1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Tests Memory Protection Keys (see Documentation/core-api/protection-keys.rst)
4 *
5 * There are examples in here of:
6 * * how to set protection keys on memory
7 * * how to set/clear bits in pkey registers (the rights register)
8 * * how to handle SEGV_PKUERR signals and extract pkey-relevant
9 * information from the siginfo
10 *
11 * Things to add:
12 * make sure KSM and KSM COW breaking works
13 * prefault pages in at malloc, or not
14 * protect MPX bounds tables with protection keys?
15 * make sure VMA splitting/merging is working correctly
16 * OOMs can destroy mm->mmap (see exit_mmap()), so make sure it is immune to pkeys
17 * look for pkey "leaks" where it is still set on a VMA but "freed" back to the kernel
18 * do a plain mprotect() to a mprotect_pkey() area and make sure the pkey sticks
19 *
20 * Compile like this:
21 * gcc -mxsave -o protection_keys -O2 -g -std=gnu99 -pthread -Wall protection_keys.c -lrt -ldl -lm
22 * gcc -mxsave -m32 -o protection_keys_32 -O2 -g -std=gnu99 -pthread -Wall protection_keys.c -lrt -ldl -lm
23 */
24 #define _GNU_SOURCE
25 #define __SANE_USERSPACE_TYPES__
26 #include <errno.h>
27 #include <linux/elf.h>
28 #include <linux/futex.h>
29 #include <time.h>
30 #include <sys/time.h>
31 #include <sys/syscall.h>
32 #include <string.h>
33 #include <stdio.h>
34 #include <stdint.h>
35 #include <stdbool.h>
36 #include <signal.h>
37 #include <assert.h>
38 #include <stdlib.h>
39 #include <ucontext.h>
40 #include <sys/mman.h>
41 #include <sys/types.h>
42 #include <sys/wait.h>
43 #include <sys/stat.h>
44 #include <fcntl.h>
45 #include <unistd.h>
46 #include <sys/ptrace.h>
47 #include <setjmp.h>
48
49 #include "pkey-helpers.h"
50
51 int iteration_nr = 1;
52 int test_nr;
53
54 u64 shadow_pkey_reg;
55 int dprint_in_signal;
56
read_ptr(int * ptr)57 noinline int read_ptr(int *ptr)
58 {
59 /* Keep GCC from optimizing this away somehow */
60 barrier();
61 return *ptr;
62 }
63
cat_into_file(char * str,char * file)64 static void cat_into_file(char *str, char *file)
65 {
66 int fd = open(file, O_RDWR);
67 int ret;
68
69 dprintf2("%s(): writing '%s' to '%s'\n", __func__, str, file);
70 /*
71 * these need to be raw because they are called under
72 * pkey_assert()
73 */
74 if (fd < 0) {
75 fprintf(stderr, "error opening '%s'\n", str);
76 perror("error: ");
77 exit(__LINE__);
78 }
79
80 ret = write(fd, str, strlen(str));
81 if (ret != strlen(str)) {
82 perror("write to file failed");
83 fprintf(stderr, "filename: '%s' str: '%s'\n", file, str);
84 exit(__LINE__);
85 }
86 close(fd);
87 }
88
89 #if CONTROL_TRACING > 0
90 static int warned_tracing;
tracing_root_ok(void)91 static int tracing_root_ok(void)
92 {
93 if (geteuid() != 0) {
94 if (!warned_tracing)
95 fprintf(stderr, "WARNING: not run as root, "
96 "can not do tracing control\n");
97 warned_tracing = 1;
98 return 0;
99 }
100 return 1;
101 }
102 #endif
103
tracing_on(void)104 static void tracing_on(void)
105 {
106 #if CONTROL_TRACING > 0
107 #define TRACEDIR "/sys/kernel/tracing"
108 char pidstr[32];
109
110 if (!tracing_root_ok())
111 return;
112
113 sprintf(pidstr, "%d", getpid());
114 cat_into_file("0", TRACEDIR "/tracing_on");
115 cat_into_file("\n", TRACEDIR "/trace");
116 if (1) {
117 cat_into_file("function_graph", TRACEDIR "/current_tracer");
118 cat_into_file("1", TRACEDIR "/options/funcgraph-proc");
119 } else {
120 cat_into_file("nop", TRACEDIR "/current_tracer");
121 }
122 cat_into_file(pidstr, TRACEDIR "/set_ftrace_pid");
123 cat_into_file("1", TRACEDIR "/tracing_on");
124 dprintf1("enabled tracing\n");
125 #endif
126 }
127
tracing_off(void)128 static void tracing_off(void)
129 {
130 #if CONTROL_TRACING > 0
131 if (!tracing_root_ok())
132 return;
133 cat_into_file("0", "/sys/kernel/tracing/tracing_on");
134 #endif
135 }
136
abort_hooks(void)137 void abort_hooks(void)
138 {
139 fprintf(stderr, "running %s()...\n", __func__);
140 tracing_off();
141 #ifdef SLEEP_ON_ABORT
142 sleep(SLEEP_ON_ABORT);
143 #endif
144 }
145
146 /*
147 * This attempts to have roughly a page of instructions followed by a few
148 * instructions that do a write, and another page of instructions. That
149 * way, we are pretty sure that the write is in the second page of
150 * instructions and has at least a page of padding behind it.
151 *
152 * *That* lets us be sure to madvise() away the write instruction, which
153 * will then fault, which makes sure that the fault code handles
154 * execute-only memory properly.
155 */
156 #if defined(__powerpc64__) || defined(__aarch64__)
157 /* This way, both 4K and 64K alignment are maintained */
158 __attribute__((__aligned__(65536)))
159 #else
160 __attribute__((__aligned__(PAGE_SIZE)))
161 #endif
lots_o_noops_around_write(int * write_to_me)162 static void lots_o_noops_around_write(int *write_to_me)
163 {
164 dprintf3("running %s()\n", __func__);
165 __page_o_noops();
166 /* Assume this happens in the second page of instructions: */
167 *write_to_me = __LINE__;
168 /* pad out by another page: */
169 __page_o_noops();
170 dprintf3("%s() done\n", __func__);
171 }
172
dump_mem(void * dumpme,int len_bytes)173 static void dump_mem(void *dumpme, int len_bytes)
174 {
175 char *c = (void *)dumpme;
176 int i;
177
178 for (i = 0; i < len_bytes; i += sizeof(u64)) {
179 u64 *ptr = (u64 *)(c + i);
180 dprintf1("dump[%03d][@%p]: %016llx\n", i, ptr, *ptr);
181 }
182 }
183
hw_pkey_get(int pkey,unsigned long flags)184 static u32 hw_pkey_get(int pkey, unsigned long flags)
185 {
186 u64 pkey_reg = __read_pkey_reg();
187
188 dprintf1("%s(pkey=%d, flags=%lx) = %x / %d\n",
189 __func__, pkey, flags, 0, 0);
190 dprintf2("%s() raw pkey_reg: %016llx\n", __func__, pkey_reg);
191
192 return (u32) get_pkey_bits(pkey_reg, pkey);
193 }
194
hw_pkey_set(int pkey,unsigned long rights,unsigned long flags)195 static int hw_pkey_set(int pkey, unsigned long rights, unsigned long flags)
196 {
197 u32 mask = (PKEY_DISABLE_ACCESS|PKEY_DISABLE_WRITE);
198 u64 old_pkey_reg = __read_pkey_reg();
199 u64 new_pkey_reg;
200
201 /* make sure that 'rights' only contains the bits we expect: */
202 assert(!(rights & ~mask));
203
204 /* modify bits accordingly in old pkey_reg and assign it */
205 new_pkey_reg = set_pkey_bits(old_pkey_reg, pkey, rights);
206
207 __write_pkey_reg(new_pkey_reg);
208
209 dprintf3("%s(pkey=%d, rights=%lx, flags=%lx) = %x"
210 " pkey_reg now: %016llx old_pkey_reg: %016llx\n",
211 __func__, pkey, rights, flags, 0, __read_pkey_reg(),
212 old_pkey_reg);
213 return 0;
214 }
215
pkey_disable_set(int pkey,int flags)216 static void pkey_disable_set(int pkey, int flags)
217 {
218 unsigned long syscall_flags = 0;
219 int ret;
220 int pkey_rights;
221
222 dprintf1("START->%s(%d, 0x%x)\n", __func__,
223 pkey, flags);
224 pkey_assert(flags & (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
225
226 pkey_rights = hw_pkey_get(pkey, syscall_flags);
227
228 dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
229 pkey, pkey, pkey_rights);
230
231 pkey_assert(pkey_rights >= 0);
232
233 pkey_rights |= flags;
234
235 ret = hw_pkey_set(pkey, pkey_rights, syscall_flags);
236 assert(!ret);
237 /* pkey_reg and flags have the same format */
238 shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, pkey, pkey_rights);
239 dprintf1("%s(%d) shadow: 0x%016llx\n",
240 __func__, pkey, shadow_pkey_reg);
241
242 pkey_assert(ret >= 0);
243
244 pkey_rights = hw_pkey_get(pkey, syscall_flags);
245 dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
246 pkey, pkey, pkey_rights);
247
248 dprintf1("%s(%d) pkey_reg: 0x%016llx\n",
249 __func__, pkey, read_pkey_reg());
250 dprintf1("END<---%s(%d, 0x%x)\n", __func__,
251 pkey, flags);
252 }
253
pkey_disable_clear(int pkey,int flags)254 static void pkey_disable_clear(int pkey, int flags)
255 {
256 unsigned long syscall_flags = 0;
257 int ret;
258 int pkey_rights = hw_pkey_get(pkey, syscall_flags);
259
260 pkey_assert(flags & (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
261
262 dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
263 pkey, pkey, pkey_rights);
264 pkey_assert(pkey_rights >= 0);
265
266 pkey_rights &= ~flags;
267
268 ret = hw_pkey_set(pkey, pkey_rights, 0);
269 shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, pkey, pkey_rights);
270 pkey_assert(ret >= 0);
271
272 pkey_rights = hw_pkey_get(pkey, syscall_flags);
273 dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
274 pkey, pkey, pkey_rights);
275
276 dprintf1("%s(%d) pkey_reg: 0x%016llx\n", __func__,
277 pkey, read_pkey_reg());
278 }
279
pkey_write_allow(int pkey)280 __maybe_unused static void pkey_write_allow(int pkey)
281 {
282 pkey_disable_clear(pkey, PKEY_DISABLE_WRITE);
283 }
pkey_write_deny(int pkey)284 __maybe_unused static void pkey_write_deny(int pkey)
285 {
286 pkey_disable_set(pkey, PKEY_DISABLE_WRITE);
287 }
pkey_access_allow(int pkey)288 __maybe_unused static void pkey_access_allow(int pkey)
289 {
290 pkey_disable_clear(pkey, PKEY_DISABLE_ACCESS);
291 }
pkey_access_deny(int pkey)292 __maybe_unused static void pkey_access_deny(int pkey)
293 {
294 pkey_disable_set(pkey, PKEY_DISABLE_ACCESS);
295 }
296
si_code_str(int si_code)297 static char *si_code_str(int si_code)
298 {
299 if (si_code == SEGV_MAPERR)
300 return "SEGV_MAPERR";
301 if (si_code == SEGV_ACCERR)
302 return "SEGV_ACCERR";
303 if (si_code == SEGV_BNDERR)
304 return "SEGV_BNDERR";
305 if (si_code == SEGV_PKUERR)
306 return "SEGV_PKUERR";
307 return "UNKNOWN";
308 }
309
310 static int pkey_faults;
311 static int last_si_pkey = -1;
signal_handler(int signum,siginfo_t * si,void * vucontext)312 static void signal_handler(int signum, siginfo_t *si, void *vucontext)
313 {
314 ucontext_t *uctxt = vucontext;
315 int trapno;
316 unsigned long ip;
317 #ifdef MCONTEXT_FPREGS
318 char *fpregs;
319 #endif
320 #if defined(__i386__) || defined(__x86_64__) /* arch */
321 u32 *pkey_reg_ptr;
322 int pkey_reg_offset;
323 #endif /* arch */
324 u64 siginfo_pkey;
325 u32 *si_pkey_ptr;
326
327 dprint_in_signal = 1;
328 dprintf1(">>>>===============SIGSEGV============================\n");
329 dprintf1("%s()::%d, pkey_reg: 0x%016llx shadow: %016llx\n",
330 __func__, __LINE__,
331 __read_pkey_reg(), shadow_pkey_reg);
332
333 trapno = MCONTEXT_TRAPNO(uctxt->uc_mcontext);
334 ip = MCONTEXT_IP(uctxt->uc_mcontext);
335 #ifdef MCONTEXT_FPREGS
336 fpregs = (char *) uctxt->uc_mcontext.fpregs;
337 #endif
338
339 dprintf2("%s() trapno: %d ip: 0x%016lx info->si_code: %s/%d\n",
340 __func__, trapno, ip, si_code_str(si->si_code),
341 si->si_code);
342
343 #if defined(__i386__) || defined(__x86_64__) /* arch */
344 #ifdef __i386__
345 /*
346 * 32-bit has some extra padding so that userspace can tell whether
347 * the XSTATE header is present in addition to the "legacy" FPU
348 * state. We just assume that it is here.
349 */
350 fpregs += 0x70;
351 #endif /* i386 */
352 pkey_reg_offset = pkey_reg_xstate_offset();
353 pkey_reg_ptr = (void *)(&fpregs[pkey_reg_offset]);
354
355 /*
356 * If we got a PKEY fault, we *HAVE* to have at least one bit set in
357 * here.
358 */
359 dprintf1("pkey_reg_xstate_offset: %d\n", pkey_reg_xstate_offset());
360 if (DEBUG_LEVEL > 4)
361 dump_mem(pkey_reg_ptr - 128, 256);
362 pkey_assert(*pkey_reg_ptr);
363 #endif /* arch */
364
365 dprintf1("siginfo: %p\n", si);
366 #ifdef MCONTEXT_FPREGS
367 dprintf1(" fpregs: %p\n", fpregs);
368 #endif
369
370 if ((si->si_code == SEGV_MAPERR) ||
371 (si->si_code == SEGV_ACCERR) ||
372 (si->si_code == SEGV_BNDERR)) {
373 printf("non-PK si_code, exiting...\n");
374 exit(4);
375 }
376
377 si_pkey_ptr = siginfo_get_pkey_ptr(si);
378 dprintf1("si_pkey_ptr: %p\n", si_pkey_ptr);
379 dump_mem((u8 *)si_pkey_ptr - 8, 24);
380 siginfo_pkey = *si_pkey_ptr;
381 pkey_assert(siginfo_pkey < NR_PKEYS);
382 last_si_pkey = siginfo_pkey;
383
384 /*
385 * need __read_pkey_reg() version so we do not do shadow_pkey_reg
386 * checking
387 */
388 dprintf1("signal pkey_reg from pkey_reg: %016llx\n",
389 __read_pkey_reg());
390 dprintf1("pkey from siginfo: %016llx\n", siginfo_pkey);
391 #if defined(__i386__) || defined(__x86_64__) /* arch */
392 dprintf1("signal pkey_reg from xsave: %08x\n", *pkey_reg_ptr);
393 *(u64 *)pkey_reg_ptr = 0x00000000;
394 dprintf1("WARNING: set PKEY_REG=0 to allow faulting instruction to continue\n");
395 #elif defined(__powerpc64__) /* arch */
396 /* restore access and let the faulting instruction continue */
397 pkey_access_allow(siginfo_pkey);
398 #elif defined(__aarch64__)
399 aarch64_write_signal_pkey(uctxt, PKEY_REG_ALLOW_ALL);
400 #endif /* arch */
401 pkey_faults++;
402 dprintf1("<<<<==================================================\n");
403 dprint_in_signal = 0;
404 }
405
sig_chld(int x)406 static void sig_chld(int x)
407 {
408 dprint_in_signal = 1;
409 dprintf2("[%d] SIGCHLD: %d\n", getpid(), x);
410 dprint_in_signal = 0;
411 }
412
setup_sigsegv_handler(void)413 static void setup_sigsegv_handler(void)
414 {
415 int r, rs;
416 struct sigaction newact;
417 struct sigaction oldact;
418
419 /* #PF is mapped to sigsegv */
420 int signum = SIGSEGV;
421
422 newact.sa_handler = 0;
423 newact.sa_sigaction = signal_handler;
424
425 /*sigset_t - signals to block while in the handler */
426 /* get the old signal mask. */
427 rs = sigprocmask(SIG_SETMASK, 0, &newact.sa_mask);
428 pkey_assert(rs == 0);
429
430 /* call sa_sigaction, not sa_handler*/
431 newact.sa_flags = SA_SIGINFO;
432
433 newact.sa_restorer = 0; /* void(*)(), obsolete */
434 r = sigaction(signum, &newact, &oldact);
435 r = sigaction(SIGALRM, &newact, &oldact);
436 pkey_assert(r == 0);
437 }
438
setup_handlers(void)439 static void setup_handlers(void)
440 {
441 signal(SIGCHLD, &sig_chld);
442 setup_sigsegv_handler();
443 }
444
fork_lazy_child(void)445 static pid_t fork_lazy_child(void)
446 {
447 pid_t forkret;
448
449 forkret = fork();
450 pkey_assert(forkret >= 0);
451 dprintf3("[%d] fork() ret: %d\n", getpid(), forkret);
452
453 if (!forkret) {
454 /* in the child */
455 while (1) {
456 dprintf1("child sleeping...\n");
457 sleep(30);
458 }
459 }
460 return forkret;
461 }
462
alloc_pkey(void)463 static int alloc_pkey(void)
464 {
465 int ret;
466 unsigned long init_val = 0x0;
467
468 dprintf1("%s()::%d, pkey_reg: 0x%016llx shadow: %016llx\n",
469 __func__, __LINE__, __read_pkey_reg(), shadow_pkey_reg);
470 ret = sys_pkey_alloc(0, init_val);
471 /*
472 * pkey_alloc() sets PKEY register, so we need to reflect it in
473 * shadow_pkey_reg:
474 */
475 dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
476 " shadow: 0x%016llx\n",
477 __func__, __LINE__, ret, __read_pkey_reg(),
478 shadow_pkey_reg);
479 if (ret > 0) {
480 /* clear both the bits: */
481 shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, ret,
482 ~PKEY_MASK);
483 dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
484 " shadow: 0x%016llx\n",
485 __func__,
486 __LINE__, ret, __read_pkey_reg(),
487 shadow_pkey_reg);
488 /*
489 * move the new state in from init_val
490 * (remember, we cheated and init_val == pkey_reg format)
491 */
492 shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, ret,
493 init_val);
494 }
495 dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
496 " shadow: 0x%016llx\n",
497 __func__, __LINE__, ret, __read_pkey_reg(),
498 shadow_pkey_reg);
499 dprintf1("%s()::%d errno: %d\n", __func__, __LINE__, errno);
500 /* for shadow checking: */
501 read_pkey_reg();
502 dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
503 " shadow: 0x%016llx\n",
504 __func__, __LINE__, ret, __read_pkey_reg(),
505 shadow_pkey_reg);
506 return ret;
507 }
508
509 /*
510 * I had a bug where pkey bits could be set by mprotect() but
511 * not cleared. This ensures we get lots of random bit sets
512 * and clears on the vma and pte pkey bits.
513 */
alloc_random_pkey(void)514 static int alloc_random_pkey(void)
515 {
516 int max_nr_pkey_allocs;
517 int ret;
518 int i;
519 int alloced_pkeys[NR_PKEYS];
520 int nr_alloced = 0;
521 int random_index;
522 memset(alloced_pkeys, 0, sizeof(alloced_pkeys));
523
524 /* allocate every possible key and make a note of which ones we got */
525 max_nr_pkey_allocs = NR_PKEYS;
526 for (i = 0; i < max_nr_pkey_allocs; i++) {
527 int new_pkey = alloc_pkey();
528 if (new_pkey < 0)
529 break;
530 alloced_pkeys[nr_alloced++] = new_pkey;
531 }
532
533 pkey_assert(nr_alloced > 0);
534 /* select a random one out of the allocated ones */
535 random_index = rand() % nr_alloced;
536 ret = alloced_pkeys[random_index];
537 /* now zero it out so we don't free it next */
538 alloced_pkeys[random_index] = 0;
539
540 /* go through the allocated ones that we did not want and free them */
541 for (i = 0; i < nr_alloced; i++) {
542 int free_ret;
543 if (!alloced_pkeys[i])
544 continue;
545 free_ret = sys_pkey_free(alloced_pkeys[i]);
546 pkey_assert(!free_ret);
547 }
548 dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
549 " shadow: 0x%016llx\n", __func__,
550 __LINE__, ret, __read_pkey_reg(), shadow_pkey_reg);
551 return ret;
552 }
553
mprotect_pkey(void * ptr,size_t size,unsigned long orig_prot,unsigned long pkey)554 int mprotect_pkey(void *ptr, size_t size, unsigned long orig_prot,
555 unsigned long pkey)
556 {
557 int nr_iterations = random() % 100;
558 int ret;
559
560 while (0) {
561 int rpkey = alloc_random_pkey();
562 ret = sys_mprotect_pkey(ptr, size, orig_prot, pkey);
563 dprintf1("sys_mprotect_pkey(%p, %zx, prot=0x%lx, pkey=%ld) ret: %d\n",
564 ptr, size, orig_prot, pkey, ret);
565 if (nr_iterations-- < 0)
566 break;
567
568 dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
569 " shadow: 0x%016llx\n",
570 __func__, __LINE__, ret, __read_pkey_reg(),
571 shadow_pkey_reg);
572 sys_pkey_free(rpkey);
573 dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
574 " shadow: 0x%016llx\n",
575 __func__, __LINE__, ret, __read_pkey_reg(),
576 shadow_pkey_reg);
577 }
578 pkey_assert(pkey < NR_PKEYS);
579
580 ret = sys_mprotect_pkey(ptr, size, orig_prot, pkey);
581 dprintf1("mprotect_pkey(%p, %zx, prot=0x%lx, pkey=%ld) ret: %d\n",
582 ptr, size, orig_prot, pkey, ret);
583 pkey_assert(!ret);
584 dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
585 " shadow: 0x%016llx\n", __func__,
586 __LINE__, ret, __read_pkey_reg(), shadow_pkey_reg);
587 return ret;
588 }
589
590 struct pkey_malloc_record {
591 void *ptr;
592 long size;
593 int prot;
594 };
595 struct pkey_malloc_record *pkey_malloc_records;
596 struct pkey_malloc_record *pkey_last_malloc_record;
597 static long nr_pkey_malloc_records;
record_pkey_malloc(void * ptr,long size,int prot)598 void record_pkey_malloc(void *ptr, long size, int prot)
599 {
600 long i;
601 struct pkey_malloc_record *rec = NULL;
602
603 for (i = 0; i < nr_pkey_malloc_records; i++) {
604 rec = &pkey_malloc_records[i];
605 /* find a free record */
606 if (rec)
607 break;
608 }
609 if (!rec) {
610 /* every record is full */
611 size_t old_nr_records = nr_pkey_malloc_records;
612 size_t new_nr_records = (nr_pkey_malloc_records * 2 + 1);
613 size_t new_size = new_nr_records * sizeof(struct pkey_malloc_record);
614 dprintf2("new_nr_records: %zd\n", new_nr_records);
615 dprintf2("new_size: %zd\n", new_size);
616 pkey_malloc_records = realloc(pkey_malloc_records, new_size);
617 pkey_assert(pkey_malloc_records != NULL);
618 rec = &pkey_malloc_records[nr_pkey_malloc_records];
619 /*
620 * realloc() does not initialize memory, so zero it from
621 * the first new record all the way to the end.
622 */
623 for (i = 0; i < new_nr_records - old_nr_records; i++)
624 memset(rec + i, 0, sizeof(*rec));
625 }
626 dprintf3("filling malloc record[%d/%p]: {%p, %ld}\n",
627 (int)(rec - pkey_malloc_records), rec, ptr, size);
628 rec->ptr = ptr;
629 rec->size = size;
630 rec->prot = prot;
631 pkey_last_malloc_record = rec;
632 nr_pkey_malloc_records++;
633 }
634
free_pkey_malloc(void * ptr)635 static void free_pkey_malloc(void *ptr)
636 {
637 long i;
638 int ret;
639 dprintf3("%s(%p)\n", __func__, ptr);
640 for (i = 0; i < nr_pkey_malloc_records; i++) {
641 struct pkey_malloc_record *rec = &pkey_malloc_records[i];
642 dprintf4("looking for ptr %p at record[%ld/%p]: {%p, %ld}\n",
643 ptr, i, rec, rec->ptr, rec->size);
644 if ((ptr < rec->ptr) ||
645 (ptr >= rec->ptr + rec->size))
646 continue;
647
648 dprintf3("found ptr %p at record[%ld/%p]: {%p, %ld}\n",
649 ptr, i, rec, rec->ptr, rec->size);
650 nr_pkey_malloc_records--;
651 ret = munmap(rec->ptr, rec->size);
652 dprintf3("munmap ret: %d\n", ret);
653 pkey_assert(!ret);
654 dprintf3("clearing rec->ptr, rec: %p\n", rec);
655 rec->ptr = NULL;
656 dprintf3("done clearing rec->ptr, rec: %p\n", rec);
657 return;
658 }
659 pkey_assert(false);
660 }
661
malloc_pkey_with_mprotect(long size,int prot,u16 pkey)662 static void *malloc_pkey_with_mprotect(long size, int prot, u16 pkey)
663 {
664 void *ptr;
665 int ret;
666
667 read_pkey_reg();
668 dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
669 size, prot, pkey);
670 pkey_assert(pkey < NR_PKEYS);
671 ptr = mmap(NULL, size, prot, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
672 pkey_assert(ptr != (void *)-1);
673 ret = mprotect_pkey((void *)ptr, PAGE_SIZE, prot, pkey);
674 pkey_assert(!ret);
675 record_pkey_malloc(ptr, size, prot);
676 read_pkey_reg();
677
678 dprintf1("%s() for pkey %d @ %p\n", __func__, pkey, ptr);
679 return ptr;
680 }
681
malloc_pkey_anon_huge(long size,int prot,u16 pkey)682 static void *malloc_pkey_anon_huge(long size, int prot, u16 pkey)
683 {
684 int ret;
685 void *ptr;
686
687 dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
688 size, prot, pkey);
689 /*
690 * Guarantee we can fit at least one huge page in the resulting
691 * allocation by allocating space for 2:
692 */
693 size = ALIGN_UP(size, HPAGE_SIZE * 2);
694 ptr = mmap(NULL, size, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
695 pkey_assert(ptr != (void *)-1);
696 record_pkey_malloc(ptr, size, prot);
697 mprotect_pkey(ptr, size, prot, pkey);
698
699 dprintf1("unaligned ptr: %p\n", ptr);
700 ptr = ALIGN_PTR_UP(ptr, HPAGE_SIZE);
701 dprintf1(" aligned ptr: %p\n", ptr);
702 ret = madvise(ptr, HPAGE_SIZE, MADV_HUGEPAGE);
703 dprintf1("MADV_HUGEPAGE ret: %d\n", ret);
704 ret = madvise(ptr, HPAGE_SIZE, MADV_WILLNEED);
705 dprintf1("MADV_WILLNEED ret: %d\n", ret);
706 memset(ptr, 0, HPAGE_SIZE);
707
708 dprintf1("mmap()'d thp for pkey %d @ %p\n", pkey, ptr);
709 return ptr;
710 }
711
712 static int hugetlb_setup_ok;
713 #define SYSFS_FMT_NR_HUGE_PAGES "/sys/kernel/mm/hugepages/hugepages-%ldkB/nr_hugepages"
714 #define GET_NR_HUGE_PAGES 10
setup_hugetlbfs(void)715 static void setup_hugetlbfs(void)
716 {
717 int err;
718 int fd;
719 char buf[256];
720 long hpagesz_kb;
721 long hpagesz_mb;
722
723 if (geteuid() != 0) {
724 fprintf(stderr, "WARNING: not run as root, can not do hugetlb test\n");
725 return;
726 }
727
728 cat_into_file(__stringify(GET_NR_HUGE_PAGES), "/proc/sys/vm/nr_hugepages");
729
730 /*
731 * Now go make sure that we got the pages and that they
732 * are PMD-level pages. Someone might have made PUD-level
733 * pages the default.
734 */
735 hpagesz_kb = HPAGE_SIZE / 1024;
736 hpagesz_mb = hpagesz_kb / 1024;
737 sprintf(buf, SYSFS_FMT_NR_HUGE_PAGES, hpagesz_kb);
738 fd = open(buf, O_RDONLY);
739 if (fd < 0) {
740 fprintf(stderr, "opening sysfs %ldM hugetlb config: %s\n",
741 hpagesz_mb, strerror(errno));
742 return;
743 }
744
745 /* -1 to guarantee leaving the trailing \0 */
746 err = read(fd, buf, sizeof(buf)-1);
747 close(fd);
748 if (err <= 0) {
749 fprintf(stderr, "reading sysfs %ldM hugetlb config: %s\n",
750 hpagesz_mb, strerror(errno));
751 return;
752 }
753
754 if (atoi(buf) != GET_NR_HUGE_PAGES) {
755 fprintf(stderr, "could not confirm %ldM pages, got: '%s' expected %d\n",
756 hpagesz_mb, buf, GET_NR_HUGE_PAGES);
757 return;
758 }
759
760 hugetlb_setup_ok = 1;
761 }
762
malloc_pkey_hugetlb(long size,int prot,u16 pkey)763 static void *malloc_pkey_hugetlb(long size, int prot, u16 pkey)
764 {
765 void *ptr;
766 int flags = MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB;
767
768 if (!hugetlb_setup_ok)
769 return PTR_ERR_ENOTSUP;
770
771 dprintf1("doing %s(%ld, %x, %x)\n", __func__, size, prot, pkey);
772 size = ALIGN_UP(size, HPAGE_SIZE * 2);
773 pkey_assert(pkey < NR_PKEYS);
774 ptr = mmap(NULL, size, PROT_NONE, flags, -1, 0);
775 pkey_assert(ptr != (void *)-1);
776 mprotect_pkey(ptr, size, prot, pkey);
777
778 record_pkey_malloc(ptr, size, prot);
779
780 dprintf1("mmap()'d hugetlbfs for pkey %d @ %p\n", pkey, ptr);
781 return ptr;
782 }
783
784 static void *(*pkey_malloc[])(long size, int prot, u16 pkey) = {
785
786 malloc_pkey_with_mprotect,
787 malloc_pkey_with_mprotect_subpage,
788 malloc_pkey_anon_huge,
789 malloc_pkey_hugetlb
790 };
791
malloc_pkey(long size,int prot,u16 pkey)792 static void *malloc_pkey(long size, int prot, u16 pkey)
793 {
794 void *ret;
795 static int malloc_type;
796 int nr_malloc_types = ARRAY_SIZE(pkey_malloc);
797
798 pkey_assert(pkey < NR_PKEYS);
799
800 while (1) {
801 pkey_assert(malloc_type < nr_malloc_types);
802
803 ret = pkey_malloc[malloc_type](size, prot, pkey);
804 pkey_assert(ret != (void *)-1);
805
806 malloc_type++;
807 if (malloc_type >= nr_malloc_types)
808 malloc_type = (random()%nr_malloc_types);
809
810 /* try again if the malloc_type we tried is unsupported */
811 if (ret == PTR_ERR_ENOTSUP)
812 continue;
813
814 break;
815 }
816
817 dprintf3("%s(%ld, prot=%x, pkey=%x) returning: %p\n", __func__,
818 size, prot, pkey, ret);
819 return ret;
820 }
821
822 static int last_pkey_faults;
823 #define UNKNOWN_PKEY -2
expected_pkey_fault(int pkey)824 void expected_pkey_fault(int pkey)
825 {
826 dprintf2("%s(): last_pkey_faults: %d pkey_faults: %d\n",
827 __func__, last_pkey_faults, pkey_faults);
828 dprintf2("%s(%d): last_si_pkey: %d\n", __func__, pkey, last_si_pkey);
829 pkey_assert(last_pkey_faults + 1 == pkey_faults);
830
831 /*
832 * For exec-only memory, we do not know the pkey in
833 * advance, so skip this check.
834 */
835 if (pkey != UNKNOWN_PKEY)
836 pkey_assert(last_si_pkey == pkey);
837
838 #if defined(__i386__) || defined(__x86_64__) /* arch */
839 /*
840 * The signal handler shold have cleared out PKEY register to let the
841 * test program continue. We now have to restore it.
842 */
843 if (__read_pkey_reg() != 0)
844 #elif defined(__aarch64__)
845 if (__read_pkey_reg() != PKEY_REG_ALLOW_ALL)
846 #else
847 if (__read_pkey_reg() != shadow_pkey_reg)
848 #endif /* arch */
849 pkey_assert(0);
850
851 __write_pkey_reg(shadow_pkey_reg);
852 dprintf1("%s() set pkey_reg=%016llx to restore state after signal "
853 "nuked it\n", __func__, shadow_pkey_reg);
854 last_pkey_faults = pkey_faults;
855 last_si_pkey = -1;
856 }
857
858 #define do_not_expect_pkey_fault(msg) do { \
859 if (last_pkey_faults != pkey_faults) \
860 dprintf0("unexpected PKey fault: %s\n", msg); \
861 pkey_assert(last_pkey_faults == pkey_faults); \
862 } while (0)
863
864 static int test_fds[10] = { -1 };
865 static int nr_test_fds;
__save_test_fd(int fd)866 static void __save_test_fd(int fd)
867 {
868 pkey_assert(fd >= 0);
869 pkey_assert(nr_test_fds < ARRAY_SIZE(test_fds));
870 test_fds[nr_test_fds] = fd;
871 nr_test_fds++;
872 }
873
get_test_read_fd(void)874 static int get_test_read_fd(void)
875 {
876 int test_fd = open("/etc/passwd", O_RDONLY);
877 __save_test_fd(test_fd);
878 return test_fd;
879 }
880
close_test_fds(void)881 static void close_test_fds(void)
882 {
883 int i;
884
885 for (i = 0; i < nr_test_fds; i++) {
886 if (test_fds[i] < 0)
887 continue;
888 close(test_fds[i]);
889 test_fds[i] = -1;
890 }
891 nr_test_fds = 0;
892 }
893
test_pkey_alloc_free_attach_pkey0(int * ptr,u16 pkey)894 static void test_pkey_alloc_free_attach_pkey0(int *ptr, u16 pkey)
895 {
896 int i, err;
897 int max_nr_pkey_allocs;
898 int alloced_pkeys[NR_PKEYS];
899 int nr_alloced = 0;
900 long size;
901
902 pkey_assert(pkey_last_malloc_record);
903 size = pkey_last_malloc_record->size;
904 /*
905 * This is a bit of a hack. But mprotect() requires
906 * huge-page-aligned sizes when operating on hugetlbfs.
907 * So, make sure that we use something that's a multiple
908 * of a huge page when we can.
909 */
910 if (size >= HPAGE_SIZE)
911 size = HPAGE_SIZE;
912
913 /* allocate every possible key and make sure key-0 never got allocated */
914 max_nr_pkey_allocs = NR_PKEYS;
915 for (i = 0; i < max_nr_pkey_allocs; i++) {
916 int new_pkey = alloc_pkey();
917 pkey_assert(new_pkey != 0);
918
919 if (new_pkey < 0)
920 break;
921 alloced_pkeys[nr_alloced++] = new_pkey;
922 }
923 /* free all the allocated keys */
924 for (i = 0; i < nr_alloced; i++) {
925 int free_ret;
926
927 if (!alloced_pkeys[i])
928 continue;
929 free_ret = sys_pkey_free(alloced_pkeys[i]);
930 pkey_assert(!free_ret);
931 }
932
933 /* attach key-0 in various modes */
934 err = sys_mprotect_pkey(ptr, size, PROT_READ, 0);
935 pkey_assert(!err);
936 err = sys_mprotect_pkey(ptr, size, PROT_WRITE, 0);
937 pkey_assert(!err);
938 err = sys_mprotect_pkey(ptr, size, PROT_EXEC, 0);
939 pkey_assert(!err);
940 err = sys_mprotect_pkey(ptr, size, PROT_READ|PROT_WRITE, 0);
941 pkey_assert(!err);
942 err = sys_mprotect_pkey(ptr, size, PROT_READ|PROT_WRITE|PROT_EXEC, 0);
943 pkey_assert(!err);
944 }
945
test_read_of_write_disabled_region(int * ptr,u16 pkey)946 static void test_read_of_write_disabled_region(int *ptr, u16 pkey)
947 {
948 int ptr_contents;
949
950 dprintf1("disabling write access to PKEY[1], doing read\n");
951 pkey_write_deny(pkey);
952 ptr_contents = read_ptr(ptr);
953 dprintf1("*ptr: %d\n", ptr_contents);
954 dprintf1("\n");
955 }
test_read_of_access_disabled_region(int * ptr,u16 pkey)956 static void test_read_of_access_disabled_region(int *ptr, u16 pkey)
957 {
958 int ptr_contents;
959
960 dprintf1("disabling access to PKEY[%02d], doing read @ %p\n", pkey, ptr);
961 read_pkey_reg();
962 pkey_access_deny(pkey);
963 ptr_contents = read_ptr(ptr);
964 dprintf1("*ptr: %d\n", ptr_contents);
965 expected_pkey_fault(pkey);
966 }
967
test_read_of_access_disabled_region_with_page_already_mapped(int * ptr,u16 pkey)968 static void test_read_of_access_disabled_region_with_page_already_mapped(int *ptr,
969 u16 pkey)
970 {
971 int ptr_contents;
972
973 dprintf1("disabling access to PKEY[%02d], doing read @ %p\n",
974 pkey, ptr);
975 ptr_contents = read_ptr(ptr);
976 dprintf1("reading ptr before disabling the read : %d\n",
977 ptr_contents);
978 read_pkey_reg();
979 pkey_access_deny(pkey);
980 ptr_contents = read_ptr(ptr);
981 dprintf1("*ptr: %d\n", ptr_contents);
982 expected_pkey_fault(pkey);
983 }
984
test_write_of_write_disabled_region_with_page_already_mapped(int * ptr,u16 pkey)985 static void test_write_of_write_disabled_region_with_page_already_mapped(int *ptr,
986 u16 pkey)
987 {
988 *ptr = __LINE__;
989 dprintf1("disabling write access; after accessing the page, "
990 "to PKEY[%02d], doing write\n", pkey);
991 pkey_write_deny(pkey);
992 *ptr = __LINE__;
993 expected_pkey_fault(pkey);
994 }
995
test_write_of_write_disabled_region(int * ptr,u16 pkey)996 static void test_write_of_write_disabled_region(int *ptr, u16 pkey)
997 {
998 dprintf1("disabling write access to PKEY[%02d], doing write\n", pkey);
999 pkey_write_deny(pkey);
1000 *ptr = __LINE__;
1001 expected_pkey_fault(pkey);
1002 }
test_write_of_access_disabled_region(int * ptr,u16 pkey)1003 static void test_write_of_access_disabled_region(int *ptr, u16 pkey)
1004 {
1005 dprintf1("disabling access to PKEY[%02d], doing write\n", pkey);
1006 pkey_access_deny(pkey);
1007 *ptr = __LINE__;
1008 expected_pkey_fault(pkey);
1009 }
1010
test_write_of_access_disabled_region_with_page_already_mapped(int * ptr,u16 pkey)1011 static void test_write_of_access_disabled_region_with_page_already_mapped(int *ptr,
1012 u16 pkey)
1013 {
1014 *ptr = __LINE__;
1015 dprintf1("disabling access; after accessing the page, "
1016 " to PKEY[%02d], doing write\n", pkey);
1017 pkey_access_deny(pkey);
1018 *ptr = __LINE__;
1019 expected_pkey_fault(pkey);
1020 }
1021
test_kernel_write_of_access_disabled_region(int * ptr,u16 pkey)1022 static void test_kernel_write_of_access_disabled_region(int *ptr, u16 pkey)
1023 {
1024 int ret;
1025 int test_fd = get_test_read_fd();
1026
1027 dprintf1("disabling access to PKEY[%02d], "
1028 "having kernel read() to buffer\n", pkey);
1029 pkey_access_deny(pkey);
1030 ret = read(test_fd, ptr, 1);
1031 dprintf1("read ret: %d\n", ret);
1032 pkey_assert(ret);
1033 }
1034
test_kernel_write_of_write_disabled_region(int * ptr,u16 pkey)1035 static void test_kernel_write_of_write_disabled_region(int *ptr, u16 pkey)
1036 {
1037 int ret;
1038 int test_fd = get_test_read_fd();
1039
1040 pkey_write_deny(pkey);
1041 ret = read(test_fd, ptr, 100);
1042 dprintf1("read ret: %d\n", ret);
1043 if (ret < 0 && (DEBUG_LEVEL > 0))
1044 perror("verbose read result (OK for this to be bad)");
1045 pkey_assert(ret);
1046 }
1047
test_kernel_gup_of_access_disabled_region(int * ptr,u16 pkey)1048 static void test_kernel_gup_of_access_disabled_region(int *ptr, u16 pkey)
1049 {
1050 int pipe_ret, vmsplice_ret;
1051 struct iovec iov;
1052 int pipe_fds[2];
1053
1054 pipe_ret = pipe(pipe_fds);
1055
1056 pkey_assert(pipe_ret == 0);
1057 dprintf1("disabling access to PKEY[%02d], "
1058 "having kernel vmsplice from buffer\n", pkey);
1059 pkey_access_deny(pkey);
1060 iov.iov_base = ptr;
1061 iov.iov_len = PAGE_SIZE;
1062 vmsplice_ret = vmsplice(pipe_fds[1], &iov, 1, SPLICE_F_GIFT);
1063 dprintf1("vmsplice() ret: %d\n", vmsplice_ret);
1064 pkey_assert(vmsplice_ret == -1);
1065
1066 close(pipe_fds[0]);
1067 close(pipe_fds[1]);
1068 }
1069
test_kernel_gup_write_to_write_disabled_region(int * ptr,u16 pkey)1070 static void test_kernel_gup_write_to_write_disabled_region(int *ptr, u16 pkey)
1071 {
1072 int ignored = 0xdada;
1073 int futex_ret;
1074 int some_int = __LINE__;
1075
1076 dprintf1("disabling write to PKEY[%02d], "
1077 "doing futex gunk in buffer\n", pkey);
1078 *ptr = some_int;
1079 pkey_write_deny(pkey);
1080 futex_ret = syscall(SYS_futex, ptr, FUTEX_WAIT, some_int-1, NULL,
1081 &ignored, ignored);
1082 if (DEBUG_LEVEL > 0)
1083 perror("futex");
1084 dprintf1("futex() ret: %d\n", futex_ret);
1085 }
1086
1087 /* Assumes that all pkeys other than 'pkey' are unallocated */
test_pkey_syscalls_on_non_allocated_pkey(int * ptr,u16 pkey)1088 static void test_pkey_syscalls_on_non_allocated_pkey(int *ptr, u16 pkey)
1089 {
1090 int err;
1091 int i;
1092
1093 /* Note: 0 is the default pkey, so don't mess with it */
1094 for (i = 1; i < NR_PKEYS; i++) {
1095 if (pkey == i)
1096 continue;
1097
1098 dprintf1("trying get/set/free to non-allocated pkey: %2d\n", i);
1099 err = sys_pkey_free(i);
1100 pkey_assert(err);
1101
1102 err = sys_pkey_free(i);
1103 pkey_assert(err);
1104
1105 err = sys_mprotect_pkey(ptr, PAGE_SIZE, PROT_READ, i);
1106 pkey_assert(err);
1107 }
1108 }
1109
1110 /* Assumes that all pkeys other than 'pkey' are unallocated */
test_pkey_syscalls_bad_args(int * ptr,u16 pkey)1111 static void test_pkey_syscalls_bad_args(int *ptr, u16 pkey)
1112 {
1113 int err;
1114 int bad_pkey = NR_PKEYS+99;
1115
1116 /* pass a known-invalid pkey in: */
1117 err = sys_mprotect_pkey(ptr, PAGE_SIZE, PROT_READ, bad_pkey);
1118 pkey_assert(err);
1119 }
1120
become_child(void)1121 static void become_child(void)
1122 {
1123 pid_t forkret;
1124
1125 forkret = fork();
1126 pkey_assert(forkret >= 0);
1127 dprintf3("[%d] fork() ret: %d\n", getpid(), forkret);
1128
1129 if (!forkret) {
1130 /* in the child */
1131 return;
1132 }
1133 exit(0);
1134 }
1135
1136 /* Assumes that all pkeys other than 'pkey' are unallocated */
test_pkey_alloc_exhaust(int * ptr,u16 pkey)1137 static void test_pkey_alloc_exhaust(int *ptr, u16 pkey)
1138 {
1139 int err;
1140 int allocated_pkeys[NR_PKEYS] = {0};
1141 int nr_allocated_pkeys = 0;
1142 int i;
1143
1144 for (i = 0; i < NR_PKEYS*3; i++) {
1145 int new_pkey;
1146 dprintf1("%s() alloc loop: %d\n", __func__, i);
1147 new_pkey = alloc_pkey();
1148 dprintf4("%s()::%d, err: %d pkey_reg: 0x%016llx"
1149 " shadow: 0x%016llx\n",
1150 __func__, __LINE__, err, __read_pkey_reg(),
1151 shadow_pkey_reg);
1152 read_pkey_reg(); /* for shadow checking */
1153 dprintf2("%s() errno: %d ENOSPC: %d\n", __func__, errno, ENOSPC);
1154 if ((new_pkey == -1) && (errno == ENOSPC)) {
1155 dprintf2("%s() failed to allocate pkey after %d tries\n",
1156 __func__, nr_allocated_pkeys);
1157 } else {
1158 /*
1159 * Ensure the number of successes never
1160 * exceeds the number of keys supported
1161 * in the hardware.
1162 */
1163 pkey_assert(nr_allocated_pkeys < NR_PKEYS);
1164 allocated_pkeys[nr_allocated_pkeys++] = new_pkey;
1165 }
1166
1167 /*
1168 * Make sure that allocation state is properly
1169 * preserved across fork().
1170 */
1171 if (i == NR_PKEYS*2)
1172 become_child();
1173 }
1174
1175 dprintf3("%s()::%d\n", __func__, __LINE__);
1176
1177 /*
1178 * On x86:
1179 * There are 16 pkeys supported in hardware. Three are
1180 * allocated by the time we get here:
1181 * 1. The default key (0)
1182 * 2. One possibly consumed by an execute-only mapping.
1183 * 3. One allocated by the test code and passed in via
1184 * 'pkey' to this function.
1185 * Ensure that we can allocate at least another 13 (16-3).
1186 *
1187 * On powerpc:
1188 * There are either 5, 28, 29 or 32 pkeys supported in
1189 * hardware depending on the page size (4K or 64K) and
1190 * platform (powernv or powervm). Four are allocated by
1191 * the time we get here. These include pkey-0, pkey-1,
1192 * exec-only pkey and the one allocated by the test code.
1193 * Ensure that we can allocate the remaining.
1194 */
1195 pkey_assert(i >= (NR_PKEYS - get_arch_reserved_keys() - 1));
1196
1197 for (i = 0; i < nr_allocated_pkeys; i++) {
1198 err = sys_pkey_free(allocated_pkeys[i]);
1199 pkey_assert(!err);
1200 read_pkey_reg(); /* for shadow checking */
1201 }
1202 }
1203
arch_force_pkey_reg_init(void)1204 static void arch_force_pkey_reg_init(void)
1205 {
1206 #if defined(__i386__) || defined(__x86_64__) /* arch */
1207 u64 *buf;
1208
1209 /*
1210 * All keys should be allocated and set to allow reads and
1211 * writes, so the register should be all 0. If not, just
1212 * skip the test.
1213 */
1214 if (read_pkey_reg())
1215 return;
1216
1217 /*
1218 * Just allocate an absurd about of memory rather than
1219 * doing the XSAVE size enumeration dance.
1220 */
1221 buf = mmap(NULL, 1*MB, PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
1222
1223 /* These __builtins require compiling with -mxsave */
1224
1225 /* XSAVE to build a valid buffer: */
1226 __builtin_ia32_xsave(buf, XSTATE_PKEY);
1227 /* Clear XSTATE_BV[PKRU]: */
1228 buf[XSTATE_BV_OFFSET/sizeof(u64)] &= ~XSTATE_PKEY;
1229 /* XRSTOR will likely get PKRU back to the init state: */
1230 __builtin_ia32_xrstor(buf, XSTATE_PKEY);
1231
1232 munmap(buf, 1*MB);
1233 #endif
1234 }
1235
1236
1237 /*
1238 * This is mostly useless on ppc for now. But it will not
1239 * hurt anything and should give some better coverage as
1240 * a long-running test that continually checks the pkey
1241 * register.
1242 */
test_pkey_init_state(int * ptr,u16 pkey)1243 static void test_pkey_init_state(int *ptr, u16 pkey)
1244 {
1245 int err;
1246 int allocated_pkeys[NR_PKEYS] = {0};
1247 int nr_allocated_pkeys = 0;
1248 int i;
1249
1250 for (i = 0; i < NR_PKEYS; i++) {
1251 int new_pkey = alloc_pkey();
1252
1253 if (new_pkey < 0)
1254 continue;
1255 allocated_pkeys[nr_allocated_pkeys++] = new_pkey;
1256 }
1257
1258 dprintf3("%s()::%d\n", __func__, __LINE__);
1259
1260 arch_force_pkey_reg_init();
1261
1262 /*
1263 * Loop for a bit, hoping to get exercise the kernel
1264 * context switch code.
1265 */
1266 for (i = 0; i < 1000000; i++)
1267 read_pkey_reg();
1268
1269 for (i = 0; i < nr_allocated_pkeys; i++) {
1270 err = sys_pkey_free(allocated_pkeys[i]);
1271 pkey_assert(!err);
1272 read_pkey_reg(); /* for shadow checking */
1273 }
1274 }
1275
1276 /*
1277 * pkey 0 is special. It is allocated by default, so you do not
1278 * have to call pkey_alloc() to use it first. Make sure that it
1279 * is usable.
1280 */
test_mprotect_with_pkey_0(int * ptr,u16 pkey)1281 static void test_mprotect_with_pkey_0(int *ptr, u16 pkey)
1282 {
1283 long size;
1284 int prot;
1285
1286 assert(pkey_last_malloc_record);
1287 size = pkey_last_malloc_record->size;
1288 /*
1289 * This is a bit of a hack. But mprotect() requires
1290 * huge-page-aligned sizes when operating on hugetlbfs.
1291 * So, make sure that we use something that's a multiple
1292 * of a huge page when we can.
1293 */
1294 if (size >= HPAGE_SIZE)
1295 size = HPAGE_SIZE;
1296 prot = pkey_last_malloc_record->prot;
1297
1298 /* Use pkey 0 */
1299 mprotect_pkey(ptr, size, prot, 0);
1300
1301 /* Make sure that we can set it back to the original pkey. */
1302 mprotect_pkey(ptr, size, prot, pkey);
1303 }
1304
test_ptrace_of_child(int * ptr,u16 pkey)1305 static void test_ptrace_of_child(int *ptr, u16 pkey)
1306 {
1307 __attribute__((__unused__)) int peek_result;
1308 pid_t child_pid;
1309 void *ignored = 0;
1310 long ret;
1311 int status;
1312 /*
1313 * This is the "control" for our little expermient. Make sure
1314 * we can always access it when ptracing.
1315 */
1316 int *plain_ptr_unaligned = malloc(HPAGE_SIZE);
1317 int *plain_ptr = ALIGN_PTR_UP(plain_ptr_unaligned, PAGE_SIZE);
1318
1319 /*
1320 * Fork a child which is an exact copy of this process, of course.
1321 * That means we can do all of our tests via ptrace() and then plain
1322 * memory access and ensure they work differently.
1323 */
1324 child_pid = fork_lazy_child();
1325 dprintf1("[%d] child pid: %d\n", getpid(), child_pid);
1326
1327 ret = ptrace(PTRACE_ATTACH, child_pid, ignored, ignored);
1328 if (ret)
1329 perror("attach");
1330 dprintf1("[%d] attach ret: %ld %d\n", getpid(), ret, __LINE__);
1331 pkey_assert(ret != -1);
1332 ret = waitpid(child_pid, &status, WUNTRACED);
1333 if ((ret != child_pid) || !(WIFSTOPPED(status))) {
1334 fprintf(stderr, "weird waitpid result %ld stat %x\n",
1335 ret, status);
1336 pkey_assert(0);
1337 }
1338 dprintf2("waitpid ret: %ld\n", ret);
1339 dprintf2("waitpid status: %d\n", status);
1340
1341 pkey_access_deny(pkey);
1342 pkey_write_deny(pkey);
1343
1344 /* Write access, untested for now:
1345 ret = ptrace(PTRACE_POKEDATA, child_pid, peek_at, data);
1346 pkey_assert(ret != -1);
1347 dprintf1("poke at %p: %ld\n", peek_at, ret);
1348 */
1349
1350 /*
1351 * Try to access the pkey-protected "ptr" via ptrace:
1352 */
1353 ret = ptrace(PTRACE_PEEKDATA, child_pid, ptr, ignored);
1354 /* expect it to work, without an error: */
1355 pkey_assert(ret != -1);
1356 /* Now access from the current task, and expect an exception: */
1357 peek_result = read_ptr(ptr);
1358 expected_pkey_fault(pkey);
1359
1360 /*
1361 * Try to access the NON-pkey-protected "plain_ptr" via ptrace:
1362 */
1363 ret = ptrace(PTRACE_PEEKDATA, child_pid, plain_ptr, ignored);
1364 /* expect it to work, without an error: */
1365 pkey_assert(ret != -1);
1366 /* Now access from the current task, and expect NO exception: */
1367 peek_result = read_ptr(plain_ptr);
1368 do_not_expect_pkey_fault("read plain pointer after ptrace");
1369
1370 ret = ptrace(PTRACE_DETACH, child_pid, ignored, 0);
1371 pkey_assert(ret != -1);
1372
1373 ret = kill(child_pid, SIGKILL);
1374 pkey_assert(ret != -1);
1375
1376 wait(&status);
1377
1378 free(plain_ptr_unaligned);
1379 }
1380
get_pointer_to_instructions(void)1381 static void *get_pointer_to_instructions(void)
1382 {
1383 void *p1;
1384
1385 p1 = ALIGN_PTR_UP(&lots_o_noops_around_write, PAGE_SIZE);
1386 dprintf3("&lots_o_noops: %p\n", &lots_o_noops_around_write);
1387 /* lots_o_noops_around_write should be page-aligned already */
1388 assert(p1 == &lots_o_noops_around_write);
1389
1390 /* Point 'p1' at the *second* page of the function: */
1391 p1 += PAGE_SIZE;
1392
1393 /*
1394 * Try to ensure we fault this in on next touch to ensure
1395 * we get an instruction fault as opposed to a data one
1396 */
1397 madvise(p1, PAGE_SIZE, MADV_DONTNEED);
1398
1399 return p1;
1400 }
1401
test_executing_on_unreadable_memory(int * ptr,u16 pkey)1402 static void test_executing_on_unreadable_memory(int *ptr, u16 pkey)
1403 {
1404 void *p1;
1405 int scratch;
1406 int ptr_contents;
1407 int ret;
1408
1409 p1 = get_pointer_to_instructions();
1410 lots_o_noops_around_write(&scratch);
1411 ptr_contents = read_ptr(p1);
1412 dprintf2("ptr (%p) contents@%d: %x\n", p1, __LINE__, ptr_contents);
1413
1414 ret = mprotect_pkey(p1, PAGE_SIZE, PROT_EXEC, (u64)pkey);
1415 pkey_assert(!ret);
1416 pkey_access_deny(pkey);
1417
1418 dprintf2("pkey_reg: %016llx\n", read_pkey_reg());
1419
1420 /*
1421 * Make sure this is an *instruction* fault
1422 */
1423 madvise(p1, PAGE_SIZE, MADV_DONTNEED);
1424 lots_o_noops_around_write(&scratch);
1425 do_not_expect_pkey_fault("executing on PROT_EXEC memory");
1426 expect_fault_on_read_execonly_key(p1, pkey);
1427
1428 // Reset back to PROT_EXEC | PROT_READ for architectures that support
1429 // non-PKEY execute-only permissions.
1430 ret = mprotect_pkey(p1, PAGE_SIZE, PROT_EXEC | PROT_READ, (u64)pkey);
1431 pkey_assert(!ret);
1432 }
1433
test_implicit_mprotect_exec_only_memory(int * ptr,u16 pkey)1434 static void test_implicit_mprotect_exec_only_memory(int *ptr, u16 pkey)
1435 {
1436 void *p1;
1437 int scratch;
1438 int ptr_contents;
1439 int ret;
1440
1441 dprintf1("%s() start\n", __func__);
1442
1443 p1 = get_pointer_to_instructions();
1444 lots_o_noops_around_write(&scratch);
1445 ptr_contents = read_ptr(p1);
1446 dprintf2("ptr (%p) contents@%d: %x\n", p1, __LINE__, ptr_contents);
1447
1448 /* Use a *normal* mprotect(), not mprotect_pkey(): */
1449 ret = mprotect(p1, PAGE_SIZE, PROT_EXEC);
1450 pkey_assert(!ret);
1451
1452 /*
1453 * Reset the shadow, assuming that the above mprotect()
1454 * correctly changed PKRU, but to an unknown value since
1455 * the actual allocated pkey is unknown.
1456 */
1457 shadow_pkey_reg = __read_pkey_reg();
1458
1459 dprintf2("pkey_reg: %016llx\n", read_pkey_reg());
1460
1461 /* Make sure this is an *instruction* fault */
1462 madvise(p1, PAGE_SIZE, MADV_DONTNEED);
1463 lots_o_noops_around_write(&scratch);
1464 do_not_expect_pkey_fault("executing on PROT_EXEC memory");
1465 expect_fault_on_read_execonly_key(p1, UNKNOWN_PKEY);
1466
1467 /*
1468 * Put the memory back to non-PROT_EXEC. Should clear the
1469 * exec-only pkey off the VMA and allow it to be readable
1470 * again. Go to PROT_NONE first to check for a kernel bug
1471 * that did not clear the pkey when doing PROT_NONE.
1472 */
1473 ret = mprotect(p1, PAGE_SIZE, PROT_NONE);
1474 pkey_assert(!ret);
1475
1476 ret = mprotect(p1, PAGE_SIZE, PROT_READ|PROT_EXEC);
1477 pkey_assert(!ret);
1478 ptr_contents = read_ptr(p1);
1479 do_not_expect_pkey_fault("plain read on recently PROT_EXEC area");
1480 }
1481
1482 #if defined(__i386__) || defined(__x86_64__)
test_ptrace_modifies_pkru(int * ptr,u16 pkey)1483 static void test_ptrace_modifies_pkru(int *ptr, u16 pkey)
1484 {
1485 u32 new_pkru;
1486 pid_t child;
1487 int status, ret;
1488 int pkey_offset = pkey_reg_xstate_offset();
1489 size_t xsave_size = cpu_max_xsave_size();
1490 void *xsave;
1491 u32 *pkey_register;
1492 u64 *xstate_bv;
1493 struct iovec iov;
1494
1495 new_pkru = ~read_pkey_reg();
1496 /* Don't make PROT_EXEC mappings inaccessible */
1497 new_pkru &= ~3;
1498
1499 child = fork();
1500 pkey_assert(child >= 0);
1501 dprintf3("[%d] fork() ret: %d\n", getpid(), child);
1502 if (!child) {
1503 ptrace(PTRACE_TRACEME, 0, 0, 0);
1504 /* Stop and allow the tracer to modify PKRU directly */
1505 raise(SIGSTOP);
1506
1507 /*
1508 * need __read_pkey_reg() version so we do not do shadow_pkey_reg
1509 * checking
1510 */
1511 if (__read_pkey_reg() != new_pkru)
1512 exit(1);
1513
1514 /* Stop and allow the tracer to clear XSTATE_BV for PKRU */
1515 raise(SIGSTOP);
1516
1517 if (__read_pkey_reg() != 0)
1518 exit(1);
1519
1520 /* Stop and allow the tracer to examine PKRU */
1521 raise(SIGSTOP);
1522
1523 exit(0);
1524 }
1525
1526 pkey_assert(child == waitpid(child, &status, 0));
1527 dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
1528 pkey_assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP);
1529
1530 xsave = (void *)malloc(xsave_size);
1531 pkey_assert(xsave > 0);
1532
1533 /* Modify the PKRU register directly */
1534 iov.iov_base = xsave;
1535 iov.iov_len = xsave_size;
1536 ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
1537 pkey_assert(ret == 0);
1538
1539 pkey_register = (u32 *)(xsave + pkey_offset);
1540 pkey_assert(*pkey_register == read_pkey_reg());
1541
1542 *pkey_register = new_pkru;
1543
1544 ret = ptrace(PTRACE_SETREGSET, child, (void *)NT_X86_XSTATE, &iov);
1545 pkey_assert(ret == 0);
1546
1547 /* Test that the modification is visible in ptrace before any execution */
1548 memset(xsave, 0xCC, xsave_size);
1549 ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
1550 pkey_assert(ret == 0);
1551 pkey_assert(*pkey_register == new_pkru);
1552
1553 /* Execute the tracee */
1554 ret = ptrace(PTRACE_CONT, child, 0, 0);
1555 pkey_assert(ret == 0);
1556
1557 /* Test that the tracee saw the PKRU value change */
1558 pkey_assert(child == waitpid(child, &status, 0));
1559 dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
1560 pkey_assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP);
1561
1562 /* Test that the modification is visible in ptrace after execution */
1563 memset(xsave, 0xCC, xsave_size);
1564 ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
1565 pkey_assert(ret == 0);
1566 pkey_assert(*pkey_register == new_pkru);
1567
1568 /* Clear the PKRU bit from XSTATE_BV */
1569 xstate_bv = (u64 *)(xsave + 512);
1570 *xstate_bv &= ~(1 << 9);
1571
1572 ret = ptrace(PTRACE_SETREGSET, child, (void *)NT_X86_XSTATE, &iov);
1573 pkey_assert(ret == 0);
1574
1575 /* Test that the modification is visible in ptrace before any execution */
1576 memset(xsave, 0xCC, xsave_size);
1577 ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
1578 pkey_assert(ret == 0);
1579 pkey_assert(*pkey_register == 0);
1580
1581 ret = ptrace(PTRACE_CONT, child, 0, 0);
1582 pkey_assert(ret == 0);
1583
1584 /* Test that the tracee saw the PKRU value go to 0 */
1585 pkey_assert(child == waitpid(child, &status, 0));
1586 dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
1587 pkey_assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP);
1588
1589 /* Test that the modification is visible in ptrace after execution */
1590 memset(xsave, 0xCC, xsave_size);
1591 ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
1592 pkey_assert(ret == 0);
1593 pkey_assert(*pkey_register == 0);
1594
1595 ret = ptrace(PTRACE_CONT, child, 0, 0);
1596 pkey_assert(ret == 0);
1597 pkey_assert(child == waitpid(child, &status, 0));
1598 dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
1599 pkey_assert(WIFEXITED(status));
1600 pkey_assert(WEXITSTATUS(status) == 0);
1601 free(xsave);
1602 }
1603 #endif
1604
1605 #if defined(__aarch64__)
test_ptrace_modifies_pkru(int * ptr,u16 pkey)1606 static void test_ptrace_modifies_pkru(int *ptr, u16 pkey)
1607 {
1608 pid_t child;
1609 int status, ret;
1610 struct iovec iov;
1611 u64 trace_pkey;
1612 /* Just a random pkey value.. */
1613 u64 new_pkey = (POE_X << PKEY_BITS_PER_PKEY * 2) |
1614 (POE_NONE << PKEY_BITS_PER_PKEY) |
1615 POE_RWX;
1616
1617 child = fork();
1618 pkey_assert(child >= 0);
1619 dprintf3("[%d] fork() ret: %d\n", getpid(), child);
1620 if (!child) {
1621 ptrace(PTRACE_TRACEME, 0, 0, 0);
1622
1623 /* Stop and allow the tracer to modify PKRU directly */
1624 raise(SIGSTOP);
1625
1626 /*
1627 * need __read_pkey_reg() version so we do not do shadow_pkey_reg
1628 * checking
1629 */
1630 if (__read_pkey_reg() != new_pkey)
1631 exit(1);
1632
1633 raise(SIGSTOP);
1634
1635 exit(0);
1636 }
1637
1638 pkey_assert(child == waitpid(child, &status, 0));
1639 dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
1640 pkey_assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP);
1641
1642 iov.iov_base = &trace_pkey;
1643 iov.iov_len = 8;
1644 ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_ARM_POE, &iov);
1645 pkey_assert(ret == 0);
1646 pkey_assert(trace_pkey == read_pkey_reg());
1647
1648 trace_pkey = new_pkey;
1649
1650 ret = ptrace(PTRACE_SETREGSET, child, (void *)NT_ARM_POE, &iov);
1651 pkey_assert(ret == 0);
1652
1653 /* Test that the modification is visible in ptrace before any execution */
1654 memset(&trace_pkey, 0, sizeof(trace_pkey));
1655 ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_ARM_POE, &iov);
1656 pkey_assert(ret == 0);
1657 pkey_assert(trace_pkey == new_pkey);
1658
1659 /* Execute the tracee */
1660 ret = ptrace(PTRACE_CONT, child, 0, 0);
1661 pkey_assert(ret == 0);
1662
1663 /* Test that the tracee saw the PKRU value change */
1664 pkey_assert(child == waitpid(child, &status, 0));
1665 dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
1666 pkey_assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP);
1667
1668 /* Test that the modification is visible in ptrace after execution */
1669 memset(&trace_pkey, 0, sizeof(trace_pkey));
1670 ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_ARM_POE, &iov);
1671 pkey_assert(ret == 0);
1672 pkey_assert(trace_pkey == new_pkey);
1673
1674 ret = ptrace(PTRACE_CONT, child, 0, 0);
1675 pkey_assert(ret == 0);
1676 pkey_assert(child == waitpid(child, &status, 0));
1677 dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
1678 pkey_assert(WIFEXITED(status));
1679 pkey_assert(WEXITSTATUS(status) == 0);
1680 }
1681 #endif
1682
test_mprotect_pkey_on_unsupported_cpu(int * ptr,u16 pkey)1683 static void test_mprotect_pkey_on_unsupported_cpu(int *ptr, u16 pkey)
1684 {
1685 int size = PAGE_SIZE;
1686 int sret;
1687
1688 if (cpu_has_pkeys()) {
1689 dprintf1("SKIP: %s: no CPU support\n", __func__);
1690 return;
1691 }
1692
1693 sret = syscall(__NR_pkey_mprotect, ptr, size, PROT_READ, pkey);
1694 pkey_assert(sret < 0);
1695 }
1696
1697 static void (*pkey_tests[])(int *ptr, u16 pkey) = {
1698 test_read_of_write_disabled_region,
1699 test_read_of_access_disabled_region,
1700 test_read_of_access_disabled_region_with_page_already_mapped,
1701 test_write_of_write_disabled_region,
1702 test_write_of_write_disabled_region_with_page_already_mapped,
1703 test_write_of_access_disabled_region,
1704 test_write_of_access_disabled_region_with_page_already_mapped,
1705 test_kernel_write_of_access_disabled_region,
1706 test_kernel_write_of_write_disabled_region,
1707 test_kernel_gup_of_access_disabled_region,
1708 test_kernel_gup_write_to_write_disabled_region,
1709 test_executing_on_unreadable_memory,
1710 test_implicit_mprotect_exec_only_memory,
1711 test_mprotect_with_pkey_0,
1712 test_ptrace_of_child,
1713 test_pkey_init_state,
1714 test_pkey_syscalls_on_non_allocated_pkey,
1715 test_pkey_syscalls_bad_args,
1716 test_pkey_alloc_exhaust,
1717 test_pkey_alloc_free_attach_pkey0,
1718 #if defined(__i386__) || defined(__x86_64__) || defined(__aarch64__)
1719 test_ptrace_modifies_pkru,
1720 #endif
1721 };
1722
run_tests_once(void)1723 static void run_tests_once(void)
1724 {
1725 int *ptr;
1726 int prot = PROT_READ|PROT_WRITE;
1727
1728 for (test_nr = 0; test_nr < ARRAY_SIZE(pkey_tests); test_nr++) {
1729 int pkey;
1730 int orig_pkey_faults = pkey_faults;
1731
1732 dprintf1("======================\n");
1733 dprintf1("test %d preparing...\n", test_nr);
1734
1735 tracing_on();
1736 pkey = alloc_random_pkey();
1737 dprintf1("test %d starting with pkey: %d\n", test_nr, pkey);
1738 ptr = malloc_pkey(PAGE_SIZE, prot, pkey);
1739 dprintf1("test %d starting...\n", test_nr);
1740 pkey_tests[test_nr](ptr, pkey);
1741 dprintf1("freeing test memory: %p\n", ptr);
1742 free_pkey_malloc(ptr);
1743 sys_pkey_free(pkey);
1744
1745 dprintf1("pkey_faults: %d\n", pkey_faults);
1746 dprintf1("orig_pkey_faults: %d\n", orig_pkey_faults);
1747
1748 tracing_off();
1749 close_test_fds();
1750
1751 printf("test %2d PASSED (iteration %d)\n", test_nr, iteration_nr);
1752 dprintf1("======================\n\n");
1753 }
1754 iteration_nr++;
1755 }
1756
pkey_setup_shadow(void)1757 static void pkey_setup_shadow(void)
1758 {
1759 shadow_pkey_reg = __read_pkey_reg();
1760 }
1761
main(void)1762 int main(void)
1763 {
1764 int nr_iterations = 22;
1765 int pkeys_supported = is_pkeys_supported();
1766
1767 srand((unsigned int)time(NULL));
1768
1769 setup_handlers();
1770
1771 printf("has pkeys: %d\n", pkeys_supported);
1772
1773 if (!pkeys_supported) {
1774 int size = PAGE_SIZE;
1775 int *ptr;
1776
1777 printf("running PKEY tests for unsupported CPU/OS\n");
1778
1779 ptr = mmap(NULL, size, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
1780 assert(ptr != (void *)-1);
1781 test_mprotect_pkey_on_unsupported_cpu(ptr, 1);
1782 exit(0);
1783 }
1784
1785 pkey_setup_shadow();
1786 printf("startup pkey_reg: %016llx\n", read_pkey_reg());
1787 setup_hugetlbfs();
1788
1789 while (nr_iterations-- > 0)
1790 run_tests_once();
1791
1792 printf("done (all tests OK)\n");
1793 return 0;
1794 }
1795