1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/slab.h>
3 #include <linux/lockdep.h>
4 #include <linux/sysfs.h>
5 #include <linux/kobject.h>
6 #include <linux/memory.h>
7 #include <linux/memory-tiers.h>
8 #include <linux/notifier.h>
9 #include <linux/sched/sysctl.h>
10
11 #include "internal.h"
12
13 struct memory_tier {
14 /* hierarchy of memory tiers */
15 struct list_head list;
16 /* list of all memory types part of this tier */
17 struct list_head memory_types;
18 /*
19 * start value of abstract distance. memory tier maps
20 * an abstract distance range,
21 * adistance_start .. adistance_start + MEMTIER_CHUNK_SIZE
22 */
23 int adistance_start;
24 struct device dev;
25 /* All the nodes that are part of all the lower memory tiers. */
26 nodemask_t lower_tier_mask;
27 };
28
29 struct demotion_nodes {
30 nodemask_t preferred;
31 };
32
33 struct node_memory_type_map {
34 struct memory_dev_type *memtype;
35 int map_count;
36 };
37
38 static DEFINE_MUTEX(memory_tier_lock);
39 static LIST_HEAD(memory_tiers);
40 /*
41 * The list is used to store all memory types that are not created
42 * by a device driver.
43 */
44 static LIST_HEAD(default_memory_types);
45 static struct node_memory_type_map node_memory_types[MAX_NUMNODES];
46 struct memory_dev_type *default_dram_type;
47 nodemask_t default_dram_nodes __initdata = NODE_MASK_NONE;
48
49 static const struct bus_type memory_tier_subsys = {
50 .name = "memory_tiering",
51 .dev_name = "memory_tier",
52 };
53
54 #ifdef CONFIG_NUMA_BALANCING
55 /**
56 * folio_use_access_time - check if a folio reuses cpupid for page access time
57 * @folio: folio to check
58 *
59 * folio's _last_cpupid field is repurposed by memory tiering. In memory
60 * tiering mode, cpupid of slow memory folio (not toptier memory) is used to
61 * record page access time.
62 *
63 * Return: the folio _last_cpupid is used to record page access time
64 */
folio_use_access_time(struct folio * folio)65 bool folio_use_access_time(struct folio *folio)
66 {
67 return (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
68 !node_is_toptier(folio_nid(folio));
69 }
70 #endif
71
72 #ifdef CONFIG_MIGRATION
73 static int top_tier_adistance;
74 /*
75 * node_demotion[] examples:
76 *
77 * Example 1:
78 *
79 * Node 0 & 1 are CPU + DRAM nodes, node 2 & 3 are PMEM nodes.
80 *
81 * node distances:
82 * node 0 1 2 3
83 * 0 10 20 30 40
84 * 1 20 10 40 30
85 * 2 30 40 10 40
86 * 3 40 30 40 10
87 *
88 * memory_tiers0 = 0-1
89 * memory_tiers1 = 2-3
90 *
91 * node_demotion[0].preferred = 2
92 * node_demotion[1].preferred = 3
93 * node_demotion[2].preferred = <empty>
94 * node_demotion[3].preferred = <empty>
95 *
96 * Example 2:
97 *
98 * Node 0 & 1 are CPU + DRAM nodes, node 2 is memory-only DRAM node.
99 *
100 * node distances:
101 * node 0 1 2
102 * 0 10 20 30
103 * 1 20 10 30
104 * 2 30 30 10
105 *
106 * memory_tiers0 = 0-2
107 *
108 * node_demotion[0].preferred = <empty>
109 * node_demotion[1].preferred = <empty>
110 * node_demotion[2].preferred = <empty>
111 *
112 * Example 3:
113 *
114 * Node 0 is CPU + DRAM nodes, Node 1 is HBM node, node 2 is PMEM node.
115 *
116 * node distances:
117 * node 0 1 2
118 * 0 10 20 30
119 * 1 20 10 40
120 * 2 30 40 10
121 *
122 * memory_tiers0 = 1
123 * memory_tiers1 = 0
124 * memory_tiers2 = 2
125 *
126 * node_demotion[0].preferred = 2
127 * node_demotion[1].preferred = 0
128 * node_demotion[2].preferred = <empty>
129 *
130 */
131 static struct demotion_nodes *node_demotion __read_mostly;
132 #endif /* CONFIG_MIGRATION */
133
134 static BLOCKING_NOTIFIER_HEAD(mt_adistance_algorithms);
135
136 /* The lock is used to protect `default_dram_perf*` info and nid. */
137 static DEFINE_MUTEX(default_dram_perf_lock);
138 static bool default_dram_perf_error;
139 static struct access_coordinate default_dram_perf;
140 static int default_dram_perf_ref_nid = NUMA_NO_NODE;
141 static const char *default_dram_perf_ref_source;
142
to_memory_tier(struct device * device)143 static inline struct memory_tier *to_memory_tier(struct device *device)
144 {
145 return container_of(device, struct memory_tier, dev);
146 }
147
get_memtier_nodemask(struct memory_tier * memtier)148 static __always_inline nodemask_t get_memtier_nodemask(struct memory_tier *memtier)
149 {
150 nodemask_t nodes = NODE_MASK_NONE;
151 struct memory_dev_type *memtype;
152
153 list_for_each_entry(memtype, &memtier->memory_types, tier_sibling)
154 nodes_or(nodes, nodes, memtype->nodes);
155
156 return nodes;
157 }
158
memory_tier_device_release(struct device * dev)159 static void memory_tier_device_release(struct device *dev)
160 {
161 struct memory_tier *tier = to_memory_tier(dev);
162 /*
163 * synchronize_rcu in clear_node_memory_tier makes sure
164 * we don't have rcu access to this memory tier.
165 */
166 kfree(tier);
167 }
168
nodelist_show(struct device * dev,struct device_attribute * attr,char * buf)169 static ssize_t nodelist_show(struct device *dev,
170 struct device_attribute *attr, char *buf)
171 {
172 int ret;
173 nodemask_t nmask;
174
175 mutex_lock(&memory_tier_lock);
176 nmask = get_memtier_nodemask(to_memory_tier(dev));
177 ret = sysfs_emit(buf, "%*pbl\n", nodemask_pr_args(&nmask));
178 mutex_unlock(&memory_tier_lock);
179 return ret;
180 }
181 static DEVICE_ATTR_RO(nodelist);
182
183 static struct attribute *memtier_dev_attrs[] = {
184 &dev_attr_nodelist.attr,
185 NULL
186 };
187
188 static const struct attribute_group memtier_dev_group = {
189 .attrs = memtier_dev_attrs,
190 };
191
192 static const struct attribute_group *memtier_dev_groups[] = {
193 &memtier_dev_group,
194 NULL
195 };
196
find_create_memory_tier(struct memory_dev_type * memtype)197 static struct memory_tier *find_create_memory_tier(struct memory_dev_type *memtype)
198 {
199 int ret;
200 bool found_slot = false;
201 struct memory_tier *memtier, *new_memtier;
202 int adistance = memtype->adistance;
203 unsigned int memtier_adistance_chunk_size = MEMTIER_CHUNK_SIZE;
204
205 lockdep_assert_held_once(&memory_tier_lock);
206
207 adistance = round_down(adistance, memtier_adistance_chunk_size);
208 /*
209 * If the memtype is already part of a memory tier,
210 * just return that.
211 */
212 if (!list_empty(&memtype->tier_sibling)) {
213 list_for_each_entry(memtier, &memory_tiers, list) {
214 if (adistance == memtier->adistance_start)
215 return memtier;
216 }
217 WARN_ON(1);
218 return ERR_PTR(-EINVAL);
219 }
220
221 list_for_each_entry(memtier, &memory_tiers, list) {
222 if (adistance == memtier->adistance_start) {
223 goto link_memtype;
224 } else if (adistance < memtier->adistance_start) {
225 found_slot = true;
226 break;
227 }
228 }
229
230 new_memtier = kzalloc(sizeof(struct memory_tier), GFP_KERNEL);
231 if (!new_memtier)
232 return ERR_PTR(-ENOMEM);
233
234 new_memtier->adistance_start = adistance;
235 INIT_LIST_HEAD(&new_memtier->list);
236 INIT_LIST_HEAD(&new_memtier->memory_types);
237 if (found_slot)
238 list_add_tail(&new_memtier->list, &memtier->list);
239 else
240 list_add_tail(&new_memtier->list, &memory_tiers);
241
242 new_memtier->dev.id = adistance >> MEMTIER_CHUNK_BITS;
243 new_memtier->dev.bus = &memory_tier_subsys;
244 new_memtier->dev.release = memory_tier_device_release;
245 new_memtier->dev.groups = memtier_dev_groups;
246
247 ret = device_register(&new_memtier->dev);
248 if (ret) {
249 list_del(&new_memtier->list);
250 put_device(&new_memtier->dev);
251 return ERR_PTR(ret);
252 }
253 memtier = new_memtier;
254
255 link_memtype:
256 list_add(&memtype->tier_sibling, &memtier->memory_types);
257 return memtier;
258 }
259
__node_get_memory_tier(int node)260 static struct memory_tier *__node_get_memory_tier(int node)
261 {
262 pg_data_t *pgdat;
263
264 pgdat = NODE_DATA(node);
265 if (!pgdat)
266 return NULL;
267 /*
268 * Since we hold memory_tier_lock, we can avoid
269 * RCU read locks when accessing the details. No
270 * parallel updates are possible here.
271 */
272 return rcu_dereference_check(pgdat->memtier,
273 lockdep_is_held(&memory_tier_lock));
274 }
275
276 #ifdef CONFIG_MIGRATION
node_is_toptier(int node)277 bool node_is_toptier(int node)
278 {
279 bool toptier;
280 pg_data_t *pgdat;
281 struct memory_tier *memtier;
282
283 pgdat = NODE_DATA(node);
284 if (!pgdat)
285 return false;
286
287 rcu_read_lock();
288 memtier = rcu_dereference(pgdat->memtier);
289 if (!memtier) {
290 toptier = true;
291 goto out;
292 }
293 if (memtier->adistance_start <= top_tier_adistance)
294 toptier = true;
295 else
296 toptier = false;
297 out:
298 rcu_read_unlock();
299 return toptier;
300 }
301
node_get_allowed_targets(pg_data_t * pgdat,nodemask_t * targets)302 void node_get_allowed_targets(pg_data_t *pgdat, nodemask_t *targets)
303 {
304 struct memory_tier *memtier;
305
306 /*
307 * pg_data_t.memtier updates includes a synchronize_rcu()
308 * which ensures that we either find NULL or a valid memtier
309 * in NODE_DATA. protect the access via rcu_read_lock();
310 */
311 rcu_read_lock();
312 memtier = rcu_dereference(pgdat->memtier);
313 if (memtier)
314 *targets = memtier->lower_tier_mask;
315 else
316 *targets = NODE_MASK_NONE;
317 rcu_read_unlock();
318 }
319
320 /**
321 * next_demotion_node() - Get the next node in the demotion path
322 * @node: The starting node to lookup the next node
323 *
324 * Return: node id for next memory node in the demotion path hierarchy
325 * from @node; NUMA_NO_NODE if @node is terminal. This does not keep
326 * @node online or guarantee that it *continues* to be the next demotion
327 * target.
328 */
next_demotion_node(int node)329 int next_demotion_node(int node)
330 {
331 struct demotion_nodes *nd;
332 int target;
333
334 if (!node_demotion)
335 return NUMA_NO_NODE;
336
337 nd = &node_demotion[node];
338
339 /*
340 * node_demotion[] is updated without excluding this
341 * function from running.
342 *
343 * Make sure to use RCU over entire code blocks if
344 * node_demotion[] reads need to be consistent.
345 */
346 rcu_read_lock();
347 /*
348 * If there are multiple target nodes, just select one
349 * target node randomly.
350 *
351 * In addition, we can also use round-robin to select
352 * target node, but we should introduce another variable
353 * for node_demotion[] to record last selected target node,
354 * that may cause cache ping-pong due to the changing of
355 * last target node. Or introducing per-cpu data to avoid
356 * caching issue, which seems more complicated. So selecting
357 * target node randomly seems better until now.
358 */
359 target = node_random(&nd->preferred);
360 rcu_read_unlock();
361
362 return target;
363 }
364
disable_all_demotion_targets(void)365 static void disable_all_demotion_targets(void)
366 {
367 struct memory_tier *memtier;
368 int node;
369
370 for_each_node_state(node, N_MEMORY) {
371 node_demotion[node].preferred = NODE_MASK_NONE;
372 /*
373 * We are holding memory_tier_lock, it is safe
374 * to access pgda->memtier.
375 */
376 memtier = __node_get_memory_tier(node);
377 if (memtier)
378 memtier->lower_tier_mask = NODE_MASK_NONE;
379 }
380 /*
381 * Ensure that the "disable" is visible across the system.
382 * Readers will see either a combination of before+disable
383 * state or disable+after. They will never see before and
384 * after state together.
385 */
386 synchronize_rcu();
387 }
388
dump_demotion_targets(void)389 static void dump_demotion_targets(void)
390 {
391 int node;
392
393 for_each_node_state(node, N_MEMORY) {
394 struct memory_tier *memtier = __node_get_memory_tier(node);
395 nodemask_t preferred = node_demotion[node].preferred;
396
397 if (!memtier)
398 continue;
399
400 if (nodes_empty(preferred))
401 pr_info("Demotion targets for Node %d: null\n", node);
402 else
403 pr_info("Demotion targets for Node %d: preferred: %*pbl, fallback: %*pbl\n",
404 node, nodemask_pr_args(&preferred),
405 nodemask_pr_args(&memtier->lower_tier_mask));
406 }
407 }
408
409 /*
410 * Find an automatic demotion target for all memory
411 * nodes. Failing here is OK. It might just indicate
412 * being at the end of a chain.
413 */
establish_demotion_targets(void)414 static void establish_demotion_targets(void)
415 {
416 struct memory_tier *memtier;
417 struct demotion_nodes *nd;
418 int target = NUMA_NO_NODE, node;
419 int distance, best_distance;
420 nodemask_t tier_nodes, lower_tier;
421
422 lockdep_assert_held_once(&memory_tier_lock);
423
424 if (!node_demotion)
425 return;
426
427 disable_all_demotion_targets();
428
429 for_each_node_state(node, N_MEMORY) {
430 best_distance = -1;
431 nd = &node_demotion[node];
432
433 memtier = __node_get_memory_tier(node);
434 if (!memtier || list_is_last(&memtier->list, &memory_tiers))
435 continue;
436 /*
437 * Get the lower memtier to find the demotion node list.
438 */
439 memtier = list_next_entry(memtier, list);
440 tier_nodes = get_memtier_nodemask(memtier);
441 /*
442 * find_next_best_node, use 'used' nodemask as a skip list.
443 * Add all memory nodes except the selected memory tier
444 * nodelist to skip list so that we find the best node from the
445 * memtier nodelist.
446 */
447 nodes_andnot(tier_nodes, node_states[N_MEMORY], tier_nodes);
448
449 /*
450 * Find all the nodes in the memory tier node list of same best distance.
451 * add them to the preferred mask. We randomly select between nodes
452 * in the preferred mask when allocating pages during demotion.
453 */
454 do {
455 target = find_next_best_node(node, &tier_nodes);
456 if (target == NUMA_NO_NODE)
457 break;
458
459 distance = node_distance(node, target);
460 if (distance == best_distance || best_distance == -1) {
461 best_distance = distance;
462 node_set(target, nd->preferred);
463 } else {
464 break;
465 }
466 } while (1);
467 }
468 /*
469 * Promotion is allowed from a memory tier to higher
470 * memory tier only if the memory tier doesn't include
471 * compute. We want to skip promotion from a memory tier,
472 * if any node that is part of the memory tier have CPUs.
473 * Once we detect such a memory tier, we consider that tier
474 * as top tiper from which promotion is not allowed.
475 */
476 list_for_each_entry_reverse(memtier, &memory_tiers, list) {
477 tier_nodes = get_memtier_nodemask(memtier);
478 nodes_and(tier_nodes, node_states[N_CPU], tier_nodes);
479 if (!nodes_empty(tier_nodes)) {
480 /*
481 * abstract distance below the max value of this memtier
482 * is considered toptier.
483 */
484 top_tier_adistance = memtier->adistance_start +
485 MEMTIER_CHUNK_SIZE - 1;
486 break;
487 }
488 }
489 /*
490 * Now build the lower_tier mask for each node collecting node mask from
491 * all memory tier below it. This allows us to fallback demotion page
492 * allocation to a set of nodes that is closer the above selected
493 * preferred node.
494 */
495 lower_tier = node_states[N_MEMORY];
496 list_for_each_entry(memtier, &memory_tiers, list) {
497 /*
498 * Keep removing current tier from lower_tier nodes,
499 * This will remove all nodes in current and above
500 * memory tier from the lower_tier mask.
501 */
502 tier_nodes = get_memtier_nodemask(memtier);
503 nodes_andnot(lower_tier, lower_tier, tier_nodes);
504 memtier->lower_tier_mask = lower_tier;
505 }
506
507 dump_demotion_targets();
508 }
509
510 #else
establish_demotion_targets(void)511 static inline void establish_demotion_targets(void) {}
512 #endif /* CONFIG_MIGRATION */
513
__init_node_memory_type(int node,struct memory_dev_type * memtype)514 static inline void __init_node_memory_type(int node, struct memory_dev_type *memtype)
515 {
516 if (!node_memory_types[node].memtype)
517 node_memory_types[node].memtype = memtype;
518 /*
519 * for each device getting added in the same NUMA node
520 * with this specific memtype, bump the map count. We
521 * Only take memtype device reference once, so that
522 * changing a node memtype can be done by droping the
523 * only reference count taken here.
524 */
525
526 if (node_memory_types[node].memtype == memtype) {
527 if (!node_memory_types[node].map_count++)
528 kref_get(&memtype->kref);
529 }
530 }
531
set_node_memory_tier(int node)532 static struct memory_tier *set_node_memory_tier(int node)
533 {
534 struct memory_tier *memtier;
535 struct memory_dev_type *memtype = default_dram_type;
536 int adist = MEMTIER_ADISTANCE_DRAM;
537 pg_data_t *pgdat = NODE_DATA(node);
538
539
540 lockdep_assert_held_once(&memory_tier_lock);
541
542 if (!node_state(node, N_MEMORY))
543 return ERR_PTR(-EINVAL);
544
545 mt_calc_adistance(node, &adist);
546 if (!node_memory_types[node].memtype) {
547 memtype = mt_find_alloc_memory_type(adist, &default_memory_types);
548 if (IS_ERR(memtype)) {
549 memtype = default_dram_type;
550 pr_info("Failed to allocate a memory type. Fall back.\n");
551 }
552 }
553
554 __init_node_memory_type(node, memtype);
555
556 memtype = node_memory_types[node].memtype;
557 node_set(node, memtype->nodes);
558 memtier = find_create_memory_tier(memtype);
559 if (!IS_ERR(memtier))
560 rcu_assign_pointer(pgdat->memtier, memtier);
561 return memtier;
562 }
563
destroy_memory_tier(struct memory_tier * memtier)564 static void destroy_memory_tier(struct memory_tier *memtier)
565 {
566 list_del(&memtier->list);
567 device_unregister(&memtier->dev);
568 }
569
clear_node_memory_tier(int node)570 static bool clear_node_memory_tier(int node)
571 {
572 bool cleared = false;
573 pg_data_t *pgdat;
574 struct memory_tier *memtier;
575
576 pgdat = NODE_DATA(node);
577 if (!pgdat)
578 return false;
579
580 /*
581 * Make sure that anybody looking at NODE_DATA who finds
582 * a valid memtier finds memory_dev_types with nodes still
583 * linked to the memtier. We achieve this by waiting for
584 * rcu read section to finish using synchronize_rcu.
585 * This also enables us to free the destroyed memory tier
586 * with kfree instead of kfree_rcu
587 */
588 memtier = __node_get_memory_tier(node);
589 if (memtier) {
590 struct memory_dev_type *memtype;
591
592 rcu_assign_pointer(pgdat->memtier, NULL);
593 synchronize_rcu();
594 memtype = node_memory_types[node].memtype;
595 node_clear(node, memtype->nodes);
596 if (nodes_empty(memtype->nodes)) {
597 list_del_init(&memtype->tier_sibling);
598 if (list_empty(&memtier->memory_types))
599 destroy_memory_tier(memtier);
600 }
601 cleared = true;
602 }
603 return cleared;
604 }
605
release_memtype(struct kref * kref)606 static void release_memtype(struct kref *kref)
607 {
608 struct memory_dev_type *memtype;
609
610 memtype = container_of(kref, struct memory_dev_type, kref);
611 kfree(memtype);
612 }
613
alloc_memory_type(int adistance)614 struct memory_dev_type *alloc_memory_type(int adistance)
615 {
616 struct memory_dev_type *memtype;
617
618 memtype = kmalloc(sizeof(*memtype), GFP_KERNEL);
619 if (!memtype)
620 return ERR_PTR(-ENOMEM);
621
622 memtype->adistance = adistance;
623 INIT_LIST_HEAD(&memtype->tier_sibling);
624 memtype->nodes = NODE_MASK_NONE;
625 kref_init(&memtype->kref);
626 return memtype;
627 }
628 EXPORT_SYMBOL_GPL(alloc_memory_type);
629
put_memory_type(struct memory_dev_type * memtype)630 void put_memory_type(struct memory_dev_type *memtype)
631 {
632 kref_put(&memtype->kref, release_memtype);
633 }
634 EXPORT_SYMBOL_GPL(put_memory_type);
635
init_node_memory_type(int node,struct memory_dev_type * memtype)636 void init_node_memory_type(int node, struct memory_dev_type *memtype)
637 {
638
639 mutex_lock(&memory_tier_lock);
640 __init_node_memory_type(node, memtype);
641 mutex_unlock(&memory_tier_lock);
642 }
643 EXPORT_SYMBOL_GPL(init_node_memory_type);
644
clear_node_memory_type(int node,struct memory_dev_type * memtype)645 void clear_node_memory_type(int node, struct memory_dev_type *memtype)
646 {
647 mutex_lock(&memory_tier_lock);
648 if (node_memory_types[node].memtype == memtype || !memtype)
649 node_memory_types[node].map_count--;
650 /*
651 * If we umapped all the attached devices to this node,
652 * clear the node memory type.
653 */
654 if (!node_memory_types[node].map_count) {
655 memtype = node_memory_types[node].memtype;
656 node_memory_types[node].memtype = NULL;
657 put_memory_type(memtype);
658 }
659 mutex_unlock(&memory_tier_lock);
660 }
661 EXPORT_SYMBOL_GPL(clear_node_memory_type);
662
mt_find_alloc_memory_type(int adist,struct list_head * memory_types)663 struct memory_dev_type *mt_find_alloc_memory_type(int adist, struct list_head *memory_types)
664 {
665 struct memory_dev_type *mtype;
666
667 list_for_each_entry(mtype, memory_types, list)
668 if (mtype->adistance == adist)
669 return mtype;
670
671 mtype = alloc_memory_type(adist);
672 if (IS_ERR(mtype))
673 return mtype;
674
675 list_add(&mtype->list, memory_types);
676
677 return mtype;
678 }
679 EXPORT_SYMBOL_GPL(mt_find_alloc_memory_type);
680
mt_put_memory_types(struct list_head * memory_types)681 void mt_put_memory_types(struct list_head *memory_types)
682 {
683 struct memory_dev_type *mtype, *mtn;
684
685 list_for_each_entry_safe(mtype, mtn, memory_types, list) {
686 list_del(&mtype->list);
687 put_memory_type(mtype);
688 }
689 }
690 EXPORT_SYMBOL_GPL(mt_put_memory_types);
691
692 /*
693 * This is invoked via `late_initcall()` to initialize memory tiers for
694 * memory nodes, both with and without CPUs. After the initialization of
695 * firmware and devices, adistance algorithms are expected to be provided.
696 */
memory_tier_late_init(void)697 static int __init memory_tier_late_init(void)
698 {
699 int nid;
700 struct memory_tier *memtier;
701
702 get_online_mems();
703 guard(mutex)(&memory_tier_lock);
704
705 /* Assign each uninitialized N_MEMORY node to a memory tier. */
706 for_each_node_state(nid, N_MEMORY) {
707 /*
708 * Some device drivers may have initialized
709 * memory tiers, potentially bringing memory nodes
710 * online and configuring memory tiers.
711 * Exclude them here.
712 */
713 if (node_memory_types[nid].memtype)
714 continue;
715
716 memtier = set_node_memory_tier(nid);
717 if (IS_ERR(memtier))
718 continue;
719 }
720
721 establish_demotion_targets();
722 put_online_mems();
723
724 return 0;
725 }
726 late_initcall(memory_tier_late_init);
727
dump_hmem_attrs(struct access_coordinate * coord,const char * prefix)728 static void dump_hmem_attrs(struct access_coordinate *coord, const char *prefix)
729 {
730 pr_info(
731 "%sread_latency: %u, write_latency: %u, read_bandwidth: %u, write_bandwidth: %u\n",
732 prefix, coord->read_latency, coord->write_latency,
733 coord->read_bandwidth, coord->write_bandwidth);
734 }
735
mt_set_default_dram_perf(int nid,struct access_coordinate * perf,const char * source)736 int mt_set_default_dram_perf(int nid, struct access_coordinate *perf,
737 const char *source)
738 {
739 guard(mutex)(&default_dram_perf_lock);
740 if (default_dram_perf_error)
741 return -EIO;
742
743 if (perf->read_latency + perf->write_latency == 0 ||
744 perf->read_bandwidth + perf->write_bandwidth == 0)
745 return -EINVAL;
746
747 if (default_dram_perf_ref_nid == NUMA_NO_NODE) {
748 default_dram_perf = *perf;
749 default_dram_perf_ref_nid = nid;
750 default_dram_perf_ref_source = kstrdup(source, GFP_KERNEL);
751 return 0;
752 }
753
754 /*
755 * The performance of all default DRAM nodes is expected to be
756 * same (that is, the variation is less than 10%). And it
757 * will be used as base to calculate the abstract distance of
758 * other memory nodes.
759 */
760 if (abs(perf->read_latency - default_dram_perf.read_latency) * 10 >
761 default_dram_perf.read_latency ||
762 abs(perf->write_latency - default_dram_perf.write_latency) * 10 >
763 default_dram_perf.write_latency ||
764 abs(perf->read_bandwidth - default_dram_perf.read_bandwidth) * 10 >
765 default_dram_perf.read_bandwidth ||
766 abs(perf->write_bandwidth - default_dram_perf.write_bandwidth) * 10 >
767 default_dram_perf.write_bandwidth) {
768 pr_info(
769 "memory-tiers: the performance of DRAM node %d mismatches that of the reference\n"
770 "DRAM node %d.\n", nid, default_dram_perf_ref_nid);
771 pr_info(" performance of reference DRAM node %d from %s:\n",
772 default_dram_perf_ref_nid, default_dram_perf_ref_source);
773 dump_hmem_attrs(&default_dram_perf, " ");
774 pr_info(" performance of DRAM node %d from %s:\n", nid, source);
775 dump_hmem_attrs(perf, " ");
776 pr_info(
777 " disable default DRAM node performance based abstract distance algorithm.\n");
778 default_dram_perf_error = true;
779 return -EINVAL;
780 }
781
782 return 0;
783 }
784
mt_perf_to_adistance(struct access_coordinate * perf,int * adist)785 int mt_perf_to_adistance(struct access_coordinate *perf, int *adist)
786 {
787 guard(mutex)(&default_dram_perf_lock);
788 if (default_dram_perf_error)
789 return -EIO;
790
791 if (perf->read_latency + perf->write_latency == 0 ||
792 perf->read_bandwidth + perf->write_bandwidth == 0)
793 return -EINVAL;
794
795 if (default_dram_perf_ref_nid == NUMA_NO_NODE)
796 return -ENOENT;
797
798 /*
799 * The abstract distance of a memory node is in direct proportion to
800 * its memory latency (read + write) and inversely proportional to its
801 * memory bandwidth (read + write). The abstract distance, memory
802 * latency, and memory bandwidth of the default DRAM nodes are used as
803 * the base.
804 */
805 *adist = MEMTIER_ADISTANCE_DRAM *
806 (perf->read_latency + perf->write_latency) /
807 (default_dram_perf.read_latency + default_dram_perf.write_latency) *
808 (default_dram_perf.read_bandwidth + default_dram_perf.write_bandwidth) /
809 (perf->read_bandwidth + perf->write_bandwidth);
810
811 return 0;
812 }
813 EXPORT_SYMBOL_GPL(mt_perf_to_adistance);
814
815 /**
816 * register_mt_adistance_algorithm() - Register memory tiering abstract distance algorithm
817 * @nb: The notifier block which describe the algorithm
818 *
819 * Return: 0 on success, errno on error.
820 *
821 * Every memory tiering abstract distance algorithm provider needs to
822 * register the algorithm with register_mt_adistance_algorithm(). To
823 * calculate the abstract distance for a specified memory node, the
824 * notifier function will be called unless some high priority
825 * algorithm has provided result. The prototype of the notifier
826 * function is as follows,
827 *
828 * int (*algorithm_notifier)(struct notifier_block *nb,
829 * unsigned long nid, void *data);
830 *
831 * Where "nid" specifies the memory node, "data" is the pointer to the
832 * returned abstract distance (that is, "int *adist"). If the
833 * algorithm provides the result, NOTIFY_STOP should be returned.
834 * Otherwise, return_value & %NOTIFY_STOP_MASK == 0 to allow the next
835 * algorithm in the chain to provide the result.
836 */
register_mt_adistance_algorithm(struct notifier_block * nb)837 int register_mt_adistance_algorithm(struct notifier_block *nb)
838 {
839 return blocking_notifier_chain_register(&mt_adistance_algorithms, nb);
840 }
841 EXPORT_SYMBOL_GPL(register_mt_adistance_algorithm);
842
843 /**
844 * unregister_mt_adistance_algorithm() - Unregister memory tiering abstract distance algorithm
845 * @nb: the notifier block which describe the algorithm
846 *
847 * Return: 0 on success, errno on error.
848 */
unregister_mt_adistance_algorithm(struct notifier_block * nb)849 int unregister_mt_adistance_algorithm(struct notifier_block *nb)
850 {
851 return blocking_notifier_chain_unregister(&mt_adistance_algorithms, nb);
852 }
853 EXPORT_SYMBOL_GPL(unregister_mt_adistance_algorithm);
854
855 /**
856 * mt_calc_adistance() - Calculate abstract distance with registered algorithms
857 * @node: the node to calculate abstract distance for
858 * @adist: the returned abstract distance
859 *
860 * Return: if return_value & %NOTIFY_STOP_MASK != 0, then some
861 * abstract distance algorithm provides the result, and return it via
862 * @adist. Otherwise, no algorithm can provide the result and @adist
863 * will be kept as it is.
864 */
mt_calc_adistance(int node,int * adist)865 int mt_calc_adistance(int node, int *adist)
866 {
867 return blocking_notifier_call_chain(&mt_adistance_algorithms, node, adist);
868 }
869 EXPORT_SYMBOL_GPL(mt_calc_adistance);
870
memtier_hotplug_callback(struct notifier_block * self,unsigned long action,void * _arg)871 static int __meminit memtier_hotplug_callback(struct notifier_block *self,
872 unsigned long action, void *_arg)
873 {
874 struct memory_tier *memtier;
875 struct memory_notify *arg = _arg;
876
877 /*
878 * Only update the node migration order when a node is
879 * changing status, like online->offline.
880 */
881 if (arg->status_change_nid < 0)
882 return notifier_from_errno(0);
883
884 switch (action) {
885 case MEM_OFFLINE:
886 mutex_lock(&memory_tier_lock);
887 if (clear_node_memory_tier(arg->status_change_nid))
888 establish_demotion_targets();
889 mutex_unlock(&memory_tier_lock);
890 break;
891 case MEM_ONLINE:
892 mutex_lock(&memory_tier_lock);
893 memtier = set_node_memory_tier(arg->status_change_nid);
894 if (!IS_ERR(memtier))
895 establish_demotion_targets();
896 mutex_unlock(&memory_tier_lock);
897 break;
898 }
899
900 return notifier_from_errno(0);
901 }
902
memory_tier_init(void)903 static int __init memory_tier_init(void)
904 {
905 int ret;
906
907 ret = subsys_virtual_register(&memory_tier_subsys, NULL);
908 if (ret)
909 panic("%s() failed to register memory tier subsystem\n", __func__);
910
911 #ifdef CONFIG_MIGRATION
912 node_demotion = kcalloc(nr_node_ids, sizeof(struct demotion_nodes),
913 GFP_KERNEL);
914 WARN_ON(!node_demotion);
915 #endif
916
917 mutex_lock(&memory_tier_lock);
918 /*
919 * For now we can have 4 faster memory tiers with smaller adistance
920 * than default DRAM tier.
921 */
922 default_dram_type = mt_find_alloc_memory_type(MEMTIER_ADISTANCE_DRAM,
923 &default_memory_types);
924 mutex_unlock(&memory_tier_lock);
925 if (IS_ERR(default_dram_type))
926 panic("%s() failed to allocate default DRAM tier\n", __func__);
927
928 /* Record nodes with memory and CPU to set default DRAM performance. */
929 nodes_and(default_dram_nodes, node_states[N_MEMORY],
930 node_states[N_CPU]);
931
932 hotplug_memory_notifier(memtier_hotplug_callback, MEMTIER_HOTPLUG_PRI);
933 return 0;
934 }
935 subsys_initcall(memory_tier_init);
936
937 bool numa_demotion_enabled = false;
938
939 #ifdef CONFIG_MIGRATION
940 #ifdef CONFIG_SYSFS
demotion_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)941 static ssize_t demotion_enabled_show(struct kobject *kobj,
942 struct kobj_attribute *attr, char *buf)
943 {
944 return sysfs_emit(buf, "%s\n", str_true_false(numa_demotion_enabled));
945 }
946
demotion_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)947 static ssize_t demotion_enabled_store(struct kobject *kobj,
948 struct kobj_attribute *attr,
949 const char *buf, size_t count)
950 {
951 ssize_t ret;
952
953 ret = kstrtobool(buf, &numa_demotion_enabled);
954 if (ret)
955 return ret;
956
957 return count;
958 }
959
960 static struct kobj_attribute numa_demotion_enabled_attr =
961 __ATTR_RW(demotion_enabled);
962
963 static struct attribute *numa_attrs[] = {
964 &numa_demotion_enabled_attr.attr,
965 NULL,
966 };
967
968 static const struct attribute_group numa_attr_group = {
969 .attrs = numa_attrs,
970 };
971
numa_init_sysfs(void)972 static int __init numa_init_sysfs(void)
973 {
974 int err;
975 struct kobject *numa_kobj;
976
977 numa_kobj = kobject_create_and_add("numa", mm_kobj);
978 if (!numa_kobj) {
979 pr_err("failed to create numa kobject\n");
980 return -ENOMEM;
981 }
982 err = sysfs_create_group(numa_kobj, &numa_attr_group);
983 if (err) {
984 pr_err("failed to register numa group\n");
985 goto delete_obj;
986 }
987 return 0;
988
989 delete_obj:
990 kobject_put(numa_kobj);
991 return err;
992 }
993 subsys_initcall(numa_init_sysfs);
994 #endif /* CONFIG_SYSFS */
995 #endif
996