1 /*
2 * Copyright 2012-15 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26 #include "dm_services.h"
27 #include "basics/dc_common.h"
28 #include "dc.h"
29 #include "core_types.h"
30 #include "resource.h"
31 #include "ipp.h"
32 #include "timing_generator.h"
33 #include "dc_dmub_srv.h"
34 #include "dc_state_priv.h"
35 #include "dc_stream_priv.h"
36
37 #define DC_LOGGER dc->ctx->logger
38 #ifndef MIN
39 #define MIN(X, Y) ((X) < (Y) ? (X) : (Y))
40 #endif
41 #ifndef MAX
42 #define MAX(x, y) ((x > y) ? x : y)
43 #endif
44
45 /*******************************************************************************
46 * Private functions
47 ******************************************************************************/
update_stream_signal(struct dc_stream_state * stream,struct dc_sink * sink)48 void update_stream_signal(struct dc_stream_state *stream, struct dc_sink *sink)
49 {
50 if (sink->sink_signal == SIGNAL_TYPE_NONE)
51 stream->signal = stream->link->connector_signal;
52 else
53 stream->signal = sink->sink_signal;
54
55 if (dc_is_dvi_signal(stream->signal)) {
56 if (stream->ctx->dc->caps.dual_link_dvi &&
57 (stream->timing.pix_clk_100hz / 10) > TMDS_MAX_PIXEL_CLOCK &&
58 sink->sink_signal != SIGNAL_TYPE_DVI_SINGLE_LINK)
59 stream->signal = SIGNAL_TYPE_DVI_DUAL_LINK;
60 else
61 stream->signal = SIGNAL_TYPE_DVI_SINGLE_LINK;
62 }
63 }
64
dc_stream_construct(struct dc_stream_state * stream,struct dc_sink * dc_sink_data)65 bool dc_stream_construct(struct dc_stream_state *stream,
66 struct dc_sink *dc_sink_data)
67 {
68 uint32_t i = 0;
69
70 stream->sink = dc_sink_data;
71 dc_sink_retain(dc_sink_data);
72
73 stream->ctx = dc_sink_data->ctx;
74 stream->link = dc_sink_data->link;
75 stream->sink_patches = dc_sink_data->edid_caps.panel_patch;
76 stream->converter_disable_audio = dc_sink_data->converter_disable_audio;
77 stream->qs_bit = dc_sink_data->edid_caps.qs_bit;
78 stream->qy_bit = dc_sink_data->edid_caps.qy_bit;
79
80 /* Copy audio modes */
81 /* TODO - Remove this translation */
82 for (i = 0; i < (dc_sink_data->edid_caps.audio_mode_count); i++) {
83 stream->audio_info.modes[i].channel_count = dc_sink_data->edid_caps.audio_modes[i].channel_count;
84 stream->audio_info.modes[i].format_code = dc_sink_data->edid_caps.audio_modes[i].format_code;
85 stream->audio_info.modes[i].sample_rates.all = dc_sink_data->edid_caps.audio_modes[i].sample_rate;
86 stream->audio_info.modes[i].sample_size = dc_sink_data->edid_caps.audio_modes[i].sample_size;
87 }
88 stream->audio_info.mode_count = dc_sink_data->edid_caps.audio_mode_count;
89 stream->audio_info.audio_latency = dc_sink_data->edid_caps.audio_latency;
90 stream->audio_info.video_latency = dc_sink_data->edid_caps.video_latency;
91 memmove(
92 stream->audio_info.display_name,
93 dc_sink_data->edid_caps.display_name,
94 AUDIO_INFO_DISPLAY_NAME_SIZE_IN_CHARS);
95 stream->audio_info.manufacture_id = dc_sink_data->edid_caps.manufacturer_id;
96 stream->audio_info.product_id = dc_sink_data->edid_caps.product_id;
97 stream->audio_info.flags.all = dc_sink_data->edid_caps.speaker_flags;
98
99 if (dc_sink_data->dc_container_id != NULL) {
100 struct dc_container_id *dc_container_id = dc_sink_data->dc_container_id;
101
102 stream->audio_info.port_id[0] = dc_container_id->portId[0];
103 stream->audio_info.port_id[1] = dc_container_id->portId[1];
104 } else {
105 /* TODO - WindowDM has implemented,
106 other DMs need Unhardcode port_id */
107 stream->audio_info.port_id[0] = 0x5558859e;
108 stream->audio_info.port_id[1] = 0xd989449;
109 }
110
111 /* EDID CAP translation for HDMI 2.0 */
112 stream->timing.flags.LTE_340MCSC_SCRAMBLE = dc_sink_data->edid_caps.lte_340mcsc_scramble;
113
114 memset(&stream->timing.dsc_cfg, 0, sizeof(stream->timing.dsc_cfg));
115 stream->timing.dsc_cfg.num_slices_h = 0;
116 stream->timing.dsc_cfg.num_slices_v = 0;
117 stream->timing.dsc_cfg.bits_per_pixel = 128;
118 stream->timing.dsc_cfg.block_pred_enable = 1;
119 stream->timing.dsc_cfg.linebuf_depth = 9;
120 stream->timing.dsc_cfg.version_minor = 2;
121 stream->timing.dsc_cfg.ycbcr422_simple = 0;
122
123 update_stream_signal(stream, dc_sink_data);
124
125 stream->out_transfer_func.type = TF_TYPE_BYPASS;
126
127 dc_stream_assign_stream_id(stream);
128
129 return true;
130 }
131
dc_stream_destruct(struct dc_stream_state * stream)132 void dc_stream_destruct(struct dc_stream_state *stream)
133 {
134 dc_sink_release(stream->sink);
135 }
136
dc_stream_assign_stream_id(struct dc_stream_state * stream)137 void dc_stream_assign_stream_id(struct dc_stream_state *stream)
138 {
139 /* MSB is reserved to indicate phantoms */
140 stream->stream_id = stream->ctx->dc_stream_id_count;
141 stream->ctx->dc_stream_id_count++;
142 }
143
dc_stream_retain(struct dc_stream_state * stream)144 void dc_stream_retain(struct dc_stream_state *stream)
145 {
146 kref_get(&stream->refcount);
147 }
148
dc_stream_free(struct kref * kref)149 static void dc_stream_free(struct kref *kref)
150 {
151 struct dc_stream_state *stream = container_of(kref, struct dc_stream_state, refcount);
152
153 dc_stream_destruct(stream);
154 kfree(stream);
155 }
156
dc_stream_release(struct dc_stream_state * stream)157 void dc_stream_release(struct dc_stream_state *stream)
158 {
159 if (stream != NULL) {
160 kref_put(&stream->refcount, dc_stream_free);
161 }
162 }
163
dc_create_stream_for_sink(struct dc_sink * sink)164 struct dc_stream_state *dc_create_stream_for_sink(
165 struct dc_sink *sink)
166 {
167 struct dc_stream_state *stream;
168
169 if (sink == NULL)
170 return NULL;
171
172 stream = kzalloc(sizeof(struct dc_stream_state), GFP_KERNEL);
173 if (stream == NULL)
174 goto alloc_fail;
175
176 if (dc_stream_construct(stream, sink) == false)
177 goto construct_fail;
178
179 kref_init(&stream->refcount);
180
181 return stream;
182
183 construct_fail:
184 kfree(stream);
185
186 alloc_fail:
187 return NULL;
188 }
189
dc_copy_stream(const struct dc_stream_state * stream)190 struct dc_stream_state *dc_copy_stream(const struct dc_stream_state *stream)
191 {
192 struct dc_stream_state *new_stream;
193
194 new_stream = kmemdup(stream, sizeof(struct dc_stream_state), GFP_KERNEL);
195 if (!new_stream)
196 return NULL;
197
198 if (new_stream->sink)
199 dc_sink_retain(new_stream->sink);
200
201 dc_stream_assign_stream_id(new_stream);
202
203 /* If using dynamic encoder assignment, wait till stream committed to assign encoder. */
204 if (new_stream->ctx->dc->res_pool->funcs->link_encs_assign &&
205 !new_stream->ctx->dc->config.unify_link_enc_assignment)
206 new_stream->link_enc = NULL;
207
208 kref_init(&new_stream->refcount);
209
210 return new_stream;
211 }
212
213 /**
214 * dc_stream_get_status() - Get current stream status of the given stream state
215 * @stream: The stream to get the stream status for.
216 *
217 * The given stream is expected to exist in dc->current_state. Otherwise, NULL
218 * will be returned.
219 */
dc_stream_get_status(struct dc_stream_state * stream)220 struct dc_stream_status *dc_stream_get_status(
221 struct dc_stream_state *stream)
222 {
223 struct dc *dc = stream->ctx->dc;
224 return dc_state_get_stream_status(dc->current_state, stream);
225 }
226
program_cursor_attributes(struct dc * dc,struct dc_stream_state * stream)227 void program_cursor_attributes(
228 struct dc *dc,
229 struct dc_stream_state *stream)
230 {
231 int i;
232 struct resource_context *res_ctx;
233 struct pipe_ctx *pipe_to_program = NULL;
234
235 if (!stream)
236 return;
237
238 res_ctx = &dc->current_state->res_ctx;
239
240 for (i = 0; i < MAX_PIPES; i++) {
241 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
242
243 if (pipe_ctx->stream != stream)
244 continue;
245
246 if (!pipe_to_program) {
247 pipe_to_program = pipe_ctx;
248 dc->hwss.cursor_lock(dc, pipe_to_program, true);
249 if (pipe_to_program->next_odm_pipe)
250 dc->hwss.cursor_lock(dc, pipe_to_program->next_odm_pipe, true);
251 }
252
253 dc->hwss.set_cursor_attribute(pipe_ctx);
254 if (dc->ctx->dmub_srv)
255 dc_send_update_cursor_info_to_dmu(pipe_ctx, i);
256 if (dc->hwss.set_cursor_sdr_white_level)
257 dc->hwss.set_cursor_sdr_white_level(pipe_ctx);
258 }
259
260 if (pipe_to_program) {
261 dc->hwss.cursor_lock(dc, pipe_to_program, false);
262 if (pipe_to_program->next_odm_pipe)
263 dc->hwss.cursor_lock(dc, pipe_to_program->next_odm_pipe, false);
264 }
265 }
266
267 /*
268 * dc_stream_check_cursor_attributes() - Check validitity of cursor attributes and surface address
269 */
dc_stream_check_cursor_attributes(const struct dc_stream_state * stream,struct dc_state * state,const struct dc_cursor_attributes * attributes)270 bool dc_stream_check_cursor_attributes(
271 const struct dc_stream_state *stream,
272 struct dc_state *state,
273 const struct dc_cursor_attributes *attributes)
274 {
275 const struct dc *dc;
276
277 unsigned int max_cursor_size;
278
279 if (NULL == stream) {
280 dm_error("DC: dc_stream is NULL!\n");
281 return false;
282 }
283 if (NULL == attributes) {
284 dm_error("DC: attributes is NULL!\n");
285 return false;
286 }
287
288 if (attributes->address.quad_part == 0) {
289 dm_output_to_console("DC: Cursor address is 0!\n");
290 return false;
291 }
292
293 dc = stream->ctx->dc;
294
295 /* SubVP is not compatible with HW cursor larger than what can fit in cursor SRAM.
296 * Therefore, if cursor is greater than this, fallback to SW cursor.
297 */
298 if (dc->debug.allow_sw_cursor_fallback && dc->res_pool->funcs->get_max_hw_cursor_size) {
299 max_cursor_size = dc->res_pool->funcs->get_max_hw_cursor_size(dc, state, stream);
300 max_cursor_size = max_cursor_size * max_cursor_size * 4;
301
302 if (attributes->height * attributes->width * 4 > max_cursor_size) {
303 return false;
304 }
305 }
306
307 return true;
308 }
309
310 /*
311 * dc_stream_set_cursor_attributes() - Update cursor attributes and set cursor surface address
312 */
dc_stream_set_cursor_attributes(struct dc_stream_state * stream,const struct dc_cursor_attributes * attributes)313 bool dc_stream_set_cursor_attributes(
314 struct dc_stream_state *stream,
315 const struct dc_cursor_attributes *attributes)
316 {
317 bool result = false;
318
319 if (!stream)
320 return false;
321
322 if (dc_stream_check_cursor_attributes(stream, stream->ctx->dc->current_state, attributes)) {
323 stream->cursor_attributes = *attributes;
324 result = true;
325 }
326
327 return result;
328 }
329
dc_stream_program_cursor_attributes(struct dc_stream_state * stream,const struct dc_cursor_attributes * attributes)330 bool dc_stream_program_cursor_attributes(
331 struct dc_stream_state *stream,
332 const struct dc_cursor_attributes *attributes)
333 {
334 struct dc *dc;
335 bool reset_idle_optimizations = false;
336
337 if (!stream)
338 return false;
339
340 dc = stream->ctx->dc;
341
342 if (dc_stream_set_cursor_attributes(stream, attributes)) {
343 dc_z10_restore(dc);
344 /* disable idle optimizations while updating cursor */
345 if (dc->idle_optimizations_allowed) {
346 dc_allow_idle_optimizations(dc, false);
347 reset_idle_optimizations = true;
348 }
349
350 program_cursor_attributes(dc, stream);
351
352 /* re-enable idle optimizations if necessary */
353 if (reset_idle_optimizations && !dc->debug.disable_dmub_reallow_idle)
354 dc_allow_idle_optimizations(dc, true);
355
356 return true;
357 }
358
359 return false;
360 }
361
program_cursor_position(struct dc * dc,struct dc_stream_state * stream)362 void program_cursor_position(
363 struct dc *dc,
364 struct dc_stream_state *stream)
365 {
366 int i;
367 struct resource_context *res_ctx;
368 struct pipe_ctx *pipe_to_program = NULL;
369
370 if (!stream)
371 return;
372
373 res_ctx = &dc->current_state->res_ctx;
374
375 for (i = 0; i < MAX_PIPES; i++) {
376 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
377
378 if (pipe_ctx->stream != stream ||
379 (!pipe_ctx->plane_res.mi && !pipe_ctx->plane_res.hubp) ||
380 !pipe_ctx->plane_state ||
381 (!pipe_ctx->plane_res.xfm && !pipe_ctx->plane_res.dpp) ||
382 (!pipe_ctx->plane_res.ipp && !pipe_ctx->plane_res.dpp))
383 continue;
384
385 if (!pipe_to_program) {
386 pipe_to_program = pipe_ctx;
387 dc->hwss.cursor_lock(dc, pipe_to_program, true);
388 }
389
390 dc->hwss.set_cursor_position(pipe_ctx);
391 if (dc->ctx->dmub_srv)
392 dc_send_update_cursor_info_to_dmu(pipe_ctx, i);
393 }
394
395 if (pipe_to_program)
396 dc->hwss.cursor_lock(dc, pipe_to_program, false);
397 }
398
dc_stream_set_cursor_position(struct dc_stream_state * stream,const struct dc_cursor_position * position)399 bool dc_stream_set_cursor_position(
400 struct dc_stream_state *stream,
401 const struct dc_cursor_position *position)
402 {
403 if (NULL == stream) {
404 dm_error("DC: dc_stream is NULL!\n");
405 return false;
406 }
407
408 if (NULL == position) {
409 dm_error("DC: cursor position is NULL!\n");
410 return false;
411 }
412
413 stream->cursor_position = *position;
414
415
416 return true;
417 }
418
dc_stream_program_cursor_position(struct dc_stream_state * stream,const struct dc_cursor_position * position)419 bool dc_stream_program_cursor_position(
420 struct dc_stream_state *stream,
421 const struct dc_cursor_position *position)
422 {
423 struct dc *dc;
424 bool reset_idle_optimizations = false;
425 const struct dc_cursor_position *old_position;
426
427 if (!stream)
428 return false;
429
430 old_position = &stream->cursor_position;
431 dc = stream->ctx->dc;
432
433 if (dc_stream_set_cursor_position(stream, position)) {
434 dc_z10_restore(dc);
435
436 /* disable idle optimizations if enabling cursor */
437 if (dc->idle_optimizations_allowed &&
438 (!old_position->enable || dc->debug.exit_idle_opt_for_cursor_updates) &&
439 position->enable) {
440 dc_allow_idle_optimizations(dc, false);
441 reset_idle_optimizations = true;
442 }
443
444 program_cursor_position(dc, stream);
445 /* re-enable idle optimizations if necessary */
446 if (reset_idle_optimizations && !dc->debug.disable_dmub_reallow_idle)
447 dc_allow_idle_optimizations(dc, true);
448
449 /* apply/update visual confirm */
450 if (dc->debug.visual_confirm == VISUAL_CONFIRM_HW_CURSOR) {
451 /* update software state */
452 int i;
453
454 for (i = 0; i < dc->res_pool->pipe_count; i++) {
455 struct pipe_ctx *pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
456
457 /* adjust visual confirm color for all pipes with current stream */
458 if (stream == pipe_ctx->stream) {
459 get_cursor_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
460
461 /* programming hardware */
462 if (pipe_ctx->plane_state)
463 dc->hwss.update_visual_confirm_color(dc, pipe_ctx,
464 pipe_ctx->plane_res.hubp->mpcc_id);
465 }
466 }
467 }
468
469 return true;
470 }
471
472 return false;
473 }
474
dc_stream_add_writeback(struct dc * dc,struct dc_stream_state * stream,struct dc_writeback_info * wb_info)475 bool dc_stream_add_writeback(struct dc *dc,
476 struct dc_stream_state *stream,
477 struct dc_writeback_info *wb_info)
478 {
479 bool isDrc = false;
480 int i = 0;
481 struct dwbc *dwb;
482
483 if (stream == NULL) {
484 dm_error("DC: dc_stream is NULL!\n");
485 return false;
486 }
487
488 if (wb_info == NULL) {
489 dm_error("DC: dc_writeback_info is NULL!\n");
490 return false;
491 }
492
493 if (wb_info->dwb_pipe_inst >= MAX_DWB_PIPES) {
494 dm_error("DC: writeback pipe is invalid!\n");
495 return false;
496 }
497
498 dc_exit_ips_for_hw_access(dc);
499
500 wb_info->dwb_params.out_transfer_func = &stream->out_transfer_func;
501
502 dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst];
503 dwb->dwb_is_drc = false;
504
505 /* recalculate and apply DML parameters */
506
507 for (i = 0; i < stream->num_wb_info; i++) {
508 /*dynamic update*/
509 if (stream->writeback_info[i].wb_enabled &&
510 stream->writeback_info[i].dwb_pipe_inst == wb_info->dwb_pipe_inst) {
511 stream->writeback_info[i] = *wb_info;
512 isDrc = true;
513 }
514 }
515
516 if (!isDrc) {
517 ASSERT(stream->num_wb_info + 1 <= MAX_DWB_PIPES);
518 stream->writeback_info[stream->num_wb_info++] = *wb_info;
519 }
520
521 if (dc->hwss.enable_writeback) {
522 struct dc_stream_status *stream_status = dc_stream_get_status(stream);
523 struct dwbc *dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst];
524 if (stream_status)
525 dwb->otg_inst = stream_status->primary_otg_inst;
526 }
527
528 if (!dc->hwss.update_bandwidth(dc, dc->current_state)) {
529 dm_error("DC: update_bandwidth failed!\n");
530 return false;
531 }
532
533 /* enable writeback */
534 if (dc->hwss.enable_writeback) {
535 struct dwbc *dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst];
536
537 if (dwb->funcs->is_enabled(dwb)) {
538 /* writeback pipe already enabled, only need to update */
539 dc->hwss.update_writeback(dc, wb_info, dc->current_state);
540 } else {
541 /* Enable writeback pipe from scratch*/
542 dc->hwss.enable_writeback(dc, wb_info, dc->current_state);
543 }
544 }
545
546 return true;
547 }
548
dc_stream_fc_disable_writeback(struct dc * dc,struct dc_stream_state * stream,uint32_t dwb_pipe_inst)549 bool dc_stream_fc_disable_writeback(struct dc *dc,
550 struct dc_stream_state *stream,
551 uint32_t dwb_pipe_inst)
552 {
553 struct dwbc *dwb = dc->res_pool->dwbc[dwb_pipe_inst];
554
555 if (stream == NULL) {
556 dm_error("DC: dc_stream is NULL!\n");
557 return false;
558 }
559
560 if (dwb_pipe_inst >= MAX_DWB_PIPES) {
561 dm_error("DC: writeback pipe is invalid!\n");
562 return false;
563 }
564
565 if (stream->num_wb_info > MAX_DWB_PIPES) {
566 dm_error("DC: num_wb_info is invalid!\n");
567 return false;
568 }
569
570 dc_exit_ips_for_hw_access(dc);
571
572 if (dwb->funcs->set_fc_enable)
573 dwb->funcs->set_fc_enable(dwb, DWB_FRAME_CAPTURE_DISABLE);
574
575 return true;
576 }
577
578 /**
579 * dc_stream_remove_writeback() - Disables writeback and removes writeback info.
580 * @dc: Display core control structure.
581 * @stream: Display core stream state.
582 * @dwb_pipe_inst: Display writeback pipe.
583 *
584 * Return: returns true on success, false otherwise.
585 */
dc_stream_remove_writeback(struct dc * dc,struct dc_stream_state * stream,uint32_t dwb_pipe_inst)586 bool dc_stream_remove_writeback(struct dc *dc,
587 struct dc_stream_state *stream,
588 uint32_t dwb_pipe_inst)
589 {
590 unsigned int i, j;
591 if (stream == NULL) {
592 dm_error("DC: dc_stream is NULL!\n");
593 return false;
594 }
595
596 if (dwb_pipe_inst >= MAX_DWB_PIPES) {
597 dm_error("DC: writeback pipe is invalid!\n");
598 return false;
599 }
600
601 if (stream->num_wb_info > MAX_DWB_PIPES) {
602 dm_error("DC: num_wb_info is invalid!\n");
603 return false;
604 }
605
606 /* remove writeback info for disabled writeback pipes from stream */
607 for (i = 0, j = 0; i < stream->num_wb_info; i++) {
608 if (stream->writeback_info[i].wb_enabled) {
609
610 if (stream->writeback_info[i].dwb_pipe_inst == dwb_pipe_inst)
611 stream->writeback_info[i].wb_enabled = false;
612
613 /* trim the array */
614 if (j < i) {
615 memcpy(&stream->writeback_info[j], &stream->writeback_info[i],
616 sizeof(struct dc_writeback_info));
617 j++;
618 }
619 }
620 }
621 stream->num_wb_info = j;
622
623 /* recalculate and apply DML parameters */
624 if (!dc->hwss.update_bandwidth(dc, dc->current_state)) {
625 dm_error("DC: update_bandwidth failed!\n");
626 return false;
627 }
628
629 dc_exit_ips_for_hw_access(dc);
630
631 /* disable writeback */
632 if (dc->hwss.disable_writeback) {
633 struct dwbc *dwb = dc->res_pool->dwbc[dwb_pipe_inst];
634
635 if (dwb->funcs->is_enabled(dwb))
636 dc->hwss.disable_writeback(dc, dwb_pipe_inst);
637 }
638
639 return true;
640 }
641
dc_stream_get_vblank_counter(const struct dc_stream_state * stream)642 uint32_t dc_stream_get_vblank_counter(const struct dc_stream_state *stream)
643 {
644 uint8_t i;
645 struct dc *dc = stream->ctx->dc;
646 struct resource_context *res_ctx =
647 &dc->current_state->res_ctx;
648
649 dc_exit_ips_for_hw_access(dc);
650
651 for (i = 0; i < MAX_PIPES; i++) {
652 struct timing_generator *tg = res_ctx->pipe_ctx[i].stream_res.tg;
653
654 if (res_ctx->pipe_ctx[i].stream != stream || !tg)
655 continue;
656
657 return tg->funcs->get_frame_count(tg);
658 }
659
660 return 0;
661 }
662
dc_stream_send_dp_sdp(const struct dc_stream_state * stream,const uint8_t * custom_sdp_message,unsigned int sdp_message_size)663 bool dc_stream_send_dp_sdp(const struct dc_stream_state *stream,
664 const uint8_t *custom_sdp_message,
665 unsigned int sdp_message_size)
666 {
667 int i;
668 struct dc *dc;
669 struct resource_context *res_ctx;
670
671 if (stream == NULL) {
672 dm_error("DC: dc_stream is NULL!\n");
673 return false;
674 }
675
676 dc = stream->ctx->dc;
677 res_ctx = &dc->current_state->res_ctx;
678
679 dc_exit_ips_for_hw_access(dc);
680
681 for (i = 0; i < MAX_PIPES; i++) {
682 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
683
684 if (pipe_ctx->stream != stream)
685 continue;
686
687 if (dc->hwss.send_immediate_sdp_message != NULL)
688 dc->hwss.send_immediate_sdp_message(pipe_ctx,
689 custom_sdp_message,
690 sdp_message_size);
691 else
692 DC_LOG_WARNING("%s:send_immediate_sdp_message not implemented on this ASIC\n",
693 __func__);
694
695 }
696
697 return true;
698 }
699
dc_stream_get_scanoutpos(const struct dc_stream_state * stream,uint32_t * v_blank_start,uint32_t * v_blank_end,uint32_t * h_position,uint32_t * v_position)700 bool dc_stream_get_scanoutpos(const struct dc_stream_state *stream,
701 uint32_t *v_blank_start,
702 uint32_t *v_blank_end,
703 uint32_t *h_position,
704 uint32_t *v_position)
705 {
706 uint8_t i;
707 bool ret = false;
708 struct dc *dc;
709 struct resource_context *res_ctx;
710
711 if (!stream->ctx)
712 return false;
713
714 dc = stream->ctx->dc;
715 res_ctx = &dc->current_state->res_ctx;
716
717 dc_exit_ips_for_hw_access(dc);
718
719 for (i = 0; i < MAX_PIPES; i++) {
720 struct timing_generator *tg = res_ctx->pipe_ctx[i].stream_res.tg;
721
722 if (res_ctx->pipe_ctx[i].stream != stream || !tg)
723 continue;
724
725 tg->funcs->get_scanoutpos(tg,
726 v_blank_start,
727 v_blank_end,
728 h_position,
729 v_position);
730
731 ret = true;
732 break;
733 }
734
735 return ret;
736 }
737
dc_stream_dmdata_status_done(struct dc * dc,struct dc_stream_state * stream)738 bool dc_stream_dmdata_status_done(struct dc *dc, struct dc_stream_state *stream)
739 {
740 struct pipe_ctx *pipe = NULL;
741 int i;
742
743 if (!dc->hwss.dmdata_status_done)
744 return false;
745
746 for (i = 0; i < MAX_PIPES; i++) {
747 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
748 if (pipe->stream == stream)
749 break;
750 }
751 /* Stream not found, by default we'll assume HUBP fetched dm data */
752 if (i == MAX_PIPES)
753 return true;
754
755 dc_exit_ips_for_hw_access(dc);
756
757 return dc->hwss.dmdata_status_done(pipe);
758 }
759
dc_stream_set_dynamic_metadata(struct dc * dc,struct dc_stream_state * stream,struct dc_dmdata_attributes * attr)760 bool dc_stream_set_dynamic_metadata(struct dc *dc,
761 struct dc_stream_state *stream,
762 struct dc_dmdata_attributes *attr)
763 {
764 struct pipe_ctx *pipe_ctx = NULL;
765 struct hubp *hubp;
766 int i;
767
768 /* Dynamic metadata is only supported on HDMI or DP */
769 if (!dc_is_hdmi_signal(stream->signal) && !dc_is_dp_signal(stream->signal))
770 return false;
771
772 /* Check hardware support */
773 if (!dc->hwss.program_dmdata_engine)
774 return false;
775
776 for (i = 0; i < MAX_PIPES; i++) {
777 pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
778 if (pipe_ctx->stream == stream)
779 break;
780 }
781
782 if (i == MAX_PIPES)
783 return false;
784
785 hubp = pipe_ctx->plane_res.hubp;
786 if (hubp == NULL)
787 return false;
788
789 pipe_ctx->stream->dmdata_address = attr->address;
790
791 dc_exit_ips_for_hw_access(dc);
792
793 dc->hwss.program_dmdata_engine(pipe_ctx);
794
795 if (hubp->funcs->dmdata_set_attributes != NULL &&
796 pipe_ctx->stream->dmdata_address.quad_part != 0) {
797 hubp->funcs->dmdata_set_attributes(hubp, attr);
798 }
799
800 return true;
801 }
802
dc_stream_add_dsc_to_resource(struct dc * dc,struct dc_state * state,struct dc_stream_state * stream)803 enum dc_status dc_stream_add_dsc_to_resource(struct dc *dc,
804 struct dc_state *state,
805 struct dc_stream_state *stream)
806 {
807 if (dc->res_pool->funcs->add_dsc_to_stream_resource) {
808 return dc->res_pool->funcs->add_dsc_to_stream_resource(dc, state, stream);
809 } else {
810 return DC_NO_DSC_RESOURCE;
811 }
812 }
813
dc_stream_get_pipe_ctx(struct dc_stream_state * stream)814 struct pipe_ctx *dc_stream_get_pipe_ctx(struct dc_stream_state *stream)
815 {
816 int i = 0;
817
818 for (i = 0; i < MAX_PIPES; i++) {
819 struct pipe_ctx *pipe = &stream->ctx->dc->current_state->res_ctx.pipe_ctx[i];
820
821 if (pipe->stream == stream)
822 return pipe;
823 }
824
825 return NULL;
826 }
827
dc_stream_log(const struct dc * dc,const struct dc_stream_state * stream)828 void dc_stream_log(const struct dc *dc, const struct dc_stream_state *stream)
829 {
830 DC_LOG_DC(
831 "core_stream 0x%p: src: %d, %d, %d, %d; dst: %d, %d, %d, %d, colorSpace:%d\n",
832 stream,
833 stream->src.x,
834 stream->src.y,
835 stream->src.width,
836 stream->src.height,
837 stream->dst.x,
838 stream->dst.y,
839 stream->dst.width,
840 stream->dst.height,
841 stream->output_color_space);
842 DC_LOG_DC(
843 "\tpix_clk_khz: %d, h_total: %d, v_total: %d, pixel_encoding:%s, color_depth:%s\n",
844 stream->timing.pix_clk_100hz / 10,
845 stream->timing.h_total,
846 stream->timing.v_total,
847 dc_pixel_encoding_to_str(stream->timing.pixel_encoding),
848 dc_color_depth_to_str(stream->timing.display_color_depth));
849 DC_LOG_DC(
850 "\tlink: %d\n",
851 stream->link->link_index);
852
853 DC_LOG_DC(
854 "\tdsc: %d, mst_pbn: %d\n",
855 stream->timing.flags.DSC,
856 stream->timing.dsc_cfg.mst_pbn);
857
858 if (stream->sink) {
859 if (stream->sink->sink_signal != SIGNAL_TYPE_VIRTUAL &&
860 stream->sink->sink_signal != SIGNAL_TYPE_NONE) {
861
862 DC_LOG_DC(
863 "\tdispname: %s signal: %x\n",
864 stream->sink->edid_caps.display_name,
865 stream->signal);
866 }
867 }
868 }
869
870 /*
871 * dc_stream_get_3dlut()
872 * Requirements:
873 * 1. Is stream already owns an RMCM instance, return it.
874 * 2. If it doesn't and we don't need to allocate, return NULL.
875 * 3. If there's a free RMCM instance, assign to stream and return it.
876 * 4. If no free RMCM instances, return NULL.
877 */
878
dc_stream_get_3dlut_for_stream(const struct dc * dc,const struct dc_stream_state * stream,bool allocate_one)879 struct dc_rmcm_3dlut *dc_stream_get_3dlut_for_stream(
880 const struct dc *dc,
881 const struct dc_stream_state *stream,
882 bool allocate_one)
883 {
884 unsigned int num_rmcm = dc->caps.color.mpc.num_rmcm_3dluts;
885
886 // see if one is allocated for this stream
887 for (int i = 0; i < num_rmcm; i++) {
888 if (dc->res_pool->rmcm_3dlut[i].isInUse &&
889 dc->res_pool->rmcm_3dlut[i].stream == stream)
890 return &dc->res_pool->rmcm_3dlut[i];
891 }
892
893 //case: not found one, and dont need to allocate
894 if (!allocate_one)
895 return NULL;
896
897 //see if there is an unused 3dlut, allocate
898 for (int i = 0; i < num_rmcm; i++) {
899 if (!dc->res_pool->rmcm_3dlut[i].isInUse) {
900 dc->res_pool->rmcm_3dlut[i].isInUse = true;
901 dc->res_pool->rmcm_3dlut[i].stream = stream;
902 return &dc->res_pool->rmcm_3dlut[i];
903 }
904 }
905
906 //dont have a 3dlut
907 return NULL;
908 }
909
910
dc_stream_release_3dlut_for_stream(const struct dc * dc,const struct dc_stream_state * stream)911 void dc_stream_release_3dlut_for_stream(
912 const struct dc *dc,
913 const struct dc_stream_state *stream)
914 {
915 struct dc_rmcm_3dlut *rmcm_3dlut =
916 dc_stream_get_3dlut_for_stream(dc, stream, false);
917
918 if (rmcm_3dlut) {
919 rmcm_3dlut->isInUse = false;
920 rmcm_3dlut->stream = NULL;
921 rmcm_3dlut->protection_bits = 0;
922 }
923 }
924
925
dc_stream_init_rmcm_3dlut(struct dc * dc)926 void dc_stream_init_rmcm_3dlut(struct dc *dc)
927 {
928 unsigned int num_rmcm = dc->caps.color.mpc.num_rmcm_3dluts;
929
930 for (int i = 0; i < num_rmcm; i++) {
931 dc->res_pool->rmcm_3dlut[i].isInUse = false;
932 dc->res_pool->rmcm_3dlut[i].stream = NULL;
933 dc->res_pool->rmcm_3dlut[i].protection_bits = 0;
934 }
935 }
936
937 /*
938 * Finds the greatest index in refresh_rate_hz that contains a value <= refresh
939 */
dc_stream_get_nearest_smallest_index(struct dc_stream_state * stream,int refresh)940 static int dc_stream_get_nearest_smallest_index(struct dc_stream_state *stream, int refresh)
941 {
942 for (int i = 0; i < (LUMINANCE_DATA_TABLE_SIZE - 1); ++i) {
943 if ((stream->lumin_data.refresh_rate_hz[i] <= refresh) && (refresh < stream->lumin_data.refresh_rate_hz[i + 1])) {
944 return i;
945 }
946 }
947 return 9;
948 }
949
950 /*
951 * Finds a corresponding brightness for a given refresh rate between 2 given indices, where index1 < index2
952 */
dc_stream_get_brightness_millinits_linear_interpolation(struct dc_stream_state * stream,int index1,int index2,int refresh_hz)953 static int dc_stream_get_brightness_millinits_linear_interpolation (struct dc_stream_state *stream,
954 int index1,
955 int index2,
956 int refresh_hz)
957 {
958 long long slope = 0;
959 if (stream->lumin_data.refresh_rate_hz[index2] != stream->lumin_data.refresh_rate_hz[index1]) {
960 slope = (stream->lumin_data.luminance_millinits[index2] - stream->lumin_data.luminance_millinits[index1]) /
961 (stream->lumin_data.refresh_rate_hz[index2] - stream->lumin_data.refresh_rate_hz[index1]);
962 }
963
964 int y_intercept = stream->lumin_data.luminance_millinits[index2] - slope * stream->lumin_data.refresh_rate_hz[index2];
965
966 return (y_intercept + refresh_hz * slope);
967 }
968
969 /*
970 * Finds a corresponding refresh rate for a given brightness between 2 given indices, where index1 < index2
971 */
dc_stream_get_refresh_hz_linear_interpolation(struct dc_stream_state * stream,int index1,int index2,int brightness_millinits)972 static int dc_stream_get_refresh_hz_linear_interpolation (struct dc_stream_state *stream,
973 int index1,
974 int index2,
975 int brightness_millinits)
976 {
977 long long slope = 1;
978 if (stream->lumin_data.refresh_rate_hz[index2] != stream->lumin_data.refresh_rate_hz[index1]) {
979 slope = (stream->lumin_data.luminance_millinits[index2] - stream->lumin_data.luminance_millinits[index1]) /
980 (stream->lumin_data.refresh_rate_hz[index2] - stream->lumin_data.refresh_rate_hz[index1]);
981 }
982
983 int y_intercept = stream->lumin_data.luminance_millinits[index2] - slope * stream->lumin_data.refresh_rate_hz[index2];
984
985 return ((int)div64_s64((brightness_millinits - y_intercept), slope));
986 }
987
988 /*
989 * Finds the current brightness in millinits given a refresh rate
990 */
dc_stream_get_brightness_millinits_from_refresh(struct dc_stream_state * stream,int refresh_hz)991 static int dc_stream_get_brightness_millinits_from_refresh (struct dc_stream_state *stream, int refresh_hz)
992 {
993 int nearest_smallest_index = dc_stream_get_nearest_smallest_index(stream, refresh_hz);
994 int nearest_smallest_value = stream->lumin_data.refresh_rate_hz[nearest_smallest_index];
995
996 if (nearest_smallest_value == refresh_hz)
997 return stream->lumin_data.luminance_millinits[nearest_smallest_index];
998
999 if (nearest_smallest_index >= 9)
1000 return dc_stream_get_brightness_millinits_linear_interpolation(stream, nearest_smallest_index - 1, nearest_smallest_index, refresh_hz);
1001
1002 if (nearest_smallest_value == stream->lumin_data.refresh_rate_hz[nearest_smallest_index + 1])
1003 return stream->lumin_data.luminance_millinits[nearest_smallest_index];
1004
1005 return dc_stream_get_brightness_millinits_linear_interpolation(stream, nearest_smallest_index, nearest_smallest_index + 1, refresh_hz);
1006 }
1007
1008 /*
1009 * Finds the lowest/highest refresh rate (depending on search_for_max_increase)
1010 * that can be achieved from starting_refresh_hz while staying
1011 * within flicker criteria
1012 */
dc_stream_calculate_flickerless_refresh_rate(struct dc_stream_state * stream,int current_brightness,int starting_refresh_hz,bool is_gaming,bool search_for_max_increase)1013 static int dc_stream_calculate_flickerless_refresh_rate(struct dc_stream_state *stream,
1014 int current_brightness,
1015 int starting_refresh_hz,
1016 bool is_gaming,
1017 bool search_for_max_increase)
1018 {
1019 int nearest_smallest_index = dc_stream_get_nearest_smallest_index(stream, starting_refresh_hz);
1020
1021 int flicker_criteria_millinits = is_gaming ?
1022 stream->lumin_data.flicker_criteria_milli_nits_GAMING :
1023 stream->lumin_data.flicker_criteria_milli_nits_STATIC;
1024
1025 int safe_upper_bound = current_brightness + flicker_criteria_millinits;
1026 int safe_lower_bound = current_brightness - flicker_criteria_millinits;
1027 int lumin_millinits_temp = 0;
1028
1029 int offset = -1;
1030 if (search_for_max_increase) {
1031 offset = 1;
1032 }
1033
1034 /*
1035 * Increments up or down by 1 depending on search_for_max_increase
1036 */
1037 for (int i = nearest_smallest_index; (i > 0 && !search_for_max_increase) || (i < (LUMINANCE_DATA_TABLE_SIZE - 1) && search_for_max_increase); i += offset) {
1038
1039 lumin_millinits_temp = stream->lumin_data.luminance_millinits[i + offset];
1040
1041 if ((lumin_millinits_temp >= safe_upper_bound) || (lumin_millinits_temp <= safe_lower_bound)) {
1042
1043 if (stream->lumin_data.refresh_rate_hz[i + offset] == stream->lumin_data.refresh_rate_hz[i])
1044 return stream->lumin_data.refresh_rate_hz[i];
1045
1046 int target_brightness = (stream->lumin_data.luminance_millinits[i + offset] >= (current_brightness + flicker_criteria_millinits)) ?
1047 current_brightness + flicker_criteria_millinits :
1048 current_brightness - flicker_criteria_millinits;
1049
1050 int refresh = 0;
1051
1052 /*
1053 * Need the second input to be < third input for dc_stream_get_refresh_hz_linear_interpolation
1054 */
1055 if (search_for_max_increase)
1056 refresh = dc_stream_get_refresh_hz_linear_interpolation(stream, i, i + offset, target_brightness);
1057 else
1058 refresh = dc_stream_get_refresh_hz_linear_interpolation(stream, i + offset, i, target_brightness);
1059
1060 if (refresh == stream->lumin_data.refresh_rate_hz[i + offset])
1061 return stream->lumin_data.refresh_rate_hz[i + offset];
1062
1063 return refresh;
1064 }
1065 }
1066
1067 if (search_for_max_increase)
1068 return (int)div64_s64((long long)stream->timing.pix_clk_100hz*100, stream->timing.v_total*(long long)stream->timing.h_total);
1069 else
1070 return stream->lumin_data.refresh_rate_hz[0];
1071 }
1072
1073 /*
1074 * Gets the max delta luminance within a specified refresh range
1075 */
dc_stream_get_max_delta_lumin_millinits(struct dc_stream_state * stream,int hz1,int hz2,bool isGaming)1076 static int dc_stream_get_max_delta_lumin_millinits(struct dc_stream_state *stream, int hz1, int hz2, bool isGaming)
1077 {
1078 int lower_refresh_brightness = dc_stream_get_brightness_millinits_from_refresh (stream, hz1);
1079 int higher_refresh_brightness = dc_stream_get_brightness_millinits_from_refresh (stream, hz2);
1080
1081 int min = lower_refresh_brightness;
1082 int max = higher_refresh_brightness;
1083
1084 /*
1085 * Static screen, therefore no need to scan through array
1086 */
1087 if (!isGaming) {
1088 if (lower_refresh_brightness >= higher_refresh_brightness) {
1089 return lower_refresh_brightness - higher_refresh_brightness;
1090 }
1091 return higher_refresh_brightness - lower_refresh_brightness;
1092 }
1093
1094 min = MIN(lower_refresh_brightness, higher_refresh_brightness);
1095 max = MAX(lower_refresh_brightness, higher_refresh_brightness);
1096
1097 int nearest_smallest_index = dc_stream_get_nearest_smallest_index(stream, hz1);
1098
1099 for (; nearest_smallest_index < (LUMINANCE_DATA_TABLE_SIZE - 1) &&
1100 stream->lumin_data.refresh_rate_hz[nearest_smallest_index + 1] <= hz2 ; nearest_smallest_index++) {
1101 min = MIN(min, stream->lumin_data.luminance_millinits[nearest_smallest_index + 1]);
1102 max = MAX(max, stream->lumin_data.luminance_millinits[nearest_smallest_index + 1]);
1103 }
1104
1105 return (max - min);
1106 }
1107
1108 /*
1109 * Determines the max flickerless instant vtotal delta for a stream.
1110 * Determines vtotal increase/decrease based on the bool "increase"
1111 */
dc_stream_get_max_flickerless_instant_vtotal_delta(struct dc_stream_state * stream,bool is_gaming,bool increase)1112 static unsigned int dc_stream_get_max_flickerless_instant_vtotal_delta(struct dc_stream_state *stream, bool is_gaming, bool increase)
1113 {
1114 if (stream->timing.v_total * stream->timing.h_total == 0)
1115 return 0;
1116
1117 int current_refresh_hz = (int)div64_s64((long long)stream->timing.pix_clk_100hz*100, stream->timing.v_total*(long long)stream->timing.h_total);
1118
1119 int safe_refresh_hz = dc_stream_calculate_flickerless_refresh_rate(stream,
1120 dc_stream_get_brightness_millinits_from_refresh(stream, current_refresh_hz),
1121 current_refresh_hz,
1122 is_gaming,
1123 increase);
1124
1125 int safe_refresh_v_total = (int)div64_s64((long long)stream->timing.pix_clk_100hz*100, safe_refresh_hz*(long long)stream->timing.h_total);
1126
1127 if (increase)
1128 return (((int) stream->timing.v_total - safe_refresh_v_total) >= 0) ? (stream->timing.v_total - safe_refresh_v_total) : 0;
1129
1130 return ((safe_refresh_v_total - (int) stream->timing.v_total) >= 0) ? (safe_refresh_v_total - stream->timing.v_total) : 0;
1131 }
1132
1133 /*
1134 * Finds the highest refresh rate that can be achieved
1135 * from starting_refresh_hz while staying within flicker criteria
1136 */
dc_stream_calculate_max_flickerless_refresh_rate(struct dc_stream_state * stream,int starting_refresh_hz,bool is_gaming)1137 int dc_stream_calculate_max_flickerless_refresh_rate(struct dc_stream_state *stream, int starting_refresh_hz, bool is_gaming)
1138 {
1139 if (!stream->lumin_data.is_valid)
1140 return 0;
1141
1142 int current_brightness = dc_stream_get_brightness_millinits_from_refresh(stream, starting_refresh_hz);
1143
1144 return dc_stream_calculate_flickerless_refresh_rate(stream,
1145 current_brightness,
1146 starting_refresh_hz,
1147 is_gaming,
1148 true);
1149 }
1150
1151 /*
1152 * Finds the lowest refresh rate that can be achieved
1153 * from starting_refresh_hz while staying within flicker criteria
1154 */
dc_stream_calculate_min_flickerless_refresh_rate(struct dc_stream_state * stream,int starting_refresh_hz,bool is_gaming)1155 int dc_stream_calculate_min_flickerless_refresh_rate(struct dc_stream_state *stream, int starting_refresh_hz, bool is_gaming)
1156 {
1157 if (!stream->lumin_data.is_valid)
1158 return 0;
1159
1160 int current_brightness = dc_stream_get_brightness_millinits_from_refresh(stream, starting_refresh_hz);
1161
1162 return dc_stream_calculate_flickerless_refresh_rate(stream,
1163 current_brightness,
1164 starting_refresh_hz,
1165 is_gaming,
1166 false);
1167 }
1168
1169 /*
1170 * Determines if there will be a flicker when moving between 2 refresh rates
1171 */
dc_stream_is_refresh_rate_range_flickerless(struct dc_stream_state * stream,int hz1,int hz2,bool is_gaming)1172 bool dc_stream_is_refresh_rate_range_flickerless(struct dc_stream_state *stream, int hz1, int hz2, bool is_gaming)
1173 {
1174
1175 /*
1176 * Assume that we wont flicker if there is invalid data
1177 */
1178 if (!stream->lumin_data.is_valid)
1179 return false;
1180
1181 int dl = dc_stream_get_max_delta_lumin_millinits(stream, hz1, hz2, is_gaming);
1182
1183 int flicker_criteria_millinits = (is_gaming) ?
1184 stream->lumin_data.flicker_criteria_milli_nits_GAMING :
1185 stream->lumin_data.flicker_criteria_milli_nits_STATIC;
1186
1187 return (dl <= flicker_criteria_millinits);
1188 }
1189
1190 /*
1191 * Determines the max instant vtotal delta increase that can be applied without
1192 * flickering for a given stream
1193 */
dc_stream_get_max_flickerless_instant_vtotal_decrease(struct dc_stream_state * stream,bool is_gaming)1194 unsigned int dc_stream_get_max_flickerless_instant_vtotal_decrease(struct dc_stream_state *stream,
1195 bool is_gaming)
1196 {
1197 if (!stream->lumin_data.is_valid)
1198 return 0;
1199
1200 return dc_stream_get_max_flickerless_instant_vtotal_delta(stream, is_gaming, true);
1201 }
1202
1203 /*
1204 * Determines the max instant vtotal delta decrease that can be applied without
1205 * flickering for a given stream
1206 */
dc_stream_get_max_flickerless_instant_vtotal_increase(struct dc_stream_state * stream,bool is_gaming)1207 unsigned int dc_stream_get_max_flickerless_instant_vtotal_increase(struct dc_stream_state *stream,
1208 bool is_gaming)
1209 {
1210 if (!stream->lumin_data.is_valid)
1211 return 0;
1212
1213 return dc_stream_get_max_flickerless_instant_vtotal_delta(stream, is_gaming, false);
1214 }
1215
dc_stream_is_cursor_limit_pending(struct dc * dc,struct dc_stream_state * stream)1216 bool dc_stream_is_cursor_limit_pending(struct dc *dc, struct dc_stream_state *stream)
1217 {
1218 bool is_limit_pending = false;
1219
1220 if (dc->current_state)
1221 is_limit_pending = dc_state_get_stream_cursor_subvp_limit(stream, dc->current_state);
1222
1223 return is_limit_pending;
1224 }
1225
dc_stream_can_clear_cursor_limit(struct dc * dc,struct dc_stream_state * stream)1226 bool dc_stream_can_clear_cursor_limit(struct dc *dc, struct dc_stream_state *stream)
1227 {
1228 bool can_clear_limit = false;
1229
1230 if (dc->current_state)
1231 can_clear_limit = dc_state_get_stream_cursor_subvp_limit(stream, dc->current_state) &&
1232 (stream->hw_cursor_req ||
1233 !stream->cursor_position.enable ||
1234 dc_stream_check_cursor_attributes(stream, dc->current_state, &stream->cursor_attributes));
1235
1236 return can_clear_limit;
1237 }
1238