1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright IBM Corp. 2006, 2023
4 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
5 * Martin Schwidefsky <schwidefsky@de.ibm.com>
6 * Ralph Wuerthner <rwuerthn@de.ibm.com>
7 * Felix Beck <felix.beck@de.ibm.com>
8 * Holger Dengler <hd@linux.vnet.ibm.com>
9 * Harald Freudenberger <freude@linux.ibm.com>
10 *
11 * Adjunct processor bus.
12 */
13
14 #define KMSG_COMPONENT "ap"
15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
16
17 #include <linux/kernel_stat.h>
18 #include <linux/moduleparam.h>
19 #include <linux/init.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/freezer.h>
23 #include <linux/interrupt.h>
24 #include <linux/workqueue.h>
25 #include <linux/slab.h>
26 #include <linux/notifier.h>
27 #include <linux/kthread.h>
28 #include <linux/mutex.h>
29 #include <asm/airq.h>
30 #include <asm/tpi.h>
31 #include <linux/atomic.h>
32 #include <asm/isc.h>
33 #include <linux/hrtimer.h>
34 #include <linux/ktime.h>
35 #include <asm/facility.h>
36 #include <linux/crypto.h>
37 #include <linux/mod_devicetable.h>
38 #include <linux/debugfs.h>
39 #include <linux/ctype.h>
40 #include <linux/module.h>
41 #include <asm/uv.h>
42 #include <asm/chsc.h>
43
44 #include "ap_bus.h"
45 #include "ap_debug.h"
46
47 MODULE_AUTHOR("IBM Corporation");
48 MODULE_DESCRIPTION("Adjunct Processor Bus driver");
49 MODULE_LICENSE("GPL");
50
51 int ap_domain_index = -1; /* Adjunct Processor Domain Index */
52 static DEFINE_SPINLOCK(ap_domain_lock);
53 module_param_named(domain, ap_domain_index, int, 0440);
54 MODULE_PARM_DESC(domain, "domain index for ap devices");
55 EXPORT_SYMBOL(ap_domain_index);
56
57 static int ap_thread_flag;
58 module_param_named(poll_thread, ap_thread_flag, int, 0440);
59 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
60
61 static char *apm_str;
62 module_param_named(apmask, apm_str, charp, 0440);
63 MODULE_PARM_DESC(apmask, "AP bus adapter mask.");
64
65 static char *aqm_str;
66 module_param_named(aqmask, aqm_str, charp, 0440);
67 MODULE_PARM_DESC(aqmask, "AP bus domain mask.");
68
69 static int ap_useirq = 1;
70 module_param_named(useirq, ap_useirq, int, 0440);
71 MODULE_PARM_DESC(useirq, "Use interrupt if available, default is 1 (on).");
72
73 atomic_t ap_max_msg_size = ATOMIC_INIT(AP_DEFAULT_MAX_MSG_SIZE);
74 EXPORT_SYMBOL(ap_max_msg_size);
75
76 static struct device *ap_root_device;
77
78 /* Hashtable of all queue devices on the AP bus */
79 DEFINE_HASHTABLE(ap_queues, 8);
80 /* lock used for the ap_queues hashtable */
81 DEFINE_SPINLOCK(ap_queues_lock);
82
83 /* Default permissions (ioctl, card and domain masking) */
84 struct ap_perms ap_perms;
85 EXPORT_SYMBOL(ap_perms);
86 DEFINE_MUTEX(ap_perms_mutex);
87 EXPORT_SYMBOL(ap_perms_mutex);
88
89 /* # of bindings complete since init */
90 static atomic64_t ap_bindings_complete_count = ATOMIC64_INIT(0);
91
92 /* completion for APQN bindings complete */
93 static DECLARE_COMPLETION(ap_apqn_bindings_complete);
94
95 static struct ap_config_info qci[2];
96 static struct ap_config_info *const ap_qci_info = &qci[0];
97 static struct ap_config_info *const ap_qci_info_old = &qci[1];
98
99 /*
100 * AP bus related debug feature things.
101 */
102 debug_info_t *ap_dbf_info;
103
104 /*
105 * AP bus rescan related things.
106 */
107 static bool ap_scan_bus(void);
108 static bool ap_scan_bus_result; /* result of last ap_scan_bus() */
109 static DEFINE_MUTEX(ap_scan_bus_mutex); /* mutex ap_scan_bus() invocations */
110 static struct task_struct *ap_scan_bus_task; /* thread holding the scan mutex */
111 static atomic64_t ap_scan_bus_count; /* counter ap_scan_bus() invocations */
112 static int ap_scan_bus_time = AP_CONFIG_TIME;
113 static struct timer_list ap_scan_bus_timer;
114 static void ap_scan_bus_wq_callback(struct work_struct *);
115 static DECLARE_WORK(ap_scan_bus_work, ap_scan_bus_wq_callback);
116
117 /*
118 * Tasklet & timer for AP request polling and interrupts
119 */
120 static void ap_tasklet_fn(unsigned long);
121 static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn);
122 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
123 static struct task_struct *ap_poll_kthread;
124 static DEFINE_MUTEX(ap_poll_thread_mutex);
125 static DEFINE_SPINLOCK(ap_poll_timer_lock);
126 static struct hrtimer ap_poll_timer;
127 /*
128 * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
129 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.
130 */
131 static unsigned long poll_high_timeout = 250000UL;
132
133 /*
134 * Some state machine states only require a low frequency polling.
135 * We use 25 Hz frequency for these.
136 */
137 static unsigned long poll_low_timeout = 40000000UL;
138
139 /* Maximum domain id, if not given via qci */
140 static int ap_max_domain_id = 15;
141 /* Maximum adapter id, if not given via qci */
142 static int ap_max_adapter_id = 63;
143
144 static const struct bus_type ap_bus_type;
145
146 /* Adapter interrupt definitions */
147 static void ap_interrupt_handler(struct airq_struct *airq,
148 struct tpi_info *tpi_info);
149
150 static bool ap_irq_flag;
151
152 static struct airq_struct ap_airq = {
153 .handler = ap_interrupt_handler,
154 .isc = AP_ISC,
155 };
156
157 /**
158 * ap_airq_ptr() - Get the address of the adapter interrupt indicator
159 *
160 * Returns the address of the local-summary-indicator of the adapter
161 * interrupt handler for AP, or NULL if adapter interrupts are not
162 * available.
163 */
ap_airq_ptr(void)164 void *ap_airq_ptr(void)
165 {
166 if (ap_irq_flag)
167 return ap_airq.lsi_ptr;
168 return NULL;
169 }
170
171 /**
172 * ap_interrupts_available(): Test if AP interrupts are available.
173 *
174 * Returns 1 if AP interrupts are available.
175 */
ap_interrupts_available(void)176 static int ap_interrupts_available(void)
177 {
178 return test_facility(65);
179 }
180
181 /**
182 * ap_qci_available(): Test if AP configuration
183 * information can be queried via QCI subfunction.
184 *
185 * Returns 1 if subfunction PQAP(QCI) is available.
186 */
ap_qci_available(void)187 static int ap_qci_available(void)
188 {
189 return test_facility(12);
190 }
191
192 /**
193 * ap_apft_available(): Test if AP facilities test (APFT)
194 * facility is available.
195 *
196 * Returns 1 if APFT is available.
197 */
ap_apft_available(void)198 static int ap_apft_available(void)
199 {
200 return test_facility(15);
201 }
202
203 /*
204 * ap_qact_available(): Test if the PQAP(QACT) subfunction is available.
205 *
206 * Returns 1 if the QACT subfunction is available.
207 */
ap_qact_available(void)208 static inline int ap_qact_available(void)
209 {
210 return ap_qci_info->qact;
211 }
212
213 /*
214 * ap_sb_available(): Test if the AP secure binding facility is available.
215 *
216 * Returns 1 if secure binding facility is available.
217 */
ap_sb_available(void)218 int ap_sb_available(void)
219 {
220 return ap_qci_info->apsb;
221 }
222
223 /*
224 * ap_is_se_guest(): Check for SE guest with AP pass-through support.
225 */
ap_is_se_guest(void)226 bool ap_is_se_guest(void)
227 {
228 return is_prot_virt_guest() && ap_sb_available();
229 }
230 EXPORT_SYMBOL(ap_is_se_guest);
231
232 /**
233 * ap_init_qci_info(): Allocate and query qci config info.
234 * Does also update the static variables ap_max_domain_id
235 * and ap_max_adapter_id if this info is available.
236 */
ap_init_qci_info(void)237 static void __init ap_init_qci_info(void)
238 {
239 if (!ap_qci_available() ||
240 ap_qci(ap_qci_info)) {
241 AP_DBF_INFO("%s QCI not supported\n", __func__);
242 return;
243 }
244 memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
245 AP_DBF_INFO("%s successful fetched initial qci info\n", __func__);
246
247 if (ap_qci_info->apxa) {
248 if (ap_qci_info->na) {
249 ap_max_adapter_id = ap_qci_info->na;
250 AP_DBF_INFO("%s new ap_max_adapter_id is %d\n",
251 __func__, ap_max_adapter_id);
252 }
253 if (ap_qci_info->nd) {
254 ap_max_domain_id = ap_qci_info->nd;
255 AP_DBF_INFO("%s new ap_max_domain_id is %d\n",
256 __func__, ap_max_domain_id);
257 }
258 }
259 }
260
261 /*
262 * ap_test_config(): helper function to extract the nrth bit
263 * within the unsigned int array field.
264 */
ap_test_config(unsigned int * field,unsigned int nr)265 static inline int ap_test_config(unsigned int *field, unsigned int nr)
266 {
267 return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
268 }
269
270 /*
271 * ap_test_config_card_id(): Test, whether an AP card ID is configured.
272 *
273 * Returns 0 if the card is not configured
274 * 1 if the card is configured or
275 * if the configuration information is not available
276 */
ap_test_config_card_id(unsigned int id)277 static inline int ap_test_config_card_id(unsigned int id)
278 {
279 if (id > ap_max_adapter_id)
280 return 0;
281 if (ap_qci_info->flags)
282 return ap_test_config(ap_qci_info->apm, id);
283 return 1;
284 }
285
286 /*
287 * ap_test_config_usage_domain(): Test, whether an AP usage domain
288 * is configured.
289 *
290 * Returns 0 if the usage domain is not configured
291 * 1 if the usage domain is configured or
292 * if the configuration information is not available
293 */
ap_test_config_usage_domain(unsigned int domain)294 int ap_test_config_usage_domain(unsigned int domain)
295 {
296 if (domain > ap_max_domain_id)
297 return 0;
298 if (ap_qci_info->flags)
299 return ap_test_config(ap_qci_info->aqm, domain);
300 return 1;
301 }
302 EXPORT_SYMBOL(ap_test_config_usage_domain);
303
304 /*
305 * ap_test_config_ctrl_domain(): Test, whether an AP control domain
306 * is configured.
307 * @domain AP control domain ID
308 *
309 * Returns 1 if the control domain is configured
310 * 0 in all other cases
311 */
ap_test_config_ctrl_domain(unsigned int domain)312 int ap_test_config_ctrl_domain(unsigned int domain)
313 {
314 if (!ap_qci_info || domain > ap_max_domain_id)
315 return 0;
316 return ap_test_config(ap_qci_info->adm, domain);
317 }
318 EXPORT_SYMBOL(ap_test_config_ctrl_domain);
319
320 /*
321 * ap_queue_info(): Check and get AP queue info.
322 * Returns: 1 if APQN exists and info is filled,
323 * 0 if APQN seems to exist but there is no info
324 * available (eg. caused by an asynch pending error)
325 * -1 invalid APQN, TAPQ error or AP queue status which
326 * indicates there is no APQN.
327 */
ap_queue_info(ap_qid_t qid,struct ap_tapq_hwinfo * hwinfo,bool * decfg,bool * cstop)328 static int ap_queue_info(ap_qid_t qid, struct ap_tapq_hwinfo *hwinfo,
329 bool *decfg, bool *cstop)
330 {
331 struct ap_queue_status status;
332
333 hwinfo->value = 0;
334
335 /* make sure we don't run into a specifiation exception */
336 if (AP_QID_CARD(qid) > ap_max_adapter_id ||
337 AP_QID_QUEUE(qid) > ap_max_domain_id)
338 return -1;
339
340 /* call TAPQ on this APQN */
341 status = ap_test_queue(qid, ap_apft_available(), hwinfo);
342
343 switch (status.response_code) {
344 case AP_RESPONSE_NORMAL:
345 case AP_RESPONSE_RESET_IN_PROGRESS:
346 case AP_RESPONSE_DECONFIGURED:
347 case AP_RESPONSE_CHECKSTOPPED:
348 case AP_RESPONSE_BUSY:
349 /* For all these RCs the tapq info should be available */
350 break;
351 default:
352 /* On a pending async error the info should be available */
353 if (!status.async)
354 return -1;
355 break;
356 }
357
358 /* There should be at least one of the mode bits set */
359 if (WARN_ON_ONCE(!hwinfo->value))
360 return 0;
361
362 *decfg = status.response_code == AP_RESPONSE_DECONFIGURED;
363 *cstop = status.response_code == AP_RESPONSE_CHECKSTOPPED;
364
365 return 1;
366 }
367
ap_wait(enum ap_sm_wait wait)368 void ap_wait(enum ap_sm_wait wait)
369 {
370 ktime_t hr_time;
371
372 switch (wait) {
373 case AP_SM_WAIT_AGAIN:
374 case AP_SM_WAIT_INTERRUPT:
375 if (ap_irq_flag)
376 break;
377 if (ap_poll_kthread) {
378 wake_up(&ap_poll_wait);
379 break;
380 }
381 fallthrough;
382 case AP_SM_WAIT_LOW_TIMEOUT:
383 case AP_SM_WAIT_HIGH_TIMEOUT:
384 spin_lock_bh(&ap_poll_timer_lock);
385 if (!hrtimer_is_queued(&ap_poll_timer)) {
386 hr_time =
387 wait == AP_SM_WAIT_LOW_TIMEOUT ?
388 poll_low_timeout : poll_high_timeout;
389 hrtimer_forward_now(&ap_poll_timer, hr_time);
390 hrtimer_restart(&ap_poll_timer);
391 }
392 spin_unlock_bh(&ap_poll_timer_lock);
393 break;
394 case AP_SM_WAIT_NONE:
395 default:
396 break;
397 }
398 }
399
400 /**
401 * ap_request_timeout(): Handling of request timeouts
402 * @t: timer making this callback
403 *
404 * Handles request timeouts.
405 */
ap_request_timeout(struct timer_list * t)406 void ap_request_timeout(struct timer_list *t)
407 {
408 struct ap_queue *aq = from_timer(aq, t, timeout);
409
410 spin_lock_bh(&aq->lock);
411 ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT));
412 spin_unlock_bh(&aq->lock);
413 }
414
415 /**
416 * ap_poll_timeout(): AP receive polling for finished AP requests.
417 * @unused: Unused pointer.
418 *
419 * Schedules the AP tasklet using a high resolution timer.
420 */
ap_poll_timeout(struct hrtimer * unused)421 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
422 {
423 tasklet_schedule(&ap_tasklet);
424 return HRTIMER_NORESTART;
425 }
426
427 /**
428 * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
429 * @airq: pointer to adapter interrupt descriptor
430 * @tpi_info: ignored
431 */
ap_interrupt_handler(struct airq_struct * airq,struct tpi_info * tpi_info)432 static void ap_interrupt_handler(struct airq_struct *airq,
433 struct tpi_info *tpi_info)
434 {
435 inc_irq_stat(IRQIO_APB);
436 tasklet_schedule(&ap_tasklet);
437 }
438
439 /**
440 * ap_tasklet_fn(): Tasklet to poll all AP devices.
441 * @dummy: Unused variable
442 *
443 * Poll all AP devices on the bus.
444 */
ap_tasklet_fn(unsigned long dummy)445 static void ap_tasklet_fn(unsigned long dummy)
446 {
447 int bkt;
448 struct ap_queue *aq;
449 enum ap_sm_wait wait = AP_SM_WAIT_NONE;
450
451 /* Reset the indicator if interrupts are used. Thus new interrupts can
452 * be received. Doing it in the beginning of the tasklet is therefore
453 * important that no requests on any AP get lost.
454 */
455 if (ap_irq_flag)
456 xchg(ap_airq.lsi_ptr, 0);
457
458 spin_lock_bh(&ap_queues_lock);
459 hash_for_each(ap_queues, bkt, aq, hnode) {
460 spin_lock_bh(&aq->lock);
461 wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL));
462 spin_unlock_bh(&aq->lock);
463 }
464 spin_unlock_bh(&ap_queues_lock);
465
466 ap_wait(wait);
467 }
468
ap_pending_requests(void)469 static int ap_pending_requests(void)
470 {
471 int bkt;
472 struct ap_queue *aq;
473
474 spin_lock_bh(&ap_queues_lock);
475 hash_for_each(ap_queues, bkt, aq, hnode) {
476 if (aq->queue_count == 0)
477 continue;
478 spin_unlock_bh(&ap_queues_lock);
479 return 1;
480 }
481 spin_unlock_bh(&ap_queues_lock);
482 return 0;
483 }
484
485 /**
486 * ap_poll_thread(): Thread that polls for finished requests.
487 * @data: Unused pointer
488 *
489 * AP bus poll thread. The purpose of this thread is to poll for
490 * finished requests in a loop if there is a "free" cpu - that is
491 * a cpu that doesn't have anything better to do. The polling stops
492 * as soon as there is another task or if all messages have been
493 * delivered.
494 */
ap_poll_thread(void * data)495 static int ap_poll_thread(void *data)
496 {
497 DECLARE_WAITQUEUE(wait, current);
498
499 set_user_nice(current, MAX_NICE);
500 set_freezable();
501 while (!kthread_should_stop()) {
502 add_wait_queue(&ap_poll_wait, &wait);
503 set_current_state(TASK_INTERRUPTIBLE);
504 if (!ap_pending_requests()) {
505 schedule();
506 try_to_freeze();
507 }
508 set_current_state(TASK_RUNNING);
509 remove_wait_queue(&ap_poll_wait, &wait);
510 if (need_resched()) {
511 schedule();
512 try_to_freeze();
513 continue;
514 }
515 ap_tasklet_fn(0);
516 }
517
518 return 0;
519 }
520
ap_poll_thread_start(void)521 static int ap_poll_thread_start(void)
522 {
523 int rc;
524
525 if (ap_irq_flag || ap_poll_kthread)
526 return 0;
527 mutex_lock(&ap_poll_thread_mutex);
528 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
529 rc = PTR_ERR_OR_ZERO(ap_poll_kthread);
530 if (rc)
531 ap_poll_kthread = NULL;
532 mutex_unlock(&ap_poll_thread_mutex);
533 return rc;
534 }
535
ap_poll_thread_stop(void)536 static void ap_poll_thread_stop(void)
537 {
538 if (!ap_poll_kthread)
539 return;
540 mutex_lock(&ap_poll_thread_mutex);
541 kthread_stop(ap_poll_kthread);
542 ap_poll_kthread = NULL;
543 mutex_unlock(&ap_poll_thread_mutex);
544 }
545
546 #define is_card_dev(x) ((x)->parent == ap_root_device)
547 #define is_queue_dev(x) ((x)->parent != ap_root_device)
548
549 /**
550 * ap_bus_match()
551 * @dev: Pointer to device
552 * @drv: Pointer to device_driver
553 *
554 * AP bus driver registration/unregistration.
555 */
ap_bus_match(struct device * dev,const struct device_driver * drv)556 static int ap_bus_match(struct device *dev, const struct device_driver *drv)
557 {
558 const struct ap_driver *ap_drv = to_ap_drv(drv);
559 struct ap_device_id *id;
560
561 /*
562 * Compare device type of the device with the list of
563 * supported types of the device_driver.
564 */
565 for (id = ap_drv->ids; id->match_flags; id++) {
566 if (is_card_dev(dev) &&
567 id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE &&
568 id->dev_type == to_ap_dev(dev)->device_type)
569 return 1;
570 if (is_queue_dev(dev) &&
571 id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE &&
572 id->dev_type == to_ap_dev(dev)->device_type)
573 return 1;
574 }
575 return 0;
576 }
577
578 /**
579 * ap_uevent(): Uevent function for AP devices.
580 * @dev: Pointer to device
581 * @env: Pointer to kobj_uevent_env
582 *
583 * It sets up a single environment variable DEV_TYPE which contains the
584 * hardware device type.
585 */
ap_uevent(const struct device * dev,struct kobj_uevent_env * env)586 static int ap_uevent(const struct device *dev, struct kobj_uevent_env *env)
587 {
588 int rc = 0;
589 const struct ap_device *ap_dev = to_ap_dev(dev);
590
591 /* Uevents from ap bus core don't need extensions to the env */
592 if (dev == ap_root_device)
593 return 0;
594
595 if (is_card_dev(dev)) {
596 struct ap_card *ac = to_ap_card(&ap_dev->device);
597
598 /* Set up DEV_TYPE environment variable. */
599 rc = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
600 if (rc)
601 return rc;
602 /* Add MODALIAS= */
603 rc = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
604 if (rc)
605 return rc;
606
607 /* Add MODE=<accel|cca|ep11> */
608 if (ac->hwinfo.accel)
609 rc = add_uevent_var(env, "MODE=accel");
610 else if (ac->hwinfo.cca)
611 rc = add_uevent_var(env, "MODE=cca");
612 else if (ac->hwinfo.ep11)
613 rc = add_uevent_var(env, "MODE=ep11");
614 if (rc)
615 return rc;
616 } else {
617 struct ap_queue *aq = to_ap_queue(&ap_dev->device);
618
619 /* Add MODE=<accel|cca|ep11> */
620 if (aq->card->hwinfo.accel)
621 rc = add_uevent_var(env, "MODE=accel");
622 else if (aq->card->hwinfo.cca)
623 rc = add_uevent_var(env, "MODE=cca");
624 else if (aq->card->hwinfo.ep11)
625 rc = add_uevent_var(env, "MODE=ep11");
626 if (rc)
627 return rc;
628 }
629
630 return 0;
631 }
632
ap_send_init_scan_done_uevent(void)633 static void ap_send_init_scan_done_uevent(void)
634 {
635 char *envp[] = { "INITSCAN=done", NULL };
636
637 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
638 }
639
ap_send_bindings_complete_uevent(void)640 static void ap_send_bindings_complete_uevent(void)
641 {
642 char buf[32];
643 char *envp[] = { "BINDINGS=complete", buf, NULL };
644
645 snprintf(buf, sizeof(buf), "COMPLETECOUNT=%llu",
646 atomic64_inc_return(&ap_bindings_complete_count));
647 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
648 }
649
ap_send_config_uevent(struct ap_device * ap_dev,bool cfg)650 void ap_send_config_uevent(struct ap_device *ap_dev, bool cfg)
651 {
652 char buf[16];
653 char *envp[] = { buf, NULL };
654
655 snprintf(buf, sizeof(buf), "CONFIG=%d", cfg ? 1 : 0);
656
657 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
658 }
659 EXPORT_SYMBOL(ap_send_config_uevent);
660
ap_send_online_uevent(struct ap_device * ap_dev,int online)661 void ap_send_online_uevent(struct ap_device *ap_dev, int online)
662 {
663 char buf[16];
664 char *envp[] = { buf, NULL };
665
666 snprintf(buf, sizeof(buf), "ONLINE=%d", online ? 1 : 0);
667
668 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
669 }
670 EXPORT_SYMBOL(ap_send_online_uevent);
671
ap_send_mask_changed_uevent(unsigned long * newapm,unsigned long * newaqm)672 static void ap_send_mask_changed_uevent(unsigned long *newapm,
673 unsigned long *newaqm)
674 {
675 char buf[100];
676 char *envp[] = { buf, NULL };
677
678 if (newapm)
679 snprintf(buf, sizeof(buf),
680 "APMASK=0x%016lx%016lx%016lx%016lx\n",
681 newapm[0], newapm[1], newapm[2], newapm[3]);
682 else
683 snprintf(buf, sizeof(buf),
684 "AQMASK=0x%016lx%016lx%016lx%016lx\n",
685 newaqm[0], newaqm[1], newaqm[2], newaqm[3]);
686
687 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
688 }
689
690 /*
691 * calc # of bound APQNs
692 */
693
694 struct __ap_calc_ctrs {
695 unsigned int apqns;
696 unsigned int bound;
697 };
698
__ap_calc_helper(struct device * dev,void * arg)699 static int __ap_calc_helper(struct device *dev, void *arg)
700 {
701 struct __ap_calc_ctrs *pctrs = (struct __ap_calc_ctrs *)arg;
702
703 if (is_queue_dev(dev)) {
704 pctrs->apqns++;
705 if (dev->driver)
706 pctrs->bound++;
707 }
708
709 return 0;
710 }
711
ap_calc_bound_apqns(unsigned int * apqns,unsigned int * bound)712 static void ap_calc_bound_apqns(unsigned int *apqns, unsigned int *bound)
713 {
714 struct __ap_calc_ctrs ctrs;
715
716 memset(&ctrs, 0, sizeof(ctrs));
717 bus_for_each_dev(&ap_bus_type, NULL, (void *)&ctrs, __ap_calc_helper);
718
719 *apqns = ctrs.apqns;
720 *bound = ctrs.bound;
721 }
722
723 /*
724 * After ap bus scan do check if all existing APQNs are
725 * bound to device drivers.
726 */
ap_check_bindings_complete(void)727 static void ap_check_bindings_complete(void)
728 {
729 unsigned int apqns, bound;
730
731 if (atomic64_read(&ap_scan_bus_count) >= 1) {
732 ap_calc_bound_apqns(&apqns, &bound);
733 if (bound == apqns) {
734 if (!completion_done(&ap_apqn_bindings_complete)) {
735 complete_all(&ap_apqn_bindings_complete);
736 ap_send_bindings_complete_uevent();
737 pr_debug("all apqn bindings complete\n");
738 }
739 }
740 }
741 }
742
743 /*
744 * Interface to wait for the AP bus to have done one initial ap bus
745 * scan and all detected APQNs have been bound to device drivers.
746 * If these both conditions are not fulfilled, this function blocks
747 * on a condition with wait_for_completion_interruptible_timeout().
748 * If these both conditions are fulfilled (before the timeout hits)
749 * the return value is 0. If the timeout (in jiffies) hits instead
750 * -ETIME is returned. On failures negative return values are
751 * returned to the caller.
752 */
ap_wait_apqn_bindings_complete(unsigned long timeout)753 int ap_wait_apqn_bindings_complete(unsigned long timeout)
754 {
755 int rc = 0;
756 long l;
757
758 if (completion_done(&ap_apqn_bindings_complete))
759 return 0;
760
761 if (timeout)
762 l = wait_for_completion_interruptible_timeout(
763 &ap_apqn_bindings_complete, timeout);
764 else
765 l = wait_for_completion_interruptible(
766 &ap_apqn_bindings_complete);
767 if (l < 0)
768 rc = l == -ERESTARTSYS ? -EINTR : l;
769 else if (l == 0 && timeout)
770 rc = -ETIME;
771
772 pr_debug("rc=%d\n", rc);
773 return rc;
774 }
775 EXPORT_SYMBOL(ap_wait_apqn_bindings_complete);
776
__ap_queue_devices_with_id_unregister(struct device * dev,void * data)777 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data)
778 {
779 if (is_queue_dev(dev) &&
780 AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long)data)
781 device_unregister(dev);
782 return 0;
783 }
784
__ap_revise_reserved(struct device * dev,void * dummy)785 static int __ap_revise_reserved(struct device *dev, void *dummy)
786 {
787 int rc, card, queue, devres, drvres;
788
789 if (is_queue_dev(dev)) {
790 card = AP_QID_CARD(to_ap_queue(dev)->qid);
791 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
792 mutex_lock(&ap_perms_mutex);
793 devres = test_bit_inv(card, ap_perms.apm) &&
794 test_bit_inv(queue, ap_perms.aqm);
795 mutex_unlock(&ap_perms_mutex);
796 drvres = to_ap_drv(dev->driver)->flags
797 & AP_DRIVER_FLAG_DEFAULT;
798 if (!!devres != !!drvres) {
799 pr_debug("reprobing queue=%02x.%04x\n", card, queue);
800 rc = device_reprobe(dev);
801 if (rc)
802 AP_DBF_WARN("%s reprobing queue=%02x.%04x failed\n",
803 __func__, card, queue);
804 }
805 }
806
807 return 0;
808 }
809
ap_bus_revise_bindings(void)810 static void ap_bus_revise_bindings(void)
811 {
812 bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved);
813 }
814
815 /**
816 * ap_owned_by_def_drv: indicates whether an AP adapter is reserved for the
817 * default host driver or not.
818 * @card: the APID of the adapter card to check
819 * @queue: the APQI of the queue to check
820 *
821 * Note: the ap_perms_mutex must be locked by the caller of this function.
822 *
823 * Return: an int specifying whether the AP adapter is reserved for the host (1)
824 * or not (0).
825 */
ap_owned_by_def_drv(int card,int queue)826 int ap_owned_by_def_drv(int card, int queue)
827 {
828 int rc = 0;
829
830 if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS)
831 return -EINVAL;
832
833 if (test_bit_inv(card, ap_perms.apm) &&
834 test_bit_inv(queue, ap_perms.aqm))
835 rc = 1;
836
837 return rc;
838 }
839 EXPORT_SYMBOL(ap_owned_by_def_drv);
840
841 /**
842 * ap_apqn_in_matrix_owned_by_def_drv: indicates whether every APQN contained in
843 * a set is reserved for the host drivers
844 * or not.
845 * @apm: a bitmap specifying a set of APIDs comprising the APQNs to check
846 * @aqm: a bitmap specifying a set of APQIs comprising the APQNs to check
847 *
848 * Note: the ap_perms_mutex must be locked by the caller of this function.
849 *
850 * Return: an int specifying whether each APQN is reserved for the host (1) or
851 * not (0)
852 */
ap_apqn_in_matrix_owned_by_def_drv(unsigned long * apm,unsigned long * aqm)853 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm,
854 unsigned long *aqm)
855 {
856 int card, queue, rc = 0;
857
858 for (card = 0; !rc && card < AP_DEVICES; card++)
859 if (test_bit_inv(card, apm) &&
860 test_bit_inv(card, ap_perms.apm))
861 for (queue = 0; !rc && queue < AP_DOMAINS; queue++)
862 if (test_bit_inv(queue, aqm) &&
863 test_bit_inv(queue, ap_perms.aqm))
864 rc = 1;
865
866 return rc;
867 }
868 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv);
869
ap_device_probe(struct device * dev)870 static int ap_device_probe(struct device *dev)
871 {
872 struct ap_device *ap_dev = to_ap_dev(dev);
873 struct ap_driver *ap_drv = to_ap_drv(dev->driver);
874 int card, queue, devres, drvres, rc = -ENODEV;
875
876 if (!get_device(dev))
877 return rc;
878
879 if (is_queue_dev(dev)) {
880 /*
881 * If the apqn is marked as reserved/used by ap bus and
882 * default drivers, only probe with drivers with the default
883 * flag set. If it is not marked, only probe with drivers
884 * with the default flag not set.
885 */
886 card = AP_QID_CARD(to_ap_queue(dev)->qid);
887 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
888 mutex_lock(&ap_perms_mutex);
889 devres = test_bit_inv(card, ap_perms.apm) &&
890 test_bit_inv(queue, ap_perms.aqm);
891 mutex_unlock(&ap_perms_mutex);
892 drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT;
893 if (!!devres != !!drvres)
894 goto out;
895 }
896
897 /*
898 * Rearm the bindings complete completion to trigger
899 * bindings complete when all devices are bound again
900 */
901 reinit_completion(&ap_apqn_bindings_complete);
902
903 /* Add queue/card to list of active queues/cards */
904 spin_lock_bh(&ap_queues_lock);
905 if (is_queue_dev(dev))
906 hash_add(ap_queues, &to_ap_queue(dev)->hnode,
907 to_ap_queue(dev)->qid);
908 spin_unlock_bh(&ap_queues_lock);
909
910 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
911
912 if (rc) {
913 spin_lock_bh(&ap_queues_lock);
914 if (is_queue_dev(dev))
915 hash_del(&to_ap_queue(dev)->hnode);
916 spin_unlock_bh(&ap_queues_lock);
917 }
918
919 out:
920 if (rc)
921 put_device(dev);
922 return rc;
923 }
924
ap_device_remove(struct device * dev)925 static void ap_device_remove(struct device *dev)
926 {
927 struct ap_device *ap_dev = to_ap_dev(dev);
928 struct ap_driver *ap_drv = to_ap_drv(dev->driver);
929
930 /* prepare ap queue device removal */
931 if (is_queue_dev(dev))
932 ap_queue_prepare_remove(to_ap_queue(dev));
933
934 /* driver's chance to clean up gracefully */
935 if (ap_drv->remove)
936 ap_drv->remove(ap_dev);
937
938 /* now do the ap queue device remove */
939 if (is_queue_dev(dev))
940 ap_queue_remove(to_ap_queue(dev));
941
942 /* Remove queue/card from list of active queues/cards */
943 spin_lock_bh(&ap_queues_lock);
944 if (is_queue_dev(dev))
945 hash_del(&to_ap_queue(dev)->hnode);
946 spin_unlock_bh(&ap_queues_lock);
947
948 put_device(dev);
949 }
950
ap_get_qdev(ap_qid_t qid)951 struct ap_queue *ap_get_qdev(ap_qid_t qid)
952 {
953 int bkt;
954 struct ap_queue *aq;
955
956 spin_lock_bh(&ap_queues_lock);
957 hash_for_each(ap_queues, bkt, aq, hnode) {
958 if (aq->qid == qid) {
959 get_device(&aq->ap_dev.device);
960 spin_unlock_bh(&ap_queues_lock);
961 return aq;
962 }
963 }
964 spin_unlock_bh(&ap_queues_lock);
965
966 return NULL;
967 }
968 EXPORT_SYMBOL(ap_get_qdev);
969
ap_driver_register(struct ap_driver * ap_drv,struct module * owner,char * name)970 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
971 char *name)
972 {
973 struct device_driver *drv = &ap_drv->driver;
974 int rc;
975
976 drv->bus = &ap_bus_type;
977 drv->owner = owner;
978 drv->name = name;
979 rc = driver_register(drv);
980
981 ap_check_bindings_complete();
982
983 return rc;
984 }
985 EXPORT_SYMBOL(ap_driver_register);
986
ap_driver_unregister(struct ap_driver * ap_drv)987 void ap_driver_unregister(struct ap_driver *ap_drv)
988 {
989 driver_unregister(&ap_drv->driver);
990 }
991 EXPORT_SYMBOL(ap_driver_unregister);
992
993 /*
994 * Enforce a synchronous AP bus rescan.
995 * Returns true if the bus scan finds a change in the AP configuration
996 * and AP devices have been added or deleted when this function returns.
997 */
ap_bus_force_rescan(void)998 bool ap_bus_force_rescan(void)
999 {
1000 unsigned long scan_counter = atomic64_read(&ap_scan_bus_count);
1001 bool rc = false;
1002
1003 pr_debug("> scan counter=%lu\n", scan_counter);
1004
1005 /* Only trigger AP bus scans after the initial scan is done */
1006 if (scan_counter <= 0)
1007 goto out;
1008
1009 /*
1010 * There is one unlikely but nevertheless valid scenario where the
1011 * thread holding the mutex may try to send some crypto load but
1012 * all cards are offline so a rescan is triggered which causes
1013 * a recursive call of ap_bus_force_rescan(). A simple return if
1014 * the mutex is already locked by this thread solves this.
1015 */
1016 if (mutex_is_locked(&ap_scan_bus_mutex)) {
1017 if (ap_scan_bus_task == current)
1018 goto out;
1019 }
1020
1021 /* Try to acquire the AP scan bus mutex */
1022 if (mutex_trylock(&ap_scan_bus_mutex)) {
1023 /* mutex acquired, run the AP bus scan */
1024 ap_scan_bus_task = current;
1025 ap_scan_bus_result = ap_scan_bus();
1026 rc = ap_scan_bus_result;
1027 ap_scan_bus_task = NULL;
1028 mutex_unlock(&ap_scan_bus_mutex);
1029 goto out;
1030 }
1031
1032 /*
1033 * Mutex acquire failed. So there is currently another task
1034 * already running the AP bus scan. Then let's simple wait
1035 * for the lock which means the other task has finished and
1036 * stored the result in ap_scan_bus_result.
1037 */
1038 if (mutex_lock_interruptible(&ap_scan_bus_mutex)) {
1039 /* some error occurred, ignore and go out */
1040 goto out;
1041 }
1042 rc = ap_scan_bus_result;
1043 mutex_unlock(&ap_scan_bus_mutex);
1044
1045 out:
1046 pr_debug("rc=%d\n", rc);
1047 return rc;
1048 }
1049 EXPORT_SYMBOL(ap_bus_force_rescan);
1050
1051 /*
1052 * A config change has happened, force an ap bus rescan.
1053 */
ap_bus_cfg_chg(struct notifier_block * nb,unsigned long action,void * data)1054 static int ap_bus_cfg_chg(struct notifier_block *nb,
1055 unsigned long action, void *data)
1056 {
1057 if (action != CHSC_NOTIFY_AP_CFG)
1058 return NOTIFY_DONE;
1059
1060 pr_debug("config change, forcing bus rescan\n");
1061
1062 ap_bus_force_rescan();
1063
1064 return NOTIFY_OK;
1065 }
1066
1067 static struct notifier_block ap_bus_nb = {
1068 .notifier_call = ap_bus_cfg_chg,
1069 };
1070
ap_hex2bitmap(const char * str,unsigned long * bitmap,int bits)1071 int ap_hex2bitmap(const char *str, unsigned long *bitmap, int bits)
1072 {
1073 int i, n, b;
1074
1075 /* bits needs to be a multiple of 8 */
1076 if (bits & 0x07)
1077 return -EINVAL;
1078
1079 if (str[0] == '0' && str[1] == 'x')
1080 str++;
1081 if (*str == 'x')
1082 str++;
1083
1084 for (i = 0; isxdigit(*str) && i < bits; str++) {
1085 b = hex_to_bin(*str);
1086 for (n = 0; n < 4; n++)
1087 if (b & (0x08 >> n))
1088 set_bit_inv(i + n, bitmap);
1089 i += 4;
1090 }
1091
1092 if (*str == '\n')
1093 str++;
1094 if (*str)
1095 return -EINVAL;
1096 return 0;
1097 }
1098 EXPORT_SYMBOL(ap_hex2bitmap);
1099
1100 /*
1101 * modify_bitmap() - parse bitmask argument and modify an existing
1102 * bit mask accordingly. A concatenation (done with ',') of these
1103 * terms is recognized:
1104 * +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>]
1105 * <bitnr> may be any valid number (hex, decimal or octal) in the range
1106 * 0...bits-1; the leading + or - is required. Here are some examples:
1107 * +0-15,+32,-128,-0xFF
1108 * -0-255,+1-16,+0x128
1109 * +1,+2,+3,+4,-5,-7-10
1110 * Returns the new bitmap after all changes have been applied. Every
1111 * positive value in the string will set a bit and every negative value
1112 * in the string will clear a bit. As a bit may be touched more than once,
1113 * the last 'operation' wins:
1114 * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be
1115 * cleared again. All other bits are unmodified.
1116 */
modify_bitmap(const char * str,unsigned long * bitmap,int bits)1117 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits)
1118 {
1119 unsigned long a, i, z;
1120 char *np, sign;
1121
1122 /* bits needs to be a multiple of 8 */
1123 if (bits & 0x07)
1124 return -EINVAL;
1125
1126 while (*str) {
1127 sign = *str++;
1128 if (sign != '+' && sign != '-')
1129 return -EINVAL;
1130 a = z = simple_strtoul(str, &np, 0);
1131 if (str == np || a >= bits)
1132 return -EINVAL;
1133 str = np;
1134 if (*str == '-') {
1135 z = simple_strtoul(++str, &np, 0);
1136 if (str == np || a > z || z >= bits)
1137 return -EINVAL;
1138 str = np;
1139 }
1140 for (i = a; i <= z; i++)
1141 if (sign == '+')
1142 set_bit_inv(i, bitmap);
1143 else
1144 clear_bit_inv(i, bitmap);
1145 while (*str == ',' || *str == '\n')
1146 str++;
1147 }
1148
1149 return 0;
1150 }
1151
ap_parse_bitmap_str(const char * str,unsigned long * bitmap,int bits,unsigned long * newmap)1152 static int ap_parse_bitmap_str(const char *str, unsigned long *bitmap, int bits,
1153 unsigned long *newmap)
1154 {
1155 unsigned long size;
1156 int rc;
1157
1158 size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
1159 if (*str == '+' || *str == '-') {
1160 memcpy(newmap, bitmap, size);
1161 rc = modify_bitmap(str, newmap, bits);
1162 } else {
1163 memset(newmap, 0, size);
1164 rc = ap_hex2bitmap(str, newmap, bits);
1165 }
1166 return rc;
1167 }
1168
ap_parse_mask_str(const char * str,unsigned long * bitmap,int bits,struct mutex * lock)1169 int ap_parse_mask_str(const char *str,
1170 unsigned long *bitmap, int bits,
1171 struct mutex *lock)
1172 {
1173 unsigned long *newmap, size;
1174 int rc;
1175
1176 /* bits needs to be a multiple of 8 */
1177 if (bits & 0x07)
1178 return -EINVAL;
1179
1180 size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
1181 newmap = kmalloc(size, GFP_KERNEL);
1182 if (!newmap)
1183 return -ENOMEM;
1184 if (mutex_lock_interruptible(lock)) {
1185 kfree(newmap);
1186 return -ERESTARTSYS;
1187 }
1188 rc = ap_parse_bitmap_str(str, bitmap, bits, newmap);
1189 if (rc == 0)
1190 memcpy(bitmap, newmap, size);
1191 mutex_unlock(lock);
1192 kfree(newmap);
1193 return rc;
1194 }
1195 EXPORT_SYMBOL(ap_parse_mask_str);
1196
1197 /*
1198 * AP bus attributes.
1199 */
1200
ap_domain_show(const struct bus_type * bus,char * buf)1201 static ssize_t ap_domain_show(const struct bus_type *bus, char *buf)
1202 {
1203 return sysfs_emit(buf, "%d\n", ap_domain_index);
1204 }
1205
ap_domain_store(const struct bus_type * bus,const char * buf,size_t count)1206 static ssize_t ap_domain_store(const struct bus_type *bus,
1207 const char *buf, size_t count)
1208 {
1209 int domain;
1210
1211 if (sscanf(buf, "%i\n", &domain) != 1 ||
1212 domain < 0 || domain > ap_max_domain_id ||
1213 !test_bit_inv(domain, ap_perms.aqm))
1214 return -EINVAL;
1215
1216 spin_lock_bh(&ap_domain_lock);
1217 ap_domain_index = domain;
1218 spin_unlock_bh(&ap_domain_lock);
1219
1220 AP_DBF_INFO("%s stored new default domain=%d\n",
1221 __func__, domain);
1222
1223 return count;
1224 }
1225
1226 static BUS_ATTR_RW(ap_domain);
1227
ap_control_domain_mask_show(const struct bus_type * bus,char * buf)1228 static ssize_t ap_control_domain_mask_show(const struct bus_type *bus, char *buf)
1229 {
1230 if (!ap_qci_info->flags) /* QCI not supported */
1231 return sysfs_emit(buf, "not supported\n");
1232
1233 return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1234 ap_qci_info->adm[0], ap_qci_info->adm[1],
1235 ap_qci_info->adm[2], ap_qci_info->adm[3],
1236 ap_qci_info->adm[4], ap_qci_info->adm[5],
1237 ap_qci_info->adm[6], ap_qci_info->adm[7]);
1238 }
1239
1240 static BUS_ATTR_RO(ap_control_domain_mask);
1241
ap_usage_domain_mask_show(const struct bus_type * bus,char * buf)1242 static ssize_t ap_usage_domain_mask_show(const struct bus_type *bus, char *buf)
1243 {
1244 if (!ap_qci_info->flags) /* QCI not supported */
1245 return sysfs_emit(buf, "not supported\n");
1246
1247 return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1248 ap_qci_info->aqm[0], ap_qci_info->aqm[1],
1249 ap_qci_info->aqm[2], ap_qci_info->aqm[3],
1250 ap_qci_info->aqm[4], ap_qci_info->aqm[5],
1251 ap_qci_info->aqm[6], ap_qci_info->aqm[7]);
1252 }
1253
1254 static BUS_ATTR_RO(ap_usage_domain_mask);
1255
ap_adapter_mask_show(const struct bus_type * bus,char * buf)1256 static ssize_t ap_adapter_mask_show(const struct bus_type *bus, char *buf)
1257 {
1258 if (!ap_qci_info->flags) /* QCI not supported */
1259 return sysfs_emit(buf, "not supported\n");
1260
1261 return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1262 ap_qci_info->apm[0], ap_qci_info->apm[1],
1263 ap_qci_info->apm[2], ap_qci_info->apm[3],
1264 ap_qci_info->apm[4], ap_qci_info->apm[5],
1265 ap_qci_info->apm[6], ap_qci_info->apm[7]);
1266 }
1267
1268 static BUS_ATTR_RO(ap_adapter_mask);
1269
ap_interrupts_show(const struct bus_type * bus,char * buf)1270 static ssize_t ap_interrupts_show(const struct bus_type *bus, char *buf)
1271 {
1272 return sysfs_emit(buf, "%d\n", ap_irq_flag ? 1 : 0);
1273 }
1274
1275 static BUS_ATTR_RO(ap_interrupts);
1276
config_time_show(const struct bus_type * bus,char * buf)1277 static ssize_t config_time_show(const struct bus_type *bus, char *buf)
1278 {
1279 return sysfs_emit(buf, "%d\n", ap_scan_bus_time);
1280 }
1281
config_time_store(const struct bus_type * bus,const char * buf,size_t count)1282 static ssize_t config_time_store(const struct bus_type *bus,
1283 const char *buf, size_t count)
1284 {
1285 int time;
1286
1287 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1288 return -EINVAL;
1289 ap_scan_bus_time = time;
1290 mod_timer(&ap_scan_bus_timer, jiffies + ap_scan_bus_time * HZ);
1291 return count;
1292 }
1293
1294 static BUS_ATTR_RW(config_time);
1295
poll_thread_show(const struct bus_type * bus,char * buf)1296 static ssize_t poll_thread_show(const struct bus_type *bus, char *buf)
1297 {
1298 return sysfs_emit(buf, "%d\n", ap_poll_kthread ? 1 : 0);
1299 }
1300
poll_thread_store(const struct bus_type * bus,const char * buf,size_t count)1301 static ssize_t poll_thread_store(const struct bus_type *bus,
1302 const char *buf, size_t count)
1303 {
1304 bool value;
1305 int rc;
1306
1307 rc = kstrtobool(buf, &value);
1308 if (rc)
1309 return rc;
1310
1311 if (value) {
1312 rc = ap_poll_thread_start();
1313 if (rc)
1314 count = rc;
1315 } else {
1316 ap_poll_thread_stop();
1317 }
1318 return count;
1319 }
1320
1321 static BUS_ATTR_RW(poll_thread);
1322
poll_timeout_show(const struct bus_type * bus,char * buf)1323 static ssize_t poll_timeout_show(const struct bus_type *bus, char *buf)
1324 {
1325 return sysfs_emit(buf, "%lu\n", poll_high_timeout);
1326 }
1327
poll_timeout_store(const struct bus_type * bus,const char * buf,size_t count)1328 static ssize_t poll_timeout_store(const struct bus_type *bus, const char *buf,
1329 size_t count)
1330 {
1331 unsigned long value;
1332 ktime_t hr_time;
1333 int rc;
1334
1335 rc = kstrtoul(buf, 0, &value);
1336 if (rc)
1337 return rc;
1338
1339 /* 120 seconds = maximum poll interval */
1340 if (value > 120000000000UL)
1341 return -EINVAL;
1342 poll_high_timeout = value;
1343 hr_time = poll_high_timeout;
1344
1345 spin_lock_bh(&ap_poll_timer_lock);
1346 hrtimer_cancel(&ap_poll_timer);
1347 hrtimer_set_expires(&ap_poll_timer, hr_time);
1348 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
1349 spin_unlock_bh(&ap_poll_timer_lock);
1350
1351 return count;
1352 }
1353
1354 static BUS_ATTR_RW(poll_timeout);
1355
ap_max_domain_id_show(const struct bus_type * bus,char * buf)1356 static ssize_t ap_max_domain_id_show(const struct bus_type *bus, char *buf)
1357 {
1358 return sysfs_emit(buf, "%d\n", ap_max_domain_id);
1359 }
1360
1361 static BUS_ATTR_RO(ap_max_domain_id);
1362
ap_max_adapter_id_show(const struct bus_type * bus,char * buf)1363 static ssize_t ap_max_adapter_id_show(const struct bus_type *bus, char *buf)
1364 {
1365 return sysfs_emit(buf, "%d\n", ap_max_adapter_id);
1366 }
1367
1368 static BUS_ATTR_RO(ap_max_adapter_id);
1369
apmask_show(const struct bus_type * bus,char * buf)1370 static ssize_t apmask_show(const struct bus_type *bus, char *buf)
1371 {
1372 int rc;
1373
1374 if (mutex_lock_interruptible(&ap_perms_mutex))
1375 return -ERESTARTSYS;
1376 rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n",
1377 ap_perms.apm[0], ap_perms.apm[1],
1378 ap_perms.apm[2], ap_perms.apm[3]);
1379 mutex_unlock(&ap_perms_mutex);
1380
1381 return rc;
1382 }
1383
__verify_card_reservations(struct device_driver * drv,void * data)1384 static int __verify_card_reservations(struct device_driver *drv, void *data)
1385 {
1386 int rc = 0;
1387 struct ap_driver *ap_drv = to_ap_drv(drv);
1388 unsigned long *newapm = (unsigned long *)data;
1389
1390 /*
1391 * increase the driver's module refcounter to be sure it is not
1392 * going away when we invoke the callback function.
1393 */
1394 if (!try_module_get(drv->owner))
1395 return 0;
1396
1397 if (ap_drv->in_use) {
1398 rc = ap_drv->in_use(newapm, ap_perms.aqm);
1399 if (rc)
1400 rc = -EBUSY;
1401 }
1402
1403 /* release the driver's module */
1404 module_put(drv->owner);
1405
1406 return rc;
1407 }
1408
apmask_commit(unsigned long * newapm)1409 static int apmask_commit(unsigned long *newapm)
1410 {
1411 int rc;
1412 unsigned long reserved[BITS_TO_LONGS(AP_DEVICES)];
1413
1414 /*
1415 * Check if any bits in the apmask have been set which will
1416 * result in queues being removed from non-default drivers
1417 */
1418 if (bitmap_andnot(reserved, newapm, ap_perms.apm, AP_DEVICES)) {
1419 rc = bus_for_each_drv(&ap_bus_type, NULL, reserved,
1420 __verify_card_reservations);
1421 if (rc)
1422 return rc;
1423 }
1424
1425 memcpy(ap_perms.apm, newapm, APMASKSIZE);
1426
1427 return 0;
1428 }
1429
apmask_store(const struct bus_type * bus,const char * buf,size_t count)1430 static ssize_t apmask_store(const struct bus_type *bus, const char *buf,
1431 size_t count)
1432 {
1433 int rc, changes = 0;
1434 DECLARE_BITMAP(newapm, AP_DEVICES);
1435
1436 if (mutex_lock_interruptible(&ap_perms_mutex))
1437 return -ERESTARTSYS;
1438
1439 rc = ap_parse_bitmap_str(buf, ap_perms.apm, AP_DEVICES, newapm);
1440 if (rc)
1441 goto done;
1442
1443 changes = memcmp(ap_perms.apm, newapm, APMASKSIZE);
1444 if (changes)
1445 rc = apmask_commit(newapm);
1446
1447 done:
1448 mutex_unlock(&ap_perms_mutex);
1449 if (rc)
1450 return rc;
1451
1452 if (changes) {
1453 ap_bus_revise_bindings();
1454 ap_send_mask_changed_uevent(newapm, NULL);
1455 }
1456
1457 return count;
1458 }
1459
1460 static BUS_ATTR_RW(apmask);
1461
aqmask_show(const struct bus_type * bus,char * buf)1462 static ssize_t aqmask_show(const struct bus_type *bus, char *buf)
1463 {
1464 int rc;
1465
1466 if (mutex_lock_interruptible(&ap_perms_mutex))
1467 return -ERESTARTSYS;
1468 rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n",
1469 ap_perms.aqm[0], ap_perms.aqm[1],
1470 ap_perms.aqm[2], ap_perms.aqm[3]);
1471 mutex_unlock(&ap_perms_mutex);
1472
1473 return rc;
1474 }
1475
__verify_queue_reservations(struct device_driver * drv,void * data)1476 static int __verify_queue_reservations(struct device_driver *drv, void *data)
1477 {
1478 int rc = 0;
1479 struct ap_driver *ap_drv = to_ap_drv(drv);
1480 unsigned long *newaqm = (unsigned long *)data;
1481
1482 /*
1483 * increase the driver's module refcounter to be sure it is not
1484 * going away when we invoke the callback function.
1485 */
1486 if (!try_module_get(drv->owner))
1487 return 0;
1488
1489 if (ap_drv->in_use) {
1490 rc = ap_drv->in_use(ap_perms.apm, newaqm);
1491 if (rc)
1492 rc = -EBUSY;
1493 }
1494
1495 /* release the driver's module */
1496 module_put(drv->owner);
1497
1498 return rc;
1499 }
1500
aqmask_commit(unsigned long * newaqm)1501 static int aqmask_commit(unsigned long *newaqm)
1502 {
1503 int rc;
1504 unsigned long reserved[BITS_TO_LONGS(AP_DOMAINS)];
1505
1506 /*
1507 * Check if any bits in the aqmask have been set which will
1508 * result in queues being removed from non-default drivers
1509 */
1510 if (bitmap_andnot(reserved, newaqm, ap_perms.aqm, AP_DOMAINS)) {
1511 rc = bus_for_each_drv(&ap_bus_type, NULL, reserved,
1512 __verify_queue_reservations);
1513 if (rc)
1514 return rc;
1515 }
1516
1517 memcpy(ap_perms.aqm, newaqm, AQMASKSIZE);
1518
1519 return 0;
1520 }
1521
aqmask_store(const struct bus_type * bus,const char * buf,size_t count)1522 static ssize_t aqmask_store(const struct bus_type *bus, const char *buf,
1523 size_t count)
1524 {
1525 int rc, changes = 0;
1526 DECLARE_BITMAP(newaqm, AP_DOMAINS);
1527
1528 if (mutex_lock_interruptible(&ap_perms_mutex))
1529 return -ERESTARTSYS;
1530
1531 rc = ap_parse_bitmap_str(buf, ap_perms.aqm, AP_DOMAINS, newaqm);
1532 if (rc)
1533 goto done;
1534
1535 changes = memcmp(ap_perms.aqm, newaqm, APMASKSIZE);
1536 if (changes)
1537 rc = aqmask_commit(newaqm);
1538
1539 done:
1540 mutex_unlock(&ap_perms_mutex);
1541 if (rc)
1542 return rc;
1543
1544 if (changes) {
1545 ap_bus_revise_bindings();
1546 ap_send_mask_changed_uevent(NULL, newaqm);
1547 }
1548
1549 return count;
1550 }
1551
1552 static BUS_ATTR_RW(aqmask);
1553
scans_show(const struct bus_type * bus,char * buf)1554 static ssize_t scans_show(const struct bus_type *bus, char *buf)
1555 {
1556 return sysfs_emit(buf, "%llu\n", atomic64_read(&ap_scan_bus_count));
1557 }
1558
scans_store(const struct bus_type * bus,const char * buf,size_t count)1559 static ssize_t scans_store(const struct bus_type *bus, const char *buf,
1560 size_t count)
1561 {
1562 AP_DBF_INFO("%s force AP bus rescan\n", __func__);
1563
1564 ap_bus_force_rescan();
1565
1566 return count;
1567 }
1568
1569 static BUS_ATTR_RW(scans);
1570
bindings_show(const struct bus_type * bus,char * buf)1571 static ssize_t bindings_show(const struct bus_type *bus, char *buf)
1572 {
1573 int rc;
1574 unsigned int apqns, n;
1575
1576 ap_calc_bound_apqns(&apqns, &n);
1577 if (atomic64_read(&ap_scan_bus_count) >= 1 && n == apqns)
1578 rc = sysfs_emit(buf, "%u/%u (complete)\n", n, apqns);
1579 else
1580 rc = sysfs_emit(buf, "%u/%u\n", n, apqns);
1581
1582 return rc;
1583 }
1584
1585 static BUS_ATTR_RO(bindings);
1586
features_show(const struct bus_type * bus,char * buf)1587 static ssize_t features_show(const struct bus_type *bus, char *buf)
1588 {
1589 int n = 0;
1590
1591 if (!ap_qci_info->flags) /* QCI not supported */
1592 return sysfs_emit(buf, "-\n");
1593
1594 if (ap_qci_info->apsc)
1595 n += sysfs_emit_at(buf, n, "APSC ");
1596 if (ap_qci_info->apxa)
1597 n += sysfs_emit_at(buf, n, "APXA ");
1598 if (ap_qci_info->qact)
1599 n += sysfs_emit_at(buf, n, "QACT ");
1600 if (ap_qci_info->rc8a)
1601 n += sysfs_emit_at(buf, n, "RC8A ");
1602 if (ap_qci_info->apsb)
1603 n += sysfs_emit_at(buf, n, "APSB ");
1604
1605 sysfs_emit_at(buf, n == 0 ? 0 : n - 1, "\n");
1606
1607 return n;
1608 }
1609
1610 static BUS_ATTR_RO(features);
1611
1612 static struct attribute *ap_bus_attrs[] = {
1613 &bus_attr_ap_domain.attr,
1614 &bus_attr_ap_control_domain_mask.attr,
1615 &bus_attr_ap_usage_domain_mask.attr,
1616 &bus_attr_ap_adapter_mask.attr,
1617 &bus_attr_config_time.attr,
1618 &bus_attr_poll_thread.attr,
1619 &bus_attr_ap_interrupts.attr,
1620 &bus_attr_poll_timeout.attr,
1621 &bus_attr_ap_max_domain_id.attr,
1622 &bus_attr_ap_max_adapter_id.attr,
1623 &bus_attr_apmask.attr,
1624 &bus_attr_aqmask.attr,
1625 &bus_attr_scans.attr,
1626 &bus_attr_bindings.attr,
1627 &bus_attr_features.attr,
1628 NULL,
1629 };
1630 ATTRIBUTE_GROUPS(ap_bus);
1631
1632 static const struct bus_type ap_bus_type = {
1633 .name = "ap",
1634 .bus_groups = ap_bus_groups,
1635 .match = &ap_bus_match,
1636 .uevent = &ap_uevent,
1637 .probe = ap_device_probe,
1638 .remove = ap_device_remove,
1639 };
1640
1641 /**
1642 * ap_select_domain(): Select an AP domain if possible and we haven't
1643 * already done so before.
1644 */
ap_select_domain(void)1645 static void ap_select_domain(void)
1646 {
1647 struct ap_queue_status status;
1648 int card, dom;
1649
1650 /*
1651 * Choose the default domain. Either the one specified with
1652 * the "domain=" parameter or the first domain with at least
1653 * one valid APQN.
1654 */
1655 spin_lock_bh(&ap_domain_lock);
1656 if (ap_domain_index >= 0) {
1657 /* Domain has already been selected. */
1658 goto out;
1659 }
1660 for (dom = 0; dom <= ap_max_domain_id; dom++) {
1661 if (!ap_test_config_usage_domain(dom) ||
1662 !test_bit_inv(dom, ap_perms.aqm))
1663 continue;
1664 for (card = 0; card <= ap_max_adapter_id; card++) {
1665 if (!ap_test_config_card_id(card) ||
1666 !test_bit_inv(card, ap_perms.apm))
1667 continue;
1668 status = ap_test_queue(AP_MKQID(card, dom),
1669 ap_apft_available(),
1670 NULL);
1671 if (status.response_code == AP_RESPONSE_NORMAL)
1672 break;
1673 }
1674 if (card <= ap_max_adapter_id)
1675 break;
1676 }
1677 if (dom <= ap_max_domain_id) {
1678 ap_domain_index = dom;
1679 AP_DBF_INFO("%s new default domain is %d\n",
1680 __func__, ap_domain_index);
1681 }
1682 out:
1683 spin_unlock_bh(&ap_domain_lock);
1684 }
1685
1686 /*
1687 * This function checks the type and returns either 0 for not
1688 * supported or the highest compatible type value (which may
1689 * include the input type value).
1690 */
ap_get_compatible_type(ap_qid_t qid,int rawtype,unsigned int func)1691 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func)
1692 {
1693 int comp_type = 0;
1694
1695 /* < CEX4 is not supported */
1696 if (rawtype < AP_DEVICE_TYPE_CEX4) {
1697 AP_DBF_WARN("%s queue=%02x.%04x unsupported type %d\n",
1698 __func__, AP_QID_CARD(qid),
1699 AP_QID_QUEUE(qid), rawtype);
1700 return 0;
1701 }
1702 /* up to CEX8 known and fully supported */
1703 if (rawtype <= AP_DEVICE_TYPE_CEX8)
1704 return rawtype;
1705 /*
1706 * unknown new type > CEX8, check for compatibility
1707 * to the highest known and supported type which is
1708 * currently CEX8 with the help of the QACT function.
1709 */
1710 if (ap_qact_available()) {
1711 struct ap_queue_status status;
1712 union ap_qact_ap_info apinfo = {0};
1713
1714 apinfo.mode = (func >> 26) & 0x07;
1715 apinfo.cat = AP_DEVICE_TYPE_CEX8;
1716 status = ap_qact(qid, 0, &apinfo);
1717 if (status.response_code == AP_RESPONSE_NORMAL &&
1718 apinfo.cat >= AP_DEVICE_TYPE_CEX4 &&
1719 apinfo.cat <= AP_DEVICE_TYPE_CEX8)
1720 comp_type = apinfo.cat;
1721 }
1722 if (!comp_type)
1723 AP_DBF_WARN("%s queue=%02x.%04x unable to map type %d\n",
1724 __func__, AP_QID_CARD(qid),
1725 AP_QID_QUEUE(qid), rawtype);
1726 else if (comp_type != rawtype)
1727 AP_DBF_INFO("%s queue=%02x.%04x map type %d to %d\n",
1728 __func__, AP_QID_CARD(qid), AP_QID_QUEUE(qid),
1729 rawtype, comp_type);
1730 return comp_type;
1731 }
1732
1733 /*
1734 * Helper function to be used with bus_find_dev
1735 * matches for the card device with the given id
1736 */
__match_card_device_with_id(struct device * dev,const void * data)1737 static int __match_card_device_with_id(struct device *dev, const void *data)
1738 {
1739 return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *)data;
1740 }
1741
1742 /*
1743 * Helper function to be used with bus_find_dev
1744 * matches for the queue device with a given qid
1745 */
__match_queue_device_with_qid(struct device * dev,const void * data)1746 static int __match_queue_device_with_qid(struct device *dev, const void *data)
1747 {
1748 return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long)data;
1749 }
1750
1751 /*
1752 * Helper function to be used with bus_find_dev
1753 * matches any queue device with given queue id
1754 */
__match_queue_device_with_queue_id(struct device * dev,const void * data)1755 static int __match_queue_device_with_queue_id(struct device *dev, const void *data)
1756 {
1757 return is_queue_dev(dev) &&
1758 AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long)data;
1759 }
1760
1761 /* Helper function for notify_config_changed */
__drv_notify_config_changed(struct device_driver * drv,void * data)1762 static int __drv_notify_config_changed(struct device_driver *drv, void *data)
1763 {
1764 struct ap_driver *ap_drv = to_ap_drv(drv);
1765
1766 if (try_module_get(drv->owner)) {
1767 if (ap_drv->on_config_changed)
1768 ap_drv->on_config_changed(ap_qci_info, ap_qci_info_old);
1769 module_put(drv->owner);
1770 }
1771
1772 return 0;
1773 }
1774
1775 /* Notify all drivers about an qci config change */
notify_config_changed(void)1776 static inline void notify_config_changed(void)
1777 {
1778 bus_for_each_drv(&ap_bus_type, NULL, NULL,
1779 __drv_notify_config_changed);
1780 }
1781
1782 /* Helper function for notify_scan_complete */
__drv_notify_scan_complete(struct device_driver * drv,void * data)1783 static int __drv_notify_scan_complete(struct device_driver *drv, void *data)
1784 {
1785 struct ap_driver *ap_drv = to_ap_drv(drv);
1786
1787 if (try_module_get(drv->owner)) {
1788 if (ap_drv->on_scan_complete)
1789 ap_drv->on_scan_complete(ap_qci_info,
1790 ap_qci_info_old);
1791 module_put(drv->owner);
1792 }
1793
1794 return 0;
1795 }
1796
1797 /* Notify all drivers about bus scan complete */
notify_scan_complete(void)1798 static inline void notify_scan_complete(void)
1799 {
1800 bus_for_each_drv(&ap_bus_type, NULL, NULL,
1801 __drv_notify_scan_complete);
1802 }
1803
1804 /*
1805 * Helper function for ap_scan_bus().
1806 * Remove card device and associated queue devices.
1807 */
ap_scan_rm_card_dev_and_queue_devs(struct ap_card * ac)1808 static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac)
1809 {
1810 bus_for_each_dev(&ap_bus_type, NULL,
1811 (void *)(long)ac->id,
1812 __ap_queue_devices_with_id_unregister);
1813 device_unregister(&ac->ap_dev.device);
1814 }
1815
1816 /*
1817 * Helper function for ap_scan_bus().
1818 * Does the scan bus job for all the domains within
1819 * a valid adapter given by an ap_card ptr.
1820 */
ap_scan_domains(struct ap_card * ac)1821 static inline void ap_scan_domains(struct ap_card *ac)
1822 {
1823 struct ap_tapq_hwinfo hwinfo;
1824 bool decfg, chkstop;
1825 struct ap_queue *aq;
1826 struct device *dev;
1827 ap_qid_t qid;
1828 int rc, dom;
1829
1830 /*
1831 * Go through the configuration for the domains and compare them
1832 * to the existing queue devices. Also take care of the config
1833 * and error state for the queue devices.
1834 */
1835
1836 for (dom = 0; dom <= ap_max_domain_id; dom++) {
1837 qid = AP_MKQID(ac->id, dom);
1838 dev = bus_find_device(&ap_bus_type, NULL,
1839 (void *)(long)qid,
1840 __match_queue_device_with_qid);
1841 aq = dev ? to_ap_queue(dev) : NULL;
1842 if (!ap_test_config_usage_domain(dom)) {
1843 if (dev) {
1844 AP_DBF_INFO("%s(%d,%d) not in config anymore, rm queue dev\n",
1845 __func__, ac->id, dom);
1846 device_unregister(dev);
1847 }
1848 goto put_dev_and_continue;
1849 }
1850 /* domain is valid, get info from this APQN */
1851 rc = ap_queue_info(qid, &hwinfo, &decfg, &chkstop);
1852 switch (rc) {
1853 case -1:
1854 if (dev) {
1855 AP_DBF_INFO("%s(%d,%d) queue_info() failed, rm queue dev\n",
1856 __func__, ac->id, dom);
1857 device_unregister(dev);
1858 }
1859 fallthrough;
1860 case 0:
1861 goto put_dev_and_continue;
1862 default:
1863 break;
1864 }
1865 /* if no queue device exists, create a new one */
1866 if (!aq) {
1867 aq = ap_queue_create(qid, ac);
1868 if (!aq) {
1869 AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n",
1870 __func__, ac->id, dom);
1871 continue;
1872 }
1873 aq->config = !decfg;
1874 aq->chkstop = chkstop;
1875 aq->se_bstate = hwinfo.bs;
1876 dev = &aq->ap_dev.device;
1877 dev->bus = &ap_bus_type;
1878 dev->parent = &ac->ap_dev.device;
1879 dev_set_name(dev, "%02x.%04x", ac->id, dom);
1880 /* register queue device */
1881 rc = device_register(dev);
1882 if (rc) {
1883 AP_DBF_WARN("%s(%d,%d) device_register() failed\n",
1884 __func__, ac->id, dom);
1885 goto put_dev_and_continue;
1886 }
1887 /* get it and thus adjust reference counter */
1888 get_device(dev);
1889 if (decfg) {
1890 AP_DBF_INFO("%s(%d,%d) new (decfg) queue dev created\n",
1891 __func__, ac->id, dom);
1892 } else if (chkstop) {
1893 AP_DBF_INFO("%s(%d,%d) new (chkstop) queue dev created\n",
1894 __func__, ac->id, dom);
1895 } else {
1896 /* nudge the queue's state machine */
1897 ap_queue_init_state(aq);
1898 AP_DBF_INFO("%s(%d,%d) new queue dev created\n",
1899 __func__, ac->id, dom);
1900 }
1901 goto put_dev_and_continue;
1902 }
1903 /* handle state changes on already existing queue device */
1904 spin_lock_bh(&aq->lock);
1905 /* SE bind state */
1906 aq->se_bstate = hwinfo.bs;
1907 /* checkstop state */
1908 if (chkstop && !aq->chkstop) {
1909 /* checkstop on */
1910 aq->chkstop = true;
1911 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1912 aq->dev_state = AP_DEV_STATE_ERROR;
1913 aq->last_err_rc = AP_RESPONSE_CHECKSTOPPED;
1914 }
1915 spin_unlock_bh(&aq->lock);
1916 pr_debug("(%d,%d) queue dev checkstop on\n",
1917 ac->id, dom);
1918 /* 'receive' pending messages with -EAGAIN */
1919 ap_flush_queue(aq);
1920 goto put_dev_and_continue;
1921 } else if (!chkstop && aq->chkstop) {
1922 /* checkstop off */
1923 aq->chkstop = false;
1924 if (aq->dev_state > AP_DEV_STATE_UNINITIATED)
1925 _ap_queue_init_state(aq);
1926 spin_unlock_bh(&aq->lock);
1927 pr_debug("(%d,%d) queue dev checkstop off\n",
1928 ac->id, dom);
1929 goto put_dev_and_continue;
1930 }
1931 /* config state change */
1932 if (decfg && aq->config) {
1933 /* config off this queue device */
1934 aq->config = false;
1935 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1936 aq->dev_state = AP_DEV_STATE_ERROR;
1937 aq->last_err_rc = AP_RESPONSE_DECONFIGURED;
1938 }
1939 spin_unlock_bh(&aq->lock);
1940 pr_debug("(%d,%d) queue dev config off\n",
1941 ac->id, dom);
1942 ap_send_config_uevent(&aq->ap_dev, aq->config);
1943 /* 'receive' pending messages with -EAGAIN */
1944 ap_flush_queue(aq);
1945 goto put_dev_and_continue;
1946 } else if (!decfg && !aq->config) {
1947 /* config on this queue device */
1948 aq->config = true;
1949 if (aq->dev_state > AP_DEV_STATE_UNINITIATED)
1950 _ap_queue_init_state(aq);
1951 spin_unlock_bh(&aq->lock);
1952 pr_debug("(%d,%d) queue dev config on\n",
1953 ac->id, dom);
1954 ap_send_config_uevent(&aq->ap_dev, aq->config);
1955 goto put_dev_and_continue;
1956 }
1957 /* handle other error states */
1958 if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) {
1959 spin_unlock_bh(&aq->lock);
1960 /* 'receive' pending messages with -EAGAIN */
1961 ap_flush_queue(aq);
1962 /* re-init (with reset) the queue device */
1963 ap_queue_init_state(aq);
1964 AP_DBF_INFO("%s(%d,%d) queue dev reinit enforced\n",
1965 __func__, ac->id, dom);
1966 goto put_dev_and_continue;
1967 }
1968 spin_unlock_bh(&aq->lock);
1969 put_dev_and_continue:
1970 put_device(dev);
1971 }
1972 }
1973
1974 /*
1975 * Helper function for ap_scan_bus().
1976 * Does the scan bus job for the given adapter id.
1977 */
ap_scan_adapter(int ap)1978 static inline void ap_scan_adapter(int ap)
1979 {
1980 struct ap_tapq_hwinfo hwinfo;
1981 int rc, dom, comp_type;
1982 bool decfg, chkstop;
1983 struct ap_card *ac;
1984 struct device *dev;
1985 ap_qid_t qid;
1986
1987 /* Is there currently a card device for this adapter ? */
1988 dev = bus_find_device(&ap_bus_type, NULL,
1989 (void *)(long)ap,
1990 __match_card_device_with_id);
1991 ac = dev ? to_ap_card(dev) : NULL;
1992
1993 /* Adapter not in configuration ? */
1994 if (!ap_test_config_card_id(ap)) {
1995 if (ac) {
1996 AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devs\n",
1997 __func__, ap);
1998 ap_scan_rm_card_dev_and_queue_devs(ac);
1999 put_device(dev);
2000 }
2001 return;
2002 }
2003
2004 /*
2005 * Adapter ap is valid in the current configuration. So do some checks:
2006 * If no card device exists, build one. If a card device exists, check
2007 * for type and functions changed. For all this we need to find a valid
2008 * APQN first.
2009 */
2010
2011 for (dom = 0; dom <= ap_max_domain_id; dom++)
2012 if (ap_test_config_usage_domain(dom)) {
2013 qid = AP_MKQID(ap, dom);
2014 if (ap_queue_info(qid, &hwinfo, &decfg, &chkstop) > 0)
2015 break;
2016 }
2017 if (dom > ap_max_domain_id) {
2018 /* Could not find one valid APQN for this adapter */
2019 if (ac) {
2020 AP_DBF_INFO("%s(%d) no type info (no APQN found), rm card and queue devs\n",
2021 __func__, ap);
2022 ap_scan_rm_card_dev_and_queue_devs(ac);
2023 put_device(dev);
2024 } else {
2025 pr_debug("(%d) no type info (no APQN found), ignored\n",
2026 ap);
2027 }
2028 return;
2029 }
2030 if (!hwinfo.at) {
2031 /* No apdater type info available, an unusable adapter */
2032 if (ac) {
2033 AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devs\n",
2034 __func__, ap);
2035 ap_scan_rm_card_dev_and_queue_devs(ac);
2036 put_device(dev);
2037 } else {
2038 pr_debug("(%d) no valid type (0) info, ignored\n", ap);
2039 }
2040 return;
2041 }
2042 hwinfo.value &= TAPQ_CARD_HWINFO_MASK; /* filter card specific hwinfo */
2043 if (ac) {
2044 /* Check APQN against existing card device for changes */
2045 if (ac->hwinfo.at != hwinfo.at) {
2046 AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devs\n",
2047 __func__, ap, hwinfo.at);
2048 ap_scan_rm_card_dev_and_queue_devs(ac);
2049 put_device(dev);
2050 ac = NULL;
2051 } else if (ac->hwinfo.fac != hwinfo.fac) {
2052 AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devs\n",
2053 __func__, ap, hwinfo.fac);
2054 ap_scan_rm_card_dev_and_queue_devs(ac);
2055 put_device(dev);
2056 ac = NULL;
2057 } else {
2058 /* handle checkstop state change */
2059 if (chkstop && !ac->chkstop) {
2060 /* checkstop on */
2061 ac->chkstop = true;
2062 AP_DBF_INFO("%s(%d) card dev checkstop on\n",
2063 __func__, ap);
2064 } else if (!chkstop && ac->chkstop) {
2065 /* checkstop off */
2066 ac->chkstop = false;
2067 AP_DBF_INFO("%s(%d) card dev checkstop off\n",
2068 __func__, ap);
2069 }
2070 /* handle config state change */
2071 if (decfg && ac->config) {
2072 ac->config = false;
2073 AP_DBF_INFO("%s(%d) card dev config off\n",
2074 __func__, ap);
2075 ap_send_config_uevent(&ac->ap_dev, ac->config);
2076 } else if (!decfg && !ac->config) {
2077 ac->config = true;
2078 AP_DBF_INFO("%s(%d) card dev config on\n",
2079 __func__, ap);
2080 ap_send_config_uevent(&ac->ap_dev, ac->config);
2081 }
2082 }
2083 }
2084
2085 if (!ac) {
2086 /* Build a new card device */
2087 comp_type = ap_get_compatible_type(qid, hwinfo.at, hwinfo.fac);
2088 if (!comp_type) {
2089 AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n",
2090 __func__, ap, hwinfo.at);
2091 return;
2092 }
2093 ac = ap_card_create(ap, hwinfo, comp_type);
2094 if (!ac) {
2095 AP_DBF_WARN("%s(%d) ap_card_create() failed\n",
2096 __func__, ap);
2097 return;
2098 }
2099 ac->config = !decfg;
2100 ac->chkstop = chkstop;
2101 dev = &ac->ap_dev.device;
2102 dev->bus = &ap_bus_type;
2103 dev->parent = ap_root_device;
2104 dev_set_name(dev, "card%02x", ap);
2105 /* maybe enlarge ap_max_msg_size to support this card */
2106 if (ac->maxmsgsize > atomic_read(&ap_max_msg_size)) {
2107 atomic_set(&ap_max_msg_size, ac->maxmsgsize);
2108 AP_DBF_INFO("%s(%d) ap_max_msg_size update to %d byte\n",
2109 __func__, ap,
2110 atomic_read(&ap_max_msg_size));
2111 }
2112 /* Register the new card device with AP bus */
2113 rc = device_register(dev);
2114 if (rc) {
2115 AP_DBF_WARN("%s(%d) device_register() failed\n",
2116 __func__, ap);
2117 put_device(dev);
2118 return;
2119 }
2120 /* get it and thus adjust reference counter */
2121 get_device(dev);
2122 if (decfg)
2123 AP_DBF_INFO("%s(%d) new (decfg) card dev type=%d func=0x%08x created\n",
2124 __func__, ap, hwinfo.at, hwinfo.fac);
2125 else if (chkstop)
2126 AP_DBF_INFO("%s(%d) new (chkstop) card dev type=%d func=0x%08x created\n",
2127 __func__, ap, hwinfo.at, hwinfo.fac);
2128 else
2129 AP_DBF_INFO("%s(%d) new card dev type=%d func=0x%08x created\n",
2130 __func__, ap, hwinfo.at, hwinfo.fac);
2131 }
2132
2133 /* Verify the domains and the queue devices for this card */
2134 ap_scan_domains(ac);
2135
2136 /* release the card device */
2137 put_device(&ac->ap_dev.device);
2138 }
2139
2140 /**
2141 * ap_get_configuration - get the host AP configuration
2142 *
2143 * Stores the host AP configuration information returned from the previous call
2144 * to Query Configuration Information (QCI), then retrieves and stores the
2145 * current AP configuration returned from QCI.
2146 *
2147 * Return: true if the host AP configuration changed between calls to QCI;
2148 * otherwise, return false.
2149 */
ap_get_configuration(void)2150 static bool ap_get_configuration(void)
2151 {
2152 if (!ap_qci_info->flags) /* QCI not supported */
2153 return false;
2154
2155 memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
2156 ap_qci(ap_qci_info);
2157
2158 return memcmp(ap_qci_info, ap_qci_info_old,
2159 sizeof(struct ap_config_info)) != 0;
2160 }
2161
2162 /*
2163 * ap_config_has_new_aps - Check current against old qci info if
2164 * new adapters have appeared. Returns true if at least one new
2165 * adapter in the apm mask is showing up. Existing adapters or
2166 * receding adapters are not counted.
2167 */
ap_config_has_new_aps(void)2168 static bool ap_config_has_new_aps(void)
2169 {
2170
2171 unsigned long m[BITS_TO_LONGS(AP_DEVICES)];
2172
2173 if (!ap_qci_info->flags)
2174 return false;
2175
2176 bitmap_andnot(m, (unsigned long *)ap_qci_info->apm,
2177 (unsigned long *)ap_qci_info_old->apm, AP_DEVICES);
2178 if (!bitmap_empty(m, AP_DEVICES))
2179 return true;
2180
2181 return false;
2182 }
2183
2184 /*
2185 * ap_config_has_new_doms - Check current against old qci info if
2186 * new (usage) domains have appeared. Returns true if at least one
2187 * new domain in the aqm mask is showing up. Existing domains or
2188 * receding domains are not counted.
2189 */
ap_config_has_new_doms(void)2190 static bool ap_config_has_new_doms(void)
2191 {
2192 unsigned long m[BITS_TO_LONGS(AP_DOMAINS)];
2193
2194 if (!ap_qci_info->flags)
2195 return false;
2196
2197 bitmap_andnot(m, (unsigned long *)ap_qci_info->aqm,
2198 (unsigned long *)ap_qci_info_old->aqm, AP_DOMAINS);
2199 if (!bitmap_empty(m, AP_DOMAINS))
2200 return true;
2201
2202 return false;
2203 }
2204
2205 /**
2206 * ap_scan_bus(): Scan the AP bus for new devices
2207 * Always run under mutex ap_scan_bus_mutex protection
2208 * which needs to get locked/unlocked by the caller!
2209 * Returns true if any config change has been detected
2210 * during the scan, otherwise false.
2211 */
ap_scan_bus(void)2212 static bool ap_scan_bus(void)
2213 {
2214 bool config_changed;
2215 int ap;
2216
2217 pr_debug(">\n");
2218
2219 /* (re-)fetch configuration via QCI */
2220 config_changed = ap_get_configuration();
2221 if (config_changed) {
2222 if (ap_config_has_new_aps() || ap_config_has_new_doms()) {
2223 /*
2224 * Appearance of new adapters and/or domains need to
2225 * build new ap devices which need to get bound to an
2226 * device driver. Thus reset the APQN bindings complete
2227 * completion.
2228 */
2229 reinit_completion(&ap_apqn_bindings_complete);
2230 }
2231 /* post a config change notify */
2232 notify_config_changed();
2233 }
2234 ap_select_domain();
2235
2236 /* loop over all possible adapters */
2237 for (ap = 0; ap <= ap_max_adapter_id; ap++)
2238 ap_scan_adapter(ap);
2239
2240 /* scan complete notify */
2241 if (config_changed)
2242 notify_scan_complete();
2243
2244 /* check if there is at least one queue available with default domain */
2245 if (ap_domain_index >= 0) {
2246 struct device *dev =
2247 bus_find_device(&ap_bus_type, NULL,
2248 (void *)(long)ap_domain_index,
2249 __match_queue_device_with_queue_id);
2250 if (dev)
2251 put_device(dev);
2252 else
2253 AP_DBF_INFO("%s no queue device with default domain %d available\n",
2254 __func__, ap_domain_index);
2255 }
2256
2257 if (atomic64_inc_return(&ap_scan_bus_count) == 1) {
2258 pr_debug("init scan complete\n");
2259 ap_send_init_scan_done_uevent();
2260 }
2261
2262 ap_check_bindings_complete();
2263
2264 mod_timer(&ap_scan_bus_timer, jiffies + ap_scan_bus_time * HZ);
2265
2266 pr_debug("< config_changed=%d\n", config_changed);
2267
2268 return config_changed;
2269 }
2270
2271 /*
2272 * Callback for the ap_scan_bus_timer
2273 * Runs periodically, workqueue timer (ap_scan_bus_time)
2274 */
ap_scan_bus_timer_callback(struct timer_list * unused)2275 static void ap_scan_bus_timer_callback(struct timer_list *unused)
2276 {
2277 /*
2278 * schedule work into the system long wq which when
2279 * the work is finally executed, calls the AP bus scan.
2280 */
2281 queue_work(system_long_wq, &ap_scan_bus_work);
2282 }
2283
2284 /*
2285 * Callback for the ap_scan_bus_work
2286 */
ap_scan_bus_wq_callback(struct work_struct * unused)2287 static void ap_scan_bus_wq_callback(struct work_struct *unused)
2288 {
2289 /*
2290 * Try to invoke an ap_scan_bus(). If the mutex acquisition
2291 * fails there is currently another task already running the
2292 * AP scan bus and there is no need to wait and re-trigger the
2293 * scan again. Please note at the end of the scan bus function
2294 * the AP scan bus timer is re-armed which triggers then the
2295 * ap_scan_bus_timer_callback which enqueues a work into the
2296 * system_long_wq which invokes this function here again.
2297 */
2298 if (mutex_trylock(&ap_scan_bus_mutex)) {
2299 ap_scan_bus_task = current;
2300 ap_scan_bus_result = ap_scan_bus();
2301 ap_scan_bus_task = NULL;
2302 mutex_unlock(&ap_scan_bus_mutex);
2303 }
2304 }
2305
ap_async_exit(void)2306 static inline void __exit ap_async_exit(void)
2307 {
2308 if (ap_thread_flag)
2309 ap_poll_thread_stop();
2310 chsc_notifier_unregister(&ap_bus_nb);
2311 cancel_work(&ap_scan_bus_work);
2312 hrtimer_cancel(&ap_poll_timer);
2313 timer_delete(&ap_scan_bus_timer);
2314 }
2315
ap_async_init(void)2316 static inline int __init ap_async_init(void)
2317 {
2318 int rc;
2319
2320 /* Setup the AP bus rescan timer. */
2321 timer_setup(&ap_scan_bus_timer, ap_scan_bus_timer_callback, 0);
2322
2323 /*
2324 * Setup the high resolution poll timer.
2325 * If we are running under z/VM adjust polling to z/VM polling rate.
2326 */
2327 if (MACHINE_IS_VM)
2328 poll_high_timeout = 1500000;
2329 hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2330 ap_poll_timer.function = ap_poll_timeout;
2331
2332 queue_work(system_long_wq, &ap_scan_bus_work);
2333
2334 rc = chsc_notifier_register(&ap_bus_nb);
2335 if (rc)
2336 goto out;
2337
2338 /* Start the low priority AP bus poll thread. */
2339 if (!ap_thread_flag)
2340 return 0;
2341
2342 rc = ap_poll_thread_start();
2343 if (rc)
2344 goto out_notifier;
2345
2346 return 0;
2347
2348 out_notifier:
2349 chsc_notifier_unregister(&ap_bus_nb);
2350 out:
2351 cancel_work(&ap_scan_bus_work);
2352 hrtimer_cancel(&ap_poll_timer);
2353 timer_delete(&ap_scan_bus_timer);
2354 return rc;
2355 }
2356
ap_irq_exit(void)2357 static inline void ap_irq_exit(void)
2358 {
2359 if (ap_irq_flag)
2360 unregister_adapter_interrupt(&ap_airq);
2361 }
2362
ap_irq_init(void)2363 static inline int __init ap_irq_init(void)
2364 {
2365 int rc;
2366
2367 if (!ap_interrupts_available() || !ap_useirq)
2368 return 0;
2369
2370 rc = register_adapter_interrupt(&ap_airq);
2371 ap_irq_flag = (rc == 0);
2372
2373 return rc;
2374 }
2375
ap_debug_exit(void)2376 static inline void ap_debug_exit(void)
2377 {
2378 debug_unregister(ap_dbf_info);
2379 }
2380
ap_debug_init(void)2381 static inline int __init ap_debug_init(void)
2382 {
2383 ap_dbf_info = debug_register("ap", 2, 1,
2384 AP_DBF_MAX_SPRINTF_ARGS * sizeof(long));
2385 debug_register_view(ap_dbf_info, &debug_sprintf_view);
2386 debug_set_level(ap_dbf_info, DBF_ERR);
2387
2388 return 0;
2389 }
2390
ap_perms_init(void)2391 static void __init ap_perms_init(void)
2392 {
2393 /* all resources usable if no kernel parameter string given */
2394 memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm));
2395 memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm));
2396 memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm));
2397
2398 /* apm kernel parameter string */
2399 if (apm_str) {
2400 memset(&ap_perms.apm, 0, sizeof(ap_perms.apm));
2401 ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES,
2402 &ap_perms_mutex);
2403 }
2404
2405 /* aqm kernel parameter string */
2406 if (aqm_str) {
2407 memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm));
2408 ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS,
2409 &ap_perms_mutex);
2410 }
2411 }
2412
2413 /**
2414 * ap_module_init(): The module initialization code.
2415 *
2416 * Initializes the module.
2417 */
ap_module_init(void)2418 static int __init ap_module_init(void)
2419 {
2420 int rc;
2421
2422 rc = ap_debug_init();
2423 if (rc)
2424 return rc;
2425
2426 if (!ap_instructions_available()) {
2427 pr_warn("The hardware system does not support AP instructions\n");
2428 return -ENODEV;
2429 }
2430
2431 /* init ap_queue hashtable */
2432 hash_init(ap_queues);
2433
2434 /* set up the AP permissions (ioctls, ap and aq masks) */
2435 ap_perms_init();
2436
2437 /* Get AP configuration data if available */
2438 ap_init_qci_info();
2439
2440 /* check default domain setting */
2441 if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id ||
2442 (ap_domain_index >= 0 &&
2443 !test_bit_inv(ap_domain_index, ap_perms.aqm))) {
2444 pr_warn("%d is not a valid cryptographic domain\n",
2445 ap_domain_index);
2446 ap_domain_index = -1;
2447 }
2448
2449 /* Create /sys/bus/ap. */
2450 rc = bus_register(&ap_bus_type);
2451 if (rc)
2452 goto out;
2453
2454 /* Create /sys/devices/ap. */
2455 ap_root_device = root_device_register("ap");
2456 rc = PTR_ERR_OR_ZERO(ap_root_device);
2457 if (rc)
2458 goto out_bus;
2459 ap_root_device->bus = &ap_bus_type;
2460
2461 /* enable interrupts if available */
2462 rc = ap_irq_init();
2463 if (rc)
2464 goto out_device;
2465
2466 /* Setup asynchronous work (timers, workqueue, etc). */
2467 rc = ap_async_init();
2468 if (rc)
2469 goto out_irq;
2470
2471 return 0;
2472
2473 out_irq:
2474 ap_irq_exit();
2475 out_device:
2476 root_device_unregister(ap_root_device);
2477 out_bus:
2478 bus_unregister(&ap_bus_type);
2479 out:
2480 ap_debug_exit();
2481 return rc;
2482 }
2483
ap_module_exit(void)2484 static void __exit ap_module_exit(void)
2485 {
2486 ap_async_exit();
2487 ap_irq_exit();
2488 root_device_unregister(ap_root_device);
2489 bus_unregister(&ap_bus_type);
2490 ap_debug_exit();
2491 }
2492
2493 module_init(ap_module_init);
2494 module_exit(ap_module_exit);
2495