page.
42     ///
43     /// # Examples
44     ///
45     /// Allocate memory for a page.
46     ///
47     /// ```
48     /// use kernel::page::Page;
49     ///
50     /// # fn dox() -> Result<(), kernel::alloc::AllocError> {
51     /// let page = Page::alloc_page(GFP_KERNEL)?;
52     /// # Ok(()) }
53     /// ```
54     ///
55     /// Allocate memory for a page and zero its contents.
56     ///
57     /// ```
58     /// use kernel::page::Page;
59     ///
60     /// # fn dox() -> Result<(), kernel::alloc::AllocError> {
61     /// let page = Page::alloc_page(GFP_KERNEL | __GFP_ZERO)?;
62     /// # Ok(()) }
63     /// ```
alloc_page(flags: Flags) -> Result<Self, AllocError>64     pub fn alloc_page(flags: Flags) -> Result<Self, AllocError> {
65         // SAFETY: Depending on the value of `gfp_flags`, this call may sleep. Other than that, it
66         // is always safe to call this method.
67         let page = unsafe { bindings::alloc_pages(flags.as_raw(), 0) };
68         let page = NonNull::new(page).ok_or(AllocError)?;
69         // INVARIANT: We just successfully allocated a page, so we now have ownership of the newly
70         // allocated page. We transfer that ownership to the new `Page` object.
71         Ok(Self { page })
72     }
73 
74     /// Returns a raw pointer to the page.
as_ptr(&self) -> *mut bindings::page75     pub fn as_ptr(&self) -> *mut bindings::page {
76         self.page.as_ptr()
77     }
78 
79     /// Runs a piece of code with this page mapped to an address.
80     ///
81     /// The page is unmapped when this call returns.
82     ///
83     /// # Using the raw pointer
84     ///
85     /// It is up to the caller to use the provided raw pointer correctly. The pointer is valid for
86     /// `PAGE_SIZE` bytes and for the duration in which the closure is called. The pointer might
87     /// only be mapped on the current thread, and when that is the case, dereferencing it on other
88     /// threads is UB. Other than that, the usual rules for dereferencing a raw pointer apply: don't
89     /// cause data races, the memory may be uninitialized, and so on.
90     ///
91     /// If multiple threads map the same page at the same time, then they may reference with
92     /// different addresses. However, even if the addresses are different, the underlying memory is
93     /// still the same for these purposes (e.g., it's still a data race if they both write to the
94     /// same underlying byte at the same time).
with_page_mapped<T>(&self, f: impl FnOnce(*mut u8) -> T) -> T95     fn with_page_mapped<T>(&self, f: impl FnOnce(*mut u8) -> T) -> T {
96         // SAFETY: `page` is valid due to the type invariants on `Page`.
97         let mapped_addr = unsafe { bindings::kmap_local_page(self.as_ptr()) };
98 
99         let res = f(mapped_addr.cast());
100 
101         // This unmaps the page mapped above.
102         //
103         // SAFETY: Since this API takes the user code as a closure, it can only be used in a manner
104         // where the pages are unmapped in reverse order. This is as required by `kunmap_local`.
105         //
106         // In other words, if this call to `kunmap_local` happens when a different page should be
107         // unmapped first, then there must necessarily be a call to `kmap_local_page` other than the
108         // call just above in `with_page_mapped` that made that possible. In this case, it is the
109         // unsafe block that wraps that other call that is incorrect.
110         unsafe { bindings::kunmap_local(mapped_addr) };
111 
112         res
113     }
114 
115     /// Runs a piece of code with a raw pointer to a slice of this page, with bounds checking.
116     ///
117     /// If `f` is called, then it will be called with a pointer that points at `off` bytes into the
118     /// page, and the pointer will be valid for at least `len` bytes. The pointer is only valid on
119     /// this task, as this method uses a local mapping.
120     ///
121     /// If `off` and `len` refers to a region outside of this page, then this method returns
122     /// [`EINVAL`] and does not call `f`.
123     ///
124     /// # Using the raw pointer
125     ///
126     /// It is up to the caller to use the provided raw pointer correctly. The pointer is valid for
127     /// `len` bytes and for the duration in which the closure is called. The pointer might only be
128     /// mapped on the current thread, and when that is the case, dereferencing it on other threads
129     /// is UB. Other than that, the usual rules for dereferencing a raw pointer apply: don't cause
130     /// data races, the memory may be uninitialized, and so on.
131     ///
132     /// If multiple threads map the same page at the same time, then they may reference with
133     /// different addresses. However, even if the addresses are different, the underlying memory is
134     /// still the same for these purposes (e.g., it's still a data race if they both write to the
135     /// same underlying byte at the same time).
with_pointer_into_page<T>( &self, off: usize, len: usize, f: impl FnOnce(*mut u8) -> Result<T>, ) -> Result<T>136     fn with_pointer_into_page<T>(
137         &self,
138         off: usize,
139         len: usize,
140         f: impl FnOnce(*mut u8) -> Result<T>,
141     ) -> Result<T> {
142         let bounds_ok = off <= PAGE_SIZE && len <= PAGE_SIZE && (off + len) <= PAGE_SIZE;
143 
144         if bounds_ok {
145             self.with_page_mapped(move |page_addr| {
146                 // SAFETY: The `off` integer is at most `PAGE_SIZE`, so this pointer offset will
147                 // result in a pointer that is in bounds or one off the end of the page.
148                 f(unsafe { page_addr.add(off) })
149             })
150         } else {
151             Err(EINVAL)
152         }
153     }
154 
155     /// Maps the page and reads from it into the given buffer.
156     ///
157     /// This method will perform bounds checks on the page offset. If `offset .. offset+len` goes
158     /// outside of the page, then this call returns [`EINVAL`].
159     ///
160     /// # Safety
161     ///
162     /// * Callers must ensure that `dst` is valid for writing `len` bytes.
163     /// * Callers must ensure that this call does not race with a write to the same page that
164     ///   overlaps with this read.
read_raw(&self, dst: *mut u8, offset: usize, len: usize) -> Result165     pub unsafe fn read_raw(&self, dst: *mut u8, offset: usize, len: usize) -> Result {
166         self.with_pointer_into_page(offset, len, move |src| {
167             // SAFETY: If `with_pointer_into_page` calls into this closure, then
168             // it has performed a bounds check and guarantees that `src` is
169             // valid for `len` bytes.
170             //
171             // There caller guarantees that there is no data race.
172             unsafe { ptr::copy_nonoverlapping(src, dst, len) };
173             Ok(())
174         })
175     }
176 
177     /// Maps the page and writes into it from the given buffer.
178     ///
179     /// This method will perform bounds checks on the page offset. If `offset .. offset+len` goes
180     /// outside of the page, then this call returns [`EINVAL`].
181     ///
182     /// # Safety
183     ///
184     /// * Callers must ensure that `src` is valid for reading `len` bytes.
185     /// * Callers must ensure that this call does not race with a read or write to the same page
186     ///   that overlaps with this write.
write_raw(&self, src: *const u8, offset: usize, len: usize) -> Result187     pub unsafe fn write_raw(&self, src: *const u8, offset: usize, len: usize) -> Result {
188         self.with_pointer_into_page(offset, len, move |dst| {
189             // SAFETY: If `with_pointer_into_page` calls into this closure, then it has performed a
190             // bounds check and guarantees that `dst` is valid for `len` bytes.
191             //
192             // There caller guarantees that there is no data race.
193             unsafe { ptr::copy_nonoverlapping(src, dst, len) };
194             Ok(())
195         })
196     }
197 
198     /// Maps the page and zeroes the given slice.
199     ///
200     /// This method will perform bounds checks on the page offset. If `offset .. offset+len` goes
201     /// outside of the page, then this call returns [`EINVAL`].
202     ///
203     /// # Safety
204     ///
205     /// Callers must ensure that this call does not race with a read or write to the same page that
206     /// overlaps with this write.
fill_zero_raw(&self, offset: usize, len: usize) -> Result207     pub unsafe fn fill_zero_raw(&self, offset: usize, len: usize) -> Result {
208         self.with_pointer_into_page(offset, len, move |dst| {
209             // SAFETY: If `with_pointer_into_page` calls into this closure, then it has performed a
210             // bounds check and guarantees that `dst` is valid for `len` bytes.
211             //
212             // There caller guarantees that there is no data race.
213             unsafe { ptr::write_bytes(dst, 0u8, len) };
214             Ok(())
215         })
216     }
217 
218     /// Copies data from userspace into this page.
219     ///
220     /// This method will perform bounds checks on the page offset. If `offset .. offset+len` goes
221     /// outside of the page, then this call returns [`EINVAL`].
222     ///
223     /// Like the other `UserSliceReader` methods, data races are allowed on the userspace address.
224     /// However, they are not allowed on the page you are copying into.
225     ///
226     /// # Safety
227     ///
228     /// Callers must ensure that this call does not race with a read or write to the same page that
229     /// overlaps with this write.
copy_from_user_slice_raw( &self, reader: &mut UserSliceReader, offset: usize, len: usize, ) -> Result230     pub unsafe fn copy_from_user_slice_raw(
231         &self,
232         reader: &mut UserSliceReader,
233         offset: usize,
234         len: usize,
235     ) -> Result {
236         self.with_pointer_into_page(offset, len, move |dst| {
237             // SAFETY: If `with_pointer_into_page` calls into this closure, then it has performed a
238             // bounds check and guarantees that `dst` is valid for `len` bytes. Furthermore, we have
239             // exclusive access to the slice since the caller guarantees that there are no races.
240             reader.read_raw(unsafe { core::slice::from_raw_parts_mut(dst.cast(), len) })
241         })
242     }
243 }
244 
245 impl Drop for Page {
drop(&mut self)246     fn drop(&mut self) {
247         // SAFETY: By the type invariants, we have ownership of the page and can free it.
248         unsafe { bindings::__free_pages(self.page.as_ptr(), 0) };
249     }
250 }
251