1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Performance events core code:
4 *
5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58 #include <linux/percpu-rwsem.h>
59 #include <linux/unwind_deferred.h>
60
61 #include "internal.h"
62
63 #include <asm/irq_regs.h>
64
65 typedef int (*remote_function_f)(void *);
66
67 struct remote_function_call {
68 struct task_struct *p;
69 remote_function_f func;
70 void *info;
71 int ret;
72 };
73
remote_function(void * data)74 static void remote_function(void *data)
75 {
76 struct remote_function_call *tfc = data;
77 struct task_struct *p = tfc->p;
78
79 if (p) {
80 /* -EAGAIN */
81 if (task_cpu(p) != smp_processor_id())
82 return;
83
84 /*
85 * Now that we're on right CPU with IRQs disabled, we can test
86 * if we hit the right task without races.
87 */
88
89 tfc->ret = -ESRCH; /* No such (running) process */
90 if (p != current)
91 return;
92 }
93
94 tfc->ret = tfc->func(tfc->info);
95 }
96
97 /**
98 * task_function_call - call a function on the cpu on which a task runs
99 * @p: the task to evaluate
100 * @func: the function to be called
101 * @info: the function call argument
102 *
103 * Calls the function @func when the task is currently running. This might
104 * be on the current CPU, which just calls the function directly. This will
105 * retry due to any failures in smp_call_function_single(), such as if the
106 * task_cpu() goes offline concurrently.
107 *
108 * returns @func return value or -ESRCH or -ENXIO when the process isn't running
109 */
110 static int
task_function_call(struct task_struct * p,remote_function_f func,void * info)111 task_function_call(struct task_struct *p, remote_function_f func, void *info)
112 {
113 struct remote_function_call data = {
114 .p = p,
115 .func = func,
116 .info = info,
117 .ret = -EAGAIN,
118 };
119 int ret;
120
121 for (;;) {
122 ret = smp_call_function_single(task_cpu(p), remote_function,
123 &data, 1);
124 if (!ret)
125 ret = data.ret;
126
127 if (ret != -EAGAIN)
128 break;
129
130 cond_resched();
131 }
132
133 return ret;
134 }
135
136 /**
137 * cpu_function_call - call a function on the cpu
138 * @cpu: target cpu to queue this function
139 * @func: the function to be called
140 * @info: the function call argument
141 *
142 * Calls the function @func on the remote cpu.
143 *
144 * returns: @func return value or -ENXIO when the cpu is offline
145 */
cpu_function_call(int cpu,remote_function_f func,void * info)146 static int cpu_function_call(int cpu, remote_function_f func, void *info)
147 {
148 struct remote_function_call data = {
149 .p = NULL,
150 .func = func,
151 .info = info,
152 .ret = -ENXIO, /* No such CPU */
153 };
154
155 smp_call_function_single(cpu, remote_function, &data, 1);
156
157 return data.ret;
158 }
159
160 enum event_type_t {
161 EVENT_FLEXIBLE = 0x01,
162 EVENT_PINNED = 0x02,
163 EVENT_TIME = 0x04,
164 EVENT_FROZEN = 0x08,
165 /* see ctx_resched() for details */
166 EVENT_CPU = 0x10,
167 EVENT_CGROUP = 0x20,
168
169 /* compound helpers */
170 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
171 EVENT_TIME_FROZEN = EVENT_TIME | EVENT_FROZEN,
172 };
173
__perf_ctx_lock(struct perf_event_context * ctx)174 static inline void __perf_ctx_lock(struct perf_event_context *ctx)
175 {
176 raw_spin_lock(&ctx->lock);
177 WARN_ON_ONCE(ctx->is_active & EVENT_FROZEN);
178 }
179
perf_ctx_lock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)180 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
181 struct perf_event_context *ctx)
182 {
183 __perf_ctx_lock(&cpuctx->ctx);
184 if (ctx)
185 __perf_ctx_lock(ctx);
186 }
187
__perf_ctx_unlock(struct perf_event_context * ctx)188 static inline void __perf_ctx_unlock(struct perf_event_context *ctx)
189 {
190 /*
191 * If ctx_sched_in() didn't again set any ALL flags, clean up
192 * after ctx_sched_out() by clearing is_active.
193 */
194 if (ctx->is_active & EVENT_FROZEN) {
195 if (!(ctx->is_active & EVENT_ALL))
196 ctx->is_active = 0;
197 else
198 ctx->is_active &= ~EVENT_FROZEN;
199 }
200 raw_spin_unlock(&ctx->lock);
201 }
202
perf_ctx_unlock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)203 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
204 struct perf_event_context *ctx)
205 {
206 if (ctx)
207 __perf_ctx_unlock(ctx);
208 __perf_ctx_unlock(&cpuctx->ctx);
209 }
210
211 typedef struct {
212 struct perf_cpu_context *cpuctx;
213 struct perf_event_context *ctx;
214 } class_perf_ctx_lock_t;
215
class_perf_ctx_lock_destructor(class_perf_ctx_lock_t * _T)216 static inline void class_perf_ctx_lock_destructor(class_perf_ctx_lock_t *_T)
217 { perf_ctx_unlock(_T->cpuctx, _T->ctx); }
218
219 static inline class_perf_ctx_lock_t
class_perf_ctx_lock_constructor(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)220 class_perf_ctx_lock_constructor(struct perf_cpu_context *cpuctx,
221 struct perf_event_context *ctx)
222 { perf_ctx_lock(cpuctx, ctx); return (class_perf_ctx_lock_t){ cpuctx, ctx }; }
223
224 #define TASK_TOMBSTONE ((void *)-1L)
225
is_kernel_event(struct perf_event * event)226 static bool is_kernel_event(struct perf_event *event)
227 {
228 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
229 }
230
231 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
232
perf_cpu_task_ctx(void)233 struct perf_event_context *perf_cpu_task_ctx(void)
234 {
235 lockdep_assert_irqs_disabled();
236 return this_cpu_ptr(&perf_cpu_context)->task_ctx;
237 }
238
239 /*
240 * On task ctx scheduling...
241 *
242 * When !ctx->nr_events a task context will not be scheduled. This means
243 * we can disable the scheduler hooks (for performance) without leaving
244 * pending task ctx state.
245 *
246 * This however results in two special cases:
247 *
248 * - removing the last event from a task ctx; this is relatively straight
249 * forward and is done in __perf_remove_from_context.
250 *
251 * - adding the first event to a task ctx; this is tricky because we cannot
252 * rely on ctx->is_active and therefore cannot use event_function_call().
253 * See perf_install_in_context().
254 *
255 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
256 */
257
258 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
259 struct perf_event_context *, void *);
260
261 struct event_function_struct {
262 struct perf_event *event;
263 event_f func;
264 void *data;
265 };
266
event_function(void * info)267 static int event_function(void *info)
268 {
269 struct event_function_struct *efs = info;
270 struct perf_event *event = efs->event;
271 struct perf_event_context *ctx = event->ctx;
272 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
273 struct perf_event_context *task_ctx = cpuctx->task_ctx;
274 int ret = 0;
275
276 lockdep_assert_irqs_disabled();
277
278 perf_ctx_lock(cpuctx, task_ctx);
279 /*
280 * Since we do the IPI call without holding ctx->lock things can have
281 * changed, double check we hit the task we set out to hit.
282 */
283 if (ctx->task) {
284 if (ctx->task != current) {
285 ret = -ESRCH;
286 goto unlock;
287 }
288
289 /*
290 * We only use event_function_call() on established contexts,
291 * and event_function() is only ever called when active (or
292 * rather, we'll have bailed in task_function_call() or the
293 * above ctx->task != current test), therefore we must have
294 * ctx->is_active here.
295 */
296 WARN_ON_ONCE(!ctx->is_active);
297 /*
298 * And since we have ctx->is_active, cpuctx->task_ctx must
299 * match.
300 */
301 WARN_ON_ONCE(task_ctx != ctx);
302 } else {
303 WARN_ON_ONCE(&cpuctx->ctx != ctx);
304 }
305
306 efs->func(event, cpuctx, ctx, efs->data);
307 unlock:
308 perf_ctx_unlock(cpuctx, task_ctx);
309
310 return ret;
311 }
312
event_function_call(struct perf_event * event,event_f func,void * data)313 static void event_function_call(struct perf_event *event, event_f func, void *data)
314 {
315 struct perf_event_context *ctx = event->ctx;
316 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
317 struct perf_cpu_context *cpuctx;
318 struct event_function_struct efs = {
319 .event = event,
320 .func = func,
321 .data = data,
322 };
323
324 if (!event->parent) {
325 /*
326 * If this is a !child event, we must hold ctx::mutex to
327 * stabilize the event->ctx relation. See
328 * perf_event_ctx_lock().
329 */
330 lockdep_assert_held(&ctx->mutex);
331 }
332
333 if (!task) {
334 cpu_function_call(event->cpu, event_function, &efs);
335 return;
336 }
337
338 if (task == TASK_TOMBSTONE)
339 return;
340
341 again:
342 if (!task_function_call(task, event_function, &efs))
343 return;
344
345 local_irq_disable();
346 cpuctx = this_cpu_ptr(&perf_cpu_context);
347 perf_ctx_lock(cpuctx, ctx);
348 /*
349 * Reload the task pointer, it might have been changed by
350 * a concurrent perf_event_context_sched_out().
351 */
352 task = ctx->task;
353 if (task == TASK_TOMBSTONE)
354 goto unlock;
355 if (ctx->is_active) {
356 perf_ctx_unlock(cpuctx, ctx);
357 local_irq_enable();
358 goto again;
359 }
360 func(event, NULL, ctx, data);
361 unlock:
362 perf_ctx_unlock(cpuctx, ctx);
363 local_irq_enable();
364 }
365
366 /*
367 * Similar to event_function_call() + event_function(), but hard assumes IRQs
368 * are already disabled and we're on the right CPU.
369 */
event_function_local(struct perf_event * event,event_f func,void * data)370 static void event_function_local(struct perf_event *event, event_f func, void *data)
371 {
372 struct perf_event_context *ctx = event->ctx;
373 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
374 struct task_struct *task = READ_ONCE(ctx->task);
375 struct perf_event_context *task_ctx = NULL;
376
377 lockdep_assert_irqs_disabled();
378
379 if (task) {
380 if (task == TASK_TOMBSTONE)
381 return;
382
383 task_ctx = ctx;
384 }
385
386 perf_ctx_lock(cpuctx, task_ctx);
387
388 task = ctx->task;
389 if (task == TASK_TOMBSTONE)
390 goto unlock;
391
392 if (task) {
393 /*
394 * We must be either inactive or active and the right task,
395 * otherwise we're screwed, since we cannot IPI to somewhere
396 * else.
397 */
398 if (ctx->is_active) {
399 if (WARN_ON_ONCE(task != current))
400 goto unlock;
401
402 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
403 goto unlock;
404 }
405 } else {
406 WARN_ON_ONCE(&cpuctx->ctx != ctx);
407 }
408
409 func(event, cpuctx, ctx, data);
410 unlock:
411 perf_ctx_unlock(cpuctx, task_ctx);
412 }
413
414 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
415 PERF_FLAG_FD_OUTPUT |\
416 PERF_FLAG_PID_CGROUP |\
417 PERF_FLAG_FD_CLOEXEC)
418
419 /*
420 * branch priv levels that need permission checks
421 */
422 #define PERF_SAMPLE_BRANCH_PERM_PLM \
423 (PERF_SAMPLE_BRANCH_KERNEL |\
424 PERF_SAMPLE_BRANCH_HV)
425
426 /*
427 * perf_sched_events : >0 events exist
428 */
429
430 static void perf_sched_delayed(struct work_struct *work);
431 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
432 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
433 static DEFINE_MUTEX(perf_sched_mutex);
434 static atomic_t perf_sched_count;
435
436 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
437
438 static atomic_t nr_mmap_events __read_mostly;
439 static atomic_t nr_comm_events __read_mostly;
440 static atomic_t nr_namespaces_events __read_mostly;
441 static atomic_t nr_task_events __read_mostly;
442 static atomic_t nr_freq_events __read_mostly;
443 static atomic_t nr_switch_events __read_mostly;
444 static atomic_t nr_ksymbol_events __read_mostly;
445 static atomic_t nr_bpf_events __read_mostly;
446 static atomic_t nr_cgroup_events __read_mostly;
447 static atomic_t nr_text_poke_events __read_mostly;
448 static atomic_t nr_build_id_events __read_mostly;
449
450 static LIST_HEAD(pmus);
451 static DEFINE_MUTEX(pmus_lock);
452 static struct srcu_struct pmus_srcu;
453 static cpumask_var_t perf_online_mask;
454 static cpumask_var_t perf_online_core_mask;
455 static cpumask_var_t perf_online_die_mask;
456 static cpumask_var_t perf_online_cluster_mask;
457 static cpumask_var_t perf_online_pkg_mask;
458 static cpumask_var_t perf_online_sys_mask;
459 static struct kmem_cache *perf_event_cache;
460
461 /*
462 * perf event paranoia level:
463 * -1 - not paranoid at all
464 * 0 - disallow raw tracepoint access for unpriv
465 * 1 - disallow cpu events for unpriv
466 * 2 - disallow kernel profiling for unpriv
467 */
468 int sysctl_perf_event_paranoid __read_mostly = 2;
469
470 /* Minimum for 512 kiB + 1 user control page. 'free' kiB per user. */
471 static int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024);
472
473 /*
474 * max perf event sample rate
475 */
476 #define DEFAULT_MAX_SAMPLE_RATE 100000
477 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
478 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
479
480 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
481 static int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
482
483 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
484 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
485
486 static int perf_sample_allowed_ns __read_mostly =
487 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
488
update_perf_cpu_limits(void)489 static void update_perf_cpu_limits(void)
490 {
491 u64 tmp = perf_sample_period_ns;
492
493 tmp *= sysctl_perf_cpu_time_max_percent;
494 tmp = div_u64(tmp, 100);
495 if (!tmp)
496 tmp = 1;
497
498 WRITE_ONCE(perf_sample_allowed_ns, tmp);
499 }
500
501 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
502
perf_event_max_sample_rate_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)503 static int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write,
504 void *buffer, size_t *lenp, loff_t *ppos)
505 {
506 int ret;
507 int perf_cpu = sysctl_perf_cpu_time_max_percent;
508 /*
509 * If throttling is disabled don't allow the write:
510 */
511 if (write && (perf_cpu == 100 || perf_cpu == 0))
512 return -EINVAL;
513
514 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
515 if (ret || !write)
516 return ret;
517
518 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
519 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
520 update_perf_cpu_limits();
521
522 return 0;
523 }
524
perf_cpu_time_max_percent_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)525 static int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write,
526 void *buffer, size_t *lenp, loff_t *ppos)
527 {
528 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
529
530 if (ret || !write)
531 return ret;
532
533 if (sysctl_perf_cpu_time_max_percent == 100 ||
534 sysctl_perf_cpu_time_max_percent == 0) {
535 printk(KERN_WARNING
536 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
537 WRITE_ONCE(perf_sample_allowed_ns, 0);
538 } else {
539 update_perf_cpu_limits();
540 }
541
542 return 0;
543 }
544
545 static const struct ctl_table events_core_sysctl_table[] = {
546 /*
547 * User-space relies on this file as a feature check for
548 * perf_events being enabled. It's an ABI, do not remove!
549 */
550 {
551 .procname = "perf_event_paranoid",
552 .data = &sysctl_perf_event_paranoid,
553 .maxlen = sizeof(sysctl_perf_event_paranoid),
554 .mode = 0644,
555 .proc_handler = proc_dointvec,
556 },
557 {
558 .procname = "perf_event_mlock_kb",
559 .data = &sysctl_perf_event_mlock,
560 .maxlen = sizeof(sysctl_perf_event_mlock),
561 .mode = 0644,
562 .proc_handler = proc_dointvec,
563 },
564 {
565 .procname = "perf_event_max_sample_rate",
566 .data = &sysctl_perf_event_sample_rate,
567 .maxlen = sizeof(sysctl_perf_event_sample_rate),
568 .mode = 0644,
569 .proc_handler = perf_event_max_sample_rate_handler,
570 .extra1 = SYSCTL_ONE,
571 },
572 {
573 .procname = "perf_cpu_time_max_percent",
574 .data = &sysctl_perf_cpu_time_max_percent,
575 .maxlen = sizeof(sysctl_perf_cpu_time_max_percent),
576 .mode = 0644,
577 .proc_handler = perf_cpu_time_max_percent_handler,
578 .extra1 = SYSCTL_ZERO,
579 .extra2 = SYSCTL_ONE_HUNDRED,
580 },
581 };
582
init_events_core_sysctls(void)583 static int __init init_events_core_sysctls(void)
584 {
585 register_sysctl_init("kernel", events_core_sysctl_table);
586 return 0;
587 }
588 core_initcall(init_events_core_sysctls);
589
590
591 /*
592 * perf samples are done in some very critical code paths (NMIs).
593 * If they take too much CPU time, the system can lock up and not
594 * get any real work done. This will drop the sample rate when
595 * we detect that events are taking too long.
596 */
597 #define NR_ACCUMULATED_SAMPLES 128
598 static DEFINE_PER_CPU(u64, running_sample_length);
599
600 static u64 __report_avg;
601 static u64 __report_allowed;
602
perf_duration_warn(struct irq_work * w)603 static void perf_duration_warn(struct irq_work *w)
604 {
605 printk_ratelimited(KERN_INFO
606 "perf: interrupt took too long (%lld > %lld), lowering "
607 "kernel.perf_event_max_sample_rate to %d\n",
608 __report_avg, __report_allowed,
609 sysctl_perf_event_sample_rate);
610 }
611
612 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
613
perf_sample_event_took(u64 sample_len_ns)614 void perf_sample_event_took(u64 sample_len_ns)
615 {
616 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
617 u64 running_len;
618 u64 avg_len;
619 u32 max;
620
621 if (max_len == 0)
622 return;
623
624 /* Decay the counter by 1 average sample. */
625 running_len = __this_cpu_read(running_sample_length);
626 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
627 running_len += sample_len_ns;
628 __this_cpu_write(running_sample_length, running_len);
629
630 /*
631 * Note: this will be biased artificially low until we have
632 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
633 * from having to maintain a count.
634 */
635 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
636 if (avg_len <= max_len)
637 return;
638
639 __report_avg = avg_len;
640 __report_allowed = max_len;
641
642 /*
643 * Compute a throttle threshold 25% below the current duration.
644 */
645 avg_len += avg_len / 4;
646 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
647 if (avg_len < max)
648 max /= (u32)avg_len;
649 else
650 max = 1;
651
652 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
653 WRITE_ONCE(max_samples_per_tick, max);
654
655 sysctl_perf_event_sample_rate = max * HZ;
656 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
657
658 if (!irq_work_queue(&perf_duration_work)) {
659 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
660 "kernel.perf_event_max_sample_rate to %d\n",
661 __report_avg, __report_allowed,
662 sysctl_perf_event_sample_rate);
663 }
664 }
665
666 static atomic64_t perf_event_id;
667
668 static void update_context_time(struct perf_event_context *ctx);
669 static u64 perf_event_time(struct perf_event *event);
670
perf_event_print_debug(void)671 void __weak perf_event_print_debug(void) { }
672
perf_clock(void)673 static inline u64 perf_clock(void)
674 {
675 return local_clock();
676 }
677
perf_event_clock(struct perf_event * event)678 static inline u64 perf_event_clock(struct perf_event *event)
679 {
680 return event->clock();
681 }
682
683 /*
684 * State based event timekeeping...
685 *
686 * The basic idea is to use event->state to determine which (if any) time
687 * fields to increment with the current delta. This means we only need to
688 * update timestamps when we change state or when they are explicitly requested
689 * (read).
690 *
691 * Event groups make things a little more complicated, but not terribly so. The
692 * rules for a group are that if the group leader is OFF the entire group is
693 * OFF, irrespective of what the group member states are. This results in
694 * __perf_effective_state().
695 *
696 * A further ramification is that when a group leader flips between OFF and
697 * !OFF, we need to update all group member times.
698 *
699 *
700 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
701 * need to make sure the relevant context time is updated before we try and
702 * update our timestamps.
703 */
704
705 static __always_inline enum perf_event_state
__perf_effective_state(struct perf_event * event)706 __perf_effective_state(struct perf_event *event)
707 {
708 struct perf_event *leader = event->group_leader;
709
710 if (leader->state <= PERF_EVENT_STATE_OFF)
711 return leader->state;
712
713 return event->state;
714 }
715
716 static __always_inline void
__perf_update_times(struct perf_event * event,u64 now,u64 * enabled,u64 * running)717 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
718 {
719 enum perf_event_state state = __perf_effective_state(event);
720 u64 delta = now - event->tstamp;
721
722 *enabled = event->total_time_enabled;
723 if (state >= PERF_EVENT_STATE_INACTIVE)
724 *enabled += delta;
725
726 *running = event->total_time_running;
727 if (state >= PERF_EVENT_STATE_ACTIVE)
728 *running += delta;
729 }
730
perf_event_update_time(struct perf_event * event)731 static void perf_event_update_time(struct perf_event *event)
732 {
733 u64 now = perf_event_time(event);
734
735 __perf_update_times(event, now, &event->total_time_enabled,
736 &event->total_time_running);
737 event->tstamp = now;
738 }
739
perf_event_update_sibling_time(struct perf_event * leader)740 static void perf_event_update_sibling_time(struct perf_event *leader)
741 {
742 struct perf_event *sibling;
743
744 for_each_sibling_event(sibling, leader)
745 perf_event_update_time(sibling);
746 }
747
748 static void
perf_event_set_state(struct perf_event * event,enum perf_event_state state)749 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
750 {
751 if (event->state == state)
752 return;
753
754 perf_event_update_time(event);
755 /*
756 * If a group leader gets enabled/disabled all its siblings
757 * are affected too.
758 */
759 if ((event->state < 0) ^ (state < 0))
760 perf_event_update_sibling_time(event);
761
762 WRITE_ONCE(event->state, state);
763 }
764
765 /*
766 * UP store-release, load-acquire
767 */
768
769 #define __store_release(ptr, val) \
770 do { \
771 barrier(); \
772 WRITE_ONCE(*(ptr), (val)); \
773 } while (0)
774
775 #define __load_acquire(ptr) \
776 ({ \
777 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \
778 barrier(); \
779 ___p; \
780 })
781
782 #define for_each_epc(_epc, _ctx, _pmu, _cgroup) \
783 list_for_each_entry(_epc, &((_ctx)->pmu_ctx_list), pmu_ctx_entry) \
784 if (_cgroup && !_epc->nr_cgroups) \
785 continue; \
786 else if (_pmu && _epc->pmu != _pmu) \
787 continue; \
788 else
789
perf_ctx_disable(struct perf_event_context * ctx,bool cgroup)790 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
791 {
792 struct perf_event_pmu_context *pmu_ctx;
793
794 for_each_epc(pmu_ctx, ctx, NULL, cgroup)
795 perf_pmu_disable(pmu_ctx->pmu);
796 }
797
perf_ctx_enable(struct perf_event_context * ctx,bool cgroup)798 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
799 {
800 struct perf_event_pmu_context *pmu_ctx;
801
802 for_each_epc(pmu_ctx, ctx, NULL, cgroup)
803 perf_pmu_enable(pmu_ctx->pmu);
804 }
805
806 static void ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
807 static void ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
808
809 #ifdef CONFIG_CGROUP_PERF
810
811 static inline bool
perf_cgroup_match(struct perf_event * event)812 perf_cgroup_match(struct perf_event *event)
813 {
814 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
815
816 /* @event doesn't care about cgroup */
817 if (!event->cgrp)
818 return true;
819
820 /* wants specific cgroup scope but @cpuctx isn't associated with any */
821 if (!cpuctx->cgrp)
822 return false;
823
824 /*
825 * Cgroup scoping is recursive. An event enabled for a cgroup is
826 * also enabled for all its descendant cgroups. If @cpuctx's
827 * cgroup is a descendant of @event's (the test covers identity
828 * case), it's a match.
829 */
830 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
831 event->cgrp->css.cgroup);
832 }
833
perf_detach_cgroup(struct perf_event * event)834 static inline void perf_detach_cgroup(struct perf_event *event)
835 {
836 css_put(&event->cgrp->css);
837 event->cgrp = NULL;
838 }
839
is_cgroup_event(struct perf_event * event)840 static inline int is_cgroup_event(struct perf_event *event)
841 {
842 return event->cgrp != NULL;
843 }
844
perf_cgroup_event_time(struct perf_event * event)845 static inline u64 perf_cgroup_event_time(struct perf_event *event)
846 {
847 struct perf_cgroup_info *t;
848
849 t = per_cpu_ptr(event->cgrp->info, event->cpu);
850 return t->time;
851 }
852
perf_cgroup_event_time_now(struct perf_event * event,u64 now)853 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
854 {
855 struct perf_cgroup_info *t;
856
857 t = per_cpu_ptr(event->cgrp->info, event->cpu);
858 if (!__load_acquire(&t->active))
859 return t->time;
860 now += READ_ONCE(t->timeoffset);
861 return now;
862 }
863
__update_cgrp_time(struct perf_cgroup_info * info,u64 now,bool adv)864 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
865 {
866 if (adv)
867 info->time += now - info->timestamp;
868 info->timestamp = now;
869 /*
870 * see update_context_time()
871 */
872 WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
873 }
874
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)875 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
876 {
877 struct perf_cgroup *cgrp = cpuctx->cgrp;
878 struct cgroup_subsys_state *css;
879 struct perf_cgroup_info *info;
880
881 if (cgrp) {
882 u64 now = perf_clock();
883
884 for (css = &cgrp->css; css; css = css->parent) {
885 cgrp = container_of(css, struct perf_cgroup, css);
886 info = this_cpu_ptr(cgrp->info);
887
888 __update_cgrp_time(info, now, true);
889 if (final)
890 __store_release(&info->active, 0);
891 }
892 }
893 }
894
update_cgrp_time_from_event(struct perf_event * event)895 static inline void update_cgrp_time_from_event(struct perf_event *event)
896 {
897 struct perf_cgroup_info *info;
898
899 /*
900 * ensure we access cgroup data only when needed and
901 * when we know the cgroup is pinned (css_get)
902 */
903 if (!is_cgroup_event(event))
904 return;
905
906 info = this_cpu_ptr(event->cgrp->info);
907 /*
908 * Do not update time when cgroup is not active
909 */
910 if (info->active)
911 __update_cgrp_time(info, perf_clock(), true);
912 }
913
914 static inline void
perf_cgroup_set_timestamp(struct perf_cpu_context * cpuctx)915 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
916 {
917 struct perf_event_context *ctx = &cpuctx->ctx;
918 struct perf_cgroup *cgrp = cpuctx->cgrp;
919 struct perf_cgroup_info *info;
920 struct cgroup_subsys_state *css;
921
922 /*
923 * ctx->lock held by caller
924 * ensure we do not access cgroup data
925 * unless we have the cgroup pinned (css_get)
926 */
927 if (!cgrp)
928 return;
929
930 WARN_ON_ONCE(!ctx->nr_cgroups);
931
932 for (css = &cgrp->css; css; css = css->parent) {
933 cgrp = container_of(css, struct perf_cgroup, css);
934 info = this_cpu_ptr(cgrp->info);
935 __update_cgrp_time(info, ctx->timestamp, false);
936 __store_release(&info->active, 1);
937 }
938 }
939
940 /*
941 * reschedule events based on the cgroup constraint of task.
942 */
perf_cgroup_switch(struct task_struct * task)943 static void perf_cgroup_switch(struct task_struct *task)
944 {
945 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
946 struct perf_cgroup *cgrp;
947
948 /*
949 * cpuctx->cgrp is set when the first cgroup event enabled,
950 * and is cleared when the last cgroup event disabled.
951 */
952 if (READ_ONCE(cpuctx->cgrp) == NULL)
953 return;
954
955 cgrp = perf_cgroup_from_task(task, NULL);
956 if (READ_ONCE(cpuctx->cgrp) == cgrp)
957 return;
958
959 guard(perf_ctx_lock)(cpuctx, cpuctx->task_ctx);
960 /*
961 * Re-check, could've raced vs perf_remove_from_context().
962 */
963 if (READ_ONCE(cpuctx->cgrp) == NULL)
964 return;
965
966 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
967
968 perf_ctx_disable(&cpuctx->ctx, true);
969
970 ctx_sched_out(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
971 /*
972 * must not be done before ctxswout due
973 * to update_cgrp_time_from_cpuctx() in
974 * ctx_sched_out()
975 */
976 cpuctx->cgrp = cgrp;
977 /*
978 * set cgrp before ctxsw in to allow
979 * perf_cgroup_set_timestamp() in ctx_sched_in()
980 * to not have to pass task around
981 */
982 ctx_sched_in(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
983
984 perf_ctx_enable(&cpuctx->ctx, true);
985 }
986
perf_cgroup_ensure_storage(struct perf_event * event,struct cgroup_subsys_state * css)987 static int perf_cgroup_ensure_storage(struct perf_event *event,
988 struct cgroup_subsys_state *css)
989 {
990 struct perf_cpu_context *cpuctx;
991 struct perf_event **storage;
992 int cpu, heap_size, ret = 0;
993
994 /*
995 * Allow storage to have sufficient space for an iterator for each
996 * possibly nested cgroup plus an iterator for events with no cgroup.
997 */
998 for (heap_size = 1; css; css = css->parent)
999 heap_size++;
1000
1001 for_each_possible_cpu(cpu) {
1002 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
1003 if (heap_size <= cpuctx->heap_size)
1004 continue;
1005
1006 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
1007 GFP_KERNEL, cpu_to_node(cpu));
1008 if (!storage) {
1009 ret = -ENOMEM;
1010 break;
1011 }
1012
1013 raw_spin_lock_irq(&cpuctx->ctx.lock);
1014 if (cpuctx->heap_size < heap_size) {
1015 swap(cpuctx->heap, storage);
1016 if (storage == cpuctx->heap_default)
1017 storage = NULL;
1018 cpuctx->heap_size = heap_size;
1019 }
1020 raw_spin_unlock_irq(&cpuctx->ctx.lock);
1021
1022 kfree(storage);
1023 }
1024
1025 return ret;
1026 }
1027
perf_cgroup_connect(int fd,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)1028 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
1029 struct perf_event_attr *attr,
1030 struct perf_event *group_leader)
1031 {
1032 struct perf_cgroup *cgrp;
1033 struct cgroup_subsys_state *css;
1034 CLASS(fd, f)(fd);
1035 int ret = 0;
1036
1037 if (fd_empty(f))
1038 return -EBADF;
1039
1040 css = css_tryget_online_from_dir(fd_file(f)->f_path.dentry,
1041 &perf_event_cgrp_subsys);
1042 if (IS_ERR(css))
1043 return PTR_ERR(css);
1044
1045 ret = perf_cgroup_ensure_storage(event, css);
1046 if (ret)
1047 return ret;
1048
1049 cgrp = container_of(css, struct perf_cgroup, css);
1050 event->cgrp = cgrp;
1051
1052 /*
1053 * all events in a group must monitor
1054 * the same cgroup because a task belongs
1055 * to only one perf cgroup at a time
1056 */
1057 if (group_leader && group_leader->cgrp != cgrp) {
1058 perf_detach_cgroup(event);
1059 ret = -EINVAL;
1060 }
1061 return ret;
1062 }
1063
1064 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1065 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1066 {
1067 struct perf_cpu_context *cpuctx;
1068
1069 if (!is_cgroup_event(event))
1070 return;
1071
1072 event->pmu_ctx->nr_cgroups++;
1073
1074 /*
1075 * Because cgroup events are always per-cpu events,
1076 * @ctx == &cpuctx->ctx.
1077 */
1078 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1079
1080 if (ctx->nr_cgroups++)
1081 return;
1082
1083 cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
1084 }
1085
1086 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1087 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1088 {
1089 struct perf_cpu_context *cpuctx;
1090
1091 if (!is_cgroup_event(event))
1092 return;
1093
1094 event->pmu_ctx->nr_cgroups--;
1095
1096 /*
1097 * Because cgroup events are always per-cpu events,
1098 * @ctx == &cpuctx->ctx.
1099 */
1100 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1101
1102 if (--ctx->nr_cgroups)
1103 return;
1104
1105 cpuctx->cgrp = NULL;
1106 }
1107
1108 #else /* !CONFIG_CGROUP_PERF */
1109
1110 static inline bool
perf_cgroup_match(struct perf_event * event)1111 perf_cgroup_match(struct perf_event *event)
1112 {
1113 return true;
1114 }
1115
perf_detach_cgroup(struct perf_event * event)1116 static inline void perf_detach_cgroup(struct perf_event *event)
1117 {}
1118
is_cgroup_event(struct perf_event * event)1119 static inline int is_cgroup_event(struct perf_event *event)
1120 {
1121 return 0;
1122 }
1123
update_cgrp_time_from_event(struct perf_event * event)1124 static inline void update_cgrp_time_from_event(struct perf_event *event)
1125 {
1126 }
1127
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)1128 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1129 bool final)
1130 {
1131 }
1132
perf_cgroup_connect(pid_t pid,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)1133 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1134 struct perf_event_attr *attr,
1135 struct perf_event *group_leader)
1136 {
1137 return -EINVAL;
1138 }
1139
1140 static inline void
perf_cgroup_set_timestamp(struct perf_cpu_context * cpuctx)1141 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1142 {
1143 }
1144
perf_cgroup_event_time(struct perf_event * event)1145 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1146 {
1147 return 0;
1148 }
1149
perf_cgroup_event_time_now(struct perf_event * event,u64 now)1150 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1151 {
1152 return 0;
1153 }
1154
1155 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1156 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1157 {
1158 }
1159
1160 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1161 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1162 {
1163 }
1164
perf_cgroup_switch(struct task_struct * task)1165 static void perf_cgroup_switch(struct task_struct *task)
1166 {
1167 }
1168 #endif
1169
1170 /*
1171 * set default to be dependent on timer tick just
1172 * like original code
1173 */
1174 #define PERF_CPU_HRTIMER (1000 / HZ)
1175 /*
1176 * function must be called with interrupts disabled
1177 */
perf_mux_hrtimer_handler(struct hrtimer * hr)1178 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1179 {
1180 struct perf_cpu_pmu_context *cpc;
1181 bool rotations;
1182
1183 lockdep_assert_irqs_disabled();
1184
1185 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1186 rotations = perf_rotate_context(cpc);
1187
1188 raw_spin_lock(&cpc->hrtimer_lock);
1189 if (rotations)
1190 hrtimer_forward_now(hr, cpc->hrtimer_interval);
1191 else
1192 cpc->hrtimer_active = 0;
1193 raw_spin_unlock(&cpc->hrtimer_lock);
1194
1195 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1196 }
1197
__perf_mux_hrtimer_init(struct perf_cpu_pmu_context * cpc,int cpu)1198 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1199 {
1200 struct hrtimer *timer = &cpc->hrtimer;
1201 struct pmu *pmu = cpc->epc.pmu;
1202 u64 interval;
1203
1204 /*
1205 * check default is sane, if not set then force to
1206 * default interval (1/tick)
1207 */
1208 interval = pmu->hrtimer_interval_ms;
1209 if (interval < 1)
1210 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1211
1212 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1213
1214 raw_spin_lock_init(&cpc->hrtimer_lock);
1215 hrtimer_setup(timer, perf_mux_hrtimer_handler, CLOCK_MONOTONIC,
1216 HRTIMER_MODE_ABS_PINNED_HARD);
1217 }
1218
perf_mux_hrtimer_restart(struct perf_cpu_pmu_context * cpc)1219 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1220 {
1221 struct hrtimer *timer = &cpc->hrtimer;
1222 unsigned long flags;
1223
1224 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1225 if (!cpc->hrtimer_active) {
1226 cpc->hrtimer_active = 1;
1227 hrtimer_forward_now(timer, cpc->hrtimer_interval);
1228 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1229 }
1230 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1231
1232 return 0;
1233 }
1234
perf_mux_hrtimer_restart_ipi(void * arg)1235 static int perf_mux_hrtimer_restart_ipi(void *arg)
1236 {
1237 return perf_mux_hrtimer_restart(arg);
1238 }
1239
this_cpc(struct pmu * pmu)1240 static __always_inline struct perf_cpu_pmu_context *this_cpc(struct pmu *pmu)
1241 {
1242 return *this_cpu_ptr(pmu->cpu_pmu_context);
1243 }
1244
perf_pmu_disable(struct pmu * pmu)1245 void perf_pmu_disable(struct pmu *pmu)
1246 {
1247 int *count = &this_cpc(pmu)->pmu_disable_count;
1248 if (!(*count)++)
1249 pmu->pmu_disable(pmu);
1250 }
1251
perf_pmu_enable(struct pmu * pmu)1252 void perf_pmu_enable(struct pmu *pmu)
1253 {
1254 int *count = &this_cpc(pmu)->pmu_disable_count;
1255 if (!--(*count))
1256 pmu->pmu_enable(pmu);
1257 }
1258
perf_assert_pmu_disabled(struct pmu * pmu)1259 static void perf_assert_pmu_disabled(struct pmu *pmu)
1260 {
1261 int *count = &this_cpc(pmu)->pmu_disable_count;
1262 WARN_ON_ONCE(*count == 0);
1263 }
1264
perf_pmu_read(struct perf_event * event)1265 static inline void perf_pmu_read(struct perf_event *event)
1266 {
1267 if (event->state == PERF_EVENT_STATE_ACTIVE)
1268 event->pmu->read(event);
1269 }
1270
get_ctx(struct perf_event_context * ctx)1271 static void get_ctx(struct perf_event_context *ctx)
1272 {
1273 refcount_inc(&ctx->refcount);
1274 }
1275
free_ctx(struct rcu_head * head)1276 static void free_ctx(struct rcu_head *head)
1277 {
1278 struct perf_event_context *ctx;
1279
1280 ctx = container_of(head, struct perf_event_context, rcu_head);
1281 kfree(ctx);
1282 }
1283
put_ctx(struct perf_event_context * ctx)1284 static void put_ctx(struct perf_event_context *ctx)
1285 {
1286 if (refcount_dec_and_test(&ctx->refcount)) {
1287 if (ctx->parent_ctx)
1288 put_ctx(ctx->parent_ctx);
1289 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1290 put_task_struct(ctx->task);
1291 call_rcu(&ctx->rcu_head, free_ctx);
1292 } else {
1293 smp_mb__after_atomic(); /* pairs with wait_var_event() */
1294 if (ctx->task == TASK_TOMBSTONE)
1295 wake_up_var(&ctx->refcount);
1296 }
1297 }
1298
1299 /*
1300 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1301 * perf_pmu_migrate_context() we need some magic.
1302 *
1303 * Those places that change perf_event::ctx will hold both
1304 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1305 *
1306 * Lock ordering is by mutex address. There are two other sites where
1307 * perf_event_context::mutex nests and those are:
1308 *
1309 * - perf_event_exit_task_context() [ child , 0 ]
1310 * perf_event_exit_event()
1311 * put_event() [ parent, 1 ]
1312 *
1313 * - perf_event_init_context() [ parent, 0 ]
1314 * inherit_task_group()
1315 * inherit_group()
1316 * inherit_event()
1317 * perf_event_alloc()
1318 * perf_init_event()
1319 * perf_try_init_event() [ child , 1 ]
1320 *
1321 * While it appears there is an obvious deadlock here -- the parent and child
1322 * nesting levels are inverted between the two. This is in fact safe because
1323 * life-time rules separate them. That is an exiting task cannot fork, and a
1324 * spawning task cannot (yet) exit.
1325 *
1326 * But remember that these are parent<->child context relations, and
1327 * migration does not affect children, therefore these two orderings should not
1328 * interact.
1329 *
1330 * The change in perf_event::ctx does not affect children (as claimed above)
1331 * because the sys_perf_event_open() case will install a new event and break
1332 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1333 * concerned with cpuctx and that doesn't have children.
1334 *
1335 * The places that change perf_event::ctx will issue:
1336 *
1337 * perf_remove_from_context();
1338 * synchronize_rcu();
1339 * perf_install_in_context();
1340 *
1341 * to affect the change. The remove_from_context() + synchronize_rcu() should
1342 * quiesce the event, after which we can install it in the new location. This
1343 * means that only external vectors (perf_fops, prctl) can perturb the event
1344 * while in transit. Therefore all such accessors should also acquire
1345 * perf_event_context::mutex to serialize against this.
1346 *
1347 * However; because event->ctx can change while we're waiting to acquire
1348 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1349 * function.
1350 *
1351 * Lock order:
1352 * exec_update_lock
1353 * task_struct::perf_event_mutex
1354 * perf_event_context::mutex
1355 * perf_event::child_mutex;
1356 * perf_event_context::lock
1357 * mmap_lock
1358 * perf_event::mmap_mutex
1359 * perf_buffer::aux_mutex
1360 * perf_addr_filters_head::lock
1361 *
1362 * cpu_hotplug_lock
1363 * pmus_lock
1364 * cpuctx->mutex / perf_event_context::mutex
1365 */
1366 static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event * event,int nesting)1367 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1368 {
1369 struct perf_event_context *ctx;
1370
1371 again:
1372 rcu_read_lock();
1373 ctx = READ_ONCE(event->ctx);
1374 if (!refcount_inc_not_zero(&ctx->refcount)) {
1375 rcu_read_unlock();
1376 goto again;
1377 }
1378 rcu_read_unlock();
1379
1380 mutex_lock_nested(&ctx->mutex, nesting);
1381 if (event->ctx != ctx) {
1382 mutex_unlock(&ctx->mutex);
1383 put_ctx(ctx);
1384 goto again;
1385 }
1386
1387 return ctx;
1388 }
1389
1390 static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event * event)1391 perf_event_ctx_lock(struct perf_event *event)
1392 {
1393 return perf_event_ctx_lock_nested(event, 0);
1394 }
1395
perf_event_ctx_unlock(struct perf_event * event,struct perf_event_context * ctx)1396 static void perf_event_ctx_unlock(struct perf_event *event,
1397 struct perf_event_context *ctx)
1398 {
1399 mutex_unlock(&ctx->mutex);
1400 put_ctx(ctx);
1401 }
1402
1403 /*
1404 * This must be done under the ctx->lock, such as to serialize against
1405 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1406 * calling scheduler related locks and ctx->lock nests inside those.
1407 */
1408 static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context * ctx)1409 unclone_ctx(struct perf_event_context *ctx)
1410 {
1411 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1412
1413 lockdep_assert_held(&ctx->lock);
1414
1415 if (parent_ctx)
1416 ctx->parent_ctx = NULL;
1417 ctx->generation++;
1418
1419 return parent_ctx;
1420 }
1421
perf_event_pid_type(struct perf_event * event,struct task_struct * p,enum pid_type type)1422 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1423 enum pid_type type)
1424 {
1425 u32 nr;
1426 /*
1427 * only top level events have the pid namespace they were created in
1428 */
1429 if (event->parent)
1430 event = event->parent;
1431
1432 nr = __task_pid_nr_ns(p, type, event->ns);
1433 /* avoid -1 if it is idle thread or runs in another ns */
1434 if (!nr && !pid_alive(p))
1435 nr = -1;
1436 return nr;
1437 }
1438
perf_event_pid(struct perf_event * event,struct task_struct * p)1439 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1440 {
1441 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1442 }
1443
perf_event_tid(struct perf_event * event,struct task_struct * p)1444 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1445 {
1446 return perf_event_pid_type(event, p, PIDTYPE_PID);
1447 }
1448
1449 /*
1450 * If we inherit events we want to return the parent event id
1451 * to userspace.
1452 */
primary_event_id(struct perf_event * event)1453 static u64 primary_event_id(struct perf_event *event)
1454 {
1455 u64 id = event->id;
1456
1457 if (event->parent)
1458 id = event->parent->id;
1459
1460 return id;
1461 }
1462
1463 /*
1464 * Get the perf_event_context for a task and lock it.
1465 *
1466 * This has to cope with the fact that until it is locked,
1467 * the context could get moved to another task.
1468 */
1469 static struct perf_event_context *
perf_lock_task_context(struct task_struct * task,unsigned long * flags)1470 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1471 {
1472 struct perf_event_context *ctx;
1473
1474 retry:
1475 /*
1476 * One of the few rules of preemptible RCU is that one cannot do
1477 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1478 * part of the read side critical section was irqs-enabled -- see
1479 * rcu_read_unlock_special().
1480 *
1481 * Since ctx->lock nests under rq->lock we must ensure the entire read
1482 * side critical section has interrupts disabled.
1483 */
1484 local_irq_save(*flags);
1485 rcu_read_lock();
1486 ctx = rcu_dereference(task->perf_event_ctxp);
1487 if (ctx) {
1488 /*
1489 * If this context is a clone of another, it might
1490 * get swapped for another underneath us by
1491 * perf_event_task_sched_out, though the
1492 * rcu_read_lock() protects us from any context
1493 * getting freed. Lock the context and check if it
1494 * got swapped before we could get the lock, and retry
1495 * if so. If we locked the right context, then it
1496 * can't get swapped on us any more.
1497 */
1498 raw_spin_lock(&ctx->lock);
1499 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1500 raw_spin_unlock(&ctx->lock);
1501 rcu_read_unlock();
1502 local_irq_restore(*flags);
1503 goto retry;
1504 }
1505
1506 if (ctx->task == TASK_TOMBSTONE ||
1507 !refcount_inc_not_zero(&ctx->refcount)) {
1508 raw_spin_unlock(&ctx->lock);
1509 ctx = NULL;
1510 } else {
1511 WARN_ON_ONCE(ctx->task != task);
1512 }
1513 }
1514 rcu_read_unlock();
1515 if (!ctx)
1516 local_irq_restore(*flags);
1517 return ctx;
1518 }
1519
1520 /*
1521 * Get the context for a task and increment its pin_count so it
1522 * can't get swapped to another task. This also increments its
1523 * reference count so that the context can't get freed.
1524 */
1525 static struct perf_event_context *
perf_pin_task_context(struct task_struct * task)1526 perf_pin_task_context(struct task_struct *task)
1527 {
1528 struct perf_event_context *ctx;
1529 unsigned long flags;
1530
1531 ctx = perf_lock_task_context(task, &flags);
1532 if (ctx) {
1533 ++ctx->pin_count;
1534 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1535 }
1536 return ctx;
1537 }
1538
perf_unpin_context(struct perf_event_context * ctx)1539 static void perf_unpin_context(struct perf_event_context *ctx)
1540 {
1541 unsigned long flags;
1542
1543 raw_spin_lock_irqsave(&ctx->lock, flags);
1544 --ctx->pin_count;
1545 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1546 }
1547
1548 /*
1549 * Update the record of the current time in a context.
1550 */
__update_context_time(struct perf_event_context * ctx,bool adv)1551 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1552 {
1553 u64 now = perf_clock();
1554
1555 lockdep_assert_held(&ctx->lock);
1556
1557 if (adv)
1558 ctx->time += now - ctx->timestamp;
1559 ctx->timestamp = now;
1560
1561 /*
1562 * The above: time' = time + (now - timestamp), can be re-arranged
1563 * into: time` = now + (time - timestamp), which gives a single value
1564 * offset to compute future time without locks on.
1565 *
1566 * See perf_event_time_now(), which can be used from NMI context where
1567 * it's (obviously) not possible to acquire ctx->lock in order to read
1568 * both the above values in a consistent manner.
1569 */
1570 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1571 }
1572
update_context_time(struct perf_event_context * ctx)1573 static void update_context_time(struct perf_event_context *ctx)
1574 {
1575 __update_context_time(ctx, true);
1576 }
1577
perf_event_time(struct perf_event * event)1578 static u64 perf_event_time(struct perf_event *event)
1579 {
1580 struct perf_event_context *ctx = event->ctx;
1581
1582 if (unlikely(!ctx))
1583 return 0;
1584
1585 if (is_cgroup_event(event))
1586 return perf_cgroup_event_time(event);
1587
1588 return ctx->time;
1589 }
1590
perf_event_time_now(struct perf_event * event,u64 now)1591 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1592 {
1593 struct perf_event_context *ctx = event->ctx;
1594
1595 if (unlikely(!ctx))
1596 return 0;
1597
1598 if (is_cgroup_event(event))
1599 return perf_cgroup_event_time_now(event, now);
1600
1601 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1602 return ctx->time;
1603
1604 now += READ_ONCE(ctx->timeoffset);
1605 return now;
1606 }
1607
get_event_type(struct perf_event * event)1608 static enum event_type_t get_event_type(struct perf_event *event)
1609 {
1610 struct perf_event_context *ctx = event->ctx;
1611 enum event_type_t event_type;
1612
1613 lockdep_assert_held(&ctx->lock);
1614
1615 /*
1616 * It's 'group type', really, because if our group leader is
1617 * pinned, so are we.
1618 */
1619 if (event->group_leader != event)
1620 event = event->group_leader;
1621
1622 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1623 if (!ctx->task)
1624 event_type |= EVENT_CPU;
1625
1626 return event_type;
1627 }
1628
1629 /*
1630 * Helper function to initialize event group nodes.
1631 */
init_event_group(struct perf_event * event)1632 static void init_event_group(struct perf_event *event)
1633 {
1634 RB_CLEAR_NODE(&event->group_node);
1635 event->group_index = 0;
1636 }
1637
1638 /*
1639 * Extract pinned or flexible groups from the context
1640 * based on event attrs bits.
1641 */
1642 static struct perf_event_groups *
get_event_groups(struct perf_event * event,struct perf_event_context * ctx)1643 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1644 {
1645 if (event->attr.pinned)
1646 return &ctx->pinned_groups;
1647 else
1648 return &ctx->flexible_groups;
1649 }
1650
1651 /*
1652 * Helper function to initializes perf_event_group trees.
1653 */
perf_event_groups_init(struct perf_event_groups * groups)1654 static void perf_event_groups_init(struct perf_event_groups *groups)
1655 {
1656 groups->tree = RB_ROOT;
1657 groups->index = 0;
1658 }
1659
event_cgroup(const struct perf_event * event)1660 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1661 {
1662 struct cgroup *cgroup = NULL;
1663
1664 #ifdef CONFIG_CGROUP_PERF
1665 if (event->cgrp)
1666 cgroup = event->cgrp->css.cgroup;
1667 #endif
1668
1669 return cgroup;
1670 }
1671
1672 /*
1673 * Compare function for event groups;
1674 *
1675 * Implements complex key that first sorts by CPU and then by virtual index
1676 * which provides ordering when rotating groups for the same CPU.
1677 */
1678 static __always_inline int
perf_event_groups_cmp(const int left_cpu,const struct pmu * left_pmu,const struct cgroup * left_cgroup,const u64 left_group_index,const struct perf_event * right)1679 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1680 const struct cgroup *left_cgroup, const u64 left_group_index,
1681 const struct perf_event *right)
1682 {
1683 if (left_cpu < right->cpu)
1684 return -1;
1685 if (left_cpu > right->cpu)
1686 return 1;
1687
1688 if (left_pmu) {
1689 if (left_pmu < right->pmu_ctx->pmu)
1690 return -1;
1691 if (left_pmu > right->pmu_ctx->pmu)
1692 return 1;
1693 }
1694
1695 #ifdef CONFIG_CGROUP_PERF
1696 {
1697 const struct cgroup *right_cgroup = event_cgroup(right);
1698
1699 if (left_cgroup != right_cgroup) {
1700 if (!left_cgroup) {
1701 /*
1702 * Left has no cgroup but right does, no
1703 * cgroups come first.
1704 */
1705 return -1;
1706 }
1707 if (!right_cgroup) {
1708 /*
1709 * Right has no cgroup but left does, no
1710 * cgroups come first.
1711 */
1712 return 1;
1713 }
1714 /* Two dissimilar cgroups, order by id. */
1715 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1716 return -1;
1717
1718 return 1;
1719 }
1720 }
1721 #endif
1722
1723 if (left_group_index < right->group_index)
1724 return -1;
1725 if (left_group_index > right->group_index)
1726 return 1;
1727
1728 return 0;
1729 }
1730
1731 #define __node_2_pe(node) \
1732 rb_entry((node), struct perf_event, group_node)
1733
__group_less(struct rb_node * a,const struct rb_node * b)1734 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1735 {
1736 struct perf_event *e = __node_2_pe(a);
1737 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1738 e->group_index, __node_2_pe(b)) < 0;
1739 }
1740
1741 struct __group_key {
1742 int cpu;
1743 struct pmu *pmu;
1744 struct cgroup *cgroup;
1745 };
1746
__group_cmp(const void * key,const struct rb_node * node)1747 static inline int __group_cmp(const void *key, const struct rb_node *node)
1748 {
1749 const struct __group_key *a = key;
1750 const struct perf_event *b = __node_2_pe(node);
1751
1752 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1753 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1754 }
1755
1756 static inline int
__group_cmp_ignore_cgroup(const void * key,const struct rb_node * node)1757 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1758 {
1759 const struct __group_key *a = key;
1760 const struct perf_event *b = __node_2_pe(node);
1761
1762 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1763 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1764 b->group_index, b);
1765 }
1766
1767 /*
1768 * Insert @event into @groups' tree; using
1769 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1770 * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1771 */
1772 static void
perf_event_groups_insert(struct perf_event_groups * groups,struct perf_event * event)1773 perf_event_groups_insert(struct perf_event_groups *groups,
1774 struct perf_event *event)
1775 {
1776 event->group_index = ++groups->index;
1777
1778 rb_add(&event->group_node, &groups->tree, __group_less);
1779 }
1780
1781 /*
1782 * Helper function to insert event into the pinned or flexible groups.
1783 */
1784 static void
add_event_to_groups(struct perf_event * event,struct perf_event_context * ctx)1785 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1786 {
1787 struct perf_event_groups *groups;
1788
1789 groups = get_event_groups(event, ctx);
1790 perf_event_groups_insert(groups, event);
1791 }
1792
1793 /*
1794 * Delete a group from a tree.
1795 */
1796 static void
perf_event_groups_delete(struct perf_event_groups * groups,struct perf_event * event)1797 perf_event_groups_delete(struct perf_event_groups *groups,
1798 struct perf_event *event)
1799 {
1800 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1801 RB_EMPTY_ROOT(&groups->tree));
1802
1803 rb_erase(&event->group_node, &groups->tree);
1804 init_event_group(event);
1805 }
1806
1807 /*
1808 * Helper function to delete event from its groups.
1809 */
1810 static void
del_event_from_groups(struct perf_event * event,struct perf_event_context * ctx)1811 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1812 {
1813 struct perf_event_groups *groups;
1814
1815 groups = get_event_groups(event, ctx);
1816 perf_event_groups_delete(groups, event);
1817 }
1818
1819 /*
1820 * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1821 */
1822 static struct perf_event *
perf_event_groups_first(struct perf_event_groups * groups,int cpu,struct pmu * pmu,struct cgroup * cgrp)1823 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1824 struct pmu *pmu, struct cgroup *cgrp)
1825 {
1826 struct __group_key key = {
1827 .cpu = cpu,
1828 .pmu = pmu,
1829 .cgroup = cgrp,
1830 };
1831 struct rb_node *node;
1832
1833 node = rb_find_first(&key, &groups->tree, __group_cmp);
1834 if (node)
1835 return __node_2_pe(node);
1836
1837 return NULL;
1838 }
1839
1840 static struct perf_event *
perf_event_groups_next(struct perf_event * event,struct pmu * pmu)1841 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1842 {
1843 struct __group_key key = {
1844 .cpu = event->cpu,
1845 .pmu = pmu,
1846 .cgroup = event_cgroup(event),
1847 };
1848 struct rb_node *next;
1849
1850 next = rb_next_match(&key, &event->group_node, __group_cmp);
1851 if (next)
1852 return __node_2_pe(next);
1853
1854 return NULL;
1855 }
1856
1857 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \
1858 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \
1859 event; event = perf_event_groups_next(event, pmu))
1860
1861 /*
1862 * Iterate through the whole groups tree.
1863 */
1864 #define perf_event_groups_for_each(event, groups) \
1865 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1866 typeof(*event), group_node); event; \
1867 event = rb_entry_safe(rb_next(&event->group_node), \
1868 typeof(*event), group_node))
1869
1870 /*
1871 * Does the event attribute request inherit with PERF_SAMPLE_READ
1872 */
has_inherit_and_sample_read(struct perf_event_attr * attr)1873 static inline bool has_inherit_and_sample_read(struct perf_event_attr *attr)
1874 {
1875 return attr->inherit && (attr->sample_type & PERF_SAMPLE_READ);
1876 }
1877
1878 /*
1879 * Add an event from the lists for its context.
1880 * Must be called with ctx->mutex and ctx->lock held.
1881 */
1882 static void
list_add_event(struct perf_event * event,struct perf_event_context * ctx)1883 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1884 {
1885 lockdep_assert_held(&ctx->lock);
1886
1887 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1888 event->attach_state |= PERF_ATTACH_CONTEXT;
1889
1890 event->tstamp = perf_event_time(event);
1891
1892 /*
1893 * If we're a stand alone event or group leader, we go to the context
1894 * list, group events are kept attached to the group so that
1895 * perf_group_detach can, at all times, locate all siblings.
1896 */
1897 if (event->group_leader == event) {
1898 event->group_caps = event->event_caps;
1899 add_event_to_groups(event, ctx);
1900 }
1901
1902 list_add_rcu(&event->event_entry, &ctx->event_list);
1903 ctx->nr_events++;
1904 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1905 ctx->nr_user++;
1906 if (event->attr.inherit_stat)
1907 ctx->nr_stat++;
1908 if (has_inherit_and_sample_read(&event->attr))
1909 local_inc(&ctx->nr_no_switch_fast);
1910
1911 if (event->state > PERF_EVENT_STATE_OFF)
1912 perf_cgroup_event_enable(event, ctx);
1913
1914 ctx->generation++;
1915 event->pmu_ctx->nr_events++;
1916 }
1917
1918 /*
1919 * Initialize event state based on the perf_event_attr::disabled.
1920 */
perf_event__state_init(struct perf_event * event)1921 static inline void perf_event__state_init(struct perf_event *event)
1922 {
1923 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1924 PERF_EVENT_STATE_INACTIVE;
1925 }
1926
__perf_event_read_size(u64 read_format,int nr_siblings)1927 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1928 {
1929 int entry = sizeof(u64); /* value */
1930 int size = 0;
1931 int nr = 1;
1932
1933 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1934 size += sizeof(u64);
1935
1936 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1937 size += sizeof(u64);
1938
1939 if (read_format & PERF_FORMAT_ID)
1940 entry += sizeof(u64);
1941
1942 if (read_format & PERF_FORMAT_LOST)
1943 entry += sizeof(u64);
1944
1945 if (read_format & PERF_FORMAT_GROUP) {
1946 nr += nr_siblings;
1947 size += sizeof(u64);
1948 }
1949
1950 /*
1951 * Since perf_event_validate_size() limits this to 16k and inhibits
1952 * adding more siblings, this will never overflow.
1953 */
1954 return size + nr * entry;
1955 }
1956
__perf_event_header_size(struct perf_event * event,u64 sample_type)1957 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1958 {
1959 struct perf_sample_data *data;
1960 u16 size = 0;
1961
1962 if (sample_type & PERF_SAMPLE_IP)
1963 size += sizeof(data->ip);
1964
1965 if (sample_type & PERF_SAMPLE_ADDR)
1966 size += sizeof(data->addr);
1967
1968 if (sample_type & PERF_SAMPLE_PERIOD)
1969 size += sizeof(data->period);
1970
1971 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1972 size += sizeof(data->weight.full);
1973
1974 if (sample_type & PERF_SAMPLE_READ)
1975 size += event->read_size;
1976
1977 if (sample_type & PERF_SAMPLE_DATA_SRC)
1978 size += sizeof(data->data_src.val);
1979
1980 if (sample_type & PERF_SAMPLE_TRANSACTION)
1981 size += sizeof(data->txn);
1982
1983 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1984 size += sizeof(data->phys_addr);
1985
1986 if (sample_type & PERF_SAMPLE_CGROUP)
1987 size += sizeof(data->cgroup);
1988
1989 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1990 size += sizeof(data->data_page_size);
1991
1992 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1993 size += sizeof(data->code_page_size);
1994
1995 event->header_size = size;
1996 }
1997
1998 /*
1999 * Called at perf_event creation and when events are attached/detached from a
2000 * group.
2001 */
perf_event__header_size(struct perf_event * event)2002 static void perf_event__header_size(struct perf_event *event)
2003 {
2004 event->read_size =
2005 __perf_event_read_size(event->attr.read_format,
2006 event->group_leader->nr_siblings);
2007 __perf_event_header_size(event, event->attr.sample_type);
2008 }
2009
perf_event__id_header_size(struct perf_event * event)2010 static void perf_event__id_header_size(struct perf_event *event)
2011 {
2012 struct perf_sample_data *data;
2013 u64 sample_type = event->attr.sample_type;
2014 u16 size = 0;
2015
2016 if (sample_type & PERF_SAMPLE_TID)
2017 size += sizeof(data->tid_entry);
2018
2019 if (sample_type & PERF_SAMPLE_TIME)
2020 size += sizeof(data->time);
2021
2022 if (sample_type & PERF_SAMPLE_IDENTIFIER)
2023 size += sizeof(data->id);
2024
2025 if (sample_type & PERF_SAMPLE_ID)
2026 size += sizeof(data->id);
2027
2028 if (sample_type & PERF_SAMPLE_STREAM_ID)
2029 size += sizeof(data->stream_id);
2030
2031 if (sample_type & PERF_SAMPLE_CPU)
2032 size += sizeof(data->cpu_entry);
2033
2034 event->id_header_size = size;
2035 }
2036
2037 /*
2038 * Check that adding an event to the group does not result in anybody
2039 * overflowing the 64k event limit imposed by the output buffer.
2040 *
2041 * Specifically, check that the read_size for the event does not exceed 16k,
2042 * read_size being the one term that grows with groups size. Since read_size
2043 * depends on per-event read_format, also (re)check the existing events.
2044 *
2045 * This leaves 48k for the constant size fields and things like callchains,
2046 * branch stacks and register sets.
2047 */
perf_event_validate_size(struct perf_event * event)2048 static bool perf_event_validate_size(struct perf_event *event)
2049 {
2050 struct perf_event *sibling, *group_leader = event->group_leader;
2051
2052 if (__perf_event_read_size(event->attr.read_format,
2053 group_leader->nr_siblings + 1) > 16*1024)
2054 return false;
2055
2056 if (__perf_event_read_size(group_leader->attr.read_format,
2057 group_leader->nr_siblings + 1) > 16*1024)
2058 return false;
2059
2060 /*
2061 * When creating a new group leader, group_leader->ctx is initialized
2062 * after the size has been validated, but we cannot safely use
2063 * for_each_sibling_event() until group_leader->ctx is set. A new group
2064 * leader cannot have any siblings yet, so we can safely skip checking
2065 * the non-existent siblings.
2066 */
2067 if (event == group_leader)
2068 return true;
2069
2070 for_each_sibling_event(sibling, group_leader) {
2071 if (__perf_event_read_size(sibling->attr.read_format,
2072 group_leader->nr_siblings + 1) > 16*1024)
2073 return false;
2074 }
2075
2076 return true;
2077 }
2078
perf_group_attach(struct perf_event * event)2079 static void perf_group_attach(struct perf_event *event)
2080 {
2081 struct perf_event *group_leader = event->group_leader, *pos;
2082
2083 lockdep_assert_held(&event->ctx->lock);
2084
2085 /*
2086 * We can have double attach due to group movement (move_group) in
2087 * perf_event_open().
2088 */
2089 if (event->attach_state & PERF_ATTACH_GROUP)
2090 return;
2091
2092 event->attach_state |= PERF_ATTACH_GROUP;
2093
2094 if (group_leader == event)
2095 return;
2096
2097 WARN_ON_ONCE(group_leader->ctx != event->ctx);
2098
2099 group_leader->group_caps &= event->event_caps;
2100
2101 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
2102 group_leader->nr_siblings++;
2103 group_leader->group_generation++;
2104
2105 perf_event__header_size(group_leader);
2106
2107 for_each_sibling_event(pos, group_leader)
2108 perf_event__header_size(pos);
2109 }
2110
2111 /*
2112 * Remove an event from the lists for its context.
2113 * Must be called with ctx->mutex and ctx->lock held.
2114 */
2115 static void
list_del_event(struct perf_event * event,struct perf_event_context * ctx)2116 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2117 {
2118 WARN_ON_ONCE(event->ctx != ctx);
2119 lockdep_assert_held(&ctx->lock);
2120
2121 /*
2122 * We can have double detach due to exit/hot-unplug + close.
2123 */
2124 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2125 return;
2126
2127 event->attach_state &= ~PERF_ATTACH_CONTEXT;
2128
2129 ctx->nr_events--;
2130 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2131 ctx->nr_user--;
2132 if (event->attr.inherit_stat)
2133 ctx->nr_stat--;
2134 if (has_inherit_and_sample_read(&event->attr))
2135 local_dec(&ctx->nr_no_switch_fast);
2136
2137 list_del_rcu(&event->event_entry);
2138
2139 if (event->group_leader == event)
2140 del_event_from_groups(event, ctx);
2141
2142 ctx->generation++;
2143 event->pmu_ctx->nr_events--;
2144 }
2145
2146 static int
perf_aux_output_match(struct perf_event * event,struct perf_event * aux_event)2147 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2148 {
2149 if (!has_aux(aux_event))
2150 return 0;
2151
2152 if (!event->pmu->aux_output_match)
2153 return 0;
2154
2155 return event->pmu->aux_output_match(aux_event);
2156 }
2157
2158 static void put_event(struct perf_event *event);
2159 static void __event_disable(struct perf_event *event,
2160 struct perf_event_context *ctx,
2161 enum perf_event_state state);
2162
perf_put_aux_event(struct perf_event * event)2163 static void perf_put_aux_event(struct perf_event *event)
2164 {
2165 struct perf_event_context *ctx = event->ctx;
2166 struct perf_event *iter;
2167
2168 /*
2169 * If event uses aux_event tear down the link
2170 */
2171 if (event->aux_event) {
2172 iter = event->aux_event;
2173 event->aux_event = NULL;
2174 put_event(iter);
2175 return;
2176 }
2177
2178 /*
2179 * If the event is an aux_event, tear down all links to
2180 * it from other events.
2181 */
2182 for_each_sibling_event(iter, event) {
2183 if (iter->aux_event != event)
2184 continue;
2185
2186 iter->aux_event = NULL;
2187 put_event(event);
2188
2189 /*
2190 * If it's ACTIVE, schedule it out and put it into ERROR
2191 * state so that we don't try to schedule it again. Note
2192 * that perf_event_enable() will clear the ERROR status.
2193 */
2194 __event_disable(iter, ctx, PERF_EVENT_STATE_ERROR);
2195 }
2196 }
2197
perf_need_aux_event(struct perf_event * event)2198 static bool perf_need_aux_event(struct perf_event *event)
2199 {
2200 return event->attr.aux_output || has_aux_action(event);
2201 }
2202
perf_get_aux_event(struct perf_event * event,struct perf_event * group_leader)2203 static int perf_get_aux_event(struct perf_event *event,
2204 struct perf_event *group_leader)
2205 {
2206 /*
2207 * Our group leader must be an aux event if we want to be
2208 * an aux_output. This way, the aux event will precede its
2209 * aux_output events in the group, and therefore will always
2210 * schedule first.
2211 */
2212 if (!group_leader)
2213 return 0;
2214
2215 /*
2216 * aux_output and aux_sample_size are mutually exclusive.
2217 */
2218 if (event->attr.aux_output && event->attr.aux_sample_size)
2219 return 0;
2220
2221 if (event->attr.aux_output &&
2222 !perf_aux_output_match(event, group_leader))
2223 return 0;
2224
2225 if ((event->attr.aux_pause || event->attr.aux_resume) &&
2226 !(group_leader->pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE))
2227 return 0;
2228
2229 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2230 return 0;
2231
2232 if (!atomic_long_inc_not_zero(&group_leader->refcount))
2233 return 0;
2234
2235 /*
2236 * Link aux_outputs to their aux event; this is undone in
2237 * perf_group_detach() by perf_put_aux_event(). When the
2238 * group in torn down, the aux_output events loose their
2239 * link to the aux_event and can't schedule any more.
2240 */
2241 event->aux_event = group_leader;
2242
2243 return 1;
2244 }
2245
get_event_list(struct perf_event * event)2246 static inline struct list_head *get_event_list(struct perf_event *event)
2247 {
2248 return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2249 &event->pmu_ctx->flexible_active;
2250 }
2251
perf_group_detach(struct perf_event * event)2252 static void perf_group_detach(struct perf_event *event)
2253 {
2254 struct perf_event *leader = event->group_leader;
2255 struct perf_event *sibling, *tmp;
2256 struct perf_event_context *ctx = event->ctx;
2257
2258 lockdep_assert_held(&ctx->lock);
2259
2260 /*
2261 * We can have double detach due to exit/hot-unplug + close.
2262 */
2263 if (!(event->attach_state & PERF_ATTACH_GROUP))
2264 return;
2265
2266 event->attach_state &= ~PERF_ATTACH_GROUP;
2267
2268 perf_put_aux_event(event);
2269
2270 /*
2271 * If this is a sibling, remove it from its group.
2272 */
2273 if (leader != event) {
2274 list_del_init(&event->sibling_list);
2275 event->group_leader->nr_siblings--;
2276 event->group_leader->group_generation++;
2277 goto out;
2278 }
2279
2280 /*
2281 * If this was a group event with sibling events then
2282 * upgrade the siblings to singleton events by adding them
2283 * to whatever list we are on.
2284 */
2285 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2286
2287 /*
2288 * Events that have PERF_EV_CAP_SIBLING require being part of
2289 * a group and cannot exist on their own, schedule them out
2290 * and move them into the ERROR state. Also see
2291 * _perf_event_enable(), it will not be able to recover this
2292 * ERROR state.
2293 */
2294 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2295 __event_disable(sibling, ctx, PERF_EVENT_STATE_ERROR);
2296
2297 sibling->group_leader = sibling;
2298 list_del_init(&sibling->sibling_list);
2299
2300 /* Inherit group flags from the previous leader */
2301 sibling->group_caps = event->group_caps;
2302
2303 if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2304 add_event_to_groups(sibling, event->ctx);
2305
2306 if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2307 list_add_tail(&sibling->active_list, get_event_list(sibling));
2308 }
2309
2310 WARN_ON_ONCE(sibling->ctx != event->ctx);
2311 }
2312
2313 out:
2314 for_each_sibling_event(tmp, leader)
2315 perf_event__header_size(tmp);
2316
2317 perf_event__header_size(leader);
2318 }
2319
2320 static void sync_child_event(struct perf_event *child_event);
2321
perf_child_detach(struct perf_event * event)2322 static void perf_child_detach(struct perf_event *event)
2323 {
2324 struct perf_event *parent_event = event->parent;
2325
2326 if (!(event->attach_state & PERF_ATTACH_CHILD))
2327 return;
2328
2329 event->attach_state &= ~PERF_ATTACH_CHILD;
2330
2331 if (WARN_ON_ONCE(!parent_event))
2332 return;
2333
2334 /*
2335 * Can't check this from an IPI, the holder is likey another CPU.
2336 *
2337 lockdep_assert_held(&parent_event->child_mutex);
2338 */
2339
2340 sync_child_event(event);
2341 list_del_init(&event->child_list);
2342 }
2343
is_orphaned_event(struct perf_event * event)2344 static bool is_orphaned_event(struct perf_event *event)
2345 {
2346 return event->state == PERF_EVENT_STATE_DEAD;
2347 }
2348
2349 static inline int
event_filter_match(struct perf_event * event)2350 event_filter_match(struct perf_event *event)
2351 {
2352 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2353 perf_cgroup_match(event);
2354 }
2355
is_event_in_freq_mode(struct perf_event * event)2356 static inline bool is_event_in_freq_mode(struct perf_event *event)
2357 {
2358 return event->attr.freq && event->attr.sample_freq;
2359 }
2360
2361 static void
event_sched_out(struct perf_event * event,struct perf_event_context * ctx)2362 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2363 {
2364 struct perf_event_pmu_context *epc = event->pmu_ctx;
2365 struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu);
2366 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2367
2368 // XXX cpc serialization, probably per-cpu IRQ disabled
2369
2370 WARN_ON_ONCE(event->ctx != ctx);
2371 lockdep_assert_held(&ctx->lock);
2372
2373 if (event->state != PERF_EVENT_STATE_ACTIVE)
2374 return;
2375
2376 /*
2377 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2378 * we can schedule events _OUT_ individually through things like
2379 * __perf_remove_from_context().
2380 */
2381 list_del_init(&event->active_list);
2382
2383 perf_pmu_disable(event->pmu);
2384
2385 event->pmu->del(event, 0);
2386 event->oncpu = -1;
2387
2388 if (event->pending_disable) {
2389 event->pending_disable = 0;
2390 perf_cgroup_event_disable(event, ctx);
2391 state = PERF_EVENT_STATE_OFF;
2392 }
2393
2394 perf_event_set_state(event, state);
2395
2396 if (!is_software_event(event))
2397 cpc->active_oncpu--;
2398 if (is_event_in_freq_mode(event)) {
2399 ctx->nr_freq--;
2400 epc->nr_freq--;
2401 }
2402 if (event->attr.exclusive || !cpc->active_oncpu)
2403 cpc->exclusive = 0;
2404
2405 perf_pmu_enable(event->pmu);
2406 }
2407
2408 static void
group_sched_out(struct perf_event * group_event,struct perf_event_context * ctx)2409 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2410 {
2411 struct perf_event *event;
2412
2413 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2414 return;
2415
2416 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2417
2418 event_sched_out(group_event, ctx);
2419
2420 /*
2421 * Schedule out siblings (if any):
2422 */
2423 for_each_sibling_event(event, group_event)
2424 event_sched_out(event, ctx);
2425 }
2426
2427 static inline void
__ctx_time_update(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,bool final)2428 __ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, bool final)
2429 {
2430 if (ctx->is_active & EVENT_TIME) {
2431 if (ctx->is_active & EVENT_FROZEN)
2432 return;
2433 update_context_time(ctx);
2434 update_cgrp_time_from_cpuctx(cpuctx, final);
2435 }
2436 }
2437
2438 static inline void
ctx_time_update(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2439 ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2440 {
2441 __ctx_time_update(cpuctx, ctx, false);
2442 }
2443
2444 /*
2445 * To be used inside perf_ctx_lock() / perf_ctx_unlock(). Lasts until perf_ctx_unlock().
2446 */
2447 static inline void
ctx_time_freeze(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2448 ctx_time_freeze(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2449 {
2450 ctx_time_update(cpuctx, ctx);
2451 if (ctx->is_active & EVENT_TIME)
2452 ctx->is_active |= EVENT_FROZEN;
2453 }
2454
2455 static inline void
ctx_time_update_event(struct perf_event_context * ctx,struct perf_event * event)2456 ctx_time_update_event(struct perf_event_context *ctx, struct perf_event *event)
2457 {
2458 if (ctx->is_active & EVENT_TIME) {
2459 if (ctx->is_active & EVENT_FROZEN)
2460 return;
2461 update_context_time(ctx);
2462 update_cgrp_time_from_event(event);
2463 }
2464 }
2465
2466 #define DETACH_GROUP 0x01UL
2467 #define DETACH_CHILD 0x02UL
2468 #define DETACH_EXIT 0x04UL
2469 #define DETACH_REVOKE 0x08UL
2470 #define DETACH_DEAD 0x10UL
2471
2472 /*
2473 * Cross CPU call to remove a performance event
2474 *
2475 * We disable the event on the hardware level first. After that we
2476 * remove it from the context list.
2477 */
2478 static void
__perf_remove_from_context(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2479 __perf_remove_from_context(struct perf_event *event,
2480 struct perf_cpu_context *cpuctx,
2481 struct perf_event_context *ctx,
2482 void *info)
2483 {
2484 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2485 enum perf_event_state state = PERF_EVENT_STATE_OFF;
2486 unsigned long flags = (unsigned long)info;
2487
2488 ctx_time_update(cpuctx, ctx);
2489
2490 /*
2491 * Ensure event_sched_out() switches to OFF, at the very least
2492 * this avoids raising perf_pending_task() at this time.
2493 */
2494 if (flags & DETACH_EXIT)
2495 state = PERF_EVENT_STATE_EXIT;
2496 if (flags & DETACH_REVOKE)
2497 state = PERF_EVENT_STATE_REVOKED;
2498 if (flags & DETACH_DEAD)
2499 state = PERF_EVENT_STATE_DEAD;
2500
2501 event_sched_out(event, ctx);
2502
2503 if (event->state > PERF_EVENT_STATE_OFF)
2504 perf_cgroup_event_disable(event, ctx);
2505
2506 perf_event_set_state(event, min(event->state, state));
2507
2508 if (flags & DETACH_GROUP)
2509 perf_group_detach(event);
2510 if (flags & DETACH_CHILD)
2511 perf_child_detach(event);
2512 list_del_event(event, ctx);
2513
2514 if (!pmu_ctx->nr_events) {
2515 pmu_ctx->rotate_necessary = 0;
2516
2517 if (ctx->task && ctx->is_active) {
2518 struct perf_cpu_pmu_context *cpc = this_cpc(pmu_ctx->pmu);
2519
2520 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2521 cpc->task_epc = NULL;
2522 }
2523 }
2524
2525 if (!ctx->nr_events && ctx->is_active) {
2526 if (ctx == &cpuctx->ctx)
2527 update_cgrp_time_from_cpuctx(cpuctx, true);
2528
2529 ctx->is_active = 0;
2530 if (ctx->task) {
2531 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2532 cpuctx->task_ctx = NULL;
2533 }
2534 }
2535 }
2536
2537 /*
2538 * Remove the event from a task's (or a CPU's) list of events.
2539 *
2540 * If event->ctx is a cloned context, callers must make sure that
2541 * every task struct that event->ctx->task could possibly point to
2542 * remains valid. This is OK when called from perf_release since
2543 * that only calls us on the top-level context, which can't be a clone.
2544 * When called from perf_event_exit_task, it's OK because the
2545 * context has been detached from its task.
2546 */
perf_remove_from_context(struct perf_event * event,unsigned long flags)2547 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2548 {
2549 struct perf_event_context *ctx = event->ctx;
2550
2551 lockdep_assert_held(&ctx->mutex);
2552
2553 /*
2554 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2555 * to work in the face of TASK_TOMBSTONE, unlike every other
2556 * event_function_call() user.
2557 */
2558 raw_spin_lock_irq(&ctx->lock);
2559 if (!ctx->is_active) {
2560 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2561 ctx, (void *)flags);
2562 raw_spin_unlock_irq(&ctx->lock);
2563 return;
2564 }
2565 raw_spin_unlock_irq(&ctx->lock);
2566
2567 event_function_call(event, __perf_remove_from_context, (void *)flags);
2568 }
2569
__event_disable(struct perf_event * event,struct perf_event_context * ctx,enum perf_event_state state)2570 static void __event_disable(struct perf_event *event,
2571 struct perf_event_context *ctx,
2572 enum perf_event_state state)
2573 {
2574 event_sched_out(event, ctx);
2575 perf_cgroup_event_disable(event, ctx);
2576 perf_event_set_state(event, state);
2577 }
2578
2579 /*
2580 * Cross CPU call to disable a performance event
2581 */
__perf_event_disable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2582 static void __perf_event_disable(struct perf_event *event,
2583 struct perf_cpu_context *cpuctx,
2584 struct perf_event_context *ctx,
2585 void *info)
2586 {
2587 if (event->state < PERF_EVENT_STATE_INACTIVE)
2588 return;
2589
2590 perf_pmu_disable(event->pmu_ctx->pmu);
2591 ctx_time_update_event(ctx, event);
2592
2593 /*
2594 * When disabling a group leader, the whole group becomes ineligible
2595 * to run, so schedule out the full group.
2596 */
2597 if (event == event->group_leader)
2598 group_sched_out(event, ctx);
2599
2600 /*
2601 * But only mark the leader OFF; the siblings will remain
2602 * INACTIVE.
2603 */
2604 __event_disable(event, ctx, PERF_EVENT_STATE_OFF);
2605
2606 perf_pmu_enable(event->pmu_ctx->pmu);
2607 }
2608
2609 /*
2610 * Disable an event.
2611 *
2612 * If event->ctx is a cloned context, callers must make sure that
2613 * every task struct that event->ctx->task could possibly point to
2614 * remains valid. This condition is satisfied when called through
2615 * perf_event_for_each_child or perf_event_for_each because they
2616 * hold the top-level event's child_mutex, so any descendant that
2617 * goes to exit will block in perf_event_exit_event().
2618 *
2619 * When called from perf_pending_disable it's OK because event->ctx
2620 * is the current context on this CPU and preemption is disabled,
2621 * hence we can't get into perf_event_task_sched_out for this context.
2622 */
_perf_event_disable(struct perf_event * event)2623 static void _perf_event_disable(struct perf_event *event)
2624 {
2625 struct perf_event_context *ctx = event->ctx;
2626
2627 raw_spin_lock_irq(&ctx->lock);
2628 if (event->state <= PERF_EVENT_STATE_OFF) {
2629 raw_spin_unlock_irq(&ctx->lock);
2630 return;
2631 }
2632 raw_spin_unlock_irq(&ctx->lock);
2633
2634 event_function_call(event, __perf_event_disable, NULL);
2635 }
2636
perf_event_disable_local(struct perf_event * event)2637 void perf_event_disable_local(struct perf_event *event)
2638 {
2639 event_function_local(event, __perf_event_disable, NULL);
2640 }
2641
2642 /*
2643 * Strictly speaking kernel users cannot create groups and therefore this
2644 * interface does not need the perf_event_ctx_lock() magic.
2645 */
perf_event_disable(struct perf_event * event)2646 void perf_event_disable(struct perf_event *event)
2647 {
2648 struct perf_event_context *ctx;
2649
2650 ctx = perf_event_ctx_lock(event);
2651 _perf_event_disable(event);
2652 perf_event_ctx_unlock(event, ctx);
2653 }
2654 EXPORT_SYMBOL_GPL(perf_event_disable);
2655
perf_event_disable_inatomic(struct perf_event * event)2656 void perf_event_disable_inatomic(struct perf_event *event)
2657 {
2658 event->pending_disable = 1;
2659 irq_work_queue(&event->pending_disable_irq);
2660 }
2661
2662 #define MAX_INTERRUPTS (~0ULL)
2663
2664 static void perf_log_throttle(struct perf_event *event, int enable);
2665 static void perf_log_itrace_start(struct perf_event *event);
2666
perf_event_unthrottle(struct perf_event * event,bool start)2667 static void perf_event_unthrottle(struct perf_event *event, bool start)
2668 {
2669 if (event->state != PERF_EVENT_STATE_ACTIVE)
2670 return;
2671
2672 event->hw.interrupts = 0;
2673 if (start)
2674 event->pmu->start(event, 0);
2675 if (event == event->group_leader)
2676 perf_log_throttle(event, 1);
2677 }
2678
perf_event_throttle(struct perf_event * event)2679 static void perf_event_throttle(struct perf_event *event)
2680 {
2681 if (event->state != PERF_EVENT_STATE_ACTIVE)
2682 return;
2683
2684 event->hw.interrupts = MAX_INTERRUPTS;
2685 event->pmu->stop(event, 0);
2686 if (event == event->group_leader)
2687 perf_log_throttle(event, 0);
2688 }
2689
perf_event_unthrottle_group(struct perf_event * event,bool skip_start_event)2690 static void perf_event_unthrottle_group(struct perf_event *event, bool skip_start_event)
2691 {
2692 struct perf_event *sibling, *leader = event->group_leader;
2693
2694 perf_event_unthrottle(leader, skip_start_event ? leader != event : true);
2695 for_each_sibling_event(sibling, leader)
2696 perf_event_unthrottle(sibling, skip_start_event ? sibling != event : true);
2697 }
2698
perf_event_throttle_group(struct perf_event * event)2699 static void perf_event_throttle_group(struct perf_event *event)
2700 {
2701 struct perf_event *sibling, *leader = event->group_leader;
2702
2703 perf_event_throttle(leader);
2704 for_each_sibling_event(sibling, leader)
2705 perf_event_throttle(sibling);
2706 }
2707
2708 static int
event_sched_in(struct perf_event * event,struct perf_event_context * ctx)2709 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2710 {
2711 struct perf_event_pmu_context *epc = event->pmu_ctx;
2712 struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu);
2713 int ret = 0;
2714
2715 WARN_ON_ONCE(event->ctx != ctx);
2716
2717 lockdep_assert_held(&ctx->lock);
2718
2719 if (event->state <= PERF_EVENT_STATE_OFF)
2720 return 0;
2721
2722 WRITE_ONCE(event->oncpu, smp_processor_id());
2723 /*
2724 * Order event::oncpu write to happen before the ACTIVE state is
2725 * visible. This allows perf_event_{stop,read}() to observe the correct
2726 * ->oncpu if it sees ACTIVE.
2727 */
2728 smp_wmb();
2729 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2730
2731 /*
2732 * Unthrottle events, since we scheduled we might have missed several
2733 * ticks already, also for a heavily scheduling task there is little
2734 * guarantee it'll get a tick in a timely manner.
2735 */
2736 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS))
2737 perf_event_unthrottle(event, false);
2738
2739 perf_pmu_disable(event->pmu);
2740
2741 perf_log_itrace_start(event);
2742
2743 if (event->pmu->add(event, PERF_EF_START)) {
2744 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2745 event->oncpu = -1;
2746 ret = -EAGAIN;
2747 goto out;
2748 }
2749
2750 if (!is_software_event(event))
2751 cpc->active_oncpu++;
2752 if (is_event_in_freq_mode(event)) {
2753 ctx->nr_freq++;
2754 epc->nr_freq++;
2755 }
2756 if (event->attr.exclusive)
2757 cpc->exclusive = 1;
2758
2759 out:
2760 perf_pmu_enable(event->pmu);
2761
2762 return ret;
2763 }
2764
2765 static int
group_sched_in(struct perf_event * group_event,struct perf_event_context * ctx)2766 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2767 {
2768 struct perf_event *event, *partial_group = NULL;
2769 struct pmu *pmu = group_event->pmu_ctx->pmu;
2770
2771 if (group_event->state == PERF_EVENT_STATE_OFF)
2772 return 0;
2773
2774 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2775
2776 if (event_sched_in(group_event, ctx))
2777 goto error;
2778
2779 /*
2780 * Schedule in siblings as one group (if any):
2781 */
2782 for_each_sibling_event(event, group_event) {
2783 if (event_sched_in(event, ctx)) {
2784 partial_group = event;
2785 goto group_error;
2786 }
2787 }
2788
2789 if (!pmu->commit_txn(pmu))
2790 return 0;
2791
2792 group_error:
2793 /*
2794 * Groups can be scheduled in as one unit only, so undo any
2795 * partial group before returning:
2796 * The events up to the failed event are scheduled out normally.
2797 */
2798 for_each_sibling_event(event, group_event) {
2799 if (event == partial_group)
2800 break;
2801
2802 event_sched_out(event, ctx);
2803 }
2804 event_sched_out(group_event, ctx);
2805
2806 error:
2807 pmu->cancel_txn(pmu);
2808 return -EAGAIN;
2809 }
2810
2811 /*
2812 * Work out whether we can put this event group on the CPU now.
2813 */
group_can_go_on(struct perf_event * event,int can_add_hw)2814 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2815 {
2816 struct perf_event_pmu_context *epc = event->pmu_ctx;
2817 struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu);
2818
2819 /*
2820 * Groups consisting entirely of software events can always go on.
2821 */
2822 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2823 return 1;
2824 /*
2825 * If an exclusive group is already on, no other hardware
2826 * events can go on.
2827 */
2828 if (cpc->exclusive)
2829 return 0;
2830 /*
2831 * If this group is exclusive and there are already
2832 * events on the CPU, it can't go on.
2833 */
2834 if (event->attr.exclusive && !list_empty(get_event_list(event)))
2835 return 0;
2836 /*
2837 * Otherwise, try to add it if all previous groups were able
2838 * to go on.
2839 */
2840 return can_add_hw;
2841 }
2842
add_event_to_ctx(struct perf_event * event,struct perf_event_context * ctx)2843 static void add_event_to_ctx(struct perf_event *event,
2844 struct perf_event_context *ctx)
2845 {
2846 list_add_event(event, ctx);
2847 perf_group_attach(event);
2848 }
2849
task_ctx_sched_out(struct perf_event_context * ctx,struct pmu * pmu,enum event_type_t event_type)2850 static void task_ctx_sched_out(struct perf_event_context *ctx,
2851 struct pmu *pmu,
2852 enum event_type_t event_type)
2853 {
2854 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2855
2856 if (!cpuctx->task_ctx)
2857 return;
2858
2859 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2860 return;
2861
2862 ctx_sched_out(ctx, pmu, event_type);
2863 }
2864
perf_event_sched_in(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,struct pmu * pmu)2865 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2866 struct perf_event_context *ctx,
2867 struct pmu *pmu)
2868 {
2869 ctx_sched_in(&cpuctx->ctx, pmu, EVENT_PINNED);
2870 if (ctx)
2871 ctx_sched_in(ctx, pmu, EVENT_PINNED);
2872 ctx_sched_in(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2873 if (ctx)
2874 ctx_sched_in(ctx, pmu, EVENT_FLEXIBLE);
2875 }
2876
2877 /*
2878 * We want to maintain the following priority of scheduling:
2879 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2880 * - task pinned (EVENT_PINNED)
2881 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2882 * - task flexible (EVENT_FLEXIBLE).
2883 *
2884 * In order to avoid unscheduling and scheduling back in everything every
2885 * time an event is added, only do it for the groups of equal priority and
2886 * below.
2887 *
2888 * This can be called after a batch operation on task events, in which case
2889 * event_type is a bit mask of the types of events involved. For CPU events,
2890 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2891 */
ctx_resched(struct perf_cpu_context * cpuctx,struct perf_event_context * task_ctx,struct pmu * pmu,enum event_type_t event_type)2892 static void ctx_resched(struct perf_cpu_context *cpuctx,
2893 struct perf_event_context *task_ctx,
2894 struct pmu *pmu, enum event_type_t event_type)
2895 {
2896 bool cpu_event = !!(event_type & EVENT_CPU);
2897 struct perf_event_pmu_context *epc;
2898
2899 /*
2900 * If pinned groups are involved, flexible groups also need to be
2901 * scheduled out.
2902 */
2903 if (event_type & EVENT_PINNED)
2904 event_type |= EVENT_FLEXIBLE;
2905
2906 event_type &= EVENT_ALL;
2907
2908 for_each_epc(epc, &cpuctx->ctx, pmu, false)
2909 perf_pmu_disable(epc->pmu);
2910
2911 if (task_ctx) {
2912 for_each_epc(epc, task_ctx, pmu, false)
2913 perf_pmu_disable(epc->pmu);
2914
2915 task_ctx_sched_out(task_ctx, pmu, event_type);
2916 }
2917
2918 /*
2919 * Decide which cpu ctx groups to schedule out based on the types
2920 * of events that caused rescheduling:
2921 * - EVENT_CPU: schedule out corresponding groups;
2922 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2923 * - otherwise, do nothing more.
2924 */
2925 if (cpu_event)
2926 ctx_sched_out(&cpuctx->ctx, pmu, event_type);
2927 else if (event_type & EVENT_PINNED)
2928 ctx_sched_out(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2929
2930 perf_event_sched_in(cpuctx, task_ctx, pmu);
2931
2932 for_each_epc(epc, &cpuctx->ctx, pmu, false)
2933 perf_pmu_enable(epc->pmu);
2934
2935 if (task_ctx) {
2936 for_each_epc(epc, task_ctx, pmu, false)
2937 perf_pmu_enable(epc->pmu);
2938 }
2939 }
2940
perf_pmu_resched(struct pmu * pmu)2941 void perf_pmu_resched(struct pmu *pmu)
2942 {
2943 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2944 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2945
2946 perf_ctx_lock(cpuctx, task_ctx);
2947 ctx_resched(cpuctx, task_ctx, pmu, EVENT_ALL|EVENT_CPU);
2948 perf_ctx_unlock(cpuctx, task_ctx);
2949 }
2950
2951 /*
2952 * Cross CPU call to install and enable a performance event
2953 *
2954 * Very similar to remote_function() + event_function() but cannot assume that
2955 * things like ctx->is_active and cpuctx->task_ctx are set.
2956 */
__perf_install_in_context(void * info)2957 static int __perf_install_in_context(void *info)
2958 {
2959 struct perf_event *event = info;
2960 struct perf_event_context *ctx = event->ctx;
2961 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2962 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2963 bool reprogram = true;
2964 int ret = 0;
2965
2966 raw_spin_lock(&cpuctx->ctx.lock);
2967 if (ctx->task) {
2968 raw_spin_lock(&ctx->lock);
2969 task_ctx = ctx;
2970
2971 reprogram = (ctx->task == current);
2972
2973 /*
2974 * If the task is running, it must be running on this CPU,
2975 * otherwise we cannot reprogram things.
2976 *
2977 * If its not running, we don't care, ctx->lock will
2978 * serialize against it becoming runnable.
2979 */
2980 if (task_curr(ctx->task) && !reprogram) {
2981 ret = -ESRCH;
2982 goto unlock;
2983 }
2984
2985 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2986 } else if (task_ctx) {
2987 raw_spin_lock(&task_ctx->lock);
2988 }
2989
2990 #ifdef CONFIG_CGROUP_PERF
2991 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2992 /*
2993 * If the current cgroup doesn't match the event's
2994 * cgroup, we should not try to schedule it.
2995 */
2996 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2997 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2998 event->cgrp->css.cgroup);
2999 }
3000 #endif
3001
3002 if (reprogram) {
3003 ctx_time_freeze(cpuctx, ctx);
3004 add_event_to_ctx(event, ctx);
3005 ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu,
3006 get_event_type(event));
3007 } else {
3008 add_event_to_ctx(event, ctx);
3009 }
3010
3011 unlock:
3012 perf_ctx_unlock(cpuctx, task_ctx);
3013
3014 return ret;
3015 }
3016
3017 static bool exclusive_event_installable(struct perf_event *event,
3018 struct perf_event_context *ctx);
3019
3020 /*
3021 * Attach a performance event to a context.
3022 *
3023 * Very similar to event_function_call, see comment there.
3024 */
3025 static void
perf_install_in_context(struct perf_event_context * ctx,struct perf_event * event,int cpu)3026 perf_install_in_context(struct perf_event_context *ctx,
3027 struct perf_event *event,
3028 int cpu)
3029 {
3030 struct task_struct *task = READ_ONCE(ctx->task);
3031
3032 lockdep_assert_held(&ctx->mutex);
3033
3034 WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
3035
3036 if (event->cpu != -1)
3037 WARN_ON_ONCE(event->cpu != cpu);
3038
3039 /*
3040 * Ensures that if we can observe event->ctx, both the event and ctx
3041 * will be 'complete'. See perf_iterate_sb_cpu().
3042 */
3043 smp_store_release(&event->ctx, ctx);
3044
3045 /*
3046 * perf_event_attr::disabled events will not run and can be initialized
3047 * without IPI. Except when this is the first event for the context, in
3048 * that case we need the magic of the IPI to set ctx->is_active.
3049 *
3050 * The IOC_ENABLE that is sure to follow the creation of a disabled
3051 * event will issue the IPI and reprogram the hardware.
3052 */
3053 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
3054 ctx->nr_events && !is_cgroup_event(event)) {
3055 raw_spin_lock_irq(&ctx->lock);
3056 if (ctx->task == TASK_TOMBSTONE) {
3057 raw_spin_unlock_irq(&ctx->lock);
3058 return;
3059 }
3060 add_event_to_ctx(event, ctx);
3061 raw_spin_unlock_irq(&ctx->lock);
3062 return;
3063 }
3064
3065 if (!task) {
3066 cpu_function_call(cpu, __perf_install_in_context, event);
3067 return;
3068 }
3069
3070 /*
3071 * Should not happen, we validate the ctx is still alive before calling.
3072 */
3073 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
3074 return;
3075
3076 /*
3077 * Installing events is tricky because we cannot rely on ctx->is_active
3078 * to be set in case this is the nr_events 0 -> 1 transition.
3079 *
3080 * Instead we use task_curr(), which tells us if the task is running.
3081 * However, since we use task_curr() outside of rq::lock, we can race
3082 * against the actual state. This means the result can be wrong.
3083 *
3084 * If we get a false positive, we retry, this is harmless.
3085 *
3086 * If we get a false negative, things are complicated. If we are after
3087 * perf_event_context_sched_in() ctx::lock will serialize us, and the
3088 * value must be correct. If we're before, it doesn't matter since
3089 * perf_event_context_sched_in() will program the counter.
3090 *
3091 * However, this hinges on the remote context switch having observed
3092 * our task->perf_event_ctxp[] store, such that it will in fact take
3093 * ctx::lock in perf_event_context_sched_in().
3094 *
3095 * We do this by task_function_call(), if the IPI fails to hit the task
3096 * we know any future context switch of task must see the
3097 * perf_event_ctpx[] store.
3098 */
3099
3100 /*
3101 * This smp_mb() orders the task->perf_event_ctxp[] store with the
3102 * task_cpu() load, such that if the IPI then does not find the task
3103 * running, a future context switch of that task must observe the
3104 * store.
3105 */
3106 smp_mb();
3107 again:
3108 if (!task_function_call(task, __perf_install_in_context, event))
3109 return;
3110
3111 raw_spin_lock_irq(&ctx->lock);
3112 task = ctx->task;
3113 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
3114 /*
3115 * Cannot happen because we already checked above (which also
3116 * cannot happen), and we hold ctx->mutex, which serializes us
3117 * against perf_event_exit_task_context().
3118 */
3119 raw_spin_unlock_irq(&ctx->lock);
3120 return;
3121 }
3122 /*
3123 * If the task is not running, ctx->lock will avoid it becoming so,
3124 * thus we can safely install the event.
3125 */
3126 if (task_curr(task)) {
3127 raw_spin_unlock_irq(&ctx->lock);
3128 goto again;
3129 }
3130 add_event_to_ctx(event, ctx);
3131 raw_spin_unlock_irq(&ctx->lock);
3132 }
3133
3134 /*
3135 * Cross CPU call to enable a performance event
3136 */
__perf_event_enable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)3137 static void __perf_event_enable(struct perf_event *event,
3138 struct perf_cpu_context *cpuctx,
3139 struct perf_event_context *ctx,
3140 void *info)
3141 {
3142 struct perf_event *leader = event->group_leader;
3143 struct perf_event_context *task_ctx;
3144
3145 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3146 event->state <= PERF_EVENT_STATE_ERROR)
3147 return;
3148
3149 ctx_time_freeze(cpuctx, ctx);
3150
3151 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3152 perf_cgroup_event_enable(event, ctx);
3153
3154 if (!ctx->is_active)
3155 return;
3156
3157 if (!event_filter_match(event))
3158 return;
3159
3160 /*
3161 * If the event is in a group and isn't the group leader,
3162 * then don't put it on unless the group is on.
3163 */
3164 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
3165 return;
3166
3167 task_ctx = cpuctx->task_ctx;
3168 if (ctx->task)
3169 WARN_ON_ONCE(task_ctx != ctx);
3170
3171 ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, get_event_type(event));
3172 }
3173
3174 /*
3175 * Enable an event.
3176 *
3177 * If event->ctx is a cloned context, callers must make sure that
3178 * every task struct that event->ctx->task could possibly point to
3179 * remains valid. This condition is satisfied when called through
3180 * perf_event_for_each_child or perf_event_for_each as described
3181 * for perf_event_disable.
3182 */
_perf_event_enable(struct perf_event * event)3183 static void _perf_event_enable(struct perf_event *event)
3184 {
3185 struct perf_event_context *ctx = event->ctx;
3186
3187 raw_spin_lock_irq(&ctx->lock);
3188 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3189 event->state < PERF_EVENT_STATE_ERROR) {
3190 out:
3191 raw_spin_unlock_irq(&ctx->lock);
3192 return;
3193 }
3194
3195 /*
3196 * If the event is in error state, clear that first.
3197 *
3198 * That way, if we see the event in error state below, we know that it
3199 * has gone back into error state, as distinct from the task having
3200 * been scheduled away before the cross-call arrived.
3201 */
3202 if (event->state == PERF_EVENT_STATE_ERROR) {
3203 /*
3204 * Detached SIBLING events cannot leave ERROR state.
3205 */
3206 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3207 event->group_leader == event)
3208 goto out;
3209
3210 event->state = PERF_EVENT_STATE_OFF;
3211 }
3212 raw_spin_unlock_irq(&ctx->lock);
3213
3214 event_function_call(event, __perf_event_enable, NULL);
3215 }
3216
3217 /*
3218 * See perf_event_disable();
3219 */
perf_event_enable(struct perf_event * event)3220 void perf_event_enable(struct perf_event *event)
3221 {
3222 struct perf_event_context *ctx;
3223
3224 ctx = perf_event_ctx_lock(event);
3225 _perf_event_enable(event);
3226 perf_event_ctx_unlock(event, ctx);
3227 }
3228 EXPORT_SYMBOL_GPL(perf_event_enable);
3229
3230 struct stop_event_data {
3231 struct perf_event *event;
3232 unsigned int restart;
3233 };
3234
__perf_event_stop(void * info)3235 static int __perf_event_stop(void *info)
3236 {
3237 struct stop_event_data *sd = info;
3238 struct perf_event *event = sd->event;
3239
3240 /* if it's already INACTIVE, do nothing */
3241 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3242 return 0;
3243
3244 /* matches smp_wmb() in event_sched_in() */
3245 smp_rmb();
3246
3247 /*
3248 * There is a window with interrupts enabled before we get here,
3249 * so we need to check again lest we try to stop another CPU's event.
3250 */
3251 if (READ_ONCE(event->oncpu) != smp_processor_id())
3252 return -EAGAIN;
3253
3254 event->pmu->stop(event, PERF_EF_UPDATE);
3255
3256 /*
3257 * May race with the actual stop (through perf_pmu_output_stop()),
3258 * but it is only used for events with AUX ring buffer, and such
3259 * events will refuse to restart because of rb::aux_mmap_count==0,
3260 * see comments in perf_aux_output_begin().
3261 *
3262 * Since this is happening on an event-local CPU, no trace is lost
3263 * while restarting.
3264 */
3265 if (sd->restart)
3266 event->pmu->start(event, 0);
3267
3268 return 0;
3269 }
3270
perf_event_stop(struct perf_event * event,int restart)3271 static int perf_event_stop(struct perf_event *event, int restart)
3272 {
3273 struct stop_event_data sd = {
3274 .event = event,
3275 .restart = restart,
3276 };
3277 int ret = 0;
3278
3279 do {
3280 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3281 return 0;
3282
3283 /* matches smp_wmb() in event_sched_in() */
3284 smp_rmb();
3285
3286 /*
3287 * We only want to restart ACTIVE events, so if the event goes
3288 * inactive here (event->oncpu==-1), there's nothing more to do;
3289 * fall through with ret==-ENXIO.
3290 */
3291 ret = cpu_function_call(READ_ONCE(event->oncpu),
3292 __perf_event_stop, &sd);
3293 } while (ret == -EAGAIN);
3294
3295 return ret;
3296 }
3297
3298 /*
3299 * In order to contain the amount of racy and tricky in the address filter
3300 * configuration management, it is a two part process:
3301 *
3302 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3303 * we update the addresses of corresponding vmas in
3304 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
3305 * (p2) when an event is scheduled in (pmu::add), it calls
3306 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3307 * if the generation has changed since the previous call.
3308 *
3309 * If (p1) happens while the event is active, we restart it to force (p2).
3310 *
3311 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3312 * pre-existing mappings, called once when new filters arrive via SET_FILTER
3313 * ioctl;
3314 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3315 * registered mapping, called for every new mmap(), with mm::mmap_lock down
3316 * for reading;
3317 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3318 * of exec.
3319 */
perf_event_addr_filters_sync(struct perf_event * event)3320 void perf_event_addr_filters_sync(struct perf_event *event)
3321 {
3322 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3323
3324 if (!has_addr_filter(event))
3325 return;
3326
3327 raw_spin_lock(&ifh->lock);
3328 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3329 event->pmu->addr_filters_sync(event);
3330 event->hw.addr_filters_gen = event->addr_filters_gen;
3331 }
3332 raw_spin_unlock(&ifh->lock);
3333 }
3334 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3335
_perf_event_refresh(struct perf_event * event,int refresh)3336 static int _perf_event_refresh(struct perf_event *event, int refresh)
3337 {
3338 /*
3339 * not supported on inherited events
3340 */
3341 if (event->attr.inherit || !is_sampling_event(event))
3342 return -EINVAL;
3343
3344 atomic_add(refresh, &event->event_limit);
3345 _perf_event_enable(event);
3346
3347 return 0;
3348 }
3349
3350 /*
3351 * See perf_event_disable()
3352 */
perf_event_refresh(struct perf_event * event,int refresh)3353 int perf_event_refresh(struct perf_event *event, int refresh)
3354 {
3355 struct perf_event_context *ctx;
3356 int ret;
3357
3358 ctx = perf_event_ctx_lock(event);
3359 ret = _perf_event_refresh(event, refresh);
3360 perf_event_ctx_unlock(event, ctx);
3361
3362 return ret;
3363 }
3364 EXPORT_SYMBOL_GPL(perf_event_refresh);
3365
perf_event_modify_breakpoint(struct perf_event * bp,struct perf_event_attr * attr)3366 static int perf_event_modify_breakpoint(struct perf_event *bp,
3367 struct perf_event_attr *attr)
3368 {
3369 int err;
3370
3371 _perf_event_disable(bp);
3372
3373 err = modify_user_hw_breakpoint_check(bp, attr, true);
3374
3375 if (!bp->attr.disabled)
3376 _perf_event_enable(bp);
3377
3378 return err;
3379 }
3380
3381 /*
3382 * Copy event-type-independent attributes that may be modified.
3383 */
perf_event_modify_copy_attr(struct perf_event_attr * to,const struct perf_event_attr * from)3384 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3385 const struct perf_event_attr *from)
3386 {
3387 to->sig_data = from->sig_data;
3388 }
3389
perf_event_modify_attr(struct perf_event * event,struct perf_event_attr * attr)3390 static int perf_event_modify_attr(struct perf_event *event,
3391 struct perf_event_attr *attr)
3392 {
3393 int (*func)(struct perf_event *, struct perf_event_attr *);
3394 struct perf_event *child;
3395 int err;
3396
3397 if (event->attr.type != attr->type)
3398 return -EINVAL;
3399
3400 switch (event->attr.type) {
3401 case PERF_TYPE_BREAKPOINT:
3402 func = perf_event_modify_breakpoint;
3403 break;
3404 default:
3405 /* Place holder for future additions. */
3406 return -EOPNOTSUPP;
3407 }
3408
3409 WARN_ON_ONCE(event->ctx->parent_ctx);
3410
3411 mutex_lock(&event->child_mutex);
3412 /*
3413 * Event-type-independent attributes must be copied before event-type
3414 * modification, which will validate that final attributes match the
3415 * source attributes after all relevant attributes have been copied.
3416 */
3417 perf_event_modify_copy_attr(&event->attr, attr);
3418 err = func(event, attr);
3419 if (err)
3420 goto out;
3421 list_for_each_entry(child, &event->child_list, child_list) {
3422 perf_event_modify_copy_attr(&child->attr, attr);
3423 err = func(child, attr);
3424 if (err)
3425 goto out;
3426 }
3427 out:
3428 mutex_unlock(&event->child_mutex);
3429 return err;
3430 }
3431
__pmu_ctx_sched_out(struct perf_event_pmu_context * pmu_ctx,enum event_type_t event_type)3432 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3433 enum event_type_t event_type)
3434 {
3435 struct perf_event_context *ctx = pmu_ctx->ctx;
3436 struct perf_event *event, *tmp;
3437 struct pmu *pmu = pmu_ctx->pmu;
3438
3439 if (ctx->task && !(ctx->is_active & EVENT_ALL)) {
3440 struct perf_cpu_pmu_context *cpc = this_cpc(pmu);
3441
3442 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3443 cpc->task_epc = NULL;
3444 }
3445
3446 if (!(event_type & EVENT_ALL))
3447 return;
3448
3449 perf_pmu_disable(pmu);
3450 if (event_type & EVENT_PINNED) {
3451 list_for_each_entry_safe(event, tmp,
3452 &pmu_ctx->pinned_active,
3453 active_list)
3454 group_sched_out(event, ctx);
3455 }
3456
3457 if (event_type & EVENT_FLEXIBLE) {
3458 list_for_each_entry_safe(event, tmp,
3459 &pmu_ctx->flexible_active,
3460 active_list)
3461 group_sched_out(event, ctx);
3462 /*
3463 * Since we cleared EVENT_FLEXIBLE, also clear
3464 * rotate_necessary, is will be reset by
3465 * ctx_flexible_sched_in() when needed.
3466 */
3467 pmu_ctx->rotate_necessary = 0;
3468 }
3469 perf_pmu_enable(pmu);
3470 }
3471
3472 /*
3473 * Be very careful with the @pmu argument since this will change ctx state.
3474 * The @pmu argument works for ctx_resched(), because that is symmetric in
3475 * ctx_sched_out() / ctx_sched_in() usage and the ctx state ends up invariant.
3476 *
3477 * However, if you were to be asymmetrical, you could end up with messed up
3478 * state, eg. ctx->is_active cleared even though most EPCs would still actually
3479 * be active.
3480 */
3481 static void
ctx_sched_out(struct perf_event_context * ctx,struct pmu * pmu,enum event_type_t event_type)3482 ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
3483 {
3484 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3485 struct perf_event_pmu_context *pmu_ctx;
3486 int is_active = ctx->is_active;
3487 bool cgroup = event_type & EVENT_CGROUP;
3488
3489 event_type &= ~EVENT_CGROUP;
3490
3491 lockdep_assert_held(&ctx->lock);
3492
3493 if (likely(!ctx->nr_events)) {
3494 /*
3495 * See __perf_remove_from_context().
3496 */
3497 WARN_ON_ONCE(ctx->is_active);
3498 if (ctx->task)
3499 WARN_ON_ONCE(cpuctx->task_ctx);
3500 return;
3501 }
3502
3503 /*
3504 * Always update time if it was set; not only when it changes.
3505 * Otherwise we can 'forget' to update time for any but the last
3506 * context we sched out. For example:
3507 *
3508 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3509 * ctx_sched_out(.event_type = EVENT_PINNED)
3510 *
3511 * would only update time for the pinned events.
3512 */
3513 __ctx_time_update(cpuctx, ctx, ctx == &cpuctx->ctx);
3514
3515 /*
3516 * CPU-release for the below ->is_active store,
3517 * see __load_acquire() in perf_event_time_now()
3518 */
3519 barrier();
3520 ctx->is_active &= ~event_type;
3521
3522 if (!(ctx->is_active & EVENT_ALL)) {
3523 /*
3524 * For FROZEN, preserve TIME|FROZEN such that perf_event_time_now()
3525 * does not observe a hole. perf_ctx_unlock() will clean up.
3526 */
3527 if (ctx->is_active & EVENT_FROZEN)
3528 ctx->is_active &= EVENT_TIME_FROZEN;
3529 else
3530 ctx->is_active = 0;
3531 }
3532
3533 if (ctx->task) {
3534 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3535 if (!(ctx->is_active & EVENT_ALL))
3536 cpuctx->task_ctx = NULL;
3537 }
3538
3539 is_active ^= ctx->is_active; /* changed bits */
3540
3541 for_each_epc(pmu_ctx, ctx, pmu, cgroup)
3542 __pmu_ctx_sched_out(pmu_ctx, is_active);
3543 }
3544
3545 /*
3546 * Test whether two contexts are equivalent, i.e. whether they have both been
3547 * cloned from the same version of the same context.
3548 *
3549 * Equivalence is measured using a generation number in the context that is
3550 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3551 * and list_del_event().
3552 */
context_equiv(struct perf_event_context * ctx1,struct perf_event_context * ctx2)3553 static int context_equiv(struct perf_event_context *ctx1,
3554 struct perf_event_context *ctx2)
3555 {
3556 lockdep_assert_held(&ctx1->lock);
3557 lockdep_assert_held(&ctx2->lock);
3558
3559 /* Pinning disables the swap optimization */
3560 if (ctx1->pin_count || ctx2->pin_count)
3561 return 0;
3562
3563 /* If ctx1 is the parent of ctx2 */
3564 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3565 return 1;
3566
3567 /* If ctx2 is the parent of ctx1 */
3568 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3569 return 1;
3570
3571 /*
3572 * If ctx1 and ctx2 have the same parent; we flatten the parent
3573 * hierarchy, see perf_event_init_context().
3574 */
3575 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3576 ctx1->parent_gen == ctx2->parent_gen)
3577 return 1;
3578
3579 /* Unmatched */
3580 return 0;
3581 }
3582
__perf_event_sync_stat(struct perf_event * event,struct perf_event * next_event)3583 static void __perf_event_sync_stat(struct perf_event *event,
3584 struct perf_event *next_event)
3585 {
3586 u64 value;
3587
3588 if (!event->attr.inherit_stat)
3589 return;
3590
3591 /*
3592 * Update the event value, we cannot use perf_event_read()
3593 * because we're in the middle of a context switch and have IRQs
3594 * disabled, which upsets smp_call_function_single(), however
3595 * we know the event must be on the current CPU, therefore we
3596 * don't need to use it.
3597 */
3598 perf_pmu_read(event);
3599
3600 perf_event_update_time(event);
3601
3602 /*
3603 * In order to keep per-task stats reliable we need to flip the event
3604 * values when we flip the contexts.
3605 */
3606 value = local64_read(&next_event->count);
3607 value = local64_xchg(&event->count, value);
3608 local64_set(&next_event->count, value);
3609
3610 swap(event->total_time_enabled, next_event->total_time_enabled);
3611 swap(event->total_time_running, next_event->total_time_running);
3612
3613 /*
3614 * Since we swizzled the values, update the user visible data too.
3615 */
3616 perf_event_update_userpage(event);
3617 perf_event_update_userpage(next_event);
3618 }
3619
perf_event_sync_stat(struct perf_event_context * ctx,struct perf_event_context * next_ctx)3620 static void perf_event_sync_stat(struct perf_event_context *ctx,
3621 struct perf_event_context *next_ctx)
3622 {
3623 struct perf_event *event, *next_event;
3624
3625 if (!ctx->nr_stat)
3626 return;
3627
3628 update_context_time(ctx);
3629
3630 event = list_first_entry(&ctx->event_list,
3631 struct perf_event, event_entry);
3632
3633 next_event = list_first_entry(&next_ctx->event_list,
3634 struct perf_event, event_entry);
3635
3636 while (&event->event_entry != &ctx->event_list &&
3637 &next_event->event_entry != &next_ctx->event_list) {
3638
3639 __perf_event_sync_stat(event, next_event);
3640
3641 event = list_next_entry(event, event_entry);
3642 next_event = list_next_entry(next_event, event_entry);
3643 }
3644 }
3645
perf_ctx_sched_task_cb(struct perf_event_context * ctx,struct task_struct * task,bool sched_in)3646 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx,
3647 struct task_struct *task, bool sched_in)
3648 {
3649 struct perf_event_pmu_context *pmu_ctx;
3650 struct perf_cpu_pmu_context *cpc;
3651
3652 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3653 cpc = this_cpc(pmu_ctx->pmu);
3654
3655 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3656 pmu_ctx->pmu->sched_task(pmu_ctx, task, sched_in);
3657 }
3658 }
3659
3660 static void
perf_event_context_sched_out(struct task_struct * task,struct task_struct * next)3661 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3662 {
3663 struct perf_event_context *ctx = task->perf_event_ctxp;
3664 struct perf_event_context *next_ctx;
3665 struct perf_event_context *parent, *next_parent;
3666 int do_switch = 1;
3667
3668 if (likely(!ctx))
3669 return;
3670
3671 rcu_read_lock();
3672 next_ctx = rcu_dereference(next->perf_event_ctxp);
3673 if (!next_ctx)
3674 goto unlock;
3675
3676 parent = rcu_dereference(ctx->parent_ctx);
3677 next_parent = rcu_dereference(next_ctx->parent_ctx);
3678
3679 /* If neither context have a parent context; they cannot be clones. */
3680 if (!parent && !next_parent)
3681 goto unlock;
3682
3683 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3684 /*
3685 * Looks like the two contexts are clones, so we might be
3686 * able to optimize the context switch. We lock both
3687 * contexts and check that they are clones under the
3688 * lock (including re-checking that neither has been
3689 * uncloned in the meantime). It doesn't matter which
3690 * order we take the locks because no other cpu could
3691 * be trying to lock both of these tasks.
3692 */
3693 raw_spin_lock(&ctx->lock);
3694 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3695 if (context_equiv(ctx, next_ctx)) {
3696
3697 perf_ctx_disable(ctx, false);
3698
3699 /* PMIs are disabled; ctx->nr_no_switch_fast is stable. */
3700 if (local_read(&ctx->nr_no_switch_fast) ||
3701 local_read(&next_ctx->nr_no_switch_fast)) {
3702 /*
3703 * Must not swap out ctx when there's pending
3704 * events that rely on the ctx->task relation.
3705 *
3706 * Likewise, when a context contains inherit +
3707 * SAMPLE_READ events they should be switched
3708 * out using the slow path so that they are
3709 * treated as if they were distinct contexts.
3710 */
3711 raw_spin_unlock(&next_ctx->lock);
3712 rcu_read_unlock();
3713 goto inside_switch;
3714 }
3715
3716 WRITE_ONCE(ctx->task, next);
3717 WRITE_ONCE(next_ctx->task, task);
3718
3719 perf_ctx_sched_task_cb(ctx, task, false);
3720
3721 perf_ctx_enable(ctx, false);
3722
3723 /*
3724 * RCU_INIT_POINTER here is safe because we've not
3725 * modified the ctx and the above modification of
3726 * ctx->task is immaterial since this value is
3727 * always verified under ctx->lock which we're now
3728 * holding.
3729 */
3730 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3731 RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3732
3733 do_switch = 0;
3734
3735 perf_event_sync_stat(ctx, next_ctx);
3736 }
3737 raw_spin_unlock(&next_ctx->lock);
3738 raw_spin_unlock(&ctx->lock);
3739 }
3740 unlock:
3741 rcu_read_unlock();
3742
3743 if (do_switch) {
3744 raw_spin_lock(&ctx->lock);
3745 perf_ctx_disable(ctx, false);
3746
3747 inside_switch:
3748 perf_ctx_sched_task_cb(ctx, task, false);
3749 task_ctx_sched_out(ctx, NULL, EVENT_ALL);
3750
3751 perf_ctx_enable(ctx, false);
3752 raw_spin_unlock(&ctx->lock);
3753 }
3754 }
3755
3756 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3757 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3758
perf_sched_cb_dec(struct pmu * pmu)3759 void perf_sched_cb_dec(struct pmu *pmu)
3760 {
3761 struct perf_cpu_pmu_context *cpc = this_cpc(pmu);
3762
3763 this_cpu_dec(perf_sched_cb_usages);
3764 barrier();
3765
3766 if (!--cpc->sched_cb_usage)
3767 list_del(&cpc->sched_cb_entry);
3768 }
3769
3770
perf_sched_cb_inc(struct pmu * pmu)3771 void perf_sched_cb_inc(struct pmu *pmu)
3772 {
3773 struct perf_cpu_pmu_context *cpc = this_cpc(pmu);
3774
3775 if (!cpc->sched_cb_usage++)
3776 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3777
3778 barrier();
3779 this_cpu_inc(perf_sched_cb_usages);
3780 }
3781
3782 /*
3783 * This function provides the context switch callback to the lower code
3784 * layer. It is invoked ONLY when the context switch callback is enabled.
3785 *
3786 * This callback is relevant even to per-cpu events; for example multi event
3787 * PEBS requires this to provide PID/TID information. This requires we flush
3788 * all queued PEBS records before we context switch to a new task.
3789 */
__perf_pmu_sched_task(struct perf_cpu_pmu_context * cpc,struct task_struct * task,bool sched_in)3790 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc,
3791 struct task_struct *task, bool sched_in)
3792 {
3793 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3794 struct pmu *pmu;
3795
3796 pmu = cpc->epc.pmu;
3797
3798 /* software PMUs will not have sched_task */
3799 if (WARN_ON_ONCE(!pmu->sched_task))
3800 return;
3801
3802 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3803 perf_pmu_disable(pmu);
3804
3805 pmu->sched_task(cpc->task_epc, task, sched_in);
3806
3807 perf_pmu_enable(pmu);
3808 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3809 }
3810
perf_pmu_sched_task(struct task_struct * prev,struct task_struct * next,bool sched_in)3811 static void perf_pmu_sched_task(struct task_struct *prev,
3812 struct task_struct *next,
3813 bool sched_in)
3814 {
3815 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3816 struct perf_cpu_pmu_context *cpc;
3817
3818 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3819 if (prev == next || cpuctx->task_ctx)
3820 return;
3821
3822 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3823 __perf_pmu_sched_task(cpc, sched_in ? next : prev, sched_in);
3824 }
3825
3826 static void perf_event_switch(struct task_struct *task,
3827 struct task_struct *next_prev, bool sched_in);
3828
3829 /*
3830 * Called from scheduler to remove the events of the current task,
3831 * with interrupts disabled.
3832 *
3833 * We stop each event and update the event value in event->count.
3834 *
3835 * This does not protect us against NMI, but disable()
3836 * sets the disabled bit in the control field of event _before_
3837 * accessing the event control register. If a NMI hits, then it will
3838 * not restart the event.
3839 */
__perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)3840 void __perf_event_task_sched_out(struct task_struct *task,
3841 struct task_struct *next)
3842 {
3843 if (__this_cpu_read(perf_sched_cb_usages))
3844 perf_pmu_sched_task(task, next, false);
3845
3846 if (atomic_read(&nr_switch_events))
3847 perf_event_switch(task, next, false);
3848
3849 perf_event_context_sched_out(task, next);
3850
3851 /*
3852 * if cgroup events exist on this CPU, then we need
3853 * to check if we have to switch out PMU state.
3854 * cgroup event are system-wide mode only
3855 */
3856 perf_cgroup_switch(next);
3857 }
3858
perf_less_group_idx(const void * l,const void * r,void __always_unused * args)3859 static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args)
3860 {
3861 const struct perf_event *le = *(const struct perf_event **)l;
3862 const struct perf_event *re = *(const struct perf_event **)r;
3863
3864 return le->group_index < re->group_index;
3865 }
3866
3867 DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap);
3868
3869 static const struct min_heap_callbacks perf_min_heap = {
3870 .less = perf_less_group_idx,
3871 .swp = NULL,
3872 };
3873
__heap_add(struct perf_event_min_heap * heap,struct perf_event * event)3874 static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event)
3875 {
3876 struct perf_event **itrs = heap->data;
3877
3878 if (event) {
3879 itrs[heap->nr] = event;
3880 heap->nr++;
3881 }
3882 }
3883
__link_epc(struct perf_event_pmu_context * pmu_ctx)3884 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3885 {
3886 struct perf_cpu_pmu_context *cpc;
3887
3888 if (!pmu_ctx->ctx->task)
3889 return;
3890
3891 cpc = this_cpc(pmu_ctx->pmu);
3892 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3893 cpc->task_epc = pmu_ctx;
3894 }
3895
visit_groups_merge(struct perf_event_context * ctx,struct perf_event_groups * groups,int cpu,struct pmu * pmu,int (* func)(struct perf_event *,void *),void * data)3896 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3897 struct perf_event_groups *groups, int cpu,
3898 struct pmu *pmu,
3899 int (*func)(struct perf_event *, void *),
3900 void *data)
3901 {
3902 #ifdef CONFIG_CGROUP_PERF
3903 struct cgroup_subsys_state *css = NULL;
3904 #endif
3905 struct perf_cpu_context *cpuctx = NULL;
3906 /* Space for per CPU and/or any CPU event iterators. */
3907 struct perf_event *itrs[2];
3908 struct perf_event_min_heap event_heap;
3909 struct perf_event **evt;
3910 int ret;
3911
3912 if (pmu->filter && pmu->filter(pmu, cpu))
3913 return 0;
3914
3915 if (!ctx->task) {
3916 cpuctx = this_cpu_ptr(&perf_cpu_context);
3917 event_heap = (struct perf_event_min_heap){
3918 .data = cpuctx->heap,
3919 .nr = 0,
3920 .size = cpuctx->heap_size,
3921 };
3922
3923 lockdep_assert_held(&cpuctx->ctx.lock);
3924
3925 #ifdef CONFIG_CGROUP_PERF
3926 if (cpuctx->cgrp)
3927 css = &cpuctx->cgrp->css;
3928 #endif
3929 } else {
3930 event_heap = (struct perf_event_min_heap){
3931 .data = itrs,
3932 .nr = 0,
3933 .size = ARRAY_SIZE(itrs),
3934 };
3935 /* Events not within a CPU context may be on any CPU. */
3936 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3937 }
3938 evt = event_heap.data;
3939
3940 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3941
3942 #ifdef CONFIG_CGROUP_PERF
3943 for (; css; css = css->parent)
3944 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3945 #endif
3946
3947 if (event_heap.nr) {
3948 __link_epc((*evt)->pmu_ctx);
3949 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3950 }
3951
3952 min_heapify_all_inline(&event_heap, &perf_min_heap, NULL);
3953
3954 while (event_heap.nr) {
3955 ret = func(*evt, data);
3956 if (ret)
3957 return ret;
3958
3959 *evt = perf_event_groups_next(*evt, pmu);
3960 if (*evt)
3961 min_heap_sift_down_inline(&event_heap, 0, &perf_min_heap, NULL);
3962 else
3963 min_heap_pop_inline(&event_heap, &perf_min_heap, NULL);
3964 }
3965
3966 return 0;
3967 }
3968
3969 /*
3970 * Because the userpage is strictly per-event (there is no concept of context,
3971 * so there cannot be a context indirection), every userpage must be updated
3972 * when context time starts :-(
3973 *
3974 * IOW, we must not miss EVENT_TIME edges.
3975 */
event_update_userpage(struct perf_event * event)3976 static inline bool event_update_userpage(struct perf_event *event)
3977 {
3978 if (likely(!refcount_read(&event->mmap_count)))
3979 return false;
3980
3981 perf_event_update_time(event);
3982 perf_event_update_userpage(event);
3983
3984 return true;
3985 }
3986
group_update_userpage(struct perf_event * group_event)3987 static inline void group_update_userpage(struct perf_event *group_event)
3988 {
3989 struct perf_event *event;
3990
3991 if (!event_update_userpage(group_event))
3992 return;
3993
3994 for_each_sibling_event(event, group_event)
3995 event_update_userpage(event);
3996 }
3997
merge_sched_in(struct perf_event * event,void * data)3998 static int merge_sched_in(struct perf_event *event, void *data)
3999 {
4000 struct perf_event_context *ctx = event->ctx;
4001 int *can_add_hw = data;
4002
4003 if (event->state <= PERF_EVENT_STATE_OFF)
4004 return 0;
4005
4006 if (!event_filter_match(event))
4007 return 0;
4008
4009 if (group_can_go_on(event, *can_add_hw)) {
4010 if (!group_sched_in(event, ctx))
4011 list_add_tail(&event->active_list, get_event_list(event));
4012 }
4013
4014 if (event->state == PERF_EVENT_STATE_INACTIVE) {
4015 *can_add_hw = 0;
4016 if (event->attr.pinned) {
4017 perf_cgroup_event_disable(event, ctx);
4018 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
4019
4020 if (*perf_event_fasync(event))
4021 event->pending_kill = POLL_ERR;
4022
4023 perf_event_wakeup(event);
4024 } else {
4025 struct perf_cpu_pmu_context *cpc = this_cpc(event->pmu_ctx->pmu);
4026
4027 event->pmu_ctx->rotate_necessary = 1;
4028 perf_mux_hrtimer_restart(cpc);
4029 group_update_userpage(event);
4030 }
4031 }
4032
4033 return 0;
4034 }
4035
pmu_groups_sched_in(struct perf_event_context * ctx,struct perf_event_groups * groups,struct pmu * pmu)4036 static void pmu_groups_sched_in(struct perf_event_context *ctx,
4037 struct perf_event_groups *groups,
4038 struct pmu *pmu)
4039 {
4040 int can_add_hw = 1;
4041 visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
4042 merge_sched_in, &can_add_hw);
4043 }
4044
__pmu_ctx_sched_in(struct perf_event_pmu_context * pmu_ctx,enum event_type_t event_type)4045 static void __pmu_ctx_sched_in(struct perf_event_pmu_context *pmu_ctx,
4046 enum event_type_t event_type)
4047 {
4048 struct perf_event_context *ctx = pmu_ctx->ctx;
4049
4050 if (event_type & EVENT_PINNED)
4051 pmu_groups_sched_in(ctx, &ctx->pinned_groups, pmu_ctx->pmu);
4052 if (event_type & EVENT_FLEXIBLE)
4053 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu_ctx->pmu);
4054 }
4055
4056 static void
ctx_sched_in(struct perf_event_context * ctx,struct pmu * pmu,enum event_type_t event_type)4057 ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
4058 {
4059 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4060 struct perf_event_pmu_context *pmu_ctx;
4061 int is_active = ctx->is_active;
4062 bool cgroup = event_type & EVENT_CGROUP;
4063
4064 event_type &= ~EVENT_CGROUP;
4065
4066 lockdep_assert_held(&ctx->lock);
4067
4068 if (likely(!ctx->nr_events))
4069 return;
4070
4071 if (!(is_active & EVENT_TIME)) {
4072 /* start ctx time */
4073 __update_context_time(ctx, false);
4074 perf_cgroup_set_timestamp(cpuctx);
4075 /*
4076 * CPU-release for the below ->is_active store,
4077 * see __load_acquire() in perf_event_time_now()
4078 */
4079 barrier();
4080 }
4081
4082 ctx->is_active |= (event_type | EVENT_TIME);
4083 if (ctx->task) {
4084 if (!(is_active & EVENT_ALL))
4085 cpuctx->task_ctx = ctx;
4086 else
4087 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
4088 }
4089
4090 is_active ^= ctx->is_active; /* changed bits */
4091
4092 /*
4093 * First go through the list and put on any pinned groups
4094 * in order to give them the best chance of going on.
4095 */
4096 if (is_active & EVENT_PINNED) {
4097 for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4098 __pmu_ctx_sched_in(pmu_ctx, EVENT_PINNED);
4099 }
4100
4101 /* Then walk through the lower prio flexible groups */
4102 if (is_active & EVENT_FLEXIBLE) {
4103 for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4104 __pmu_ctx_sched_in(pmu_ctx, EVENT_FLEXIBLE);
4105 }
4106 }
4107
perf_event_context_sched_in(struct task_struct * task)4108 static void perf_event_context_sched_in(struct task_struct *task)
4109 {
4110 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4111 struct perf_event_context *ctx;
4112
4113 rcu_read_lock();
4114 ctx = rcu_dereference(task->perf_event_ctxp);
4115 if (!ctx)
4116 goto rcu_unlock;
4117
4118 if (cpuctx->task_ctx == ctx) {
4119 perf_ctx_lock(cpuctx, ctx);
4120 perf_ctx_disable(ctx, false);
4121
4122 perf_ctx_sched_task_cb(ctx, task, true);
4123
4124 perf_ctx_enable(ctx, false);
4125 perf_ctx_unlock(cpuctx, ctx);
4126 goto rcu_unlock;
4127 }
4128
4129 perf_ctx_lock(cpuctx, ctx);
4130 /*
4131 * We must check ctx->nr_events while holding ctx->lock, such
4132 * that we serialize against perf_install_in_context().
4133 */
4134 if (!ctx->nr_events)
4135 goto unlock;
4136
4137 perf_ctx_disable(ctx, false);
4138 /*
4139 * We want to keep the following priority order:
4140 * cpu pinned (that don't need to move), task pinned,
4141 * cpu flexible, task flexible.
4142 *
4143 * However, if task's ctx is not carrying any pinned
4144 * events, no need to flip the cpuctx's events around.
4145 */
4146 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
4147 perf_ctx_disable(&cpuctx->ctx, false);
4148 ctx_sched_out(&cpuctx->ctx, NULL, EVENT_FLEXIBLE);
4149 }
4150
4151 perf_event_sched_in(cpuctx, ctx, NULL);
4152
4153 perf_ctx_sched_task_cb(cpuctx->task_ctx, task, true);
4154
4155 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
4156 perf_ctx_enable(&cpuctx->ctx, false);
4157
4158 perf_ctx_enable(ctx, false);
4159
4160 unlock:
4161 perf_ctx_unlock(cpuctx, ctx);
4162 rcu_unlock:
4163 rcu_read_unlock();
4164 }
4165
4166 /*
4167 * Called from scheduler to add the events of the current task
4168 * with interrupts disabled.
4169 *
4170 * We restore the event value and then enable it.
4171 *
4172 * This does not protect us against NMI, but enable()
4173 * sets the enabled bit in the control field of event _before_
4174 * accessing the event control register. If a NMI hits, then it will
4175 * keep the event running.
4176 */
__perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)4177 void __perf_event_task_sched_in(struct task_struct *prev,
4178 struct task_struct *task)
4179 {
4180 perf_event_context_sched_in(task);
4181
4182 if (atomic_read(&nr_switch_events))
4183 perf_event_switch(task, prev, true);
4184
4185 if (__this_cpu_read(perf_sched_cb_usages))
4186 perf_pmu_sched_task(prev, task, true);
4187 }
4188
perf_calculate_period(struct perf_event * event,u64 nsec,u64 count)4189 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4190 {
4191 u64 frequency = event->attr.sample_freq;
4192 u64 sec = NSEC_PER_SEC;
4193 u64 divisor, dividend;
4194
4195 int count_fls, nsec_fls, frequency_fls, sec_fls;
4196
4197 count_fls = fls64(count);
4198 nsec_fls = fls64(nsec);
4199 frequency_fls = fls64(frequency);
4200 sec_fls = 30;
4201
4202 /*
4203 * We got @count in @nsec, with a target of sample_freq HZ
4204 * the target period becomes:
4205 *
4206 * @count * 10^9
4207 * period = -------------------
4208 * @nsec * sample_freq
4209 *
4210 */
4211
4212 /*
4213 * Reduce accuracy by one bit such that @a and @b converge
4214 * to a similar magnitude.
4215 */
4216 #define REDUCE_FLS(a, b) \
4217 do { \
4218 if (a##_fls > b##_fls) { \
4219 a >>= 1; \
4220 a##_fls--; \
4221 } else { \
4222 b >>= 1; \
4223 b##_fls--; \
4224 } \
4225 } while (0)
4226
4227 /*
4228 * Reduce accuracy until either term fits in a u64, then proceed with
4229 * the other, so that finally we can do a u64/u64 division.
4230 */
4231 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4232 REDUCE_FLS(nsec, frequency);
4233 REDUCE_FLS(sec, count);
4234 }
4235
4236 if (count_fls + sec_fls > 64) {
4237 divisor = nsec * frequency;
4238
4239 while (count_fls + sec_fls > 64) {
4240 REDUCE_FLS(count, sec);
4241 divisor >>= 1;
4242 }
4243
4244 dividend = count * sec;
4245 } else {
4246 dividend = count * sec;
4247
4248 while (nsec_fls + frequency_fls > 64) {
4249 REDUCE_FLS(nsec, frequency);
4250 dividend >>= 1;
4251 }
4252
4253 divisor = nsec * frequency;
4254 }
4255
4256 if (!divisor)
4257 return dividend;
4258
4259 return div64_u64(dividend, divisor);
4260 }
4261
4262 static DEFINE_PER_CPU(int, perf_throttled_count);
4263 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4264
perf_adjust_period(struct perf_event * event,u64 nsec,u64 count,bool disable)4265 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4266 {
4267 struct hw_perf_event *hwc = &event->hw;
4268 s64 period, sample_period;
4269 s64 delta;
4270
4271 period = perf_calculate_period(event, nsec, count);
4272
4273 delta = (s64)(period - hwc->sample_period);
4274 if (delta >= 0)
4275 delta += 7;
4276 else
4277 delta -= 7;
4278 delta /= 8; /* low pass filter */
4279
4280 sample_period = hwc->sample_period + delta;
4281
4282 if (!sample_period)
4283 sample_period = 1;
4284
4285 hwc->sample_period = sample_period;
4286
4287 if (local64_read(&hwc->period_left) > 8*sample_period) {
4288 if (disable)
4289 event->pmu->stop(event, PERF_EF_UPDATE);
4290
4291 local64_set(&hwc->period_left, 0);
4292
4293 if (disable)
4294 event->pmu->start(event, PERF_EF_RELOAD);
4295 }
4296 }
4297
perf_adjust_freq_unthr_events(struct list_head * event_list)4298 static void perf_adjust_freq_unthr_events(struct list_head *event_list)
4299 {
4300 struct perf_event *event;
4301 struct hw_perf_event *hwc;
4302 u64 now, period = TICK_NSEC;
4303 s64 delta;
4304
4305 list_for_each_entry(event, event_list, active_list) {
4306 if (event->state != PERF_EVENT_STATE_ACTIVE)
4307 continue;
4308
4309 // XXX use visit thingy to avoid the -1,cpu match
4310 if (!event_filter_match(event))
4311 continue;
4312
4313 hwc = &event->hw;
4314
4315 if (hwc->interrupts == MAX_INTERRUPTS)
4316 perf_event_unthrottle_group(event, is_event_in_freq_mode(event));
4317
4318 if (!is_event_in_freq_mode(event))
4319 continue;
4320
4321 /*
4322 * stop the event and update event->count
4323 */
4324 event->pmu->stop(event, PERF_EF_UPDATE);
4325
4326 now = local64_read(&event->count);
4327 delta = now - hwc->freq_count_stamp;
4328 hwc->freq_count_stamp = now;
4329
4330 /*
4331 * restart the event
4332 * reload only if value has changed
4333 * we have stopped the event so tell that
4334 * to perf_adjust_period() to avoid stopping it
4335 * twice.
4336 */
4337 if (delta > 0)
4338 perf_adjust_period(event, period, delta, false);
4339
4340 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4341 }
4342 }
4343
4344 /*
4345 * combine freq adjustment with unthrottling to avoid two passes over the
4346 * events. At the same time, make sure, having freq events does not change
4347 * the rate of unthrottling as that would introduce bias.
4348 */
4349 static void
perf_adjust_freq_unthr_context(struct perf_event_context * ctx,bool unthrottle)4350 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4351 {
4352 struct perf_event_pmu_context *pmu_ctx;
4353
4354 /*
4355 * only need to iterate over all events iff:
4356 * - context have events in frequency mode (needs freq adjust)
4357 * - there are events to unthrottle on this cpu
4358 */
4359 if (!(ctx->nr_freq || unthrottle))
4360 return;
4361
4362 raw_spin_lock(&ctx->lock);
4363
4364 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4365 if (!(pmu_ctx->nr_freq || unthrottle))
4366 continue;
4367 if (!perf_pmu_ctx_is_active(pmu_ctx))
4368 continue;
4369 if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT)
4370 continue;
4371
4372 perf_pmu_disable(pmu_ctx->pmu);
4373 perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active);
4374 perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active);
4375 perf_pmu_enable(pmu_ctx->pmu);
4376 }
4377
4378 raw_spin_unlock(&ctx->lock);
4379 }
4380
4381 /*
4382 * Move @event to the tail of the @ctx's elegible events.
4383 */
rotate_ctx(struct perf_event_context * ctx,struct perf_event * event)4384 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4385 {
4386 /*
4387 * Rotate the first entry last of non-pinned groups. Rotation might be
4388 * disabled by the inheritance code.
4389 */
4390 if (ctx->rotate_disable)
4391 return;
4392
4393 perf_event_groups_delete(&ctx->flexible_groups, event);
4394 perf_event_groups_insert(&ctx->flexible_groups, event);
4395 }
4396
4397 /* pick an event from the flexible_groups to rotate */
4398 static inline struct perf_event *
ctx_event_to_rotate(struct perf_event_pmu_context * pmu_ctx)4399 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4400 {
4401 struct perf_event *event;
4402 struct rb_node *node;
4403 struct rb_root *tree;
4404 struct __group_key key = {
4405 .pmu = pmu_ctx->pmu,
4406 };
4407
4408 /* pick the first active flexible event */
4409 event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4410 struct perf_event, active_list);
4411 if (event)
4412 goto out;
4413
4414 /* if no active flexible event, pick the first event */
4415 tree = &pmu_ctx->ctx->flexible_groups.tree;
4416
4417 if (!pmu_ctx->ctx->task) {
4418 key.cpu = smp_processor_id();
4419
4420 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4421 if (node)
4422 event = __node_2_pe(node);
4423 goto out;
4424 }
4425
4426 key.cpu = -1;
4427 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4428 if (node) {
4429 event = __node_2_pe(node);
4430 goto out;
4431 }
4432
4433 key.cpu = smp_processor_id();
4434 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4435 if (node)
4436 event = __node_2_pe(node);
4437
4438 out:
4439 /*
4440 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4441 * finds there are unschedulable events, it will set it again.
4442 */
4443 pmu_ctx->rotate_necessary = 0;
4444
4445 return event;
4446 }
4447
perf_rotate_context(struct perf_cpu_pmu_context * cpc)4448 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4449 {
4450 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4451 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4452 struct perf_event *cpu_event = NULL, *task_event = NULL;
4453 int cpu_rotate, task_rotate;
4454 struct pmu *pmu;
4455
4456 /*
4457 * Since we run this from IRQ context, nobody can install new
4458 * events, thus the event count values are stable.
4459 */
4460
4461 cpu_epc = &cpc->epc;
4462 pmu = cpu_epc->pmu;
4463 task_epc = cpc->task_epc;
4464
4465 cpu_rotate = cpu_epc->rotate_necessary;
4466 task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4467
4468 if (!(cpu_rotate || task_rotate))
4469 return false;
4470
4471 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4472 perf_pmu_disable(pmu);
4473
4474 if (task_rotate)
4475 task_event = ctx_event_to_rotate(task_epc);
4476 if (cpu_rotate)
4477 cpu_event = ctx_event_to_rotate(cpu_epc);
4478
4479 /*
4480 * As per the order given at ctx_resched() first 'pop' task flexible
4481 * and then, if needed CPU flexible.
4482 */
4483 if (task_event || (task_epc && cpu_event)) {
4484 update_context_time(task_epc->ctx);
4485 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4486 }
4487
4488 if (cpu_event) {
4489 update_context_time(&cpuctx->ctx);
4490 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4491 rotate_ctx(&cpuctx->ctx, cpu_event);
4492 __pmu_ctx_sched_in(cpu_epc, EVENT_FLEXIBLE);
4493 }
4494
4495 if (task_event)
4496 rotate_ctx(task_epc->ctx, task_event);
4497
4498 if (task_event || (task_epc && cpu_event))
4499 __pmu_ctx_sched_in(task_epc, EVENT_FLEXIBLE);
4500
4501 perf_pmu_enable(pmu);
4502 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4503
4504 return true;
4505 }
4506
perf_event_task_tick(void)4507 void perf_event_task_tick(void)
4508 {
4509 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4510 struct perf_event_context *ctx;
4511 int throttled;
4512
4513 lockdep_assert_irqs_disabled();
4514
4515 __this_cpu_inc(perf_throttled_seq);
4516 throttled = __this_cpu_xchg(perf_throttled_count, 0);
4517 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4518
4519 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4520
4521 rcu_read_lock();
4522 ctx = rcu_dereference(current->perf_event_ctxp);
4523 if (ctx)
4524 perf_adjust_freq_unthr_context(ctx, !!throttled);
4525 rcu_read_unlock();
4526 }
4527
event_enable_on_exec(struct perf_event * event,struct perf_event_context * ctx)4528 static int event_enable_on_exec(struct perf_event *event,
4529 struct perf_event_context *ctx)
4530 {
4531 if (!event->attr.enable_on_exec)
4532 return 0;
4533
4534 event->attr.enable_on_exec = 0;
4535 if (event->state >= PERF_EVENT_STATE_INACTIVE)
4536 return 0;
4537
4538 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4539
4540 return 1;
4541 }
4542
4543 /*
4544 * Enable all of a task's events that have been marked enable-on-exec.
4545 * This expects task == current.
4546 */
perf_event_enable_on_exec(struct perf_event_context * ctx)4547 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4548 {
4549 struct perf_event_context *clone_ctx = NULL;
4550 enum event_type_t event_type = 0;
4551 struct perf_cpu_context *cpuctx;
4552 struct perf_event *event;
4553 unsigned long flags;
4554 int enabled = 0;
4555
4556 local_irq_save(flags);
4557 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4558 goto out;
4559
4560 if (!ctx->nr_events)
4561 goto out;
4562
4563 cpuctx = this_cpu_ptr(&perf_cpu_context);
4564 perf_ctx_lock(cpuctx, ctx);
4565 ctx_time_freeze(cpuctx, ctx);
4566
4567 list_for_each_entry(event, &ctx->event_list, event_entry) {
4568 enabled |= event_enable_on_exec(event, ctx);
4569 event_type |= get_event_type(event);
4570 }
4571
4572 /*
4573 * Unclone and reschedule this context if we enabled any event.
4574 */
4575 if (enabled) {
4576 clone_ctx = unclone_ctx(ctx);
4577 ctx_resched(cpuctx, ctx, NULL, event_type);
4578 }
4579 perf_ctx_unlock(cpuctx, ctx);
4580
4581 out:
4582 local_irq_restore(flags);
4583
4584 if (clone_ctx)
4585 put_ctx(clone_ctx);
4586 }
4587
4588 static void perf_remove_from_owner(struct perf_event *event);
4589 static void perf_event_exit_event(struct perf_event *event,
4590 struct perf_event_context *ctx,
4591 bool revoke);
4592
4593 /*
4594 * Removes all events from the current task that have been marked
4595 * remove-on-exec, and feeds their values back to parent events.
4596 */
perf_event_remove_on_exec(struct perf_event_context * ctx)4597 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4598 {
4599 struct perf_event_context *clone_ctx = NULL;
4600 struct perf_event *event, *next;
4601 unsigned long flags;
4602 bool modified = false;
4603
4604 mutex_lock(&ctx->mutex);
4605
4606 if (WARN_ON_ONCE(ctx->task != current))
4607 goto unlock;
4608
4609 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4610 if (!event->attr.remove_on_exec)
4611 continue;
4612
4613 if (!is_kernel_event(event))
4614 perf_remove_from_owner(event);
4615
4616 modified = true;
4617
4618 perf_event_exit_event(event, ctx, false);
4619 }
4620
4621 raw_spin_lock_irqsave(&ctx->lock, flags);
4622 if (modified)
4623 clone_ctx = unclone_ctx(ctx);
4624 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4625
4626 unlock:
4627 mutex_unlock(&ctx->mutex);
4628
4629 if (clone_ctx)
4630 put_ctx(clone_ctx);
4631 }
4632
4633 struct perf_read_data {
4634 struct perf_event *event;
4635 bool group;
4636 int ret;
4637 };
4638
4639 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu);
4640
__perf_event_read_cpu(struct perf_event * event,int event_cpu)4641 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4642 {
4643 int local_cpu = smp_processor_id();
4644 u16 local_pkg, event_pkg;
4645
4646 if ((unsigned)event_cpu >= nr_cpu_ids)
4647 return event_cpu;
4648
4649 if (event->group_caps & PERF_EV_CAP_READ_SCOPE) {
4650 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(event->pmu->scope, event_cpu);
4651
4652 if (cpumask && cpumask_test_cpu(local_cpu, cpumask))
4653 return local_cpu;
4654 }
4655
4656 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4657 event_pkg = topology_physical_package_id(event_cpu);
4658 local_pkg = topology_physical_package_id(local_cpu);
4659
4660 if (event_pkg == local_pkg)
4661 return local_cpu;
4662 }
4663
4664 return event_cpu;
4665 }
4666
4667 /*
4668 * Cross CPU call to read the hardware event
4669 */
__perf_event_read(void * info)4670 static void __perf_event_read(void *info)
4671 {
4672 struct perf_read_data *data = info;
4673 struct perf_event *sub, *event = data->event;
4674 struct perf_event_context *ctx = event->ctx;
4675 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4676 struct pmu *pmu = event->pmu;
4677
4678 /*
4679 * If this is a task context, we need to check whether it is
4680 * the current task context of this cpu. If not it has been
4681 * scheduled out before the smp call arrived. In that case
4682 * event->count would have been updated to a recent sample
4683 * when the event was scheduled out.
4684 */
4685 if (ctx->task && cpuctx->task_ctx != ctx)
4686 return;
4687
4688 raw_spin_lock(&ctx->lock);
4689 ctx_time_update_event(ctx, event);
4690
4691 perf_event_update_time(event);
4692 if (data->group)
4693 perf_event_update_sibling_time(event);
4694
4695 if (event->state != PERF_EVENT_STATE_ACTIVE)
4696 goto unlock;
4697
4698 if (!data->group) {
4699 pmu->read(event);
4700 data->ret = 0;
4701 goto unlock;
4702 }
4703
4704 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4705
4706 pmu->read(event);
4707
4708 for_each_sibling_event(sub, event)
4709 perf_pmu_read(sub);
4710
4711 data->ret = pmu->commit_txn(pmu);
4712
4713 unlock:
4714 raw_spin_unlock(&ctx->lock);
4715 }
4716
perf_event_count(struct perf_event * event,bool self)4717 static inline u64 perf_event_count(struct perf_event *event, bool self)
4718 {
4719 if (self)
4720 return local64_read(&event->count);
4721
4722 return local64_read(&event->count) + atomic64_read(&event->child_count);
4723 }
4724
calc_timer_values(struct perf_event * event,u64 * now,u64 * enabled,u64 * running)4725 static void calc_timer_values(struct perf_event *event,
4726 u64 *now,
4727 u64 *enabled,
4728 u64 *running)
4729 {
4730 u64 ctx_time;
4731
4732 *now = perf_clock();
4733 ctx_time = perf_event_time_now(event, *now);
4734 __perf_update_times(event, ctx_time, enabled, running);
4735 }
4736
4737 /*
4738 * NMI-safe method to read a local event, that is an event that
4739 * is:
4740 * - either for the current task, or for this CPU
4741 * - does not have inherit set, for inherited task events
4742 * will not be local and we cannot read them atomically
4743 * - must not have a pmu::count method
4744 */
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)4745 int perf_event_read_local(struct perf_event *event, u64 *value,
4746 u64 *enabled, u64 *running)
4747 {
4748 unsigned long flags;
4749 int event_oncpu;
4750 int event_cpu;
4751 int ret = 0;
4752
4753 /*
4754 * Disabling interrupts avoids all counter scheduling (context
4755 * switches, timer based rotation and IPIs).
4756 */
4757 local_irq_save(flags);
4758
4759 /*
4760 * It must not be an event with inherit set, we cannot read
4761 * all child counters from atomic context.
4762 */
4763 if (event->attr.inherit) {
4764 ret = -EOPNOTSUPP;
4765 goto out;
4766 }
4767
4768 /* If this is a per-task event, it must be for current */
4769 if ((event->attach_state & PERF_ATTACH_TASK) &&
4770 event->hw.target != current) {
4771 ret = -EINVAL;
4772 goto out;
4773 }
4774
4775 /*
4776 * Get the event CPU numbers, and adjust them to local if the event is
4777 * a per-package event that can be read locally
4778 */
4779 event_oncpu = __perf_event_read_cpu(event, event->oncpu);
4780 event_cpu = __perf_event_read_cpu(event, event->cpu);
4781
4782 /* If this is a per-CPU event, it must be for this CPU */
4783 if (!(event->attach_state & PERF_ATTACH_TASK) &&
4784 event_cpu != smp_processor_id()) {
4785 ret = -EINVAL;
4786 goto out;
4787 }
4788
4789 /* If this is a pinned event it must be running on this CPU */
4790 if (event->attr.pinned && event_oncpu != smp_processor_id()) {
4791 ret = -EBUSY;
4792 goto out;
4793 }
4794
4795 /*
4796 * If the event is currently on this CPU, its either a per-task event,
4797 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4798 * oncpu == -1).
4799 */
4800 if (event_oncpu == smp_processor_id())
4801 event->pmu->read(event);
4802
4803 *value = local64_read(&event->count);
4804 if (enabled || running) {
4805 u64 __enabled, __running, __now;
4806
4807 calc_timer_values(event, &__now, &__enabled, &__running);
4808 if (enabled)
4809 *enabled = __enabled;
4810 if (running)
4811 *running = __running;
4812 }
4813 out:
4814 local_irq_restore(flags);
4815
4816 return ret;
4817 }
4818
perf_event_read(struct perf_event * event,bool group)4819 static int perf_event_read(struct perf_event *event, bool group)
4820 {
4821 enum perf_event_state state = READ_ONCE(event->state);
4822 int event_cpu, ret = 0;
4823
4824 /*
4825 * If event is enabled and currently active on a CPU, update the
4826 * value in the event structure:
4827 */
4828 again:
4829 if (state == PERF_EVENT_STATE_ACTIVE) {
4830 struct perf_read_data data;
4831
4832 /*
4833 * Orders the ->state and ->oncpu loads such that if we see
4834 * ACTIVE we must also see the right ->oncpu.
4835 *
4836 * Matches the smp_wmb() from event_sched_in().
4837 */
4838 smp_rmb();
4839
4840 event_cpu = READ_ONCE(event->oncpu);
4841 if ((unsigned)event_cpu >= nr_cpu_ids)
4842 return 0;
4843
4844 data = (struct perf_read_data){
4845 .event = event,
4846 .group = group,
4847 .ret = 0,
4848 };
4849
4850 preempt_disable();
4851 event_cpu = __perf_event_read_cpu(event, event_cpu);
4852
4853 /*
4854 * Purposely ignore the smp_call_function_single() return
4855 * value.
4856 *
4857 * If event_cpu isn't a valid CPU it means the event got
4858 * scheduled out and that will have updated the event count.
4859 *
4860 * Therefore, either way, we'll have an up-to-date event count
4861 * after this.
4862 */
4863 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4864 preempt_enable();
4865 ret = data.ret;
4866
4867 } else if (state == PERF_EVENT_STATE_INACTIVE) {
4868 struct perf_event_context *ctx = event->ctx;
4869 unsigned long flags;
4870
4871 raw_spin_lock_irqsave(&ctx->lock, flags);
4872 state = event->state;
4873 if (state != PERF_EVENT_STATE_INACTIVE) {
4874 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4875 goto again;
4876 }
4877
4878 /*
4879 * May read while context is not active (e.g., thread is
4880 * blocked), in that case we cannot update context time
4881 */
4882 ctx_time_update_event(ctx, event);
4883
4884 perf_event_update_time(event);
4885 if (group)
4886 perf_event_update_sibling_time(event);
4887 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4888 }
4889
4890 return ret;
4891 }
4892
4893 /*
4894 * Initialize the perf_event context in a task_struct:
4895 */
__perf_event_init_context(struct perf_event_context * ctx)4896 static void __perf_event_init_context(struct perf_event_context *ctx)
4897 {
4898 raw_spin_lock_init(&ctx->lock);
4899 mutex_init(&ctx->mutex);
4900 INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4901 perf_event_groups_init(&ctx->pinned_groups);
4902 perf_event_groups_init(&ctx->flexible_groups);
4903 INIT_LIST_HEAD(&ctx->event_list);
4904 refcount_set(&ctx->refcount, 1);
4905 }
4906
4907 static void
__perf_init_event_pmu_context(struct perf_event_pmu_context * epc,struct pmu * pmu)4908 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4909 {
4910 epc->pmu = pmu;
4911 INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4912 INIT_LIST_HEAD(&epc->pinned_active);
4913 INIT_LIST_HEAD(&epc->flexible_active);
4914 atomic_set(&epc->refcount, 1);
4915 }
4916
4917 static struct perf_event_context *
alloc_perf_context(struct task_struct * task)4918 alloc_perf_context(struct task_struct *task)
4919 {
4920 struct perf_event_context *ctx;
4921
4922 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4923 if (!ctx)
4924 return NULL;
4925
4926 __perf_event_init_context(ctx);
4927 if (task)
4928 ctx->task = get_task_struct(task);
4929
4930 return ctx;
4931 }
4932
4933 static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)4934 find_lively_task_by_vpid(pid_t vpid)
4935 {
4936 struct task_struct *task;
4937
4938 rcu_read_lock();
4939 if (!vpid)
4940 task = current;
4941 else
4942 task = find_task_by_vpid(vpid);
4943 if (task)
4944 get_task_struct(task);
4945 rcu_read_unlock();
4946
4947 if (!task)
4948 return ERR_PTR(-ESRCH);
4949
4950 return task;
4951 }
4952
4953 /*
4954 * Returns a matching context with refcount and pincount.
4955 */
4956 static struct perf_event_context *
find_get_context(struct task_struct * task,struct perf_event * event)4957 find_get_context(struct task_struct *task, struct perf_event *event)
4958 {
4959 struct perf_event_context *ctx, *clone_ctx = NULL;
4960 struct perf_cpu_context *cpuctx;
4961 unsigned long flags;
4962 int err;
4963
4964 if (!task) {
4965 /* Must be root to operate on a CPU event: */
4966 err = perf_allow_cpu();
4967 if (err)
4968 return ERR_PTR(err);
4969
4970 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4971 ctx = &cpuctx->ctx;
4972 get_ctx(ctx);
4973 raw_spin_lock_irqsave(&ctx->lock, flags);
4974 ++ctx->pin_count;
4975 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4976
4977 return ctx;
4978 }
4979
4980 err = -EINVAL;
4981 retry:
4982 ctx = perf_lock_task_context(task, &flags);
4983 if (ctx) {
4984 clone_ctx = unclone_ctx(ctx);
4985 ++ctx->pin_count;
4986
4987 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4988
4989 if (clone_ctx)
4990 put_ctx(clone_ctx);
4991 } else {
4992 ctx = alloc_perf_context(task);
4993 err = -ENOMEM;
4994 if (!ctx)
4995 goto errout;
4996
4997 err = 0;
4998 mutex_lock(&task->perf_event_mutex);
4999 /*
5000 * If it has already passed perf_event_exit_task().
5001 * we must see PF_EXITING, it takes this mutex too.
5002 */
5003 if (task->flags & PF_EXITING)
5004 err = -ESRCH;
5005 else if (task->perf_event_ctxp)
5006 err = -EAGAIN;
5007 else {
5008 get_ctx(ctx);
5009 ++ctx->pin_count;
5010 rcu_assign_pointer(task->perf_event_ctxp, ctx);
5011 }
5012 mutex_unlock(&task->perf_event_mutex);
5013
5014 if (unlikely(err)) {
5015 put_ctx(ctx);
5016
5017 if (err == -EAGAIN)
5018 goto retry;
5019 goto errout;
5020 }
5021 }
5022
5023 return ctx;
5024
5025 errout:
5026 return ERR_PTR(err);
5027 }
5028
5029 static struct perf_event_pmu_context *
find_get_pmu_context(struct pmu * pmu,struct perf_event_context * ctx,struct perf_event * event)5030 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
5031 struct perf_event *event)
5032 {
5033 struct perf_event_pmu_context *new = NULL, *pos = NULL, *epc;
5034
5035 if (!ctx->task) {
5036 /*
5037 * perf_pmu_migrate_context() / __perf_pmu_install_event()
5038 * relies on the fact that find_get_pmu_context() cannot fail
5039 * for CPU contexts.
5040 */
5041 struct perf_cpu_pmu_context *cpc;
5042
5043 cpc = *per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
5044 epc = &cpc->epc;
5045 raw_spin_lock_irq(&ctx->lock);
5046 if (!epc->ctx) {
5047 /*
5048 * One extra reference for the pmu; see perf_pmu_free().
5049 */
5050 atomic_set(&epc->refcount, 2);
5051 epc->embedded = 1;
5052 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
5053 epc->ctx = ctx;
5054 } else {
5055 WARN_ON_ONCE(epc->ctx != ctx);
5056 atomic_inc(&epc->refcount);
5057 }
5058 raw_spin_unlock_irq(&ctx->lock);
5059 return epc;
5060 }
5061
5062 new = kzalloc(sizeof(*epc), GFP_KERNEL);
5063 if (!new)
5064 return ERR_PTR(-ENOMEM);
5065
5066 __perf_init_event_pmu_context(new, pmu);
5067
5068 /*
5069 * XXX
5070 *
5071 * lockdep_assert_held(&ctx->mutex);
5072 *
5073 * can't because perf_event_init_task() doesn't actually hold the
5074 * child_ctx->mutex.
5075 */
5076
5077 raw_spin_lock_irq(&ctx->lock);
5078 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
5079 if (epc->pmu == pmu) {
5080 WARN_ON_ONCE(epc->ctx != ctx);
5081 atomic_inc(&epc->refcount);
5082 goto found_epc;
5083 }
5084 /* Make sure the pmu_ctx_list is sorted by PMU type: */
5085 if (!pos && epc->pmu->type > pmu->type)
5086 pos = epc;
5087 }
5088
5089 epc = new;
5090 new = NULL;
5091
5092 if (!pos)
5093 list_add_tail(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
5094 else
5095 list_add(&epc->pmu_ctx_entry, pos->pmu_ctx_entry.prev);
5096
5097 epc->ctx = ctx;
5098
5099 found_epc:
5100 raw_spin_unlock_irq(&ctx->lock);
5101 kfree(new);
5102
5103 return epc;
5104 }
5105
get_pmu_ctx(struct perf_event_pmu_context * epc)5106 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
5107 {
5108 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
5109 }
5110
free_cpc_rcu(struct rcu_head * head)5111 static void free_cpc_rcu(struct rcu_head *head)
5112 {
5113 struct perf_cpu_pmu_context *cpc =
5114 container_of(head, typeof(*cpc), epc.rcu_head);
5115
5116 kfree(cpc);
5117 }
5118
free_epc_rcu(struct rcu_head * head)5119 static void free_epc_rcu(struct rcu_head *head)
5120 {
5121 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
5122
5123 kfree(epc);
5124 }
5125
put_pmu_ctx(struct perf_event_pmu_context * epc)5126 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
5127 {
5128 struct perf_event_context *ctx = epc->ctx;
5129 unsigned long flags;
5130
5131 /*
5132 * XXX
5133 *
5134 * lockdep_assert_held(&ctx->mutex);
5135 *
5136 * can't because of the call-site in _free_event()/put_event()
5137 * which isn't always called under ctx->mutex.
5138 */
5139 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
5140 return;
5141
5142 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
5143
5144 list_del_init(&epc->pmu_ctx_entry);
5145 epc->ctx = NULL;
5146
5147 WARN_ON_ONCE(!list_empty(&epc->pinned_active));
5148 WARN_ON_ONCE(!list_empty(&epc->flexible_active));
5149
5150 raw_spin_unlock_irqrestore(&ctx->lock, flags);
5151
5152 if (epc->embedded) {
5153 call_rcu(&epc->rcu_head, free_cpc_rcu);
5154 return;
5155 }
5156
5157 call_rcu(&epc->rcu_head, free_epc_rcu);
5158 }
5159
5160 static void perf_event_free_filter(struct perf_event *event);
5161
free_event_rcu(struct rcu_head * head)5162 static void free_event_rcu(struct rcu_head *head)
5163 {
5164 struct perf_event *event = container_of(head, typeof(*event), rcu_head);
5165
5166 if (event->ns)
5167 put_pid_ns(event->ns);
5168 perf_event_free_filter(event);
5169 kmem_cache_free(perf_event_cache, event);
5170 }
5171
5172 static void ring_buffer_attach(struct perf_event *event,
5173 struct perf_buffer *rb);
5174
detach_sb_event(struct perf_event * event)5175 static void detach_sb_event(struct perf_event *event)
5176 {
5177 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
5178
5179 raw_spin_lock(&pel->lock);
5180 list_del_rcu(&event->sb_list);
5181 raw_spin_unlock(&pel->lock);
5182 }
5183
is_sb_event(struct perf_event * event)5184 static bool is_sb_event(struct perf_event *event)
5185 {
5186 struct perf_event_attr *attr = &event->attr;
5187
5188 if (event->parent)
5189 return false;
5190
5191 if (event->attach_state & PERF_ATTACH_TASK)
5192 return false;
5193
5194 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
5195 attr->comm || attr->comm_exec ||
5196 attr->task || attr->ksymbol ||
5197 attr->context_switch || attr->text_poke ||
5198 attr->bpf_event)
5199 return true;
5200
5201 return false;
5202 }
5203
unaccount_pmu_sb_event(struct perf_event * event)5204 static void unaccount_pmu_sb_event(struct perf_event *event)
5205 {
5206 if (is_sb_event(event))
5207 detach_sb_event(event);
5208 }
5209
5210 #ifdef CONFIG_NO_HZ_FULL
5211 static DEFINE_SPINLOCK(nr_freq_lock);
5212 #endif
5213
unaccount_freq_event_nohz(void)5214 static void unaccount_freq_event_nohz(void)
5215 {
5216 #ifdef CONFIG_NO_HZ_FULL
5217 spin_lock(&nr_freq_lock);
5218 if (atomic_dec_and_test(&nr_freq_events))
5219 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5220 spin_unlock(&nr_freq_lock);
5221 #endif
5222 }
5223
unaccount_freq_event(void)5224 static void unaccount_freq_event(void)
5225 {
5226 if (tick_nohz_full_enabled())
5227 unaccount_freq_event_nohz();
5228 else
5229 atomic_dec(&nr_freq_events);
5230 }
5231
5232
5233 static struct perf_ctx_data *
alloc_perf_ctx_data(struct kmem_cache * ctx_cache,bool global)5234 alloc_perf_ctx_data(struct kmem_cache *ctx_cache, bool global)
5235 {
5236 struct perf_ctx_data *cd;
5237
5238 cd = kzalloc(sizeof(*cd), GFP_KERNEL);
5239 if (!cd)
5240 return NULL;
5241
5242 cd->data = kmem_cache_zalloc(ctx_cache, GFP_KERNEL);
5243 if (!cd->data) {
5244 kfree(cd);
5245 return NULL;
5246 }
5247
5248 cd->global = global;
5249 cd->ctx_cache = ctx_cache;
5250 refcount_set(&cd->refcount, 1);
5251
5252 return cd;
5253 }
5254
free_perf_ctx_data(struct perf_ctx_data * cd)5255 static void free_perf_ctx_data(struct perf_ctx_data *cd)
5256 {
5257 kmem_cache_free(cd->ctx_cache, cd->data);
5258 kfree(cd);
5259 }
5260
__free_perf_ctx_data_rcu(struct rcu_head * rcu_head)5261 static void __free_perf_ctx_data_rcu(struct rcu_head *rcu_head)
5262 {
5263 struct perf_ctx_data *cd;
5264
5265 cd = container_of(rcu_head, struct perf_ctx_data, rcu_head);
5266 free_perf_ctx_data(cd);
5267 }
5268
perf_free_ctx_data_rcu(struct perf_ctx_data * cd)5269 static inline void perf_free_ctx_data_rcu(struct perf_ctx_data *cd)
5270 {
5271 call_rcu(&cd->rcu_head, __free_perf_ctx_data_rcu);
5272 }
5273
5274 static int
attach_task_ctx_data(struct task_struct * task,struct kmem_cache * ctx_cache,bool global)5275 attach_task_ctx_data(struct task_struct *task, struct kmem_cache *ctx_cache,
5276 bool global)
5277 {
5278 struct perf_ctx_data *cd, *old = NULL;
5279
5280 cd = alloc_perf_ctx_data(ctx_cache, global);
5281 if (!cd)
5282 return -ENOMEM;
5283
5284 for (;;) {
5285 if (try_cmpxchg((struct perf_ctx_data **)&task->perf_ctx_data, &old, cd)) {
5286 if (old)
5287 perf_free_ctx_data_rcu(old);
5288 return 0;
5289 }
5290
5291 if (!old) {
5292 /*
5293 * After seeing a dead @old, we raced with
5294 * removal and lost, try again to install @cd.
5295 */
5296 continue;
5297 }
5298
5299 if (refcount_inc_not_zero(&old->refcount)) {
5300 free_perf_ctx_data(cd); /* unused */
5301 return 0;
5302 }
5303
5304 /*
5305 * @old is a dead object, refcount==0 is stable, try and
5306 * replace it with @cd.
5307 */
5308 }
5309 return 0;
5310 }
5311
5312 static void __detach_global_ctx_data(void);
5313 DEFINE_STATIC_PERCPU_RWSEM(global_ctx_data_rwsem);
5314 static refcount_t global_ctx_data_ref;
5315
5316 static int
attach_global_ctx_data(struct kmem_cache * ctx_cache)5317 attach_global_ctx_data(struct kmem_cache *ctx_cache)
5318 {
5319 struct task_struct *g, *p;
5320 struct perf_ctx_data *cd;
5321 int ret;
5322
5323 if (refcount_inc_not_zero(&global_ctx_data_ref))
5324 return 0;
5325
5326 guard(percpu_write)(&global_ctx_data_rwsem);
5327 if (refcount_inc_not_zero(&global_ctx_data_ref))
5328 return 0;
5329 again:
5330 /* Allocate everything */
5331 scoped_guard (rcu) {
5332 for_each_process_thread(g, p) {
5333 cd = rcu_dereference(p->perf_ctx_data);
5334 if (cd && !cd->global) {
5335 cd->global = 1;
5336 if (!refcount_inc_not_zero(&cd->refcount))
5337 cd = NULL;
5338 }
5339 if (!cd) {
5340 get_task_struct(p);
5341 goto alloc;
5342 }
5343 }
5344 }
5345
5346 refcount_set(&global_ctx_data_ref, 1);
5347
5348 return 0;
5349 alloc:
5350 ret = attach_task_ctx_data(p, ctx_cache, true);
5351 put_task_struct(p);
5352 if (ret) {
5353 __detach_global_ctx_data();
5354 return ret;
5355 }
5356 goto again;
5357 }
5358
5359 static int
attach_perf_ctx_data(struct perf_event * event)5360 attach_perf_ctx_data(struct perf_event *event)
5361 {
5362 struct task_struct *task = event->hw.target;
5363 struct kmem_cache *ctx_cache = event->pmu->task_ctx_cache;
5364 int ret;
5365
5366 if (!ctx_cache)
5367 return -ENOMEM;
5368
5369 if (task)
5370 return attach_task_ctx_data(task, ctx_cache, false);
5371
5372 ret = attach_global_ctx_data(ctx_cache);
5373 if (ret)
5374 return ret;
5375
5376 event->attach_state |= PERF_ATTACH_GLOBAL_DATA;
5377 return 0;
5378 }
5379
5380 static void
detach_task_ctx_data(struct task_struct * p)5381 detach_task_ctx_data(struct task_struct *p)
5382 {
5383 struct perf_ctx_data *cd;
5384
5385 scoped_guard (rcu) {
5386 cd = rcu_dereference(p->perf_ctx_data);
5387 if (!cd || !refcount_dec_and_test(&cd->refcount))
5388 return;
5389 }
5390
5391 /*
5392 * The old ctx_data may be lost because of the race.
5393 * Nothing is required to do for the case.
5394 * See attach_task_ctx_data().
5395 */
5396 if (try_cmpxchg((struct perf_ctx_data **)&p->perf_ctx_data, &cd, NULL))
5397 perf_free_ctx_data_rcu(cd);
5398 }
5399
__detach_global_ctx_data(void)5400 static void __detach_global_ctx_data(void)
5401 {
5402 struct task_struct *g, *p;
5403 struct perf_ctx_data *cd;
5404
5405 again:
5406 scoped_guard (rcu) {
5407 for_each_process_thread(g, p) {
5408 cd = rcu_dereference(p->perf_ctx_data);
5409 if (!cd || !cd->global)
5410 continue;
5411 cd->global = 0;
5412 get_task_struct(p);
5413 goto detach;
5414 }
5415 }
5416 return;
5417 detach:
5418 detach_task_ctx_data(p);
5419 put_task_struct(p);
5420 goto again;
5421 }
5422
detach_global_ctx_data(void)5423 static void detach_global_ctx_data(void)
5424 {
5425 if (refcount_dec_not_one(&global_ctx_data_ref))
5426 return;
5427
5428 guard(percpu_write)(&global_ctx_data_rwsem);
5429 if (!refcount_dec_and_test(&global_ctx_data_ref))
5430 return;
5431
5432 /* remove everything */
5433 __detach_global_ctx_data();
5434 }
5435
detach_perf_ctx_data(struct perf_event * event)5436 static void detach_perf_ctx_data(struct perf_event *event)
5437 {
5438 struct task_struct *task = event->hw.target;
5439
5440 event->attach_state &= ~PERF_ATTACH_TASK_DATA;
5441
5442 if (task)
5443 return detach_task_ctx_data(task);
5444
5445 if (event->attach_state & PERF_ATTACH_GLOBAL_DATA) {
5446 detach_global_ctx_data();
5447 event->attach_state &= ~PERF_ATTACH_GLOBAL_DATA;
5448 }
5449 }
5450
unaccount_event(struct perf_event * event)5451 static void unaccount_event(struct perf_event *event)
5452 {
5453 bool dec = false;
5454
5455 if (event->parent)
5456 return;
5457
5458 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5459 dec = true;
5460 if (event->attr.mmap || event->attr.mmap_data)
5461 atomic_dec(&nr_mmap_events);
5462 if (event->attr.build_id)
5463 atomic_dec(&nr_build_id_events);
5464 if (event->attr.comm)
5465 atomic_dec(&nr_comm_events);
5466 if (event->attr.namespaces)
5467 atomic_dec(&nr_namespaces_events);
5468 if (event->attr.cgroup)
5469 atomic_dec(&nr_cgroup_events);
5470 if (event->attr.task)
5471 atomic_dec(&nr_task_events);
5472 if (event->attr.freq)
5473 unaccount_freq_event();
5474 if (event->attr.context_switch) {
5475 dec = true;
5476 atomic_dec(&nr_switch_events);
5477 }
5478 if (is_cgroup_event(event))
5479 dec = true;
5480 if (has_branch_stack(event))
5481 dec = true;
5482 if (event->attr.ksymbol)
5483 atomic_dec(&nr_ksymbol_events);
5484 if (event->attr.bpf_event)
5485 atomic_dec(&nr_bpf_events);
5486 if (event->attr.text_poke)
5487 atomic_dec(&nr_text_poke_events);
5488
5489 if (dec) {
5490 if (!atomic_add_unless(&perf_sched_count, -1, 1))
5491 schedule_delayed_work(&perf_sched_work, HZ);
5492 }
5493
5494 unaccount_pmu_sb_event(event);
5495 }
5496
perf_sched_delayed(struct work_struct * work)5497 static void perf_sched_delayed(struct work_struct *work)
5498 {
5499 mutex_lock(&perf_sched_mutex);
5500 if (atomic_dec_and_test(&perf_sched_count))
5501 static_branch_disable(&perf_sched_events);
5502 mutex_unlock(&perf_sched_mutex);
5503 }
5504
5505 /*
5506 * The following implement mutual exclusion of events on "exclusive" pmus
5507 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5508 * at a time, so we disallow creating events that might conflict, namely:
5509 *
5510 * 1) cpu-wide events in the presence of per-task events,
5511 * 2) per-task events in the presence of cpu-wide events,
5512 * 3) two matching events on the same perf_event_context.
5513 *
5514 * The former two cases are handled in the allocation path (perf_event_alloc(),
5515 * _free_event()), the latter -- before the first perf_install_in_context().
5516 */
exclusive_event_init(struct perf_event * event)5517 static int exclusive_event_init(struct perf_event *event)
5518 {
5519 struct pmu *pmu = event->pmu;
5520
5521 if (!is_exclusive_pmu(pmu))
5522 return 0;
5523
5524 /*
5525 * Prevent co-existence of per-task and cpu-wide events on the
5526 * same exclusive pmu.
5527 *
5528 * Negative pmu::exclusive_cnt means there are cpu-wide
5529 * events on this "exclusive" pmu, positive means there are
5530 * per-task events.
5531 *
5532 * Since this is called in perf_event_alloc() path, event::ctx
5533 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5534 * to mean "per-task event", because unlike other attach states it
5535 * never gets cleared.
5536 */
5537 if (event->attach_state & PERF_ATTACH_TASK) {
5538 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5539 return -EBUSY;
5540 } else {
5541 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5542 return -EBUSY;
5543 }
5544
5545 event->attach_state |= PERF_ATTACH_EXCLUSIVE;
5546
5547 return 0;
5548 }
5549
exclusive_event_destroy(struct perf_event * event)5550 static void exclusive_event_destroy(struct perf_event *event)
5551 {
5552 struct pmu *pmu = event->pmu;
5553
5554 /* see comment in exclusive_event_init() */
5555 if (event->attach_state & PERF_ATTACH_TASK)
5556 atomic_dec(&pmu->exclusive_cnt);
5557 else
5558 atomic_inc(&pmu->exclusive_cnt);
5559
5560 event->attach_state &= ~PERF_ATTACH_EXCLUSIVE;
5561 }
5562
exclusive_event_match(struct perf_event * e1,struct perf_event * e2)5563 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5564 {
5565 if ((e1->pmu == e2->pmu) &&
5566 (e1->cpu == e2->cpu ||
5567 e1->cpu == -1 ||
5568 e2->cpu == -1))
5569 return true;
5570 return false;
5571 }
5572
exclusive_event_installable(struct perf_event * event,struct perf_event_context * ctx)5573 static bool exclusive_event_installable(struct perf_event *event,
5574 struct perf_event_context *ctx)
5575 {
5576 struct perf_event *iter_event;
5577 struct pmu *pmu = event->pmu;
5578
5579 lockdep_assert_held(&ctx->mutex);
5580
5581 if (!is_exclusive_pmu(pmu))
5582 return true;
5583
5584 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5585 if (exclusive_event_match(iter_event, event))
5586 return false;
5587 }
5588
5589 return true;
5590 }
5591
5592 static void perf_free_addr_filters(struct perf_event *event);
5593
5594 /* vs perf_event_alloc() error */
__free_event(struct perf_event * event)5595 static void __free_event(struct perf_event *event)
5596 {
5597 struct pmu *pmu = event->pmu;
5598
5599 if (event->attach_state & PERF_ATTACH_CALLCHAIN)
5600 put_callchain_buffers();
5601
5602 kfree(event->addr_filter_ranges);
5603
5604 if (event->attach_state & PERF_ATTACH_EXCLUSIVE)
5605 exclusive_event_destroy(event);
5606
5607 if (is_cgroup_event(event))
5608 perf_detach_cgroup(event);
5609
5610 if (event->attach_state & PERF_ATTACH_TASK_DATA)
5611 detach_perf_ctx_data(event);
5612
5613 if (event->destroy)
5614 event->destroy(event);
5615
5616 /*
5617 * Must be after ->destroy(), due to uprobe_perf_close() using
5618 * hw.target.
5619 */
5620 if (event->hw.target)
5621 put_task_struct(event->hw.target);
5622
5623 if (event->pmu_ctx) {
5624 /*
5625 * put_pmu_ctx() needs an event->ctx reference, because of
5626 * epc->ctx.
5627 */
5628 WARN_ON_ONCE(!pmu);
5629 WARN_ON_ONCE(!event->ctx);
5630 WARN_ON_ONCE(event->pmu_ctx->ctx != event->ctx);
5631 put_pmu_ctx(event->pmu_ctx);
5632 }
5633
5634 /*
5635 * perf_event_free_task() relies on put_ctx() being 'last', in
5636 * particular all task references must be cleaned up.
5637 */
5638 if (event->ctx)
5639 put_ctx(event->ctx);
5640
5641 if (pmu) {
5642 module_put(pmu->module);
5643 scoped_guard (spinlock, &pmu->events_lock) {
5644 list_del(&event->pmu_list);
5645 wake_up_var(pmu);
5646 }
5647 }
5648
5649 call_rcu(&event->rcu_head, free_event_rcu);
5650 }
5651
DEFINE_FREE(__free_event,struct perf_event *,if (_T)__free_event (_T))5652 DEFINE_FREE(__free_event, struct perf_event *, if (_T) __free_event(_T))
5653
5654 /* vs perf_event_alloc() success */
5655 static void _free_event(struct perf_event *event)
5656 {
5657 irq_work_sync(&event->pending_irq);
5658 irq_work_sync(&event->pending_disable_irq);
5659
5660 unaccount_event(event);
5661
5662 security_perf_event_free(event);
5663
5664 if (event->rb) {
5665 /*
5666 * Can happen when we close an event with re-directed output.
5667 *
5668 * Since we have a 0 refcount, perf_mmap_close() will skip
5669 * over us; possibly making our ring_buffer_put() the last.
5670 */
5671 mutex_lock(&event->mmap_mutex);
5672 ring_buffer_attach(event, NULL);
5673 mutex_unlock(&event->mmap_mutex);
5674 }
5675
5676 perf_event_free_bpf_prog(event);
5677 perf_free_addr_filters(event);
5678
5679 __free_event(event);
5680 }
5681
5682 /*
5683 * Used to free events which have a known refcount of 1, such as in error paths
5684 * of inherited events.
5685 */
free_event(struct perf_event * event)5686 static void free_event(struct perf_event *event)
5687 {
5688 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5689 "unexpected event refcount: %ld; ptr=%p\n",
5690 atomic_long_read(&event->refcount), event)) {
5691 /* leak to avoid use-after-free */
5692 return;
5693 }
5694
5695 _free_event(event);
5696 }
5697
5698 /*
5699 * Remove user event from the owner task.
5700 */
perf_remove_from_owner(struct perf_event * event)5701 static void perf_remove_from_owner(struct perf_event *event)
5702 {
5703 struct task_struct *owner;
5704
5705 rcu_read_lock();
5706 /*
5707 * Matches the smp_store_release() in perf_event_exit_task(). If we
5708 * observe !owner it means the list deletion is complete and we can
5709 * indeed free this event, otherwise we need to serialize on
5710 * owner->perf_event_mutex.
5711 */
5712 owner = READ_ONCE(event->owner);
5713 if (owner) {
5714 /*
5715 * Since delayed_put_task_struct() also drops the last
5716 * task reference we can safely take a new reference
5717 * while holding the rcu_read_lock().
5718 */
5719 get_task_struct(owner);
5720 }
5721 rcu_read_unlock();
5722
5723 if (owner) {
5724 /*
5725 * If we're here through perf_event_exit_task() we're already
5726 * holding ctx->mutex which would be an inversion wrt. the
5727 * normal lock order.
5728 *
5729 * However we can safely take this lock because its the child
5730 * ctx->mutex.
5731 */
5732 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5733
5734 /*
5735 * We have to re-check the event->owner field, if it is cleared
5736 * we raced with perf_event_exit_task(), acquiring the mutex
5737 * ensured they're done, and we can proceed with freeing the
5738 * event.
5739 */
5740 if (event->owner) {
5741 list_del_init(&event->owner_entry);
5742 smp_store_release(&event->owner, NULL);
5743 }
5744 mutex_unlock(&owner->perf_event_mutex);
5745 put_task_struct(owner);
5746 }
5747 }
5748
put_event(struct perf_event * event)5749 static void put_event(struct perf_event *event)
5750 {
5751 struct perf_event *parent;
5752
5753 if (!atomic_long_dec_and_test(&event->refcount))
5754 return;
5755
5756 parent = event->parent;
5757 _free_event(event);
5758
5759 /* Matches the refcount bump in inherit_event() */
5760 if (parent)
5761 put_event(parent);
5762 }
5763
5764 /*
5765 * Kill an event dead; while event:refcount will preserve the event
5766 * object, it will not preserve its functionality. Once the last 'user'
5767 * gives up the object, we'll destroy the thing.
5768 */
perf_event_release_kernel(struct perf_event * event)5769 int perf_event_release_kernel(struct perf_event *event)
5770 {
5771 struct perf_event_context *ctx = event->ctx;
5772 struct perf_event *child, *tmp;
5773
5774 /*
5775 * If we got here through err_alloc: free_event(event); we will not
5776 * have attached to a context yet.
5777 */
5778 if (!ctx) {
5779 WARN_ON_ONCE(event->attach_state &
5780 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5781 goto no_ctx;
5782 }
5783
5784 if (!is_kernel_event(event))
5785 perf_remove_from_owner(event);
5786
5787 ctx = perf_event_ctx_lock(event);
5788 WARN_ON_ONCE(ctx->parent_ctx);
5789
5790 /*
5791 * Mark this event as STATE_DEAD, there is no external reference to it
5792 * anymore.
5793 *
5794 * Anybody acquiring event->child_mutex after the below loop _must_
5795 * also see this, most importantly inherit_event() which will avoid
5796 * placing more children on the list.
5797 *
5798 * Thus this guarantees that we will in fact observe and kill _ALL_
5799 * child events.
5800 */
5801 if (event->state > PERF_EVENT_STATE_REVOKED) {
5802 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5803 } else {
5804 event->state = PERF_EVENT_STATE_DEAD;
5805 }
5806
5807 perf_event_ctx_unlock(event, ctx);
5808
5809 again:
5810 mutex_lock(&event->child_mutex);
5811 list_for_each_entry(child, &event->child_list, child_list) {
5812 /*
5813 * Cannot change, child events are not migrated, see the
5814 * comment with perf_event_ctx_lock_nested().
5815 */
5816 ctx = READ_ONCE(child->ctx);
5817 /*
5818 * Since child_mutex nests inside ctx::mutex, we must jump
5819 * through hoops. We start by grabbing a reference on the ctx.
5820 *
5821 * Since the event cannot get freed while we hold the
5822 * child_mutex, the context must also exist and have a !0
5823 * reference count.
5824 */
5825 get_ctx(ctx);
5826
5827 /*
5828 * Now that we have a ctx ref, we can drop child_mutex, and
5829 * acquire ctx::mutex without fear of it going away. Then we
5830 * can re-acquire child_mutex.
5831 */
5832 mutex_unlock(&event->child_mutex);
5833 mutex_lock(&ctx->mutex);
5834 mutex_lock(&event->child_mutex);
5835
5836 /*
5837 * Now that we hold ctx::mutex and child_mutex, revalidate our
5838 * state, if child is still the first entry, it didn't get freed
5839 * and we can continue doing so.
5840 */
5841 tmp = list_first_entry_or_null(&event->child_list,
5842 struct perf_event, child_list);
5843 if (tmp == child) {
5844 perf_remove_from_context(child, DETACH_GROUP | DETACH_CHILD);
5845 } else {
5846 child = NULL;
5847 }
5848
5849 mutex_unlock(&event->child_mutex);
5850 mutex_unlock(&ctx->mutex);
5851
5852 if (child) {
5853 /* Last reference unless ->pending_task work is pending */
5854 put_event(child);
5855 }
5856 put_ctx(ctx);
5857
5858 goto again;
5859 }
5860 mutex_unlock(&event->child_mutex);
5861
5862 no_ctx:
5863 /*
5864 * Last reference unless ->pending_task work is pending on this event
5865 * or any of its children.
5866 */
5867 put_event(event);
5868 return 0;
5869 }
5870 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5871
5872 /*
5873 * Called when the last reference to the file is gone.
5874 */
perf_release(struct inode * inode,struct file * file)5875 static int perf_release(struct inode *inode, struct file *file)
5876 {
5877 perf_event_release_kernel(file->private_data);
5878 return 0;
5879 }
5880
__perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5881 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5882 {
5883 struct perf_event *child;
5884 u64 total = 0;
5885
5886 *enabled = 0;
5887 *running = 0;
5888
5889 mutex_lock(&event->child_mutex);
5890
5891 (void)perf_event_read(event, false);
5892 total += perf_event_count(event, false);
5893
5894 *enabled += event->total_time_enabled +
5895 atomic64_read(&event->child_total_time_enabled);
5896 *running += event->total_time_running +
5897 atomic64_read(&event->child_total_time_running);
5898
5899 list_for_each_entry(child, &event->child_list, child_list) {
5900 (void)perf_event_read(child, false);
5901 total += perf_event_count(child, false);
5902 *enabled += child->total_time_enabled;
5903 *running += child->total_time_running;
5904 }
5905 mutex_unlock(&event->child_mutex);
5906
5907 return total;
5908 }
5909
perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5910 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5911 {
5912 struct perf_event_context *ctx;
5913 u64 count;
5914
5915 ctx = perf_event_ctx_lock(event);
5916 count = __perf_event_read_value(event, enabled, running);
5917 perf_event_ctx_unlock(event, ctx);
5918
5919 return count;
5920 }
5921 EXPORT_SYMBOL_GPL(perf_event_read_value);
5922
__perf_read_group_add(struct perf_event * leader,u64 read_format,u64 * values)5923 static int __perf_read_group_add(struct perf_event *leader,
5924 u64 read_format, u64 *values)
5925 {
5926 struct perf_event_context *ctx = leader->ctx;
5927 struct perf_event *sub, *parent;
5928 unsigned long flags;
5929 int n = 1; /* skip @nr */
5930 int ret;
5931
5932 ret = perf_event_read(leader, true);
5933 if (ret)
5934 return ret;
5935
5936 raw_spin_lock_irqsave(&ctx->lock, flags);
5937 /*
5938 * Verify the grouping between the parent and child (inherited)
5939 * events is still in tact.
5940 *
5941 * Specifically:
5942 * - leader->ctx->lock pins leader->sibling_list
5943 * - parent->child_mutex pins parent->child_list
5944 * - parent->ctx->mutex pins parent->sibling_list
5945 *
5946 * Because parent->ctx != leader->ctx (and child_list nests inside
5947 * ctx->mutex), group destruction is not atomic between children, also
5948 * see perf_event_release_kernel(). Additionally, parent can grow the
5949 * group.
5950 *
5951 * Therefore it is possible to have parent and child groups in a
5952 * different configuration and summing over such a beast makes no sense
5953 * what so ever.
5954 *
5955 * Reject this.
5956 */
5957 parent = leader->parent;
5958 if (parent &&
5959 (parent->group_generation != leader->group_generation ||
5960 parent->nr_siblings != leader->nr_siblings)) {
5961 ret = -ECHILD;
5962 goto unlock;
5963 }
5964
5965 /*
5966 * Since we co-schedule groups, {enabled,running} times of siblings
5967 * will be identical to those of the leader, so we only publish one
5968 * set.
5969 */
5970 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5971 values[n++] += leader->total_time_enabled +
5972 atomic64_read(&leader->child_total_time_enabled);
5973 }
5974
5975 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5976 values[n++] += leader->total_time_running +
5977 atomic64_read(&leader->child_total_time_running);
5978 }
5979
5980 /*
5981 * Write {count,id} tuples for every sibling.
5982 */
5983 values[n++] += perf_event_count(leader, false);
5984 if (read_format & PERF_FORMAT_ID)
5985 values[n++] = primary_event_id(leader);
5986 if (read_format & PERF_FORMAT_LOST)
5987 values[n++] = atomic64_read(&leader->lost_samples);
5988
5989 for_each_sibling_event(sub, leader) {
5990 values[n++] += perf_event_count(sub, false);
5991 if (read_format & PERF_FORMAT_ID)
5992 values[n++] = primary_event_id(sub);
5993 if (read_format & PERF_FORMAT_LOST)
5994 values[n++] = atomic64_read(&sub->lost_samples);
5995 }
5996
5997 unlock:
5998 raw_spin_unlock_irqrestore(&ctx->lock, flags);
5999 return ret;
6000 }
6001
perf_read_group(struct perf_event * event,u64 read_format,char __user * buf)6002 static int perf_read_group(struct perf_event *event,
6003 u64 read_format, char __user *buf)
6004 {
6005 struct perf_event *leader = event->group_leader, *child;
6006 struct perf_event_context *ctx = leader->ctx;
6007 int ret;
6008 u64 *values;
6009
6010 lockdep_assert_held(&ctx->mutex);
6011
6012 values = kzalloc(event->read_size, GFP_KERNEL);
6013 if (!values)
6014 return -ENOMEM;
6015
6016 values[0] = 1 + leader->nr_siblings;
6017
6018 mutex_lock(&leader->child_mutex);
6019
6020 ret = __perf_read_group_add(leader, read_format, values);
6021 if (ret)
6022 goto unlock;
6023
6024 list_for_each_entry(child, &leader->child_list, child_list) {
6025 ret = __perf_read_group_add(child, read_format, values);
6026 if (ret)
6027 goto unlock;
6028 }
6029
6030 mutex_unlock(&leader->child_mutex);
6031
6032 ret = event->read_size;
6033 if (copy_to_user(buf, values, event->read_size))
6034 ret = -EFAULT;
6035 goto out;
6036
6037 unlock:
6038 mutex_unlock(&leader->child_mutex);
6039 out:
6040 kfree(values);
6041 return ret;
6042 }
6043
perf_read_one(struct perf_event * event,u64 read_format,char __user * buf)6044 static int perf_read_one(struct perf_event *event,
6045 u64 read_format, char __user *buf)
6046 {
6047 u64 enabled, running;
6048 u64 values[5];
6049 int n = 0;
6050
6051 values[n++] = __perf_event_read_value(event, &enabled, &running);
6052 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6053 values[n++] = enabled;
6054 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6055 values[n++] = running;
6056 if (read_format & PERF_FORMAT_ID)
6057 values[n++] = primary_event_id(event);
6058 if (read_format & PERF_FORMAT_LOST)
6059 values[n++] = atomic64_read(&event->lost_samples);
6060
6061 if (copy_to_user(buf, values, n * sizeof(u64)))
6062 return -EFAULT;
6063
6064 return n * sizeof(u64);
6065 }
6066
is_event_hup(struct perf_event * event)6067 static bool is_event_hup(struct perf_event *event)
6068 {
6069 bool no_children;
6070
6071 if (event->state > PERF_EVENT_STATE_EXIT)
6072 return false;
6073
6074 mutex_lock(&event->child_mutex);
6075 no_children = list_empty(&event->child_list);
6076 mutex_unlock(&event->child_mutex);
6077 return no_children;
6078 }
6079
6080 /*
6081 * Read the performance event - simple non blocking version for now
6082 */
6083 static ssize_t
__perf_read(struct perf_event * event,char __user * buf,size_t count)6084 __perf_read(struct perf_event *event, char __user *buf, size_t count)
6085 {
6086 u64 read_format = event->attr.read_format;
6087 int ret;
6088
6089 /*
6090 * Return end-of-file for a read on an event that is in
6091 * error state (i.e. because it was pinned but it couldn't be
6092 * scheduled on to the CPU at some point).
6093 */
6094 if (event->state == PERF_EVENT_STATE_ERROR)
6095 return 0;
6096
6097 if (count < event->read_size)
6098 return -ENOSPC;
6099
6100 WARN_ON_ONCE(event->ctx->parent_ctx);
6101 if (read_format & PERF_FORMAT_GROUP)
6102 ret = perf_read_group(event, read_format, buf);
6103 else
6104 ret = perf_read_one(event, read_format, buf);
6105
6106 return ret;
6107 }
6108
6109 static ssize_t
perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)6110 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
6111 {
6112 struct perf_event *event = file->private_data;
6113 struct perf_event_context *ctx;
6114 int ret;
6115
6116 ret = security_perf_event_read(event);
6117 if (ret)
6118 return ret;
6119
6120 ctx = perf_event_ctx_lock(event);
6121 ret = __perf_read(event, buf, count);
6122 perf_event_ctx_unlock(event, ctx);
6123
6124 return ret;
6125 }
6126
perf_poll(struct file * file,poll_table * wait)6127 static __poll_t perf_poll(struct file *file, poll_table *wait)
6128 {
6129 struct perf_event *event = file->private_data;
6130 struct perf_buffer *rb;
6131 __poll_t events = EPOLLHUP;
6132
6133 if (event->state <= PERF_EVENT_STATE_REVOKED)
6134 return EPOLLERR;
6135
6136 poll_wait(file, &event->waitq, wait);
6137
6138 if (event->state <= PERF_EVENT_STATE_REVOKED)
6139 return EPOLLERR;
6140
6141 if (is_event_hup(event))
6142 return events;
6143
6144 if (unlikely(READ_ONCE(event->state) == PERF_EVENT_STATE_ERROR &&
6145 event->attr.pinned))
6146 return EPOLLERR;
6147
6148 /*
6149 * Pin the event->rb by taking event->mmap_mutex; otherwise
6150 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
6151 */
6152 mutex_lock(&event->mmap_mutex);
6153 rb = event->rb;
6154 if (rb)
6155 events = atomic_xchg(&rb->poll, 0);
6156 mutex_unlock(&event->mmap_mutex);
6157 return events;
6158 }
6159
_perf_event_reset(struct perf_event * event)6160 static void _perf_event_reset(struct perf_event *event)
6161 {
6162 (void)perf_event_read(event, false);
6163 local64_set(&event->count, 0);
6164 perf_event_update_userpage(event);
6165 }
6166
6167 /* Assume it's not an event with inherit set. */
perf_event_pause(struct perf_event * event,bool reset)6168 u64 perf_event_pause(struct perf_event *event, bool reset)
6169 {
6170 struct perf_event_context *ctx;
6171 u64 count;
6172
6173 ctx = perf_event_ctx_lock(event);
6174 WARN_ON_ONCE(event->attr.inherit);
6175 _perf_event_disable(event);
6176 count = local64_read(&event->count);
6177 if (reset)
6178 local64_set(&event->count, 0);
6179 perf_event_ctx_unlock(event, ctx);
6180
6181 return count;
6182 }
6183 EXPORT_SYMBOL_GPL(perf_event_pause);
6184
6185 /*
6186 * Holding the top-level event's child_mutex means that any
6187 * descendant process that has inherited this event will block
6188 * in perf_event_exit_event() if it goes to exit, thus satisfying the
6189 * task existence requirements of perf_event_enable/disable.
6190 */
perf_event_for_each_child(struct perf_event * event,void (* func)(struct perf_event *))6191 static void perf_event_for_each_child(struct perf_event *event,
6192 void (*func)(struct perf_event *))
6193 {
6194 struct perf_event *child;
6195
6196 WARN_ON_ONCE(event->ctx->parent_ctx);
6197
6198 mutex_lock(&event->child_mutex);
6199 func(event);
6200 list_for_each_entry(child, &event->child_list, child_list)
6201 func(child);
6202 mutex_unlock(&event->child_mutex);
6203 }
6204
perf_event_for_each(struct perf_event * event,void (* func)(struct perf_event *))6205 static void perf_event_for_each(struct perf_event *event,
6206 void (*func)(struct perf_event *))
6207 {
6208 struct perf_event_context *ctx = event->ctx;
6209 struct perf_event *sibling;
6210
6211 lockdep_assert_held(&ctx->mutex);
6212
6213 event = event->group_leader;
6214
6215 perf_event_for_each_child(event, func);
6216 for_each_sibling_event(sibling, event)
6217 perf_event_for_each_child(sibling, func);
6218 }
6219
__perf_event_period(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)6220 static void __perf_event_period(struct perf_event *event,
6221 struct perf_cpu_context *cpuctx,
6222 struct perf_event_context *ctx,
6223 void *info)
6224 {
6225 u64 value = *((u64 *)info);
6226 bool active;
6227
6228 if (event->attr.freq) {
6229 event->attr.sample_freq = value;
6230 } else {
6231 event->attr.sample_period = value;
6232 event->hw.sample_period = value;
6233 }
6234
6235 active = (event->state == PERF_EVENT_STATE_ACTIVE);
6236 if (active) {
6237 perf_pmu_disable(event->pmu);
6238 event->pmu->stop(event, PERF_EF_UPDATE);
6239 }
6240
6241 local64_set(&event->hw.period_left, 0);
6242
6243 if (active) {
6244 event->pmu->start(event, PERF_EF_RELOAD);
6245 /*
6246 * Once the period is force-reset, the event starts immediately.
6247 * But the event/group could be throttled. Unthrottle the
6248 * event/group now to avoid the next tick trying to unthrottle
6249 * while we already re-started the event/group.
6250 */
6251 if (event->hw.interrupts == MAX_INTERRUPTS)
6252 perf_event_unthrottle_group(event, true);
6253 perf_pmu_enable(event->pmu);
6254 }
6255 }
6256
perf_event_check_period(struct perf_event * event,u64 value)6257 static int perf_event_check_period(struct perf_event *event, u64 value)
6258 {
6259 return event->pmu->check_period(event, value);
6260 }
6261
_perf_event_period(struct perf_event * event,u64 value)6262 static int _perf_event_period(struct perf_event *event, u64 value)
6263 {
6264 if (!is_sampling_event(event))
6265 return -EINVAL;
6266
6267 if (!value)
6268 return -EINVAL;
6269
6270 if (event->attr.freq) {
6271 if (value > sysctl_perf_event_sample_rate)
6272 return -EINVAL;
6273 } else {
6274 if (perf_event_check_period(event, value))
6275 return -EINVAL;
6276 if (value & (1ULL << 63))
6277 return -EINVAL;
6278 }
6279
6280 event_function_call(event, __perf_event_period, &value);
6281
6282 return 0;
6283 }
6284
perf_event_period(struct perf_event * event,u64 value)6285 int perf_event_period(struct perf_event *event, u64 value)
6286 {
6287 struct perf_event_context *ctx;
6288 int ret;
6289
6290 ctx = perf_event_ctx_lock(event);
6291 ret = _perf_event_period(event, value);
6292 perf_event_ctx_unlock(event, ctx);
6293
6294 return ret;
6295 }
6296 EXPORT_SYMBOL_GPL(perf_event_period);
6297
6298 static const struct file_operations perf_fops;
6299
is_perf_file(struct fd f)6300 static inline bool is_perf_file(struct fd f)
6301 {
6302 return !fd_empty(f) && fd_file(f)->f_op == &perf_fops;
6303 }
6304
6305 static int perf_event_set_output(struct perf_event *event,
6306 struct perf_event *output_event);
6307 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
6308 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6309 struct perf_event_attr *attr);
6310 static int __perf_event_set_bpf_prog(struct perf_event *event,
6311 struct bpf_prog *prog,
6312 u64 bpf_cookie);
6313
_perf_ioctl(struct perf_event * event,unsigned int cmd,unsigned long arg)6314 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
6315 {
6316 void (*func)(struct perf_event *);
6317 u32 flags = arg;
6318
6319 if (event->state <= PERF_EVENT_STATE_REVOKED)
6320 return -ENODEV;
6321
6322 switch (cmd) {
6323 case PERF_EVENT_IOC_ENABLE:
6324 func = _perf_event_enable;
6325 break;
6326 case PERF_EVENT_IOC_DISABLE:
6327 func = _perf_event_disable;
6328 break;
6329 case PERF_EVENT_IOC_RESET:
6330 func = _perf_event_reset;
6331 break;
6332
6333 case PERF_EVENT_IOC_REFRESH:
6334 return _perf_event_refresh(event, arg);
6335
6336 case PERF_EVENT_IOC_PERIOD:
6337 {
6338 u64 value;
6339
6340 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
6341 return -EFAULT;
6342
6343 return _perf_event_period(event, value);
6344 }
6345 case PERF_EVENT_IOC_ID:
6346 {
6347 u64 id = primary_event_id(event);
6348
6349 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
6350 return -EFAULT;
6351 return 0;
6352 }
6353
6354 case PERF_EVENT_IOC_SET_OUTPUT:
6355 {
6356 CLASS(fd, output)(arg); // arg == -1 => empty
6357 struct perf_event *output_event = NULL;
6358 if (arg != -1) {
6359 if (!is_perf_file(output))
6360 return -EBADF;
6361 output_event = fd_file(output)->private_data;
6362 }
6363 return perf_event_set_output(event, output_event);
6364 }
6365
6366 case PERF_EVENT_IOC_SET_FILTER:
6367 return perf_event_set_filter(event, (void __user *)arg);
6368
6369 case PERF_EVENT_IOC_SET_BPF:
6370 {
6371 struct bpf_prog *prog;
6372 int err;
6373
6374 prog = bpf_prog_get(arg);
6375 if (IS_ERR(prog))
6376 return PTR_ERR(prog);
6377
6378 err = __perf_event_set_bpf_prog(event, prog, 0);
6379 if (err) {
6380 bpf_prog_put(prog);
6381 return err;
6382 }
6383
6384 return 0;
6385 }
6386
6387 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
6388 struct perf_buffer *rb;
6389
6390 rcu_read_lock();
6391 rb = rcu_dereference(event->rb);
6392 if (!rb || !rb->nr_pages) {
6393 rcu_read_unlock();
6394 return -EINVAL;
6395 }
6396 rb_toggle_paused(rb, !!arg);
6397 rcu_read_unlock();
6398 return 0;
6399 }
6400
6401 case PERF_EVENT_IOC_QUERY_BPF:
6402 return perf_event_query_prog_array(event, (void __user *)arg);
6403
6404 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
6405 struct perf_event_attr new_attr;
6406 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
6407 &new_attr);
6408
6409 if (err)
6410 return err;
6411
6412 return perf_event_modify_attr(event, &new_attr);
6413 }
6414 default:
6415 return -ENOTTY;
6416 }
6417
6418 if (flags & PERF_IOC_FLAG_GROUP)
6419 perf_event_for_each(event, func);
6420 else
6421 perf_event_for_each_child(event, func);
6422
6423 return 0;
6424 }
6425
perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)6426 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6427 {
6428 struct perf_event *event = file->private_data;
6429 struct perf_event_context *ctx;
6430 long ret;
6431
6432 /* Treat ioctl like writes as it is likely a mutating operation. */
6433 ret = security_perf_event_write(event);
6434 if (ret)
6435 return ret;
6436
6437 ctx = perf_event_ctx_lock(event);
6438 ret = _perf_ioctl(event, cmd, arg);
6439 perf_event_ctx_unlock(event, ctx);
6440
6441 return ret;
6442 }
6443
6444 #ifdef CONFIG_COMPAT
perf_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)6445 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6446 unsigned long arg)
6447 {
6448 switch (_IOC_NR(cmd)) {
6449 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6450 case _IOC_NR(PERF_EVENT_IOC_ID):
6451 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6452 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6453 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6454 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6455 cmd &= ~IOCSIZE_MASK;
6456 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6457 }
6458 break;
6459 }
6460 return perf_ioctl(file, cmd, arg);
6461 }
6462 #else
6463 # define perf_compat_ioctl NULL
6464 #endif
6465
perf_event_task_enable(void)6466 int perf_event_task_enable(void)
6467 {
6468 struct perf_event_context *ctx;
6469 struct perf_event *event;
6470
6471 mutex_lock(¤t->perf_event_mutex);
6472 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
6473 ctx = perf_event_ctx_lock(event);
6474 perf_event_for_each_child(event, _perf_event_enable);
6475 perf_event_ctx_unlock(event, ctx);
6476 }
6477 mutex_unlock(¤t->perf_event_mutex);
6478
6479 return 0;
6480 }
6481
perf_event_task_disable(void)6482 int perf_event_task_disable(void)
6483 {
6484 struct perf_event_context *ctx;
6485 struct perf_event *event;
6486
6487 mutex_lock(¤t->perf_event_mutex);
6488 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
6489 ctx = perf_event_ctx_lock(event);
6490 perf_event_for_each_child(event, _perf_event_disable);
6491 perf_event_ctx_unlock(event, ctx);
6492 }
6493 mutex_unlock(¤t->perf_event_mutex);
6494
6495 return 0;
6496 }
6497
perf_event_index(struct perf_event * event)6498 static int perf_event_index(struct perf_event *event)
6499 {
6500 if (event->hw.state & PERF_HES_STOPPED)
6501 return 0;
6502
6503 if (event->state != PERF_EVENT_STATE_ACTIVE)
6504 return 0;
6505
6506 return event->pmu->event_idx(event);
6507 }
6508
perf_event_init_userpage(struct perf_event * event)6509 static void perf_event_init_userpage(struct perf_event *event)
6510 {
6511 struct perf_event_mmap_page *userpg;
6512 struct perf_buffer *rb;
6513
6514 rcu_read_lock();
6515 rb = rcu_dereference(event->rb);
6516 if (!rb)
6517 goto unlock;
6518
6519 userpg = rb->user_page;
6520
6521 /* Allow new userspace to detect that bit 0 is deprecated */
6522 userpg->cap_bit0_is_deprecated = 1;
6523 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6524 userpg->data_offset = PAGE_SIZE;
6525 userpg->data_size = perf_data_size(rb);
6526
6527 unlock:
6528 rcu_read_unlock();
6529 }
6530
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)6531 void __weak arch_perf_update_userpage(
6532 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6533 {
6534 }
6535
6536 /*
6537 * Callers need to ensure there can be no nesting of this function, otherwise
6538 * the seqlock logic goes bad. We can not serialize this because the arch
6539 * code calls this from NMI context.
6540 */
perf_event_update_userpage(struct perf_event * event)6541 void perf_event_update_userpage(struct perf_event *event)
6542 {
6543 struct perf_event_mmap_page *userpg;
6544 struct perf_buffer *rb;
6545 u64 enabled, running, now;
6546
6547 rcu_read_lock();
6548 rb = rcu_dereference(event->rb);
6549 if (!rb)
6550 goto unlock;
6551
6552 /*
6553 * compute total_time_enabled, total_time_running
6554 * based on snapshot values taken when the event
6555 * was last scheduled in.
6556 *
6557 * we cannot simply called update_context_time()
6558 * because of locking issue as we can be called in
6559 * NMI context
6560 */
6561 calc_timer_values(event, &now, &enabled, &running);
6562
6563 userpg = rb->user_page;
6564 /*
6565 * Disable preemption to guarantee consistent time stamps are stored to
6566 * the user page.
6567 */
6568 preempt_disable();
6569 ++userpg->lock;
6570 barrier();
6571 userpg->index = perf_event_index(event);
6572 userpg->offset = perf_event_count(event, false);
6573 if (userpg->index)
6574 userpg->offset -= local64_read(&event->hw.prev_count);
6575
6576 userpg->time_enabled = enabled +
6577 atomic64_read(&event->child_total_time_enabled);
6578
6579 userpg->time_running = running +
6580 atomic64_read(&event->child_total_time_running);
6581
6582 arch_perf_update_userpage(event, userpg, now);
6583
6584 barrier();
6585 ++userpg->lock;
6586 preempt_enable();
6587 unlock:
6588 rcu_read_unlock();
6589 }
6590 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6591
ring_buffer_attach(struct perf_event * event,struct perf_buffer * rb)6592 static void ring_buffer_attach(struct perf_event *event,
6593 struct perf_buffer *rb)
6594 {
6595 struct perf_buffer *old_rb = NULL;
6596 unsigned long flags;
6597
6598 WARN_ON_ONCE(event->parent);
6599
6600 if (event->rb) {
6601 /*
6602 * Should be impossible, we set this when removing
6603 * event->rb_entry and wait/clear when adding event->rb_entry.
6604 */
6605 WARN_ON_ONCE(event->rcu_pending);
6606
6607 old_rb = event->rb;
6608 spin_lock_irqsave(&old_rb->event_lock, flags);
6609 list_del_rcu(&event->rb_entry);
6610 spin_unlock_irqrestore(&old_rb->event_lock, flags);
6611
6612 event->rcu_batches = get_state_synchronize_rcu();
6613 event->rcu_pending = 1;
6614 }
6615
6616 if (rb) {
6617 if (event->rcu_pending) {
6618 cond_synchronize_rcu(event->rcu_batches);
6619 event->rcu_pending = 0;
6620 }
6621
6622 spin_lock_irqsave(&rb->event_lock, flags);
6623 list_add_rcu(&event->rb_entry, &rb->event_list);
6624 spin_unlock_irqrestore(&rb->event_lock, flags);
6625 }
6626
6627 /*
6628 * Avoid racing with perf_mmap_close(AUX): stop the event
6629 * before swizzling the event::rb pointer; if it's getting
6630 * unmapped, its aux_mmap_count will be 0 and it won't
6631 * restart. See the comment in __perf_pmu_output_stop().
6632 *
6633 * Data will inevitably be lost when set_output is done in
6634 * mid-air, but then again, whoever does it like this is
6635 * not in for the data anyway.
6636 */
6637 if (has_aux(event))
6638 perf_event_stop(event, 0);
6639
6640 rcu_assign_pointer(event->rb, rb);
6641
6642 if (old_rb) {
6643 ring_buffer_put(old_rb);
6644 /*
6645 * Since we detached before setting the new rb, so that we
6646 * could attach the new rb, we could have missed a wakeup.
6647 * Provide it now.
6648 */
6649 wake_up_all(&event->waitq);
6650 }
6651 }
6652
ring_buffer_wakeup(struct perf_event * event)6653 static void ring_buffer_wakeup(struct perf_event *event)
6654 {
6655 struct perf_buffer *rb;
6656
6657 if (event->parent)
6658 event = event->parent;
6659
6660 rcu_read_lock();
6661 rb = rcu_dereference(event->rb);
6662 if (rb) {
6663 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6664 wake_up_all(&event->waitq);
6665 }
6666 rcu_read_unlock();
6667 }
6668
ring_buffer_get(struct perf_event * event)6669 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6670 {
6671 struct perf_buffer *rb;
6672
6673 if (event->parent)
6674 event = event->parent;
6675
6676 rcu_read_lock();
6677 rb = rcu_dereference(event->rb);
6678 if (rb) {
6679 if (!refcount_inc_not_zero(&rb->refcount))
6680 rb = NULL;
6681 }
6682 rcu_read_unlock();
6683
6684 return rb;
6685 }
6686
ring_buffer_put(struct perf_buffer * rb)6687 void ring_buffer_put(struct perf_buffer *rb)
6688 {
6689 if (!refcount_dec_and_test(&rb->refcount))
6690 return;
6691
6692 WARN_ON_ONCE(!list_empty(&rb->event_list));
6693
6694 call_rcu(&rb->rcu_head, rb_free_rcu);
6695 }
6696
6697 typedef void (*mapped_f)(struct perf_event *event, struct mm_struct *mm);
6698
6699 #define get_mapped(event, func) \
6700 ({ struct pmu *pmu; \
6701 mapped_f f = NULL; \
6702 guard(rcu)(); \
6703 pmu = READ_ONCE(event->pmu); \
6704 if (pmu) \
6705 f = pmu->func; \
6706 f; \
6707 })
6708
perf_mmap_open(struct vm_area_struct * vma)6709 static void perf_mmap_open(struct vm_area_struct *vma)
6710 {
6711 struct perf_event *event = vma->vm_file->private_data;
6712 mapped_f mapped = get_mapped(event, event_mapped);
6713
6714 refcount_inc(&event->mmap_count);
6715 refcount_inc(&event->rb->mmap_count);
6716
6717 if (vma->vm_pgoff)
6718 refcount_inc(&event->rb->aux_mmap_count);
6719
6720 if (mapped)
6721 mapped(event, vma->vm_mm);
6722 }
6723
6724 static void perf_pmu_output_stop(struct perf_event *event);
6725
6726 /*
6727 * A buffer can be mmap()ed multiple times; either directly through the same
6728 * event, or through other events by use of perf_event_set_output().
6729 *
6730 * In order to undo the VM accounting done by perf_mmap() we need to destroy
6731 * the buffer here, where we still have a VM context. This means we need
6732 * to detach all events redirecting to us.
6733 */
perf_mmap_close(struct vm_area_struct * vma)6734 static void perf_mmap_close(struct vm_area_struct *vma)
6735 {
6736 struct perf_event *event = vma->vm_file->private_data;
6737 mapped_f unmapped = get_mapped(event, event_unmapped);
6738 struct perf_buffer *rb = ring_buffer_get(event);
6739 struct user_struct *mmap_user = rb->mmap_user;
6740 int mmap_locked = rb->mmap_locked;
6741 unsigned long size = perf_data_size(rb);
6742 bool detach_rest = false;
6743
6744 /* FIXIES vs perf_pmu_unregister() */
6745 if (unmapped)
6746 unmapped(event, vma->vm_mm);
6747
6748 /*
6749 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex
6750 * to avoid complications.
6751 */
6752 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6753 refcount_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) {
6754 /*
6755 * Stop all AUX events that are writing to this buffer,
6756 * so that we can free its AUX pages and corresponding PMU
6757 * data. Note that after rb::aux_mmap_count dropped to zero,
6758 * they won't start any more (see perf_aux_output_begin()).
6759 */
6760 perf_pmu_output_stop(event);
6761
6762 /* now it's safe to free the pages */
6763 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6764 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6765
6766 /* this has to be the last one */
6767 rb_free_aux(rb);
6768 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6769
6770 mutex_unlock(&rb->aux_mutex);
6771 }
6772
6773 if (refcount_dec_and_test(&rb->mmap_count))
6774 detach_rest = true;
6775
6776 if (!refcount_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6777 goto out_put;
6778
6779 ring_buffer_attach(event, NULL);
6780 mutex_unlock(&event->mmap_mutex);
6781
6782 /* If there's still other mmap()s of this buffer, we're done. */
6783 if (!detach_rest)
6784 goto out_put;
6785
6786 /*
6787 * No other mmap()s, detach from all other events that might redirect
6788 * into the now unreachable buffer. Somewhat complicated by the
6789 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6790 */
6791 again:
6792 rcu_read_lock();
6793 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6794 if (!atomic_long_inc_not_zero(&event->refcount)) {
6795 /*
6796 * This event is en-route to free_event() which will
6797 * detach it and remove it from the list.
6798 */
6799 continue;
6800 }
6801 rcu_read_unlock();
6802
6803 mutex_lock(&event->mmap_mutex);
6804 /*
6805 * Check we didn't race with perf_event_set_output() which can
6806 * swizzle the rb from under us while we were waiting to
6807 * acquire mmap_mutex.
6808 *
6809 * If we find a different rb; ignore this event, a next
6810 * iteration will no longer find it on the list. We have to
6811 * still restart the iteration to make sure we're not now
6812 * iterating the wrong list.
6813 */
6814 if (event->rb == rb)
6815 ring_buffer_attach(event, NULL);
6816
6817 mutex_unlock(&event->mmap_mutex);
6818 put_event(event);
6819
6820 /*
6821 * Restart the iteration; either we're on the wrong list or
6822 * destroyed its integrity by doing a deletion.
6823 */
6824 goto again;
6825 }
6826 rcu_read_unlock();
6827
6828 /*
6829 * It could be there's still a few 0-ref events on the list; they'll
6830 * get cleaned up by free_event() -- they'll also still have their
6831 * ref on the rb and will free it whenever they are done with it.
6832 *
6833 * Aside from that, this buffer is 'fully' detached and unmapped,
6834 * undo the VM accounting.
6835 */
6836
6837 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6838 &mmap_user->locked_vm);
6839 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6840 free_uid(mmap_user);
6841
6842 out_put:
6843 ring_buffer_put(rb); /* could be last */
6844 }
6845
perf_mmap_pfn_mkwrite(struct vm_fault * vmf)6846 static vm_fault_t perf_mmap_pfn_mkwrite(struct vm_fault *vmf)
6847 {
6848 /* The first page is the user control page, others are read-only. */
6849 return vmf->pgoff == 0 ? 0 : VM_FAULT_SIGBUS;
6850 }
6851
perf_mmap_may_split(struct vm_area_struct * vma,unsigned long addr)6852 static int perf_mmap_may_split(struct vm_area_struct *vma, unsigned long addr)
6853 {
6854 /*
6855 * Forbid splitting perf mappings to prevent refcount leaks due to
6856 * the resulting non-matching offsets and sizes. See open()/close().
6857 */
6858 return -EINVAL;
6859 }
6860
6861 static const struct vm_operations_struct perf_mmap_vmops = {
6862 .open = perf_mmap_open,
6863 .close = perf_mmap_close, /* non mergeable */
6864 .pfn_mkwrite = perf_mmap_pfn_mkwrite,
6865 .may_split = perf_mmap_may_split,
6866 };
6867
map_range(struct perf_buffer * rb,struct vm_area_struct * vma)6868 static int map_range(struct perf_buffer *rb, struct vm_area_struct *vma)
6869 {
6870 unsigned long nr_pages = vma_pages(vma);
6871 int err = 0;
6872 unsigned long pagenum;
6873
6874 /*
6875 * We map this as a VM_PFNMAP VMA.
6876 *
6877 * This is not ideal as this is designed broadly for mappings of PFNs
6878 * referencing memory-mapped I/O ranges or non-system RAM i.e. for which
6879 * !pfn_valid(pfn).
6880 *
6881 * We are mapping kernel-allocated memory (memory we manage ourselves)
6882 * which would more ideally be mapped using vm_insert_page() or a
6883 * similar mechanism, that is as a VM_MIXEDMAP mapping.
6884 *
6885 * However this won't work here, because:
6886 *
6887 * 1. It uses vma->vm_page_prot, but this field has not been completely
6888 * setup at the point of the f_op->mmp() hook, so we are unable to
6889 * indicate that this should be mapped CoW in order that the
6890 * mkwrite() hook can be invoked to make the first page R/W and the
6891 * rest R/O as desired.
6892 *
6893 * 2. Anything other than a VM_PFNMAP of valid PFNs will result in
6894 * vm_normal_page() returning a struct page * pointer, which means
6895 * vm_ops->page_mkwrite() will be invoked rather than
6896 * vm_ops->pfn_mkwrite(), and this means we have to set page->mapping
6897 * to work around retry logic in the fault handler, however this
6898 * field is no longer allowed to be used within struct page.
6899 *
6900 * 3. Having a struct page * made available in the fault logic also
6901 * means that the page gets put on the rmap and becomes
6902 * inappropriately accessible and subject to map and ref counting.
6903 *
6904 * Ideally we would have a mechanism that could explicitly express our
6905 * desires, but this is not currently the case, so we instead use
6906 * VM_PFNMAP.
6907 *
6908 * We manage the lifetime of these mappings with internal refcounts (see
6909 * perf_mmap_open() and perf_mmap_close()) so we ensure the lifetime of
6910 * this mapping is maintained correctly.
6911 */
6912 for (pagenum = 0; pagenum < nr_pages; pagenum++) {
6913 unsigned long va = vma->vm_start + PAGE_SIZE * pagenum;
6914 struct page *page = perf_mmap_to_page(rb, vma->vm_pgoff + pagenum);
6915
6916 if (page == NULL) {
6917 err = -EINVAL;
6918 break;
6919 }
6920
6921 /* Map readonly, perf_mmap_pfn_mkwrite() called on write fault. */
6922 err = remap_pfn_range(vma, va, page_to_pfn(page), PAGE_SIZE,
6923 vm_get_page_prot(vma->vm_flags & ~VM_SHARED));
6924 if (err)
6925 break;
6926 }
6927
6928 #ifdef CONFIG_MMU
6929 /* Clear any partial mappings on error. */
6930 if (err)
6931 zap_page_range_single(vma, vma->vm_start, nr_pages * PAGE_SIZE, NULL);
6932 #endif
6933
6934 return err;
6935 }
6936
perf_mmap_calc_limits(struct vm_area_struct * vma,long * user_extra,long * extra)6937 static bool perf_mmap_calc_limits(struct vm_area_struct *vma, long *user_extra, long *extra)
6938 {
6939 unsigned long user_locked, user_lock_limit, locked, lock_limit;
6940 struct user_struct *user = current_user();
6941
6942 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6943 /* Increase the limit linearly with more CPUs */
6944 user_lock_limit *= num_online_cpus();
6945
6946 user_locked = atomic_long_read(&user->locked_vm);
6947
6948 /*
6949 * sysctl_perf_event_mlock may have changed, so that
6950 * user->locked_vm > user_lock_limit
6951 */
6952 if (user_locked > user_lock_limit)
6953 user_locked = user_lock_limit;
6954 user_locked += *user_extra;
6955
6956 if (user_locked > user_lock_limit) {
6957 /*
6958 * charge locked_vm until it hits user_lock_limit;
6959 * charge the rest from pinned_vm
6960 */
6961 *extra = user_locked - user_lock_limit;
6962 *user_extra -= *extra;
6963 }
6964
6965 lock_limit = rlimit(RLIMIT_MEMLOCK);
6966 lock_limit >>= PAGE_SHIFT;
6967 locked = atomic64_read(&vma->vm_mm->pinned_vm) + *extra;
6968
6969 return locked <= lock_limit || !perf_is_paranoid() || capable(CAP_IPC_LOCK);
6970 }
6971
perf_mmap_account(struct vm_area_struct * vma,long user_extra,long extra)6972 static void perf_mmap_account(struct vm_area_struct *vma, long user_extra, long extra)
6973 {
6974 struct user_struct *user = current_user();
6975
6976 atomic_long_add(user_extra, &user->locked_vm);
6977 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6978 }
6979
perf_mmap_rb(struct vm_area_struct * vma,struct perf_event * event,unsigned long nr_pages)6980 static int perf_mmap_rb(struct vm_area_struct *vma, struct perf_event *event,
6981 unsigned long nr_pages)
6982 {
6983 long extra = 0, user_extra = nr_pages;
6984 struct perf_buffer *rb;
6985 int rb_flags = 0;
6986
6987 nr_pages -= 1;
6988
6989 /*
6990 * If we have rb pages ensure they're a power-of-two number, so we
6991 * can do bitmasks instead of modulo.
6992 */
6993 if (nr_pages != 0 && !is_power_of_2(nr_pages))
6994 return -EINVAL;
6995
6996 WARN_ON_ONCE(event->ctx->parent_ctx);
6997
6998 if (event->rb) {
6999 if (data_page_nr(event->rb) != nr_pages)
7000 return -EINVAL;
7001
7002 if (refcount_inc_not_zero(&event->rb->mmap_count)) {
7003 /*
7004 * Success -- managed to mmap() the same buffer
7005 * multiple times.
7006 */
7007 perf_mmap_account(vma, user_extra, extra);
7008 refcount_inc(&event->mmap_count);
7009 return 0;
7010 }
7011
7012 /*
7013 * Raced against perf_mmap_close()'s
7014 * refcount_dec_and_mutex_lock() remove the
7015 * event and continue as if !event->rb
7016 */
7017 ring_buffer_attach(event, NULL);
7018 }
7019
7020 if (!perf_mmap_calc_limits(vma, &user_extra, &extra))
7021 return -EPERM;
7022
7023 if (vma->vm_flags & VM_WRITE)
7024 rb_flags |= RING_BUFFER_WRITABLE;
7025
7026 rb = rb_alloc(nr_pages,
7027 event->attr.watermark ? event->attr.wakeup_watermark : 0,
7028 event->cpu, rb_flags);
7029
7030 if (!rb)
7031 return -ENOMEM;
7032
7033 refcount_set(&rb->mmap_count, 1);
7034 rb->mmap_user = get_current_user();
7035 rb->mmap_locked = extra;
7036
7037 ring_buffer_attach(event, rb);
7038
7039 perf_event_update_time(event);
7040 perf_event_init_userpage(event);
7041 perf_event_update_userpage(event);
7042
7043 perf_mmap_account(vma, user_extra, extra);
7044 refcount_set(&event->mmap_count, 1);
7045
7046 return 0;
7047 }
7048
perf_mmap_aux(struct vm_area_struct * vma,struct perf_event * event,unsigned long nr_pages)7049 static int perf_mmap_aux(struct vm_area_struct *vma, struct perf_event *event,
7050 unsigned long nr_pages)
7051 {
7052 long extra = 0, user_extra = nr_pages;
7053 u64 aux_offset, aux_size;
7054 struct perf_buffer *rb;
7055 int ret, rb_flags = 0;
7056
7057 rb = event->rb;
7058 if (!rb)
7059 return -EINVAL;
7060
7061 guard(mutex)(&rb->aux_mutex);
7062
7063 /*
7064 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
7065 * mapped, all subsequent mappings should have the same size
7066 * and offset. Must be above the normal perf buffer.
7067 */
7068 aux_offset = READ_ONCE(rb->user_page->aux_offset);
7069 aux_size = READ_ONCE(rb->user_page->aux_size);
7070
7071 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
7072 return -EINVAL;
7073
7074 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
7075 return -EINVAL;
7076
7077 /* already mapped with a different offset */
7078 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
7079 return -EINVAL;
7080
7081 if (aux_size != nr_pages * PAGE_SIZE)
7082 return -EINVAL;
7083
7084 /* already mapped with a different size */
7085 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
7086 return -EINVAL;
7087
7088 if (!is_power_of_2(nr_pages))
7089 return -EINVAL;
7090
7091 if (!refcount_inc_not_zero(&rb->mmap_count))
7092 return -EINVAL;
7093
7094 if (rb_has_aux(rb)) {
7095 refcount_inc(&rb->aux_mmap_count);
7096
7097 } else {
7098 if (!perf_mmap_calc_limits(vma, &user_extra, &extra)) {
7099 refcount_dec(&rb->mmap_count);
7100 return -EPERM;
7101 }
7102
7103 WARN_ON(!rb && event->rb);
7104
7105 if (vma->vm_flags & VM_WRITE)
7106 rb_flags |= RING_BUFFER_WRITABLE;
7107
7108 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
7109 event->attr.aux_watermark, rb_flags);
7110 if (ret) {
7111 refcount_dec(&rb->mmap_count);
7112 return ret;
7113 }
7114
7115 refcount_set(&rb->aux_mmap_count, 1);
7116 rb->aux_mmap_locked = extra;
7117 }
7118
7119 perf_mmap_account(vma, user_extra, extra);
7120 refcount_inc(&event->mmap_count);
7121
7122 return 0;
7123 }
7124
perf_mmap(struct file * file,struct vm_area_struct * vma)7125 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
7126 {
7127 struct perf_event *event = file->private_data;
7128 unsigned long vma_size, nr_pages;
7129 mapped_f mapped;
7130 int ret;
7131
7132 /*
7133 * Don't allow mmap() of inherited per-task counters. This would
7134 * create a performance issue due to all children writing to the
7135 * same rb.
7136 */
7137 if (event->cpu == -1 && event->attr.inherit)
7138 return -EINVAL;
7139
7140 if (!(vma->vm_flags & VM_SHARED))
7141 return -EINVAL;
7142
7143 ret = security_perf_event_read(event);
7144 if (ret)
7145 return ret;
7146
7147 vma_size = vma->vm_end - vma->vm_start;
7148 nr_pages = vma_size / PAGE_SIZE;
7149
7150 if (nr_pages > INT_MAX)
7151 return -ENOMEM;
7152
7153 if (vma_size != PAGE_SIZE * nr_pages)
7154 return -EINVAL;
7155
7156 scoped_guard (mutex, &event->mmap_mutex) {
7157 /*
7158 * This relies on __pmu_detach_event() taking mmap_mutex after marking
7159 * the event REVOKED. Either we observe the state, or __pmu_detach_event()
7160 * will detach the rb created here.
7161 */
7162 if (event->state <= PERF_EVENT_STATE_REVOKED)
7163 return -ENODEV;
7164
7165 if (vma->vm_pgoff == 0)
7166 ret = perf_mmap_rb(vma, event, nr_pages);
7167 else
7168 ret = perf_mmap_aux(vma, event, nr_pages);
7169 if (ret)
7170 return ret;
7171 }
7172
7173 /*
7174 * Since pinned accounting is per vm we cannot allow fork() to copy our
7175 * vma.
7176 */
7177 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
7178 vma->vm_ops = &perf_mmap_vmops;
7179
7180 mapped = get_mapped(event, event_mapped);
7181 if (mapped)
7182 mapped(event, vma->vm_mm);
7183
7184 /*
7185 * Try to map it into the page table. On fail, invoke
7186 * perf_mmap_close() to undo the above, as the callsite expects
7187 * full cleanup in this case and therefore does not invoke
7188 * vmops::close().
7189 */
7190 ret = map_range(event->rb, vma);
7191 if (ret)
7192 perf_mmap_close(vma);
7193
7194 return ret;
7195 }
7196
perf_fasync(int fd,struct file * filp,int on)7197 static int perf_fasync(int fd, struct file *filp, int on)
7198 {
7199 struct inode *inode = file_inode(filp);
7200 struct perf_event *event = filp->private_data;
7201 int retval;
7202
7203 if (event->state <= PERF_EVENT_STATE_REVOKED)
7204 return -ENODEV;
7205
7206 inode_lock(inode);
7207 retval = fasync_helper(fd, filp, on, &event->fasync);
7208 inode_unlock(inode);
7209
7210 if (retval < 0)
7211 return retval;
7212
7213 return 0;
7214 }
7215
7216 static const struct file_operations perf_fops = {
7217 .release = perf_release,
7218 .read = perf_read,
7219 .poll = perf_poll,
7220 .unlocked_ioctl = perf_ioctl,
7221 .compat_ioctl = perf_compat_ioctl,
7222 .mmap = perf_mmap,
7223 .fasync = perf_fasync,
7224 };
7225
7226 /*
7227 * Perf event wakeup
7228 *
7229 * If there's data, ensure we set the poll() state and publish everything
7230 * to user-space before waking everybody up.
7231 */
7232
perf_event_wakeup(struct perf_event * event)7233 void perf_event_wakeup(struct perf_event *event)
7234 {
7235 ring_buffer_wakeup(event);
7236
7237 if (event->pending_kill) {
7238 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
7239 event->pending_kill = 0;
7240 }
7241 }
7242
perf_sigtrap(struct perf_event * event)7243 static void perf_sigtrap(struct perf_event *event)
7244 {
7245 /*
7246 * Both perf_pending_task() and perf_pending_irq() can race with the
7247 * task exiting.
7248 */
7249 if (current->flags & PF_EXITING)
7250 return;
7251
7252 /*
7253 * We'd expect this to only occur if the irq_work is delayed and either
7254 * ctx->task or current has changed in the meantime. This can be the
7255 * case on architectures that do not implement arch_irq_work_raise().
7256 */
7257 if (WARN_ON_ONCE(event->ctx->task != current))
7258 return;
7259
7260 send_sig_perf((void __user *)event->pending_addr,
7261 event->orig_type, event->attr.sig_data);
7262 }
7263
7264 /*
7265 * Deliver the pending work in-event-context or follow the context.
7266 */
__perf_pending_disable(struct perf_event * event)7267 static void __perf_pending_disable(struct perf_event *event)
7268 {
7269 int cpu = READ_ONCE(event->oncpu);
7270
7271 /*
7272 * If the event isn't running; we done. event_sched_out() will have
7273 * taken care of things.
7274 */
7275 if (cpu < 0)
7276 return;
7277
7278 /*
7279 * Yay, we hit home and are in the context of the event.
7280 */
7281 if (cpu == smp_processor_id()) {
7282 if (event->pending_disable) {
7283 event->pending_disable = 0;
7284 perf_event_disable_local(event);
7285 }
7286 return;
7287 }
7288
7289 /*
7290 * CPU-A CPU-B
7291 *
7292 * perf_event_disable_inatomic()
7293 * @pending_disable = 1;
7294 * irq_work_queue();
7295 *
7296 * sched-out
7297 * @pending_disable = 0;
7298 *
7299 * sched-in
7300 * perf_event_disable_inatomic()
7301 * @pending_disable = 1;
7302 * irq_work_queue(); // FAILS
7303 *
7304 * irq_work_run()
7305 * perf_pending_disable()
7306 *
7307 * But the event runs on CPU-B and wants disabling there.
7308 */
7309 irq_work_queue_on(&event->pending_disable_irq, cpu);
7310 }
7311
perf_pending_disable(struct irq_work * entry)7312 static void perf_pending_disable(struct irq_work *entry)
7313 {
7314 struct perf_event *event = container_of(entry, struct perf_event, pending_disable_irq);
7315 int rctx;
7316
7317 /*
7318 * If we 'fail' here, that's OK, it means recursion is already disabled
7319 * and we won't recurse 'further'.
7320 */
7321 rctx = perf_swevent_get_recursion_context();
7322 __perf_pending_disable(event);
7323 if (rctx >= 0)
7324 perf_swevent_put_recursion_context(rctx);
7325 }
7326
perf_pending_irq(struct irq_work * entry)7327 static void perf_pending_irq(struct irq_work *entry)
7328 {
7329 struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
7330 int rctx;
7331
7332 /*
7333 * If we 'fail' here, that's OK, it means recursion is already disabled
7334 * and we won't recurse 'further'.
7335 */
7336 rctx = perf_swevent_get_recursion_context();
7337
7338 /*
7339 * The wakeup isn't bound to the context of the event -- it can happen
7340 * irrespective of where the event is.
7341 */
7342 if (event->pending_wakeup) {
7343 event->pending_wakeup = 0;
7344 perf_event_wakeup(event);
7345 }
7346
7347 if (rctx >= 0)
7348 perf_swevent_put_recursion_context(rctx);
7349 }
7350
perf_pending_task(struct callback_head * head)7351 static void perf_pending_task(struct callback_head *head)
7352 {
7353 struct perf_event *event = container_of(head, struct perf_event, pending_task);
7354 int rctx;
7355
7356 /*
7357 * If we 'fail' here, that's OK, it means recursion is already disabled
7358 * and we won't recurse 'further'.
7359 */
7360 rctx = perf_swevent_get_recursion_context();
7361
7362 if (event->pending_work) {
7363 event->pending_work = 0;
7364 perf_sigtrap(event);
7365 local_dec(&event->ctx->nr_no_switch_fast);
7366 }
7367 put_event(event);
7368
7369 if (rctx >= 0)
7370 perf_swevent_put_recursion_context(rctx);
7371 }
7372
7373 #ifdef CONFIG_GUEST_PERF_EVENTS
7374 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
7375
7376 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
7377 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
7378 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
7379
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)7380 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
7381 {
7382 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
7383 return;
7384
7385 rcu_assign_pointer(perf_guest_cbs, cbs);
7386 static_call_update(__perf_guest_state, cbs->state);
7387 static_call_update(__perf_guest_get_ip, cbs->get_ip);
7388
7389 /* Implementing ->handle_intel_pt_intr is optional. */
7390 if (cbs->handle_intel_pt_intr)
7391 static_call_update(__perf_guest_handle_intel_pt_intr,
7392 cbs->handle_intel_pt_intr);
7393 }
7394 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
7395
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)7396 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
7397 {
7398 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
7399 return;
7400
7401 rcu_assign_pointer(perf_guest_cbs, NULL);
7402 static_call_update(__perf_guest_state, (void *)&__static_call_return0);
7403 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
7404 static_call_update(__perf_guest_handle_intel_pt_intr,
7405 (void *)&__static_call_return0);
7406 synchronize_rcu();
7407 }
7408 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
7409 #endif
7410
should_sample_guest(struct perf_event * event)7411 static bool should_sample_guest(struct perf_event *event)
7412 {
7413 return !event->attr.exclude_guest && perf_guest_state();
7414 }
7415
perf_misc_flags(struct perf_event * event,struct pt_regs * regs)7416 unsigned long perf_misc_flags(struct perf_event *event,
7417 struct pt_regs *regs)
7418 {
7419 if (should_sample_guest(event))
7420 return perf_arch_guest_misc_flags(regs);
7421
7422 return perf_arch_misc_flags(regs);
7423 }
7424
perf_instruction_pointer(struct perf_event * event,struct pt_regs * regs)7425 unsigned long perf_instruction_pointer(struct perf_event *event,
7426 struct pt_regs *regs)
7427 {
7428 if (should_sample_guest(event))
7429 return perf_guest_get_ip();
7430
7431 return perf_arch_instruction_pointer(regs);
7432 }
7433
7434 static void
perf_output_sample_regs(struct perf_output_handle * handle,struct pt_regs * regs,u64 mask)7435 perf_output_sample_regs(struct perf_output_handle *handle,
7436 struct pt_regs *regs, u64 mask)
7437 {
7438 int bit;
7439 DECLARE_BITMAP(_mask, 64);
7440
7441 bitmap_from_u64(_mask, mask);
7442 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
7443 u64 val;
7444
7445 val = perf_reg_value(regs, bit);
7446 perf_output_put(handle, val);
7447 }
7448 }
7449
perf_sample_regs_user(struct perf_regs * regs_user,struct pt_regs * regs)7450 static void perf_sample_regs_user(struct perf_regs *regs_user,
7451 struct pt_regs *regs)
7452 {
7453 if (user_mode(regs)) {
7454 regs_user->abi = perf_reg_abi(current);
7455 regs_user->regs = regs;
7456 } else if (!(current->flags & (PF_KTHREAD | PF_USER_WORKER))) {
7457 perf_get_regs_user(regs_user, regs);
7458 } else {
7459 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
7460 regs_user->regs = NULL;
7461 }
7462 }
7463
perf_sample_regs_intr(struct perf_regs * regs_intr,struct pt_regs * regs)7464 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
7465 struct pt_regs *regs)
7466 {
7467 regs_intr->regs = regs;
7468 regs_intr->abi = perf_reg_abi(current);
7469 }
7470
7471
7472 /*
7473 * Get remaining task size from user stack pointer.
7474 *
7475 * It'd be better to take stack vma map and limit this more
7476 * precisely, but there's no way to get it safely under interrupt,
7477 * so using TASK_SIZE as limit.
7478 */
perf_ustack_task_size(struct pt_regs * regs)7479 static u64 perf_ustack_task_size(struct pt_regs *regs)
7480 {
7481 unsigned long addr = perf_user_stack_pointer(regs);
7482
7483 if (!addr || addr >= TASK_SIZE)
7484 return 0;
7485
7486 return TASK_SIZE - addr;
7487 }
7488
7489 static u16
perf_sample_ustack_size(u16 stack_size,u16 header_size,struct pt_regs * regs)7490 perf_sample_ustack_size(u16 stack_size, u16 header_size,
7491 struct pt_regs *regs)
7492 {
7493 u64 task_size;
7494
7495 /* No regs, no stack pointer, no dump. */
7496 if (!regs)
7497 return 0;
7498
7499 /* No mm, no stack, no dump. */
7500 if (!current->mm)
7501 return 0;
7502
7503 /*
7504 * Check if we fit in with the requested stack size into the:
7505 * - TASK_SIZE
7506 * If we don't, we limit the size to the TASK_SIZE.
7507 *
7508 * - remaining sample size
7509 * If we don't, we customize the stack size to
7510 * fit in to the remaining sample size.
7511 */
7512
7513 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
7514 stack_size = min(stack_size, (u16) task_size);
7515
7516 /* Current header size plus static size and dynamic size. */
7517 header_size += 2 * sizeof(u64);
7518
7519 /* Do we fit in with the current stack dump size? */
7520 if ((u16) (header_size + stack_size) < header_size) {
7521 /*
7522 * If we overflow the maximum size for the sample,
7523 * we customize the stack dump size to fit in.
7524 */
7525 stack_size = USHRT_MAX - header_size - sizeof(u64);
7526 stack_size = round_up(stack_size, sizeof(u64));
7527 }
7528
7529 return stack_size;
7530 }
7531
7532 static void
perf_output_sample_ustack(struct perf_output_handle * handle,u64 dump_size,struct pt_regs * regs)7533 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
7534 struct pt_regs *regs)
7535 {
7536 /* Case of a kernel thread, nothing to dump */
7537 if (!regs) {
7538 u64 size = 0;
7539 perf_output_put(handle, size);
7540 } else {
7541 unsigned long sp;
7542 unsigned int rem;
7543 u64 dyn_size;
7544
7545 /*
7546 * We dump:
7547 * static size
7548 * - the size requested by user or the best one we can fit
7549 * in to the sample max size
7550 * data
7551 * - user stack dump data
7552 * dynamic size
7553 * - the actual dumped size
7554 */
7555
7556 /* Static size. */
7557 perf_output_put(handle, dump_size);
7558
7559 /* Data. */
7560 sp = perf_user_stack_pointer(regs);
7561 rem = __output_copy_user(handle, (void *) sp, dump_size);
7562 dyn_size = dump_size - rem;
7563
7564 perf_output_skip(handle, rem);
7565
7566 /* Dynamic size. */
7567 perf_output_put(handle, dyn_size);
7568 }
7569 }
7570
perf_prepare_sample_aux(struct perf_event * event,struct perf_sample_data * data,size_t size)7571 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7572 struct perf_sample_data *data,
7573 size_t size)
7574 {
7575 struct perf_event *sampler = event->aux_event;
7576 struct perf_buffer *rb;
7577
7578 data->aux_size = 0;
7579
7580 if (!sampler)
7581 goto out;
7582
7583 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7584 goto out;
7585
7586 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7587 goto out;
7588
7589 rb = ring_buffer_get(sampler);
7590 if (!rb)
7591 goto out;
7592
7593 /*
7594 * If this is an NMI hit inside sampling code, don't take
7595 * the sample. See also perf_aux_sample_output().
7596 */
7597 if (READ_ONCE(rb->aux_in_sampling)) {
7598 data->aux_size = 0;
7599 } else {
7600 size = min_t(size_t, size, perf_aux_size(rb));
7601 data->aux_size = ALIGN(size, sizeof(u64));
7602 }
7603 ring_buffer_put(rb);
7604
7605 out:
7606 return data->aux_size;
7607 }
7608
perf_pmu_snapshot_aux(struct perf_buffer * rb,struct perf_event * event,struct perf_output_handle * handle,unsigned long size)7609 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7610 struct perf_event *event,
7611 struct perf_output_handle *handle,
7612 unsigned long size)
7613 {
7614 unsigned long flags;
7615 long ret;
7616
7617 /*
7618 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7619 * paths. If we start calling them in NMI context, they may race with
7620 * the IRQ ones, that is, for example, re-starting an event that's just
7621 * been stopped, which is why we're using a separate callback that
7622 * doesn't change the event state.
7623 *
7624 * IRQs need to be disabled to prevent IPIs from racing with us.
7625 */
7626 local_irq_save(flags);
7627 /*
7628 * Guard against NMI hits inside the critical section;
7629 * see also perf_prepare_sample_aux().
7630 */
7631 WRITE_ONCE(rb->aux_in_sampling, 1);
7632 barrier();
7633
7634 ret = event->pmu->snapshot_aux(event, handle, size);
7635
7636 barrier();
7637 WRITE_ONCE(rb->aux_in_sampling, 0);
7638 local_irq_restore(flags);
7639
7640 return ret;
7641 }
7642
perf_aux_sample_output(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * data)7643 static void perf_aux_sample_output(struct perf_event *event,
7644 struct perf_output_handle *handle,
7645 struct perf_sample_data *data)
7646 {
7647 struct perf_event *sampler = event->aux_event;
7648 struct perf_buffer *rb;
7649 unsigned long pad;
7650 long size;
7651
7652 if (WARN_ON_ONCE(!sampler || !data->aux_size))
7653 return;
7654
7655 rb = ring_buffer_get(sampler);
7656 if (!rb)
7657 return;
7658
7659 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7660
7661 /*
7662 * An error here means that perf_output_copy() failed (returned a
7663 * non-zero surplus that it didn't copy), which in its current
7664 * enlightened implementation is not possible. If that changes, we'd
7665 * like to know.
7666 */
7667 if (WARN_ON_ONCE(size < 0))
7668 goto out_put;
7669
7670 /*
7671 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7672 * perf_prepare_sample_aux(), so should not be more than that.
7673 */
7674 pad = data->aux_size - size;
7675 if (WARN_ON_ONCE(pad >= sizeof(u64)))
7676 pad = 8;
7677
7678 if (pad) {
7679 u64 zero = 0;
7680 perf_output_copy(handle, &zero, pad);
7681 }
7682
7683 out_put:
7684 ring_buffer_put(rb);
7685 }
7686
7687 /*
7688 * A set of common sample data types saved even for non-sample records
7689 * when event->attr.sample_id_all is set.
7690 */
7691 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \
7692 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \
7693 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7694
__perf_event_header__init_id(struct perf_sample_data * data,struct perf_event * event,u64 sample_type)7695 static void __perf_event_header__init_id(struct perf_sample_data *data,
7696 struct perf_event *event,
7697 u64 sample_type)
7698 {
7699 data->type = event->attr.sample_type;
7700 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7701
7702 if (sample_type & PERF_SAMPLE_TID) {
7703 /* namespace issues */
7704 data->tid_entry.pid = perf_event_pid(event, current);
7705 data->tid_entry.tid = perf_event_tid(event, current);
7706 }
7707
7708 if (sample_type & PERF_SAMPLE_TIME)
7709 data->time = perf_event_clock(event);
7710
7711 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7712 data->id = primary_event_id(event);
7713
7714 if (sample_type & PERF_SAMPLE_STREAM_ID)
7715 data->stream_id = event->id;
7716
7717 if (sample_type & PERF_SAMPLE_CPU) {
7718 data->cpu_entry.cpu = raw_smp_processor_id();
7719 data->cpu_entry.reserved = 0;
7720 }
7721 }
7722
perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7723 void perf_event_header__init_id(struct perf_event_header *header,
7724 struct perf_sample_data *data,
7725 struct perf_event *event)
7726 {
7727 if (event->attr.sample_id_all) {
7728 header->size += event->id_header_size;
7729 __perf_event_header__init_id(data, event, event->attr.sample_type);
7730 }
7731 }
7732
__perf_event__output_id_sample(struct perf_output_handle * handle,struct perf_sample_data * data)7733 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7734 struct perf_sample_data *data)
7735 {
7736 u64 sample_type = data->type;
7737
7738 if (sample_type & PERF_SAMPLE_TID)
7739 perf_output_put(handle, data->tid_entry);
7740
7741 if (sample_type & PERF_SAMPLE_TIME)
7742 perf_output_put(handle, data->time);
7743
7744 if (sample_type & PERF_SAMPLE_ID)
7745 perf_output_put(handle, data->id);
7746
7747 if (sample_type & PERF_SAMPLE_STREAM_ID)
7748 perf_output_put(handle, data->stream_id);
7749
7750 if (sample_type & PERF_SAMPLE_CPU)
7751 perf_output_put(handle, data->cpu_entry);
7752
7753 if (sample_type & PERF_SAMPLE_IDENTIFIER)
7754 perf_output_put(handle, data->id);
7755 }
7756
perf_event__output_id_sample(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * sample)7757 void perf_event__output_id_sample(struct perf_event *event,
7758 struct perf_output_handle *handle,
7759 struct perf_sample_data *sample)
7760 {
7761 if (event->attr.sample_id_all)
7762 __perf_event__output_id_sample(handle, sample);
7763 }
7764
perf_output_read_one(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7765 static void perf_output_read_one(struct perf_output_handle *handle,
7766 struct perf_event *event,
7767 u64 enabled, u64 running)
7768 {
7769 u64 read_format = event->attr.read_format;
7770 u64 values[5];
7771 int n = 0;
7772
7773 values[n++] = perf_event_count(event, has_inherit_and_sample_read(&event->attr));
7774 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7775 values[n++] = enabled +
7776 atomic64_read(&event->child_total_time_enabled);
7777 }
7778 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7779 values[n++] = running +
7780 atomic64_read(&event->child_total_time_running);
7781 }
7782 if (read_format & PERF_FORMAT_ID)
7783 values[n++] = primary_event_id(event);
7784 if (read_format & PERF_FORMAT_LOST)
7785 values[n++] = atomic64_read(&event->lost_samples);
7786
7787 __output_copy(handle, values, n * sizeof(u64));
7788 }
7789
perf_output_read_group(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7790 static void perf_output_read_group(struct perf_output_handle *handle,
7791 struct perf_event *event,
7792 u64 enabled, u64 running)
7793 {
7794 struct perf_event *leader = event->group_leader, *sub;
7795 u64 read_format = event->attr.read_format;
7796 unsigned long flags;
7797 u64 values[6];
7798 int n = 0;
7799 bool self = has_inherit_and_sample_read(&event->attr);
7800
7801 /*
7802 * Disabling interrupts avoids all counter scheduling
7803 * (context switches, timer based rotation and IPIs).
7804 */
7805 local_irq_save(flags);
7806
7807 values[n++] = 1 + leader->nr_siblings;
7808
7809 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7810 values[n++] = enabled;
7811
7812 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7813 values[n++] = running;
7814
7815 if ((leader != event) && !handle->skip_read)
7816 perf_pmu_read(leader);
7817
7818 values[n++] = perf_event_count(leader, self);
7819 if (read_format & PERF_FORMAT_ID)
7820 values[n++] = primary_event_id(leader);
7821 if (read_format & PERF_FORMAT_LOST)
7822 values[n++] = atomic64_read(&leader->lost_samples);
7823
7824 __output_copy(handle, values, n * sizeof(u64));
7825
7826 for_each_sibling_event(sub, leader) {
7827 n = 0;
7828
7829 if ((sub != event) && !handle->skip_read)
7830 perf_pmu_read(sub);
7831
7832 values[n++] = perf_event_count(sub, self);
7833 if (read_format & PERF_FORMAT_ID)
7834 values[n++] = primary_event_id(sub);
7835 if (read_format & PERF_FORMAT_LOST)
7836 values[n++] = atomic64_read(&sub->lost_samples);
7837
7838 __output_copy(handle, values, n * sizeof(u64));
7839 }
7840
7841 local_irq_restore(flags);
7842 }
7843
7844 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7845 PERF_FORMAT_TOTAL_TIME_RUNNING)
7846
7847 /*
7848 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7849 *
7850 * The problem is that its both hard and excessively expensive to iterate the
7851 * child list, not to mention that its impossible to IPI the children running
7852 * on another CPU, from interrupt/NMI context.
7853 *
7854 * Instead the combination of PERF_SAMPLE_READ and inherit will track per-thread
7855 * counts rather than attempting to accumulate some value across all children on
7856 * all cores.
7857 */
perf_output_read(struct perf_output_handle * handle,struct perf_event * event)7858 static void perf_output_read(struct perf_output_handle *handle,
7859 struct perf_event *event)
7860 {
7861 u64 enabled = 0, running = 0, now;
7862 u64 read_format = event->attr.read_format;
7863
7864 /*
7865 * compute total_time_enabled, total_time_running
7866 * based on snapshot values taken when the event
7867 * was last scheduled in.
7868 *
7869 * we cannot simply called update_context_time()
7870 * because of locking issue as we are called in
7871 * NMI context
7872 */
7873 if (read_format & PERF_FORMAT_TOTAL_TIMES)
7874 calc_timer_values(event, &now, &enabled, &running);
7875
7876 if (event->attr.read_format & PERF_FORMAT_GROUP)
7877 perf_output_read_group(handle, event, enabled, running);
7878 else
7879 perf_output_read_one(handle, event, enabled, running);
7880 }
7881
perf_output_sample(struct perf_output_handle * handle,struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7882 void perf_output_sample(struct perf_output_handle *handle,
7883 struct perf_event_header *header,
7884 struct perf_sample_data *data,
7885 struct perf_event *event)
7886 {
7887 u64 sample_type = data->type;
7888
7889 if (data->sample_flags & PERF_SAMPLE_READ)
7890 handle->skip_read = 1;
7891
7892 perf_output_put(handle, *header);
7893
7894 if (sample_type & PERF_SAMPLE_IDENTIFIER)
7895 perf_output_put(handle, data->id);
7896
7897 if (sample_type & PERF_SAMPLE_IP)
7898 perf_output_put(handle, data->ip);
7899
7900 if (sample_type & PERF_SAMPLE_TID)
7901 perf_output_put(handle, data->tid_entry);
7902
7903 if (sample_type & PERF_SAMPLE_TIME)
7904 perf_output_put(handle, data->time);
7905
7906 if (sample_type & PERF_SAMPLE_ADDR)
7907 perf_output_put(handle, data->addr);
7908
7909 if (sample_type & PERF_SAMPLE_ID)
7910 perf_output_put(handle, data->id);
7911
7912 if (sample_type & PERF_SAMPLE_STREAM_ID)
7913 perf_output_put(handle, data->stream_id);
7914
7915 if (sample_type & PERF_SAMPLE_CPU)
7916 perf_output_put(handle, data->cpu_entry);
7917
7918 if (sample_type & PERF_SAMPLE_PERIOD)
7919 perf_output_put(handle, data->period);
7920
7921 if (sample_type & PERF_SAMPLE_READ)
7922 perf_output_read(handle, event);
7923
7924 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7925 int size = 1;
7926
7927 size += data->callchain->nr;
7928 size *= sizeof(u64);
7929 __output_copy(handle, data->callchain, size);
7930 }
7931
7932 if (sample_type & PERF_SAMPLE_RAW) {
7933 struct perf_raw_record *raw = data->raw;
7934
7935 if (raw) {
7936 struct perf_raw_frag *frag = &raw->frag;
7937
7938 perf_output_put(handle, raw->size);
7939 do {
7940 if (frag->copy) {
7941 __output_custom(handle, frag->copy,
7942 frag->data, frag->size);
7943 } else {
7944 __output_copy(handle, frag->data,
7945 frag->size);
7946 }
7947 if (perf_raw_frag_last(frag))
7948 break;
7949 frag = frag->next;
7950 } while (1);
7951 if (frag->pad)
7952 __output_skip(handle, NULL, frag->pad);
7953 } else {
7954 struct {
7955 u32 size;
7956 u32 data;
7957 } raw = {
7958 .size = sizeof(u32),
7959 .data = 0,
7960 };
7961 perf_output_put(handle, raw);
7962 }
7963 }
7964
7965 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7966 if (data->br_stack) {
7967 size_t size;
7968
7969 size = data->br_stack->nr
7970 * sizeof(struct perf_branch_entry);
7971
7972 perf_output_put(handle, data->br_stack->nr);
7973 if (branch_sample_hw_index(event))
7974 perf_output_put(handle, data->br_stack->hw_idx);
7975 perf_output_copy(handle, data->br_stack->entries, size);
7976 /*
7977 * Add the extension space which is appended
7978 * right after the struct perf_branch_stack.
7979 */
7980 if (data->br_stack_cntr) {
7981 size = data->br_stack->nr * sizeof(u64);
7982 perf_output_copy(handle, data->br_stack_cntr, size);
7983 }
7984 } else {
7985 /*
7986 * we always store at least the value of nr
7987 */
7988 u64 nr = 0;
7989 perf_output_put(handle, nr);
7990 }
7991 }
7992
7993 if (sample_type & PERF_SAMPLE_REGS_USER) {
7994 u64 abi = data->regs_user.abi;
7995
7996 /*
7997 * If there are no regs to dump, notice it through
7998 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7999 */
8000 perf_output_put(handle, abi);
8001
8002 if (abi) {
8003 u64 mask = event->attr.sample_regs_user;
8004 perf_output_sample_regs(handle,
8005 data->regs_user.regs,
8006 mask);
8007 }
8008 }
8009
8010 if (sample_type & PERF_SAMPLE_STACK_USER) {
8011 perf_output_sample_ustack(handle,
8012 data->stack_user_size,
8013 data->regs_user.regs);
8014 }
8015
8016 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
8017 perf_output_put(handle, data->weight.full);
8018
8019 if (sample_type & PERF_SAMPLE_DATA_SRC)
8020 perf_output_put(handle, data->data_src.val);
8021
8022 if (sample_type & PERF_SAMPLE_TRANSACTION)
8023 perf_output_put(handle, data->txn);
8024
8025 if (sample_type & PERF_SAMPLE_REGS_INTR) {
8026 u64 abi = data->regs_intr.abi;
8027 /*
8028 * If there are no regs to dump, notice it through
8029 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
8030 */
8031 perf_output_put(handle, abi);
8032
8033 if (abi) {
8034 u64 mask = event->attr.sample_regs_intr;
8035
8036 perf_output_sample_regs(handle,
8037 data->regs_intr.regs,
8038 mask);
8039 }
8040 }
8041
8042 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
8043 perf_output_put(handle, data->phys_addr);
8044
8045 if (sample_type & PERF_SAMPLE_CGROUP)
8046 perf_output_put(handle, data->cgroup);
8047
8048 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
8049 perf_output_put(handle, data->data_page_size);
8050
8051 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
8052 perf_output_put(handle, data->code_page_size);
8053
8054 if (sample_type & PERF_SAMPLE_AUX) {
8055 perf_output_put(handle, data->aux_size);
8056
8057 if (data->aux_size)
8058 perf_aux_sample_output(event, handle, data);
8059 }
8060
8061 if (!event->attr.watermark) {
8062 int wakeup_events = event->attr.wakeup_events;
8063
8064 if (wakeup_events) {
8065 struct perf_buffer *rb = handle->rb;
8066 int events = local_inc_return(&rb->events);
8067
8068 if (events >= wakeup_events) {
8069 local_sub(wakeup_events, &rb->events);
8070 local_inc(&rb->wakeup);
8071 }
8072 }
8073 }
8074 }
8075
perf_virt_to_phys(u64 virt)8076 static u64 perf_virt_to_phys(u64 virt)
8077 {
8078 u64 phys_addr = 0;
8079
8080 if (!virt)
8081 return 0;
8082
8083 if (virt >= TASK_SIZE) {
8084 /* If it's vmalloc()d memory, leave phys_addr as 0 */
8085 if (virt_addr_valid((void *)(uintptr_t)virt) &&
8086 !(virt >= VMALLOC_START && virt < VMALLOC_END))
8087 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
8088 } else {
8089 /*
8090 * Walking the pages tables for user address.
8091 * Interrupts are disabled, so it prevents any tear down
8092 * of the page tables.
8093 * Try IRQ-safe get_user_page_fast_only first.
8094 * If failed, leave phys_addr as 0.
8095 */
8096 if (!(current->flags & (PF_KTHREAD | PF_USER_WORKER))) {
8097 struct page *p;
8098
8099 pagefault_disable();
8100 if (get_user_page_fast_only(virt, 0, &p)) {
8101 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
8102 put_page(p);
8103 }
8104 pagefault_enable();
8105 }
8106 }
8107
8108 return phys_addr;
8109 }
8110
8111 /*
8112 * Return the pagetable size of a given virtual address.
8113 */
perf_get_pgtable_size(struct mm_struct * mm,unsigned long addr)8114 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
8115 {
8116 u64 size = 0;
8117
8118 #ifdef CONFIG_HAVE_GUP_FAST
8119 pgd_t *pgdp, pgd;
8120 p4d_t *p4dp, p4d;
8121 pud_t *pudp, pud;
8122 pmd_t *pmdp, pmd;
8123 pte_t *ptep, pte;
8124
8125 pgdp = pgd_offset(mm, addr);
8126 pgd = READ_ONCE(*pgdp);
8127 if (pgd_none(pgd))
8128 return 0;
8129
8130 if (pgd_leaf(pgd))
8131 return pgd_leaf_size(pgd);
8132
8133 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
8134 p4d = READ_ONCE(*p4dp);
8135 if (!p4d_present(p4d))
8136 return 0;
8137
8138 if (p4d_leaf(p4d))
8139 return p4d_leaf_size(p4d);
8140
8141 pudp = pud_offset_lockless(p4dp, p4d, addr);
8142 pud = READ_ONCE(*pudp);
8143 if (!pud_present(pud))
8144 return 0;
8145
8146 if (pud_leaf(pud))
8147 return pud_leaf_size(pud);
8148
8149 pmdp = pmd_offset_lockless(pudp, pud, addr);
8150 again:
8151 pmd = pmdp_get_lockless(pmdp);
8152 if (!pmd_present(pmd))
8153 return 0;
8154
8155 if (pmd_leaf(pmd))
8156 return pmd_leaf_size(pmd);
8157
8158 ptep = pte_offset_map(&pmd, addr);
8159 if (!ptep)
8160 goto again;
8161
8162 pte = ptep_get_lockless(ptep);
8163 if (pte_present(pte))
8164 size = __pte_leaf_size(pmd, pte);
8165 pte_unmap(ptep);
8166 #endif /* CONFIG_HAVE_GUP_FAST */
8167
8168 return size;
8169 }
8170
perf_get_page_size(unsigned long addr)8171 static u64 perf_get_page_size(unsigned long addr)
8172 {
8173 struct mm_struct *mm;
8174 unsigned long flags;
8175 u64 size;
8176
8177 if (!addr)
8178 return 0;
8179
8180 /*
8181 * Software page-table walkers must disable IRQs,
8182 * which prevents any tear down of the page tables.
8183 */
8184 local_irq_save(flags);
8185
8186 mm = current->mm;
8187 if (!mm) {
8188 /*
8189 * For kernel threads and the like, use init_mm so that
8190 * we can find kernel memory.
8191 */
8192 mm = &init_mm;
8193 }
8194
8195 size = perf_get_pgtable_size(mm, addr);
8196
8197 local_irq_restore(flags);
8198
8199 return size;
8200 }
8201
8202 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
8203
8204 static struct unwind_work perf_unwind_work;
8205
8206 struct perf_callchain_entry *
perf_callchain(struct perf_event * event,struct pt_regs * regs)8207 perf_callchain(struct perf_event *event, struct pt_regs *regs)
8208 {
8209 bool kernel = !event->attr.exclude_callchain_kernel;
8210 bool user = !event->attr.exclude_callchain_user &&
8211 !(current->flags & (PF_KTHREAD | PF_USER_WORKER));
8212 /* Disallow cross-task user callchains. */
8213 bool crosstask = event->ctx->task && event->ctx->task != current;
8214 bool defer_user = IS_ENABLED(CONFIG_UNWIND_USER) && user &&
8215 event->attr.defer_callchain;
8216 const u32 max_stack = event->attr.sample_max_stack;
8217 struct perf_callchain_entry *callchain;
8218 u64 defer_cookie;
8219
8220 if (!current->mm)
8221 user = false;
8222
8223 if (!kernel && !user)
8224 return &__empty_callchain;
8225
8226 if (!(user && defer_user && !crosstask &&
8227 unwind_deferred_request(&perf_unwind_work, &defer_cookie) >= 0))
8228 defer_cookie = 0;
8229
8230 callchain = get_perf_callchain(regs, kernel, user, max_stack,
8231 crosstask, true, defer_cookie);
8232
8233 return callchain ?: &__empty_callchain;
8234 }
8235
__cond_set(u64 flags,u64 s,u64 d)8236 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
8237 {
8238 return d * !!(flags & s);
8239 }
8240
perf_prepare_sample(struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)8241 void perf_prepare_sample(struct perf_sample_data *data,
8242 struct perf_event *event,
8243 struct pt_regs *regs)
8244 {
8245 u64 sample_type = event->attr.sample_type;
8246 u64 filtered_sample_type;
8247
8248 /*
8249 * Add the sample flags that are dependent to others. And clear the
8250 * sample flags that have already been done by the PMU driver.
8251 */
8252 filtered_sample_type = sample_type;
8253 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
8254 PERF_SAMPLE_IP);
8255 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
8256 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
8257 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
8258 PERF_SAMPLE_REGS_USER);
8259 filtered_sample_type &= ~data->sample_flags;
8260
8261 if (filtered_sample_type == 0) {
8262 /* Make sure it has the correct data->type for output */
8263 data->type = event->attr.sample_type;
8264 return;
8265 }
8266
8267 __perf_event_header__init_id(data, event, filtered_sample_type);
8268
8269 if (filtered_sample_type & PERF_SAMPLE_IP) {
8270 data->ip = perf_instruction_pointer(event, regs);
8271 data->sample_flags |= PERF_SAMPLE_IP;
8272 }
8273
8274 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
8275 perf_sample_save_callchain(data, event, regs);
8276
8277 if (filtered_sample_type & PERF_SAMPLE_RAW) {
8278 data->raw = NULL;
8279 data->dyn_size += sizeof(u64);
8280 data->sample_flags |= PERF_SAMPLE_RAW;
8281 }
8282
8283 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
8284 data->br_stack = NULL;
8285 data->dyn_size += sizeof(u64);
8286 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
8287 }
8288
8289 if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
8290 perf_sample_regs_user(&data->regs_user, regs);
8291
8292 /*
8293 * It cannot use the filtered_sample_type here as REGS_USER can be set
8294 * by STACK_USER (using __cond_set() above) and we don't want to update
8295 * the dyn_size if it's not requested by users.
8296 */
8297 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
8298 /* regs dump ABI info */
8299 int size = sizeof(u64);
8300
8301 if (data->regs_user.regs) {
8302 u64 mask = event->attr.sample_regs_user;
8303 size += hweight64(mask) * sizeof(u64);
8304 }
8305
8306 data->dyn_size += size;
8307 data->sample_flags |= PERF_SAMPLE_REGS_USER;
8308 }
8309
8310 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
8311 /*
8312 * Either we need PERF_SAMPLE_STACK_USER bit to be always
8313 * processed as the last one or have additional check added
8314 * in case new sample type is added, because we could eat
8315 * up the rest of the sample size.
8316 */
8317 u16 stack_size = event->attr.sample_stack_user;
8318 u16 header_size = perf_sample_data_size(data, event);
8319 u16 size = sizeof(u64);
8320
8321 stack_size = perf_sample_ustack_size(stack_size, header_size,
8322 data->regs_user.regs);
8323
8324 /*
8325 * If there is something to dump, add space for the dump
8326 * itself and for the field that tells the dynamic size,
8327 * which is how many have been actually dumped.
8328 */
8329 if (stack_size)
8330 size += sizeof(u64) + stack_size;
8331
8332 data->stack_user_size = stack_size;
8333 data->dyn_size += size;
8334 data->sample_flags |= PERF_SAMPLE_STACK_USER;
8335 }
8336
8337 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
8338 data->weight.full = 0;
8339 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
8340 }
8341
8342 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
8343 data->data_src.val = PERF_MEM_NA;
8344 data->sample_flags |= PERF_SAMPLE_DATA_SRC;
8345 }
8346
8347 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
8348 data->txn = 0;
8349 data->sample_flags |= PERF_SAMPLE_TRANSACTION;
8350 }
8351
8352 if (filtered_sample_type & PERF_SAMPLE_ADDR) {
8353 data->addr = 0;
8354 data->sample_flags |= PERF_SAMPLE_ADDR;
8355 }
8356
8357 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
8358 /* regs dump ABI info */
8359 int size = sizeof(u64);
8360
8361 perf_sample_regs_intr(&data->regs_intr, regs);
8362
8363 if (data->regs_intr.regs) {
8364 u64 mask = event->attr.sample_regs_intr;
8365
8366 size += hweight64(mask) * sizeof(u64);
8367 }
8368
8369 data->dyn_size += size;
8370 data->sample_flags |= PERF_SAMPLE_REGS_INTR;
8371 }
8372
8373 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
8374 data->phys_addr = perf_virt_to_phys(data->addr);
8375 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
8376 }
8377
8378 #ifdef CONFIG_CGROUP_PERF
8379 if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
8380 struct cgroup *cgrp;
8381
8382 /* protected by RCU */
8383 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
8384 data->cgroup = cgroup_id(cgrp);
8385 data->sample_flags |= PERF_SAMPLE_CGROUP;
8386 }
8387 #endif
8388
8389 /*
8390 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
8391 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
8392 * but the value will not dump to the userspace.
8393 */
8394 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
8395 data->data_page_size = perf_get_page_size(data->addr);
8396 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
8397 }
8398
8399 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
8400 data->code_page_size = perf_get_page_size(data->ip);
8401 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
8402 }
8403
8404 if (filtered_sample_type & PERF_SAMPLE_AUX) {
8405 u64 size;
8406 u16 header_size = perf_sample_data_size(data, event);
8407
8408 header_size += sizeof(u64); /* size */
8409
8410 /*
8411 * Given the 16bit nature of header::size, an AUX sample can
8412 * easily overflow it, what with all the preceding sample bits.
8413 * Make sure this doesn't happen by using up to U16_MAX bytes
8414 * per sample in total (rounded down to 8 byte boundary).
8415 */
8416 size = min_t(size_t, U16_MAX - header_size,
8417 event->attr.aux_sample_size);
8418 size = rounddown(size, 8);
8419 size = perf_prepare_sample_aux(event, data, size);
8420
8421 WARN_ON_ONCE(size + header_size > U16_MAX);
8422 data->dyn_size += size + sizeof(u64); /* size above */
8423 data->sample_flags |= PERF_SAMPLE_AUX;
8424 }
8425 }
8426
perf_prepare_header(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)8427 void perf_prepare_header(struct perf_event_header *header,
8428 struct perf_sample_data *data,
8429 struct perf_event *event,
8430 struct pt_regs *regs)
8431 {
8432 header->type = PERF_RECORD_SAMPLE;
8433 header->size = perf_sample_data_size(data, event);
8434 header->misc = perf_misc_flags(event, regs);
8435
8436 /*
8437 * If you're adding more sample types here, you likely need to do
8438 * something about the overflowing header::size, like repurpose the
8439 * lowest 3 bits of size, which should be always zero at the moment.
8440 * This raises a more important question, do we really need 512k sized
8441 * samples and why, so good argumentation is in order for whatever you
8442 * do here next.
8443 */
8444 WARN_ON_ONCE(header->size & 7);
8445 }
8446
__perf_event_aux_pause(struct perf_event * event,bool pause)8447 static void __perf_event_aux_pause(struct perf_event *event, bool pause)
8448 {
8449 if (pause) {
8450 if (!event->hw.aux_paused) {
8451 event->hw.aux_paused = 1;
8452 event->pmu->stop(event, PERF_EF_PAUSE);
8453 }
8454 } else {
8455 if (event->hw.aux_paused) {
8456 event->hw.aux_paused = 0;
8457 event->pmu->start(event, PERF_EF_RESUME);
8458 }
8459 }
8460 }
8461
perf_event_aux_pause(struct perf_event * event,bool pause)8462 static void perf_event_aux_pause(struct perf_event *event, bool pause)
8463 {
8464 struct perf_buffer *rb;
8465
8466 if (WARN_ON_ONCE(!event))
8467 return;
8468
8469 rb = ring_buffer_get(event);
8470 if (!rb)
8471 return;
8472
8473 scoped_guard (irqsave) {
8474 /*
8475 * Guard against self-recursion here. Another event could trip
8476 * this same from NMI context.
8477 */
8478 if (READ_ONCE(rb->aux_in_pause_resume))
8479 break;
8480
8481 WRITE_ONCE(rb->aux_in_pause_resume, 1);
8482 barrier();
8483 __perf_event_aux_pause(event, pause);
8484 barrier();
8485 WRITE_ONCE(rb->aux_in_pause_resume, 0);
8486 }
8487 ring_buffer_put(rb);
8488 }
8489
8490 static __always_inline int
__perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs,int (* output_begin)(struct perf_output_handle *,struct perf_sample_data *,struct perf_event *,unsigned int))8491 __perf_event_output(struct perf_event *event,
8492 struct perf_sample_data *data,
8493 struct pt_regs *regs,
8494 int (*output_begin)(struct perf_output_handle *,
8495 struct perf_sample_data *,
8496 struct perf_event *,
8497 unsigned int))
8498 {
8499 struct perf_output_handle handle;
8500 struct perf_event_header header;
8501 int err;
8502
8503 /* protect the callchain buffers */
8504 rcu_read_lock();
8505
8506 perf_prepare_sample(data, event, regs);
8507 perf_prepare_header(&header, data, event, regs);
8508
8509 err = output_begin(&handle, data, event, header.size);
8510 if (err)
8511 goto exit;
8512
8513 perf_output_sample(&handle, &header, data, event);
8514
8515 perf_output_end(&handle);
8516
8517 exit:
8518 rcu_read_unlock();
8519 return err;
8520 }
8521
8522 void
perf_event_output_forward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8523 perf_event_output_forward(struct perf_event *event,
8524 struct perf_sample_data *data,
8525 struct pt_regs *regs)
8526 {
8527 __perf_event_output(event, data, regs, perf_output_begin_forward);
8528 }
8529
8530 void
perf_event_output_backward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8531 perf_event_output_backward(struct perf_event *event,
8532 struct perf_sample_data *data,
8533 struct pt_regs *regs)
8534 {
8535 __perf_event_output(event, data, regs, perf_output_begin_backward);
8536 }
8537
8538 int
perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8539 perf_event_output(struct perf_event *event,
8540 struct perf_sample_data *data,
8541 struct pt_regs *regs)
8542 {
8543 return __perf_event_output(event, data, regs, perf_output_begin);
8544 }
8545
8546 /*
8547 * read event_id
8548 */
8549
8550 struct perf_read_event {
8551 struct perf_event_header header;
8552
8553 u32 pid;
8554 u32 tid;
8555 };
8556
8557 static void
perf_event_read_event(struct perf_event * event,struct task_struct * task)8558 perf_event_read_event(struct perf_event *event,
8559 struct task_struct *task)
8560 {
8561 struct perf_output_handle handle;
8562 struct perf_sample_data sample;
8563 struct perf_read_event read_event = {
8564 .header = {
8565 .type = PERF_RECORD_READ,
8566 .misc = 0,
8567 .size = sizeof(read_event) + event->read_size,
8568 },
8569 .pid = perf_event_pid(event, task),
8570 .tid = perf_event_tid(event, task),
8571 };
8572 int ret;
8573
8574 perf_event_header__init_id(&read_event.header, &sample, event);
8575 ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
8576 if (ret)
8577 return;
8578
8579 perf_output_put(&handle, read_event);
8580 perf_output_read(&handle, event);
8581 perf_event__output_id_sample(event, &handle, &sample);
8582
8583 perf_output_end(&handle);
8584 }
8585
8586 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
8587
8588 static void
perf_iterate_ctx(struct perf_event_context * ctx,perf_iterate_f output,void * data,bool all)8589 perf_iterate_ctx(struct perf_event_context *ctx,
8590 perf_iterate_f output,
8591 void *data, bool all)
8592 {
8593 struct perf_event *event;
8594
8595 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8596 if (!all) {
8597 if (event->state < PERF_EVENT_STATE_INACTIVE)
8598 continue;
8599 if (!event_filter_match(event))
8600 continue;
8601 }
8602
8603 output(event, data);
8604 }
8605 }
8606
perf_iterate_sb_cpu(perf_iterate_f output,void * data)8607 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
8608 {
8609 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
8610 struct perf_event *event;
8611
8612 list_for_each_entry_rcu(event, &pel->list, sb_list) {
8613 /*
8614 * Skip events that are not fully formed yet; ensure that
8615 * if we observe event->ctx, both event and ctx will be
8616 * complete enough. See perf_install_in_context().
8617 */
8618 if (!smp_load_acquire(&event->ctx))
8619 continue;
8620
8621 if (event->state < PERF_EVENT_STATE_INACTIVE)
8622 continue;
8623 if (!event_filter_match(event))
8624 continue;
8625 output(event, data);
8626 }
8627 }
8628
8629 /*
8630 * Iterate all events that need to receive side-band events.
8631 *
8632 * For new callers; ensure that account_pmu_sb_event() includes
8633 * your event, otherwise it might not get delivered.
8634 */
8635 static void
perf_iterate_sb(perf_iterate_f output,void * data,struct perf_event_context * task_ctx)8636 perf_iterate_sb(perf_iterate_f output, void *data,
8637 struct perf_event_context *task_ctx)
8638 {
8639 struct perf_event_context *ctx;
8640
8641 rcu_read_lock();
8642 preempt_disable();
8643
8644 /*
8645 * If we have task_ctx != NULL we only notify the task context itself.
8646 * The task_ctx is set only for EXIT events before releasing task
8647 * context.
8648 */
8649 if (task_ctx) {
8650 perf_iterate_ctx(task_ctx, output, data, false);
8651 goto done;
8652 }
8653
8654 perf_iterate_sb_cpu(output, data);
8655
8656 ctx = rcu_dereference(current->perf_event_ctxp);
8657 if (ctx)
8658 perf_iterate_ctx(ctx, output, data, false);
8659 done:
8660 preempt_enable();
8661 rcu_read_unlock();
8662 }
8663
8664 /*
8665 * Clear all file-based filters at exec, they'll have to be
8666 * re-instated when/if these objects are mmapped again.
8667 */
perf_event_addr_filters_exec(struct perf_event * event,void * data)8668 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8669 {
8670 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8671 struct perf_addr_filter *filter;
8672 unsigned int restart = 0, count = 0;
8673 unsigned long flags;
8674
8675 if (!has_addr_filter(event))
8676 return;
8677
8678 raw_spin_lock_irqsave(&ifh->lock, flags);
8679 list_for_each_entry(filter, &ifh->list, entry) {
8680 if (filter->path.dentry) {
8681 event->addr_filter_ranges[count].start = 0;
8682 event->addr_filter_ranges[count].size = 0;
8683 restart++;
8684 }
8685
8686 count++;
8687 }
8688
8689 if (restart)
8690 event->addr_filters_gen++;
8691 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8692
8693 if (restart)
8694 perf_event_stop(event, 1);
8695 }
8696
perf_event_exec(void)8697 void perf_event_exec(void)
8698 {
8699 struct perf_event_context *ctx;
8700
8701 ctx = perf_pin_task_context(current);
8702 if (!ctx)
8703 return;
8704
8705 perf_event_enable_on_exec(ctx);
8706 perf_event_remove_on_exec(ctx);
8707 scoped_guard(rcu)
8708 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8709
8710 perf_unpin_context(ctx);
8711 put_ctx(ctx);
8712 }
8713
8714 struct remote_output {
8715 struct perf_buffer *rb;
8716 int err;
8717 };
8718
__perf_event_output_stop(struct perf_event * event,void * data)8719 static void __perf_event_output_stop(struct perf_event *event, void *data)
8720 {
8721 struct perf_event *parent = event->parent;
8722 struct remote_output *ro = data;
8723 struct perf_buffer *rb = ro->rb;
8724 struct stop_event_data sd = {
8725 .event = event,
8726 };
8727
8728 if (!has_aux(event))
8729 return;
8730
8731 if (!parent)
8732 parent = event;
8733
8734 /*
8735 * In case of inheritance, it will be the parent that links to the
8736 * ring-buffer, but it will be the child that's actually using it.
8737 *
8738 * We are using event::rb to determine if the event should be stopped,
8739 * however this may race with ring_buffer_attach() (through set_output),
8740 * which will make us skip the event that actually needs to be stopped.
8741 * So ring_buffer_attach() has to stop an aux event before re-assigning
8742 * its rb pointer.
8743 */
8744 if (rcu_dereference(parent->rb) == rb)
8745 ro->err = __perf_event_stop(&sd);
8746 }
8747
__perf_pmu_output_stop(void * info)8748 static int __perf_pmu_output_stop(void *info)
8749 {
8750 struct perf_event *event = info;
8751 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8752 struct remote_output ro = {
8753 .rb = event->rb,
8754 };
8755
8756 rcu_read_lock();
8757 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8758 if (cpuctx->task_ctx)
8759 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8760 &ro, false);
8761 rcu_read_unlock();
8762
8763 return ro.err;
8764 }
8765
perf_pmu_output_stop(struct perf_event * event)8766 static void perf_pmu_output_stop(struct perf_event *event)
8767 {
8768 struct perf_event *iter;
8769 int err, cpu;
8770
8771 restart:
8772 rcu_read_lock();
8773 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8774 /*
8775 * For per-CPU events, we need to make sure that neither they
8776 * nor their children are running; for cpu==-1 events it's
8777 * sufficient to stop the event itself if it's active, since
8778 * it can't have children.
8779 */
8780 cpu = iter->cpu;
8781 if (cpu == -1)
8782 cpu = READ_ONCE(iter->oncpu);
8783
8784 if (cpu == -1)
8785 continue;
8786
8787 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8788 if (err == -EAGAIN) {
8789 rcu_read_unlock();
8790 goto restart;
8791 }
8792 }
8793 rcu_read_unlock();
8794 }
8795
8796 /*
8797 * task tracking -- fork/exit
8798 *
8799 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8800 */
8801
8802 struct perf_task_event {
8803 struct task_struct *task;
8804 struct perf_event_context *task_ctx;
8805
8806 struct {
8807 struct perf_event_header header;
8808
8809 u32 pid;
8810 u32 ppid;
8811 u32 tid;
8812 u32 ptid;
8813 u64 time;
8814 } event_id;
8815 };
8816
perf_event_task_match(struct perf_event * event)8817 static int perf_event_task_match(struct perf_event *event)
8818 {
8819 return event->attr.comm || event->attr.mmap ||
8820 event->attr.mmap2 || event->attr.mmap_data ||
8821 event->attr.task;
8822 }
8823
perf_event_task_output(struct perf_event * event,void * data)8824 static void perf_event_task_output(struct perf_event *event,
8825 void *data)
8826 {
8827 struct perf_task_event *task_event = data;
8828 struct perf_output_handle handle;
8829 struct perf_sample_data sample;
8830 struct task_struct *task = task_event->task;
8831 int ret, size = task_event->event_id.header.size;
8832
8833 if (!perf_event_task_match(event))
8834 return;
8835
8836 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8837
8838 ret = perf_output_begin(&handle, &sample, event,
8839 task_event->event_id.header.size);
8840 if (ret)
8841 goto out;
8842
8843 task_event->event_id.pid = perf_event_pid(event, task);
8844 task_event->event_id.tid = perf_event_tid(event, task);
8845
8846 if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8847 task_event->event_id.ppid = perf_event_pid(event,
8848 task->real_parent);
8849 task_event->event_id.ptid = perf_event_pid(event,
8850 task->real_parent);
8851 } else { /* PERF_RECORD_FORK */
8852 task_event->event_id.ppid = perf_event_pid(event, current);
8853 task_event->event_id.ptid = perf_event_tid(event, current);
8854 }
8855
8856 task_event->event_id.time = perf_event_clock(event);
8857
8858 perf_output_put(&handle, task_event->event_id);
8859
8860 perf_event__output_id_sample(event, &handle, &sample);
8861
8862 perf_output_end(&handle);
8863 out:
8864 task_event->event_id.header.size = size;
8865 }
8866
perf_event_task(struct task_struct * task,struct perf_event_context * task_ctx,int new)8867 static void perf_event_task(struct task_struct *task,
8868 struct perf_event_context *task_ctx,
8869 int new)
8870 {
8871 struct perf_task_event task_event;
8872
8873 if (!atomic_read(&nr_comm_events) &&
8874 !atomic_read(&nr_mmap_events) &&
8875 !atomic_read(&nr_task_events))
8876 return;
8877
8878 task_event = (struct perf_task_event){
8879 .task = task,
8880 .task_ctx = task_ctx,
8881 .event_id = {
8882 .header = {
8883 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8884 .misc = 0,
8885 .size = sizeof(task_event.event_id),
8886 },
8887 /* .pid */
8888 /* .ppid */
8889 /* .tid */
8890 /* .ptid */
8891 /* .time */
8892 },
8893 };
8894
8895 perf_iterate_sb(perf_event_task_output,
8896 &task_event,
8897 task_ctx);
8898 }
8899
8900 /*
8901 * Allocate data for a new task when profiling system-wide
8902 * events which require PMU specific data
8903 */
8904 static void
perf_event_alloc_task_data(struct task_struct * child,struct task_struct * parent)8905 perf_event_alloc_task_data(struct task_struct *child,
8906 struct task_struct *parent)
8907 {
8908 struct kmem_cache *ctx_cache = NULL;
8909 struct perf_ctx_data *cd;
8910
8911 if (!refcount_read(&global_ctx_data_ref))
8912 return;
8913
8914 scoped_guard (rcu) {
8915 cd = rcu_dereference(parent->perf_ctx_data);
8916 if (cd)
8917 ctx_cache = cd->ctx_cache;
8918 }
8919
8920 if (!ctx_cache)
8921 return;
8922
8923 guard(percpu_read)(&global_ctx_data_rwsem);
8924 scoped_guard (rcu) {
8925 cd = rcu_dereference(child->perf_ctx_data);
8926 if (!cd) {
8927 /*
8928 * A system-wide event may be unaccount,
8929 * when attaching the perf_ctx_data.
8930 */
8931 if (!refcount_read(&global_ctx_data_ref))
8932 return;
8933 goto attach;
8934 }
8935
8936 if (!cd->global) {
8937 cd->global = 1;
8938 refcount_inc(&cd->refcount);
8939 }
8940 }
8941
8942 return;
8943 attach:
8944 attach_task_ctx_data(child, ctx_cache, true);
8945 }
8946
perf_event_fork(struct task_struct * task)8947 void perf_event_fork(struct task_struct *task)
8948 {
8949 perf_event_task(task, NULL, 1);
8950 perf_event_namespaces(task);
8951 perf_event_alloc_task_data(task, current);
8952 }
8953
8954 /*
8955 * comm tracking
8956 */
8957
8958 struct perf_comm_event {
8959 struct task_struct *task;
8960 char *comm;
8961 int comm_size;
8962
8963 struct {
8964 struct perf_event_header header;
8965
8966 u32 pid;
8967 u32 tid;
8968 } event_id;
8969 };
8970
perf_event_comm_match(struct perf_event * event)8971 static int perf_event_comm_match(struct perf_event *event)
8972 {
8973 return event->attr.comm;
8974 }
8975
perf_event_comm_output(struct perf_event * event,void * data)8976 static void perf_event_comm_output(struct perf_event *event,
8977 void *data)
8978 {
8979 struct perf_comm_event *comm_event = data;
8980 struct perf_output_handle handle;
8981 struct perf_sample_data sample;
8982 int size = comm_event->event_id.header.size;
8983 int ret;
8984
8985 if (!perf_event_comm_match(event))
8986 return;
8987
8988 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8989 ret = perf_output_begin(&handle, &sample, event,
8990 comm_event->event_id.header.size);
8991
8992 if (ret)
8993 goto out;
8994
8995 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8996 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8997
8998 perf_output_put(&handle, comm_event->event_id);
8999 __output_copy(&handle, comm_event->comm,
9000 comm_event->comm_size);
9001
9002 perf_event__output_id_sample(event, &handle, &sample);
9003
9004 perf_output_end(&handle);
9005 out:
9006 comm_event->event_id.header.size = size;
9007 }
9008
perf_event_comm_event(struct perf_comm_event * comm_event)9009 static void perf_event_comm_event(struct perf_comm_event *comm_event)
9010 {
9011 char comm[TASK_COMM_LEN];
9012 unsigned int size;
9013
9014 memset(comm, 0, sizeof(comm));
9015 strscpy(comm, comm_event->task->comm);
9016 size = ALIGN(strlen(comm)+1, sizeof(u64));
9017
9018 comm_event->comm = comm;
9019 comm_event->comm_size = size;
9020
9021 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
9022
9023 perf_iterate_sb(perf_event_comm_output,
9024 comm_event,
9025 NULL);
9026 }
9027
perf_event_comm(struct task_struct * task,bool exec)9028 void perf_event_comm(struct task_struct *task, bool exec)
9029 {
9030 struct perf_comm_event comm_event;
9031
9032 if (!atomic_read(&nr_comm_events))
9033 return;
9034
9035 comm_event = (struct perf_comm_event){
9036 .task = task,
9037 /* .comm */
9038 /* .comm_size */
9039 .event_id = {
9040 .header = {
9041 .type = PERF_RECORD_COMM,
9042 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
9043 /* .size */
9044 },
9045 /* .pid */
9046 /* .tid */
9047 },
9048 };
9049
9050 perf_event_comm_event(&comm_event);
9051 }
9052
9053 /*
9054 * namespaces tracking
9055 */
9056
9057 struct perf_namespaces_event {
9058 struct task_struct *task;
9059
9060 struct {
9061 struct perf_event_header header;
9062
9063 u32 pid;
9064 u32 tid;
9065 u64 nr_namespaces;
9066 struct perf_ns_link_info link_info[NR_NAMESPACES];
9067 } event_id;
9068 };
9069
perf_event_namespaces_match(struct perf_event * event)9070 static int perf_event_namespaces_match(struct perf_event *event)
9071 {
9072 return event->attr.namespaces;
9073 }
9074
perf_event_namespaces_output(struct perf_event * event,void * data)9075 static void perf_event_namespaces_output(struct perf_event *event,
9076 void *data)
9077 {
9078 struct perf_namespaces_event *namespaces_event = data;
9079 struct perf_output_handle handle;
9080 struct perf_sample_data sample;
9081 u16 header_size = namespaces_event->event_id.header.size;
9082 int ret;
9083
9084 if (!perf_event_namespaces_match(event))
9085 return;
9086
9087 perf_event_header__init_id(&namespaces_event->event_id.header,
9088 &sample, event);
9089 ret = perf_output_begin(&handle, &sample, event,
9090 namespaces_event->event_id.header.size);
9091 if (ret)
9092 goto out;
9093
9094 namespaces_event->event_id.pid = perf_event_pid(event,
9095 namespaces_event->task);
9096 namespaces_event->event_id.tid = perf_event_tid(event,
9097 namespaces_event->task);
9098
9099 perf_output_put(&handle, namespaces_event->event_id);
9100
9101 perf_event__output_id_sample(event, &handle, &sample);
9102
9103 perf_output_end(&handle);
9104 out:
9105 namespaces_event->event_id.header.size = header_size;
9106 }
9107
perf_fill_ns_link_info(struct perf_ns_link_info * ns_link_info,struct task_struct * task,const struct proc_ns_operations * ns_ops)9108 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
9109 struct task_struct *task,
9110 const struct proc_ns_operations *ns_ops)
9111 {
9112 struct path ns_path;
9113 struct inode *ns_inode;
9114 int error;
9115
9116 error = ns_get_path(&ns_path, task, ns_ops);
9117 if (!error) {
9118 ns_inode = ns_path.dentry->d_inode;
9119 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
9120 ns_link_info->ino = ns_inode->i_ino;
9121 path_put(&ns_path);
9122 }
9123 }
9124
perf_event_namespaces(struct task_struct * task)9125 void perf_event_namespaces(struct task_struct *task)
9126 {
9127 struct perf_namespaces_event namespaces_event;
9128 struct perf_ns_link_info *ns_link_info;
9129
9130 if (!atomic_read(&nr_namespaces_events))
9131 return;
9132
9133 namespaces_event = (struct perf_namespaces_event){
9134 .task = task,
9135 .event_id = {
9136 .header = {
9137 .type = PERF_RECORD_NAMESPACES,
9138 .misc = 0,
9139 .size = sizeof(namespaces_event.event_id),
9140 },
9141 /* .pid */
9142 /* .tid */
9143 .nr_namespaces = NR_NAMESPACES,
9144 /* .link_info[NR_NAMESPACES] */
9145 },
9146 };
9147
9148 ns_link_info = namespaces_event.event_id.link_info;
9149
9150 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
9151 task, &mntns_operations);
9152
9153 #ifdef CONFIG_USER_NS
9154 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
9155 task, &userns_operations);
9156 #endif
9157 #ifdef CONFIG_NET_NS
9158 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
9159 task, &netns_operations);
9160 #endif
9161 #ifdef CONFIG_UTS_NS
9162 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
9163 task, &utsns_operations);
9164 #endif
9165 #ifdef CONFIG_IPC_NS
9166 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
9167 task, &ipcns_operations);
9168 #endif
9169 #ifdef CONFIG_PID_NS
9170 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
9171 task, &pidns_operations);
9172 #endif
9173 #ifdef CONFIG_CGROUPS
9174 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
9175 task, &cgroupns_operations);
9176 #endif
9177
9178 perf_iterate_sb(perf_event_namespaces_output,
9179 &namespaces_event,
9180 NULL);
9181 }
9182
9183 /*
9184 * cgroup tracking
9185 */
9186 #ifdef CONFIG_CGROUP_PERF
9187
9188 struct perf_cgroup_event {
9189 char *path;
9190 int path_size;
9191 struct {
9192 struct perf_event_header header;
9193 u64 id;
9194 char path[];
9195 } event_id;
9196 };
9197
perf_event_cgroup_match(struct perf_event * event)9198 static int perf_event_cgroup_match(struct perf_event *event)
9199 {
9200 return event->attr.cgroup;
9201 }
9202
perf_event_cgroup_output(struct perf_event * event,void * data)9203 static void perf_event_cgroup_output(struct perf_event *event, void *data)
9204 {
9205 struct perf_cgroup_event *cgroup_event = data;
9206 struct perf_output_handle handle;
9207 struct perf_sample_data sample;
9208 u16 header_size = cgroup_event->event_id.header.size;
9209 int ret;
9210
9211 if (!perf_event_cgroup_match(event))
9212 return;
9213
9214 perf_event_header__init_id(&cgroup_event->event_id.header,
9215 &sample, event);
9216 ret = perf_output_begin(&handle, &sample, event,
9217 cgroup_event->event_id.header.size);
9218 if (ret)
9219 goto out;
9220
9221 perf_output_put(&handle, cgroup_event->event_id);
9222 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
9223
9224 perf_event__output_id_sample(event, &handle, &sample);
9225
9226 perf_output_end(&handle);
9227 out:
9228 cgroup_event->event_id.header.size = header_size;
9229 }
9230
perf_event_cgroup(struct cgroup * cgrp)9231 static void perf_event_cgroup(struct cgroup *cgrp)
9232 {
9233 struct perf_cgroup_event cgroup_event;
9234 char path_enomem[16] = "//enomem";
9235 char *pathname;
9236 size_t size;
9237
9238 if (!atomic_read(&nr_cgroup_events))
9239 return;
9240
9241 cgroup_event = (struct perf_cgroup_event){
9242 .event_id = {
9243 .header = {
9244 .type = PERF_RECORD_CGROUP,
9245 .misc = 0,
9246 .size = sizeof(cgroup_event.event_id),
9247 },
9248 .id = cgroup_id(cgrp),
9249 },
9250 };
9251
9252 pathname = kmalloc(PATH_MAX, GFP_KERNEL);
9253 if (pathname == NULL) {
9254 cgroup_event.path = path_enomem;
9255 } else {
9256 /* just to be sure to have enough space for alignment */
9257 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
9258 cgroup_event.path = pathname;
9259 }
9260
9261 /*
9262 * Since our buffer works in 8 byte units we need to align our string
9263 * size to a multiple of 8. However, we must guarantee the tail end is
9264 * zero'd out to avoid leaking random bits to userspace.
9265 */
9266 size = strlen(cgroup_event.path) + 1;
9267 while (!IS_ALIGNED(size, sizeof(u64)))
9268 cgroup_event.path[size++] = '\0';
9269
9270 cgroup_event.event_id.header.size += size;
9271 cgroup_event.path_size = size;
9272
9273 perf_iterate_sb(perf_event_cgroup_output,
9274 &cgroup_event,
9275 NULL);
9276
9277 kfree(pathname);
9278 }
9279
9280 #endif
9281
9282 /*
9283 * mmap tracking
9284 */
9285
9286 struct perf_mmap_event {
9287 struct vm_area_struct *vma;
9288
9289 const char *file_name;
9290 int file_size;
9291 int maj, min;
9292 u64 ino;
9293 u64 ino_generation;
9294 u32 prot, flags;
9295 u8 build_id[BUILD_ID_SIZE_MAX];
9296 u32 build_id_size;
9297
9298 struct {
9299 struct perf_event_header header;
9300
9301 u32 pid;
9302 u32 tid;
9303 u64 start;
9304 u64 len;
9305 u64 pgoff;
9306 } event_id;
9307 };
9308
perf_event_mmap_match(struct perf_event * event,void * data)9309 static int perf_event_mmap_match(struct perf_event *event,
9310 void *data)
9311 {
9312 struct perf_mmap_event *mmap_event = data;
9313 struct vm_area_struct *vma = mmap_event->vma;
9314 int executable = vma->vm_flags & VM_EXEC;
9315
9316 return (!executable && event->attr.mmap_data) ||
9317 (executable && (event->attr.mmap || event->attr.mmap2));
9318 }
9319
perf_event_mmap_output(struct perf_event * event,void * data)9320 static void perf_event_mmap_output(struct perf_event *event,
9321 void *data)
9322 {
9323 struct perf_mmap_event *mmap_event = data;
9324 struct perf_output_handle handle;
9325 struct perf_sample_data sample;
9326 int size = mmap_event->event_id.header.size;
9327 u32 type = mmap_event->event_id.header.type;
9328 bool use_build_id;
9329 int ret;
9330
9331 if (!perf_event_mmap_match(event, data))
9332 return;
9333
9334 if (event->attr.mmap2) {
9335 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
9336 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
9337 mmap_event->event_id.header.size += sizeof(mmap_event->min);
9338 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
9339 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
9340 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
9341 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
9342 }
9343
9344 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
9345 ret = perf_output_begin(&handle, &sample, event,
9346 mmap_event->event_id.header.size);
9347 if (ret)
9348 goto out;
9349
9350 mmap_event->event_id.pid = perf_event_pid(event, current);
9351 mmap_event->event_id.tid = perf_event_tid(event, current);
9352
9353 use_build_id = event->attr.build_id && mmap_event->build_id_size;
9354
9355 if (event->attr.mmap2 && use_build_id)
9356 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
9357
9358 perf_output_put(&handle, mmap_event->event_id);
9359
9360 if (event->attr.mmap2) {
9361 if (use_build_id) {
9362 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
9363
9364 __output_copy(&handle, size, 4);
9365 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
9366 } else {
9367 perf_output_put(&handle, mmap_event->maj);
9368 perf_output_put(&handle, mmap_event->min);
9369 perf_output_put(&handle, mmap_event->ino);
9370 perf_output_put(&handle, mmap_event->ino_generation);
9371 }
9372 perf_output_put(&handle, mmap_event->prot);
9373 perf_output_put(&handle, mmap_event->flags);
9374 }
9375
9376 __output_copy(&handle, mmap_event->file_name,
9377 mmap_event->file_size);
9378
9379 perf_event__output_id_sample(event, &handle, &sample);
9380
9381 perf_output_end(&handle);
9382 out:
9383 mmap_event->event_id.header.size = size;
9384 mmap_event->event_id.header.type = type;
9385 }
9386
perf_event_mmap_event(struct perf_mmap_event * mmap_event)9387 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
9388 {
9389 struct vm_area_struct *vma = mmap_event->vma;
9390 struct file *file = vma->vm_file;
9391 int maj = 0, min = 0;
9392 u64 ino = 0, gen = 0;
9393 u32 prot = 0, flags = 0;
9394 unsigned int size;
9395 char tmp[16];
9396 char *buf = NULL;
9397 char *name = NULL;
9398
9399 if (vma->vm_flags & VM_READ)
9400 prot |= PROT_READ;
9401 if (vma->vm_flags & VM_WRITE)
9402 prot |= PROT_WRITE;
9403 if (vma->vm_flags & VM_EXEC)
9404 prot |= PROT_EXEC;
9405
9406 if (vma->vm_flags & VM_MAYSHARE)
9407 flags = MAP_SHARED;
9408 else
9409 flags = MAP_PRIVATE;
9410
9411 if (vma->vm_flags & VM_LOCKED)
9412 flags |= MAP_LOCKED;
9413 if (is_vm_hugetlb_page(vma))
9414 flags |= MAP_HUGETLB;
9415
9416 if (file) {
9417 const struct inode *inode;
9418 dev_t dev;
9419
9420 buf = kmalloc(PATH_MAX, GFP_KERNEL);
9421 if (!buf) {
9422 name = "//enomem";
9423 goto cpy_name;
9424 }
9425 /*
9426 * d_path() works from the end of the rb backwards, so we
9427 * need to add enough zero bytes after the string to handle
9428 * the 64bit alignment we do later.
9429 */
9430 name = d_path(file_user_path(file), buf, PATH_MAX - sizeof(u64));
9431 if (IS_ERR(name)) {
9432 name = "//toolong";
9433 goto cpy_name;
9434 }
9435 inode = file_user_inode(vma->vm_file);
9436 dev = inode->i_sb->s_dev;
9437 ino = inode->i_ino;
9438 gen = inode->i_generation;
9439 maj = MAJOR(dev);
9440 min = MINOR(dev);
9441
9442 goto got_name;
9443 } else {
9444 if (vma->vm_ops && vma->vm_ops->name)
9445 name = (char *) vma->vm_ops->name(vma);
9446 if (!name)
9447 name = (char *)arch_vma_name(vma);
9448 if (!name) {
9449 if (vma_is_initial_heap(vma))
9450 name = "[heap]";
9451 else if (vma_is_initial_stack(vma))
9452 name = "[stack]";
9453 else
9454 name = "//anon";
9455 }
9456 }
9457
9458 cpy_name:
9459 strscpy(tmp, name);
9460 name = tmp;
9461 got_name:
9462 /*
9463 * Since our buffer works in 8 byte units we need to align our string
9464 * size to a multiple of 8. However, we must guarantee the tail end is
9465 * zero'd out to avoid leaking random bits to userspace.
9466 */
9467 size = strlen(name)+1;
9468 while (!IS_ALIGNED(size, sizeof(u64)))
9469 name[size++] = '\0';
9470
9471 mmap_event->file_name = name;
9472 mmap_event->file_size = size;
9473 mmap_event->maj = maj;
9474 mmap_event->min = min;
9475 mmap_event->ino = ino;
9476 mmap_event->ino_generation = gen;
9477 mmap_event->prot = prot;
9478 mmap_event->flags = flags;
9479
9480 if (!(vma->vm_flags & VM_EXEC))
9481 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
9482
9483 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
9484
9485 if (atomic_read(&nr_build_id_events))
9486 build_id_parse_nofault(vma, mmap_event->build_id, &mmap_event->build_id_size);
9487
9488 perf_iterate_sb(perf_event_mmap_output,
9489 mmap_event,
9490 NULL);
9491
9492 kfree(buf);
9493 }
9494
9495 /*
9496 * Check whether inode and address range match filter criteria.
9497 */
perf_addr_filter_match(struct perf_addr_filter * filter,struct file * file,unsigned long offset,unsigned long size)9498 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
9499 struct file *file, unsigned long offset,
9500 unsigned long size)
9501 {
9502 /* d_inode(NULL) won't be equal to any mapped user-space file */
9503 if (!filter->path.dentry)
9504 return false;
9505
9506 if (d_inode(filter->path.dentry) != file_user_inode(file))
9507 return false;
9508
9509 if (filter->offset > offset + size)
9510 return false;
9511
9512 if (filter->offset + filter->size < offset)
9513 return false;
9514
9515 return true;
9516 }
9517
perf_addr_filter_vma_adjust(struct perf_addr_filter * filter,struct vm_area_struct * vma,struct perf_addr_filter_range * fr)9518 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
9519 struct vm_area_struct *vma,
9520 struct perf_addr_filter_range *fr)
9521 {
9522 unsigned long vma_size = vma->vm_end - vma->vm_start;
9523 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
9524 struct file *file = vma->vm_file;
9525
9526 if (!perf_addr_filter_match(filter, file, off, vma_size))
9527 return false;
9528
9529 if (filter->offset < off) {
9530 fr->start = vma->vm_start;
9531 fr->size = min(vma_size, filter->size - (off - filter->offset));
9532 } else {
9533 fr->start = vma->vm_start + filter->offset - off;
9534 fr->size = min(vma->vm_end - fr->start, filter->size);
9535 }
9536
9537 return true;
9538 }
9539
__perf_addr_filters_adjust(struct perf_event * event,void * data)9540 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
9541 {
9542 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9543 struct vm_area_struct *vma = data;
9544 struct perf_addr_filter *filter;
9545 unsigned int restart = 0, count = 0;
9546 unsigned long flags;
9547
9548 if (!has_addr_filter(event))
9549 return;
9550
9551 if (!vma->vm_file)
9552 return;
9553
9554 raw_spin_lock_irqsave(&ifh->lock, flags);
9555 list_for_each_entry(filter, &ifh->list, entry) {
9556 if (perf_addr_filter_vma_adjust(filter, vma,
9557 &event->addr_filter_ranges[count]))
9558 restart++;
9559
9560 count++;
9561 }
9562
9563 if (restart)
9564 event->addr_filters_gen++;
9565 raw_spin_unlock_irqrestore(&ifh->lock, flags);
9566
9567 if (restart)
9568 perf_event_stop(event, 1);
9569 }
9570
9571 /*
9572 * Adjust all task's events' filters to the new vma
9573 */
perf_addr_filters_adjust(struct vm_area_struct * vma)9574 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
9575 {
9576 struct perf_event_context *ctx;
9577
9578 /*
9579 * Data tracing isn't supported yet and as such there is no need
9580 * to keep track of anything that isn't related to executable code:
9581 */
9582 if (!(vma->vm_flags & VM_EXEC))
9583 return;
9584
9585 rcu_read_lock();
9586 ctx = rcu_dereference(current->perf_event_ctxp);
9587 if (ctx)
9588 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
9589 rcu_read_unlock();
9590 }
9591
perf_event_mmap(struct vm_area_struct * vma)9592 void perf_event_mmap(struct vm_area_struct *vma)
9593 {
9594 struct perf_mmap_event mmap_event;
9595
9596 if (!atomic_read(&nr_mmap_events))
9597 return;
9598
9599 mmap_event = (struct perf_mmap_event){
9600 .vma = vma,
9601 /* .file_name */
9602 /* .file_size */
9603 .event_id = {
9604 .header = {
9605 .type = PERF_RECORD_MMAP,
9606 .misc = PERF_RECORD_MISC_USER,
9607 /* .size */
9608 },
9609 /* .pid */
9610 /* .tid */
9611 .start = vma->vm_start,
9612 .len = vma->vm_end - vma->vm_start,
9613 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
9614 },
9615 /* .maj (attr_mmap2 only) */
9616 /* .min (attr_mmap2 only) */
9617 /* .ino (attr_mmap2 only) */
9618 /* .ino_generation (attr_mmap2 only) */
9619 /* .prot (attr_mmap2 only) */
9620 /* .flags (attr_mmap2 only) */
9621 };
9622
9623 perf_addr_filters_adjust(vma);
9624 perf_event_mmap_event(&mmap_event);
9625 }
9626
perf_event_aux_event(struct perf_event * event,unsigned long head,unsigned long size,u64 flags)9627 void perf_event_aux_event(struct perf_event *event, unsigned long head,
9628 unsigned long size, u64 flags)
9629 {
9630 struct perf_output_handle handle;
9631 struct perf_sample_data sample;
9632 struct perf_aux_event {
9633 struct perf_event_header header;
9634 u64 offset;
9635 u64 size;
9636 u64 flags;
9637 } rec = {
9638 .header = {
9639 .type = PERF_RECORD_AUX,
9640 .misc = 0,
9641 .size = sizeof(rec),
9642 },
9643 .offset = head,
9644 .size = size,
9645 .flags = flags,
9646 };
9647 int ret;
9648
9649 perf_event_header__init_id(&rec.header, &sample, event);
9650 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9651
9652 if (ret)
9653 return;
9654
9655 perf_output_put(&handle, rec);
9656 perf_event__output_id_sample(event, &handle, &sample);
9657
9658 perf_output_end(&handle);
9659 }
9660
9661 /*
9662 * Lost/dropped samples logging
9663 */
perf_log_lost_samples(struct perf_event * event,u64 lost)9664 void perf_log_lost_samples(struct perf_event *event, u64 lost)
9665 {
9666 struct perf_output_handle handle;
9667 struct perf_sample_data sample;
9668 int ret;
9669
9670 struct {
9671 struct perf_event_header header;
9672 u64 lost;
9673 } lost_samples_event = {
9674 .header = {
9675 .type = PERF_RECORD_LOST_SAMPLES,
9676 .misc = 0,
9677 .size = sizeof(lost_samples_event),
9678 },
9679 .lost = lost,
9680 };
9681
9682 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9683
9684 ret = perf_output_begin(&handle, &sample, event,
9685 lost_samples_event.header.size);
9686 if (ret)
9687 return;
9688
9689 perf_output_put(&handle, lost_samples_event);
9690 perf_event__output_id_sample(event, &handle, &sample);
9691 perf_output_end(&handle);
9692 }
9693
9694 /*
9695 * context_switch tracking
9696 */
9697
9698 struct perf_switch_event {
9699 struct task_struct *task;
9700 struct task_struct *next_prev;
9701
9702 struct {
9703 struct perf_event_header header;
9704 u32 next_prev_pid;
9705 u32 next_prev_tid;
9706 } event_id;
9707 };
9708
perf_event_switch_match(struct perf_event * event)9709 static int perf_event_switch_match(struct perf_event *event)
9710 {
9711 return event->attr.context_switch;
9712 }
9713
perf_event_switch_output(struct perf_event * event,void * data)9714 static void perf_event_switch_output(struct perf_event *event, void *data)
9715 {
9716 struct perf_switch_event *se = data;
9717 struct perf_output_handle handle;
9718 struct perf_sample_data sample;
9719 int ret;
9720
9721 if (!perf_event_switch_match(event))
9722 return;
9723
9724 /* Only CPU-wide events are allowed to see next/prev pid/tid */
9725 if (event->ctx->task) {
9726 se->event_id.header.type = PERF_RECORD_SWITCH;
9727 se->event_id.header.size = sizeof(se->event_id.header);
9728 } else {
9729 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9730 se->event_id.header.size = sizeof(se->event_id);
9731 se->event_id.next_prev_pid =
9732 perf_event_pid(event, se->next_prev);
9733 se->event_id.next_prev_tid =
9734 perf_event_tid(event, se->next_prev);
9735 }
9736
9737 perf_event_header__init_id(&se->event_id.header, &sample, event);
9738
9739 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9740 if (ret)
9741 return;
9742
9743 if (event->ctx->task)
9744 perf_output_put(&handle, se->event_id.header);
9745 else
9746 perf_output_put(&handle, se->event_id);
9747
9748 perf_event__output_id_sample(event, &handle, &sample);
9749
9750 perf_output_end(&handle);
9751 }
9752
perf_event_switch(struct task_struct * task,struct task_struct * next_prev,bool sched_in)9753 static void perf_event_switch(struct task_struct *task,
9754 struct task_struct *next_prev, bool sched_in)
9755 {
9756 struct perf_switch_event switch_event;
9757
9758 /* N.B. caller checks nr_switch_events != 0 */
9759
9760 switch_event = (struct perf_switch_event){
9761 .task = task,
9762 .next_prev = next_prev,
9763 .event_id = {
9764 .header = {
9765 /* .type */
9766 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9767 /* .size */
9768 },
9769 /* .next_prev_pid */
9770 /* .next_prev_tid */
9771 },
9772 };
9773
9774 if (!sched_in && task_is_runnable(task)) {
9775 switch_event.event_id.header.misc |=
9776 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9777 }
9778
9779 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9780 }
9781
9782 /*
9783 * IRQ throttle logging
9784 */
9785
perf_log_throttle(struct perf_event * event,int enable)9786 static void perf_log_throttle(struct perf_event *event, int enable)
9787 {
9788 struct perf_output_handle handle;
9789 struct perf_sample_data sample;
9790 int ret;
9791
9792 struct {
9793 struct perf_event_header header;
9794 u64 time;
9795 u64 id;
9796 u64 stream_id;
9797 } throttle_event = {
9798 .header = {
9799 .type = PERF_RECORD_THROTTLE,
9800 .misc = 0,
9801 .size = sizeof(throttle_event),
9802 },
9803 .time = perf_event_clock(event),
9804 .id = primary_event_id(event),
9805 .stream_id = event->id,
9806 };
9807
9808 if (enable)
9809 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9810
9811 perf_event_header__init_id(&throttle_event.header, &sample, event);
9812
9813 ret = perf_output_begin(&handle, &sample, event,
9814 throttle_event.header.size);
9815 if (ret)
9816 return;
9817
9818 perf_output_put(&handle, throttle_event);
9819 perf_event__output_id_sample(event, &handle, &sample);
9820 perf_output_end(&handle);
9821 }
9822
9823 /*
9824 * ksymbol register/unregister tracking
9825 */
9826
9827 struct perf_ksymbol_event {
9828 const char *name;
9829 int name_len;
9830 struct {
9831 struct perf_event_header header;
9832 u64 addr;
9833 u32 len;
9834 u16 ksym_type;
9835 u16 flags;
9836 } event_id;
9837 };
9838
perf_event_ksymbol_match(struct perf_event * event)9839 static int perf_event_ksymbol_match(struct perf_event *event)
9840 {
9841 return event->attr.ksymbol;
9842 }
9843
perf_event_ksymbol_output(struct perf_event * event,void * data)9844 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9845 {
9846 struct perf_ksymbol_event *ksymbol_event = data;
9847 struct perf_output_handle handle;
9848 struct perf_sample_data sample;
9849 int ret;
9850
9851 if (!perf_event_ksymbol_match(event))
9852 return;
9853
9854 perf_event_header__init_id(&ksymbol_event->event_id.header,
9855 &sample, event);
9856 ret = perf_output_begin(&handle, &sample, event,
9857 ksymbol_event->event_id.header.size);
9858 if (ret)
9859 return;
9860
9861 perf_output_put(&handle, ksymbol_event->event_id);
9862 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9863 perf_event__output_id_sample(event, &handle, &sample);
9864
9865 perf_output_end(&handle);
9866 }
9867
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)9868 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9869 const char *sym)
9870 {
9871 struct perf_ksymbol_event ksymbol_event;
9872 char name[KSYM_NAME_LEN];
9873 u16 flags = 0;
9874 int name_len;
9875
9876 if (!atomic_read(&nr_ksymbol_events))
9877 return;
9878
9879 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9880 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9881 goto err;
9882
9883 strscpy(name, sym);
9884 name_len = strlen(name) + 1;
9885 while (!IS_ALIGNED(name_len, sizeof(u64)))
9886 name[name_len++] = '\0';
9887 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9888
9889 if (unregister)
9890 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9891
9892 ksymbol_event = (struct perf_ksymbol_event){
9893 .name = name,
9894 .name_len = name_len,
9895 .event_id = {
9896 .header = {
9897 .type = PERF_RECORD_KSYMBOL,
9898 .size = sizeof(ksymbol_event.event_id) +
9899 name_len,
9900 },
9901 .addr = addr,
9902 .len = len,
9903 .ksym_type = ksym_type,
9904 .flags = flags,
9905 },
9906 };
9907
9908 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9909 return;
9910 err:
9911 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9912 }
9913
9914 /*
9915 * bpf program load/unload tracking
9916 */
9917
9918 struct perf_bpf_event {
9919 struct bpf_prog *prog;
9920 struct {
9921 struct perf_event_header header;
9922 u16 type;
9923 u16 flags;
9924 u32 id;
9925 u8 tag[BPF_TAG_SIZE];
9926 } event_id;
9927 };
9928
perf_event_bpf_match(struct perf_event * event)9929 static int perf_event_bpf_match(struct perf_event *event)
9930 {
9931 return event->attr.bpf_event;
9932 }
9933
perf_event_bpf_output(struct perf_event * event,void * data)9934 static void perf_event_bpf_output(struct perf_event *event, void *data)
9935 {
9936 struct perf_bpf_event *bpf_event = data;
9937 struct perf_output_handle handle;
9938 struct perf_sample_data sample;
9939 int ret;
9940
9941 if (!perf_event_bpf_match(event))
9942 return;
9943
9944 perf_event_header__init_id(&bpf_event->event_id.header,
9945 &sample, event);
9946 ret = perf_output_begin(&handle, &sample, event,
9947 bpf_event->event_id.header.size);
9948 if (ret)
9949 return;
9950
9951 perf_output_put(&handle, bpf_event->event_id);
9952 perf_event__output_id_sample(event, &handle, &sample);
9953
9954 perf_output_end(&handle);
9955 }
9956
perf_event_bpf_emit_ksymbols(struct bpf_prog * prog,enum perf_bpf_event_type type)9957 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9958 enum perf_bpf_event_type type)
9959 {
9960 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9961 int i;
9962
9963 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9964 (u64)(unsigned long)prog->bpf_func,
9965 prog->jited_len, unregister,
9966 prog->aux->ksym.name);
9967
9968 for (i = 1; i < prog->aux->func_cnt; i++) {
9969 struct bpf_prog *subprog = prog->aux->func[i];
9970
9971 perf_event_ksymbol(
9972 PERF_RECORD_KSYMBOL_TYPE_BPF,
9973 (u64)(unsigned long)subprog->bpf_func,
9974 subprog->jited_len, unregister,
9975 subprog->aux->ksym.name);
9976 }
9977 }
9978
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)9979 void perf_event_bpf_event(struct bpf_prog *prog,
9980 enum perf_bpf_event_type type,
9981 u16 flags)
9982 {
9983 struct perf_bpf_event bpf_event;
9984
9985 switch (type) {
9986 case PERF_BPF_EVENT_PROG_LOAD:
9987 case PERF_BPF_EVENT_PROG_UNLOAD:
9988 if (atomic_read(&nr_ksymbol_events))
9989 perf_event_bpf_emit_ksymbols(prog, type);
9990 break;
9991 default:
9992 return;
9993 }
9994
9995 if (!atomic_read(&nr_bpf_events))
9996 return;
9997
9998 bpf_event = (struct perf_bpf_event){
9999 .prog = prog,
10000 .event_id = {
10001 .header = {
10002 .type = PERF_RECORD_BPF_EVENT,
10003 .size = sizeof(bpf_event.event_id),
10004 },
10005 .type = type,
10006 .flags = flags,
10007 .id = prog->aux->id,
10008 },
10009 };
10010
10011 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
10012
10013 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
10014 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
10015 }
10016
10017 struct perf_callchain_deferred_event {
10018 struct unwind_stacktrace *trace;
10019 struct {
10020 struct perf_event_header header;
10021 u64 cookie;
10022 u64 nr;
10023 u64 ips[];
10024 } event;
10025 };
10026
perf_callchain_deferred_output(struct perf_event * event,void * data)10027 static void perf_callchain_deferred_output(struct perf_event *event, void *data)
10028 {
10029 struct perf_callchain_deferred_event *deferred_event = data;
10030 struct perf_output_handle handle;
10031 struct perf_sample_data sample;
10032 int ret, size = deferred_event->event.header.size;
10033
10034 if (!event->attr.defer_output)
10035 return;
10036
10037 /* XXX do we really need sample_id_all for this ??? */
10038 perf_event_header__init_id(&deferred_event->event.header, &sample, event);
10039
10040 ret = perf_output_begin(&handle, &sample, event,
10041 deferred_event->event.header.size);
10042 if (ret)
10043 goto out;
10044
10045 perf_output_put(&handle, deferred_event->event);
10046 for (int i = 0; i < deferred_event->trace->nr; i++) {
10047 u64 entry = deferred_event->trace->entries[i];
10048 perf_output_put(&handle, entry);
10049 }
10050 perf_event__output_id_sample(event, &handle, &sample);
10051
10052 perf_output_end(&handle);
10053 out:
10054 deferred_event->event.header.size = size;
10055 }
10056
perf_unwind_deferred_callback(struct unwind_work * work,struct unwind_stacktrace * trace,u64 cookie)10057 static void perf_unwind_deferred_callback(struct unwind_work *work,
10058 struct unwind_stacktrace *trace, u64 cookie)
10059 {
10060 struct perf_callchain_deferred_event deferred_event = {
10061 .trace = trace,
10062 .event = {
10063 .header = {
10064 .type = PERF_RECORD_CALLCHAIN_DEFERRED,
10065 .misc = PERF_RECORD_MISC_USER,
10066 .size = sizeof(deferred_event.event) +
10067 (trace->nr * sizeof(u64)),
10068 },
10069 .cookie = cookie,
10070 .nr = trace->nr,
10071 },
10072 };
10073
10074 perf_iterate_sb(perf_callchain_deferred_output, &deferred_event, NULL);
10075 }
10076
10077 struct perf_text_poke_event {
10078 const void *old_bytes;
10079 const void *new_bytes;
10080 size_t pad;
10081 u16 old_len;
10082 u16 new_len;
10083
10084 struct {
10085 struct perf_event_header header;
10086
10087 u64 addr;
10088 } event_id;
10089 };
10090
perf_event_text_poke_match(struct perf_event * event)10091 static int perf_event_text_poke_match(struct perf_event *event)
10092 {
10093 return event->attr.text_poke;
10094 }
10095
perf_event_text_poke_output(struct perf_event * event,void * data)10096 static void perf_event_text_poke_output(struct perf_event *event, void *data)
10097 {
10098 struct perf_text_poke_event *text_poke_event = data;
10099 struct perf_output_handle handle;
10100 struct perf_sample_data sample;
10101 u64 padding = 0;
10102 int ret;
10103
10104 if (!perf_event_text_poke_match(event))
10105 return;
10106
10107 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
10108
10109 ret = perf_output_begin(&handle, &sample, event,
10110 text_poke_event->event_id.header.size);
10111 if (ret)
10112 return;
10113
10114 perf_output_put(&handle, text_poke_event->event_id);
10115 perf_output_put(&handle, text_poke_event->old_len);
10116 perf_output_put(&handle, text_poke_event->new_len);
10117
10118 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
10119 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
10120
10121 if (text_poke_event->pad)
10122 __output_copy(&handle, &padding, text_poke_event->pad);
10123
10124 perf_event__output_id_sample(event, &handle, &sample);
10125
10126 perf_output_end(&handle);
10127 }
10128
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)10129 void perf_event_text_poke(const void *addr, const void *old_bytes,
10130 size_t old_len, const void *new_bytes, size_t new_len)
10131 {
10132 struct perf_text_poke_event text_poke_event;
10133 size_t tot, pad;
10134
10135 if (!atomic_read(&nr_text_poke_events))
10136 return;
10137
10138 tot = sizeof(text_poke_event.old_len) + old_len;
10139 tot += sizeof(text_poke_event.new_len) + new_len;
10140 pad = ALIGN(tot, sizeof(u64)) - tot;
10141
10142 text_poke_event = (struct perf_text_poke_event){
10143 .old_bytes = old_bytes,
10144 .new_bytes = new_bytes,
10145 .pad = pad,
10146 .old_len = old_len,
10147 .new_len = new_len,
10148 .event_id = {
10149 .header = {
10150 .type = PERF_RECORD_TEXT_POKE,
10151 .misc = PERF_RECORD_MISC_KERNEL,
10152 .size = sizeof(text_poke_event.event_id) + tot + pad,
10153 },
10154 .addr = (unsigned long)addr,
10155 },
10156 };
10157
10158 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
10159 }
10160
perf_event_itrace_started(struct perf_event * event)10161 void perf_event_itrace_started(struct perf_event *event)
10162 {
10163 WRITE_ONCE(event->attach_state, event->attach_state | PERF_ATTACH_ITRACE);
10164 }
10165
perf_log_itrace_start(struct perf_event * event)10166 static void perf_log_itrace_start(struct perf_event *event)
10167 {
10168 struct perf_output_handle handle;
10169 struct perf_sample_data sample;
10170 struct perf_aux_event {
10171 struct perf_event_header header;
10172 u32 pid;
10173 u32 tid;
10174 } rec;
10175 int ret;
10176
10177 if (event->parent)
10178 event = event->parent;
10179
10180 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
10181 event->attach_state & PERF_ATTACH_ITRACE)
10182 return;
10183
10184 rec.header.type = PERF_RECORD_ITRACE_START;
10185 rec.header.misc = 0;
10186 rec.header.size = sizeof(rec);
10187 rec.pid = perf_event_pid(event, current);
10188 rec.tid = perf_event_tid(event, current);
10189
10190 perf_event_header__init_id(&rec.header, &sample, event);
10191 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
10192
10193 if (ret)
10194 return;
10195
10196 perf_output_put(&handle, rec);
10197 perf_event__output_id_sample(event, &handle, &sample);
10198
10199 perf_output_end(&handle);
10200 }
10201
perf_report_aux_output_id(struct perf_event * event,u64 hw_id)10202 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
10203 {
10204 struct perf_output_handle handle;
10205 struct perf_sample_data sample;
10206 struct perf_aux_event {
10207 struct perf_event_header header;
10208 u64 hw_id;
10209 } rec;
10210 int ret;
10211
10212 if (event->parent)
10213 event = event->parent;
10214
10215 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID;
10216 rec.header.misc = 0;
10217 rec.header.size = sizeof(rec);
10218 rec.hw_id = hw_id;
10219
10220 perf_event_header__init_id(&rec.header, &sample, event);
10221 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
10222
10223 if (ret)
10224 return;
10225
10226 perf_output_put(&handle, rec);
10227 perf_event__output_id_sample(event, &handle, &sample);
10228
10229 perf_output_end(&handle);
10230 }
10231 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
10232
10233 static int
__perf_event_account_interrupt(struct perf_event * event,int throttle)10234 __perf_event_account_interrupt(struct perf_event *event, int throttle)
10235 {
10236 struct hw_perf_event *hwc = &event->hw;
10237 int ret = 0;
10238 u64 seq;
10239
10240 seq = __this_cpu_read(perf_throttled_seq);
10241 if (seq != hwc->interrupts_seq) {
10242 hwc->interrupts_seq = seq;
10243 hwc->interrupts = 1;
10244 } else {
10245 hwc->interrupts++;
10246 }
10247
10248 if (unlikely(throttle && hwc->interrupts >= max_samples_per_tick)) {
10249 __this_cpu_inc(perf_throttled_count);
10250 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
10251 perf_event_throttle_group(event);
10252 ret = 1;
10253 }
10254
10255 if (event->attr.freq) {
10256 u64 now = perf_clock();
10257 s64 delta = now - hwc->freq_time_stamp;
10258
10259 hwc->freq_time_stamp = now;
10260
10261 if (delta > 0 && delta < 2*TICK_NSEC)
10262 perf_adjust_period(event, delta, hwc->last_period, true);
10263 }
10264
10265 return ret;
10266 }
10267
perf_event_account_interrupt(struct perf_event * event)10268 int perf_event_account_interrupt(struct perf_event *event)
10269 {
10270 return __perf_event_account_interrupt(event, 1);
10271 }
10272
sample_is_allowed(struct perf_event * event,struct pt_regs * regs)10273 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
10274 {
10275 /*
10276 * Due to interrupt latency (AKA "skid"), we may enter the
10277 * kernel before taking an overflow, even if the PMU is only
10278 * counting user events.
10279 */
10280 if (event->attr.exclude_kernel && !user_mode(regs))
10281 return false;
10282
10283 return true;
10284 }
10285
10286 #ifdef CONFIG_BPF_SYSCALL
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)10287 static int bpf_overflow_handler(struct perf_event *event,
10288 struct perf_sample_data *data,
10289 struct pt_regs *regs)
10290 {
10291 struct bpf_perf_event_data_kern ctx = {
10292 .data = data,
10293 .event = event,
10294 };
10295 struct bpf_prog *prog;
10296 int ret = 0;
10297
10298 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10299 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10300 goto out;
10301 rcu_read_lock();
10302 prog = READ_ONCE(event->prog);
10303 if (prog) {
10304 perf_prepare_sample(data, event, regs);
10305 ret = bpf_prog_run(prog, &ctx);
10306 }
10307 rcu_read_unlock();
10308 out:
10309 __this_cpu_dec(bpf_prog_active);
10310
10311 return ret;
10312 }
10313
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10314 static inline int perf_event_set_bpf_handler(struct perf_event *event,
10315 struct bpf_prog *prog,
10316 u64 bpf_cookie)
10317 {
10318 if (event->overflow_handler_context)
10319 /* hw breakpoint or kernel counter */
10320 return -EINVAL;
10321
10322 if (event->prog)
10323 return -EEXIST;
10324
10325 if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10326 return -EINVAL;
10327
10328 if (event->attr.precise_ip &&
10329 prog->call_get_stack &&
10330 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
10331 event->attr.exclude_callchain_kernel ||
10332 event->attr.exclude_callchain_user)) {
10333 /*
10334 * On perf_event with precise_ip, calling bpf_get_stack()
10335 * may trigger unwinder warnings and occasional crashes.
10336 * bpf_get_[stack|stackid] works around this issue by using
10337 * callchain attached to perf_sample_data. If the
10338 * perf_event does not full (kernel and user) callchain
10339 * attached to perf_sample_data, do not allow attaching BPF
10340 * program that calls bpf_get_[stack|stackid].
10341 */
10342 return -EPROTO;
10343 }
10344
10345 event->prog = prog;
10346 event->bpf_cookie = bpf_cookie;
10347 return 0;
10348 }
10349
perf_event_free_bpf_handler(struct perf_event * event)10350 static inline void perf_event_free_bpf_handler(struct perf_event *event)
10351 {
10352 struct bpf_prog *prog = event->prog;
10353
10354 if (!prog)
10355 return;
10356
10357 event->prog = NULL;
10358 bpf_prog_put(prog);
10359 }
10360 #else
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)10361 static inline int bpf_overflow_handler(struct perf_event *event,
10362 struct perf_sample_data *data,
10363 struct pt_regs *regs)
10364 {
10365 return 1;
10366 }
10367
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10368 static inline int perf_event_set_bpf_handler(struct perf_event *event,
10369 struct bpf_prog *prog,
10370 u64 bpf_cookie)
10371 {
10372 return -EOPNOTSUPP;
10373 }
10374
perf_event_free_bpf_handler(struct perf_event * event)10375 static inline void perf_event_free_bpf_handler(struct perf_event *event)
10376 {
10377 }
10378 #endif
10379
10380 /*
10381 * Generic event overflow handling, sampling.
10382 */
10383
__perf_event_overflow(struct perf_event * event,int throttle,struct perf_sample_data * data,struct pt_regs * regs)10384 static int __perf_event_overflow(struct perf_event *event,
10385 int throttle, struct perf_sample_data *data,
10386 struct pt_regs *regs)
10387 {
10388 int events = atomic_read(&event->event_limit);
10389 int ret = 0;
10390
10391 /*
10392 * Non-sampling counters might still use the PMI to fold short
10393 * hardware counters, ignore those.
10394 */
10395 if (unlikely(!is_sampling_event(event)))
10396 return 0;
10397
10398 ret = __perf_event_account_interrupt(event, throttle);
10399
10400 if (event->attr.aux_pause)
10401 perf_event_aux_pause(event->aux_event, true);
10402
10403 if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT &&
10404 !bpf_overflow_handler(event, data, regs))
10405 goto out;
10406
10407 /*
10408 * XXX event_limit might not quite work as expected on inherited
10409 * events
10410 */
10411
10412 event->pending_kill = POLL_IN;
10413 if (events && atomic_dec_and_test(&event->event_limit)) {
10414 ret = 1;
10415 event->pending_kill = POLL_HUP;
10416 perf_event_disable_inatomic(event);
10417 event->pmu->stop(event, 0);
10418 }
10419
10420 if (event->attr.sigtrap) {
10421 /*
10422 * The desired behaviour of sigtrap vs invalid samples is a bit
10423 * tricky; on the one hand, one should not loose the SIGTRAP if
10424 * it is the first event, on the other hand, we should also not
10425 * trigger the WARN or override the data address.
10426 */
10427 bool valid_sample = sample_is_allowed(event, regs);
10428 unsigned int pending_id = 1;
10429 enum task_work_notify_mode notify_mode;
10430
10431 if (regs)
10432 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
10433
10434 notify_mode = in_nmi() ? TWA_NMI_CURRENT : TWA_RESUME;
10435
10436 if (!event->pending_work &&
10437 !task_work_add(current, &event->pending_task, notify_mode)) {
10438 event->pending_work = pending_id;
10439 local_inc(&event->ctx->nr_no_switch_fast);
10440 WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount));
10441
10442 event->pending_addr = 0;
10443 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
10444 event->pending_addr = data->addr;
10445
10446 } else if (event->attr.exclude_kernel && valid_sample) {
10447 /*
10448 * Should not be able to return to user space without
10449 * consuming pending_work; with exceptions:
10450 *
10451 * 1. Where !exclude_kernel, events can overflow again
10452 * in the kernel without returning to user space.
10453 *
10454 * 2. Events that can overflow again before the IRQ-
10455 * work without user space progress (e.g. hrtimer).
10456 * To approximate progress (with false negatives),
10457 * check 32-bit hash of the current IP.
10458 */
10459 WARN_ON_ONCE(event->pending_work != pending_id);
10460 }
10461 }
10462
10463 READ_ONCE(event->overflow_handler)(event, data, regs);
10464
10465 if (*perf_event_fasync(event) && event->pending_kill) {
10466 event->pending_wakeup = 1;
10467 irq_work_queue(&event->pending_irq);
10468 }
10469 out:
10470 if (event->attr.aux_resume)
10471 perf_event_aux_pause(event->aux_event, false);
10472
10473 return ret;
10474 }
10475
perf_event_overflow(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)10476 int perf_event_overflow(struct perf_event *event,
10477 struct perf_sample_data *data,
10478 struct pt_regs *regs)
10479 {
10480 return __perf_event_overflow(event, 1, data, regs);
10481 }
10482
10483 /*
10484 * Generic software event infrastructure
10485 */
10486
10487 struct swevent_htable {
10488 struct swevent_hlist *swevent_hlist;
10489 struct mutex hlist_mutex;
10490 int hlist_refcount;
10491 };
10492 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
10493
10494 /*
10495 * We directly increment event->count and keep a second value in
10496 * event->hw.period_left to count intervals. This period event
10497 * is kept in the range [-sample_period, 0] so that we can use the
10498 * sign as trigger.
10499 */
10500
perf_swevent_set_period(struct perf_event * event)10501 u64 perf_swevent_set_period(struct perf_event *event)
10502 {
10503 struct hw_perf_event *hwc = &event->hw;
10504 u64 period = hwc->last_period;
10505 u64 nr, offset;
10506 s64 old, val;
10507
10508 hwc->last_period = hwc->sample_period;
10509
10510 old = local64_read(&hwc->period_left);
10511 do {
10512 val = old;
10513 if (val < 0)
10514 return 0;
10515
10516 nr = div64_u64(period + val, period);
10517 offset = nr * period;
10518 val -= offset;
10519 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
10520
10521 return nr;
10522 }
10523
perf_swevent_overflow(struct perf_event * event,u64 overflow,struct perf_sample_data * data,struct pt_regs * regs)10524 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
10525 struct perf_sample_data *data,
10526 struct pt_regs *regs)
10527 {
10528 struct hw_perf_event *hwc = &event->hw;
10529 int throttle = 0;
10530
10531 if (!overflow)
10532 overflow = perf_swevent_set_period(event);
10533
10534 if (hwc->interrupts == MAX_INTERRUPTS)
10535 return;
10536
10537 for (; overflow; overflow--) {
10538 if (__perf_event_overflow(event, throttle,
10539 data, regs)) {
10540 /*
10541 * We inhibit the overflow from happening when
10542 * hwc->interrupts == MAX_INTERRUPTS.
10543 */
10544 break;
10545 }
10546 throttle = 1;
10547 }
10548 }
10549
perf_swevent_event(struct perf_event * event,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)10550 static void perf_swevent_event(struct perf_event *event, u64 nr,
10551 struct perf_sample_data *data,
10552 struct pt_regs *regs)
10553 {
10554 struct hw_perf_event *hwc = &event->hw;
10555
10556 local64_add(nr, &event->count);
10557
10558 if (!regs)
10559 return;
10560
10561 if (!is_sampling_event(event))
10562 return;
10563
10564 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
10565 data->period = nr;
10566 return perf_swevent_overflow(event, 1, data, regs);
10567 } else
10568 data->period = event->hw.last_period;
10569
10570 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
10571 return perf_swevent_overflow(event, 1, data, regs);
10572
10573 if (local64_add_negative(nr, &hwc->period_left))
10574 return;
10575
10576 perf_swevent_overflow(event, 0, data, regs);
10577 }
10578
perf_exclude_event(struct perf_event * event,struct pt_regs * regs)10579 int perf_exclude_event(struct perf_event *event, struct pt_regs *regs)
10580 {
10581 if (event->hw.state & PERF_HES_STOPPED)
10582 return 1;
10583
10584 if (regs) {
10585 if (event->attr.exclude_user && user_mode(regs))
10586 return 1;
10587
10588 if (event->attr.exclude_kernel && !user_mode(regs))
10589 return 1;
10590 }
10591
10592 return 0;
10593 }
10594
perf_swevent_match(struct perf_event * event,enum perf_type_id type,u32 event_id,struct perf_sample_data * data,struct pt_regs * regs)10595 static int perf_swevent_match(struct perf_event *event,
10596 enum perf_type_id type,
10597 u32 event_id,
10598 struct perf_sample_data *data,
10599 struct pt_regs *regs)
10600 {
10601 if (event->attr.type != type)
10602 return 0;
10603
10604 if (event->attr.config != event_id)
10605 return 0;
10606
10607 if (perf_exclude_event(event, regs))
10608 return 0;
10609
10610 return 1;
10611 }
10612
swevent_hash(u64 type,u32 event_id)10613 static inline u64 swevent_hash(u64 type, u32 event_id)
10614 {
10615 u64 val = event_id | (type << 32);
10616
10617 return hash_64(val, SWEVENT_HLIST_BITS);
10618 }
10619
10620 static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist * hlist,u64 type,u32 event_id)10621 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
10622 {
10623 u64 hash = swevent_hash(type, event_id);
10624
10625 return &hlist->heads[hash];
10626 }
10627
10628 /* For the read side: events when they trigger */
10629 static inline struct hlist_head *
find_swevent_head_rcu(struct swevent_htable * swhash,u64 type,u32 event_id)10630 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
10631 {
10632 struct swevent_hlist *hlist;
10633
10634 hlist = rcu_dereference(swhash->swevent_hlist);
10635 if (!hlist)
10636 return NULL;
10637
10638 return __find_swevent_head(hlist, type, event_id);
10639 }
10640
10641 /* For the event head insertion and removal in the hlist */
10642 static inline struct hlist_head *
find_swevent_head(struct swevent_htable * swhash,struct perf_event * event)10643 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
10644 {
10645 struct swevent_hlist *hlist;
10646 u32 event_id = event->attr.config;
10647 u64 type = event->attr.type;
10648
10649 /*
10650 * Event scheduling is always serialized against hlist allocation
10651 * and release. Which makes the protected version suitable here.
10652 * The context lock guarantees that.
10653 */
10654 hlist = rcu_dereference_protected(swhash->swevent_hlist,
10655 lockdep_is_held(&event->ctx->lock));
10656 if (!hlist)
10657 return NULL;
10658
10659 return __find_swevent_head(hlist, type, event_id);
10660 }
10661
do_perf_sw_event(enum perf_type_id type,u32 event_id,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)10662 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
10663 u64 nr,
10664 struct perf_sample_data *data,
10665 struct pt_regs *regs)
10666 {
10667 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10668 struct perf_event *event;
10669 struct hlist_head *head;
10670
10671 rcu_read_lock();
10672 head = find_swevent_head_rcu(swhash, type, event_id);
10673 if (!head)
10674 goto end;
10675
10676 hlist_for_each_entry_rcu(event, head, hlist_entry) {
10677 if (perf_swevent_match(event, type, event_id, data, regs))
10678 perf_swevent_event(event, nr, data, regs);
10679 }
10680 end:
10681 rcu_read_unlock();
10682 }
10683
10684 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
10685
perf_swevent_get_recursion_context(void)10686 int perf_swevent_get_recursion_context(void)
10687 {
10688 return get_recursion_context(current->perf_recursion);
10689 }
10690 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
10691
perf_swevent_put_recursion_context(int rctx)10692 void perf_swevent_put_recursion_context(int rctx)
10693 {
10694 put_recursion_context(current->perf_recursion, rctx);
10695 }
10696
___perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)10697 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10698 {
10699 struct perf_sample_data data;
10700
10701 if (WARN_ON_ONCE(!regs))
10702 return;
10703
10704 perf_sample_data_init(&data, addr, 0);
10705 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
10706 }
10707
__perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)10708 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10709 {
10710 int rctx;
10711
10712 preempt_disable_notrace();
10713 rctx = perf_swevent_get_recursion_context();
10714 if (unlikely(rctx < 0))
10715 goto fail;
10716
10717 ___perf_sw_event(event_id, nr, regs, addr);
10718
10719 perf_swevent_put_recursion_context(rctx);
10720 fail:
10721 preempt_enable_notrace();
10722 }
10723
perf_swevent_read(struct perf_event * event)10724 static void perf_swevent_read(struct perf_event *event)
10725 {
10726 }
10727
perf_swevent_add(struct perf_event * event,int flags)10728 static int perf_swevent_add(struct perf_event *event, int flags)
10729 {
10730 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10731 struct hw_perf_event *hwc = &event->hw;
10732 struct hlist_head *head;
10733
10734 if (is_sampling_event(event)) {
10735 hwc->last_period = hwc->sample_period;
10736 perf_swevent_set_period(event);
10737 }
10738
10739 hwc->state = !(flags & PERF_EF_START);
10740
10741 head = find_swevent_head(swhash, event);
10742 if (WARN_ON_ONCE(!head))
10743 return -EINVAL;
10744
10745 hlist_add_head_rcu(&event->hlist_entry, head);
10746 perf_event_update_userpage(event);
10747
10748 return 0;
10749 }
10750
perf_swevent_del(struct perf_event * event,int flags)10751 static void perf_swevent_del(struct perf_event *event, int flags)
10752 {
10753 hlist_del_rcu(&event->hlist_entry);
10754 }
10755
perf_swevent_start(struct perf_event * event,int flags)10756 static void perf_swevent_start(struct perf_event *event, int flags)
10757 {
10758 event->hw.state = 0;
10759 }
10760
perf_swevent_stop(struct perf_event * event,int flags)10761 static void perf_swevent_stop(struct perf_event *event, int flags)
10762 {
10763 event->hw.state = PERF_HES_STOPPED;
10764 }
10765
10766 /* Deref the hlist from the update side */
10767 static inline struct swevent_hlist *
swevent_hlist_deref(struct swevent_htable * swhash)10768 swevent_hlist_deref(struct swevent_htable *swhash)
10769 {
10770 return rcu_dereference_protected(swhash->swevent_hlist,
10771 lockdep_is_held(&swhash->hlist_mutex));
10772 }
10773
swevent_hlist_release(struct swevent_htable * swhash)10774 static void swevent_hlist_release(struct swevent_htable *swhash)
10775 {
10776 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
10777
10778 if (!hlist)
10779 return;
10780
10781 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
10782 kfree_rcu(hlist, rcu_head);
10783 }
10784
swevent_hlist_put_cpu(int cpu)10785 static void swevent_hlist_put_cpu(int cpu)
10786 {
10787 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10788
10789 mutex_lock(&swhash->hlist_mutex);
10790
10791 if (!--swhash->hlist_refcount)
10792 swevent_hlist_release(swhash);
10793
10794 mutex_unlock(&swhash->hlist_mutex);
10795 }
10796
swevent_hlist_put(void)10797 static void swevent_hlist_put(void)
10798 {
10799 int cpu;
10800
10801 for_each_possible_cpu(cpu)
10802 swevent_hlist_put_cpu(cpu);
10803 }
10804
swevent_hlist_get_cpu(int cpu)10805 static int swevent_hlist_get_cpu(int cpu)
10806 {
10807 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10808 int err = 0;
10809
10810 mutex_lock(&swhash->hlist_mutex);
10811 if (!swevent_hlist_deref(swhash) &&
10812 cpumask_test_cpu(cpu, perf_online_mask)) {
10813 struct swevent_hlist *hlist;
10814
10815 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
10816 if (!hlist) {
10817 err = -ENOMEM;
10818 goto exit;
10819 }
10820 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10821 }
10822 swhash->hlist_refcount++;
10823 exit:
10824 mutex_unlock(&swhash->hlist_mutex);
10825
10826 return err;
10827 }
10828
swevent_hlist_get(void)10829 static int swevent_hlist_get(void)
10830 {
10831 int err, cpu, failed_cpu;
10832
10833 mutex_lock(&pmus_lock);
10834 for_each_possible_cpu(cpu) {
10835 err = swevent_hlist_get_cpu(cpu);
10836 if (err) {
10837 failed_cpu = cpu;
10838 goto fail;
10839 }
10840 }
10841 mutex_unlock(&pmus_lock);
10842 return 0;
10843 fail:
10844 for_each_possible_cpu(cpu) {
10845 if (cpu == failed_cpu)
10846 break;
10847 swevent_hlist_put_cpu(cpu);
10848 }
10849 mutex_unlock(&pmus_lock);
10850 return err;
10851 }
10852
10853 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
10854
sw_perf_event_destroy(struct perf_event * event)10855 static void sw_perf_event_destroy(struct perf_event *event)
10856 {
10857 u64 event_id = event->attr.config;
10858
10859 WARN_ON(event->parent);
10860
10861 static_key_slow_dec(&perf_swevent_enabled[event_id]);
10862 swevent_hlist_put();
10863 }
10864
10865 static struct pmu perf_cpu_clock; /* fwd declaration */
10866 static struct pmu perf_task_clock;
10867
perf_swevent_init(struct perf_event * event)10868 static int perf_swevent_init(struct perf_event *event)
10869 {
10870 u64 event_id = event->attr.config;
10871
10872 if (event->attr.type != PERF_TYPE_SOFTWARE)
10873 return -ENOENT;
10874
10875 /*
10876 * no branch sampling for software events
10877 */
10878 if (has_branch_stack(event))
10879 return -EOPNOTSUPP;
10880
10881 switch (event_id) {
10882 case PERF_COUNT_SW_CPU_CLOCK:
10883 event->attr.type = perf_cpu_clock.type;
10884 return -ENOENT;
10885 case PERF_COUNT_SW_TASK_CLOCK:
10886 event->attr.type = perf_task_clock.type;
10887 return -ENOENT;
10888
10889 default:
10890 break;
10891 }
10892
10893 if (event_id >= PERF_COUNT_SW_MAX)
10894 return -ENOENT;
10895
10896 if (!event->parent) {
10897 int err;
10898
10899 err = swevent_hlist_get();
10900 if (err)
10901 return err;
10902
10903 static_key_slow_inc(&perf_swevent_enabled[event_id]);
10904 event->destroy = sw_perf_event_destroy;
10905 }
10906
10907 return 0;
10908 }
10909
10910 static struct pmu perf_swevent = {
10911 .task_ctx_nr = perf_sw_context,
10912
10913 .capabilities = PERF_PMU_CAP_NO_NMI,
10914
10915 .event_init = perf_swevent_init,
10916 .add = perf_swevent_add,
10917 .del = perf_swevent_del,
10918 .start = perf_swevent_start,
10919 .stop = perf_swevent_stop,
10920 .read = perf_swevent_read,
10921 };
10922
10923 #ifdef CONFIG_EVENT_TRACING
10924
tp_perf_event_destroy(struct perf_event * event)10925 static void tp_perf_event_destroy(struct perf_event *event)
10926 {
10927 perf_trace_destroy(event);
10928 }
10929
perf_tp_event_init(struct perf_event * event)10930 static int perf_tp_event_init(struct perf_event *event)
10931 {
10932 int err;
10933
10934 if (event->attr.type != PERF_TYPE_TRACEPOINT)
10935 return -ENOENT;
10936
10937 /*
10938 * no branch sampling for tracepoint events
10939 */
10940 if (has_branch_stack(event))
10941 return -EOPNOTSUPP;
10942
10943 err = perf_trace_init(event);
10944 if (err)
10945 return err;
10946
10947 event->destroy = tp_perf_event_destroy;
10948
10949 return 0;
10950 }
10951
10952 static struct pmu perf_tracepoint = {
10953 .task_ctx_nr = perf_sw_context,
10954
10955 .event_init = perf_tp_event_init,
10956 .add = perf_trace_add,
10957 .del = perf_trace_del,
10958 .start = perf_swevent_start,
10959 .stop = perf_swevent_stop,
10960 .read = perf_swevent_read,
10961 };
10962
perf_tp_filter_match(struct perf_event * event,struct perf_raw_record * raw)10963 static int perf_tp_filter_match(struct perf_event *event,
10964 struct perf_raw_record *raw)
10965 {
10966 void *record = raw->frag.data;
10967
10968 /* only top level events have filters set */
10969 if (event->parent)
10970 event = event->parent;
10971
10972 if (likely(!event->filter) || filter_match_preds(event->filter, record))
10973 return 1;
10974 return 0;
10975 }
10976
perf_tp_event_match(struct perf_event * event,struct perf_raw_record * raw,struct pt_regs * regs)10977 static int perf_tp_event_match(struct perf_event *event,
10978 struct perf_raw_record *raw,
10979 struct pt_regs *regs)
10980 {
10981 if (event->hw.state & PERF_HES_STOPPED)
10982 return 0;
10983 /*
10984 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10985 */
10986 if (event->attr.exclude_kernel && !user_mode(regs))
10987 return 0;
10988
10989 if (!perf_tp_filter_match(event, raw))
10990 return 0;
10991
10992 return 1;
10993 }
10994
perf_trace_run_bpf_submit(void * raw_data,int size,int rctx,struct trace_event_call * call,u64 count,struct pt_regs * regs,struct hlist_head * head,struct task_struct * task)10995 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10996 struct trace_event_call *call, u64 count,
10997 struct pt_regs *regs, struct hlist_head *head,
10998 struct task_struct *task)
10999 {
11000 if (bpf_prog_array_valid(call)) {
11001 *(struct pt_regs **)raw_data = regs;
11002 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
11003 perf_swevent_put_recursion_context(rctx);
11004 return;
11005 }
11006 }
11007 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
11008 rctx, task);
11009 }
11010 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
11011
__perf_tp_event_target_task(u64 count,void * record,struct pt_regs * regs,struct perf_sample_data * data,struct perf_raw_record * raw,struct perf_event * event)11012 static void __perf_tp_event_target_task(u64 count, void *record,
11013 struct pt_regs *regs,
11014 struct perf_sample_data *data,
11015 struct perf_raw_record *raw,
11016 struct perf_event *event)
11017 {
11018 struct trace_entry *entry = record;
11019
11020 if (event->attr.config != entry->type)
11021 return;
11022 /* Cannot deliver synchronous signal to other task. */
11023 if (event->attr.sigtrap)
11024 return;
11025 if (perf_tp_event_match(event, raw, regs)) {
11026 perf_sample_data_init(data, 0, 0);
11027 perf_sample_save_raw_data(data, event, raw);
11028 perf_swevent_event(event, count, data, regs);
11029 }
11030 }
11031
perf_tp_event_target_task(u64 count,void * record,struct pt_regs * regs,struct perf_sample_data * data,struct perf_raw_record * raw,struct perf_event_context * ctx)11032 static void perf_tp_event_target_task(u64 count, void *record,
11033 struct pt_regs *regs,
11034 struct perf_sample_data *data,
11035 struct perf_raw_record *raw,
11036 struct perf_event_context *ctx)
11037 {
11038 unsigned int cpu = smp_processor_id();
11039 struct pmu *pmu = &perf_tracepoint;
11040 struct perf_event *event, *sibling;
11041
11042 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
11043 __perf_tp_event_target_task(count, record, regs, data, raw, event);
11044 for_each_sibling_event(sibling, event)
11045 __perf_tp_event_target_task(count, record, regs, data, raw, sibling);
11046 }
11047
11048 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
11049 __perf_tp_event_target_task(count, record, regs, data, raw, event);
11050 for_each_sibling_event(sibling, event)
11051 __perf_tp_event_target_task(count, record, regs, data, raw, sibling);
11052 }
11053 }
11054
perf_tp_event(u16 event_type,u64 count,void * record,int entry_size,struct pt_regs * regs,struct hlist_head * head,int rctx,struct task_struct * task)11055 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
11056 struct pt_regs *regs, struct hlist_head *head, int rctx,
11057 struct task_struct *task)
11058 {
11059 struct perf_sample_data data;
11060 struct perf_event *event;
11061
11062 struct perf_raw_record raw = {
11063 .frag = {
11064 .size = entry_size,
11065 .data = record,
11066 },
11067 };
11068
11069 perf_trace_buf_update(record, event_type);
11070
11071 hlist_for_each_entry_rcu(event, head, hlist_entry) {
11072 if (perf_tp_event_match(event, &raw, regs)) {
11073 /*
11074 * Here use the same on-stack perf_sample_data,
11075 * some members in data are event-specific and
11076 * need to be re-computed for different sweveents.
11077 * Re-initialize data->sample_flags safely to avoid
11078 * the problem that next event skips preparing data
11079 * because data->sample_flags is set.
11080 */
11081 perf_sample_data_init(&data, 0, 0);
11082 perf_sample_save_raw_data(&data, event, &raw);
11083 perf_swevent_event(event, count, &data, regs);
11084 }
11085 }
11086
11087 /*
11088 * If we got specified a target task, also iterate its context and
11089 * deliver this event there too.
11090 */
11091 if (task && task != current) {
11092 struct perf_event_context *ctx;
11093
11094 rcu_read_lock();
11095 ctx = rcu_dereference(task->perf_event_ctxp);
11096 if (!ctx)
11097 goto unlock;
11098
11099 raw_spin_lock(&ctx->lock);
11100 perf_tp_event_target_task(count, record, regs, &data, &raw, ctx);
11101 raw_spin_unlock(&ctx->lock);
11102 unlock:
11103 rcu_read_unlock();
11104 }
11105
11106 perf_swevent_put_recursion_context(rctx);
11107 }
11108 EXPORT_SYMBOL_GPL(perf_tp_event);
11109
11110 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
11111 /*
11112 * Flags in config, used by dynamic PMU kprobe and uprobe
11113 * The flags should match following PMU_FORMAT_ATTR().
11114 *
11115 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
11116 * if not set, create kprobe/uprobe
11117 *
11118 * The following values specify a reference counter (or semaphore in the
11119 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
11120 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
11121 *
11122 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
11123 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
11124 */
11125 enum perf_probe_config {
11126 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
11127 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
11128 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
11129 };
11130
11131 PMU_FORMAT_ATTR(retprobe, "config:0");
11132 #endif
11133
11134 #ifdef CONFIG_KPROBE_EVENTS
11135 static struct attribute *kprobe_attrs[] = {
11136 &format_attr_retprobe.attr,
11137 NULL,
11138 };
11139
11140 static struct attribute_group kprobe_format_group = {
11141 .name = "format",
11142 .attrs = kprobe_attrs,
11143 };
11144
11145 static const struct attribute_group *kprobe_attr_groups[] = {
11146 &kprobe_format_group,
11147 NULL,
11148 };
11149
11150 static int perf_kprobe_event_init(struct perf_event *event);
11151 static struct pmu perf_kprobe = {
11152 .task_ctx_nr = perf_sw_context,
11153 .event_init = perf_kprobe_event_init,
11154 .add = perf_trace_add,
11155 .del = perf_trace_del,
11156 .start = perf_swevent_start,
11157 .stop = perf_swevent_stop,
11158 .read = perf_swevent_read,
11159 .attr_groups = kprobe_attr_groups,
11160 };
11161
perf_kprobe_event_init(struct perf_event * event)11162 static int perf_kprobe_event_init(struct perf_event *event)
11163 {
11164 int err;
11165 bool is_retprobe;
11166
11167 if (event->attr.type != perf_kprobe.type)
11168 return -ENOENT;
11169
11170 if (!perfmon_capable())
11171 return -EACCES;
11172
11173 /*
11174 * no branch sampling for probe events
11175 */
11176 if (has_branch_stack(event))
11177 return -EOPNOTSUPP;
11178
11179 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
11180 err = perf_kprobe_init(event, is_retprobe);
11181 if (err)
11182 return err;
11183
11184 event->destroy = perf_kprobe_destroy;
11185
11186 return 0;
11187 }
11188 #endif /* CONFIG_KPROBE_EVENTS */
11189
11190 #ifdef CONFIG_UPROBE_EVENTS
11191 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
11192
11193 static struct attribute *uprobe_attrs[] = {
11194 &format_attr_retprobe.attr,
11195 &format_attr_ref_ctr_offset.attr,
11196 NULL,
11197 };
11198
11199 static struct attribute_group uprobe_format_group = {
11200 .name = "format",
11201 .attrs = uprobe_attrs,
11202 };
11203
11204 static const struct attribute_group *uprobe_attr_groups[] = {
11205 &uprobe_format_group,
11206 NULL,
11207 };
11208
11209 static int perf_uprobe_event_init(struct perf_event *event);
11210 static struct pmu perf_uprobe = {
11211 .task_ctx_nr = perf_sw_context,
11212 .event_init = perf_uprobe_event_init,
11213 .add = perf_trace_add,
11214 .del = perf_trace_del,
11215 .start = perf_swevent_start,
11216 .stop = perf_swevent_stop,
11217 .read = perf_swevent_read,
11218 .attr_groups = uprobe_attr_groups,
11219 };
11220
perf_uprobe_event_init(struct perf_event * event)11221 static int perf_uprobe_event_init(struct perf_event *event)
11222 {
11223 int err;
11224 unsigned long ref_ctr_offset;
11225 bool is_retprobe;
11226
11227 if (event->attr.type != perf_uprobe.type)
11228 return -ENOENT;
11229
11230 if (!capable(CAP_SYS_ADMIN))
11231 return -EACCES;
11232
11233 /*
11234 * no branch sampling for probe events
11235 */
11236 if (has_branch_stack(event))
11237 return -EOPNOTSUPP;
11238
11239 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
11240 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
11241 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
11242 if (err)
11243 return err;
11244
11245 event->destroy = perf_uprobe_destroy;
11246
11247 return 0;
11248 }
11249 #endif /* CONFIG_UPROBE_EVENTS */
11250
perf_tp_register(void)11251 static inline void perf_tp_register(void)
11252 {
11253 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
11254 #ifdef CONFIG_KPROBE_EVENTS
11255 perf_pmu_register(&perf_kprobe, "kprobe", -1);
11256 #endif
11257 #ifdef CONFIG_UPROBE_EVENTS
11258 perf_pmu_register(&perf_uprobe, "uprobe", -1);
11259 #endif
11260 }
11261
perf_event_free_filter(struct perf_event * event)11262 static void perf_event_free_filter(struct perf_event *event)
11263 {
11264 ftrace_profile_free_filter(event);
11265 }
11266
11267 /*
11268 * returns true if the event is a tracepoint, or a kprobe/upprobe created
11269 * with perf_event_open()
11270 */
perf_event_is_tracing(struct perf_event * event)11271 static inline bool perf_event_is_tracing(struct perf_event *event)
11272 {
11273 if (event->pmu == &perf_tracepoint)
11274 return true;
11275 #ifdef CONFIG_KPROBE_EVENTS
11276 if (event->pmu == &perf_kprobe)
11277 return true;
11278 #endif
11279 #ifdef CONFIG_UPROBE_EVENTS
11280 if (event->pmu == &perf_uprobe)
11281 return true;
11282 #endif
11283 return false;
11284 }
11285
__perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)11286 static int __perf_event_set_bpf_prog(struct perf_event *event,
11287 struct bpf_prog *prog,
11288 u64 bpf_cookie)
11289 {
11290 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
11291
11292 if (event->state <= PERF_EVENT_STATE_REVOKED)
11293 return -ENODEV;
11294
11295 if (!perf_event_is_tracing(event))
11296 return perf_event_set_bpf_handler(event, prog, bpf_cookie);
11297
11298 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
11299 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
11300 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
11301 is_syscall_tp = is_syscall_trace_event(event->tp_event);
11302 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
11303 /* bpf programs can only be attached to u/kprobe or tracepoint */
11304 return -EINVAL;
11305
11306 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
11307 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
11308 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
11309 return -EINVAL;
11310
11311 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe)
11312 /* only uprobe programs are allowed to be sleepable */
11313 return -EINVAL;
11314
11315 /* Kprobe override only works for kprobes, not uprobes. */
11316 if (prog->kprobe_override && !is_kprobe)
11317 return -EINVAL;
11318
11319 /* Writing to context allowed only for uprobes. */
11320 if (prog->aux->kprobe_write_ctx && !is_uprobe)
11321 return -EINVAL;
11322
11323 if (is_tracepoint || is_syscall_tp) {
11324 int off = trace_event_get_offsets(event->tp_event);
11325
11326 if (prog->aux->max_ctx_offset > off)
11327 return -EACCES;
11328 }
11329
11330 return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
11331 }
11332
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)11333 int perf_event_set_bpf_prog(struct perf_event *event,
11334 struct bpf_prog *prog,
11335 u64 bpf_cookie)
11336 {
11337 struct perf_event_context *ctx;
11338 int ret;
11339
11340 ctx = perf_event_ctx_lock(event);
11341 ret = __perf_event_set_bpf_prog(event, prog, bpf_cookie);
11342 perf_event_ctx_unlock(event, ctx);
11343
11344 return ret;
11345 }
11346
perf_event_free_bpf_prog(struct perf_event * event)11347 void perf_event_free_bpf_prog(struct perf_event *event)
11348 {
11349 if (!event->prog)
11350 return;
11351
11352 if (!perf_event_is_tracing(event)) {
11353 perf_event_free_bpf_handler(event);
11354 return;
11355 }
11356 perf_event_detach_bpf_prog(event);
11357 }
11358
11359 #else
11360
perf_tp_register(void)11361 static inline void perf_tp_register(void)
11362 {
11363 }
11364
perf_event_free_filter(struct perf_event * event)11365 static void perf_event_free_filter(struct perf_event *event)
11366 {
11367 }
11368
__perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)11369 static int __perf_event_set_bpf_prog(struct perf_event *event,
11370 struct bpf_prog *prog,
11371 u64 bpf_cookie)
11372 {
11373 return -ENOENT;
11374 }
11375
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)11376 int perf_event_set_bpf_prog(struct perf_event *event,
11377 struct bpf_prog *prog,
11378 u64 bpf_cookie)
11379 {
11380 return -ENOENT;
11381 }
11382
perf_event_free_bpf_prog(struct perf_event * event)11383 void perf_event_free_bpf_prog(struct perf_event *event)
11384 {
11385 }
11386 #endif /* CONFIG_EVENT_TRACING */
11387
11388 #ifdef CONFIG_HAVE_HW_BREAKPOINT
perf_bp_event(struct perf_event * bp,void * data)11389 void perf_bp_event(struct perf_event *bp, void *data)
11390 {
11391 struct perf_sample_data sample;
11392 struct pt_regs *regs = data;
11393
11394 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
11395
11396 if (!bp->hw.state && !perf_exclude_event(bp, regs))
11397 perf_swevent_event(bp, 1, &sample, regs);
11398 }
11399 #endif
11400
11401 /*
11402 * Allocate a new address filter
11403 */
11404 static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event * event,struct list_head * filters)11405 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
11406 {
11407 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
11408 struct perf_addr_filter *filter;
11409
11410 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
11411 if (!filter)
11412 return NULL;
11413
11414 INIT_LIST_HEAD(&filter->entry);
11415 list_add_tail(&filter->entry, filters);
11416
11417 return filter;
11418 }
11419
free_filters_list(struct list_head * filters)11420 static void free_filters_list(struct list_head *filters)
11421 {
11422 struct perf_addr_filter *filter, *iter;
11423
11424 list_for_each_entry_safe(filter, iter, filters, entry) {
11425 path_put(&filter->path);
11426 list_del(&filter->entry);
11427 kfree(filter);
11428 }
11429 }
11430
11431 /*
11432 * Free existing address filters and optionally install new ones
11433 */
perf_addr_filters_splice(struct perf_event * event,struct list_head * head)11434 static void perf_addr_filters_splice(struct perf_event *event,
11435 struct list_head *head)
11436 {
11437 unsigned long flags;
11438 LIST_HEAD(list);
11439
11440 if (!has_addr_filter(event))
11441 return;
11442
11443 /* don't bother with children, they don't have their own filters */
11444 if (event->parent)
11445 return;
11446
11447 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
11448
11449 list_splice_init(&event->addr_filters.list, &list);
11450 if (head)
11451 list_splice(head, &event->addr_filters.list);
11452
11453 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
11454
11455 free_filters_list(&list);
11456 }
11457
perf_free_addr_filters(struct perf_event * event)11458 static void perf_free_addr_filters(struct perf_event *event)
11459 {
11460 /*
11461 * Used during free paths, there is no concurrency.
11462 */
11463 if (list_empty(&event->addr_filters.list))
11464 return;
11465
11466 perf_addr_filters_splice(event, NULL);
11467 }
11468
11469 /*
11470 * Scan through mm's vmas and see if one of them matches the
11471 * @filter; if so, adjust filter's address range.
11472 * Called with mm::mmap_lock down for reading.
11473 */
perf_addr_filter_apply(struct perf_addr_filter * filter,struct mm_struct * mm,struct perf_addr_filter_range * fr)11474 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
11475 struct mm_struct *mm,
11476 struct perf_addr_filter_range *fr)
11477 {
11478 struct vm_area_struct *vma;
11479 VMA_ITERATOR(vmi, mm, 0);
11480
11481 for_each_vma(vmi, vma) {
11482 if (!vma->vm_file)
11483 continue;
11484
11485 if (perf_addr_filter_vma_adjust(filter, vma, fr))
11486 return;
11487 }
11488 }
11489
11490 /*
11491 * Update event's address range filters based on the
11492 * task's existing mappings, if any.
11493 */
perf_event_addr_filters_apply(struct perf_event * event)11494 static void perf_event_addr_filters_apply(struct perf_event *event)
11495 {
11496 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11497 struct task_struct *task = READ_ONCE(event->ctx->task);
11498 struct perf_addr_filter *filter;
11499 struct mm_struct *mm = NULL;
11500 unsigned int count = 0;
11501 unsigned long flags;
11502
11503 /*
11504 * We may observe TASK_TOMBSTONE, which means that the event tear-down
11505 * will stop on the parent's child_mutex that our caller is also holding
11506 */
11507 if (task == TASK_TOMBSTONE)
11508 return;
11509
11510 if (ifh->nr_file_filters) {
11511 mm = get_task_mm(task);
11512 if (!mm)
11513 goto restart;
11514
11515 mmap_read_lock(mm);
11516 }
11517
11518 raw_spin_lock_irqsave(&ifh->lock, flags);
11519 list_for_each_entry(filter, &ifh->list, entry) {
11520 if (filter->path.dentry) {
11521 /*
11522 * Adjust base offset if the filter is associated to a
11523 * binary that needs to be mapped:
11524 */
11525 event->addr_filter_ranges[count].start = 0;
11526 event->addr_filter_ranges[count].size = 0;
11527
11528 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
11529 } else {
11530 event->addr_filter_ranges[count].start = filter->offset;
11531 event->addr_filter_ranges[count].size = filter->size;
11532 }
11533
11534 count++;
11535 }
11536
11537 event->addr_filters_gen++;
11538 raw_spin_unlock_irqrestore(&ifh->lock, flags);
11539
11540 if (ifh->nr_file_filters) {
11541 mmap_read_unlock(mm);
11542
11543 mmput(mm);
11544 }
11545
11546 restart:
11547 perf_event_stop(event, 1);
11548 }
11549
11550 /*
11551 * Address range filtering: limiting the data to certain
11552 * instruction address ranges. Filters are ioctl()ed to us from
11553 * userspace as ascii strings.
11554 *
11555 * Filter string format:
11556 *
11557 * ACTION RANGE_SPEC
11558 * where ACTION is one of the
11559 * * "filter": limit the trace to this region
11560 * * "start": start tracing from this address
11561 * * "stop": stop tracing at this address/region;
11562 * RANGE_SPEC is
11563 * * for kernel addresses: <start address>[/<size>]
11564 * * for object files: <start address>[/<size>]@</path/to/object/file>
11565 *
11566 * if <size> is not specified or is zero, the range is treated as a single
11567 * address; not valid for ACTION=="filter".
11568 */
11569 enum {
11570 IF_ACT_NONE = -1,
11571 IF_ACT_FILTER,
11572 IF_ACT_START,
11573 IF_ACT_STOP,
11574 IF_SRC_FILE,
11575 IF_SRC_KERNEL,
11576 IF_SRC_FILEADDR,
11577 IF_SRC_KERNELADDR,
11578 };
11579
11580 enum {
11581 IF_STATE_ACTION = 0,
11582 IF_STATE_SOURCE,
11583 IF_STATE_END,
11584 };
11585
11586 static const match_table_t if_tokens = {
11587 { IF_ACT_FILTER, "filter" },
11588 { IF_ACT_START, "start" },
11589 { IF_ACT_STOP, "stop" },
11590 { IF_SRC_FILE, "%u/%u@%s" },
11591 { IF_SRC_KERNEL, "%u/%u" },
11592 { IF_SRC_FILEADDR, "%u@%s" },
11593 { IF_SRC_KERNELADDR, "%u" },
11594 { IF_ACT_NONE, NULL },
11595 };
11596
11597 /*
11598 * Address filter string parser
11599 */
11600 static int
perf_event_parse_addr_filter(struct perf_event * event,char * fstr,struct list_head * filters)11601 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
11602 struct list_head *filters)
11603 {
11604 struct perf_addr_filter *filter = NULL;
11605 char *start, *orig, *filename = NULL;
11606 substring_t args[MAX_OPT_ARGS];
11607 int state = IF_STATE_ACTION, token;
11608 unsigned int kernel = 0;
11609 int ret = -EINVAL;
11610
11611 orig = fstr = kstrdup(fstr, GFP_KERNEL);
11612 if (!fstr)
11613 return -ENOMEM;
11614
11615 while ((start = strsep(&fstr, " ,\n")) != NULL) {
11616 static const enum perf_addr_filter_action_t actions[] = {
11617 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
11618 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
11619 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
11620 };
11621 ret = -EINVAL;
11622
11623 if (!*start)
11624 continue;
11625
11626 /* filter definition begins */
11627 if (state == IF_STATE_ACTION) {
11628 filter = perf_addr_filter_new(event, filters);
11629 if (!filter)
11630 goto fail;
11631 }
11632
11633 token = match_token(start, if_tokens, args);
11634 switch (token) {
11635 case IF_ACT_FILTER:
11636 case IF_ACT_START:
11637 case IF_ACT_STOP:
11638 if (state != IF_STATE_ACTION)
11639 goto fail;
11640
11641 filter->action = actions[token];
11642 state = IF_STATE_SOURCE;
11643 break;
11644
11645 case IF_SRC_KERNELADDR:
11646 case IF_SRC_KERNEL:
11647 kernel = 1;
11648 fallthrough;
11649
11650 case IF_SRC_FILEADDR:
11651 case IF_SRC_FILE:
11652 if (state != IF_STATE_SOURCE)
11653 goto fail;
11654
11655 *args[0].to = 0;
11656 ret = kstrtoul(args[0].from, 0, &filter->offset);
11657 if (ret)
11658 goto fail;
11659
11660 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
11661 *args[1].to = 0;
11662 ret = kstrtoul(args[1].from, 0, &filter->size);
11663 if (ret)
11664 goto fail;
11665 }
11666
11667 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
11668 int fpos = token == IF_SRC_FILE ? 2 : 1;
11669
11670 kfree(filename);
11671 filename = match_strdup(&args[fpos]);
11672 if (!filename) {
11673 ret = -ENOMEM;
11674 goto fail;
11675 }
11676 }
11677
11678 state = IF_STATE_END;
11679 break;
11680
11681 default:
11682 goto fail;
11683 }
11684
11685 /*
11686 * Filter definition is fully parsed, validate and install it.
11687 * Make sure that it doesn't contradict itself or the event's
11688 * attribute.
11689 */
11690 if (state == IF_STATE_END) {
11691 ret = -EINVAL;
11692
11693 /*
11694 * ACTION "filter" must have a non-zero length region
11695 * specified.
11696 */
11697 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
11698 !filter->size)
11699 goto fail;
11700
11701 if (!kernel) {
11702 if (!filename)
11703 goto fail;
11704
11705 /*
11706 * For now, we only support file-based filters
11707 * in per-task events; doing so for CPU-wide
11708 * events requires additional context switching
11709 * trickery, since same object code will be
11710 * mapped at different virtual addresses in
11711 * different processes.
11712 */
11713 ret = -EOPNOTSUPP;
11714 if (!event->ctx->task)
11715 goto fail;
11716
11717 /* look up the path and grab its inode */
11718 ret = kern_path(filename, LOOKUP_FOLLOW,
11719 &filter->path);
11720 if (ret)
11721 goto fail;
11722
11723 ret = -EINVAL;
11724 if (!filter->path.dentry ||
11725 !S_ISREG(d_inode(filter->path.dentry)
11726 ->i_mode))
11727 goto fail;
11728
11729 event->addr_filters.nr_file_filters++;
11730 }
11731
11732 /* ready to consume more filters */
11733 kfree(filename);
11734 filename = NULL;
11735 state = IF_STATE_ACTION;
11736 filter = NULL;
11737 kernel = 0;
11738 }
11739 }
11740
11741 if (state != IF_STATE_ACTION)
11742 goto fail;
11743
11744 kfree(filename);
11745 kfree(orig);
11746
11747 return 0;
11748
11749 fail:
11750 kfree(filename);
11751 free_filters_list(filters);
11752 kfree(orig);
11753
11754 return ret;
11755 }
11756
11757 static int
perf_event_set_addr_filter(struct perf_event * event,char * filter_str)11758 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
11759 {
11760 LIST_HEAD(filters);
11761 int ret;
11762
11763 /*
11764 * Since this is called in perf_ioctl() path, we're already holding
11765 * ctx::mutex.
11766 */
11767 lockdep_assert_held(&event->ctx->mutex);
11768
11769 if (WARN_ON_ONCE(event->parent))
11770 return -EINVAL;
11771
11772 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
11773 if (ret)
11774 goto fail_clear_files;
11775
11776 ret = event->pmu->addr_filters_validate(&filters);
11777 if (ret)
11778 goto fail_free_filters;
11779
11780 /* remove existing filters, if any */
11781 perf_addr_filters_splice(event, &filters);
11782
11783 /* install new filters */
11784 perf_event_for_each_child(event, perf_event_addr_filters_apply);
11785
11786 return ret;
11787
11788 fail_free_filters:
11789 free_filters_list(&filters);
11790
11791 fail_clear_files:
11792 event->addr_filters.nr_file_filters = 0;
11793
11794 return ret;
11795 }
11796
perf_event_set_filter(struct perf_event * event,void __user * arg)11797 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11798 {
11799 int ret = -EINVAL;
11800 char *filter_str;
11801
11802 filter_str = strndup_user(arg, PAGE_SIZE);
11803 if (IS_ERR(filter_str))
11804 return PTR_ERR(filter_str);
11805
11806 #ifdef CONFIG_EVENT_TRACING
11807 if (perf_event_is_tracing(event)) {
11808 struct perf_event_context *ctx = event->ctx;
11809
11810 /*
11811 * Beware, here be dragons!!
11812 *
11813 * the tracepoint muck will deadlock against ctx->mutex, but
11814 * the tracepoint stuff does not actually need it. So
11815 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11816 * already have a reference on ctx.
11817 *
11818 * This can result in event getting moved to a different ctx,
11819 * but that does not affect the tracepoint state.
11820 */
11821 mutex_unlock(&ctx->mutex);
11822 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11823 mutex_lock(&ctx->mutex);
11824 } else
11825 #endif
11826 if (has_addr_filter(event))
11827 ret = perf_event_set_addr_filter(event, filter_str);
11828
11829 kfree(filter_str);
11830 return ret;
11831 }
11832
11833 /*
11834 * hrtimer based swevent callback
11835 */
11836
perf_swevent_hrtimer(struct hrtimer * hrtimer)11837 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11838 {
11839 enum hrtimer_restart ret = HRTIMER_RESTART;
11840 struct perf_sample_data data;
11841 struct pt_regs *regs;
11842 struct perf_event *event;
11843 u64 period;
11844
11845 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11846
11847 if (event->state != PERF_EVENT_STATE_ACTIVE ||
11848 event->hw.state & PERF_HES_STOPPED)
11849 return HRTIMER_NORESTART;
11850
11851 event->pmu->read(event);
11852
11853 perf_sample_data_init(&data, 0, event->hw.last_period);
11854 regs = get_irq_regs();
11855
11856 if (regs && !perf_exclude_event(event, regs)) {
11857 if (!(event->attr.exclude_idle && is_idle_task(current)))
11858 if (__perf_event_overflow(event, 1, &data, regs))
11859 ret = HRTIMER_NORESTART;
11860 }
11861
11862 period = max_t(u64, 10000, event->hw.sample_period);
11863 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11864
11865 return ret;
11866 }
11867
perf_swevent_start_hrtimer(struct perf_event * event)11868 static void perf_swevent_start_hrtimer(struct perf_event *event)
11869 {
11870 struct hw_perf_event *hwc = &event->hw;
11871 s64 period;
11872
11873 if (!is_sampling_event(event))
11874 return;
11875
11876 period = local64_read(&hwc->period_left);
11877 if (period) {
11878 if (period < 0)
11879 period = 10000;
11880
11881 local64_set(&hwc->period_left, 0);
11882 } else {
11883 period = max_t(u64, 10000, hwc->sample_period);
11884 }
11885 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11886 HRTIMER_MODE_REL_PINNED_HARD);
11887 }
11888
perf_swevent_cancel_hrtimer(struct perf_event * event)11889 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11890 {
11891 struct hw_perf_event *hwc = &event->hw;
11892
11893 /*
11894 * Careful: this function can be triggered in the hrtimer handler,
11895 * for cpu-clock events, so hrtimer_cancel() would cause a
11896 * deadlock.
11897 *
11898 * So use hrtimer_try_to_cancel() to try to stop the hrtimer,
11899 * and the cpu-clock handler also sets the PERF_HES_STOPPED flag,
11900 * which guarantees that perf_swevent_hrtimer() will stop the
11901 * hrtimer once it sees the PERF_HES_STOPPED flag.
11902 */
11903 if (is_sampling_event(event) && (hwc->interrupts != MAX_INTERRUPTS)) {
11904 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11905 local64_set(&hwc->period_left, ktime_to_ns(remaining));
11906
11907 hrtimer_try_to_cancel(&hwc->hrtimer);
11908 }
11909 }
11910
perf_swevent_init_hrtimer(struct perf_event * event)11911 static void perf_swevent_init_hrtimer(struct perf_event *event)
11912 {
11913 struct hw_perf_event *hwc = &event->hw;
11914
11915 if (!is_sampling_event(event))
11916 return;
11917
11918 hrtimer_setup(&hwc->hrtimer, perf_swevent_hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11919
11920 /*
11921 * Since hrtimers have a fixed rate, we can do a static freq->period
11922 * mapping and avoid the whole period adjust feedback stuff.
11923 */
11924 if (event->attr.freq) {
11925 long freq = event->attr.sample_freq;
11926
11927 event->attr.sample_period = NSEC_PER_SEC / freq;
11928 hwc->sample_period = event->attr.sample_period;
11929 local64_set(&hwc->period_left, hwc->sample_period);
11930 hwc->last_period = hwc->sample_period;
11931 event->attr.freq = 0;
11932 }
11933 }
11934
11935 /*
11936 * Software event: cpu wall time clock
11937 */
11938
cpu_clock_event_update(struct perf_event * event)11939 static void cpu_clock_event_update(struct perf_event *event)
11940 {
11941 s64 prev;
11942 u64 now;
11943
11944 now = local_clock();
11945 prev = local64_xchg(&event->hw.prev_count, now);
11946 local64_add(now - prev, &event->count);
11947 }
11948
cpu_clock_event_start(struct perf_event * event,int flags)11949 static void cpu_clock_event_start(struct perf_event *event, int flags)
11950 {
11951 event->hw.state = 0;
11952 local64_set(&event->hw.prev_count, local_clock());
11953 perf_swevent_start_hrtimer(event);
11954 }
11955
cpu_clock_event_stop(struct perf_event * event,int flags)11956 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11957 {
11958 event->hw.state = PERF_HES_STOPPED;
11959 perf_swevent_cancel_hrtimer(event);
11960 if (flags & PERF_EF_UPDATE)
11961 cpu_clock_event_update(event);
11962 }
11963
cpu_clock_event_add(struct perf_event * event,int flags)11964 static int cpu_clock_event_add(struct perf_event *event, int flags)
11965 {
11966 if (flags & PERF_EF_START)
11967 cpu_clock_event_start(event, flags);
11968 perf_event_update_userpage(event);
11969
11970 return 0;
11971 }
11972
cpu_clock_event_del(struct perf_event * event,int flags)11973 static void cpu_clock_event_del(struct perf_event *event, int flags)
11974 {
11975 cpu_clock_event_stop(event, PERF_EF_UPDATE);
11976 }
11977
cpu_clock_event_read(struct perf_event * event)11978 static void cpu_clock_event_read(struct perf_event *event)
11979 {
11980 cpu_clock_event_update(event);
11981 }
11982
cpu_clock_event_init(struct perf_event * event)11983 static int cpu_clock_event_init(struct perf_event *event)
11984 {
11985 if (event->attr.type != perf_cpu_clock.type)
11986 return -ENOENT;
11987
11988 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11989 return -ENOENT;
11990
11991 /*
11992 * no branch sampling for software events
11993 */
11994 if (has_branch_stack(event))
11995 return -EOPNOTSUPP;
11996
11997 perf_swevent_init_hrtimer(event);
11998
11999 return 0;
12000 }
12001
12002 static struct pmu perf_cpu_clock = {
12003 .task_ctx_nr = perf_sw_context,
12004
12005 .capabilities = PERF_PMU_CAP_NO_NMI,
12006 .dev = PMU_NULL_DEV,
12007
12008 .event_init = cpu_clock_event_init,
12009 .add = cpu_clock_event_add,
12010 .del = cpu_clock_event_del,
12011 .start = cpu_clock_event_start,
12012 .stop = cpu_clock_event_stop,
12013 .read = cpu_clock_event_read,
12014 };
12015
12016 /*
12017 * Software event: task time clock
12018 */
12019
task_clock_event_update(struct perf_event * event,u64 now)12020 static void task_clock_event_update(struct perf_event *event, u64 now)
12021 {
12022 u64 prev;
12023 s64 delta;
12024
12025 prev = local64_xchg(&event->hw.prev_count, now);
12026 delta = now - prev;
12027 local64_add(delta, &event->count);
12028 }
12029
task_clock_event_start(struct perf_event * event,int flags)12030 static void task_clock_event_start(struct perf_event *event, int flags)
12031 {
12032 event->hw.state = 0;
12033 local64_set(&event->hw.prev_count, event->ctx->time);
12034 perf_swevent_start_hrtimer(event);
12035 }
12036
task_clock_event_stop(struct perf_event * event,int flags)12037 static void task_clock_event_stop(struct perf_event *event, int flags)
12038 {
12039 event->hw.state = PERF_HES_STOPPED;
12040 perf_swevent_cancel_hrtimer(event);
12041 if (flags & PERF_EF_UPDATE)
12042 task_clock_event_update(event, event->ctx->time);
12043 }
12044
task_clock_event_add(struct perf_event * event,int flags)12045 static int task_clock_event_add(struct perf_event *event, int flags)
12046 {
12047 if (flags & PERF_EF_START)
12048 task_clock_event_start(event, flags);
12049 perf_event_update_userpage(event);
12050
12051 return 0;
12052 }
12053
task_clock_event_del(struct perf_event * event,int flags)12054 static void task_clock_event_del(struct perf_event *event, int flags)
12055 {
12056 task_clock_event_stop(event, PERF_EF_UPDATE);
12057 }
12058
task_clock_event_read(struct perf_event * event)12059 static void task_clock_event_read(struct perf_event *event)
12060 {
12061 u64 now = perf_clock();
12062 u64 delta = now - event->ctx->timestamp;
12063 u64 time = event->ctx->time + delta;
12064
12065 task_clock_event_update(event, time);
12066 }
12067
task_clock_event_init(struct perf_event * event)12068 static int task_clock_event_init(struct perf_event *event)
12069 {
12070 if (event->attr.type != perf_task_clock.type)
12071 return -ENOENT;
12072
12073 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
12074 return -ENOENT;
12075
12076 /*
12077 * no branch sampling for software events
12078 */
12079 if (has_branch_stack(event))
12080 return -EOPNOTSUPP;
12081
12082 perf_swevent_init_hrtimer(event);
12083
12084 return 0;
12085 }
12086
12087 static struct pmu perf_task_clock = {
12088 .task_ctx_nr = perf_sw_context,
12089
12090 .capabilities = PERF_PMU_CAP_NO_NMI,
12091 .dev = PMU_NULL_DEV,
12092
12093 .event_init = task_clock_event_init,
12094 .add = task_clock_event_add,
12095 .del = task_clock_event_del,
12096 .start = task_clock_event_start,
12097 .stop = task_clock_event_stop,
12098 .read = task_clock_event_read,
12099 };
12100
perf_pmu_nop_void(struct pmu * pmu)12101 static void perf_pmu_nop_void(struct pmu *pmu)
12102 {
12103 }
12104
perf_pmu_nop_txn(struct pmu * pmu,unsigned int flags)12105 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
12106 {
12107 }
12108
perf_pmu_nop_int(struct pmu * pmu)12109 static int perf_pmu_nop_int(struct pmu *pmu)
12110 {
12111 return 0;
12112 }
12113
perf_event_nop_int(struct perf_event * event,u64 value)12114 static int perf_event_nop_int(struct perf_event *event, u64 value)
12115 {
12116 return 0;
12117 }
12118
12119 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
12120
perf_pmu_start_txn(struct pmu * pmu,unsigned int flags)12121 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
12122 {
12123 __this_cpu_write(nop_txn_flags, flags);
12124
12125 if (flags & ~PERF_PMU_TXN_ADD)
12126 return;
12127
12128 perf_pmu_disable(pmu);
12129 }
12130
perf_pmu_commit_txn(struct pmu * pmu)12131 static int perf_pmu_commit_txn(struct pmu *pmu)
12132 {
12133 unsigned int flags = __this_cpu_read(nop_txn_flags);
12134
12135 __this_cpu_write(nop_txn_flags, 0);
12136
12137 if (flags & ~PERF_PMU_TXN_ADD)
12138 return 0;
12139
12140 perf_pmu_enable(pmu);
12141 return 0;
12142 }
12143
perf_pmu_cancel_txn(struct pmu * pmu)12144 static void perf_pmu_cancel_txn(struct pmu *pmu)
12145 {
12146 unsigned int flags = __this_cpu_read(nop_txn_flags);
12147
12148 __this_cpu_write(nop_txn_flags, 0);
12149
12150 if (flags & ~PERF_PMU_TXN_ADD)
12151 return;
12152
12153 perf_pmu_enable(pmu);
12154 }
12155
perf_event_idx_default(struct perf_event * event)12156 static int perf_event_idx_default(struct perf_event *event)
12157 {
12158 return 0;
12159 }
12160
12161 /*
12162 * Let userspace know that this PMU supports address range filtering:
12163 */
nr_addr_filters_show(struct device * dev,struct device_attribute * attr,char * page)12164 static ssize_t nr_addr_filters_show(struct device *dev,
12165 struct device_attribute *attr,
12166 char *page)
12167 {
12168 struct pmu *pmu = dev_get_drvdata(dev);
12169
12170 return sysfs_emit(page, "%d\n", pmu->nr_addr_filters);
12171 }
12172 DEVICE_ATTR_RO(nr_addr_filters);
12173
12174 static struct idr pmu_idr;
12175
12176 static ssize_t
type_show(struct device * dev,struct device_attribute * attr,char * page)12177 type_show(struct device *dev, struct device_attribute *attr, char *page)
12178 {
12179 struct pmu *pmu = dev_get_drvdata(dev);
12180
12181 return sysfs_emit(page, "%d\n", pmu->type);
12182 }
12183 static DEVICE_ATTR_RO(type);
12184
12185 static ssize_t
perf_event_mux_interval_ms_show(struct device * dev,struct device_attribute * attr,char * page)12186 perf_event_mux_interval_ms_show(struct device *dev,
12187 struct device_attribute *attr,
12188 char *page)
12189 {
12190 struct pmu *pmu = dev_get_drvdata(dev);
12191
12192 return sysfs_emit(page, "%d\n", pmu->hrtimer_interval_ms);
12193 }
12194
12195 static DEFINE_MUTEX(mux_interval_mutex);
12196
12197 static ssize_t
perf_event_mux_interval_ms_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)12198 perf_event_mux_interval_ms_store(struct device *dev,
12199 struct device_attribute *attr,
12200 const char *buf, size_t count)
12201 {
12202 struct pmu *pmu = dev_get_drvdata(dev);
12203 int timer, cpu, ret;
12204
12205 ret = kstrtoint(buf, 0, &timer);
12206 if (ret)
12207 return ret;
12208
12209 if (timer < 1)
12210 return -EINVAL;
12211
12212 /* same value, noting to do */
12213 if (timer == pmu->hrtimer_interval_ms)
12214 return count;
12215
12216 mutex_lock(&mux_interval_mutex);
12217 pmu->hrtimer_interval_ms = timer;
12218
12219 /* update all cpuctx for this PMU */
12220 cpus_read_lock();
12221 for_each_online_cpu(cpu) {
12222 struct perf_cpu_pmu_context *cpc;
12223 cpc = *per_cpu_ptr(pmu->cpu_pmu_context, cpu);
12224 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
12225
12226 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
12227 }
12228 cpus_read_unlock();
12229 mutex_unlock(&mux_interval_mutex);
12230
12231 return count;
12232 }
12233 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
12234
perf_scope_cpu_topology_cpumask(unsigned int scope,int cpu)12235 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu)
12236 {
12237 switch (scope) {
12238 case PERF_PMU_SCOPE_CORE:
12239 return topology_sibling_cpumask(cpu);
12240 case PERF_PMU_SCOPE_DIE:
12241 return topology_die_cpumask(cpu);
12242 case PERF_PMU_SCOPE_CLUSTER:
12243 return topology_cluster_cpumask(cpu);
12244 case PERF_PMU_SCOPE_PKG:
12245 return topology_core_cpumask(cpu);
12246 case PERF_PMU_SCOPE_SYS_WIDE:
12247 return cpu_online_mask;
12248 }
12249
12250 return NULL;
12251 }
12252
perf_scope_cpumask(unsigned int scope)12253 static inline struct cpumask *perf_scope_cpumask(unsigned int scope)
12254 {
12255 switch (scope) {
12256 case PERF_PMU_SCOPE_CORE:
12257 return perf_online_core_mask;
12258 case PERF_PMU_SCOPE_DIE:
12259 return perf_online_die_mask;
12260 case PERF_PMU_SCOPE_CLUSTER:
12261 return perf_online_cluster_mask;
12262 case PERF_PMU_SCOPE_PKG:
12263 return perf_online_pkg_mask;
12264 case PERF_PMU_SCOPE_SYS_WIDE:
12265 return perf_online_sys_mask;
12266 }
12267
12268 return NULL;
12269 }
12270
cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)12271 static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr,
12272 char *buf)
12273 {
12274 struct pmu *pmu = dev_get_drvdata(dev);
12275 struct cpumask *mask = perf_scope_cpumask(pmu->scope);
12276
12277 if (mask)
12278 return cpumap_print_to_pagebuf(true, buf, mask);
12279 return 0;
12280 }
12281
12282 static DEVICE_ATTR_RO(cpumask);
12283
12284 static struct attribute *pmu_dev_attrs[] = {
12285 &dev_attr_type.attr,
12286 &dev_attr_perf_event_mux_interval_ms.attr,
12287 &dev_attr_nr_addr_filters.attr,
12288 &dev_attr_cpumask.attr,
12289 NULL,
12290 };
12291
pmu_dev_is_visible(struct kobject * kobj,struct attribute * a,int n)12292 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
12293 {
12294 struct device *dev = kobj_to_dev(kobj);
12295 struct pmu *pmu = dev_get_drvdata(dev);
12296
12297 if (n == 2 && !pmu->nr_addr_filters)
12298 return 0;
12299
12300 /* cpumask */
12301 if (n == 3 && pmu->scope == PERF_PMU_SCOPE_NONE)
12302 return 0;
12303
12304 return a->mode;
12305 }
12306
12307 static struct attribute_group pmu_dev_attr_group = {
12308 .is_visible = pmu_dev_is_visible,
12309 .attrs = pmu_dev_attrs,
12310 };
12311
12312 static const struct attribute_group *pmu_dev_groups[] = {
12313 &pmu_dev_attr_group,
12314 NULL,
12315 };
12316
12317 static int pmu_bus_running;
12318 static const struct bus_type pmu_bus = {
12319 .name = "event_source",
12320 .dev_groups = pmu_dev_groups,
12321 };
12322
pmu_dev_release(struct device * dev)12323 static void pmu_dev_release(struct device *dev)
12324 {
12325 kfree(dev);
12326 }
12327
pmu_dev_alloc(struct pmu * pmu)12328 static int pmu_dev_alloc(struct pmu *pmu)
12329 {
12330 int ret = -ENOMEM;
12331
12332 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
12333 if (!pmu->dev)
12334 goto out;
12335
12336 pmu->dev->groups = pmu->attr_groups;
12337 device_initialize(pmu->dev);
12338
12339 dev_set_drvdata(pmu->dev, pmu);
12340 pmu->dev->bus = &pmu_bus;
12341 pmu->dev->parent = pmu->parent;
12342 pmu->dev->release = pmu_dev_release;
12343
12344 ret = dev_set_name(pmu->dev, "%s", pmu->name);
12345 if (ret)
12346 goto free_dev;
12347
12348 ret = device_add(pmu->dev);
12349 if (ret)
12350 goto free_dev;
12351
12352 if (pmu->attr_update) {
12353 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
12354 if (ret)
12355 goto del_dev;
12356 }
12357
12358 out:
12359 return ret;
12360
12361 del_dev:
12362 device_del(pmu->dev);
12363
12364 free_dev:
12365 put_device(pmu->dev);
12366 pmu->dev = NULL;
12367 goto out;
12368 }
12369
12370 static struct lock_class_key cpuctx_mutex;
12371 static struct lock_class_key cpuctx_lock;
12372
idr_cmpxchg(struct idr * idr,unsigned long id,void * old,void * new)12373 static bool idr_cmpxchg(struct idr *idr, unsigned long id, void *old, void *new)
12374 {
12375 void *tmp, *val = idr_find(idr, id);
12376
12377 if (val != old)
12378 return false;
12379
12380 tmp = idr_replace(idr, new, id);
12381 if (IS_ERR(tmp))
12382 return false;
12383
12384 WARN_ON_ONCE(tmp != val);
12385 return true;
12386 }
12387
perf_pmu_free(struct pmu * pmu)12388 static void perf_pmu_free(struct pmu *pmu)
12389 {
12390 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
12391 if (pmu->nr_addr_filters)
12392 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
12393 device_del(pmu->dev);
12394 put_device(pmu->dev);
12395 }
12396
12397 if (pmu->cpu_pmu_context) {
12398 int cpu;
12399
12400 for_each_possible_cpu(cpu) {
12401 struct perf_cpu_pmu_context *cpc;
12402
12403 cpc = *per_cpu_ptr(pmu->cpu_pmu_context, cpu);
12404 if (!cpc)
12405 continue;
12406 if (cpc->epc.embedded) {
12407 /* refcount managed */
12408 put_pmu_ctx(&cpc->epc);
12409 continue;
12410 }
12411 kfree(cpc);
12412 }
12413 free_percpu(pmu->cpu_pmu_context);
12414 }
12415 }
12416
DEFINE_FREE(pmu_unregister,struct pmu *,if (_T)perf_pmu_free (_T))12417 DEFINE_FREE(pmu_unregister, struct pmu *, if (_T) perf_pmu_free(_T))
12418
12419 int perf_pmu_register(struct pmu *_pmu, const char *name, int type)
12420 {
12421 int cpu, max = PERF_TYPE_MAX;
12422
12423 struct pmu *pmu __free(pmu_unregister) = _pmu;
12424 guard(mutex)(&pmus_lock);
12425
12426 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n"))
12427 return -EINVAL;
12428
12429 if (WARN_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE,
12430 "Can not register a pmu with an invalid scope.\n"))
12431 return -EINVAL;
12432
12433 pmu->name = name;
12434
12435 if (type >= 0)
12436 max = type;
12437
12438 CLASS(idr_alloc, pmu_type)(&pmu_idr, NULL, max, 0, GFP_KERNEL);
12439 if (pmu_type.id < 0)
12440 return pmu_type.id;
12441
12442 WARN_ON(type >= 0 && pmu_type.id != type);
12443
12444 pmu->type = pmu_type.id;
12445 atomic_set(&pmu->exclusive_cnt, 0);
12446
12447 if (pmu_bus_running && !pmu->dev) {
12448 int ret = pmu_dev_alloc(pmu);
12449 if (ret)
12450 return ret;
12451 }
12452
12453 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context *);
12454 if (!pmu->cpu_pmu_context)
12455 return -ENOMEM;
12456
12457 for_each_possible_cpu(cpu) {
12458 struct perf_cpu_pmu_context *cpc =
12459 kmalloc_node(sizeof(struct perf_cpu_pmu_context),
12460 GFP_KERNEL | __GFP_ZERO,
12461 cpu_to_node(cpu));
12462
12463 if (!cpc)
12464 return -ENOMEM;
12465
12466 *per_cpu_ptr(pmu->cpu_pmu_context, cpu) = cpc;
12467 __perf_init_event_pmu_context(&cpc->epc, pmu);
12468 __perf_mux_hrtimer_init(cpc, cpu);
12469 }
12470
12471 if (!pmu->start_txn) {
12472 if (pmu->pmu_enable) {
12473 /*
12474 * If we have pmu_enable/pmu_disable calls, install
12475 * transaction stubs that use that to try and batch
12476 * hardware accesses.
12477 */
12478 pmu->start_txn = perf_pmu_start_txn;
12479 pmu->commit_txn = perf_pmu_commit_txn;
12480 pmu->cancel_txn = perf_pmu_cancel_txn;
12481 } else {
12482 pmu->start_txn = perf_pmu_nop_txn;
12483 pmu->commit_txn = perf_pmu_nop_int;
12484 pmu->cancel_txn = perf_pmu_nop_void;
12485 }
12486 }
12487
12488 if (!pmu->pmu_enable) {
12489 pmu->pmu_enable = perf_pmu_nop_void;
12490 pmu->pmu_disable = perf_pmu_nop_void;
12491 }
12492
12493 if (!pmu->check_period)
12494 pmu->check_period = perf_event_nop_int;
12495
12496 if (!pmu->event_idx)
12497 pmu->event_idx = perf_event_idx_default;
12498
12499 INIT_LIST_HEAD(&pmu->events);
12500 spin_lock_init(&pmu->events_lock);
12501
12502 /*
12503 * Now that the PMU is complete, make it visible to perf_try_init_event().
12504 */
12505 if (!idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu))
12506 return -EINVAL;
12507 list_add_rcu(&pmu->entry, &pmus);
12508
12509 take_idr_id(pmu_type);
12510 _pmu = no_free_ptr(pmu); // let it rip
12511 return 0;
12512 }
12513 EXPORT_SYMBOL_GPL(perf_pmu_register);
12514
__pmu_detach_event(struct pmu * pmu,struct perf_event * event,struct perf_event_context * ctx)12515 static void __pmu_detach_event(struct pmu *pmu, struct perf_event *event,
12516 struct perf_event_context *ctx)
12517 {
12518 /*
12519 * De-schedule the event and mark it REVOKED.
12520 */
12521 perf_event_exit_event(event, ctx, true);
12522
12523 /*
12524 * All _free_event() bits that rely on event->pmu:
12525 *
12526 * Notably, perf_mmap() relies on the ordering here.
12527 */
12528 scoped_guard (mutex, &event->mmap_mutex) {
12529 WARN_ON_ONCE(pmu->event_unmapped);
12530 /*
12531 * Mostly an empty lock sequence, such that perf_mmap(), which
12532 * relies on mmap_mutex, is sure to observe the state change.
12533 */
12534 }
12535
12536 perf_event_free_bpf_prog(event);
12537 perf_free_addr_filters(event);
12538
12539 if (event->destroy) {
12540 event->destroy(event);
12541 event->destroy = NULL;
12542 }
12543
12544 if (event->pmu_ctx) {
12545 put_pmu_ctx(event->pmu_ctx);
12546 event->pmu_ctx = NULL;
12547 }
12548
12549 exclusive_event_destroy(event);
12550 module_put(pmu->module);
12551
12552 event->pmu = NULL; /* force fault instead of UAF */
12553 }
12554
pmu_detach_event(struct pmu * pmu,struct perf_event * event)12555 static void pmu_detach_event(struct pmu *pmu, struct perf_event *event)
12556 {
12557 struct perf_event_context *ctx;
12558
12559 ctx = perf_event_ctx_lock(event);
12560 __pmu_detach_event(pmu, event, ctx);
12561 perf_event_ctx_unlock(event, ctx);
12562
12563 scoped_guard (spinlock, &pmu->events_lock)
12564 list_del(&event->pmu_list);
12565 }
12566
pmu_get_event(struct pmu * pmu)12567 static struct perf_event *pmu_get_event(struct pmu *pmu)
12568 {
12569 struct perf_event *event;
12570
12571 guard(spinlock)(&pmu->events_lock);
12572 list_for_each_entry(event, &pmu->events, pmu_list) {
12573 if (atomic_long_inc_not_zero(&event->refcount))
12574 return event;
12575 }
12576
12577 return NULL;
12578 }
12579
pmu_empty(struct pmu * pmu)12580 static bool pmu_empty(struct pmu *pmu)
12581 {
12582 guard(spinlock)(&pmu->events_lock);
12583 return list_empty(&pmu->events);
12584 }
12585
pmu_detach_events(struct pmu * pmu)12586 static void pmu_detach_events(struct pmu *pmu)
12587 {
12588 struct perf_event *event;
12589
12590 for (;;) {
12591 event = pmu_get_event(pmu);
12592 if (!event)
12593 break;
12594
12595 pmu_detach_event(pmu, event);
12596 put_event(event);
12597 }
12598
12599 /*
12600 * wait for pending _free_event()s
12601 */
12602 wait_var_event(pmu, pmu_empty(pmu));
12603 }
12604
perf_pmu_unregister(struct pmu * pmu)12605 int perf_pmu_unregister(struct pmu *pmu)
12606 {
12607 scoped_guard (mutex, &pmus_lock) {
12608 if (!idr_cmpxchg(&pmu_idr, pmu->type, pmu, NULL))
12609 return -EINVAL;
12610
12611 list_del_rcu(&pmu->entry);
12612 }
12613
12614 /*
12615 * We dereference the pmu list under both SRCU and regular RCU, so
12616 * synchronize against both of those.
12617 *
12618 * Notably, the entirety of event creation, from perf_init_event()
12619 * (which will now fail, because of the above) until
12620 * perf_install_in_context() should be under SRCU such that
12621 * this synchronizes against event creation. This avoids trying to
12622 * detach events that are not fully formed.
12623 */
12624 synchronize_srcu(&pmus_srcu);
12625 synchronize_rcu();
12626
12627 if (pmu->event_unmapped && !pmu_empty(pmu)) {
12628 /*
12629 * Can't force remove events when pmu::event_unmapped()
12630 * is used in perf_mmap_close().
12631 */
12632 guard(mutex)(&pmus_lock);
12633 idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu);
12634 list_add_rcu(&pmu->entry, &pmus);
12635 return -EBUSY;
12636 }
12637
12638 scoped_guard (mutex, &pmus_lock)
12639 idr_remove(&pmu_idr, pmu->type);
12640
12641 /*
12642 * PMU is removed from the pmus list, so no new events will
12643 * be created, now take care of the existing ones.
12644 */
12645 pmu_detach_events(pmu);
12646
12647 /*
12648 * PMU is unused, make it go away.
12649 */
12650 perf_pmu_free(pmu);
12651 return 0;
12652 }
12653 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
12654
has_extended_regs(struct perf_event * event)12655 static inline bool has_extended_regs(struct perf_event *event)
12656 {
12657 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
12658 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
12659 }
12660
perf_try_init_event(struct pmu * pmu,struct perf_event * event)12661 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
12662 {
12663 struct perf_event_context *ctx = NULL;
12664 int ret;
12665
12666 if (!try_module_get(pmu->module))
12667 return -ENODEV;
12668
12669 /*
12670 * A number of pmu->event_init() methods iterate the sibling_list to,
12671 * for example, validate if the group fits on the PMU. Therefore,
12672 * if this is a sibling event, acquire the ctx->mutex to protect
12673 * the sibling_list.
12674 */
12675 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
12676 /*
12677 * This ctx->mutex can nest when we're called through
12678 * inheritance. See the perf_event_ctx_lock_nested() comment.
12679 */
12680 ctx = perf_event_ctx_lock_nested(event->group_leader,
12681 SINGLE_DEPTH_NESTING);
12682 BUG_ON(!ctx);
12683 }
12684
12685 event->pmu = pmu;
12686 ret = pmu->event_init(event);
12687
12688 if (ctx)
12689 perf_event_ctx_unlock(event->group_leader, ctx);
12690
12691 if (ret)
12692 goto err_pmu;
12693
12694 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
12695 has_extended_regs(event)) {
12696 ret = -EOPNOTSUPP;
12697 goto err_destroy;
12698 }
12699
12700 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
12701 event_has_any_exclude_flag(event)) {
12702 ret = -EINVAL;
12703 goto err_destroy;
12704 }
12705
12706 if (pmu->scope != PERF_PMU_SCOPE_NONE && event->cpu >= 0) {
12707 const struct cpumask *cpumask;
12708 struct cpumask *pmu_cpumask;
12709 int cpu;
12710
12711 cpumask = perf_scope_cpu_topology_cpumask(pmu->scope, event->cpu);
12712 pmu_cpumask = perf_scope_cpumask(pmu->scope);
12713
12714 ret = -ENODEV;
12715 if (!pmu_cpumask || !cpumask)
12716 goto err_destroy;
12717
12718 cpu = cpumask_any_and(pmu_cpumask, cpumask);
12719 if (cpu >= nr_cpu_ids)
12720 goto err_destroy;
12721
12722 event->event_caps |= PERF_EV_CAP_READ_SCOPE;
12723 }
12724
12725 return 0;
12726
12727 err_destroy:
12728 if (event->destroy) {
12729 event->destroy(event);
12730 event->destroy = NULL;
12731 }
12732
12733 err_pmu:
12734 event->pmu = NULL;
12735 module_put(pmu->module);
12736 return ret;
12737 }
12738
perf_init_event(struct perf_event * event)12739 static struct pmu *perf_init_event(struct perf_event *event)
12740 {
12741 bool extended_type = false;
12742 struct pmu *pmu;
12743 int type, ret;
12744
12745 guard(srcu)(&pmus_srcu); /* pmu idr/list access */
12746
12747 /*
12748 * Save original type before calling pmu->event_init() since certain
12749 * pmus overwrites event->attr.type to forward event to another pmu.
12750 */
12751 event->orig_type = event->attr.type;
12752
12753 /* Try parent's PMU first: */
12754 if (event->parent && event->parent->pmu) {
12755 pmu = event->parent->pmu;
12756 ret = perf_try_init_event(pmu, event);
12757 if (!ret)
12758 return pmu;
12759 }
12760
12761 /*
12762 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
12763 * are often aliases for PERF_TYPE_RAW.
12764 */
12765 type = event->attr.type;
12766 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
12767 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
12768 if (!type) {
12769 type = PERF_TYPE_RAW;
12770 } else {
12771 extended_type = true;
12772 event->attr.config &= PERF_HW_EVENT_MASK;
12773 }
12774 }
12775
12776 again:
12777 scoped_guard (rcu)
12778 pmu = idr_find(&pmu_idr, type);
12779 if (pmu) {
12780 if (event->attr.type != type && type != PERF_TYPE_RAW &&
12781 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
12782 return ERR_PTR(-ENOENT);
12783
12784 ret = perf_try_init_event(pmu, event);
12785 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
12786 type = event->attr.type;
12787 goto again;
12788 }
12789
12790 if (ret)
12791 return ERR_PTR(ret);
12792
12793 return pmu;
12794 }
12795
12796 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
12797 ret = perf_try_init_event(pmu, event);
12798 if (!ret)
12799 return pmu;
12800
12801 if (ret != -ENOENT)
12802 return ERR_PTR(ret);
12803 }
12804
12805 return ERR_PTR(-ENOENT);
12806 }
12807
attach_sb_event(struct perf_event * event)12808 static void attach_sb_event(struct perf_event *event)
12809 {
12810 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
12811
12812 raw_spin_lock(&pel->lock);
12813 list_add_rcu(&event->sb_list, &pel->list);
12814 raw_spin_unlock(&pel->lock);
12815 }
12816
12817 /*
12818 * We keep a list of all !task (and therefore per-cpu) events
12819 * that need to receive side-band records.
12820 *
12821 * This avoids having to scan all the various PMU per-cpu contexts
12822 * looking for them.
12823 */
account_pmu_sb_event(struct perf_event * event)12824 static void account_pmu_sb_event(struct perf_event *event)
12825 {
12826 if (is_sb_event(event))
12827 attach_sb_event(event);
12828 }
12829
12830 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
account_freq_event_nohz(void)12831 static void account_freq_event_nohz(void)
12832 {
12833 #ifdef CONFIG_NO_HZ_FULL
12834 /* Lock so we don't race with concurrent unaccount */
12835 spin_lock(&nr_freq_lock);
12836 if (atomic_inc_return(&nr_freq_events) == 1)
12837 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
12838 spin_unlock(&nr_freq_lock);
12839 #endif
12840 }
12841
account_freq_event(void)12842 static void account_freq_event(void)
12843 {
12844 if (tick_nohz_full_enabled())
12845 account_freq_event_nohz();
12846 else
12847 atomic_inc(&nr_freq_events);
12848 }
12849
12850
account_event(struct perf_event * event)12851 static void account_event(struct perf_event *event)
12852 {
12853 bool inc = false;
12854
12855 if (event->parent)
12856 return;
12857
12858 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
12859 inc = true;
12860 if (event->attr.mmap || event->attr.mmap_data)
12861 atomic_inc(&nr_mmap_events);
12862 if (event->attr.build_id)
12863 atomic_inc(&nr_build_id_events);
12864 if (event->attr.comm)
12865 atomic_inc(&nr_comm_events);
12866 if (event->attr.namespaces)
12867 atomic_inc(&nr_namespaces_events);
12868 if (event->attr.cgroup)
12869 atomic_inc(&nr_cgroup_events);
12870 if (event->attr.task)
12871 atomic_inc(&nr_task_events);
12872 if (event->attr.freq)
12873 account_freq_event();
12874 if (event->attr.context_switch) {
12875 atomic_inc(&nr_switch_events);
12876 inc = true;
12877 }
12878 if (has_branch_stack(event))
12879 inc = true;
12880 if (is_cgroup_event(event))
12881 inc = true;
12882 if (event->attr.ksymbol)
12883 atomic_inc(&nr_ksymbol_events);
12884 if (event->attr.bpf_event)
12885 atomic_inc(&nr_bpf_events);
12886 if (event->attr.text_poke)
12887 atomic_inc(&nr_text_poke_events);
12888
12889 if (inc) {
12890 /*
12891 * We need the mutex here because static_branch_enable()
12892 * must complete *before* the perf_sched_count increment
12893 * becomes visible.
12894 */
12895 if (atomic_inc_not_zero(&perf_sched_count))
12896 goto enabled;
12897
12898 mutex_lock(&perf_sched_mutex);
12899 if (!atomic_read(&perf_sched_count)) {
12900 static_branch_enable(&perf_sched_events);
12901 /*
12902 * Guarantee that all CPUs observe they key change and
12903 * call the perf scheduling hooks before proceeding to
12904 * install events that need them.
12905 */
12906 synchronize_rcu();
12907 }
12908 /*
12909 * Now that we have waited for the sync_sched(), allow further
12910 * increments to by-pass the mutex.
12911 */
12912 atomic_inc(&perf_sched_count);
12913 mutex_unlock(&perf_sched_mutex);
12914 }
12915 enabled:
12916
12917 account_pmu_sb_event(event);
12918 }
12919
12920 /*
12921 * Allocate and initialize an event structure
12922 */
12923 static struct perf_event *
perf_event_alloc(struct perf_event_attr * attr,int cpu,struct task_struct * task,struct perf_event * group_leader,struct perf_event * parent_event,perf_overflow_handler_t overflow_handler,void * context,int cgroup_fd)12924 perf_event_alloc(struct perf_event_attr *attr, int cpu,
12925 struct task_struct *task,
12926 struct perf_event *group_leader,
12927 struct perf_event *parent_event,
12928 perf_overflow_handler_t overflow_handler,
12929 void *context, int cgroup_fd)
12930 {
12931 struct pmu *pmu;
12932 struct hw_perf_event *hwc;
12933 long err = -EINVAL;
12934 int node;
12935
12936 if ((unsigned)cpu >= nr_cpu_ids) {
12937 if (!task || cpu != -1)
12938 return ERR_PTR(-EINVAL);
12939 }
12940 if (attr->sigtrap && !task) {
12941 /* Requires a task: avoid signalling random tasks. */
12942 return ERR_PTR(-EINVAL);
12943 }
12944
12945 node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
12946 struct perf_event *event __free(__free_event) =
12947 kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, node);
12948 if (!event)
12949 return ERR_PTR(-ENOMEM);
12950
12951 /*
12952 * Single events are their own group leaders, with an
12953 * empty sibling list:
12954 */
12955 if (!group_leader)
12956 group_leader = event;
12957
12958 mutex_init(&event->child_mutex);
12959 INIT_LIST_HEAD(&event->child_list);
12960
12961 INIT_LIST_HEAD(&event->event_entry);
12962 INIT_LIST_HEAD(&event->sibling_list);
12963 INIT_LIST_HEAD(&event->active_list);
12964 init_event_group(event);
12965 INIT_LIST_HEAD(&event->rb_entry);
12966 INIT_LIST_HEAD(&event->active_entry);
12967 INIT_LIST_HEAD(&event->addr_filters.list);
12968 INIT_HLIST_NODE(&event->hlist_entry);
12969 INIT_LIST_HEAD(&event->pmu_list);
12970
12971
12972 init_waitqueue_head(&event->waitq);
12973 init_irq_work(&event->pending_irq, perf_pending_irq);
12974 event->pending_disable_irq = IRQ_WORK_INIT_HARD(perf_pending_disable);
12975 init_task_work(&event->pending_task, perf_pending_task);
12976
12977 mutex_init(&event->mmap_mutex);
12978 raw_spin_lock_init(&event->addr_filters.lock);
12979
12980 atomic_long_set(&event->refcount, 1);
12981 event->cpu = cpu;
12982 event->attr = *attr;
12983 event->group_leader = group_leader;
12984 event->pmu = NULL;
12985 event->oncpu = -1;
12986
12987 event->parent = parent_event;
12988
12989 event->ns = get_pid_ns(task_active_pid_ns(current));
12990 event->id = atomic64_inc_return(&perf_event_id);
12991
12992 event->state = PERF_EVENT_STATE_INACTIVE;
12993
12994 if (parent_event)
12995 event->event_caps = parent_event->event_caps;
12996
12997 if (task) {
12998 event->attach_state = PERF_ATTACH_TASK;
12999 /*
13000 * XXX pmu::event_init needs to know what task to account to
13001 * and we cannot use the ctx information because we need the
13002 * pmu before we get a ctx.
13003 */
13004 event->hw.target = get_task_struct(task);
13005 }
13006
13007 event->clock = &local_clock;
13008 if (parent_event)
13009 event->clock = parent_event->clock;
13010
13011 if (!overflow_handler && parent_event) {
13012 overflow_handler = parent_event->overflow_handler;
13013 context = parent_event->overflow_handler_context;
13014 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
13015 if (parent_event->prog) {
13016 struct bpf_prog *prog = parent_event->prog;
13017
13018 bpf_prog_inc(prog);
13019 event->prog = prog;
13020 }
13021 #endif
13022 }
13023
13024 if (overflow_handler) {
13025 event->overflow_handler = overflow_handler;
13026 event->overflow_handler_context = context;
13027 } else if (is_write_backward(event)){
13028 event->overflow_handler = perf_event_output_backward;
13029 event->overflow_handler_context = NULL;
13030 } else {
13031 event->overflow_handler = perf_event_output_forward;
13032 event->overflow_handler_context = NULL;
13033 }
13034
13035 perf_event__state_init(event);
13036
13037 pmu = NULL;
13038
13039 hwc = &event->hw;
13040 hwc->sample_period = attr->sample_period;
13041 if (is_event_in_freq_mode(event))
13042 hwc->sample_period = 1;
13043 hwc->last_period = hwc->sample_period;
13044
13045 local64_set(&hwc->period_left, hwc->sample_period);
13046
13047 /*
13048 * We do not support PERF_SAMPLE_READ on inherited events unless
13049 * PERF_SAMPLE_TID is also selected, which allows inherited events to
13050 * collect per-thread samples.
13051 * See perf_output_read().
13052 */
13053 if (has_inherit_and_sample_read(attr) && !(attr->sample_type & PERF_SAMPLE_TID))
13054 return ERR_PTR(-EINVAL);
13055
13056 if (!has_branch_stack(event))
13057 event->attr.branch_sample_type = 0;
13058
13059 pmu = perf_init_event(event);
13060 if (IS_ERR(pmu))
13061 return (void*)pmu;
13062
13063 /*
13064 * The PERF_ATTACH_TASK_DATA is set in the event_init()->hw_config().
13065 * The attach should be right after the perf_init_event().
13066 * Otherwise, the __free_event() would mistakenly detach the non-exist
13067 * perf_ctx_data because of the other errors between them.
13068 */
13069 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
13070 err = attach_perf_ctx_data(event);
13071 if (err)
13072 return ERR_PTR(err);
13073 }
13074
13075 /*
13076 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
13077 * events (they don't make sense as the cgroup will be different
13078 * on other CPUs in the uncore mask).
13079 */
13080 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1))
13081 return ERR_PTR(-EINVAL);
13082
13083 if (event->attr.aux_output &&
13084 (!(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT) ||
13085 event->attr.aux_pause || event->attr.aux_resume))
13086 return ERR_PTR(-EOPNOTSUPP);
13087
13088 if (event->attr.aux_pause && event->attr.aux_resume)
13089 return ERR_PTR(-EINVAL);
13090
13091 if (event->attr.aux_start_paused) {
13092 if (!(pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE))
13093 return ERR_PTR(-EOPNOTSUPP);
13094 event->hw.aux_paused = 1;
13095 }
13096
13097 if (cgroup_fd != -1) {
13098 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
13099 if (err)
13100 return ERR_PTR(err);
13101 }
13102
13103 err = exclusive_event_init(event);
13104 if (err)
13105 return ERR_PTR(err);
13106
13107 if (has_addr_filter(event)) {
13108 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
13109 sizeof(struct perf_addr_filter_range),
13110 GFP_KERNEL);
13111 if (!event->addr_filter_ranges)
13112 return ERR_PTR(-ENOMEM);
13113
13114 /*
13115 * Clone the parent's vma offsets: they are valid until exec()
13116 * even if the mm is not shared with the parent.
13117 */
13118 if (event->parent) {
13119 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
13120
13121 raw_spin_lock_irq(&ifh->lock);
13122 memcpy(event->addr_filter_ranges,
13123 event->parent->addr_filter_ranges,
13124 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
13125 raw_spin_unlock_irq(&ifh->lock);
13126 }
13127
13128 /* force hw sync on the address filters */
13129 event->addr_filters_gen = 1;
13130 }
13131
13132 if (!event->parent) {
13133 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
13134 err = get_callchain_buffers(attr->sample_max_stack);
13135 if (err)
13136 return ERR_PTR(err);
13137 event->attach_state |= PERF_ATTACH_CALLCHAIN;
13138 }
13139 }
13140
13141 err = security_perf_event_alloc(event);
13142 if (err)
13143 return ERR_PTR(err);
13144
13145 /* symmetric to unaccount_event() in _free_event() */
13146 account_event(event);
13147
13148 /*
13149 * Event creation should be under SRCU, see perf_pmu_unregister().
13150 */
13151 lockdep_assert_held(&pmus_srcu);
13152 scoped_guard (spinlock, &pmu->events_lock)
13153 list_add(&event->pmu_list, &pmu->events);
13154
13155 return_ptr(event);
13156 }
13157
perf_copy_attr(struct perf_event_attr __user * uattr,struct perf_event_attr * attr)13158 static int perf_copy_attr(struct perf_event_attr __user *uattr,
13159 struct perf_event_attr *attr)
13160 {
13161 u32 size;
13162 int ret;
13163
13164 /* Zero the full structure, so that a short copy will be nice. */
13165 memset(attr, 0, sizeof(*attr));
13166
13167 ret = get_user(size, &uattr->size);
13168 if (ret)
13169 return ret;
13170
13171 /* ABI compatibility quirk: */
13172 if (!size)
13173 size = PERF_ATTR_SIZE_VER0;
13174 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
13175 goto err_size;
13176
13177 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
13178 if (ret) {
13179 if (ret == -E2BIG)
13180 goto err_size;
13181 return ret;
13182 }
13183
13184 attr->size = size;
13185
13186 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
13187 return -EINVAL;
13188
13189 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
13190 return -EINVAL;
13191
13192 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
13193 return -EINVAL;
13194
13195 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
13196 u64 mask = attr->branch_sample_type;
13197
13198 /* only using defined bits */
13199 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
13200 return -EINVAL;
13201
13202 /* at least one branch bit must be set */
13203 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
13204 return -EINVAL;
13205
13206 /* propagate priv level, when not set for branch */
13207 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
13208
13209 /* exclude_kernel checked on syscall entry */
13210 if (!attr->exclude_kernel)
13211 mask |= PERF_SAMPLE_BRANCH_KERNEL;
13212
13213 if (!attr->exclude_user)
13214 mask |= PERF_SAMPLE_BRANCH_USER;
13215
13216 if (!attr->exclude_hv)
13217 mask |= PERF_SAMPLE_BRANCH_HV;
13218 /*
13219 * adjust user setting (for HW filter setup)
13220 */
13221 attr->branch_sample_type = mask;
13222 }
13223 /* privileged levels capture (kernel, hv): check permissions */
13224 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
13225 ret = perf_allow_kernel();
13226 if (ret)
13227 return ret;
13228 }
13229 }
13230
13231 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
13232 ret = perf_reg_validate(attr->sample_regs_user);
13233 if (ret)
13234 return ret;
13235 }
13236
13237 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
13238 if (!arch_perf_have_user_stack_dump())
13239 return -ENOSYS;
13240
13241 /*
13242 * We have __u32 type for the size, but so far
13243 * we can only use __u16 as maximum due to the
13244 * __u16 sample size limit.
13245 */
13246 if (attr->sample_stack_user >= USHRT_MAX)
13247 return -EINVAL;
13248 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
13249 return -EINVAL;
13250 }
13251
13252 if (!attr->sample_max_stack)
13253 attr->sample_max_stack = sysctl_perf_event_max_stack;
13254
13255 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
13256 ret = perf_reg_validate(attr->sample_regs_intr);
13257
13258 #ifndef CONFIG_CGROUP_PERF
13259 if (attr->sample_type & PERF_SAMPLE_CGROUP)
13260 return -EINVAL;
13261 #endif
13262 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
13263 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
13264 return -EINVAL;
13265
13266 if (!attr->inherit && attr->inherit_thread)
13267 return -EINVAL;
13268
13269 if (attr->remove_on_exec && attr->enable_on_exec)
13270 return -EINVAL;
13271
13272 if (attr->sigtrap && !attr->remove_on_exec)
13273 return -EINVAL;
13274
13275 out:
13276 return ret;
13277
13278 err_size:
13279 put_user(sizeof(*attr), &uattr->size);
13280 ret = -E2BIG;
13281 goto out;
13282 }
13283
mutex_lock_double(struct mutex * a,struct mutex * b)13284 static void mutex_lock_double(struct mutex *a, struct mutex *b)
13285 {
13286 if (b < a)
13287 swap(a, b);
13288
13289 mutex_lock(a);
13290 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
13291 }
13292
13293 static int
perf_event_set_output(struct perf_event * event,struct perf_event * output_event)13294 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
13295 {
13296 struct perf_buffer *rb = NULL;
13297 int ret = -EINVAL;
13298
13299 if (!output_event) {
13300 mutex_lock(&event->mmap_mutex);
13301 goto set;
13302 }
13303
13304 /* don't allow circular references */
13305 if (event == output_event)
13306 goto out;
13307
13308 /*
13309 * Don't allow cross-cpu buffers
13310 */
13311 if (output_event->cpu != event->cpu)
13312 goto out;
13313
13314 /*
13315 * If its not a per-cpu rb, it must be the same task.
13316 */
13317 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
13318 goto out;
13319
13320 /*
13321 * Mixing clocks in the same buffer is trouble you don't need.
13322 */
13323 if (output_event->clock != event->clock)
13324 goto out;
13325
13326 /*
13327 * Either writing ring buffer from beginning or from end.
13328 * Mixing is not allowed.
13329 */
13330 if (is_write_backward(output_event) != is_write_backward(event))
13331 goto out;
13332
13333 /*
13334 * If both events generate aux data, they must be on the same PMU
13335 */
13336 if (has_aux(event) && has_aux(output_event) &&
13337 event->pmu != output_event->pmu)
13338 goto out;
13339
13340 /*
13341 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since
13342 * output_event is already on rb->event_list, and the list iteration
13343 * restarts after every removal, it is guaranteed this new event is
13344 * observed *OR* if output_event is already removed, it's guaranteed we
13345 * observe !rb->mmap_count.
13346 */
13347 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
13348 set:
13349 /* Can't redirect output if we've got an active mmap() */
13350 if (refcount_read(&event->mmap_count))
13351 goto unlock;
13352
13353 if (output_event) {
13354 if (output_event->state <= PERF_EVENT_STATE_REVOKED)
13355 goto unlock;
13356
13357 /* get the rb we want to redirect to */
13358 rb = ring_buffer_get(output_event);
13359 if (!rb)
13360 goto unlock;
13361
13362 /* did we race against perf_mmap_close() */
13363 if (!refcount_read(&rb->mmap_count)) {
13364 ring_buffer_put(rb);
13365 goto unlock;
13366 }
13367 }
13368
13369 ring_buffer_attach(event, rb);
13370
13371 ret = 0;
13372 unlock:
13373 mutex_unlock(&event->mmap_mutex);
13374 if (output_event)
13375 mutex_unlock(&output_event->mmap_mutex);
13376
13377 out:
13378 return ret;
13379 }
13380
perf_event_set_clock(struct perf_event * event,clockid_t clk_id)13381 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
13382 {
13383 bool nmi_safe = false;
13384
13385 switch (clk_id) {
13386 case CLOCK_MONOTONIC:
13387 event->clock = &ktime_get_mono_fast_ns;
13388 nmi_safe = true;
13389 break;
13390
13391 case CLOCK_MONOTONIC_RAW:
13392 event->clock = &ktime_get_raw_fast_ns;
13393 nmi_safe = true;
13394 break;
13395
13396 case CLOCK_REALTIME:
13397 event->clock = &ktime_get_real_ns;
13398 break;
13399
13400 case CLOCK_BOOTTIME:
13401 event->clock = &ktime_get_boottime_ns;
13402 break;
13403
13404 case CLOCK_TAI:
13405 event->clock = &ktime_get_clocktai_ns;
13406 break;
13407
13408 default:
13409 return -EINVAL;
13410 }
13411
13412 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
13413 return -EINVAL;
13414
13415 return 0;
13416 }
13417
13418 static bool
perf_check_permission(struct perf_event_attr * attr,struct task_struct * task)13419 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
13420 {
13421 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
13422 bool is_capable = perfmon_capable();
13423
13424 if (attr->sigtrap) {
13425 /*
13426 * perf_event_attr::sigtrap sends signals to the other task.
13427 * Require the current task to also have CAP_KILL.
13428 */
13429 rcu_read_lock();
13430 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
13431 rcu_read_unlock();
13432
13433 /*
13434 * If the required capabilities aren't available, checks for
13435 * ptrace permissions: upgrade to ATTACH, since sending signals
13436 * can effectively change the target task.
13437 */
13438 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
13439 }
13440
13441 /*
13442 * Preserve ptrace permission check for backwards compatibility. The
13443 * ptrace check also includes checks that the current task and other
13444 * task have matching uids, and is therefore not done here explicitly.
13445 */
13446 return is_capable || ptrace_may_access(task, ptrace_mode);
13447 }
13448
13449 /**
13450 * sys_perf_event_open - open a performance event, associate it to a task/cpu
13451 *
13452 * @attr_uptr: event_id type attributes for monitoring/sampling
13453 * @pid: target pid
13454 * @cpu: target cpu
13455 * @group_fd: group leader event fd
13456 * @flags: perf event open flags
13457 */
SYSCALL_DEFINE5(perf_event_open,struct perf_event_attr __user *,attr_uptr,pid_t,pid,int,cpu,int,group_fd,unsigned long,flags)13458 SYSCALL_DEFINE5(perf_event_open,
13459 struct perf_event_attr __user *, attr_uptr,
13460 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
13461 {
13462 struct perf_event *group_leader = NULL, *output_event = NULL;
13463 struct perf_event_pmu_context *pmu_ctx;
13464 struct perf_event *event, *sibling;
13465 struct perf_event_attr attr;
13466 struct perf_event_context *ctx;
13467 struct file *event_file = NULL;
13468 struct task_struct *task = NULL;
13469 struct pmu *pmu;
13470 int event_fd;
13471 int move_group = 0;
13472 int err;
13473 int f_flags = O_RDWR;
13474 int cgroup_fd = -1;
13475
13476 /* for future expandability... */
13477 if (flags & ~PERF_FLAG_ALL)
13478 return -EINVAL;
13479
13480 err = perf_copy_attr(attr_uptr, &attr);
13481 if (err)
13482 return err;
13483
13484 /* Do we allow access to perf_event_open(2) ? */
13485 err = security_perf_event_open(PERF_SECURITY_OPEN);
13486 if (err)
13487 return err;
13488
13489 if (!attr.exclude_kernel) {
13490 err = perf_allow_kernel();
13491 if (err)
13492 return err;
13493 }
13494
13495 if (attr.namespaces) {
13496 if (!perfmon_capable())
13497 return -EACCES;
13498 }
13499
13500 if (attr.freq) {
13501 if (attr.sample_freq > sysctl_perf_event_sample_rate)
13502 return -EINVAL;
13503 } else {
13504 if (attr.sample_period & (1ULL << 63))
13505 return -EINVAL;
13506 }
13507
13508 /* Only privileged users can get physical addresses */
13509 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
13510 err = perf_allow_kernel();
13511 if (err)
13512 return err;
13513 }
13514
13515 /* REGS_INTR can leak data, lockdown must prevent this */
13516 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
13517 err = security_locked_down(LOCKDOWN_PERF);
13518 if (err)
13519 return err;
13520 }
13521
13522 /*
13523 * In cgroup mode, the pid argument is used to pass the fd
13524 * opened to the cgroup directory in cgroupfs. The cpu argument
13525 * designates the cpu on which to monitor threads from that
13526 * cgroup.
13527 */
13528 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
13529 return -EINVAL;
13530
13531 if (flags & PERF_FLAG_FD_CLOEXEC)
13532 f_flags |= O_CLOEXEC;
13533
13534 event_fd = get_unused_fd_flags(f_flags);
13535 if (event_fd < 0)
13536 return event_fd;
13537
13538 /*
13539 * Event creation should be under SRCU, see perf_pmu_unregister().
13540 */
13541 guard(srcu)(&pmus_srcu);
13542
13543 CLASS(fd, group)(group_fd); // group_fd == -1 => empty
13544 if (group_fd != -1) {
13545 if (!is_perf_file(group)) {
13546 err = -EBADF;
13547 goto err_fd;
13548 }
13549 group_leader = fd_file(group)->private_data;
13550 if (group_leader->state <= PERF_EVENT_STATE_REVOKED) {
13551 err = -ENODEV;
13552 goto err_fd;
13553 }
13554 if (flags & PERF_FLAG_FD_OUTPUT)
13555 output_event = group_leader;
13556 if (flags & PERF_FLAG_FD_NO_GROUP)
13557 group_leader = NULL;
13558 }
13559
13560 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
13561 task = find_lively_task_by_vpid(pid);
13562 if (IS_ERR(task)) {
13563 err = PTR_ERR(task);
13564 goto err_fd;
13565 }
13566 }
13567
13568 if (task && group_leader &&
13569 group_leader->attr.inherit != attr.inherit) {
13570 err = -EINVAL;
13571 goto err_task;
13572 }
13573
13574 if (flags & PERF_FLAG_PID_CGROUP)
13575 cgroup_fd = pid;
13576
13577 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
13578 NULL, NULL, cgroup_fd);
13579 if (IS_ERR(event)) {
13580 err = PTR_ERR(event);
13581 goto err_task;
13582 }
13583
13584 if (is_sampling_event(event)) {
13585 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
13586 err = -EOPNOTSUPP;
13587 goto err_alloc;
13588 }
13589 }
13590
13591 /*
13592 * Special case software events and allow them to be part of
13593 * any hardware group.
13594 */
13595 pmu = event->pmu;
13596
13597 if (attr.use_clockid) {
13598 err = perf_event_set_clock(event, attr.clockid);
13599 if (err)
13600 goto err_alloc;
13601 }
13602
13603 if (pmu->task_ctx_nr == perf_sw_context)
13604 event->event_caps |= PERF_EV_CAP_SOFTWARE;
13605
13606 if (task) {
13607 err = down_read_interruptible(&task->signal->exec_update_lock);
13608 if (err)
13609 goto err_alloc;
13610
13611 /*
13612 * We must hold exec_update_lock across this and any potential
13613 * perf_install_in_context() call for this new event to
13614 * serialize against exec() altering our credentials (and the
13615 * perf_event_exit_task() that could imply).
13616 */
13617 err = -EACCES;
13618 if (!perf_check_permission(&attr, task))
13619 goto err_cred;
13620 }
13621
13622 /*
13623 * Get the target context (task or percpu):
13624 */
13625 ctx = find_get_context(task, event);
13626 if (IS_ERR(ctx)) {
13627 err = PTR_ERR(ctx);
13628 goto err_cred;
13629 }
13630
13631 mutex_lock(&ctx->mutex);
13632
13633 if (ctx->task == TASK_TOMBSTONE) {
13634 err = -ESRCH;
13635 goto err_locked;
13636 }
13637
13638 if (!task) {
13639 /*
13640 * Check if the @cpu we're creating an event for is online.
13641 *
13642 * We use the perf_cpu_context::ctx::mutex to serialize against
13643 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
13644 */
13645 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
13646
13647 if (!cpuctx->online) {
13648 err = -ENODEV;
13649 goto err_locked;
13650 }
13651 }
13652
13653 if (group_leader) {
13654 err = -EINVAL;
13655
13656 /*
13657 * Do not allow a recursive hierarchy (this new sibling
13658 * becoming part of another group-sibling):
13659 */
13660 if (group_leader->group_leader != group_leader)
13661 goto err_locked;
13662
13663 /* All events in a group should have the same clock */
13664 if (group_leader->clock != event->clock)
13665 goto err_locked;
13666
13667 /*
13668 * Make sure we're both events for the same CPU;
13669 * grouping events for different CPUs is broken; since
13670 * you can never concurrently schedule them anyhow.
13671 */
13672 if (group_leader->cpu != event->cpu)
13673 goto err_locked;
13674
13675 /*
13676 * Make sure we're both on the same context; either task or cpu.
13677 */
13678 if (group_leader->ctx != ctx)
13679 goto err_locked;
13680
13681 /*
13682 * Only a group leader can be exclusive or pinned
13683 */
13684 if (attr.exclusive || attr.pinned)
13685 goto err_locked;
13686
13687 if (is_software_event(event) &&
13688 !in_software_context(group_leader)) {
13689 /*
13690 * If the event is a sw event, but the group_leader
13691 * is on hw context.
13692 *
13693 * Allow the addition of software events to hw
13694 * groups, this is safe because software events
13695 * never fail to schedule.
13696 *
13697 * Note the comment that goes with struct
13698 * perf_event_pmu_context.
13699 */
13700 pmu = group_leader->pmu_ctx->pmu;
13701 } else if (!is_software_event(event)) {
13702 if (is_software_event(group_leader) &&
13703 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
13704 /*
13705 * In case the group is a pure software group, and we
13706 * try to add a hardware event, move the whole group to
13707 * the hardware context.
13708 */
13709 move_group = 1;
13710 }
13711
13712 /* Don't allow group of multiple hw events from different pmus */
13713 if (!in_software_context(group_leader) &&
13714 group_leader->pmu_ctx->pmu != pmu)
13715 goto err_locked;
13716 }
13717 }
13718
13719 /*
13720 * Now that we're certain of the pmu; find the pmu_ctx.
13721 */
13722 pmu_ctx = find_get_pmu_context(pmu, ctx, event);
13723 if (IS_ERR(pmu_ctx)) {
13724 err = PTR_ERR(pmu_ctx);
13725 goto err_locked;
13726 }
13727 event->pmu_ctx = pmu_ctx;
13728
13729 if (output_event) {
13730 err = perf_event_set_output(event, output_event);
13731 if (err)
13732 goto err_context;
13733 }
13734
13735 if (!perf_event_validate_size(event)) {
13736 err = -E2BIG;
13737 goto err_context;
13738 }
13739
13740 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
13741 err = -EINVAL;
13742 goto err_context;
13743 }
13744
13745 /*
13746 * Must be under the same ctx::mutex as perf_install_in_context(),
13747 * because we need to serialize with concurrent event creation.
13748 */
13749 if (!exclusive_event_installable(event, ctx)) {
13750 err = -EBUSY;
13751 goto err_context;
13752 }
13753
13754 WARN_ON_ONCE(ctx->parent_ctx);
13755
13756 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
13757 if (IS_ERR(event_file)) {
13758 err = PTR_ERR(event_file);
13759 event_file = NULL;
13760 goto err_context;
13761 }
13762
13763 /*
13764 * This is the point on no return; we cannot fail hereafter. This is
13765 * where we start modifying current state.
13766 */
13767
13768 if (move_group) {
13769 perf_remove_from_context(group_leader, 0);
13770 put_pmu_ctx(group_leader->pmu_ctx);
13771
13772 for_each_sibling_event(sibling, group_leader) {
13773 perf_remove_from_context(sibling, 0);
13774 put_pmu_ctx(sibling->pmu_ctx);
13775 }
13776
13777 /*
13778 * Install the group siblings before the group leader.
13779 *
13780 * Because a group leader will try and install the entire group
13781 * (through the sibling list, which is still in-tact), we can
13782 * end up with siblings installed in the wrong context.
13783 *
13784 * By installing siblings first we NO-OP because they're not
13785 * reachable through the group lists.
13786 */
13787 for_each_sibling_event(sibling, group_leader) {
13788 sibling->pmu_ctx = pmu_ctx;
13789 get_pmu_ctx(pmu_ctx);
13790 perf_event__state_init(sibling);
13791 perf_install_in_context(ctx, sibling, sibling->cpu);
13792 }
13793
13794 /*
13795 * Removing from the context ends up with disabled
13796 * event. What we want here is event in the initial
13797 * startup state, ready to be add into new context.
13798 */
13799 group_leader->pmu_ctx = pmu_ctx;
13800 get_pmu_ctx(pmu_ctx);
13801 perf_event__state_init(group_leader);
13802 perf_install_in_context(ctx, group_leader, group_leader->cpu);
13803 }
13804
13805 /*
13806 * Precalculate sample_data sizes; do while holding ctx::mutex such
13807 * that we're serialized against further additions and before
13808 * perf_install_in_context() which is the point the event is active and
13809 * can use these values.
13810 */
13811 perf_event__header_size(event);
13812 perf_event__id_header_size(event);
13813
13814 event->owner = current;
13815
13816 perf_install_in_context(ctx, event, event->cpu);
13817 perf_unpin_context(ctx);
13818
13819 mutex_unlock(&ctx->mutex);
13820
13821 if (task) {
13822 up_read(&task->signal->exec_update_lock);
13823 put_task_struct(task);
13824 }
13825
13826 mutex_lock(¤t->perf_event_mutex);
13827 list_add_tail(&event->owner_entry, ¤t->perf_event_list);
13828 mutex_unlock(¤t->perf_event_mutex);
13829
13830 /*
13831 * File reference in group guarantees that group_leader has been
13832 * kept alive until we place the new event on the sibling_list.
13833 * This ensures destruction of the group leader will find
13834 * the pointer to itself in perf_group_detach().
13835 */
13836 fd_install(event_fd, event_file);
13837 return event_fd;
13838
13839 err_context:
13840 put_pmu_ctx(event->pmu_ctx);
13841 event->pmu_ctx = NULL; /* _free_event() */
13842 err_locked:
13843 mutex_unlock(&ctx->mutex);
13844 perf_unpin_context(ctx);
13845 put_ctx(ctx);
13846 err_cred:
13847 if (task)
13848 up_read(&task->signal->exec_update_lock);
13849 err_alloc:
13850 put_event(event);
13851 err_task:
13852 if (task)
13853 put_task_struct(task);
13854 err_fd:
13855 put_unused_fd(event_fd);
13856 return err;
13857 }
13858
13859 /**
13860 * perf_event_create_kernel_counter
13861 *
13862 * @attr: attributes of the counter to create
13863 * @cpu: cpu in which the counter is bound
13864 * @task: task to profile (NULL for percpu)
13865 * @overflow_handler: callback to trigger when we hit the event
13866 * @context: context data could be used in overflow_handler callback
13867 */
13868 struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr * attr,int cpu,struct task_struct * task,perf_overflow_handler_t overflow_handler,void * context)13869 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
13870 struct task_struct *task,
13871 perf_overflow_handler_t overflow_handler,
13872 void *context)
13873 {
13874 struct perf_event_pmu_context *pmu_ctx;
13875 struct perf_event_context *ctx;
13876 struct perf_event *event;
13877 struct pmu *pmu;
13878 int err;
13879
13880 /*
13881 * Grouping is not supported for kernel events, neither is 'AUX',
13882 * make sure the caller's intentions are adjusted.
13883 */
13884 if (attr->aux_output || attr->aux_action)
13885 return ERR_PTR(-EINVAL);
13886
13887 /*
13888 * Event creation should be under SRCU, see perf_pmu_unregister().
13889 */
13890 guard(srcu)(&pmus_srcu);
13891
13892 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
13893 overflow_handler, context, -1);
13894 if (IS_ERR(event)) {
13895 err = PTR_ERR(event);
13896 goto err;
13897 }
13898
13899 /* Mark owner so we could distinguish it from user events. */
13900 event->owner = TASK_TOMBSTONE;
13901 pmu = event->pmu;
13902
13903 if (pmu->task_ctx_nr == perf_sw_context)
13904 event->event_caps |= PERF_EV_CAP_SOFTWARE;
13905
13906 /*
13907 * Get the target context (task or percpu):
13908 */
13909 ctx = find_get_context(task, event);
13910 if (IS_ERR(ctx)) {
13911 err = PTR_ERR(ctx);
13912 goto err_alloc;
13913 }
13914
13915 WARN_ON_ONCE(ctx->parent_ctx);
13916 mutex_lock(&ctx->mutex);
13917 if (ctx->task == TASK_TOMBSTONE) {
13918 err = -ESRCH;
13919 goto err_unlock;
13920 }
13921
13922 pmu_ctx = find_get_pmu_context(pmu, ctx, event);
13923 if (IS_ERR(pmu_ctx)) {
13924 err = PTR_ERR(pmu_ctx);
13925 goto err_unlock;
13926 }
13927 event->pmu_ctx = pmu_ctx;
13928
13929 if (!task) {
13930 /*
13931 * Check if the @cpu we're creating an event for is online.
13932 *
13933 * We use the perf_cpu_context::ctx::mutex to serialize against
13934 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
13935 */
13936 struct perf_cpu_context *cpuctx =
13937 container_of(ctx, struct perf_cpu_context, ctx);
13938 if (!cpuctx->online) {
13939 err = -ENODEV;
13940 goto err_pmu_ctx;
13941 }
13942 }
13943
13944 if (!exclusive_event_installable(event, ctx)) {
13945 err = -EBUSY;
13946 goto err_pmu_ctx;
13947 }
13948
13949 perf_install_in_context(ctx, event, event->cpu);
13950 perf_unpin_context(ctx);
13951 mutex_unlock(&ctx->mutex);
13952
13953 return event;
13954
13955 err_pmu_ctx:
13956 put_pmu_ctx(pmu_ctx);
13957 event->pmu_ctx = NULL; /* _free_event() */
13958 err_unlock:
13959 mutex_unlock(&ctx->mutex);
13960 perf_unpin_context(ctx);
13961 put_ctx(ctx);
13962 err_alloc:
13963 put_event(event);
13964 err:
13965 return ERR_PTR(err);
13966 }
13967 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
13968
__perf_pmu_remove(struct perf_event_context * ctx,int cpu,struct pmu * pmu,struct perf_event_groups * groups,struct list_head * events)13969 static void __perf_pmu_remove(struct perf_event_context *ctx,
13970 int cpu, struct pmu *pmu,
13971 struct perf_event_groups *groups,
13972 struct list_head *events)
13973 {
13974 struct perf_event *event, *sibling;
13975
13976 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
13977 perf_remove_from_context(event, 0);
13978 put_pmu_ctx(event->pmu_ctx);
13979 list_add(&event->migrate_entry, events);
13980
13981 for_each_sibling_event(sibling, event) {
13982 perf_remove_from_context(sibling, 0);
13983 put_pmu_ctx(sibling->pmu_ctx);
13984 list_add(&sibling->migrate_entry, events);
13985 }
13986 }
13987 }
13988
__perf_pmu_install_event(struct pmu * pmu,struct perf_event_context * ctx,int cpu,struct perf_event * event)13989 static void __perf_pmu_install_event(struct pmu *pmu,
13990 struct perf_event_context *ctx,
13991 int cpu, struct perf_event *event)
13992 {
13993 struct perf_event_pmu_context *epc;
13994 struct perf_event_context *old_ctx = event->ctx;
13995
13996 get_ctx(ctx); /* normally find_get_context() */
13997
13998 event->cpu = cpu;
13999 epc = find_get_pmu_context(pmu, ctx, event);
14000 event->pmu_ctx = epc;
14001
14002 if (event->state >= PERF_EVENT_STATE_OFF)
14003 event->state = PERF_EVENT_STATE_INACTIVE;
14004 perf_install_in_context(ctx, event, cpu);
14005
14006 /*
14007 * Now that event->ctx is updated and visible, put the old ctx.
14008 */
14009 put_ctx(old_ctx);
14010 }
14011
__perf_pmu_install(struct perf_event_context * ctx,int cpu,struct pmu * pmu,struct list_head * events)14012 static void __perf_pmu_install(struct perf_event_context *ctx,
14013 int cpu, struct pmu *pmu, struct list_head *events)
14014 {
14015 struct perf_event *event, *tmp;
14016
14017 /*
14018 * Re-instate events in 2 passes.
14019 *
14020 * Skip over group leaders and only install siblings on this first
14021 * pass, siblings will not get enabled without a leader, however a
14022 * leader will enable its siblings, even if those are still on the old
14023 * context.
14024 */
14025 list_for_each_entry_safe(event, tmp, events, migrate_entry) {
14026 if (event->group_leader == event)
14027 continue;
14028
14029 list_del(&event->migrate_entry);
14030 __perf_pmu_install_event(pmu, ctx, cpu, event);
14031 }
14032
14033 /*
14034 * Once all the siblings are setup properly, install the group leaders
14035 * to make it go.
14036 */
14037 list_for_each_entry_safe(event, tmp, events, migrate_entry) {
14038 list_del(&event->migrate_entry);
14039 __perf_pmu_install_event(pmu, ctx, cpu, event);
14040 }
14041 }
14042
perf_pmu_migrate_context(struct pmu * pmu,int src_cpu,int dst_cpu)14043 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
14044 {
14045 struct perf_event_context *src_ctx, *dst_ctx;
14046 LIST_HEAD(events);
14047
14048 /*
14049 * Since per-cpu context is persistent, no need to grab an extra
14050 * reference.
14051 */
14052 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
14053 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
14054
14055 /*
14056 * See perf_event_ctx_lock() for comments on the details
14057 * of swizzling perf_event::ctx.
14058 */
14059 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
14060
14061 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
14062 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
14063
14064 if (!list_empty(&events)) {
14065 /*
14066 * Wait for the events to quiesce before re-instating them.
14067 */
14068 synchronize_rcu();
14069
14070 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
14071 }
14072
14073 mutex_unlock(&dst_ctx->mutex);
14074 mutex_unlock(&src_ctx->mutex);
14075 }
14076 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
14077
sync_child_event(struct perf_event * child_event)14078 static void sync_child_event(struct perf_event *child_event)
14079 {
14080 struct perf_event *parent_event = child_event->parent;
14081 u64 child_val;
14082
14083 if (child_event->attr.inherit_stat) {
14084 struct task_struct *task = child_event->ctx->task;
14085
14086 if (task && task != TASK_TOMBSTONE)
14087 perf_event_read_event(child_event, task);
14088 }
14089
14090 child_val = perf_event_count(child_event, false);
14091
14092 /*
14093 * Add back the child's count to the parent's count:
14094 */
14095 atomic64_add(child_val, &parent_event->child_count);
14096 atomic64_add(child_event->total_time_enabled,
14097 &parent_event->child_total_time_enabled);
14098 atomic64_add(child_event->total_time_running,
14099 &parent_event->child_total_time_running);
14100 }
14101
14102 static void
perf_event_exit_event(struct perf_event * event,struct perf_event_context * ctx,bool revoke)14103 perf_event_exit_event(struct perf_event *event,
14104 struct perf_event_context *ctx, bool revoke)
14105 {
14106 struct perf_event *parent_event = event->parent;
14107 unsigned long detach_flags = DETACH_EXIT;
14108 unsigned int attach_state;
14109
14110 if (parent_event) {
14111 /*
14112 * Do not destroy the 'original' grouping; because of the
14113 * context switch optimization the original events could've
14114 * ended up in a random child task.
14115 *
14116 * If we were to destroy the original group, all group related
14117 * operations would cease to function properly after this
14118 * random child dies.
14119 *
14120 * Do destroy all inherited groups, we don't care about those
14121 * and being thorough is better.
14122 */
14123 detach_flags |= DETACH_GROUP | DETACH_CHILD;
14124 mutex_lock(&parent_event->child_mutex);
14125 /* PERF_ATTACH_ITRACE might be set concurrently */
14126 attach_state = READ_ONCE(event->attach_state);
14127 }
14128
14129 if (revoke)
14130 detach_flags |= DETACH_GROUP | DETACH_REVOKE;
14131
14132 perf_remove_from_context(event, detach_flags);
14133 /*
14134 * Child events can be freed.
14135 */
14136 if (parent_event) {
14137 mutex_unlock(&parent_event->child_mutex);
14138
14139 /*
14140 * Match the refcount initialization. Make sure it doesn't happen
14141 * twice if pmu_detach_event() calls it on an already exited task.
14142 */
14143 if (attach_state & PERF_ATTACH_CHILD) {
14144 /*
14145 * Kick perf_poll() for is_event_hup();
14146 */
14147 perf_event_wakeup(parent_event);
14148 /*
14149 * pmu_detach_event() will have an extra refcount.
14150 * perf_pending_task() might have one too.
14151 */
14152 put_event(event);
14153 }
14154
14155 return;
14156 }
14157
14158 /*
14159 * Parent events are governed by their filedesc, retain them.
14160 */
14161 perf_event_wakeup(event);
14162 }
14163
perf_event_exit_task_context(struct task_struct * task,bool exit)14164 static void perf_event_exit_task_context(struct task_struct *task, bool exit)
14165 {
14166 struct perf_event_context *ctx, *clone_ctx = NULL;
14167 struct perf_event *child_event, *next;
14168
14169 ctx = perf_pin_task_context(task);
14170 if (!ctx)
14171 return;
14172
14173 /*
14174 * In order to reduce the amount of tricky in ctx tear-down, we hold
14175 * ctx::mutex over the entire thing. This serializes against almost
14176 * everything that wants to access the ctx.
14177 *
14178 * The exception is sys_perf_event_open() /
14179 * perf_event_create_kernel_count() which does find_get_context()
14180 * without ctx::mutex (it cannot because of the move_group double mutex
14181 * lock thing). See the comments in perf_install_in_context().
14182 */
14183 mutex_lock(&ctx->mutex);
14184
14185 /*
14186 * In a single ctx::lock section, de-schedule the events and detach the
14187 * context from the task such that we cannot ever get it scheduled back
14188 * in.
14189 */
14190 raw_spin_lock_irq(&ctx->lock);
14191 if (exit)
14192 task_ctx_sched_out(ctx, NULL, EVENT_ALL);
14193
14194 /*
14195 * Now that the context is inactive, destroy the task <-> ctx relation
14196 * and mark the context dead.
14197 */
14198 RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
14199 put_ctx(ctx); /* cannot be last */
14200 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
14201 put_task_struct(task); /* cannot be last */
14202
14203 clone_ctx = unclone_ctx(ctx);
14204 raw_spin_unlock_irq(&ctx->lock);
14205
14206 if (clone_ctx)
14207 put_ctx(clone_ctx);
14208
14209 /*
14210 * Report the task dead after unscheduling the events so that we
14211 * won't get any samples after PERF_RECORD_EXIT. We can however still
14212 * get a few PERF_RECORD_READ events.
14213 */
14214 if (exit)
14215 perf_event_task(task, ctx, 0);
14216
14217 list_for_each_entry_safe(child_event, next, &ctx->event_list, event_entry)
14218 perf_event_exit_event(child_event, ctx, false);
14219
14220 mutex_unlock(&ctx->mutex);
14221
14222 if (!exit) {
14223 /*
14224 * perf_event_release_kernel() could still have a reference on
14225 * this context. In that case we must wait for these events to
14226 * have been freed (in particular all their references to this
14227 * task must've been dropped).
14228 *
14229 * Without this copy_process() will unconditionally free this
14230 * task (irrespective of its reference count) and
14231 * _free_event()'s put_task_struct(event->hw.target) will be a
14232 * use-after-free.
14233 *
14234 * Wait for all events to drop their context reference.
14235 */
14236 wait_var_event(&ctx->refcount,
14237 refcount_read(&ctx->refcount) == 1);
14238 }
14239 put_ctx(ctx);
14240 }
14241
14242 /*
14243 * When a task exits, feed back event values to parent events.
14244 *
14245 * Can be called with exec_update_lock held when called from
14246 * setup_new_exec().
14247 */
perf_event_exit_task(struct task_struct * task)14248 void perf_event_exit_task(struct task_struct *task)
14249 {
14250 struct perf_event *event, *tmp;
14251
14252 WARN_ON_ONCE(task != current);
14253
14254 mutex_lock(&task->perf_event_mutex);
14255 list_for_each_entry_safe(event, tmp, &task->perf_event_list,
14256 owner_entry) {
14257 list_del_init(&event->owner_entry);
14258
14259 /*
14260 * Ensure the list deletion is visible before we clear
14261 * the owner, closes a race against perf_release() where
14262 * we need to serialize on the owner->perf_event_mutex.
14263 */
14264 smp_store_release(&event->owner, NULL);
14265 }
14266 mutex_unlock(&task->perf_event_mutex);
14267
14268 perf_event_exit_task_context(task, true);
14269
14270 /*
14271 * The perf_event_exit_task_context calls perf_event_task
14272 * with task's task_ctx, which generates EXIT events for
14273 * task contexts and sets task->perf_event_ctxp[] to NULL.
14274 * At this point we need to send EXIT events to cpu contexts.
14275 */
14276 perf_event_task(task, NULL, 0);
14277
14278 /*
14279 * Detach the perf_ctx_data for the system-wide event.
14280 */
14281 guard(percpu_read)(&global_ctx_data_rwsem);
14282 detach_task_ctx_data(task);
14283 }
14284
14285 /*
14286 * Free a context as created by inheritance by perf_event_init_task() below,
14287 * used by fork() in case of fail.
14288 *
14289 * Even though the task has never lived, the context and events have been
14290 * exposed through the child_list, so we must take care tearing it all down.
14291 */
perf_event_free_task(struct task_struct * task)14292 void perf_event_free_task(struct task_struct *task)
14293 {
14294 perf_event_exit_task_context(task, false);
14295 }
14296
perf_event_delayed_put(struct task_struct * task)14297 void perf_event_delayed_put(struct task_struct *task)
14298 {
14299 WARN_ON_ONCE(task->perf_event_ctxp);
14300 }
14301
perf_event_get(unsigned int fd)14302 struct file *perf_event_get(unsigned int fd)
14303 {
14304 struct file *file = fget(fd);
14305 if (!file)
14306 return ERR_PTR(-EBADF);
14307
14308 if (file->f_op != &perf_fops) {
14309 fput(file);
14310 return ERR_PTR(-EBADF);
14311 }
14312
14313 return file;
14314 }
14315
perf_get_event(struct file * file)14316 const struct perf_event *perf_get_event(struct file *file)
14317 {
14318 if (file->f_op != &perf_fops)
14319 return ERR_PTR(-EINVAL);
14320
14321 return file->private_data;
14322 }
14323
perf_event_attrs(struct perf_event * event)14324 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
14325 {
14326 if (!event)
14327 return ERR_PTR(-EINVAL);
14328
14329 return &event->attr;
14330 }
14331
perf_allow_kernel(void)14332 int perf_allow_kernel(void)
14333 {
14334 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
14335 return -EACCES;
14336
14337 return security_perf_event_open(PERF_SECURITY_KERNEL);
14338 }
14339 EXPORT_SYMBOL_GPL(perf_allow_kernel);
14340
14341 /*
14342 * Inherit an event from parent task to child task.
14343 *
14344 * Returns:
14345 * - valid pointer on success
14346 * - NULL for orphaned events
14347 * - IS_ERR() on error
14348 */
14349 static struct perf_event *
inherit_event(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event * group_leader,struct perf_event_context * child_ctx)14350 inherit_event(struct perf_event *parent_event,
14351 struct task_struct *parent,
14352 struct perf_event_context *parent_ctx,
14353 struct task_struct *child,
14354 struct perf_event *group_leader,
14355 struct perf_event_context *child_ctx)
14356 {
14357 enum perf_event_state parent_state = parent_event->state;
14358 struct perf_event_pmu_context *pmu_ctx;
14359 struct perf_event *child_event;
14360 unsigned long flags;
14361
14362 /*
14363 * Instead of creating recursive hierarchies of events,
14364 * we link inherited events back to the original parent,
14365 * which has a filp for sure, which we use as the reference
14366 * count:
14367 */
14368 if (parent_event->parent)
14369 parent_event = parent_event->parent;
14370
14371 if (parent_event->state <= PERF_EVENT_STATE_REVOKED)
14372 return NULL;
14373
14374 /*
14375 * Event creation should be under SRCU, see perf_pmu_unregister().
14376 */
14377 guard(srcu)(&pmus_srcu);
14378
14379 child_event = perf_event_alloc(&parent_event->attr,
14380 parent_event->cpu,
14381 child,
14382 group_leader, parent_event,
14383 NULL, NULL, -1);
14384 if (IS_ERR(child_event))
14385 return child_event;
14386
14387 get_ctx(child_ctx);
14388 child_event->ctx = child_ctx;
14389
14390 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
14391 if (IS_ERR(pmu_ctx)) {
14392 free_event(child_event);
14393 return ERR_CAST(pmu_ctx);
14394 }
14395 child_event->pmu_ctx = pmu_ctx;
14396
14397 /*
14398 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
14399 * must be under the same lock in order to serialize against
14400 * perf_event_release_kernel(), such that either we must observe
14401 * is_orphaned_event() or they will observe us on the child_list.
14402 */
14403 mutex_lock(&parent_event->child_mutex);
14404 if (is_orphaned_event(parent_event) ||
14405 !atomic_long_inc_not_zero(&parent_event->refcount)) {
14406 mutex_unlock(&parent_event->child_mutex);
14407 free_event(child_event);
14408 return NULL;
14409 }
14410
14411 /*
14412 * Make the child state follow the state of the parent event,
14413 * not its attr.disabled bit. We hold the parent's mutex,
14414 * so we won't race with perf_event_{en, dis}able_family.
14415 */
14416 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
14417 child_event->state = PERF_EVENT_STATE_INACTIVE;
14418 else
14419 child_event->state = PERF_EVENT_STATE_OFF;
14420
14421 if (parent_event->attr.freq) {
14422 u64 sample_period = parent_event->hw.sample_period;
14423 struct hw_perf_event *hwc = &child_event->hw;
14424
14425 hwc->sample_period = sample_period;
14426 hwc->last_period = sample_period;
14427
14428 local64_set(&hwc->period_left, sample_period);
14429 }
14430
14431 child_event->overflow_handler = parent_event->overflow_handler;
14432 child_event->overflow_handler_context
14433 = parent_event->overflow_handler_context;
14434
14435 /*
14436 * Precalculate sample_data sizes
14437 */
14438 perf_event__header_size(child_event);
14439 perf_event__id_header_size(child_event);
14440
14441 /*
14442 * Link it up in the child's context:
14443 */
14444 raw_spin_lock_irqsave(&child_ctx->lock, flags);
14445 add_event_to_ctx(child_event, child_ctx);
14446 child_event->attach_state |= PERF_ATTACH_CHILD;
14447 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
14448
14449 /*
14450 * Link this into the parent event's child list
14451 */
14452 list_add_tail(&child_event->child_list, &parent_event->child_list);
14453 mutex_unlock(&parent_event->child_mutex);
14454
14455 return child_event;
14456 }
14457
14458 /*
14459 * Inherits an event group.
14460 *
14461 * This will quietly suppress orphaned events; !inherit_event() is not an error.
14462 * This matches with perf_event_release_kernel() removing all child events.
14463 *
14464 * Returns:
14465 * - 0 on success
14466 * - <0 on error
14467 */
inherit_group(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event_context * child_ctx)14468 static int inherit_group(struct perf_event *parent_event,
14469 struct task_struct *parent,
14470 struct perf_event_context *parent_ctx,
14471 struct task_struct *child,
14472 struct perf_event_context *child_ctx)
14473 {
14474 struct perf_event *leader;
14475 struct perf_event *sub;
14476 struct perf_event *child_ctr;
14477
14478 leader = inherit_event(parent_event, parent, parent_ctx,
14479 child, NULL, child_ctx);
14480 if (IS_ERR(leader))
14481 return PTR_ERR(leader);
14482 /*
14483 * @leader can be NULL here because of is_orphaned_event(). In this
14484 * case inherit_event() will create individual events, similar to what
14485 * perf_group_detach() would do anyway.
14486 */
14487 for_each_sibling_event(sub, parent_event) {
14488 child_ctr = inherit_event(sub, parent, parent_ctx,
14489 child, leader, child_ctx);
14490 if (IS_ERR(child_ctr))
14491 return PTR_ERR(child_ctr);
14492
14493 if (sub->aux_event == parent_event && child_ctr &&
14494 !perf_get_aux_event(child_ctr, leader))
14495 return -EINVAL;
14496 }
14497 if (leader)
14498 leader->group_generation = parent_event->group_generation;
14499 return 0;
14500 }
14501
14502 /*
14503 * Creates the child task context and tries to inherit the event-group.
14504 *
14505 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
14506 * inherited_all set when we 'fail' to inherit an orphaned event; this is
14507 * consistent with perf_event_release_kernel() removing all child events.
14508 *
14509 * Returns:
14510 * - 0 on success
14511 * - <0 on error
14512 */
14513 static int
inherit_task_group(struct perf_event * event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,u64 clone_flags,int * inherited_all)14514 inherit_task_group(struct perf_event *event, struct task_struct *parent,
14515 struct perf_event_context *parent_ctx,
14516 struct task_struct *child,
14517 u64 clone_flags, int *inherited_all)
14518 {
14519 struct perf_event_context *child_ctx;
14520 int ret;
14521
14522 if (!event->attr.inherit ||
14523 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
14524 /* Do not inherit if sigtrap and signal handlers were cleared. */
14525 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
14526 *inherited_all = 0;
14527 return 0;
14528 }
14529
14530 child_ctx = child->perf_event_ctxp;
14531 if (!child_ctx) {
14532 /*
14533 * This is executed from the parent task context, so
14534 * inherit events that have been marked for cloning.
14535 * First allocate and initialize a context for the
14536 * child.
14537 */
14538 child_ctx = alloc_perf_context(child);
14539 if (!child_ctx)
14540 return -ENOMEM;
14541
14542 child->perf_event_ctxp = child_ctx;
14543 }
14544
14545 ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
14546 if (ret)
14547 *inherited_all = 0;
14548
14549 return ret;
14550 }
14551
14552 /*
14553 * Initialize the perf_event context in task_struct
14554 */
perf_event_init_context(struct task_struct * child,u64 clone_flags)14555 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
14556 {
14557 struct perf_event_context *child_ctx, *parent_ctx;
14558 struct perf_event_context *cloned_ctx;
14559 struct perf_event *event;
14560 struct task_struct *parent = current;
14561 int inherited_all = 1;
14562 unsigned long flags;
14563 int ret = 0;
14564
14565 if (likely(!parent->perf_event_ctxp))
14566 return 0;
14567
14568 /*
14569 * If the parent's context is a clone, pin it so it won't get
14570 * swapped under us.
14571 */
14572 parent_ctx = perf_pin_task_context(parent);
14573 if (!parent_ctx)
14574 return 0;
14575
14576 /*
14577 * No need to check if parent_ctx != NULL here; since we saw
14578 * it non-NULL earlier, the only reason for it to become NULL
14579 * is if we exit, and since we're currently in the middle of
14580 * a fork we can't be exiting at the same time.
14581 */
14582
14583 /*
14584 * Lock the parent list. No need to lock the child - not PID
14585 * hashed yet and not running, so nobody can access it.
14586 */
14587 mutex_lock(&parent_ctx->mutex);
14588
14589 /*
14590 * We dont have to disable NMIs - we are only looking at
14591 * the list, not manipulating it:
14592 */
14593 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
14594 ret = inherit_task_group(event, parent, parent_ctx,
14595 child, clone_flags, &inherited_all);
14596 if (ret)
14597 goto out_unlock;
14598 }
14599
14600 /*
14601 * We can't hold ctx->lock when iterating the ->flexible_group list due
14602 * to allocations, but we need to prevent rotation because
14603 * rotate_ctx() will change the list from interrupt context.
14604 */
14605 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
14606 parent_ctx->rotate_disable = 1;
14607 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
14608
14609 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
14610 ret = inherit_task_group(event, parent, parent_ctx,
14611 child, clone_flags, &inherited_all);
14612 if (ret)
14613 goto out_unlock;
14614 }
14615
14616 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
14617 parent_ctx->rotate_disable = 0;
14618
14619 child_ctx = child->perf_event_ctxp;
14620
14621 if (child_ctx && inherited_all) {
14622 /*
14623 * Mark the child context as a clone of the parent
14624 * context, or of whatever the parent is a clone of.
14625 *
14626 * Note that if the parent is a clone, the holding of
14627 * parent_ctx->lock avoids it from being uncloned.
14628 */
14629 cloned_ctx = parent_ctx->parent_ctx;
14630 if (cloned_ctx) {
14631 child_ctx->parent_ctx = cloned_ctx;
14632 child_ctx->parent_gen = parent_ctx->parent_gen;
14633 } else {
14634 child_ctx->parent_ctx = parent_ctx;
14635 child_ctx->parent_gen = parent_ctx->generation;
14636 }
14637 get_ctx(child_ctx->parent_ctx);
14638 }
14639
14640 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
14641 out_unlock:
14642 mutex_unlock(&parent_ctx->mutex);
14643
14644 perf_unpin_context(parent_ctx);
14645 put_ctx(parent_ctx);
14646
14647 return ret;
14648 }
14649
14650 /*
14651 * Initialize the perf_event context in task_struct
14652 */
perf_event_init_task(struct task_struct * child,u64 clone_flags)14653 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
14654 {
14655 int ret;
14656
14657 memset(child->perf_recursion, 0, sizeof(child->perf_recursion));
14658 child->perf_event_ctxp = NULL;
14659 mutex_init(&child->perf_event_mutex);
14660 INIT_LIST_HEAD(&child->perf_event_list);
14661 child->perf_ctx_data = NULL;
14662
14663 ret = perf_event_init_context(child, clone_flags);
14664 if (ret) {
14665 perf_event_free_task(child);
14666 return ret;
14667 }
14668
14669 return 0;
14670 }
14671
perf_event_init_all_cpus(void)14672 static void __init perf_event_init_all_cpus(void)
14673 {
14674 struct swevent_htable *swhash;
14675 struct perf_cpu_context *cpuctx;
14676 int cpu;
14677
14678 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
14679 zalloc_cpumask_var(&perf_online_core_mask, GFP_KERNEL);
14680 zalloc_cpumask_var(&perf_online_die_mask, GFP_KERNEL);
14681 zalloc_cpumask_var(&perf_online_cluster_mask, GFP_KERNEL);
14682 zalloc_cpumask_var(&perf_online_pkg_mask, GFP_KERNEL);
14683 zalloc_cpumask_var(&perf_online_sys_mask, GFP_KERNEL);
14684
14685
14686 for_each_possible_cpu(cpu) {
14687 swhash = &per_cpu(swevent_htable, cpu);
14688 mutex_init(&swhash->hlist_mutex);
14689
14690 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
14691 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
14692
14693 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
14694
14695 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14696 __perf_event_init_context(&cpuctx->ctx);
14697 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
14698 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
14699 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
14700 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
14701 cpuctx->heap = cpuctx->heap_default;
14702 }
14703 }
14704
perf_swevent_init_cpu(unsigned int cpu)14705 static void perf_swevent_init_cpu(unsigned int cpu)
14706 {
14707 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
14708
14709 mutex_lock(&swhash->hlist_mutex);
14710 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
14711 struct swevent_hlist *hlist;
14712
14713 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
14714 WARN_ON(!hlist);
14715 rcu_assign_pointer(swhash->swevent_hlist, hlist);
14716 }
14717 mutex_unlock(&swhash->hlist_mutex);
14718 }
14719
14720 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
__perf_event_exit_context(void * __info)14721 static void __perf_event_exit_context(void *__info)
14722 {
14723 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
14724 struct perf_event_context *ctx = __info;
14725 struct perf_event *event;
14726
14727 raw_spin_lock(&ctx->lock);
14728 ctx_sched_out(ctx, NULL, EVENT_TIME);
14729 list_for_each_entry(event, &ctx->event_list, event_entry)
14730 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
14731 raw_spin_unlock(&ctx->lock);
14732 }
14733
perf_event_clear_cpumask(unsigned int cpu)14734 static void perf_event_clear_cpumask(unsigned int cpu)
14735 {
14736 int target[PERF_PMU_MAX_SCOPE];
14737 unsigned int scope;
14738 struct pmu *pmu;
14739
14740 cpumask_clear_cpu(cpu, perf_online_mask);
14741
14742 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14743 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14744 struct cpumask *pmu_cpumask = perf_scope_cpumask(scope);
14745
14746 target[scope] = -1;
14747 if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14748 continue;
14749
14750 if (!cpumask_test_and_clear_cpu(cpu, pmu_cpumask))
14751 continue;
14752 target[scope] = cpumask_any_but(cpumask, cpu);
14753 if (target[scope] < nr_cpu_ids)
14754 cpumask_set_cpu(target[scope], pmu_cpumask);
14755 }
14756
14757 /* migrate */
14758 list_for_each_entry(pmu, &pmus, entry) {
14759 if (pmu->scope == PERF_PMU_SCOPE_NONE ||
14760 WARN_ON_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE))
14761 continue;
14762
14763 if (target[pmu->scope] >= 0 && target[pmu->scope] < nr_cpu_ids)
14764 perf_pmu_migrate_context(pmu, cpu, target[pmu->scope]);
14765 }
14766 }
14767
perf_event_exit_cpu_context(int cpu)14768 static void perf_event_exit_cpu_context(int cpu)
14769 {
14770 struct perf_cpu_context *cpuctx;
14771 struct perf_event_context *ctx;
14772
14773 // XXX simplify cpuctx->online
14774 mutex_lock(&pmus_lock);
14775 /*
14776 * Clear the cpumasks, and migrate to other CPUs if possible.
14777 * Must be invoked before the __perf_event_exit_context.
14778 */
14779 perf_event_clear_cpumask(cpu);
14780 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14781 ctx = &cpuctx->ctx;
14782
14783 mutex_lock(&ctx->mutex);
14784 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
14785 cpuctx->online = 0;
14786 mutex_unlock(&ctx->mutex);
14787 mutex_unlock(&pmus_lock);
14788 }
14789 #else
14790
perf_event_exit_cpu_context(int cpu)14791 static void perf_event_exit_cpu_context(int cpu) { }
14792
14793 #endif
14794
perf_event_setup_cpumask(unsigned int cpu)14795 static void perf_event_setup_cpumask(unsigned int cpu)
14796 {
14797 struct cpumask *pmu_cpumask;
14798 unsigned int scope;
14799
14800 /*
14801 * Early boot stage, the cpumask hasn't been set yet.
14802 * The perf_online_<domain>_masks includes the first CPU of each domain.
14803 * Always unconditionally set the boot CPU for the perf_online_<domain>_masks.
14804 */
14805 if (cpumask_empty(perf_online_mask)) {
14806 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14807 pmu_cpumask = perf_scope_cpumask(scope);
14808 if (WARN_ON_ONCE(!pmu_cpumask))
14809 continue;
14810 cpumask_set_cpu(cpu, pmu_cpumask);
14811 }
14812 goto end;
14813 }
14814
14815 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14816 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14817
14818 pmu_cpumask = perf_scope_cpumask(scope);
14819
14820 if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14821 continue;
14822
14823 if (!cpumask_empty(cpumask) &&
14824 cpumask_any_and(pmu_cpumask, cpumask) >= nr_cpu_ids)
14825 cpumask_set_cpu(cpu, pmu_cpumask);
14826 }
14827 end:
14828 cpumask_set_cpu(cpu, perf_online_mask);
14829 }
14830
perf_event_init_cpu(unsigned int cpu)14831 int perf_event_init_cpu(unsigned int cpu)
14832 {
14833 struct perf_cpu_context *cpuctx;
14834 struct perf_event_context *ctx;
14835
14836 perf_swevent_init_cpu(cpu);
14837
14838 mutex_lock(&pmus_lock);
14839 perf_event_setup_cpumask(cpu);
14840 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14841 ctx = &cpuctx->ctx;
14842
14843 mutex_lock(&ctx->mutex);
14844 cpuctx->online = 1;
14845 mutex_unlock(&ctx->mutex);
14846 mutex_unlock(&pmus_lock);
14847
14848 return 0;
14849 }
14850
perf_event_exit_cpu(unsigned int cpu)14851 int perf_event_exit_cpu(unsigned int cpu)
14852 {
14853 perf_event_exit_cpu_context(cpu);
14854 return 0;
14855 }
14856
14857 static int
perf_reboot(struct notifier_block * notifier,unsigned long val,void * v)14858 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
14859 {
14860 int cpu;
14861
14862 for_each_online_cpu(cpu)
14863 perf_event_exit_cpu(cpu);
14864
14865 return NOTIFY_OK;
14866 }
14867
14868 /*
14869 * Run the perf reboot notifier at the very last possible moment so that
14870 * the generic watchdog code runs as long as possible.
14871 */
14872 static struct notifier_block perf_reboot_notifier = {
14873 .notifier_call = perf_reboot,
14874 .priority = INT_MIN,
14875 };
14876
perf_event_init(void)14877 void __init perf_event_init(void)
14878 {
14879 int ret;
14880
14881 idr_init(&pmu_idr);
14882
14883 unwind_deferred_init(&perf_unwind_work,
14884 perf_unwind_deferred_callback);
14885
14886 perf_event_init_all_cpus();
14887 init_srcu_struct(&pmus_srcu);
14888 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
14889 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
14890 perf_pmu_register(&perf_task_clock, "task_clock", -1);
14891 perf_tp_register();
14892 perf_event_init_cpu(smp_processor_id());
14893 register_reboot_notifier(&perf_reboot_notifier);
14894
14895 ret = init_hw_breakpoint();
14896 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
14897
14898 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
14899
14900 /*
14901 * Build time assertion that we keep the data_head at the intended
14902 * location. IOW, validation we got the __reserved[] size right.
14903 */
14904 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
14905 != 1024);
14906 }
14907
perf_event_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)14908 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
14909 char *page)
14910 {
14911 struct perf_pmu_events_attr *pmu_attr =
14912 container_of(attr, struct perf_pmu_events_attr, attr);
14913
14914 if (pmu_attr->event_str)
14915 return sprintf(page, "%s\n", pmu_attr->event_str);
14916
14917 return 0;
14918 }
14919 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
14920
perf_event_sysfs_init(void)14921 static int __init perf_event_sysfs_init(void)
14922 {
14923 struct pmu *pmu;
14924 int ret;
14925
14926 mutex_lock(&pmus_lock);
14927
14928 ret = bus_register(&pmu_bus);
14929 if (ret)
14930 goto unlock;
14931
14932 list_for_each_entry(pmu, &pmus, entry) {
14933 if (pmu->dev)
14934 continue;
14935
14936 ret = pmu_dev_alloc(pmu);
14937 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
14938 }
14939 pmu_bus_running = 1;
14940 ret = 0;
14941
14942 unlock:
14943 mutex_unlock(&pmus_lock);
14944
14945 return ret;
14946 }
14947 device_initcall(perf_event_sysfs_init);
14948
14949 #ifdef CONFIG_CGROUP_PERF
14950 static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)14951 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
14952 {
14953 struct perf_cgroup *jc;
14954
14955 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
14956 if (!jc)
14957 return ERR_PTR(-ENOMEM);
14958
14959 jc->info = alloc_percpu(struct perf_cgroup_info);
14960 if (!jc->info) {
14961 kfree(jc);
14962 return ERR_PTR(-ENOMEM);
14963 }
14964
14965 return &jc->css;
14966 }
14967
perf_cgroup_css_free(struct cgroup_subsys_state * css)14968 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
14969 {
14970 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
14971
14972 free_percpu(jc->info);
14973 kfree(jc);
14974 }
14975
perf_cgroup_css_online(struct cgroup_subsys_state * css)14976 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
14977 {
14978 perf_event_cgroup(css->cgroup);
14979 return 0;
14980 }
14981
__perf_cgroup_move(void * info)14982 static int __perf_cgroup_move(void *info)
14983 {
14984 struct task_struct *task = info;
14985
14986 preempt_disable();
14987 perf_cgroup_switch(task);
14988 preempt_enable();
14989
14990 return 0;
14991 }
14992
perf_cgroup_attach(struct cgroup_taskset * tset)14993 static void perf_cgroup_attach(struct cgroup_taskset *tset)
14994 {
14995 struct task_struct *task;
14996 struct cgroup_subsys_state *css;
14997
14998 cgroup_taskset_for_each(task, css, tset)
14999 task_function_call(task, __perf_cgroup_move, task);
15000 }
15001
15002 struct cgroup_subsys perf_event_cgrp_subsys = {
15003 .css_alloc = perf_cgroup_css_alloc,
15004 .css_free = perf_cgroup_css_free,
15005 .css_online = perf_cgroup_css_online,
15006 .attach = perf_cgroup_attach,
15007 /*
15008 * Implicitly enable on dfl hierarchy so that perf events can
15009 * always be filtered by cgroup2 path as long as perf_event
15010 * controller is not mounted on a legacy hierarchy.
15011 */
15012 .implicit_on_dfl = true,
15013 .threaded = true,
15014 };
15015 #endif /* CONFIG_CGROUP_PERF */
15016
15017 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
15018