1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * bcachefs setup/teardown code, and some metadata io - read a superblock and
4 * figure out what to do with it.
5 *
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
9
10 #include "bcachefs.h"
11 #include "alloc_background.h"
12 #include "alloc_foreground.h"
13 #include "bkey_sort.h"
14 #include "btree_cache.h"
15 #include "btree_gc.h"
16 #include "btree_journal_iter.h"
17 #include "btree_key_cache.h"
18 #include "btree_node_scan.h"
19 #include "btree_update_interior.h"
20 #include "btree_io.h"
21 #include "btree_write_buffer.h"
22 #include "buckets_waiting_for_journal.h"
23 #include "chardev.h"
24 #include "checksum.h"
25 #include "clock.h"
26 #include "compress.h"
27 #include "debug.h"
28 #include "disk_accounting.h"
29 #include "disk_groups.h"
30 #include "ec.h"
31 #include "errcode.h"
32 #include "error.h"
33 #include "fs.h"
34 #include "fs-io.h"
35 #include "fs-io-buffered.h"
36 #include "fs-io-direct.h"
37 #include "fsck.h"
38 #include "inode.h"
39 #include "io_read.h"
40 #include "io_write.h"
41 #include "journal.h"
42 #include "journal_reclaim.h"
43 #include "journal_seq_blacklist.h"
44 #include "move.h"
45 #include "migrate.h"
46 #include "movinggc.h"
47 #include "nocow_locking.h"
48 #include "quota.h"
49 #include "rebalance.h"
50 #include "recovery.h"
51 #include "replicas.h"
52 #include "sb-clean.h"
53 #include "sb-counters.h"
54 #include "sb-errors.h"
55 #include "sb-members.h"
56 #include "snapshot.h"
57 #include "subvolume.h"
58 #include "super.h"
59 #include "super-io.h"
60 #include "sysfs.h"
61 #include "thread_with_file.h"
62 #include "trace.h"
63
64 #include <linux/backing-dev.h>
65 #include <linux/blkdev.h>
66 #include <linux/debugfs.h>
67 #include <linux/device.h>
68 #include <linux/idr.h>
69 #include <linux/module.h>
70 #include <linux/percpu.h>
71 #include <linux/random.h>
72 #include <linux/sysfs.h>
73 #include <crypto/hash.h>
74
75 MODULE_LICENSE("GPL");
76 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
77 MODULE_DESCRIPTION("bcachefs filesystem");
78 MODULE_SOFTDEP("pre: crc32c");
79 MODULE_SOFTDEP("pre: crc64");
80 MODULE_SOFTDEP("pre: sha256");
81 MODULE_SOFTDEP("pre: chacha20");
82 MODULE_SOFTDEP("pre: poly1305");
83 MODULE_SOFTDEP("pre: xxhash");
84
85 const char * const bch2_fs_flag_strs[] = {
86 #define x(n) #n,
87 BCH_FS_FLAGS()
88 #undef x
89 NULL
90 };
91
bch2_print_str(struct bch_fs * c,const char * str)92 void bch2_print_str(struct bch_fs *c, const char *str)
93 {
94 #ifdef __KERNEL__
95 struct stdio_redirect *stdio = bch2_fs_stdio_redirect(c);
96
97 if (unlikely(stdio)) {
98 bch2_stdio_redirect_printf(stdio, true, "%s", str);
99 return;
100 }
101 #endif
102 bch2_print_string_as_lines(KERN_ERR, str);
103 }
104
105 __printf(2, 0)
bch2_print_maybe_redirect(struct stdio_redirect * stdio,const char * fmt,va_list args)106 static void bch2_print_maybe_redirect(struct stdio_redirect *stdio, const char *fmt, va_list args)
107 {
108 #ifdef __KERNEL__
109 if (unlikely(stdio)) {
110 if (fmt[0] == KERN_SOH[0])
111 fmt += 2;
112
113 bch2_stdio_redirect_vprintf(stdio, true, fmt, args);
114 return;
115 }
116 #endif
117 vprintk(fmt, args);
118 }
119
bch2_print_opts(struct bch_opts * opts,const char * fmt,...)120 void bch2_print_opts(struct bch_opts *opts, const char *fmt, ...)
121 {
122 struct stdio_redirect *stdio = (void *)(unsigned long)opts->stdio;
123
124 va_list args;
125 va_start(args, fmt);
126 bch2_print_maybe_redirect(stdio, fmt, args);
127 va_end(args);
128 }
129
__bch2_print(struct bch_fs * c,const char * fmt,...)130 void __bch2_print(struct bch_fs *c, const char *fmt, ...)
131 {
132 struct stdio_redirect *stdio = bch2_fs_stdio_redirect(c);
133
134 va_list args;
135 va_start(args, fmt);
136 bch2_print_maybe_redirect(stdio, fmt, args);
137 va_end(args);
138 }
139
140 #define KTYPE(type) \
141 static const struct attribute_group type ## _group = { \
142 .attrs = type ## _files \
143 }; \
144 \
145 static const struct attribute_group *type ## _groups[] = { \
146 &type ## _group, \
147 NULL \
148 }; \
149 \
150 static const struct kobj_type type ## _ktype = { \
151 .release = type ## _release, \
152 .sysfs_ops = &type ## _sysfs_ops, \
153 .default_groups = type ## _groups \
154 }
155
156 static void bch2_fs_release(struct kobject *);
157 static void bch2_dev_release(struct kobject *);
bch2_fs_counters_release(struct kobject * k)158 static void bch2_fs_counters_release(struct kobject *k)
159 {
160 }
161
bch2_fs_internal_release(struct kobject * k)162 static void bch2_fs_internal_release(struct kobject *k)
163 {
164 }
165
bch2_fs_opts_dir_release(struct kobject * k)166 static void bch2_fs_opts_dir_release(struct kobject *k)
167 {
168 }
169
bch2_fs_time_stats_release(struct kobject * k)170 static void bch2_fs_time_stats_release(struct kobject *k)
171 {
172 }
173
174 KTYPE(bch2_fs);
175 KTYPE(bch2_fs_counters);
176 KTYPE(bch2_fs_internal);
177 KTYPE(bch2_fs_opts_dir);
178 KTYPE(bch2_fs_time_stats);
179 KTYPE(bch2_dev);
180
181 static struct kset *bcachefs_kset;
182 static LIST_HEAD(bch_fs_list);
183 static DEFINE_MUTEX(bch_fs_list_lock);
184
185 DECLARE_WAIT_QUEUE_HEAD(bch2_read_only_wait);
186
187 static void bch2_dev_unlink(struct bch_dev *);
188 static void bch2_dev_free(struct bch_dev *);
189 static int bch2_dev_alloc(struct bch_fs *, unsigned);
190 static int bch2_dev_sysfs_online(struct bch_fs *, struct bch_dev *);
191 static void __bch2_dev_read_only(struct bch_fs *, struct bch_dev *);
192
bch2_dev_to_fs(dev_t dev)193 struct bch_fs *bch2_dev_to_fs(dev_t dev)
194 {
195 struct bch_fs *c;
196
197 mutex_lock(&bch_fs_list_lock);
198 rcu_read_lock();
199
200 list_for_each_entry(c, &bch_fs_list, list)
201 for_each_member_device_rcu(c, ca, NULL)
202 if (ca->disk_sb.bdev && ca->disk_sb.bdev->bd_dev == dev) {
203 closure_get(&c->cl);
204 goto found;
205 }
206 c = NULL;
207 found:
208 rcu_read_unlock();
209 mutex_unlock(&bch_fs_list_lock);
210
211 return c;
212 }
213
__bch2_uuid_to_fs(__uuid_t uuid)214 static struct bch_fs *__bch2_uuid_to_fs(__uuid_t uuid)
215 {
216 struct bch_fs *c;
217
218 lockdep_assert_held(&bch_fs_list_lock);
219
220 list_for_each_entry(c, &bch_fs_list, list)
221 if (!memcmp(&c->disk_sb.sb->uuid, &uuid, sizeof(uuid)))
222 return c;
223
224 return NULL;
225 }
226
bch2_uuid_to_fs(__uuid_t uuid)227 struct bch_fs *bch2_uuid_to_fs(__uuid_t uuid)
228 {
229 struct bch_fs *c;
230
231 mutex_lock(&bch_fs_list_lock);
232 c = __bch2_uuid_to_fs(uuid);
233 if (c)
234 closure_get(&c->cl);
235 mutex_unlock(&bch_fs_list_lock);
236
237 return c;
238 }
239
240 /* Filesystem RO/RW: */
241
242 /*
243 * For startup/shutdown of RW stuff, the dependencies are:
244 *
245 * - foreground writes depend on copygc and rebalance (to free up space)
246 *
247 * - copygc and rebalance depend on mark and sweep gc (they actually probably
248 * don't because they either reserve ahead of time or don't block if
249 * allocations fail, but allocations can require mark and sweep gc to run
250 * because of generation number wraparound)
251 *
252 * - all of the above depends on the allocator threads
253 *
254 * - allocator depends on the journal (when it rewrites prios and gens)
255 */
256
__bch2_fs_read_only(struct bch_fs * c)257 static void __bch2_fs_read_only(struct bch_fs *c)
258 {
259 unsigned clean_passes = 0;
260 u64 seq = 0;
261
262 bch2_fs_ec_stop(c);
263 bch2_open_buckets_stop(c, NULL, true);
264 bch2_rebalance_stop(c);
265 bch2_copygc_stop(c);
266 bch2_fs_ec_flush(c);
267
268 bch_verbose(c, "flushing journal and stopping allocators, journal seq %llu",
269 journal_cur_seq(&c->journal));
270
271 do {
272 clean_passes++;
273
274 if (bch2_btree_interior_updates_flush(c) ||
275 bch2_journal_flush_all_pins(&c->journal) ||
276 bch2_btree_flush_all_writes(c) ||
277 seq != atomic64_read(&c->journal.seq)) {
278 seq = atomic64_read(&c->journal.seq);
279 clean_passes = 0;
280 }
281 } while (clean_passes < 2);
282
283 bch_verbose(c, "flushing journal and stopping allocators complete, journal seq %llu",
284 journal_cur_seq(&c->journal));
285
286 if (test_bit(JOURNAL_replay_done, &c->journal.flags) &&
287 !test_bit(BCH_FS_emergency_ro, &c->flags))
288 set_bit(BCH_FS_clean_shutdown, &c->flags);
289
290 bch2_fs_journal_stop(&c->journal);
291
292 bch_info(c, "%sshutdown complete, journal seq %llu",
293 test_bit(BCH_FS_clean_shutdown, &c->flags) ? "" : "un",
294 c->journal.seq_ondisk);
295
296 /*
297 * After stopping journal:
298 */
299 for_each_member_device(c, ca)
300 bch2_dev_allocator_remove(c, ca);
301 }
302
303 #ifndef BCH_WRITE_REF_DEBUG
bch2_writes_disabled(struct percpu_ref * writes)304 static void bch2_writes_disabled(struct percpu_ref *writes)
305 {
306 struct bch_fs *c = container_of(writes, struct bch_fs, writes);
307
308 set_bit(BCH_FS_write_disable_complete, &c->flags);
309 wake_up(&bch2_read_only_wait);
310 }
311 #endif
312
bch2_fs_read_only(struct bch_fs * c)313 void bch2_fs_read_only(struct bch_fs *c)
314 {
315 if (!test_bit(BCH_FS_rw, &c->flags)) {
316 bch2_journal_reclaim_stop(&c->journal);
317 return;
318 }
319
320 BUG_ON(test_bit(BCH_FS_write_disable_complete, &c->flags));
321
322 bch_verbose(c, "going read-only");
323
324 /*
325 * Block new foreground-end write operations from starting - any new
326 * writes will return -EROFS:
327 */
328 set_bit(BCH_FS_going_ro, &c->flags);
329 #ifndef BCH_WRITE_REF_DEBUG
330 percpu_ref_kill(&c->writes);
331 #else
332 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++)
333 bch2_write_ref_put(c, i);
334 #endif
335
336 /*
337 * If we're not doing an emergency shutdown, we want to wait on
338 * outstanding writes to complete so they don't see spurious errors due
339 * to shutting down the allocator:
340 *
341 * If we are doing an emergency shutdown outstanding writes may
342 * hang until we shutdown the allocator so we don't want to wait
343 * on outstanding writes before shutting everything down - but
344 * we do need to wait on them before returning and signalling
345 * that going RO is complete:
346 */
347 wait_event(bch2_read_only_wait,
348 test_bit(BCH_FS_write_disable_complete, &c->flags) ||
349 test_bit(BCH_FS_emergency_ro, &c->flags));
350
351 bool writes_disabled = test_bit(BCH_FS_write_disable_complete, &c->flags);
352 if (writes_disabled)
353 bch_verbose(c, "finished waiting for writes to stop");
354
355 __bch2_fs_read_only(c);
356
357 wait_event(bch2_read_only_wait,
358 test_bit(BCH_FS_write_disable_complete, &c->flags));
359
360 if (!writes_disabled)
361 bch_verbose(c, "finished waiting for writes to stop");
362
363 clear_bit(BCH_FS_write_disable_complete, &c->flags);
364 clear_bit(BCH_FS_going_ro, &c->flags);
365 clear_bit(BCH_FS_rw, &c->flags);
366
367 if (!bch2_journal_error(&c->journal) &&
368 !test_bit(BCH_FS_error, &c->flags) &&
369 !test_bit(BCH_FS_emergency_ro, &c->flags) &&
370 test_bit(BCH_FS_started, &c->flags) &&
371 test_bit(BCH_FS_clean_shutdown, &c->flags) &&
372 c->recovery_pass_done >= BCH_RECOVERY_PASS_journal_replay) {
373 BUG_ON(c->journal.last_empty_seq != journal_cur_seq(&c->journal));
374 BUG_ON(atomic_long_read(&c->btree_cache.nr_dirty));
375 BUG_ON(atomic_long_read(&c->btree_key_cache.nr_dirty));
376 BUG_ON(c->btree_write_buffer.inc.keys.nr);
377 BUG_ON(c->btree_write_buffer.flushing.keys.nr);
378 bch2_verify_accounting_clean(c);
379
380 bch_verbose(c, "marking filesystem clean");
381 bch2_fs_mark_clean(c);
382 } else {
383 bch_verbose(c, "done going read-only, filesystem not clean");
384 }
385 }
386
bch2_fs_read_only_work(struct work_struct * work)387 static void bch2_fs_read_only_work(struct work_struct *work)
388 {
389 struct bch_fs *c =
390 container_of(work, struct bch_fs, read_only_work);
391
392 down_write(&c->state_lock);
393 bch2_fs_read_only(c);
394 up_write(&c->state_lock);
395 }
396
bch2_fs_read_only_async(struct bch_fs * c)397 static void bch2_fs_read_only_async(struct bch_fs *c)
398 {
399 queue_work(system_long_wq, &c->read_only_work);
400 }
401
bch2_fs_emergency_read_only(struct bch_fs * c)402 bool bch2_fs_emergency_read_only(struct bch_fs *c)
403 {
404 bool ret = !test_and_set_bit(BCH_FS_emergency_ro, &c->flags);
405
406 bch2_journal_halt(&c->journal);
407 bch2_fs_read_only_async(c);
408
409 wake_up(&bch2_read_only_wait);
410 return ret;
411 }
412
bch2_fs_read_write_late(struct bch_fs * c)413 static int bch2_fs_read_write_late(struct bch_fs *c)
414 {
415 int ret;
416
417 /*
418 * Data move operations can't run until after check_snapshots has
419 * completed, and bch2_snapshot_is_ancestor() is available.
420 *
421 * Ideally we'd start copygc/rebalance earlier instead of waiting for
422 * all of recovery/fsck to complete:
423 */
424 ret = bch2_copygc_start(c);
425 if (ret) {
426 bch_err(c, "error starting copygc thread");
427 return ret;
428 }
429
430 ret = bch2_rebalance_start(c);
431 if (ret) {
432 bch_err(c, "error starting rebalance thread");
433 return ret;
434 }
435
436 return 0;
437 }
438
__bch2_fs_read_write(struct bch_fs * c,bool early)439 static int __bch2_fs_read_write(struct bch_fs *c, bool early)
440 {
441 int ret;
442
443 if (test_bit(BCH_FS_initial_gc_unfixed, &c->flags)) {
444 bch_err(c, "cannot go rw, unfixed btree errors");
445 return -BCH_ERR_erofs_unfixed_errors;
446 }
447
448 if (test_bit(BCH_FS_rw, &c->flags))
449 return 0;
450
451 bch_info(c, "going read-write");
452
453 ret = bch2_sb_members_v2_init(c);
454 if (ret)
455 goto err;
456
457 ret = bch2_fs_mark_dirty(c);
458 if (ret)
459 goto err;
460
461 clear_bit(BCH_FS_clean_shutdown, &c->flags);
462
463 /*
464 * First journal write must be a flush write: after a clean shutdown we
465 * don't read the journal, so the first journal write may end up
466 * overwriting whatever was there previously, and there must always be
467 * at least one non-flush write in the journal or recovery will fail:
468 */
469 set_bit(JOURNAL_need_flush_write, &c->journal.flags);
470 set_bit(JOURNAL_running, &c->journal.flags);
471
472 for_each_rw_member(c, ca)
473 bch2_dev_allocator_add(c, ca);
474 bch2_recalc_capacity(c);
475
476 set_bit(BCH_FS_rw, &c->flags);
477 set_bit(BCH_FS_was_rw, &c->flags);
478
479 #ifndef BCH_WRITE_REF_DEBUG
480 percpu_ref_reinit(&c->writes);
481 #else
482 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) {
483 BUG_ON(atomic_long_read(&c->writes[i]));
484 atomic_long_inc(&c->writes[i]);
485 }
486 #endif
487
488 ret = bch2_journal_reclaim_start(&c->journal);
489 if (ret)
490 goto err;
491
492 if (!early) {
493 ret = bch2_fs_read_write_late(c);
494 if (ret)
495 goto err;
496 }
497
498 bch2_do_discards(c);
499 bch2_do_invalidates(c);
500 bch2_do_stripe_deletes(c);
501 bch2_do_pending_node_rewrites(c);
502 return 0;
503 err:
504 if (test_bit(BCH_FS_rw, &c->flags))
505 bch2_fs_read_only(c);
506 else
507 __bch2_fs_read_only(c);
508 return ret;
509 }
510
bch2_fs_read_write(struct bch_fs * c)511 int bch2_fs_read_write(struct bch_fs *c)
512 {
513 if (c->opts.recovery_pass_last &&
514 c->opts.recovery_pass_last < BCH_RECOVERY_PASS_journal_replay)
515 return -BCH_ERR_erofs_norecovery;
516
517 if (c->opts.nochanges)
518 return -BCH_ERR_erofs_nochanges;
519
520 return __bch2_fs_read_write(c, false);
521 }
522
bch2_fs_read_write_early(struct bch_fs * c)523 int bch2_fs_read_write_early(struct bch_fs *c)
524 {
525 lockdep_assert_held(&c->state_lock);
526
527 return __bch2_fs_read_write(c, true);
528 }
529
530 /* Filesystem startup/shutdown: */
531
__bch2_fs_free(struct bch_fs * c)532 static void __bch2_fs_free(struct bch_fs *c)
533 {
534 for (unsigned i = 0; i < BCH_TIME_STAT_NR; i++)
535 bch2_time_stats_exit(&c->times[i]);
536
537 bch2_find_btree_nodes_exit(&c->found_btree_nodes);
538 bch2_free_pending_node_rewrites(c);
539 bch2_fs_accounting_exit(c);
540 bch2_fs_sb_errors_exit(c);
541 bch2_fs_counters_exit(c);
542 bch2_fs_snapshots_exit(c);
543 bch2_fs_quota_exit(c);
544 bch2_fs_fs_io_direct_exit(c);
545 bch2_fs_fs_io_buffered_exit(c);
546 bch2_fs_fsio_exit(c);
547 bch2_fs_vfs_exit(c);
548 bch2_fs_ec_exit(c);
549 bch2_fs_encryption_exit(c);
550 bch2_fs_nocow_locking_exit(c);
551 bch2_fs_io_write_exit(c);
552 bch2_fs_io_read_exit(c);
553 bch2_fs_buckets_waiting_for_journal_exit(c);
554 bch2_fs_btree_interior_update_exit(c);
555 bch2_fs_btree_key_cache_exit(&c->btree_key_cache);
556 bch2_fs_btree_cache_exit(c);
557 bch2_fs_btree_iter_exit(c);
558 bch2_fs_replicas_exit(c);
559 bch2_fs_journal_exit(&c->journal);
560 bch2_io_clock_exit(&c->io_clock[WRITE]);
561 bch2_io_clock_exit(&c->io_clock[READ]);
562 bch2_fs_compress_exit(c);
563 bch2_journal_keys_put_initial(c);
564 bch2_find_btree_nodes_exit(&c->found_btree_nodes);
565 BUG_ON(atomic_read(&c->journal_keys.ref));
566 bch2_fs_btree_write_buffer_exit(c);
567 percpu_free_rwsem(&c->mark_lock);
568 if (c->online_reserved) {
569 u64 v = percpu_u64_get(c->online_reserved);
570 WARN(v, "online_reserved not 0 at shutdown: %lli", v);
571 free_percpu(c->online_reserved);
572 }
573
574 darray_exit(&c->btree_roots_extra);
575 free_percpu(c->pcpu);
576 free_percpu(c->usage);
577 mempool_exit(&c->large_bkey_pool);
578 mempool_exit(&c->btree_bounce_pool);
579 bioset_exit(&c->btree_bio);
580 mempool_exit(&c->fill_iter);
581 #ifndef BCH_WRITE_REF_DEBUG
582 percpu_ref_exit(&c->writes);
583 #endif
584 kfree(rcu_dereference_protected(c->disk_groups, 1));
585 kfree(c->journal_seq_blacklist_table);
586 kfree(c->unused_inode_hints);
587
588 if (c->write_ref_wq)
589 destroy_workqueue(c->write_ref_wq);
590 if (c->btree_write_submit_wq)
591 destroy_workqueue(c->btree_write_submit_wq);
592 if (c->btree_read_complete_wq)
593 destroy_workqueue(c->btree_read_complete_wq);
594 if (c->copygc_wq)
595 destroy_workqueue(c->copygc_wq);
596 if (c->btree_io_complete_wq)
597 destroy_workqueue(c->btree_io_complete_wq);
598 if (c->btree_update_wq)
599 destroy_workqueue(c->btree_update_wq);
600
601 bch2_free_super(&c->disk_sb);
602 kvfree(c);
603 module_put(THIS_MODULE);
604 }
605
bch2_fs_release(struct kobject * kobj)606 static void bch2_fs_release(struct kobject *kobj)
607 {
608 struct bch_fs *c = container_of(kobj, struct bch_fs, kobj);
609
610 __bch2_fs_free(c);
611 }
612
__bch2_fs_stop(struct bch_fs * c)613 void __bch2_fs_stop(struct bch_fs *c)
614 {
615 bch_verbose(c, "shutting down");
616
617 set_bit(BCH_FS_stopping, &c->flags);
618
619 down_write(&c->state_lock);
620 bch2_fs_read_only(c);
621 up_write(&c->state_lock);
622
623 for_each_member_device(c, ca)
624 bch2_dev_unlink(ca);
625
626 if (c->kobj.state_in_sysfs)
627 kobject_del(&c->kobj);
628
629 bch2_fs_debug_exit(c);
630 bch2_fs_chardev_exit(c);
631
632 bch2_ro_ref_put(c);
633 wait_event(c->ro_ref_wait, !refcount_read(&c->ro_ref));
634
635 kobject_put(&c->counters_kobj);
636 kobject_put(&c->time_stats);
637 kobject_put(&c->opts_dir);
638 kobject_put(&c->internal);
639
640 /* btree prefetch might have kicked off reads in the background: */
641 bch2_btree_flush_all_reads(c);
642
643 for_each_member_device(c, ca)
644 cancel_work_sync(&ca->io_error_work);
645
646 cancel_work_sync(&c->read_only_work);
647 }
648
bch2_fs_free(struct bch_fs * c)649 void bch2_fs_free(struct bch_fs *c)
650 {
651 unsigned i;
652
653 mutex_lock(&bch_fs_list_lock);
654 list_del(&c->list);
655 mutex_unlock(&bch_fs_list_lock);
656
657 closure_sync(&c->cl);
658 closure_debug_destroy(&c->cl);
659
660 for (i = 0; i < c->sb.nr_devices; i++) {
661 struct bch_dev *ca = rcu_dereference_protected(c->devs[i], true);
662
663 if (ca) {
664 EBUG_ON(atomic_long_read(&ca->ref) != 1);
665 bch2_free_super(&ca->disk_sb);
666 bch2_dev_free(ca);
667 }
668 }
669
670 bch_verbose(c, "shutdown complete");
671
672 kobject_put(&c->kobj);
673 }
674
bch2_fs_stop(struct bch_fs * c)675 void bch2_fs_stop(struct bch_fs *c)
676 {
677 __bch2_fs_stop(c);
678 bch2_fs_free(c);
679 }
680
bch2_fs_online(struct bch_fs * c)681 static int bch2_fs_online(struct bch_fs *c)
682 {
683 int ret = 0;
684
685 lockdep_assert_held(&bch_fs_list_lock);
686
687 if (__bch2_uuid_to_fs(c->sb.uuid)) {
688 bch_err(c, "filesystem UUID already open");
689 return -EINVAL;
690 }
691
692 ret = bch2_fs_chardev_init(c);
693 if (ret) {
694 bch_err(c, "error creating character device");
695 return ret;
696 }
697
698 bch2_fs_debug_init(c);
699
700 ret = kobject_add(&c->kobj, NULL, "%pU", c->sb.user_uuid.b) ?:
701 kobject_add(&c->internal, &c->kobj, "internal") ?:
702 kobject_add(&c->opts_dir, &c->kobj, "options") ?:
703 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT
704 kobject_add(&c->time_stats, &c->kobj, "time_stats") ?:
705 #endif
706 kobject_add(&c->counters_kobj, &c->kobj, "counters") ?:
707 bch2_opts_create_sysfs_files(&c->opts_dir);
708 if (ret) {
709 bch_err(c, "error creating sysfs objects");
710 return ret;
711 }
712
713 down_write(&c->state_lock);
714
715 for_each_member_device(c, ca) {
716 ret = bch2_dev_sysfs_online(c, ca);
717 if (ret) {
718 bch_err(c, "error creating sysfs objects");
719 bch2_dev_put(ca);
720 goto err;
721 }
722 }
723
724 BUG_ON(!list_empty(&c->list));
725 list_add(&c->list, &bch_fs_list);
726 err:
727 up_write(&c->state_lock);
728 return ret;
729 }
730
bch2_fs_alloc(struct bch_sb * sb,struct bch_opts opts)731 static struct bch_fs *bch2_fs_alloc(struct bch_sb *sb, struct bch_opts opts)
732 {
733 struct bch_fs *c;
734 struct printbuf name = PRINTBUF;
735 unsigned i, iter_size;
736 int ret = 0;
737
738 c = kvmalloc(sizeof(struct bch_fs), GFP_KERNEL|__GFP_ZERO);
739 if (!c) {
740 c = ERR_PTR(-BCH_ERR_ENOMEM_fs_alloc);
741 goto out;
742 }
743
744 c->stdio = (void *)(unsigned long) opts.stdio;
745
746 __module_get(THIS_MODULE);
747
748 closure_init(&c->cl, NULL);
749
750 c->kobj.kset = bcachefs_kset;
751 kobject_init(&c->kobj, &bch2_fs_ktype);
752 kobject_init(&c->internal, &bch2_fs_internal_ktype);
753 kobject_init(&c->opts_dir, &bch2_fs_opts_dir_ktype);
754 kobject_init(&c->time_stats, &bch2_fs_time_stats_ktype);
755 kobject_init(&c->counters_kobj, &bch2_fs_counters_ktype);
756
757 c->minor = -1;
758 c->disk_sb.fs_sb = true;
759
760 init_rwsem(&c->state_lock);
761 mutex_init(&c->sb_lock);
762 mutex_init(&c->replicas_gc_lock);
763 mutex_init(&c->btree_root_lock);
764 INIT_WORK(&c->read_only_work, bch2_fs_read_only_work);
765
766 refcount_set(&c->ro_ref, 1);
767 init_waitqueue_head(&c->ro_ref_wait);
768 sema_init(&c->online_fsck_mutex, 1);
769
770 init_rwsem(&c->gc_lock);
771 mutex_init(&c->gc_gens_lock);
772 atomic_set(&c->journal_keys.ref, 1);
773 c->journal_keys.initial_ref_held = true;
774
775 for (i = 0; i < BCH_TIME_STAT_NR; i++)
776 bch2_time_stats_init(&c->times[i]);
777
778 bch2_fs_gc_init(c);
779 bch2_fs_copygc_init(c);
780 bch2_fs_btree_key_cache_init_early(&c->btree_key_cache);
781 bch2_fs_btree_iter_init_early(c);
782 bch2_fs_btree_interior_update_init_early(c);
783 bch2_fs_allocator_background_init(c);
784 bch2_fs_allocator_foreground_init(c);
785 bch2_fs_rebalance_init(c);
786 bch2_fs_quota_init(c);
787 bch2_fs_ec_init_early(c);
788 bch2_fs_move_init(c);
789 bch2_fs_sb_errors_init_early(c);
790
791 INIT_LIST_HEAD(&c->list);
792
793 mutex_init(&c->bio_bounce_pages_lock);
794 mutex_init(&c->snapshot_table_lock);
795 init_rwsem(&c->snapshot_create_lock);
796
797 spin_lock_init(&c->btree_write_error_lock);
798
799 INIT_LIST_HEAD(&c->journal_iters);
800
801 INIT_LIST_HEAD(&c->fsck_error_msgs);
802 mutex_init(&c->fsck_error_msgs_lock);
803
804 seqcount_init(&c->usage_lock);
805
806 sema_init(&c->io_in_flight, 128);
807
808 INIT_LIST_HEAD(&c->vfs_inodes_list);
809 mutex_init(&c->vfs_inodes_lock);
810
811 c->copy_gc_enabled = 1;
812 c->rebalance.enabled = 1;
813
814 c->journal.flush_write_time = &c->times[BCH_TIME_journal_flush_write];
815 c->journal.noflush_write_time = &c->times[BCH_TIME_journal_noflush_write];
816 c->journal.flush_seq_time = &c->times[BCH_TIME_journal_flush_seq];
817
818 bch2_fs_btree_cache_init_early(&c->btree_cache);
819
820 mutex_init(&c->sectors_available_lock);
821
822 ret = percpu_init_rwsem(&c->mark_lock);
823 if (ret)
824 goto err;
825
826 mutex_lock(&c->sb_lock);
827 ret = bch2_sb_to_fs(c, sb);
828 mutex_unlock(&c->sb_lock);
829
830 if (ret)
831 goto err;
832
833 pr_uuid(&name, c->sb.user_uuid.b);
834 ret = name.allocation_failure ? -BCH_ERR_ENOMEM_fs_name_alloc : 0;
835 if (ret)
836 goto err;
837
838 strscpy(c->name, name.buf, sizeof(c->name));
839 printbuf_exit(&name);
840
841 /* Compat: */
842 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 &&
843 !BCH_SB_JOURNAL_FLUSH_DELAY(sb))
844 SET_BCH_SB_JOURNAL_FLUSH_DELAY(sb, 1000);
845
846 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 &&
847 !BCH_SB_JOURNAL_RECLAIM_DELAY(sb))
848 SET_BCH_SB_JOURNAL_RECLAIM_DELAY(sb, 100);
849
850 c->opts = bch2_opts_default;
851 ret = bch2_opts_from_sb(&c->opts, sb);
852 if (ret)
853 goto err;
854
855 bch2_opts_apply(&c->opts, opts);
856
857 c->btree_key_cache_btrees |= 1U << BTREE_ID_alloc;
858 if (c->opts.inodes_use_key_cache)
859 c->btree_key_cache_btrees |= 1U << BTREE_ID_inodes;
860 c->btree_key_cache_btrees |= 1U << BTREE_ID_logged_ops;
861
862 c->block_bits = ilog2(block_sectors(c));
863 c->btree_foreground_merge_threshold = BTREE_FOREGROUND_MERGE_THRESHOLD(c);
864
865 if (bch2_fs_init_fault("fs_alloc")) {
866 bch_err(c, "fs_alloc fault injected");
867 ret = -EFAULT;
868 goto err;
869 }
870
871 iter_size = sizeof(struct sort_iter) +
872 (btree_blocks(c) + 1) * 2 *
873 sizeof(struct sort_iter_set);
874
875 c->inode_shard_bits = ilog2(roundup_pow_of_two(num_possible_cpus()));
876
877 if (!(c->btree_update_wq = alloc_workqueue("bcachefs",
878 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_UNBOUND, 512)) ||
879 !(c->btree_io_complete_wq = alloc_workqueue("bcachefs_btree_io",
880 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) ||
881 !(c->copygc_wq = alloc_workqueue("bcachefs_copygc",
882 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 1)) ||
883 !(c->btree_read_complete_wq = alloc_workqueue("bcachefs_btree_read_complete",
884 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 512)) ||
885 !(c->btree_write_submit_wq = alloc_workqueue("bcachefs_btree_write_sumit",
886 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) ||
887 !(c->write_ref_wq = alloc_workqueue("bcachefs_write_ref",
888 WQ_FREEZABLE, 0)) ||
889 #ifndef BCH_WRITE_REF_DEBUG
890 percpu_ref_init(&c->writes, bch2_writes_disabled,
891 PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
892 #endif
893 mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) ||
894 bioset_init(&c->btree_bio, 1,
895 max(offsetof(struct btree_read_bio, bio),
896 offsetof(struct btree_write_bio, wbio.bio)),
897 BIOSET_NEED_BVECS) ||
898 !(c->pcpu = alloc_percpu(struct bch_fs_pcpu)) ||
899 !(c->usage = alloc_percpu(struct bch_fs_usage_base)) ||
900 !(c->online_reserved = alloc_percpu(u64)) ||
901 mempool_init_kvmalloc_pool(&c->btree_bounce_pool, 1,
902 c->opts.btree_node_size) ||
903 mempool_init_kmalloc_pool(&c->large_bkey_pool, 1, 2048) ||
904 !(c->unused_inode_hints = kcalloc(1U << c->inode_shard_bits,
905 sizeof(u64), GFP_KERNEL))) {
906 ret = -BCH_ERR_ENOMEM_fs_other_alloc;
907 goto err;
908 }
909
910 ret = bch2_fs_counters_init(c) ?:
911 bch2_fs_sb_errors_init(c) ?:
912 bch2_io_clock_init(&c->io_clock[READ]) ?:
913 bch2_io_clock_init(&c->io_clock[WRITE]) ?:
914 bch2_fs_journal_init(&c->journal) ?:
915 bch2_fs_btree_iter_init(c) ?:
916 bch2_fs_btree_cache_init(c) ?:
917 bch2_fs_btree_key_cache_init(&c->btree_key_cache) ?:
918 bch2_fs_btree_interior_update_init(c) ?:
919 bch2_fs_buckets_waiting_for_journal_init(c) ?:
920 bch2_fs_btree_write_buffer_init(c) ?:
921 bch2_fs_subvolumes_init(c) ?:
922 bch2_fs_io_read_init(c) ?:
923 bch2_fs_io_write_init(c) ?:
924 bch2_fs_nocow_locking_init(c) ?:
925 bch2_fs_encryption_init(c) ?:
926 bch2_fs_compress_init(c) ?:
927 bch2_fs_ec_init(c) ?:
928 bch2_fs_vfs_init(c) ?:
929 bch2_fs_fsio_init(c) ?:
930 bch2_fs_fs_io_buffered_init(c) ?:
931 bch2_fs_fs_io_direct_init(c);
932 if (ret)
933 goto err;
934
935 for (i = 0; i < c->sb.nr_devices; i++) {
936 if (!bch2_member_exists(c->disk_sb.sb, i))
937 continue;
938 ret = bch2_dev_alloc(c, i);
939 if (ret)
940 goto err;
941 }
942
943 bch2_journal_entry_res_resize(&c->journal,
944 &c->btree_root_journal_res,
945 BTREE_ID_NR * (JSET_KEYS_U64s + BKEY_BTREE_PTR_U64s_MAX));
946 bch2_journal_entry_res_resize(&c->journal,
947 &c->clock_journal_res,
948 (sizeof(struct jset_entry_clock) / sizeof(u64)) * 2);
949
950 mutex_lock(&bch_fs_list_lock);
951 ret = bch2_fs_online(c);
952 mutex_unlock(&bch_fs_list_lock);
953
954 if (ret)
955 goto err;
956 out:
957 return c;
958 err:
959 bch2_fs_free(c);
960 c = ERR_PTR(ret);
961 goto out;
962 }
963
964 noinline_for_stack
print_mount_opts(struct bch_fs * c)965 static void print_mount_opts(struct bch_fs *c)
966 {
967 enum bch_opt_id i;
968 struct printbuf p = PRINTBUF;
969 bool first = true;
970
971 prt_str(&p, "starting version ");
972 bch2_version_to_text(&p, c->sb.version);
973
974 if (c->opts.read_only) {
975 prt_str(&p, " opts=");
976 first = false;
977 prt_printf(&p, "ro");
978 }
979
980 for (i = 0; i < bch2_opts_nr; i++) {
981 const struct bch_option *opt = &bch2_opt_table[i];
982 u64 v = bch2_opt_get_by_id(&c->opts, i);
983
984 if (!(opt->flags & OPT_MOUNT))
985 continue;
986
987 if (v == bch2_opt_get_by_id(&bch2_opts_default, i))
988 continue;
989
990 prt_str(&p, first ? " opts=" : ",");
991 first = false;
992 bch2_opt_to_text(&p, c, c->disk_sb.sb, opt, v, OPT_SHOW_MOUNT_STYLE);
993 }
994
995 bch_info(c, "%s", p.buf);
996 printbuf_exit(&p);
997 }
998
bch2_fs_start(struct bch_fs * c)999 int bch2_fs_start(struct bch_fs *c)
1000 {
1001 time64_t now = ktime_get_real_seconds();
1002 int ret;
1003
1004 print_mount_opts(c);
1005
1006 down_write(&c->state_lock);
1007
1008 BUG_ON(test_bit(BCH_FS_started, &c->flags));
1009
1010 mutex_lock(&c->sb_lock);
1011
1012 ret = bch2_sb_members_v2_init(c);
1013 if (ret) {
1014 mutex_unlock(&c->sb_lock);
1015 goto err;
1016 }
1017
1018 for_each_online_member(c, ca)
1019 bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount = cpu_to_le64(now);
1020
1021 struct bch_sb_field_ext *ext =
1022 bch2_sb_field_get_minsize(&c->disk_sb, ext, sizeof(*ext) / sizeof(u64));
1023 mutex_unlock(&c->sb_lock);
1024
1025 if (!ext) {
1026 bch_err(c, "insufficient space in superblock for sb_field_ext");
1027 ret = -BCH_ERR_ENOSPC_sb;
1028 goto err;
1029 }
1030
1031 for_each_rw_member(c, ca)
1032 bch2_dev_allocator_add(c, ca);
1033 bch2_recalc_capacity(c);
1034
1035 ret = BCH_SB_INITIALIZED(c->disk_sb.sb)
1036 ? bch2_fs_recovery(c)
1037 : bch2_fs_initialize(c);
1038 if (ret)
1039 goto err;
1040
1041 ret = bch2_opts_check_may_set(c);
1042 if (ret)
1043 goto err;
1044
1045 if (bch2_fs_init_fault("fs_start")) {
1046 bch_err(c, "fs_start fault injected");
1047 ret = -EINVAL;
1048 goto err;
1049 }
1050
1051 set_bit(BCH_FS_started, &c->flags);
1052
1053 if (c->opts.read_only) {
1054 bch2_fs_read_only(c);
1055 } else {
1056 ret = !test_bit(BCH_FS_rw, &c->flags)
1057 ? bch2_fs_read_write(c)
1058 : bch2_fs_read_write_late(c);
1059 if (ret)
1060 goto err;
1061 }
1062
1063 ret = 0;
1064 err:
1065 if (ret)
1066 bch_err_msg(c, ret, "starting filesystem");
1067 else
1068 bch_verbose(c, "done starting filesystem");
1069 up_write(&c->state_lock);
1070 return ret;
1071 }
1072
bch2_dev_may_add(struct bch_sb * sb,struct bch_fs * c)1073 static int bch2_dev_may_add(struct bch_sb *sb, struct bch_fs *c)
1074 {
1075 struct bch_member m = bch2_sb_member_get(sb, sb->dev_idx);
1076
1077 if (le16_to_cpu(sb->block_size) != block_sectors(c))
1078 return -BCH_ERR_mismatched_block_size;
1079
1080 if (le16_to_cpu(m.bucket_size) <
1081 BCH_SB_BTREE_NODE_SIZE(c->disk_sb.sb))
1082 return -BCH_ERR_bucket_size_too_small;
1083
1084 return 0;
1085 }
1086
bch2_dev_in_fs(struct bch_sb_handle * fs,struct bch_sb_handle * sb,struct bch_opts * opts)1087 static int bch2_dev_in_fs(struct bch_sb_handle *fs,
1088 struct bch_sb_handle *sb,
1089 struct bch_opts *opts)
1090 {
1091 if (fs == sb)
1092 return 0;
1093
1094 if (!uuid_equal(&fs->sb->uuid, &sb->sb->uuid))
1095 return -BCH_ERR_device_not_a_member_of_filesystem;
1096
1097 if (!bch2_member_exists(fs->sb, sb->sb->dev_idx))
1098 return -BCH_ERR_device_has_been_removed;
1099
1100 if (fs->sb->block_size != sb->sb->block_size)
1101 return -BCH_ERR_mismatched_block_size;
1102
1103 if (le16_to_cpu(fs->sb->version) < bcachefs_metadata_version_member_seq ||
1104 le16_to_cpu(sb->sb->version) < bcachefs_metadata_version_member_seq)
1105 return 0;
1106
1107 if (fs->sb->seq == sb->sb->seq &&
1108 fs->sb->write_time != sb->sb->write_time) {
1109 struct printbuf buf = PRINTBUF;
1110
1111 prt_str(&buf, "Split brain detected between ");
1112 prt_bdevname(&buf, sb->bdev);
1113 prt_str(&buf, " and ");
1114 prt_bdevname(&buf, fs->bdev);
1115 prt_char(&buf, ':');
1116 prt_newline(&buf);
1117 prt_printf(&buf, "seq=%llu but write_time different, got", le64_to_cpu(sb->sb->seq));
1118 prt_newline(&buf);
1119
1120 prt_bdevname(&buf, fs->bdev);
1121 prt_char(&buf, ' ');
1122 bch2_prt_datetime(&buf, le64_to_cpu(fs->sb->write_time));;
1123 prt_newline(&buf);
1124
1125 prt_bdevname(&buf, sb->bdev);
1126 prt_char(&buf, ' ');
1127 bch2_prt_datetime(&buf, le64_to_cpu(sb->sb->write_time));;
1128 prt_newline(&buf);
1129
1130 if (!opts->no_splitbrain_check)
1131 prt_printf(&buf, "Not using older sb");
1132
1133 pr_err("%s", buf.buf);
1134 printbuf_exit(&buf);
1135
1136 if (!opts->no_splitbrain_check)
1137 return -BCH_ERR_device_splitbrain;
1138 }
1139
1140 struct bch_member m = bch2_sb_member_get(fs->sb, sb->sb->dev_idx);
1141 u64 seq_from_fs = le64_to_cpu(m.seq);
1142 u64 seq_from_member = le64_to_cpu(sb->sb->seq);
1143
1144 if (seq_from_fs && seq_from_fs < seq_from_member) {
1145 struct printbuf buf = PRINTBUF;
1146
1147 prt_str(&buf, "Split brain detected between ");
1148 prt_bdevname(&buf, sb->bdev);
1149 prt_str(&buf, " and ");
1150 prt_bdevname(&buf, fs->bdev);
1151 prt_char(&buf, ':');
1152 prt_newline(&buf);
1153
1154 prt_bdevname(&buf, fs->bdev);
1155 prt_str(&buf, " believes seq of ");
1156 prt_bdevname(&buf, sb->bdev);
1157 prt_printf(&buf, " to be %llu, but ", seq_from_fs);
1158 prt_bdevname(&buf, sb->bdev);
1159 prt_printf(&buf, " has %llu\n", seq_from_member);
1160
1161 if (!opts->no_splitbrain_check) {
1162 prt_str(&buf, "Not using ");
1163 prt_bdevname(&buf, sb->bdev);
1164 }
1165
1166 pr_err("%s", buf.buf);
1167 printbuf_exit(&buf);
1168
1169 if (!opts->no_splitbrain_check)
1170 return -BCH_ERR_device_splitbrain;
1171 }
1172
1173 return 0;
1174 }
1175
1176 /* Device startup/shutdown: */
1177
bch2_dev_release(struct kobject * kobj)1178 static void bch2_dev_release(struct kobject *kobj)
1179 {
1180 struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj);
1181
1182 kfree(ca);
1183 }
1184
bch2_dev_free(struct bch_dev * ca)1185 static void bch2_dev_free(struct bch_dev *ca)
1186 {
1187 cancel_work_sync(&ca->io_error_work);
1188
1189 bch2_dev_unlink(ca);
1190
1191 if (ca->kobj.state_in_sysfs)
1192 kobject_del(&ca->kobj);
1193
1194 bch2_free_super(&ca->disk_sb);
1195 bch2_dev_allocator_background_exit(ca);
1196 bch2_dev_journal_exit(ca);
1197
1198 free_percpu(ca->io_done);
1199 bch2_dev_buckets_free(ca);
1200 free_page((unsigned long) ca->sb_read_scratch);
1201
1202 bch2_time_stats_quantiles_exit(&ca->io_latency[WRITE]);
1203 bch2_time_stats_quantiles_exit(&ca->io_latency[READ]);
1204
1205 percpu_ref_exit(&ca->io_ref);
1206 #ifndef CONFIG_BCACHEFS_DEBUG
1207 percpu_ref_exit(&ca->ref);
1208 #endif
1209 kobject_put(&ca->kobj);
1210 }
1211
__bch2_dev_offline(struct bch_fs * c,struct bch_dev * ca)1212 static void __bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca)
1213 {
1214
1215 lockdep_assert_held(&c->state_lock);
1216
1217 if (percpu_ref_is_zero(&ca->io_ref))
1218 return;
1219
1220 __bch2_dev_read_only(c, ca);
1221
1222 reinit_completion(&ca->io_ref_completion);
1223 percpu_ref_kill(&ca->io_ref);
1224 wait_for_completion(&ca->io_ref_completion);
1225
1226 bch2_dev_unlink(ca);
1227
1228 bch2_free_super(&ca->disk_sb);
1229 bch2_dev_journal_exit(ca);
1230 }
1231
1232 #ifndef CONFIG_BCACHEFS_DEBUG
bch2_dev_ref_complete(struct percpu_ref * ref)1233 static void bch2_dev_ref_complete(struct percpu_ref *ref)
1234 {
1235 struct bch_dev *ca = container_of(ref, struct bch_dev, ref);
1236
1237 complete(&ca->ref_completion);
1238 }
1239 #endif
1240
bch2_dev_io_ref_complete(struct percpu_ref * ref)1241 static void bch2_dev_io_ref_complete(struct percpu_ref *ref)
1242 {
1243 struct bch_dev *ca = container_of(ref, struct bch_dev, io_ref);
1244
1245 complete(&ca->io_ref_completion);
1246 }
1247
bch2_dev_unlink(struct bch_dev * ca)1248 static void bch2_dev_unlink(struct bch_dev *ca)
1249 {
1250 struct kobject *b;
1251
1252 /*
1253 * This is racy w.r.t. the underlying block device being hot-removed,
1254 * which removes it from sysfs.
1255 *
1256 * It'd be lovely if we had a way to handle this race, but the sysfs
1257 * code doesn't appear to provide a good method and block/holder.c is
1258 * susceptible as well:
1259 */
1260 if (ca->kobj.state_in_sysfs &&
1261 ca->disk_sb.bdev &&
1262 (b = bdev_kobj(ca->disk_sb.bdev))->state_in_sysfs) {
1263 sysfs_remove_link(b, "bcachefs");
1264 sysfs_remove_link(&ca->kobj, "block");
1265 }
1266 }
1267
bch2_dev_sysfs_online(struct bch_fs * c,struct bch_dev * ca)1268 static int bch2_dev_sysfs_online(struct bch_fs *c, struct bch_dev *ca)
1269 {
1270 int ret;
1271
1272 if (!c->kobj.state_in_sysfs)
1273 return 0;
1274
1275 if (!ca->kobj.state_in_sysfs) {
1276 ret = kobject_add(&ca->kobj, &c->kobj,
1277 "dev-%u", ca->dev_idx);
1278 if (ret)
1279 return ret;
1280 }
1281
1282 if (ca->disk_sb.bdev) {
1283 struct kobject *block = bdev_kobj(ca->disk_sb.bdev);
1284
1285 ret = sysfs_create_link(block, &ca->kobj, "bcachefs");
1286 if (ret)
1287 return ret;
1288
1289 ret = sysfs_create_link(&ca->kobj, block, "block");
1290 if (ret)
1291 return ret;
1292 }
1293
1294 return 0;
1295 }
1296
__bch2_dev_alloc(struct bch_fs * c,struct bch_member * member)1297 static struct bch_dev *__bch2_dev_alloc(struct bch_fs *c,
1298 struct bch_member *member)
1299 {
1300 struct bch_dev *ca;
1301 unsigned i;
1302
1303 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1304 if (!ca)
1305 return NULL;
1306
1307 kobject_init(&ca->kobj, &bch2_dev_ktype);
1308 init_completion(&ca->ref_completion);
1309 init_completion(&ca->io_ref_completion);
1310
1311 init_rwsem(&ca->bucket_lock);
1312
1313 INIT_WORK(&ca->io_error_work, bch2_io_error_work);
1314
1315 bch2_time_stats_quantiles_init(&ca->io_latency[READ]);
1316 bch2_time_stats_quantiles_init(&ca->io_latency[WRITE]);
1317
1318 ca->mi = bch2_mi_to_cpu(member);
1319
1320 for (i = 0; i < ARRAY_SIZE(member->errors); i++)
1321 atomic64_set(&ca->errors[i], le64_to_cpu(member->errors[i]));
1322
1323 ca->uuid = member->uuid;
1324
1325 ca->nr_btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE,
1326 ca->mi.bucket_size / btree_sectors(c));
1327
1328 #ifndef CONFIG_BCACHEFS_DEBUG
1329 if (percpu_ref_init(&ca->ref, bch2_dev_ref_complete, 0, GFP_KERNEL))
1330 goto err;
1331 #else
1332 atomic_long_set(&ca->ref, 1);
1333 #endif
1334
1335 bch2_dev_allocator_background_init(ca);
1336
1337 if (percpu_ref_init(&ca->io_ref, bch2_dev_io_ref_complete,
1338 PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
1339 !(ca->sb_read_scratch = (void *) __get_free_page(GFP_KERNEL)) ||
1340 bch2_dev_buckets_alloc(c, ca) ||
1341 !(ca->io_done = alloc_percpu(*ca->io_done)))
1342 goto err;
1343
1344 return ca;
1345 err:
1346 bch2_dev_free(ca);
1347 return NULL;
1348 }
1349
bch2_dev_attach(struct bch_fs * c,struct bch_dev * ca,unsigned dev_idx)1350 static void bch2_dev_attach(struct bch_fs *c, struct bch_dev *ca,
1351 unsigned dev_idx)
1352 {
1353 ca->dev_idx = dev_idx;
1354 __set_bit(ca->dev_idx, ca->self.d);
1355 scnprintf(ca->name, sizeof(ca->name), "dev-%u", dev_idx);
1356
1357 ca->fs = c;
1358 rcu_assign_pointer(c->devs[ca->dev_idx], ca);
1359
1360 if (bch2_dev_sysfs_online(c, ca))
1361 pr_warn("error creating sysfs objects");
1362 }
1363
bch2_dev_alloc(struct bch_fs * c,unsigned dev_idx)1364 static int bch2_dev_alloc(struct bch_fs *c, unsigned dev_idx)
1365 {
1366 struct bch_member member = bch2_sb_member_get(c->disk_sb.sb, dev_idx);
1367 struct bch_dev *ca = NULL;
1368 int ret = 0;
1369
1370 if (bch2_fs_init_fault("dev_alloc"))
1371 goto err;
1372
1373 ca = __bch2_dev_alloc(c, &member);
1374 if (!ca)
1375 goto err;
1376
1377 ca->fs = c;
1378
1379 bch2_dev_attach(c, ca, dev_idx);
1380 return ret;
1381 err:
1382 if (ca)
1383 bch2_dev_free(ca);
1384 return -BCH_ERR_ENOMEM_dev_alloc;
1385 }
1386
__bch2_dev_attach_bdev(struct bch_dev * ca,struct bch_sb_handle * sb)1387 static int __bch2_dev_attach_bdev(struct bch_dev *ca, struct bch_sb_handle *sb)
1388 {
1389 unsigned ret;
1390
1391 if (bch2_dev_is_online(ca)) {
1392 bch_err(ca, "already have device online in slot %u",
1393 sb->sb->dev_idx);
1394 return -BCH_ERR_device_already_online;
1395 }
1396
1397 if (get_capacity(sb->bdev->bd_disk) <
1398 ca->mi.bucket_size * ca->mi.nbuckets) {
1399 bch_err(ca, "cannot online: device too small");
1400 return -BCH_ERR_device_size_too_small;
1401 }
1402
1403 BUG_ON(!percpu_ref_is_zero(&ca->io_ref));
1404
1405 ret = bch2_dev_journal_init(ca, sb->sb);
1406 if (ret)
1407 return ret;
1408
1409 /* Commit: */
1410 ca->disk_sb = *sb;
1411 memset(sb, 0, sizeof(*sb));
1412
1413 ca->dev = ca->disk_sb.bdev->bd_dev;
1414
1415 percpu_ref_reinit(&ca->io_ref);
1416
1417 return 0;
1418 }
1419
bch2_dev_attach_bdev(struct bch_fs * c,struct bch_sb_handle * sb)1420 static int bch2_dev_attach_bdev(struct bch_fs *c, struct bch_sb_handle *sb)
1421 {
1422 struct bch_dev *ca;
1423 int ret;
1424
1425 lockdep_assert_held(&c->state_lock);
1426
1427 if (le64_to_cpu(sb->sb->seq) >
1428 le64_to_cpu(c->disk_sb.sb->seq))
1429 bch2_sb_to_fs(c, sb->sb);
1430
1431 BUG_ON(!bch2_dev_exists(c, sb->sb->dev_idx));
1432
1433 ca = bch2_dev_locked(c, sb->sb->dev_idx);
1434
1435 ret = __bch2_dev_attach_bdev(ca, sb);
1436 if (ret)
1437 return ret;
1438
1439 bch2_dev_sysfs_online(c, ca);
1440
1441 struct printbuf name = PRINTBUF;
1442 prt_bdevname(&name, ca->disk_sb.bdev);
1443
1444 if (c->sb.nr_devices == 1)
1445 strscpy(c->name, name.buf, sizeof(c->name));
1446 strscpy(ca->name, name.buf, sizeof(ca->name));
1447
1448 printbuf_exit(&name);
1449
1450 rebalance_wakeup(c);
1451 return 0;
1452 }
1453
1454 /* Device management: */
1455
1456 /*
1457 * Note: this function is also used by the error paths - when a particular
1458 * device sees an error, we call it to determine whether we can just set the
1459 * device RO, or - if this function returns false - we'll set the whole
1460 * filesystem RO:
1461 *
1462 * XXX: maybe we should be more explicit about whether we're changing state
1463 * because we got an error or what have you?
1464 */
bch2_dev_state_allowed(struct bch_fs * c,struct bch_dev * ca,enum bch_member_state new_state,int flags)1465 bool bch2_dev_state_allowed(struct bch_fs *c, struct bch_dev *ca,
1466 enum bch_member_state new_state, int flags)
1467 {
1468 struct bch_devs_mask new_online_devs;
1469 int nr_rw = 0, required;
1470
1471 lockdep_assert_held(&c->state_lock);
1472
1473 switch (new_state) {
1474 case BCH_MEMBER_STATE_rw:
1475 return true;
1476 case BCH_MEMBER_STATE_ro:
1477 if (ca->mi.state != BCH_MEMBER_STATE_rw)
1478 return true;
1479
1480 /* do we have enough devices to write to? */
1481 for_each_member_device(c, ca2)
1482 if (ca2 != ca)
1483 nr_rw += ca2->mi.state == BCH_MEMBER_STATE_rw;
1484
1485 required = max(!(flags & BCH_FORCE_IF_METADATA_DEGRADED)
1486 ? c->opts.metadata_replicas
1487 : metadata_replicas_required(c),
1488 !(flags & BCH_FORCE_IF_DATA_DEGRADED)
1489 ? c->opts.data_replicas
1490 : data_replicas_required(c));
1491
1492 return nr_rw >= required;
1493 case BCH_MEMBER_STATE_failed:
1494 case BCH_MEMBER_STATE_spare:
1495 if (ca->mi.state != BCH_MEMBER_STATE_rw &&
1496 ca->mi.state != BCH_MEMBER_STATE_ro)
1497 return true;
1498
1499 /* do we have enough devices to read from? */
1500 new_online_devs = bch2_online_devs(c);
1501 __clear_bit(ca->dev_idx, new_online_devs.d);
1502
1503 return bch2_have_enough_devs(c, new_online_devs, flags, false);
1504 default:
1505 BUG();
1506 }
1507 }
1508
bch2_fs_may_start(struct bch_fs * c)1509 static bool bch2_fs_may_start(struct bch_fs *c)
1510 {
1511 struct bch_dev *ca;
1512 unsigned i, flags = 0;
1513
1514 if (c->opts.very_degraded)
1515 flags |= BCH_FORCE_IF_DEGRADED|BCH_FORCE_IF_LOST;
1516
1517 if (c->opts.degraded)
1518 flags |= BCH_FORCE_IF_DEGRADED;
1519
1520 if (!c->opts.degraded &&
1521 !c->opts.very_degraded) {
1522 mutex_lock(&c->sb_lock);
1523
1524 for (i = 0; i < c->disk_sb.sb->nr_devices; i++) {
1525 if (!bch2_member_exists(c->disk_sb.sb, i))
1526 continue;
1527
1528 ca = bch2_dev_locked(c, i);
1529
1530 if (!bch2_dev_is_online(ca) &&
1531 (ca->mi.state == BCH_MEMBER_STATE_rw ||
1532 ca->mi.state == BCH_MEMBER_STATE_ro)) {
1533 mutex_unlock(&c->sb_lock);
1534 return false;
1535 }
1536 }
1537 mutex_unlock(&c->sb_lock);
1538 }
1539
1540 return bch2_have_enough_devs(c, bch2_online_devs(c), flags, true);
1541 }
1542
__bch2_dev_read_only(struct bch_fs * c,struct bch_dev * ca)1543 static void __bch2_dev_read_only(struct bch_fs *c, struct bch_dev *ca)
1544 {
1545 /*
1546 * The allocator thread itself allocates btree nodes, so stop it first:
1547 */
1548 bch2_dev_allocator_remove(c, ca);
1549 bch2_recalc_capacity(c);
1550 bch2_dev_journal_stop(&c->journal, ca);
1551 }
1552
__bch2_dev_read_write(struct bch_fs * c,struct bch_dev * ca)1553 static void __bch2_dev_read_write(struct bch_fs *c, struct bch_dev *ca)
1554 {
1555 lockdep_assert_held(&c->state_lock);
1556
1557 BUG_ON(ca->mi.state != BCH_MEMBER_STATE_rw);
1558
1559 bch2_dev_allocator_add(c, ca);
1560 bch2_recalc_capacity(c);
1561 bch2_dev_do_discards(ca);
1562 }
1563
__bch2_dev_set_state(struct bch_fs * c,struct bch_dev * ca,enum bch_member_state new_state,int flags)1564 int __bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
1565 enum bch_member_state new_state, int flags)
1566 {
1567 struct bch_member *m;
1568 int ret = 0;
1569
1570 if (ca->mi.state == new_state)
1571 return 0;
1572
1573 if (!bch2_dev_state_allowed(c, ca, new_state, flags))
1574 return -BCH_ERR_device_state_not_allowed;
1575
1576 if (new_state != BCH_MEMBER_STATE_rw)
1577 __bch2_dev_read_only(c, ca);
1578
1579 bch_notice(ca, "%s", bch2_member_states[new_state]);
1580
1581 mutex_lock(&c->sb_lock);
1582 m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx);
1583 SET_BCH_MEMBER_STATE(m, new_state);
1584 bch2_write_super(c);
1585 mutex_unlock(&c->sb_lock);
1586
1587 if (new_state == BCH_MEMBER_STATE_rw)
1588 __bch2_dev_read_write(c, ca);
1589
1590 rebalance_wakeup(c);
1591
1592 return ret;
1593 }
1594
bch2_dev_set_state(struct bch_fs * c,struct bch_dev * ca,enum bch_member_state new_state,int flags)1595 int bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
1596 enum bch_member_state new_state, int flags)
1597 {
1598 int ret;
1599
1600 down_write(&c->state_lock);
1601 ret = __bch2_dev_set_state(c, ca, new_state, flags);
1602 up_write(&c->state_lock);
1603
1604 return ret;
1605 }
1606
1607 /* Device add/removal: */
1608
bch2_dev_remove(struct bch_fs * c,struct bch_dev * ca,int flags)1609 int bch2_dev_remove(struct bch_fs *c, struct bch_dev *ca, int flags)
1610 {
1611 struct bch_member *m;
1612 unsigned dev_idx = ca->dev_idx, data;
1613 int ret;
1614
1615 down_write(&c->state_lock);
1616
1617 /*
1618 * We consume a reference to ca->ref, regardless of whether we succeed
1619 * or fail:
1620 */
1621 bch2_dev_put(ca);
1622
1623 if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) {
1624 bch_err(ca, "Cannot remove without losing data");
1625 ret = -BCH_ERR_device_state_not_allowed;
1626 goto err;
1627 }
1628
1629 __bch2_dev_read_only(c, ca);
1630
1631 ret = bch2_dev_data_drop(c, ca->dev_idx, flags);
1632 bch_err_msg(ca, ret, "bch2_dev_data_drop()");
1633 if (ret)
1634 goto err;
1635
1636 ret = bch2_dev_remove_alloc(c, ca);
1637 bch_err_msg(ca, ret, "bch2_dev_remove_alloc()");
1638 if (ret)
1639 goto err;
1640
1641 /*
1642 * We need to flush the entire journal to get rid of keys that reference
1643 * the device being removed before removing the superblock entry
1644 */
1645 bch2_journal_flush_all_pins(&c->journal);
1646
1647 /*
1648 * this is really just needed for the bch2_replicas_gc_(start|end)
1649 * calls, and could be cleaned up:
1650 */
1651 ret = bch2_journal_flush_device_pins(&c->journal, ca->dev_idx);
1652 bch_err_msg(ca, ret, "bch2_journal_flush_device_pins()");
1653 if (ret)
1654 goto err;
1655
1656 ret = bch2_journal_flush(&c->journal);
1657 bch_err_msg(ca, ret, "bch2_journal_flush()");
1658 if (ret)
1659 goto err;
1660
1661 ret = bch2_replicas_gc2(c);
1662 bch_err_msg(ca, ret, "bch2_replicas_gc2()");
1663 if (ret)
1664 goto err;
1665
1666 data = bch2_dev_has_data(c, ca);
1667 if (data) {
1668 struct printbuf data_has = PRINTBUF;
1669
1670 prt_bitflags(&data_has, __bch2_data_types, data);
1671 bch_err(ca, "Remove failed, still has data (%s)", data_has.buf);
1672 printbuf_exit(&data_has);
1673 ret = -EBUSY;
1674 goto err;
1675 }
1676
1677 __bch2_dev_offline(c, ca);
1678
1679 mutex_lock(&c->sb_lock);
1680 rcu_assign_pointer(c->devs[ca->dev_idx], NULL);
1681 mutex_unlock(&c->sb_lock);
1682
1683 #ifndef CONFIG_BCACHEFS_DEBUG
1684 percpu_ref_kill(&ca->ref);
1685 #else
1686 ca->dying = true;
1687 bch2_dev_put(ca);
1688 #endif
1689 wait_for_completion(&ca->ref_completion);
1690
1691 bch2_dev_free(ca);
1692
1693 /*
1694 * Free this device's slot in the bch_member array - all pointers to
1695 * this device must be gone:
1696 */
1697 mutex_lock(&c->sb_lock);
1698 m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx);
1699 memset(&m->uuid, 0, sizeof(m->uuid));
1700
1701 bch2_write_super(c);
1702
1703 mutex_unlock(&c->sb_lock);
1704 up_write(&c->state_lock);
1705 return 0;
1706 err:
1707 if (ca->mi.state == BCH_MEMBER_STATE_rw &&
1708 !percpu_ref_is_zero(&ca->io_ref))
1709 __bch2_dev_read_write(c, ca);
1710 up_write(&c->state_lock);
1711 return ret;
1712 }
1713
1714 /* Add new device to running filesystem: */
bch2_dev_add(struct bch_fs * c,const char * path)1715 int bch2_dev_add(struct bch_fs *c, const char *path)
1716 {
1717 struct bch_opts opts = bch2_opts_empty();
1718 struct bch_sb_handle sb;
1719 struct bch_dev *ca = NULL;
1720 struct printbuf errbuf = PRINTBUF;
1721 struct printbuf label = PRINTBUF;
1722 int ret;
1723
1724 ret = bch2_read_super(path, &opts, &sb);
1725 bch_err_msg(c, ret, "reading super");
1726 if (ret)
1727 goto err;
1728
1729 struct bch_member dev_mi = bch2_sb_member_get(sb.sb, sb.sb->dev_idx);
1730
1731 if (BCH_MEMBER_GROUP(&dev_mi)) {
1732 bch2_disk_path_to_text_sb(&label, sb.sb, BCH_MEMBER_GROUP(&dev_mi) - 1);
1733 if (label.allocation_failure) {
1734 ret = -ENOMEM;
1735 goto err;
1736 }
1737 }
1738
1739 ret = bch2_dev_may_add(sb.sb, c);
1740 if (ret)
1741 goto err;
1742
1743 ca = __bch2_dev_alloc(c, &dev_mi);
1744 if (!ca) {
1745 ret = -ENOMEM;
1746 goto err;
1747 }
1748
1749 ret = __bch2_dev_attach_bdev(ca, &sb);
1750 if (ret)
1751 goto err;
1752
1753 ret = bch2_dev_journal_alloc(ca, true);
1754 bch_err_msg(c, ret, "allocating journal");
1755 if (ret)
1756 goto err;
1757
1758 down_write(&c->state_lock);
1759 mutex_lock(&c->sb_lock);
1760
1761 ret = bch2_sb_from_fs(c, ca);
1762 bch_err_msg(c, ret, "setting up new superblock");
1763 if (ret)
1764 goto err_unlock;
1765
1766 if (dynamic_fault("bcachefs:add:no_slot"))
1767 goto err_unlock;
1768
1769 ret = bch2_sb_member_alloc(c);
1770 if (ret < 0) {
1771 bch_err_msg(c, ret, "setting up new superblock");
1772 goto err_unlock;
1773 }
1774 unsigned dev_idx = ret;
1775
1776 /* success: */
1777
1778 dev_mi.last_mount = cpu_to_le64(ktime_get_real_seconds());
1779 *bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx) = dev_mi;
1780
1781 ca->disk_sb.sb->dev_idx = dev_idx;
1782 bch2_dev_attach(c, ca, dev_idx);
1783
1784 if (BCH_MEMBER_GROUP(&dev_mi)) {
1785 ret = __bch2_dev_group_set(c, ca, label.buf);
1786 bch_err_msg(c, ret, "creating new label");
1787 if (ret)
1788 goto err_unlock;
1789 }
1790
1791 bch2_write_super(c);
1792 mutex_unlock(&c->sb_lock);
1793
1794 ret = bch2_dev_usage_init(ca, false);
1795 if (ret)
1796 goto err_late;
1797
1798 ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional);
1799 bch_err_msg(ca, ret, "marking new superblock");
1800 if (ret)
1801 goto err_late;
1802
1803 ret = bch2_fs_freespace_init(c);
1804 bch_err_msg(ca, ret, "initializing free space");
1805 if (ret)
1806 goto err_late;
1807
1808 ca->new_fs_bucket_idx = 0;
1809
1810 if (ca->mi.state == BCH_MEMBER_STATE_rw)
1811 __bch2_dev_read_write(c, ca);
1812
1813 up_write(&c->state_lock);
1814 return 0;
1815
1816 err_unlock:
1817 mutex_unlock(&c->sb_lock);
1818 up_write(&c->state_lock);
1819 err:
1820 if (ca)
1821 bch2_dev_free(ca);
1822 bch2_free_super(&sb);
1823 printbuf_exit(&label);
1824 printbuf_exit(&errbuf);
1825 bch_err_fn(c, ret);
1826 return ret;
1827 err_late:
1828 up_write(&c->state_lock);
1829 ca = NULL;
1830 goto err;
1831 }
1832
1833 /* Hot add existing device to running filesystem: */
bch2_dev_online(struct bch_fs * c,const char * path)1834 int bch2_dev_online(struct bch_fs *c, const char *path)
1835 {
1836 struct bch_opts opts = bch2_opts_empty();
1837 struct bch_sb_handle sb = { NULL };
1838 struct bch_dev *ca;
1839 unsigned dev_idx;
1840 int ret;
1841
1842 down_write(&c->state_lock);
1843
1844 ret = bch2_read_super(path, &opts, &sb);
1845 if (ret) {
1846 up_write(&c->state_lock);
1847 return ret;
1848 }
1849
1850 dev_idx = sb.sb->dev_idx;
1851
1852 ret = bch2_dev_in_fs(&c->disk_sb, &sb, &c->opts);
1853 bch_err_msg(c, ret, "bringing %s online", path);
1854 if (ret)
1855 goto err;
1856
1857 ret = bch2_dev_attach_bdev(c, &sb);
1858 if (ret)
1859 goto err;
1860
1861 ca = bch2_dev_locked(c, dev_idx);
1862
1863 ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional);
1864 bch_err_msg(c, ret, "bringing %s online: error from bch2_trans_mark_dev_sb", path);
1865 if (ret)
1866 goto err;
1867
1868 if (ca->mi.state == BCH_MEMBER_STATE_rw)
1869 __bch2_dev_read_write(c, ca);
1870
1871 if (!ca->mi.freespace_initialized) {
1872 ret = bch2_dev_freespace_init(c, ca, 0, ca->mi.nbuckets);
1873 bch_err_msg(ca, ret, "initializing free space");
1874 if (ret)
1875 goto err;
1876 }
1877
1878 if (!ca->journal.nr) {
1879 ret = bch2_dev_journal_alloc(ca, false);
1880 bch_err_msg(ca, ret, "allocating journal");
1881 if (ret)
1882 goto err;
1883 }
1884
1885 mutex_lock(&c->sb_lock);
1886 bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount =
1887 cpu_to_le64(ktime_get_real_seconds());
1888 bch2_write_super(c);
1889 mutex_unlock(&c->sb_lock);
1890
1891 up_write(&c->state_lock);
1892 return 0;
1893 err:
1894 up_write(&c->state_lock);
1895 bch2_free_super(&sb);
1896 return ret;
1897 }
1898
bch2_dev_offline(struct bch_fs * c,struct bch_dev * ca,int flags)1899 int bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca, int flags)
1900 {
1901 down_write(&c->state_lock);
1902
1903 if (!bch2_dev_is_online(ca)) {
1904 bch_err(ca, "Already offline");
1905 up_write(&c->state_lock);
1906 return 0;
1907 }
1908
1909 if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) {
1910 bch_err(ca, "Cannot offline required disk");
1911 up_write(&c->state_lock);
1912 return -BCH_ERR_device_state_not_allowed;
1913 }
1914
1915 __bch2_dev_offline(c, ca);
1916
1917 up_write(&c->state_lock);
1918 return 0;
1919 }
1920
bch2_dev_resize(struct bch_fs * c,struct bch_dev * ca,u64 nbuckets)1921 int bch2_dev_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets)
1922 {
1923 struct bch_member *m;
1924 u64 old_nbuckets;
1925 int ret = 0;
1926
1927 down_write(&c->state_lock);
1928 old_nbuckets = ca->mi.nbuckets;
1929
1930 if (nbuckets < ca->mi.nbuckets) {
1931 bch_err(ca, "Cannot shrink yet");
1932 ret = -EINVAL;
1933 goto err;
1934 }
1935
1936 if (nbuckets > BCH_MEMBER_NBUCKETS_MAX) {
1937 bch_err(ca, "New device size too big (%llu greater than max %u)",
1938 nbuckets, BCH_MEMBER_NBUCKETS_MAX);
1939 ret = -BCH_ERR_device_size_too_big;
1940 goto err;
1941 }
1942
1943 if (bch2_dev_is_online(ca) &&
1944 get_capacity(ca->disk_sb.bdev->bd_disk) <
1945 ca->mi.bucket_size * nbuckets) {
1946 bch_err(ca, "New size larger than device");
1947 ret = -BCH_ERR_device_size_too_small;
1948 goto err;
1949 }
1950
1951 ret = bch2_dev_buckets_resize(c, ca, nbuckets);
1952 bch_err_msg(ca, ret, "resizing buckets");
1953 if (ret)
1954 goto err;
1955
1956 ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional);
1957 if (ret)
1958 goto err;
1959
1960 mutex_lock(&c->sb_lock);
1961 m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx);
1962 m->nbuckets = cpu_to_le64(nbuckets);
1963
1964 bch2_write_super(c);
1965 mutex_unlock(&c->sb_lock);
1966
1967 if (ca->mi.freespace_initialized) {
1968 struct disk_accounting_pos acc = {
1969 .type = BCH_DISK_ACCOUNTING_dev_data_type,
1970 .dev_data_type.dev = ca->dev_idx,
1971 .dev_data_type.data_type = BCH_DATA_free,
1972 };
1973 u64 v[3] = { nbuckets - old_nbuckets, 0, 0 };
1974
1975 ret = bch2_trans_commit_do(ca->fs, NULL, NULL, 0,
1976 bch2_disk_accounting_mod(trans, &acc, v, ARRAY_SIZE(v), false)) ?:
1977 bch2_dev_freespace_init(c, ca, old_nbuckets, nbuckets);
1978 if (ret)
1979 goto err;
1980 }
1981
1982 bch2_recalc_capacity(c);
1983 err:
1984 up_write(&c->state_lock);
1985 return ret;
1986 }
1987
1988 /* return with ref on ca->ref: */
bch2_dev_lookup(struct bch_fs * c,const char * name)1989 struct bch_dev *bch2_dev_lookup(struct bch_fs *c, const char *name)
1990 {
1991 if (!strncmp(name, "/dev/", strlen("/dev/")))
1992 name += strlen("/dev/");
1993
1994 for_each_member_device(c, ca)
1995 if (!strcmp(name, ca->name))
1996 return ca;
1997 return ERR_PTR(-BCH_ERR_ENOENT_dev_not_found);
1998 }
1999
2000 /* Filesystem open: */
2001
sb_cmp(struct bch_sb * l,struct bch_sb * r)2002 static inline int sb_cmp(struct bch_sb *l, struct bch_sb *r)
2003 {
2004 return cmp_int(le64_to_cpu(l->seq), le64_to_cpu(r->seq)) ?:
2005 cmp_int(le64_to_cpu(l->write_time), le64_to_cpu(r->write_time));
2006 }
2007
bch2_fs_open(char * const * devices,unsigned nr_devices,struct bch_opts opts)2008 struct bch_fs *bch2_fs_open(char * const *devices, unsigned nr_devices,
2009 struct bch_opts opts)
2010 {
2011 DARRAY(struct bch_sb_handle) sbs = { 0 };
2012 struct bch_fs *c = NULL;
2013 struct bch_sb_handle *best = NULL;
2014 struct printbuf errbuf = PRINTBUF;
2015 int ret = 0;
2016
2017 if (!try_module_get(THIS_MODULE))
2018 return ERR_PTR(-ENODEV);
2019
2020 if (!nr_devices) {
2021 ret = -EINVAL;
2022 goto err;
2023 }
2024
2025 ret = darray_make_room(&sbs, nr_devices);
2026 if (ret)
2027 goto err;
2028
2029 for (unsigned i = 0; i < nr_devices; i++) {
2030 struct bch_sb_handle sb = { NULL };
2031
2032 ret = bch2_read_super(devices[i], &opts, &sb);
2033 if (ret)
2034 goto err;
2035
2036 BUG_ON(darray_push(&sbs, sb));
2037 }
2038
2039 if (opts.nochanges && !opts.read_only) {
2040 ret = -BCH_ERR_erofs_nochanges;
2041 goto err_print;
2042 }
2043
2044 darray_for_each(sbs, sb)
2045 if (!best || sb_cmp(sb->sb, best->sb) > 0)
2046 best = sb;
2047
2048 darray_for_each_reverse(sbs, sb) {
2049 ret = bch2_dev_in_fs(best, sb, &opts);
2050
2051 if (ret == -BCH_ERR_device_has_been_removed ||
2052 ret == -BCH_ERR_device_splitbrain) {
2053 bch2_free_super(sb);
2054 darray_remove_item(&sbs, sb);
2055 best -= best > sb;
2056 ret = 0;
2057 continue;
2058 }
2059
2060 if (ret)
2061 goto err_print;
2062 }
2063
2064 c = bch2_fs_alloc(best->sb, opts);
2065 ret = PTR_ERR_OR_ZERO(c);
2066 if (ret)
2067 goto err;
2068
2069 down_write(&c->state_lock);
2070 darray_for_each(sbs, sb) {
2071 ret = bch2_dev_attach_bdev(c, sb);
2072 if (ret) {
2073 up_write(&c->state_lock);
2074 goto err;
2075 }
2076 }
2077 up_write(&c->state_lock);
2078
2079 if (!bch2_fs_may_start(c)) {
2080 ret = -BCH_ERR_insufficient_devices_to_start;
2081 goto err_print;
2082 }
2083
2084 if (!c->opts.nostart) {
2085 ret = bch2_fs_start(c);
2086 if (ret)
2087 goto err;
2088 }
2089 out:
2090 darray_for_each(sbs, sb)
2091 bch2_free_super(sb);
2092 darray_exit(&sbs);
2093 printbuf_exit(&errbuf);
2094 module_put(THIS_MODULE);
2095 return c;
2096 err_print:
2097 pr_err("bch_fs_open err opening %s: %s",
2098 devices[0], bch2_err_str(ret));
2099 err:
2100 if (!IS_ERR_OR_NULL(c))
2101 bch2_fs_stop(c);
2102 c = ERR_PTR(ret);
2103 goto out;
2104 }
2105
2106 /* Global interfaces/init */
2107
bcachefs_exit(void)2108 static void bcachefs_exit(void)
2109 {
2110 bch2_debug_exit();
2111 bch2_vfs_exit();
2112 bch2_chardev_exit();
2113 bch2_btree_key_cache_exit();
2114 if (bcachefs_kset)
2115 kset_unregister(bcachefs_kset);
2116 }
2117
bcachefs_init(void)2118 static int __init bcachefs_init(void)
2119 {
2120 bch2_bkey_pack_test();
2121
2122 if (!(bcachefs_kset = kset_create_and_add("bcachefs", NULL, fs_kobj)) ||
2123 bch2_btree_key_cache_init() ||
2124 bch2_chardev_init() ||
2125 bch2_vfs_init() ||
2126 bch2_debug_init())
2127 goto err;
2128
2129 return 0;
2130 err:
2131 bcachefs_exit();
2132 return -ENOMEM;
2133 }
2134
2135 #define BCH_DEBUG_PARAM(name, description) \
2136 bool bch2_##name; \
2137 module_param_named(name, bch2_##name, bool, 0644); \
2138 MODULE_PARM_DESC(name, description);
2139 BCH_DEBUG_PARAMS()
2140 #undef BCH_DEBUG_PARAM
2141
2142 __maybe_unused
2143 static unsigned bch2_metadata_version = bcachefs_metadata_version_current;
2144 module_param_named(version, bch2_metadata_version, uint, 0400);
2145
2146 module_exit(bcachefs_exit);
2147 module_init(bcachefs_init);
2148