1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PID_H
3 #define _LINUX_PID_H
4
5 #include <linux/pid_types.h>
6 #include <linux/rculist.h>
7 #include <linux/rcupdate.h>
8 #include <linux/refcount.h>
9 #include <linux/sched.h>
10 #include <linux/wait.h>
11
12 /*
13 * What is struct pid?
14 *
15 * A struct pid is the kernel's internal notion of a process identifier.
16 * It refers to individual tasks, process groups, and sessions. While
17 * there are processes attached to it the struct pid lives in a hash
18 * table, so it and then the processes that it refers to can be found
19 * quickly from the numeric pid value. The attached processes may be
20 * quickly accessed by following pointers from struct pid.
21 *
22 * Storing pid_t values in the kernel and referring to them later has a
23 * problem. The process originally with that pid may have exited and the
24 * pid allocator wrapped, and another process could have come along
25 * and been assigned that pid.
26 *
27 * Referring to user space processes by holding a reference to struct
28 * task_struct has a problem. When the user space process exits
29 * the now useless task_struct is still kept. A task_struct plus a
30 * stack consumes around 10K of low kernel memory. More precisely
31 * this is THREAD_SIZE + sizeof(struct task_struct). By comparison
32 * a struct pid is about 64 bytes.
33 *
34 * Holding a reference to struct pid solves both of these problems.
35 * It is small so holding a reference does not consume a lot of
36 * resources, and since a new struct pid is allocated when the numeric pid
37 * value is reused (when pids wrap around) we don't mistakenly refer to new
38 * processes.
39 */
40
41
42 /*
43 * struct upid is used to get the id of the struct pid, as it is
44 * seen in particular namespace. Later the struct pid is found with
45 * find_pid_ns() using the int nr and struct pid_namespace *ns.
46 */
47
48 #define RESERVED_PIDS 300
49
50 struct upid {
51 int nr;
52 struct pid_namespace *ns;
53 };
54
55 struct pid
56 {
57 refcount_t count;
58 unsigned int level;
59 spinlock_t lock;
60 struct dentry *stashed;
61 u64 ino;
62 struct rb_node pidfs_node;
63 /* lists of tasks that use this pid */
64 struct hlist_head tasks[PIDTYPE_MAX];
65 struct hlist_head inodes;
66 /* wait queue for pidfd notifications */
67 wait_queue_head_t wait_pidfd;
68 struct rcu_head rcu;
69 struct upid numbers[];
70 };
71
72 extern seqcount_spinlock_t pidmap_lock_seq;
73 extern struct pid init_struct_pid;
74
75 struct file;
76
77 struct pid *pidfd_pid(const struct file *file);
78 struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags);
79 struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags);
80 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret);
81 void do_notify_pidfd(struct task_struct *task);
82
get_pid(struct pid * pid)83 static inline struct pid *get_pid(struct pid *pid)
84 {
85 if (pid)
86 refcount_inc(&pid->count);
87 return pid;
88 }
89
90 extern void put_pid(struct pid *pid);
91 extern struct task_struct *pid_task(struct pid *pid, enum pid_type);
pid_has_task(struct pid * pid,enum pid_type type)92 static inline bool pid_has_task(struct pid *pid, enum pid_type type)
93 {
94 return !hlist_empty(&pid->tasks[type]);
95 }
96 extern struct task_struct *get_pid_task(struct pid *pid, enum pid_type);
97
98 extern struct pid *get_task_pid(struct task_struct *task, enum pid_type type);
99
100 /*
101 * these helpers must be called with the tasklist_lock write-held.
102 */
103 extern void attach_pid(struct task_struct *task, enum pid_type);
104 extern void detach_pid(struct task_struct *task, enum pid_type);
105 extern void change_pid(struct task_struct *task, enum pid_type,
106 struct pid *pid);
107 extern void exchange_tids(struct task_struct *task, struct task_struct *old);
108 extern void transfer_pid(struct task_struct *old, struct task_struct *new,
109 enum pid_type);
110
111 /*
112 * look up a PID in the hash table. Must be called with the tasklist_lock
113 * or rcu_read_lock() held.
114 *
115 * find_pid_ns() finds the pid in the namespace specified
116 * find_vpid() finds the pid by its virtual id, i.e. in the current namespace
117 *
118 * see also find_task_by_vpid() set in include/linux/sched.h
119 */
120 extern struct pid *find_pid_ns(int nr, struct pid_namespace *ns);
121 extern struct pid *find_vpid(int nr);
122
123 /*
124 * Lookup a PID in the hash table, and return with it's count elevated.
125 */
126 extern struct pid *find_get_pid(int nr);
127 extern struct pid *find_ge_pid(int nr, struct pid_namespace *);
128
129 extern struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
130 size_t set_tid_size);
131 extern void free_pid(struct pid *pid);
132 extern void disable_pid_allocation(struct pid_namespace *ns);
133
134 /*
135 * ns_of_pid() returns the pid namespace in which the specified pid was
136 * allocated.
137 *
138 * NOTE:
139 * ns_of_pid() is expected to be called for a process (task) that has
140 * an attached 'struct pid' (see attach_pid(), detach_pid()) i.e @pid
141 * is expected to be non-NULL. If @pid is NULL, caller should handle
142 * the resulting NULL pid-ns.
143 */
ns_of_pid(struct pid * pid)144 static inline struct pid_namespace *ns_of_pid(struct pid *pid)
145 {
146 struct pid_namespace *ns = NULL;
147 if (pid)
148 ns = pid->numbers[pid->level].ns;
149 return ns;
150 }
151
152 /*
153 * is_child_reaper returns true if the pid is the init process
154 * of the current namespace. As this one could be checked before
155 * pid_ns->child_reaper is assigned in copy_process, we check
156 * with the pid number.
157 */
is_child_reaper(struct pid * pid)158 static inline bool is_child_reaper(struct pid *pid)
159 {
160 return pid->numbers[pid->level].nr == 1;
161 }
162
163 /*
164 * the helpers to get the pid's id seen from different namespaces
165 *
166 * pid_nr() : global id, i.e. the id seen from the init namespace;
167 * pid_vnr() : virtual id, i.e. the id seen from the pid namespace of
168 * current.
169 * pid_nr_ns() : id seen from the ns specified.
170 *
171 * see also task_xid_nr() etc in include/linux/sched.h
172 */
173
pid_nr(struct pid * pid)174 static inline pid_t pid_nr(struct pid *pid)
175 {
176 pid_t nr = 0;
177 if (pid)
178 nr = pid->numbers[0].nr;
179 return nr;
180 }
181
182 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns);
183 pid_t pid_vnr(struct pid *pid);
184
185 #define do_each_pid_task(pid, type, task) \
186 do { \
187 if ((pid) != NULL) \
188 hlist_for_each_entry_rcu((task), \
189 &(pid)->tasks[type], pid_links[type]) {
190
191 /*
192 * Both old and new leaders may be attached to
193 * the same pid in the middle of de_thread().
194 */
195 #define while_each_pid_task(pid, type, task) \
196 if (type == PIDTYPE_PID) \
197 break; \
198 } \
199 } while (0)
200
201 #define do_each_pid_thread(pid, type, task) \
202 do_each_pid_task(pid, type, task) { \
203 struct task_struct *tg___ = task; \
204 for_each_thread(tg___, task) {
205
206 #define while_each_pid_thread(pid, type, task) \
207 } \
208 task = tg___; \
209 } while_each_pid_task(pid, type, task)
210
task_pid(struct task_struct * task)211 static inline struct pid *task_pid(struct task_struct *task)
212 {
213 return task->thread_pid;
214 }
215
216 /*
217 * the helpers to get the task's different pids as they are seen
218 * from various namespaces
219 *
220 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
221 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
222 * current.
223 * task_xid_nr_ns() : id seen from the ns specified;
224 *
225 * see also pid_nr() etc in include/linux/pid.h
226 */
227 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
228
task_pid_nr(struct task_struct * tsk)229 static inline pid_t task_pid_nr(struct task_struct *tsk)
230 {
231 return tsk->pid;
232 }
233
task_pid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)234 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
235 {
236 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
237 }
238
task_pid_vnr(struct task_struct * tsk)239 static inline pid_t task_pid_vnr(struct task_struct *tsk)
240 {
241 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
242 }
243
244
task_tgid_nr(struct task_struct * tsk)245 static inline pid_t task_tgid_nr(struct task_struct *tsk)
246 {
247 return tsk->tgid;
248 }
249
250 /**
251 * pid_alive - check that a task structure is not stale
252 * @p: Task structure to be checked.
253 *
254 * Test if a process is not yet dead (at most zombie state)
255 * If pid_alive fails, then pointers within the task structure
256 * can be stale and must not be dereferenced.
257 *
258 * Return: 1 if the process is alive. 0 otherwise.
259 */
pid_alive(const struct task_struct * p)260 static inline int pid_alive(const struct task_struct *p)
261 {
262 return p->thread_pid != NULL;
263 }
264
task_pgrp_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)265 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
266 {
267 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
268 }
269
task_pgrp_vnr(struct task_struct * tsk)270 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
271 {
272 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
273 }
274
275
task_session_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)276 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
277 {
278 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
279 }
280
task_session_vnr(struct task_struct * tsk)281 static inline pid_t task_session_vnr(struct task_struct *tsk)
282 {
283 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
284 }
285
task_tgid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)286 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
287 {
288 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
289 }
290
task_tgid_vnr(struct task_struct * tsk)291 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
292 {
293 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
294 }
295
task_ppid_nr_ns(const struct task_struct * tsk,struct pid_namespace * ns)296 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
297 {
298 pid_t pid = 0;
299
300 rcu_read_lock();
301 if (pid_alive(tsk))
302 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
303 rcu_read_unlock();
304
305 return pid;
306 }
307
task_ppid_nr(const struct task_struct * tsk)308 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
309 {
310 return task_ppid_nr_ns(tsk, &init_pid_ns);
311 }
312
313 /* Obsolete, do not use: */
task_pgrp_nr(struct task_struct * tsk)314 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
315 {
316 return task_pgrp_nr_ns(tsk, &init_pid_ns);
317 }
318
319 /**
320 * is_global_init - check if a task structure is init. Since init
321 * is free to have sub-threads we need to check tgid.
322 * @tsk: Task structure to be checked.
323 *
324 * Check if a task structure is the first user space task the kernel created.
325 *
326 * Return: 1 if the task structure is init. 0 otherwise.
327 */
is_global_init(struct task_struct * tsk)328 static inline int is_global_init(struct task_struct *tsk)
329 {
330 return task_tgid_nr(tsk) == 1;
331 }
332
333 #endif /* _LINUX_PID_H */
334