1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2014 Intel Corporation
4 */
5
6 #include <linux/circ_buf.h>
7
8 #include "gem/i915_gem_context.h"
9 #include "gem/i915_gem_lmem.h"
10 #include "gt/gen8_engine_cs.h"
11 #include "gt/intel_breadcrumbs.h"
12 #include "gt/intel_context.h"
13 #include "gt/intel_engine_heartbeat.h"
14 #include "gt/intel_engine_pm.h"
15 #include "gt/intel_engine_regs.h"
16 #include "gt/intel_gpu_commands.h"
17 #include "gt/intel_gt.h"
18 #include "gt/intel_gt_clock_utils.h"
19 #include "gt/intel_gt_irq.h"
20 #include "gt/intel_gt_pm.h"
21 #include "gt/intel_gt_regs.h"
22 #include "gt/intel_gt_requests.h"
23 #include "gt/intel_lrc.h"
24 #include "gt/intel_lrc_reg.h"
25 #include "gt/intel_mocs.h"
26 #include "gt/intel_ring.h"
27
28 #include "intel_guc_ads.h"
29 #include "intel_guc_capture.h"
30 #include "intel_guc_print.h"
31 #include "intel_guc_submission.h"
32
33 #include "i915_drv.h"
34 #include "i915_reg.h"
35 #include "i915_irq.h"
36 #include "i915_trace.h"
37
38 /**
39 * DOC: GuC-based command submission
40 *
41 * The Scratch registers:
42 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
43 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
44 * triggers an interrupt on the GuC via another register write (0xC4C8).
45 * Firmware writes a success/fail code back to the action register after
46 * processes the request. The kernel driver polls waiting for this update and
47 * then proceeds.
48 *
49 * Command Transport buffers (CTBs):
50 * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host
51 * - G2H) are a message interface between the i915 and GuC.
52 *
53 * Context registration:
54 * Before a context can be submitted it must be registered with the GuC via a
55 * H2G. A unique guc_id is associated with each context. The context is either
56 * registered at request creation time (normal operation) or at submission time
57 * (abnormal operation, e.g. after a reset).
58 *
59 * Context submission:
60 * The i915 updates the LRC tail value in memory. The i915 must enable the
61 * scheduling of the context within the GuC for the GuC to actually consider it.
62 * Therefore, the first time a disabled context is submitted we use a schedule
63 * enable H2G, while follow up submissions are done via the context submit H2G,
64 * which informs the GuC that a previously enabled context has new work
65 * available.
66 *
67 * Context unpin:
68 * To unpin a context a H2G is used to disable scheduling. When the
69 * corresponding G2H returns indicating the scheduling disable operation has
70 * completed it is safe to unpin the context. While a disable is in flight it
71 * isn't safe to resubmit the context so a fence is used to stall all future
72 * requests of that context until the G2H is returned. Because this interaction
73 * with the GuC takes a non-zero amount of time we delay the disabling of
74 * scheduling after the pin count goes to zero by a configurable period of time
75 * (see SCHED_DISABLE_DELAY_MS). The thought is this gives the user a window of
76 * time to resubmit something on the context before doing this costly operation.
77 * This delay is only done if the context isn't closed and the guc_id usage is
78 * less than a threshold (see NUM_SCHED_DISABLE_GUC_IDS_THRESHOLD).
79 *
80 * Context deregistration:
81 * Before a context can be destroyed or if we steal its guc_id we must
82 * deregister the context with the GuC via H2G. If stealing the guc_id it isn't
83 * safe to submit anything to this guc_id until the deregister completes so a
84 * fence is used to stall all requests associated with this guc_id until the
85 * corresponding G2H returns indicating the guc_id has been deregistered.
86 *
87 * submission_state.guc_ids:
88 * Unique number associated with private GuC context data passed in during
89 * context registration / submission / deregistration. 64k available. Simple ida
90 * is used for allocation.
91 *
92 * Stealing guc_ids:
93 * If no guc_ids are available they can be stolen from another context at
94 * request creation time if that context is unpinned. If a guc_id can't be found
95 * we punt this problem to the user as we believe this is near impossible to hit
96 * during normal use cases.
97 *
98 * Locking:
99 * In the GuC submission code we have 3 basic spin locks which protect
100 * everything. Details about each below.
101 *
102 * sched_engine->lock
103 * This is the submission lock for all contexts that share an i915 schedule
104 * engine (sched_engine), thus only one of the contexts which share a
105 * sched_engine can be submitting at a time. Currently only one sched_engine is
106 * used for all of GuC submission but that could change in the future.
107 *
108 * guc->submission_state.lock
109 * Global lock for GuC submission state. Protects guc_ids and destroyed contexts
110 * list.
111 *
112 * ce->guc_state.lock
113 * Protects everything under ce->guc_state. Ensures that a context is in the
114 * correct state before issuing a H2G. e.g. We don't issue a schedule disable
115 * on a disabled context (bad idea), we don't issue a schedule enable when a
116 * schedule disable is in flight, etc... Also protects list of inflight requests
117 * on the context and the priority management state. Lock is individual to each
118 * context.
119 *
120 * Lock ordering rules:
121 * sched_engine->lock -> ce->guc_state.lock
122 * guc->submission_state.lock -> ce->guc_state.lock
123 *
124 * Reset races:
125 * When a full GT reset is triggered it is assumed that some G2H responses to
126 * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be
127 * fatal as we do certain operations upon receiving a G2H (e.g. destroy
128 * contexts, release guc_ids, etc...). When this occurs we can scrub the
129 * context state and cleanup appropriately, however this is quite racey.
130 * To avoid races, the reset code must disable submission before scrubbing for
131 * the missing G2H, while the submission code must check for submission being
132 * disabled and skip sending H2Gs and updating context states when it is. Both
133 * sides must also make sure to hold the relevant locks.
134 */
135
136 /* GuC Virtual Engine */
137 struct guc_virtual_engine {
138 struct intel_engine_cs base;
139 struct intel_context context;
140 };
141
142 static struct intel_context *
143 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
144 unsigned long flags);
145
146 static struct intel_context *
147 guc_create_parallel(struct intel_engine_cs **engines,
148 unsigned int num_siblings,
149 unsigned int width);
150
151 #define GUC_REQUEST_SIZE 64 /* bytes */
152
153 /*
154 * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous
155 * per the GuC submission interface. A different allocation algorithm is used
156 * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to
157 * partition the guc_id space. We believe the number of multi-lrc contexts in
158 * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for
159 * multi-lrc.
160 */
161 #define NUMBER_MULTI_LRC_GUC_ID(guc) \
162 ((guc)->submission_state.num_guc_ids / 16)
163
164 /*
165 * Below is a set of functions which control the GuC scheduling state which
166 * require a lock.
167 */
168 #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER BIT(0)
169 #define SCHED_STATE_DESTROYED BIT(1)
170 #define SCHED_STATE_PENDING_DISABLE BIT(2)
171 #define SCHED_STATE_BANNED BIT(3)
172 #define SCHED_STATE_ENABLED BIT(4)
173 #define SCHED_STATE_PENDING_ENABLE BIT(5)
174 #define SCHED_STATE_REGISTERED BIT(6)
175 #define SCHED_STATE_POLICY_REQUIRED BIT(7)
176 #define SCHED_STATE_CLOSED BIT(8)
177 #define SCHED_STATE_BLOCKED_SHIFT 9
178 #define SCHED_STATE_BLOCKED BIT(SCHED_STATE_BLOCKED_SHIFT)
179 #define SCHED_STATE_BLOCKED_MASK (0xfff << SCHED_STATE_BLOCKED_SHIFT)
180
init_sched_state(struct intel_context * ce)181 static inline void init_sched_state(struct intel_context *ce)
182 {
183 lockdep_assert_held(&ce->guc_state.lock);
184 ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK;
185 }
186
187 /*
188 * Kernel contexts can have SCHED_STATE_REGISTERED after suspend.
189 * A context close can race with the submission path, so SCHED_STATE_CLOSED
190 * can be set immediately before we try to register.
191 */
192 #define SCHED_STATE_VALID_INIT \
193 (SCHED_STATE_BLOCKED_MASK | \
194 SCHED_STATE_CLOSED | \
195 SCHED_STATE_REGISTERED)
196
197 __maybe_unused
sched_state_is_init(struct intel_context * ce)198 static bool sched_state_is_init(struct intel_context *ce)
199 {
200 return !(ce->guc_state.sched_state & ~SCHED_STATE_VALID_INIT);
201 }
202
203 static inline bool
context_wait_for_deregister_to_register(struct intel_context * ce)204 context_wait_for_deregister_to_register(struct intel_context *ce)
205 {
206 return ce->guc_state.sched_state &
207 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
208 }
209
210 static inline void
set_context_wait_for_deregister_to_register(struct intel_context * ce)211 set_context_wait_for_deregister_to_register(struct intel_context *ce)
212 {
213 lockdep_assert_held(&ce->guc_state.lock);
214 ce->guc_state.sched_state |=
215 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
216 }
217
218 static inline void
clr_context_wait_for_deregister_to_register(struct intel_context * ce)219 clr_context_wait_for_deregister_to_register(struct intel_context *ce)
220 {
221 lockdep_assert_held(&ce->guc_state.lock);
222 ce->guc_state.sched_state &=
223 ~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
224 }
225
226 static inline bool
context_destroyed(struct intel_context * ce)227 context_destroyed(struct intel_context *ce)
228 {
229 return ce->guc_state.sched_state & SCHED_STATE_DESTROYED;
230 }
231
232 static inline void
set_context_destroyed(struct intel_context * ce)233 set_context_destroyed(struct intel_context *ce)
234 {
235 lockdep_assert_held(&ce->guc_state.lock);
236 ce->guc_state.sched_state |= SCHED_STATE_DESTROYED;
237 }
238
239 static inline void
clr_context_destroyed(struct intel_context * ce)240 clr_context_destroyed(struct intel_context *ce)
241 {
242 lockdep_assert_held(&ce->guc_state.lock);
243 ce->guc_state.sched_state &= ~SCHED_STATE_DESTROYED;
244 }
245
context_pending_disable(struct intel_context * ce)246 static inline bool context_pending_disable(struct intel_context *ce)
247 {
248 return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE;
249 }
250
set_context_pending_disable(struct intel_context * ce)251 static inline void set_context_pending_disable(struct intel_context *ce)
252 {
253 lockdep_assert_held(&ce->guc_state.lock);
254 ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE;
255 }
256
clr_context_pending_disable(struct intel_context * ce)257 static inline void clr_context_pending_disable(struct intel_context *ce)
258 {
259 lockdep_assert_held(&ce->guc_state.lock);
260 ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE;
261 }
262
context_banned(struct intel_context * ce)263 static inline bool context_banned(struct intel_context *ce)
264 {
265 return ce->guc_state.sched_state & SCHED_STATE_BANNED;
266 }
267
set_context_banned(struct intel_context * ce)268 static inline void set_context_banned(struct intel_context *ce)
269 {
270 lockdep_assert_held(&ce->guc_state.lock);
271 ce->guc_state.sched_state |= SCHED_STATE_BANNED;
272 }
273
clr_context_banned(struct intel_context * ce)274 static inline void clr_context_banned(struct intel_context *ce)
275 {
276 lockdep_assert_held(&ce->guc_state.lock);
277 ce->guc_state.sched_state &= ~SCHED_STATE_BANNED;
278 }
279
context_enabled(struct intel_context * ce)280 static inline bool context_enabled(struct intel_context *ce)
281 {
282 return ce->guc_state.sched_state & SCHED_STATE_ENABLED;
283 }
284
set_context_enabled(struct intel_context * ce)285 static inline void set_context_enabled(struct intel_context *ce)
286 {
287 lockdep_assert_held(&ce->guc_state.lock);
288 ce->guc_state.sched_state |= SCHED_STATE_ENABLED;
289 }
290
clr_context_enabled(struct intel_context * ce)291 static inline void clr_context_enabled(struct intel_context *ce)
292 {
293 lockdep_assert_held(&ce->guc_state.lock);
294 ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED;
295 }
296
context_pending_enable(struct intel_context * ce)297 static inline bool context_pending_enable(struct intel_context *ce)
298 {
299 return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE;
300 }
301
set_context_pending_enable(struct intel_context * ce)302 static inline void set_context_pending_enable(struct intel_context *ce)
303 {
304 lockdep_assert_held(&ce->guc_state.lock);
305 ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE;
306 }
307
clr_context_pending_enable(struct intel_context * ce)308 static inline void clr_context_pending_enable(struct intel_context *ce)
309 {
310 lockdep_assert_held(&ce->guc_state.lock);
311 ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE;
312 }
313
context_registered(struct intel_context * ce)314 static inline bool context_registered(struct intel_context *ce)
315 {
316 return ce->guc_state.sched_state & SCHED_STATE_REGISTERED;
317 }
318
set_context_registered(struct intel_context * ce)319 static inline void set_context_registered(struct intel_context *ce)
320 {
321 lockdep_assert_held(&ce->guc_state.lock);
322 ce->guc_state.sched_state |= SCHED_STATE_REGISTERED;
323 }
324
clr_context_registered(struct intel_context * ce)325 static inline void clr_context_registered(struct intel_context *ce)
326 {
327 lockdep_assert_held(&ce->guc_state.lock);
328 ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED;
329 }
330
context_policy_required(struct intel_context * ce)331 static inline bool context_policy_required(struct intel_context *ce)
332 {
333 return ce->guc_state.sched_state & SCHED_STATE_POLICY_REQUIRED;
334 }
335
set_context_policy_required(struct intel_context * ce)336 static inline void set_context_policy_required(struct intel_context *ce)
337 {
338 lockdep_assert_held(&ce->guc_state.lock);
339 ce->guc_state.sched_state |= SCHED_STATE_POLICY_REQUIRED;
340 }
341
clr_context_policy_required(struct intel_context * ce)342 static inline void clr_context_policy_required(struct intel_context *ce)
343 {
344 lockdep_assert_held(&ce->guc_state.lock);
345 ce->guc_state.sched_state &= ~SCHED_STATE_POLICY_REQUIRED;
346 }
347
context_close_done(struct intel_context * ce)348 static inline bool context_close_done(struct intel_context *ce)
349 {
350 return ce->guc_state.sched_state & SCHED_STATE_CLOSED;
351 }
352
set_context_close_done(struct intel_context * ce)353 static inline void set_context_close_done(struct intel_context *ce)
354 {
355 lockdep_assert_held(&ce->guc_state.lock);
356 ce->guc_state.sched_state |= SCHED_STATE_CLOSED;
357 }
358
context_blocked(struct intel_context * ce)359 static inline u32 context_blocked(struct intel_context *ce)
360 {
361 return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >>
362 SCHED_STATE_BLOCKED_SHIFT;
363 }
364
incr_context_blocked(struct intel_context * ce)365 static inline void incr_context_blocked(struct intel_context *ce)
366 {
367 lockdep_assert_held(&ce->guc_state.lock);
368
369 ce->guc_state.sched_state += SCHED_STATE_BLOCKED;
370
371 GEM_BUG_ON(!context_blocked(ce)); /* Overflow check */
372 }
373
decr_context_blocked(struct intel_context * ce)374 static inline void decr_context_blocked(struct intel_context *ce)
375 {
376 lockdep_assert_held(&ce->guc_state.lock);
377
378 GEM_BUG_ON(!context_blocked(ce)); /* Underflow check */
379
380 ce->guc_state.sched_state -= SCHED_STATE_BLOCKED;
381 }
382
383 static struct intel_context *
request_to_scheduling_context(struct i915_request * rq)384 request_to_scheduling_context(struct i915_request *rq)
385 {
386 return intel_context_to_parent(rq->context);
387 }
388
context_guc_id_invalid(struct intel_context * ce)389 static inline bool context_guc_id_invalid(struct intel_context *ce)
390 {
391 return ce->guc_id.id == GUC_INVALID_CONTEXT_ID;
392 }
393
set_context_guc_id_invalid(struct intel_context * ce)394 static inline void set_context_guc_id_invalid(struct intel_context *ce)
395 {
396 ce->guc_id.id = GUC_INVALID_CONTEXT_ID;
397 }
398
ce_to_guc(struct intel_context * ce)399 static inline struct intel_guc *ce_to_guc(struct intel_context *ce)
400 {
401 return gt_to_guc(ce->engine->gt);
402 }
403
to_priolist(struct rb_node * rb)404 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
405 {
406 return rb_entry(rb, struct i915_priolist, node);
407 }
408
409 /*
410 * When using multi-lrc submission a scratch memory area is reserved in the
411 * parent's context state for the process descriptor, work queue, and handshake
412 * between the parent + children contexts to insert safe preemption points
413 * between each of the BBs. Currently the scratch area is sized to a page.
414 *
415 * The layout of this scratch area is below:
416 * 0 guc_process_desc
417 * + sizeof(struct guc_process_desc) child go
418 * + CACHELINE_BYTES child join[0]
419 * ...
420 * + CACHELINE_BYTES child join[n - 1]
421 * ... unused
422 * PARENT_SCRATCH_SIZE / 2 work queue start
423 * ... work queue
424 * PARENT_SCRATCH_SIZE - 1 work queue end
425 */
426 #define WQ_SIZE (PARENT_SCRATCH_SIZE / 2)
427 #define WQ_OFFSET (PARENT_SCRATCH_SIZE - WQ_SIZE)
428
429 struct sync_semaphore {
430 u32 semaphore;
431 u8 unused[CACHELINE_BYTES - sizeof(u32)];
432 };
433
434 struct parent_scratch {
435 union guc_descs {
436 struct guc_sched_wq_desc wq_desc;
437 struct guc_process_desc_v69 pdesc;
438 } descs;
439
440 struct sync_semaphore go;
441 struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1];
442
443 u8 unused[WQ_OFFSET - sizeof(union guc_descs) -
444 sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)];
445
446 u32 wq[WQ_SIZE / sizeof(u32)];
447 };
448
__get_parent_scratch_offset(struct intel_context * ce)449 static u32 __get_parent_scratch_offset(struct intel_context *ce)
450 {
451 GEM_BUG_ON(!ce->parallel.guc.parent_page);
452
453 return ce->parallel.guc.parent_page * PAGE_SIZE;
454 }
455
__get_wq_offset(struct intel_context * ce)456 static u32 __get_wq_offset(struct intel_context *ce)
457 {
458 BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET);
459
460 return __get_parent_scratch_offset(ce) + WQ_OFFSET;
461 }
462
463 static struct parent_scratch *
__get_parent_scratch(struct intel_context * ce)464 __get_parent_scratch(struct intel_context *ce)
465 {
466 BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE);
467 BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES);
468
469 /*
470 * Need to subtract LRC_STATE_OFFSET here as the
471 * parallel.guc.parent_page is the offset into ce->state while
472 * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET.
473 */
474 return (struct parent_scratch *)
475 (ce->lrc_reg_state +
476 ((__get_parent_scratch_offset(ce) -
477 LRC_STATE_OFFSET) / sizeof(u32)));
478 }
479
480 static struct guc_process_desc_v69 *
__get_process_desc_v69(struct intel_context * ce)481 __get_process_desc_v69(struct intel_context *ce)
482 {
483 struct parent_scratch *ps = __get_parent_scratch(ce);
484
485 return &ps->descs.pdesc;
486 }
487
488 static struct guc_sched_wq_desc *
__get_wq_desc_v70(struct intel_context * ce)489 __get_wq_desc_v70(struct intel_context *ce)
490 {
491 struct parent_scratch *ps = __get_parent_scratch(ce);
492
493 return &ps->descs.wq_desc;
494 }
495
get_wq_pointer(struct intel_context * ce,u32 wqi_size)496 static u32 *get_wq_pointer(struct intel_context *ce, u32 wqi_size)
497 {
498 /*
499 * Check for space in work queue. Caching a value of head pointer in
500 * intel_context structure in order reduce the number accesses to shared
501 * GPU memory which may be across a PCIe bus.
502 */
503 #define AVAILABLE_SPACE \
504 CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE)
505 if (wqi_size > AVAILABLE_SPACE) {
506 ce->parallel.guc.wqi_head = READ_ONCE(*ce->parallel.guc.wq_head);
507
508 if (wqi_size > AVAILABLE_SPACE)
509 return NULL;
510 }
511 #undef AVAILABLE_SPACE
512
513 return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)];
514 }
515
__get_context(struct intel_guc * guc,u32 id)516 static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id)
517 {
518 struct intel_context *ce = xa_load(&guc->context_lookup, id);
519
520 GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID);
521
522 return ce;
523 }
524
__get_lrc_desc_v69(struct intel_guc * guc,u32 index)525 static struct guc_lrc_desc_v69 *__get_lrc_desc_v69(struct intel_guc *guc, u32 index)
526 {
527 struct guc_lrc_desc_v69 *base = guc->lrc_desc_pool_vaddr_v69;
528
529 if (!base)
530 return NULL;
531
532 GEM_BUG_ON(index >= GUC_MAX_CONTEXT_ID);
533
534 return &base[index];
535 }
536
guc_lrc_desc_pool_create_v69(struct intel_guc * guc)537 static int guc_lrc_desc_pool_create_v69(struct intel_guc *guc)
538 {
539 u32 size;
540 int ret;
541
542 size = PAGE_ALIGN(sizeof(struct guc_lrc_desc_v69) *
543 GUC_MAX_CONTEXT_ID);
544 ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool_v69,
545 (void **)&guc->lrc_desc_pool_vaddr_v69);
546 if (ret)
547 return ret;
548
549 return 0;
550 }
551
guc_lrc_desc_pool_destroy_v69(struct intel_guc * guc)552 static void guc_lrc_desc_pool_destroy_v69(struct intel_guc *guc)
553 {
554 if (!guc->lrc_desc_pool_vaddr_v69)
555 return;
556
557 guc->lrc_desc_pool_vaddr_v69 = NULL;
558 i915_vma_unpin_and_release(&guc->lrc_desc_pool_v69, I915_VMA_RELEASE_MAP);
559 }
560
guc_submission_initialized(struct intel_guc * guc)561 static inline bool guc_submission_initialized(struct intel_guc *guc)
562 {
563 return guc->submission_initialized;
564 }
565
_reset_lrc_desc_v69(struct intel_guc * guc,u32 id)566 static inline void _reset_lrc_desc_v69(struct intel_guc *guc, u32 id)
567 {
568 struct guc_lrc_desc_v69 *desc = __get_lrc_desc_v69(guc, id);
569
570 if (desc)
571 memset(desc, 0, sizeof(*desc));
572 }
573
ctx_id_mapped(struct intel_guc * guc,u32 id)574 static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id)
575 {
576 return __get_context(guc, id);
577 }
578
set_ctx_id_mapping(struct intel_guc * guc,u32 id,struct intel_context * ce)579 static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id,
580 struct intel_context *ce)
581 {
582 unsigned long flags;
583
584 /*
585 * xarray API doesn't have xa_save_irqsave wrapper, so calling the
586 * lower level functions directly.
587 */
588 xa_lock_irqsave(&guc->context_lookup, flags);
589 __xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC);
590 xa_unlock_irqrestore(&guc->context_lookup, flags);
591 }
592
clr_ctx_id_mapping(struct intel_guc * guc,u32 id)593 static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id)
594 {
595 unsigned long flags;
596
597 if (unlikely(!guc_submission_initialized(guc)))
598 return;
599
600 _reset_lrc_desc_v69(guc, id);
601
602 /*
603 * xarray API doesn't have xa_erase_irqsave wrapper, so calling
604 * the lower level functions directly.
605 */
606 xa_lock_irqsave(&guc->context_lookup, flags);
607 __xa_erase(&guc->context_lookup, id);
608 xa_unlock_irqrestore(&guc->context_lookup, flags);
609 }
610
decr_outstanding_submission_g2h(struct intel_guc * guc)611 static void decr_outstanding_submission_g2h(struct intel_guc *guc)
612 {
613 if (atomic_dec_and_test(&guc->outstanding_submission_g2h))
614 wake_up_all(&guc->ct.wq);
615 }
616
guc_submission_send_busy_loop(struct intel_guc * guc,const u32 * action,u32 len,u32 g2h_len_dw,bool loop)617 static int guc_submission_send_busy_loop(struct intel_guc *guc,
618 const u32 *action,
619 u32 len,
620 u32 g2h_len_dw,
621 bool loop)
622 {
623 int ret;
624
625 /*
626 * We always loop when a send requires a reply (i.e. g2h_len_dw > 0),
627 * so we don't handle the case where we don't get a reply because we
628 * aborted the send due to the channel being busy.
629 */
630 GEM_BUG_ON(g2h_len_dw && !loop);
631
632 if (g2h_len_dw)
633 atomic_inc(&guc->outstanding_submission_g2h);
634
635 ret = intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop);
636 if (ret)
637 atomic_dec(&guc->outstanding_submission_g2h);
638
639 return ret;
640 }
641
intel_guc_wait_for_pending_msg(struct intel_guc * guc,atomic_t * wait_var,bool interruptible,long timeout)642 int intel_guc_wait_for_pending_msg(struct intel_guc *guc,
643 atomic_t *wait_var,
644 bool interruptible,
645 long timeout)
646 {
647 const int state = interruptible ?
648 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
649 DEFINE_WAIT(wait);
650
651 might_sleep();
652 GEM_BUG_ON(timeout < 0);
653
654 if (!atomic_read(wait_var))
655 return 0;
656
657 if (!timeout)
658 return -ETIME;
659
660 for (;;) {
661 prepare_to_wait(&guc->ct.wq, &wait, state);
662
663 if (!atomic_read(wait_var))
664 break;
665
666 if (signal_pending_state(state, current)) {
667 timeout = -EINTR;
668 break;
669 }
670
671 if (!timeout) {
672 timeout = -ETIME;
673 break;
674 }
675
676 timeout = io_schedule_timeout(timeout);
677 }
678 finish_wait(&guc->ct.wq, &wait);
679
680 return (timeout < 0) ? timeout : 0;
681 }
682
intel_guc_wait_for_idle(struct intel_guc * guc,long timeout)683 int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout)
684 {
685 if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc))
686 return 0;
687
688 return intel_guc_wait_for_pending_msg(guc,
689 &guc->outstanding_submission_g2h,
690 true, timeout);
691 }
692
693 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop);
694 static int try_context_registration(struct intel_context *ce, bool loop);
695
__guc_add_request(struct intel_guc * guc,struct i915_request * rq)696 static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq)
697 {
698 int err = 0;
699 struct intel_context *ce = request_to_scheduling_context(rq);
700 u32 action[3];
701 int len = 0;
702 u32 g2h_len_dw = 0;
703 bool enabled;
704
705 lockdep_assert_held(&rq->engine->sched_engine->lock);
706
707 /*
708 * Corner case where requests were sitting in the priority list or a
709 * request resubmitted after the context was banned.
710 */
711 if (unlikely(!intel_context_is_schedulable(ce))) {
712 i915_request_put(i915_request_mark_eio(rq));
713 intel_engine_signal_breadcrumbs(ce->engine);
714 return 0;
715 }
716
717 GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
718 GEM_BUG_ON(context_guc_id_invalid(ce));
719
720 if (context_policy_required(ce)) {
721 err = guc_context_policy_init_v70(ce, false);
722 if (err)
723 return err;
724 }
725
726 spin_lock(&ce->guc_state.lock);
727
728 /*
729 * The request / context will be run on the hardware when scheduling
730 * gets enabled in the unblock. For multi-lrc we still submit the
731 * context to move the LRC tails.
732 */
733 if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce)))
734 goto out;
735
736 enabled = context_enabled(ce) || context_blocked(ce);
737
738 if (!enabled) {
739 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
740 action[len++] = ce->guc_id.id;
741 action[len++] = GUC_CONTEXT_ENABLE;
742 set_context_pending_enable(ce);
743 intel_context_get(ce);
744 g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
745 } else {
746 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT;
747 action[len++] = ce->guc_id.id;
748 }
749
750 err = intel_guc_send_nb(guc, action, len, g2h_len_dw);
751 if (!enabled && !err) {
752 trace_intel_context_sched_enable(ce);
753 atomic_inc(&guc->outstanding_submission_g2h);
754 set_context_enabled(ce);
755
756 /*
757 * Without multi-lrc KMD does the submission step (moving the
758 * lrc tail) so enabling scheduling is sufficient to submit the
759 * context. This isn't the case in multi-lrc submission as the
760 * GuC needs to move the tails, hence the need for another H2G
761 * to submit a multi-lrc context after enabling scheduling.
762 */
763 if (intel_context_is_parent(ce)) {
764 action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT;
765 err = intel_guc_send_nb(guc, action, len - 1, 0);
766 }
767 } else if (!enabled) {
768 clr_context_pending_enable(ce);
769 intel_context_put(ce);
770 }
771 if (likely(!err))
772 trace_i915_request_guc_submit(rq);
773
774 out:
775 spin_unlock(&ce->guc_state.lock);
776 return err;
777 }
778
guc_add_request(struct intel_guc * guc,struct i915_request * rq)779 static int guc_add_request(struct intel_guc *guc, struct i915_request *rq)
780 {
781 int ret = __guc_add_request(guc, rq);
782
783 if (unlikely(ret == -EBUSY)) {
784 guc->stalled_request = rq;
785 guc->submission_stall_reason = STALL_ADD_REQUEST;
786 }
787
788 return ret;
789 }
790
guc_set_lrc_tail(struct i915_request * rq)791 static inline void guc_set_lrc_tail(struct i915_request *rq)
792 {
793 rq->context->lrc_reg_state[CTX_RING_TAIL] =
794 intel_ring_set_tail(rq->ring, rq->tail);
795 }
796
rq_prio(const struct i915_request * rq)797 static inline int rq_prio(const struct i915_request *rq)
798 {
799 return rq->sched.attr.priority;
800 }
801
is_multi_lrc_rq(struct i915_request * rq)802 static bool is_multi_lrc_rq(struct i915_request *rq)
803 {
804 return intel_context_is_parallel(rq->context);
805 }
806
can_merge_rq(struct i915_request * rq,struct i915_request * last)807 static bool can_merge_rq(struct i915_request *rq,
808 struct i915_request *last)
809 {
810 return request_to_scheduling_context(rq) ==
811 request_to_scheduling_context(last);
812 }
813
wq_space_until_wrap(struct intel_context * ce)814 static u32 wq_space_until_wrap(struct intel_context *ce)
815 {
816 return (WQ_SIZE - ce->parallel.guc.wqi_tail);
817 }
818
write_wqi(struct intel_context * ce,u32 wqi_size)819 static void write_wqi(struct intel_context *ce, u32 wqi_size)
820 {
821 BUILD_BUG_ON(!is_power_of_2(WQ_SIZE));
822
823 /*
824 * Ensure WQI are visible before updating tail
825 */
826 intel_guc_write_barrier(ce_to_guc(ce));
827
828 ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) &
829 (WQ_SIZE - 1);
830 WRITE_ONCE(*ce->parallel.guc.wq_tail, ce->parallel.guc.wqi_tail);
831 }
832
guc_wq_noop_append(struct intel_context * ce)833 static int guc_wq_noop_append(struct intel_context *ce)
834 {
835 u32 *wqi = get_wq_pointer(ce, wq_space_until_wrap(ce));
836 u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1;
837
838 if (!wqi)
839 return -EBUSY;
840
841 GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
842
843 *wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
844 FIELD_PREP(WQ_LEN_MASK, len_dw);
845 ce->parallel.guc.wqi_tail = 0;
846
847 return 0;
848 }
849
__guc_wq_item_append(struct i915_request * rq)850 static int __guc_wq_item_append(struct i915_request *rq)
851 {
852 struct intel_context *ce = request_to_scheduling_context(rq);
853 struct intel_context *child;
854 unsigned int wqi_size = (ce->parallel.number_children + 4) *
855 sizeof(u32);
856 u32 *wqi;
857 u32 len_dw = (wqi_size / sizeof(u32)) - 1;
858 int ret;
859
860 /* Ensure context is in correct state updating work queue */
861 GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
862 GEM_BUG_ON(context_guc_id_invalid(ce));
863 GEM_BUG_ON(context_wait_for_deregister_to_register(ce));
864 GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id));
865
866 /* Insert NOOP if this work queue item will wrap the tail pointer. */
867 if (wqi_size > wq_space_until_wrap(ce)) {
868 ret = guc_wq_noop_append(ce);
869 if (ret)
870 return ret;
871 }
872
873 wqi = get_wq_pointer(ce, wqi_size);
874 if (!wqi)
875 return -EBUSY;
876
877 GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
878
879 *wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
880 FIELD_PREP(WQ_LEN_MASK, len_dw);
881 *wqi++ = ce->lrc.lrca;
882 *wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) |
883 FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64));
884 *wqi++ = 0; /* fence_id */
885 for_each_child(ce, child)
886 *wqi++ = child->ring->tail / sizeof(u64);
887
888 write_wqi(ce, wqi_size);
889
890 return 0;
891 }
892
guc_wq_item_append(struct intel_guc * guc,struct i915_request * rq)893 static int guc_wq_item_append(struct intel_guc *guc,
894 struct i915_request *rq)
895 {
896 struct intel_context *ce = request_to_scheduling_context(rq);
897 int ret;
898
899 if (unlikely(!intel_context_is_schedulable(ce)))
900 return 0;
901
902 ret = __guc_wq_item_append(rq);
903 if (unlikely(ret == -EBUSY)) {
904 guc->stalled_request = rq;
905 guc->submission_stall_reason = STALL_MOVE_LRC_TAIL;
906 }
907
908 return ret;
909 }
910
multi_lrc_submit(struct i915_request * rq)911 static bool multi_lrc_submit(struct i915_request *rq)
912 {
913 struct intel_context *ce = request_to_scheduling_context(rq);
914
915 intel_ring_set_tail(rq->ring, rq->tail);
916
917 /*
918 * We expect the front end (execbuf IOCTL) to set this flag on the last
919 * request generated from a multi-BB submission. This indicates to the
920 * backend (GuC interface) that we should submit this context thus
921 * submitting all the requests generated in parallel.
922 */
923 return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) ||
924 !intel_context_is_schedulable(ce);
925 }
926
guc_dequeue_one_context(struct intel_guc * guc)927 static int guc_dequeue_one_context(struct intel_guc *guc)
928 {
929 struct i915_sched_engine * const sched_engine = guc->sched_engine;
930 struct i915_request *last = NULL;
931 bool submit = false;
932 struct rb_node *rb;
933 int ret;
934
935 lockdep_assert_held(&sched_engine->lock);
936
937 if (guc->stalled_request) {
938 submit = true;
939 last = guc->stalled_request;
940
941 switch (guc->submission_stall_reason) {
942 case STALL_REGISTER_CONTEXT:
943 goto register_context;
944 case STALL_MOVE_LRC_TAIL:
945 goto move_lrc_tail;
946 case STALL_ADD_REQUEST:
947 goto add_request;
948 default:
949 MISSING_CASE(guc->submission_stall_reason);
950 }
951 }
952
953 while ((rb = rb_first_cached(&sched_engine->queue))) {
954 struct i915_priolist *p = to_priolist(rb);
955 struct i915_request *rq, *rn;
956
957 priolist_for_each_request_consume(rq, rn, p) {
958 if (last && !can_merge_rq(rq, last))
959 goto register_context;
960
961 list_del_init(&rq->sched.link);
962
963 __i915_request_submit(rq);
964
965 trace_i915_request_in(rq, 0);
966 last = rq;
967
968 if (is_multi_lrc_rq(rq)) {
969 /*
970 * We need to coalesce all multi-lrc requests in
971 * a relationship into a single H2G. We are
972 * guaranteed that all of these requests will be
973 * submitted sequentially.
974 */
975 if (multi_lrc_submit(rq)) {
976 submit = true;
977 goto register_context;
978 }
979 } else {
980 submit = true;
981 }
982 }
983
984 rb_erase_cached(&p->node, &sched_engine->queue);
985 i915_priolist_free(p);
986 }
987
988 register_context:
989 if (submit) {
990 struct intel_context *ce = request_to_scheduling_context(last);
991
992 if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) &&
993 intel_context_is_schedulable(ce))) {
994 ret = try_context_registration(ce, false);
995 if (unlikely(ret == -EPIPE)) {
996 goto deadlk;
997 } else if (ret == -EBUSY) {
998 guc->stalled_request = last;
999 guc->submission_stall_reason =
1000 STALL_REGISTER_CONTEXT;
1001 goto schedule_tasklet;
1002 } else if (ret != 0) {
1003 GEM_WARN_ON(ret); /* Unexpected */
1004 goto deadlk;
1005 }
1006 }
1007
1008 move_lrc_tail:
1009 if (is_multi_lrc_rq(last)) {
1010 ret = guc_wq_item_append(guc, last);
1011 if (ret == -EBUSY) {
1012 goto schedule_tasklet;
1013 } else if (ret != 0) {
1014 GEM_WARN_ON(ret); /* Unexpected */
1015 goto deadlk;
1016 }
1017 } else {
1018 guc_set_lrc_tail(last);
1019 }
1020
1021 add_request:
1022 ret = guc_add_request(guc, last);
1023 if (unlikely(ret == -EPIPE)) {
1024 goto deadlk;
1025 } else if (ret == -EBUSY) {
1026 goto schedule_tasklet;
1027 } else if (ret != 0) {
1028 GEM_WARN_ON(ret); /* Unexpected */
1029 goto deadlk;
1030 }
1031 }
1032
1033 guc->stalled_request = NULL;
1034 guc->submission_stall_reason = STALL_NONE;
1035 return submit;
1036
1037 deadlk:
1038 sched_engine->tasklet.callback = NULL;
1039 tasklet_disable_nosync(&sched_engine->tasklet);
1040 return false;
1041
1042 schedule_tasklet:
1043 tasklet_schedule(&sched_engine->tasklet);
1044 return false;
1045 }
1046
guc_submission_tasklet(struct tasklet_struct * t)1047 static void guc_submission_tasklet(struct tasklet_struct *t)
1048 {
1049 struct i915_sched_engine *sched_engine =
1050 from_tasklet(sched_engine, t, tasklet);
1051 unsigned long flags;
1052 bool loop;
1053
1054 spin_lock_irqsave(&sched_engine->lock, flags);
1055
1056 do {
1057 loop = guc_dequeue_one_context(sched_engine->private_data);
1058 } while (loop);
1059
1060 i915_sched_engine_reset_on_empty(sched_engine);
1061
1062 spin_unlock_irqrestore(&sched_engine->lock, flags);
1063 }
1064
cs_irq_handler(struct intel_engine_cs * engine,u16 iir)1065 static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir)
1066 {
1067 if (iir & GT_RENDER_USER_INTERRUPT)
1068 intel_engine_signal_breadcrumbs(engine);
1069 }
1070
1071 static void __guc_context_destroy(struct intel_context *ce);
1072 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce);
1073 static void guc_signal_context_fence(struct intel_context *ce);
1074 static void guc_cancel_context_requests(struct intel_context *ce);
1075 static void guc_blocked_fence_complete(struct intel_context *ce);
1076
scrub_guc_desc_for_outstanding_g2h(struct intel_guc * guc)1077 static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc)
1078 {
1079 struct intel_context *ce;
1080 unsigned long index, flags;
1081 bool pending_disable, pending_enable, deregister, destroyed, banned;
1082
1083 xa_lock_irqsave(&guc->context_lookup, flags);
1084 xa_for_each(&guc->context_lookup, index, ce) {
1085 /*
1086 * Corner case where the ref count on the object is zero but and
1087 * deregister G2H was lost. In this case we don't touch the ref
1088 * count and finish the destroy of the context.
1089 */
1090 bool do_put = kref_get_unless_zero(&ce->ref);
1091
1092 xa_unlock(&guc->context_lookup);
1093
1094 if (test_bit(CONTEXT_GUC_INIT, &ce->flags) &&
1095 (cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))) {
1096 /* successful cancel so jump straight to close it */
1097 intel_context_sched_disable_unpin(ce);
1098 }
1099
1100 spin_lock(&ce->guc_state.lock);
1101
1102 /*
1103 * Once we are at this point submission_disabled() is guaranteed
1104 * to be visible to all callers who set the below flags (see above
1105 * flush and flushes in reset_prepare). If submission_disabled()
1106 * is set, the caller shouldn't set these flags.
1107 */
1108
1109 destroyed = context_destroyed(ce);
1110 pending_enable = context_pending_enable(ce);
1111 pending_disable = context_pending_disable(ce);
1112 deregister = context_wait_for_deregister_to_register(ce);
1113 banned = context_banned(ce);
1114 init_sched_state(ce);
1115
1116 spin_unlock(&ce->guc_state.lock);
1117
1118 if (pending_enable || destroyed || deregister) {
1119 decr_outstanding_submission_g2h(guc);
1120 if (deregister)
1121 guc_signal_context_fence(ce);
1122 if (destroyed) {
1123 intel_gt_pm_put_async_untracked(guc_to_gt(guc));
1124 release_guc_id(guc, ce);
1125 __guc_context_destroy(ce);
1126 }
1127 if (pending_enable || deregister)
1128 intel_context_put(ce);
1129 }
1130
1131 /* Not mutualy exclusive with above if statement. */
1132 if (pending_disable) {
1133 guc_signal_context_fence(ce);
1134 if (banned) {
1135 guc_cancel_context_requests(ce);
1136 intel_engine_signal_breadcrumbs(ce->engine);
1137 }
1138 intel_context_sched_disable_unpin(ce);
1139 decr_outstanding_submission_g2h(guc);
1140
1141 spin_lock(&ce->guc_state.lock);
1142 guc_blocked_fence_complete(ce);
1143 spin_unlock(&ce->guc_state.lock);
1144
1145 intel_context_put(ce);
1146 }
1147
1148 if (do_put)
1149 intel_context_put(ce);
1150 xa_lock(&guc->context_lookup);
1151 }
1152 xa_unlock_irqrestore(&guc->context_lookup, flags);
1153 }
1154
1155 /*
1156 * GuC stores busyness stats for each engine at context in/out boundaries. A
1157 * context 'in' logs execution start time, 'out' adds in -> out delta to total.
1158 * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with
1159 * GuC.
1160 *
1161 * __i915_pmu_event_read samples engine busyness. When sampling, if context id
1162 * is valid (!= ~0) and start is non-zero, the engine is considered to be
1163 * active. For an active engine total busyness = total + (now - start), where
1164 * 'now' is the time at which the busyness is sampled. For inactive engine,
1165 * total busyness = total.
1166 *
1167 * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain.
1168 *
1169 * The start and total values provided by GuC are 32 bits and wrap around in a
1170 * few minutes. Since perf pmu provides busyness as 64 bit monotonically
1171 * increasing ns values, there is a need for this implementation to account for
1172 * overflows and extend the GuC provided values to 64 bits before returning
1173 * busyness to the user. In order to do that, a worker runs periodically at
1174 * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in
1175 * 27 seconds for a gt clock frequency of 19.2 MHz).
1176 */
1177
1178 #define WRAP_TIME_CLKS U32_MAX
1179 #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3)
1180
1181 static void
__extend_last_switch(struct intel_guc * guc,u64 * prev_start,u32 new_start)1182 __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start)
1183 {
1184 u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1185 u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp);
1186
1187 if (new_start == lower_32_bits(*prev_start))
1188 return;
1189
1190 /*
1191 * When gt is unparked, we update the gt timestamp and start the ping
1192 * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt
1193 * is unparked, all switched in contexts will have a start time that is
1194 * within +/- POLL_TIME_CLKS of the most recent gt_stamp.
1195 *
1196 * If neither gt_stamp nor new_start has rolled over, then the
1197 * gt_stamp_hi does not need to be adjusted, however if one of them has
1198 * rolled over, we need to adjust gt_stamp_hi accordingly.
1199 *
1200 * The below conditions address the cases of new_start rollover and
1201 * gt_stamp_last rollover respectively.
1202 */
1203 if (new_start < gt_stamp_last &&
1204 (new_start - gt_stamp_last) <= POLL_TIME_CLKS)
1205 gt_stamp_hi++;
1206
1207 if (new_start > gt_stamp_last &&
1208 (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi)
1209 gt_stamp_hi--;
1210
1211 *prev_start = ((u64)gt_stamp_hi << 32) | new_start;
1212 }
1213
1214 #define record_read(map_, field_) \
1215 iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_)
1216
1217 /*
1218 * GuC updates shared memory and KMD reads it. Since this is not synchronized,
1219 * we run into a race where the value read is inconsistent. Sometimes the
1220 * inconsistency is in reading the upper MSB bytes of the last_in value when
1221 * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper
1222 * 24 bits are zero. Since these are non-zero values, it is non-trivial to
1223 * determine validity of these values. Instead we read the values multiple times
1224 * until they are consistent. In test runs, 3 attempts results in consistent
1225 * values. The upper bound is set to 6 attempts and may need to be tuned as per
1226 * any new occurences.
1227 */
__get_engine_usage_record(struct intel_engine_cs * engine,u32 * last_in,u32 * id,u32 * total)1228 static void __get_engine_usage_record(struct intel_engine_cs *engine,
1229 u32 *last_in, u32 *id, u32 *total)
1230 {
1231 struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine);
1232 int i = 0;
1233
1234 do {
1235 *last_in = record_read(&rec_map, last_switch_in_stamp);
1236 *id = record_read(&rec_map, current_context_index);
1237 *total = record_read(&rec_map, total_runtime);
1238
1239 if (record_read(&rec_map, last_switch_in_stamp) == *last_in &&
1240 record_read(&rec_map, current_context_index) == *id &&
1241 record_read(&rec_map, total_runtime) == *total)
1242 break;
1243 } while (++i < 6);
1244 }
1245
guc_update_engine_gt_clks(struct intel_engine_cs * engine)1246 static void guc_update_engine_gt_clks(struct intel_engine_cs *engine)
1247 {
1248 struct intel_engine_guc_stats *stats = &engine->stats.guc;
1249 struct intel_guc *guc = gt_to_guc(engine->gt);
1250 u32 last_switch, ctx_id, total;
1251
1252 lockdep_assert_held(&guc->timestamp.lock);
1253
1254 __get_engine_usage_record(engine, &last_switch, &ctx_id, &total);
1255
1256 stats->running = ctx_id != ~0U && last_switch;
1257 if (stats->running)
1258 __extend_last_switch(guc, &stats->start_gt_clk, last_switch);
1259
1260 /*
1261 * Instead of adjusting the total for overflow, just add the
1262 * difference from previous sample stats->total_gt_clks
1263 */
1264 if (total && total != ~0U) {
1265 stats->total_gt_clks += (u32)(total - stats->prev_total);
1266 stats->prev_total = total;
1267 }
1268 }
1269
gpm_timestamp_shift(struct intel_gt * gt)1270 static u32 gpm_timestamp_shift(struct intel_gt *gt)
1271 {
1272 intel_wakeref_t wakeref;
1273 u32 reg, shift;
1274
1275 with_intel_runtime_pm(gt->uncore->rpm, wakeref)
1276 reg = intel_uncore_read(gt->uncore, RPM_CONFIG0);
1277
1278 shift = (reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
1279 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT;
1280
1281 return 3 - shift;
1282 }
1283
guc_update_pm_timestamp(struct intel_guc * guc,ktime_t * now)1284 static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now)
1285 {
1286 struct intel_gt *gt = guc_to_gt(guc);
1287 u32 gt_stamp_lo, gt_stamp_hi;
1288 u64 gpm_ts;
1289
1290 lockdep_assert_held(&guc->timestamp.lock);
1291
1292 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1293 gpm_ts = intel_uncore_read64_2x32(gt->uncore, MISC_STATUS0,
1294 MISC_STATUS1) >> guc->timestamp.shift;
1295 gt_stamp_lo = lower_32_bits(gpm_ts);
1296 *now = ktime_get();
1297
1298 if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp))
1299 gt_stamp_hi++;
1300
1301 guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo;
1302 }
1303
1304 /*
1305 * Unlike the execlist mode of submission total and active times are in terms of
1306 * gt clocks. The *now parameter is retained to return the cpu time at which the
1307 * busyness was sampled.
1308 */
guc_engine_busyness(struct intel_engine_cs * engine,ktime_t * now)1309 static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now)
1310 {
1311 struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc;
1312 struct i915_gpu_error *gpu_error = &engine->i915->gpu_error;
1313 struct intel_gt *gt = engine->gt;
1314 struct intel_guc *guc = gt_to_guc(gt);
1315 u64 total, gt_stamp_saved;
1316 unsigned long flags;
1317 u32 reset_count;
1318 bool in_reset;
1319 intel_wakeref_t wakeref;
1320
1321 spin_lock_irqsave(&guc->timestamp.lock, flags);
1322
1323 /*
1324 * If a reset happened, we risk reading partially updated engine
1325 * busyness from GuC, so we just use the driver stored copy of busyness.
1326 * Synchronize with gt reset using reset_count and the
1327 * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count
1328 * after I915_RESET_BACKOFF flag, so ensure that the reset_count is
1329 * usable by checking the flag afterwards.
1330 */
1331 reset_count = i915_reset_count(gpu_error);
1332 in_reset = test_bit(I915_RESET_BACKOFF, >->reset.flags);
1333
1334 *now = ktime_get();
1335
1336 /*
1337 * The active busyness depends on start_gt_clk and gt_stamp.
1338 * gt_stamp is updated by i915 only when gt is awake and the
1339 * start_gt_clk is derived from GuC state. To get a consistent
1340 * view of activity, we query the GuC state only if gt is awake.
1341 */
1342 wakeref = in_reset ? 0 : intel_gt_pm_get_if_awake(gt);
1343 if (wakeref) {
1344 stats_saved = *stats;
1345 gt_stamp_saved = guc->timestamp.gt_stamp;
1346 /*
1347 * Update gt_clks, then gt timestamp to simplify the 'gt_stamp -
1348 * start_gt_clk' calculation below for active engines.
1349 */
1350 guc_update_engine_gt_clks(engine);
1351 guc_update_pm_timestamp(guc, now);
1352 intel_gt_pm_put_async(gt, wakeref);
1353 if (i915_reset_count(gpu_error) != reset_count) {
1354 *stats = stats_saved;
1355 guc->timestamp.gt_stamp = gt_stamp_saved;
1356 }
1357 }
1358
1359 total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks);
1360 if (stats->running) {
1361 u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk;
1362
1363 total += intel_gt_clock_interval_to_ns(gt, clk);
1364 }
1365
1366 spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1367
1368 return ns_to_ktime(total);
1369 }
1370
guc_enable_busyness_worker(struct intel_guc * guc)1371 static void guc_enable_busyness_worker(struct intel_guc *guc)
1372 {
1373 mod_delayed_work(system_highpri_wq, &guc->timestamp.work, guc->timestamp.ping_delay);
1374 }
1375
guc_cancel_busyness_worker(struct intel_guc * guc)1376 static void guc_cancel_busyness_worker(struct intel_guc *guc)
1377 {
1378 /*
1379 * There are many different call stacks that can get here. Some of them
1380 * hold the reset mutex. The busyness worker also attempts to acquire the
1381 * reset mutex. Synchronously flushing a worker thread requires acquiring
1382 * the worker mutex. Lockdep sees this as a conflict. It thinks that the
1383 * flush can deadlock because it holds the worker mutex while waiting for
1384 * the reset mutex, but another thread is holding the reset mutex and might
1385 * attempt to use other worker functions.
1386 *
1387 * In practice, this scenario does not exist because the busyness worker
1388 * does not block waiting for the reset mutex. It does a try-lock on it and
1389 * immediately exits if the lock is already held. Unfortunately, the mutex
1390 * in question (I915_RESET_BACKOFF) is an i915 implementation which has lockdep
1391 * annotation but not to the extent of explaining the 'might lock' is also a
1392 * 'does not need to lock'. So one option would be to add more complex lockdep
1393 * annotations to ignore the issue (if at all possible). A simpler option is to
1394 * just not flush synchronously when a rest in progress. Given that the worker
1395 * will just early exit and re-schedule itself anyway, there is no advantage
1396 * to running it immediately.
1397 *
1398 * If a reset is not in progress, then the synchronous flush may be required.
1399 * As noted many call stacks lead here, some during suspend and driver unload
1400 * which do require a synchronous flush to make sure the worker is stopped
1401 * before memory is freed.
1402 *
1403 * Trying to pass a 'need_sync' or 'in_reset' flag all the way down through
1404 * every possible call stack is unfeasible. It would be too intrusive to many
1405 * areas that really don't care about the GuC backend. However, there is the
1406 * I915_RESET_BACKOFF flag and the gt->reset.mutex can be tested for is_locked.
1407 * So just use those. Note that testing both is required due to the hideously
1408 * complex nature of the i915 driver's reset code paths.
1409 *
1410 * And note that in the case of a reset occurring during driver unload
1411 * (wedged_on_fini), skipping the cancel in reset_prepare/reset_fini (when the
1412 * reset flag/mutex are set) is fine because there is another explicit cancel in
1413 * intel_guc_submission_fini (when the reset flag/mutex are not).
1414 */
1415 if (mutex_is_locked(&guc_to_gt(guc)->reset.mutex) ||
1416 test_bit(I915_RESET_BACKOFF, &guc_to_gt(guc)->reset.flags))
1417 cancel_delayed_work(&guc->timestamp.work);
1418 else
1419 cancel_delayed_work_sync(&guc->timestamp.work);
1420 }
1421
__reset_guc_busyness_stats(struct intel_guc * guc)1422 static void __reset_guc_busyness_stats(struct intel_guc *guc)
1423 {
1424 struct intel_gt *gt = guc_to_gt(guc);
1425 struct intel_engine_cs *engine;
1426 enum intel_engine_id id;
1427 unsigned long flags;
1428 ktime_t unused;
1429
1430 spin_lock_irqsave(&guc->timestamp.lock, flags);
1431
1432 guc_update_pm_timestamp(guc, &unused);
1433 for_each_engine(engine, gt, id) {
1434 guc_update_engine_gt_clks(engine);
1435 engine->stats.guc.prev_total = 0;
1436 }
1437
1438 spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1439 }
1440
__update_guc_busyness_stats(struct intel_guc * guc)1441 static void __update_guc_busyness_stats(struct intel_guc *guc)
1442 {
1443 struct intel_gt *gt = guc_to_gt(guc);
1444 struct intel_engine_cs *engine;
1445 enum intel_engine_id id;
1446 unsigned long flags;
1447 ktime_t unused;
1448
1449 guc->timestamp.last_stat_jiffies = jiffies;
1450
1451 spin_lock_irqsave(&guc->timestamp.lock, flags);
1452
1453 guc_update_pm_timestamp(guc, &unused);
1454 for_each_engine(engine, gt, id)
1455 guc_update_engine_gt_clks(engine);
1456
1457 spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1458 }
1459
__guc_context_update_stats(struct intel_context * ce)1460 static void __guc_context_update_stats(struct intel_context *ce)
1461 {
1462 struct intel_guc *guc = ce_to_guc(ce);
1463 unsigned long flags;
1464
1465 spin_lock_irqsave(&guc->timestamp.lock, flags);
1466 lrc_update_runtime(ce);
1467 spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1468 }
1469
guc_context_update_stats(struct intel_context * ce)1470 static void guc_context_update_stats(struct intel_context *ce)
1471 {
1472 if (!intel_context_pin_if_active(ce))
1473 return;
1474
1475 __guc_context_update_stats(ce);
1476 intel_context_unpin(ce);
1477 }
1478
guc_timestamp_ping(struct work_struct * wrk)1479 static void guc_timestamp_ping(struct work_struct *wrk)
1480 {
1481 struct intel_guc *guc = container_of(wrk, typeof(*guc),
1482 timestamp.work.work);
1483 struct intel_uc *uc = container_of(guc, typeof(*uc), guc);
1484 struct intel_gt *gt = guc_to_gt(guc);
1485 struct intel_context *ce;
1486 intel_wakeref_t wakeref;
1487 unsigned long index;
1488 int srcu, ret;
1489
1490 /*
1491 * Ideally the busyness worker should take a gt pm wakeref because the
1492 * worker only needs to be active while gt is awake. However, the
1493 * gt_park path cancels the worker synchronously and this complicates
1494 * the flow if the worker is also running at the same time. The cancel
1495 * waits for the worker and when the worker releases the wakeref, that
1496 * would call gt_park and would lead to a deadlock.
1497 *
1498 * The resolution is to take the global pm wakeref if runtime pm is
1499 * already active. If not, we don't need to update the busyness stats as
1500 * the stats would already be updated when the gt was parked.
1501 *
1502 * Note:
1503 * - We do not requeue the worker if we cannot take a reference to runtime
1504 * pm since intel_guc_busyness_unpark would requeue the worker in the
1505 * resume path.
1506 *
1507 * - If the gt was parked longer than time taken for GT timestamp to roll
1508 * over, we ignore those rollovers since we don't care about tracking
1509 * the exact GT time. We only care about roll overs when the gt is
1510 * active and running workloads.
1511 *
1512 * - There is a window of time between gt_park and runtime suspend,
1513 * where the worker may run. This is acceptable since the worker will
1514 * not find any new data to update busyness.
1515 */
1516 wakeref = intel_runtime_pm_get_if_active(>->i915->runtime_pm);
1517 if (!wakeref)
1518 return;
1519
1520 /*
1521 * Synchronize with gt reset to make sure the worker does not
1522 * corrupt the engine/guc stats. NB: can't actually block waiting
1523 * for a reset to complete as the reset requires flushing out
1524 * this worker thread if started. So waiting would deadlock.
1525 */
1526 ret = intel_gt_reset_trylock(gt, &srcu);
1527 if (ret)
1528 goto err_trylock;
1529
1530 __update_guc_busyness_stats(guc);
1531
1532 /* adjust context stats for overflow */
1533 xa_for_each(&guc->context_lookup, index, ce)
1534 guc_context_update_stats(ce);
1535
1536 intel_gt_reset_unlock(gt, srcu);
1537
1538 guc_enable_busyness_worker(guc);
1539
1540 err_trylock:
1541 intel_runtime_pm_put(>->i915->runtime_pm, wakeref);
1542 }
1543
guc_action_enable_usage_stats(struct intel_guc * guc)1544 static int guc_action_enable_usage_stats(struct intel_guc *guc)
1545 {
1546 u32 offset = intel_guc_engine_usage_offset(guc);
1547 u32 action[] = {
1548 INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF,
1549 offset,
1550 0,
1551 };
1552
1553 return intel_guc_send(guc, action, ARRAY_SIZE(action));
1554 }
1555
guc_init_engine_stats(struct intel_guc * guc)1556 static int guc_init_engine_stats(struct intel_guc *guc)
1557 {
1558 struct intel_gt *gt = guc_to_gt(guc);
1559 intel_wakeref_t wakeref;
1560 int ret;
1561
1562 with_intel_runtime_pm(>->i915->runtime_pm, wakeref)
1563 ret = guc_action_enable_usage_stats(guc);
1564
1565 if (ret)
1566 guc_err(guc, "Failed to enable usage stats: %pe\n", ERR_PTR(ret));
1567 else
1568 guc_enable_busyness_worker(guc);
1569
1570 return ret;
1571 }
1572
guc_fini_engine_stats(struct intel_guc * guc)1573 static void guc_fini_engine_stats(struct intel_guc *guc)
1574 {
1575 guc_cancel_busyness_worker(guc);
1576 }
1577
intel_guc_busyness_park(struct intel_gt * gt)1578 void intel_guc_busyness_park(struct intel_gt *gt)
1579 {
1580 struct intel_guc *guc = gt_to_guc(gt);
1581
1582 if (!guc_submission_initialized(guc))
1583 return;
1584
1585 /*
1586 * There is a race with suspend flow where the worker runs after suspend
1587 * and causes an unclaimed register access warning. Cancel the worker
1588 * synchronously here.
1589 */
1590 guc_cancel_busyness_worker(guc);
1591
1592 /*
1593 * Before parking, we should sample engine busyness stats if we need to.
1594 * We can skip it if we are less than half a ping from the last time we
1595 * sampled the busyness stats.
1596 */
1597 if (guc->timestamp.last_stat_jiffies &&
1598 !time_after(jiffies, guc->timestamp.last_stat_jiffies +
1599 (guc->timestamp.ping_delay / 2)))
1600 return;
1601
1602 __update_guc_busyness_stats(guc);
1603 }
1604
intel_guc_busyness_unpark(struct intel_gt * gt)1605 void intel_guc_busyness_unpark(struct intel_gt *gt)
1606 {
1607 struct intel_guc *guc = gt_to_guc(gt);
1608 unsigned long flags;
1609 ktime_t unused;
1610
1611 if (!guc_submission_initialized(guc))
1612 return;
1613
1614 spin_lock_irqsave(&guc->timestamp.lock, flags);
1615 guc_update_pm_timestamp(guc, &unused);
1616 spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1617 guc_enable_busyness_worker(guc);
1618 }
1619
1620 static inline bool
submission_disabled(struct intel_guc * guc)1621 submission_disabled(struct intel_guc *guc)
1622 {
1623 struct i915_sched_engine * const sched_engine = guc->sched_engine;
1624
1625 return unlikely(!sched_engine ||
1626 !__tasklet_is_enabled(&sched_engine->tasklet) ||
1627 intel_gt_is_wedged(guc_to_gt(guc)));
1628 }
1629
disable_submission(struct intel_guc * guc)1630 static void disable_submission(struct intel_guc *guc)
1631 {
1632 struct i915_sched_engine * const sched_engine = guc->sched_engine;
1633
1634 if (__tasklet_is_enabled(&sched_engine->tasklet)) {
1635 GEM_BUG_ON(!guc->ct.enabled);
1636 __tasklet_disable_sync_once(&sched_engine->tasklet);
1637 sched_engine->tasklet.callback = NULL;
1638 }
1639 }
1640
enable_submission(struct intel_guc * guc)1641 static void enable_submission(struct intel_guc *guc)
1642 {
1643 struct i915_sched_engine * const sched_engine = guc->sched_engine;
1644 unsigned long flags;
1645
1646 spin_lock_irqsave(&guc->sched_engine->lock, flags);
1647 sched_engine->tasklet.callback = guc_submission_tasklet;
1648 wmb(); /* Make sure callback visible */
1649 if (!__tasklet_is_enabled(&sched_engine->tasklet) &&
1650 __tasklet_enable(&sched_engine->tasklet)) {
1651 GEM_BUG_ON(!guc->ct.enabled);
1652
1653 /* And kick in case we missed a new request submission. */
1654 tasklet_hi_schedule(&sched_engine->tasklet);
1655 }
1656 spin_unlock_irqrestore(&guc->sched_engine->lock, flags);
1657 }
1658
guc_flush_submissions(struct intel_guc * guc)1659 static void guc_flush_submissions(struct intel_guc *guc)
1660 {
1661 struct i915_sched_engine * const sched_engine = guc->sched_engine;
1662 unsigned long flags;
1663
1664 spin_lock_irqsave(&sched_engine->lock, flags);
1665 spin_unlock_irqrestore(&sched_engine->lock, flags);
1666 }
1667
intel_guc_submission_flush_work(struct intel_guc * guc)1668 void intel_guc_submission_flush_work(struct intel_guc *guc)
1669 {
1670 flush_work(&guc->submission_state.destroyed_worker);
1671 }
1672
1673 static void guc_flush_destroyed_contexts(struct intel_guc *guc);
1674
intel_guc_submission_reset_prepare(struct intel_guc * guc)1675 void intel_guc_submission_reset_prepare(struct intel_guc *guc)
1676 {
1677 if (unlikely(!guc_submission_initialized(guc))) {
1678 /* Reset called during driver load? GuC not yet initialised! */
1679 return;
1680 }
1681
1682 intel_gt_park_heartbeats(guc_to_gt(guc));
1683 disable_submission(guc);
1684 guc->interrupts.disable(guc);
1685 __reset_guc_busyness_stats(guc);
1686
1687 /* Flush IRQ handler */
1688 spin_lock_irq(guc_to_gt(guc)->irq_lock);
1689 spin_unlock_irq(guc_to_gt(guc)->irq_lock);
1690
1691 guc_flush_submissions(guc);
1692 guc_flush_destroyed_contexts(guc);
1693 flush_work(&guc->ct.requests.worker);
1694
1695 scrub_guc_desc_for_outstanding_g2h(guc);
1696 }
1697
1698 static struct intel_engine_cs *
guc_virtual_get_sibling(struct intel_engine_cs * ve,unsigned int sibling)1699 guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling)
1700 {
1701 struct intel_engine_cs *engine;
1702 intel_engine_mask_t tmp, mask = ve->mask;
1703 unsigned int num_siblings = 0;
1704
1705 for_each_engine_masked(engine, ve->gt, mask, tmp)
1706 if (num_siblings++ == sibling)
1707 return engine;
1708
1709 return NULL;
1710 }
1711
1712 static inline struct intel_engine_cs *
__context_to_physical_engine(struct intel_context * ce)1713 __context_to_physical_engine(struct intel_context *ce)
1714 {
1715 struct intel_engine_cs *engine = ce->engine;
1716
1717 if (intel_engine_is_virtual(engine))
1718 engine = guc_virtual_get_sibling(engine, 0);
1719
1720 return engine;
1721 }
1722
guc_reset_state(struct intel_context * ce,u32 head,bool scrub)1723 static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub)
1724 {
1725 struct intel_engine_cs *engine = __context_to_physical_engine(ce);
1726
1727 if (!intel_context_is_schedulable(ce))
1728 return;
1729
1730 GEM_BUG_ON(!intel_context_is_pinned(ce));
1731
1732 /*
1733 * We want a simple context + ring to execute the breadcrumb update.
1734 * We cannot rely on the context being intact across the GPU hang,
1735 * so clear it and rebuild just what we need for the breadcrumb.
1736 * All pending requests for this context will be zapped, and any
1737 * future request will be after userspace has had the opportunity
1738 * to recreate its own state.
1739 */
1740 if (scrub)
1741 lrc_init_regs(ce, engine, true);
1742
1743 /* Rerun the request; its payload has been neutered (if guilty). */
1744 lrc_update_regs(ce, engine, head);
1745 }
1746
guc_engine_reset_prepare(struct intel_engine_cs * engine)1747 static void guc_engine_reset_prepare(struct intel_engine_cs *engine)
1748 {
1749 /*
1750 * Wa_22011802037: In addition to stopping the cs, we need
1751 * to wait for any pending mi force wakeups
1752 */
1753 if (intel_engine_reset_needs_wa_22011802037(engine->gt)) {
1754 intel_engine_stop_cs(engine);
1755 intel_engine_wait_for_pending_mi_fw(engine);
1756 }
1757 }
1758
guc_reset_nop(struct intel_engine_cs * engine)1759 static void guc_reset_nop(struct intel_engine_cs *engine)
1760 {
1761 }
1762
guc_rewind_nop(struct intel_engine_cs * engine,bool stalled)1763 static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled)
1764 {
1765 }
1766
1767 static void
__unwind_incomplete_requests(struct intel_context * ce)1768 __unwind_incomplete_requests(struct intel_context *ce)
1769 {
1770 struct i915_request *rq, *rn;
1771 struct list_head *pl;
1772 int prio = I915_PRIORITY_INVALID;
1773 struct i915_sched_engine * const sched_engine =
1774 ce->engine->sched_engine;
1775 unsigned long flags;
1776
1777 spin_lock_irqsave(&sched_engine->lock, flags);
1778 spin_lock(&ce->guc_state.lock);
1779 list_for_each_entry_safe_reverse(rq, rn,
1780 &ce->guc_state.requests,
1781 sched.link) {
1782 if (i915_request_completed(rq))
1783 continue;
1784
1785 list_del_init(&rq->sched.link);
1786 __i915_request_unsubmit(rq);
1787
1788 /* Push the request back into the queue for later resubmission. */
1789 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
1790 if (rq_prio(rq) != prio) {
1791 prio = rq_prio(rq);
1792 pl = i915_sched_lookup_priolist(sched_engine, prio);
1793 }
1794 GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine));
1795
1796 list_add(&rq->sched.link, pl);
1797 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1798 }
1799 spin_unlock(&ce->guc_state.lock);
1800 spin_unlock_irqrestore(&sched_engine->lock, flags);
1801 }
1802
__guc_reset_context(struct intel_context * ce,intel_engine_mask_t stalled)1803 static void __guc_reset_context(struct intel_context *ce, intel_engine_mask_t stalled)
1804 {
1805 bool guilty;
1806 struct i915_request *rq;
1807 unsigned long flags;
1808 u32 head;
1809 int i, number_children = ce->parallel.number_children;
1810 struct intel_context *parent = ce;
1811
1812 GEM_BUG_ON(intel_context_is_child(ce));
1813
1814 intel_context_get(ce);
1815
1816 /*
1817 * GuC will implicitly mark the context as non-schedulable when it sends
1818 * the reset notification. Make sure our state reflects this change. The
1819 * context will be marked enabled on resubmission.
1820 */
1821 spin_lock_irqsave(&ce->guc_state.lock, flags);
1822 clr_context_enabled(ce);
1823 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
1824
1825 /*
1826 * For each context in the relationship find the hanging request
1827 * resetting each context / request as needed
1828 */
1829 for (i = 0; i < number_children + 1; ++i) {
1830 if (!intel_context_is_pinned(ce))
1831 goto next_context;
1832
1833 guilty = false;
1834 rq = intel_context_get_active_request(ce);
1835 if (!rq) {
1836 head = ce->ring->tail;
1837 goto out_replay;
1838 }
1839
1840 if (i915_request_started(rq))
1841 guilty = stalled & ce->engine->mask;
1842
1843 GEM_BUG_ON(i915_active_is_idle(&ce->active));
1844 head = intel_ring_wrap(ce->ring, rq->head);
1845
1846 __i915_request_reset(rq, guilty);
1847 i915_request_put(rq);
1848 out_replay:
1849 guc_reset_state(ce, head, guilty);
1850 next_context:
1851 if (i != number_children)
1852 ce = list_next_entry(ce, parallel.child_link);
1853 }
1854
1855 __unwind_incomplete_requests(parent);
1856 intel_context_put(parent);
1857 }
1858
wake_up_all_tlb_invalidate(struct intel_guc * guc)1859 void wake_up_all_tlb_invalidate(struct intel_guc *guc)
1860 {
1861 struct intel_guc_tlb_wait *wait;
1862 unsigned long i;
1863
1864 if (!intel_guc_tlb_invalidation_is_available(guc))
1865 return;
1866
1867 xa_lock_irq(&guc->tlb_lookup);
1868 xa_for_each(&guc->tlb_lookup, i, wait)
1869 wake_up(&wait->wq);
1870 xa_unlock_irq(&guc->tlb_lookup);
1871 }
1872
intel_guc_submission_reset(struct intel_guc * guc,intel_engine_mask_t stalled)1873 void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled)
1874 {
1875 struct intel_context *ce;
1876 unsigned long index;
1877 unsigned long flags;
1878
1879 if (unlikely(!guc_submission_initialized(guc))) {
1880 /* Reset called during driver load? GuC not yet initialised! */
1881 return;
1882 }
1883
1884 xa_lock_irqsave(&guc->context_lookup, flags);
1885 xa_for_each(&guc->context_lookup, index, ce) {
1886 if (!kref_get_unless_zero(&ce->ref))
1887 continue;
1888
1889 xa_unlock(&guc->context_lookup);
1890
1891 if (intel_context_is_pinned(ce) &&
1892 !intel_context_is_child(ce))
1893 __guc_reset_context(ce, stalled);
1894
1895 intel_context_put(ce);
1896
1897 xa_lock(&guc->context_lookup);
1898 }
1899 xa_unlock_irqrestore(&guc->context_lookup, flags);
1900
1901 /* GuC is blown away, drop all references to contexts */
1902 xa_destroy(&guc->context_lookup);
1903 }
1904
guc_cancel_context_requests(struct intel_context * ce)1905 static void guc_cancel_context_requests(struct intel_context *ce)
1906 {
1907 struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine;
1908 struct i915_request *rq;
1909 unsigned long flags;
1910
1911 /* Mark all executing requests as skipped. */
1912 spin_lock_irqsave(&sched_engine->lock, flags);
1913 spin_lock(&ce->guc_state.lock);
1914 list_for_each_entry(rq, &ce->guc_state.requests, sched.link)
1915 i915_request_put(i915_request_mark_eio(rq));
1916 spin_unlock(&ce->guc_state.lock);
1917 spin_unlock_irqrestore(&sched_engine->lock, flags);
1918 }
1919
1920 static void
guc_cancel_sched_engine_requests(struct i915_sched_engine * sched_engine)1921 guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine)
1922 {
1923 struct i915_request *rq, *rn;
1924 struct rb_node *rb;
1925 unsigned long flags;
1926
1927 /* Can be called during boot if GuC fails to load */
1928 if (!sched_engine)
1929 return;
1930
1931 /*
1932 * Before we call engine->cancel_requests(), we should have exclusive
1933 * access to the submission state. This is arranged for us by the
1934 * caller disabling the interrupt generation, the tasklet and other
1935 * threads that may then access the same state, giving us a free hand
1936 * to reset state. However, we still need to let lockdep be aware that
1937 * we know this state may be accessed in hardirq context, so we
1938 * disable the irq around this manipulation and we want to keep
1939 * the spinlock focused on its duties and not accidentally conflate
1940 * coverage to the submission's irq state. (Similarly, although we
1941 * shouldn't need to disable irq around the manipulation of the
1942 * submission's irq state, we also wish to remind ourselves that
1943 * it is irq state.)
1944 */
1945 spin_lock_irqsave(&sched_engine->lock, flags);
1946
1947 /* Flush the queued requests to the timeline list (for retiring). */
1948 while ((rb = rb_first_cached(&sched_engine->queue))) {
1949 struct i915_priolist *p = to_priolist(rb);
1950
1951 priolist_for_each_request_consume(rq, rn, p) {
1952 list_del_init(&rq->sched.link);
1953
1954 __i915_request_submit(rq);
1955
1956 i915_request_put(i915_request_mark_eio(rq));
1957 }
1958
1959 rb_erase_cached(&p->node, &sched_engine->queue);
1960 i915_priolist_free(p);
1961 }
1962
1963 /* Remaining _unready_ requests will be nop'ed when submitted */
1964
1965 sched_engine->queue_priority_hint = INT_MIN;
1966 sched_engine->queue = RB_ROOT_CACHED;
1967
1968 spin_unlock_irqrestore(&sched_engine->lock, flags);
1969 }
1970
intel_guc_submission_cancel_requests(struct intel_guc * guc)1971 void intel_guc_submission_cancel_requests(struct intel_guc *guc)
1972 {
1973 struct intel_context *ce;
1974 unsigned long index;
1975 unsigned long flags;
1976
1977 xa_lock_irqsave(&guc->context_lookup, flags);
1978 xa_for_each(&guc->context_lookup, index, ce) {
1979 if (!kref_get_unless_zero(&ce->ref))
1980 continue;
1981
1982 xa_unlock(&guc->context_lookup);
1983
1984 if (intel_context_is_pinned(ce) &&
1985 !intel_context_is_child(ce))
1986 guc_cancel_context_requests(ce);
1987
1988 intel_context_put(ce);
1989
1990 xa_lock(&guc->context_lookup);
1991 }
1992 xa_unlock_irqrestore(&guc->context_lookup, flags);
1993
1994 guc_cancel_sched_engine_requests(guc->sched_engine);
1995
1996 /* GuC is blown away, drop all references to contexts */
1997 xa_destroy(&guc->context_lookup);
1998
1999 /*
2000 * Wedged GT won't respond to any TLB invalidation request. Simply
2001 * release all the blocked waiters.
2002 */
2003 wake_up_all_tlb_invalidate(guc);
2004 }
2005
intel_guc_submission_reset_finish(struct intel_guc * guc)2006 void intel_guc_submission_reset_finish(struct intel_guc *guc)
2007 {
2008 /* Reset called during driver load or during wedge? */
2009 if (unlikely(!guc_submission_initialized(guc) ||
2010 !intel_guc_is_fw_running(guc) ||
2011 intel_gt_is_wedged(guc_to_gt(guc)))) {
2012 return;
2013 }
2014
2015 /*
2016 * Technically possible for either of these values to be non-zero here,
2017 * but very unlikely + harmless. Regardless let's add an error so we can
2018 * see in CI if this happens frequently / a precursor to taking down the
2019 * machine.
2020 */
2021 if (atomic_read(&guc->outstanding_submission_g2h))
2022 guc_err(guc, "Unexpected outstanding GuC to Host in reset finish\n");
2023 atomic_set(&guc->outstanding_submission_g2h, 0);
2024
2025 intel_guc_global_policies_update(guc);
2026 enable_submission(guc);
2027 intel_gt_unpark_heartbeats(guc_to_gt(guc));
2028
2029 /*
2030 * The full GT reset will have cleared the TLB caches and flushed the
2031 * G2H message queue; we can release all the blocked waiters.
2032 */
2033 wake_up_all_tlb_invalidate(guc);
2034 }
2035
2036 static void destroyed_worker_func(struct work_struct *w);
2037 static void reset_fail_worker_func(struct work_struct *w);
2038
intel_guc_tlb_invalidation_is_available(struct intel_guc * guc)2039 bool intel_guc_tlb_invalidation_is_available(struct intel_guc *guc)
2040 {
2041 return HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915) &&
2042 intel_guc_is_ready(guc);
2043 }
2044
init_tlb_lookup(struct intel_guc * guc)2045 static int init_tlb_lookup(struct intel_guc *guc)
2046 {
2047 struct intel_guc_tlb_wait *wait;
2048 int err;
2049
2050 if (!HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915))
2051 return 0;
2052
2053 xa_init_flags(&guc->tlb_lookup, XA_FLAGS_ALLOC);
2054
2055 wait = kzalloc(sizeof(*wait), GFP_KERNEL);
2056 if (!wait)
2057 return -ENOMEM;
2058
2059 init_waitqueue_head(&wait->wq);
2060
2061 /* Preallocate a shared id for use under memory pressure. */
2062 err = xa_alloc_cyclic_irq(&guc->tlb_lookup, &guc->serial_slot, wait,
2063 xa_limit_32b, &guc->next_seqno, GFP_KERNEL);
2064 if (err < 0) {
2065 kfree(wait);
2066 return err;
2067 }
2068
2069 return 0;
2070 }
2071
fini_tlb_lookup(struct intel_guc * guc)2072 static void fini_tlb_lookup(struct intel_guc *guc)
2073 {
2074 struct intel_guc_tlb_wait *wait;
2075
2076 if (!HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915))
2077 return;
2078
2079 wait = xa_load(&guc->tlb_lookup, guc->serial_slot);
2080 if (wait && wait->busy)
2081 guc_err(guc, "Unexpected busy item in tlb_lookup on fini\n");
2082 kfree(wait);
2083
2084 xa_destroy(&guc->tlb_lookup);
2085 }
2086
2087 /*
2088 * Set up the memory resources to be shared with the GuC (via the GGTT)
2089 * at firmware loading time.
2090 */
intel_guc_submission_init(struct intel_guc * guc)2091 int intel_guc_submission_init(struct intel_guc *guc)
2092 {
2093 struct intel_gt *gt = guc_to_gt(guc);
2094 int ret;
2095
2096 if (guc->submission_initialized)
2097 return 0;
2098
2099 if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 0, 0)) {
2100 ret = guc_lrc_desc_pool_create_v69(guc);
2101 if (ret)
2102 return ret;
2103 }
2104
2105 ret = init_tlb_lookup(guc);
2106 if (ret)
2107 goto destroy_pool;
2108
2109 guc->submission_state.guc_ids_bitmap =
2110 bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL);
2111 if (!guc->submission_state.guc_ids_bitmap) {
2112 ret = -ENOMEM;
2113 goto destroy_tlb;
2114 }
2115
2116 guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ;
2117 guc->timestamp.shift = gpm_timestamp_shift(gt);
2118 guc->submission_initialized = true;
2119
2120 return 0;
2121
2122 destroy_tlb:
2123 fini_tlb_lookup(guc);
2124 destroy_pool:
2125 guc_lrc_desc_pool_destroy_v69(guc);
2126 return ret;
2127 }
2128
intel_guc_submission_fini(struct intel_guc * guc)2129 void intel_guc_submission_fini(struct intel_guc *guc)
2130 {
2131 if (!guc->submission_initialized)
2132 return;
2133
2134 guc_fini_engine_stats(guc);
2135 guc_flush_destroyed_contexts(guc);
2136 guc_lrc_desc_pool_destroy_v69(guc);
2137 i915_sched_engine_put(guc->sched_engine);
2138 bitmap_free(guc->submission_state.guc_ids_bitmap);
2139 fini_tlb_lookup(guc);
2140 guc->submission_initialized = false;
2141 }
2142
queue_request(struct i915_sched_engine * sched_engine,struct i915_request * rq,int prio)2143 static inline void queue_request(struct i915_sched_engine *sched_engine,
2144 struct i915_request *rq,
2145 int prio)
2146 {
2147 GEM_BUG_ON(!list_empty(&rq->sched.link));
2148 list_add_tail(&rq->sched.link,
2149 i915_sched_lookup_priolist(sched_engine, prio));
2150 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2151 tasklet_hi_schedule(&sched_engine->tasklet);
2152 }
2153
guc_bypass_tasklet_submit(struct intel_guc * guc,struct i915_request * rq)2154 static int guc_bypass_tasklet_submit(struct intel_guc *guc,
2155 struct i915_request *rq)
2156 {
2157 int ret = 0;
2158
2159 __i915_request_submit(rq);
2160
2161 trace_i915_request_in(rq, 0);
2162
2163 if (is_multi_lrc_rq(rq)) {
2164 if (multi_lrc_submit(rq)) {
2165 ret = guc_wq_item_append(guc, rq);
2166 if (!ret)
2167 ret = guc_add_request(guc, rq);
2168 }
2169 } else {
2170 guc_set_lrc_tail(rq);
2171 ret = guc_add_request(guc, rq);
2172 }
2173
2174 if (unlikely(ret == -EPIPE))
2175 disable_submission(guc);
2176
2177 return ret;
2178 }
2179
need_tasklet(struct intel_guc * guc,struct i915_request * rq)2180 static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq)
2181 {
2182 struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
2183 struct intel_context *ce = request_to_scheduling_context(rq);
2184
2185 return submission_disabled(guc) || guc->stalled_request ||
2186 !i915_sched_engine_is_empty(sched_engine) ||
2187 !ctx_id_mapped(guc, ce->guc_id.id);
2188 }
2189
guc_submit_request(struct i915_request * rq)2190 static void guc_submit_request(struct i915_request *rq)
2191 {
2192 struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
2193 struct intel_guc *guc = gt_to_guc(rq->engine->gt);
2194 unsigned long flags;
2195
2196 /* Will be called from irq-context when using foreign fences. */
2197 spin_lock_irqsave(&sched_engine->lock, flags);
2198
2199 if (need_tasklet(guc, rq))
2200 queue_request(sched_engine, rq, rq_prio(rq));
2201 else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY)
2202 tasklet_hi_schedule(&sched_engine->tasklet);
2203
2204 spin_unlock_irqrestore(&sched_engine->lock, flags);
2205 }
2206
new_guc_id(struct intel_guc * guc,struct intel_context * ce)2207 static int new_guc_id(struct intel_guc *guc, struct intel_context *ce)
2208 {
2209 int ret;
2210
2211 GEM_BUG_ON(intel_context_is_child(ce));
2212
2213 if (intel_context_is_parent(ce))
2214 ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap,
2215 NUMBER_MULTI_LRC_GUC_ID(guc),
2216 order_base_2(ce->parallel.number_children
2217 + 1));
2218 else
2219 ret = ida_alloc_range(&guc->submission_state.guc_ids,
2220 NUMBER_MULTI_LRC_GUC_ID(guc),
2221 guc->submission_state.num_guc_ids - 1,
2222 GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
2223 if (unlikely(ret < 0))
2224 return ret;
2225
2226 if (!intel_context_is_parent(ce))
2227 ++guc->submission_state.guc_ids_in_use;
2228
2229 ce->guc_id.id = ret;
2230 return 0;
2231 }
2232
__release_guc_id(struct intel_guc * guc,struct intel_context * ce)2233 static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2234 {
2235 GEM_BUG_ON(intel_context_is_child(ce));
2236
2237 if (!context_guc_id_invalid(ce)) {
2238 if (intel_context_is_parent(ce)) {
2239 bitmap_release_region(guc->submission_state.guc_ids_bitmap,
2240 ce->guc_id.id,
2241 order_base_2(ce->parallel.number_children
2242 + 1));
2243 } else {
2244 --guc->submission_state.guc_ids_in_use;
2245 ida_free(&guc->submission_state.guc_ids,
2246 ce->guc_id.id);
2247 }
2248 clr_ctx_id_mapping(guc, ce->guc_id.id);
2249 set_context_guc_id_invalid(ce);
2250 }
2251 if (!list_empty(&ce->guc_id.link))
2252 list_del_init(&ce->guc_id.link);
2253 }
2254
release_guc_id(struct intel_guc * guc,struct intel_context * ce)2255 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2256 {
2257 unsigned long flags;
2258
2259 spin_lock_irqsave(&guc->submission_state.lock, flags);
2260 __release_guc_id(guc, ce);
2261 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2262 }
2263
steal_guc_id(struct intel_guc * guc,struct intel_context * ce)2264 static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce)
2265 {
2266 struct intel_context *cn;
2267
2268 lockdep_assert_held(&guc->submission_state.lock);
2269 GEM_BUG_ON(intel_context_is_child(ce));
2270 GEM_BUG_ON(intel_context_is_parent(ce));
2271
2272 if (!list_empty(&guc->submission_state.guc_id_list)) {
2273 cn = list_first_entry(&guc->submission_state.guc_id_list,
2274 struct intel_context,
2275 guc_id.link);
2276
2277 GEM_BUG_ON(atomic_read(&cn->guc_id.ref));
2278 GEM_BUG_ON(context_guc_id_invalid(cn));
2279 GEM_BUG_ON(intel_context_is_child(cn));
2280 GEM_BUG_ON(intel_context_is_parent(cn));
2281
2282 list_del_init(&cn->guc_id.link);
2283 ce->guc_id.id = cn->guc_id.id;
2284
2285 spin_lock(&cn->guc_state.lock);
2286 clr_context_registered(cn);
2287 spin_unlock(&cn->guc_state.lock);
2288
2289 set_context_guc_id_invalid(cn);
2290
2291 #ifdef CONFIG_DRM_I915_SELFTEST
2292 guc->number_guc_id_stolen++;
2293 #endif
2294
2295 return 0;
2296 } else {
2297 return -EAGAIN;
2298 }
2299 }
2300
assign_guc_id(struct intel_guc * guc,struct intel_context * ce)2301 static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce)
2302 {
2303 int ret;
2304
2305 lockdep_assert_held(&guc->submission_state.lock);
2306 GEM_BUG_ON(intel_context_is_child(ce));
2307
2308 ret = new_guc_id(guc, ce);
2309 if (unlikely(ret < 0)) {
2310 if (intel_context_is_parent(ce))
2311 return -ENOSPC;
2312
2313 ret = steal_guc_id(guc, ce);
2314 if (ret < 0)
2315 return ret;
2316 }
2317
2318 if (intel_context_is_parent(ce)) {
2319 struct intel_context *child;
2320 int i = 1;
2321
2322 for_each_child(ce, child)
2323 child->guc_id.id = ce->guc_id.id + i++;
2324 }
2325
2326 return 0;
2327 }
2328
2329 #define PIN_GUC_ID_TRIES 4
pin_guc_id(struct intel_guc * guc,struct intel_context * ce)2330 static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2331 {
2332 int ret = 0;
2333 unsigned long flags, tries = PIN_GUC_ID_TRIES;
2334
2335 GEM_BUG_ON(atomic_read(&ce->guc_id.ref));
2336
2337 try_again:
2338 spin_lock_irqsave(&guc->submission_state.lock, flags);
2339
2340 might_lock(&ce->guc_state.lock);
2341
2342 if (context_guc_id_invalid(ce)) {
2343 ret = assign_guc_id(guc, ce);
2344 if (ret)
2345 goto out_unlock;
2346 ret = 1; /* Indidcates newly assigned guc_id */
2347 }
2348 if (!list_empty(&ce->guc_id.link))
2349 list_del_init(&ce->guc_id.link);
2350 atomic_inc(&ce->guc_id.ref);
2351
2352 out_unlock:
2353 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2354
2355 /*
2356 * -EAGAIN indicates no guc_id are available, let's retire any
2357 * outstanding requests to see if that frees up a guc_id. If the first
2358 * retire didn't help, insert a sleep with the timeslice duration before
2359 * attempting to retire more requests. Double the sleep period each
2360 * subsequent pass before finally giving up. The sleep period has max of
2361 * 100ms and minimum of 1ms.
2362 */
2363 if (ret == -EAGAIN && --tries) {
2364 if (PIN_GUC_ID_TRIES - tries > 1) {
2365 unsigned int timeslice_shifted =
2366 ce->engine->props.timeslice_duration_ms <<
2367 (PIN_GUC_ID_TRIES - tries - 2);
2368 unsigned int max = min_t(unsigned int, 100,
2369 timeslice_shifted);
2370
2371 msleep(max_t(unsigned int, max, 1));
2372 }
2373 intel_gt_retire_requests(guc_to_gt(guc));
2374 goto try_again;
2375 }
2376
2377 return ret;
2378 }
2379
unpin_guc_id(struct intel_guc * guc,struct intel_context * ce)2380 static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2381 {
2382 unsigned long flags;
2383
2384 GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0);
2385 GEM_BUG_ON(intel_context_is_child(ce));
2386
2387 if (unlikely(context_guc_id_invalid(ce) ||
2388 intel_context_is_parent(ce)))
2389 return;
2390
2391 spin_lock_irqsave(&guc->submission_state.lock, flags);
2392 if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) &&
2393 !atomic_read(&ce->guc_id.ref))
2394 list_add_tail(&ce->guc_id.link,
2395 &guc->submission_state.guc_id_list);
2396 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2397 }
2398
__guc_action_register_multi_lrc_v69(struct intel_guc * guc,struct intel_context * ce,u32 guc_id,u32 offset,bool loop)2399 static int __guc_action_register_multi_lrc_v69(struct intel_guc *guc,
2400 struct intel_context *ce,
2401 u32 guc_id,
2402 u32 offset,
2403 bool loop)
2404 {
2405 struct intel_context *child;
2406 u32 action[4 + MAX_ENGINE_INSTANCE];
2407 int len = 0;
2408
2409 GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2410
2411 action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2412 action[len++] = guc_id;
2413 action[len++] = ce->parallel.number_children + 1;
2414 action[len++] = offset;
2415 for_each_child(ce, child) {
2416 offset += sizeof(struct guc_lrc_desc_v69);
2417 action[len++] = offset;
2418 }
2419
2420 return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2421 }
2422
__guc_action_register_multi_lrc_v70(struct intel_guc * guc,struct intel_context * ce,struct guc_ctxt_registration_info * info,bool loop)2423 static int __guc_action_register_multi_lrc_v70(struct intel_guc *guc,
2424 struct intel_context *ce,
2425 struct guc_ctxt_registration_info *info,
2426 bool loop)
2427 {
2428 struct intel_context *child;
2429 u32 action[13 + (MAX_ENGINE_INSTANCE * 2)];
2430 int len = 0;
2431 u32 next_id;
2432
2433 GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2434
2435 action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2436 action[len++] = info->flags;
2437 action[len++] = info->context_idx;
2438 action[len++] = info->engine_class;
2439 action[len++] = info->engine_submit_mask;
2440 action[len++] = info->wq_desc_lo;
2441 action[len++] = info->wq_desc_hi;
2442 action[len++] = info->wq_base_lo;
2443 action[len++] = info->wq_base_hi;
2444 action[len++] = info->wq_size;
2445 action[len++] = ce->parallel.number_children + 1;
2446 action[len++] = info->hwlrca_lo;
2447 action[len++] = info->hwlrca_hi;
2448
2449 next_id = info->context_idx + 1;
2450 for_each_child(ce, child) {
2451 GEM_BUG_ON(next_id++ != child->guc_id.id);
2452
2453 /*
2454 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2455 * only supports 32 bit currently.
2456 */
2457 action[len++] = lower_32_bits(child->lrc.lrca);
2458 action[len++] = upper_32_bits(child->lrc.lrca);
2459 }
2460
2461 GEM_BUG_ON(len > ARRAY_SIZE(action));
2462
2463 return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2464 }
2465
__guc_action_register_context_v69(struct intel_guc * guc,u32 guc_id,u32 offset,bool loop)2466 static int __guc_action_register_context_v69(struct intel_guc *guc,
2467 u32 guc_id,
2468 u32 offset,
2469 bool loop)
2470 {
2471 u32 action[] = {
2472 INTEL_GUC_ACTION_REGISTER_CONTEXT,
2473 guc_id,
2474 offset,
2475 };
2476
2477 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2478 0, loop);
2479 }
2480
__guc_action_register_context_v70(struct intel_guc * guc,struct guc_ctxt_registration_info * info,bool loop)2481 static int __guc_action_register_context_v70(struct intel_guc *guc,
2482 struct guc_ctxt_registration_info *info,
2483 bool loop)
2484 {
2485 u32 action[] = {
2486 INTEL_GUC_ACTION_REGISTER_CONTEXT,
2487 info->flags,
2488 info->context_idx,
2489 info->engine_class,
2490 info->engine_submit_mask,
2491 info->wq_desc_lo,
2492 info->wq_desc_hi,
2493 info->wq_base_lo,
2494 info->wq_base_hi,
2495 info->wq_size,
2496 info->hwlrca_lo,
2497 info->hwlrca_hi,
2498 };
2499
2500 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2501 0, loop);
2502 }
2503
2504 static void prepare_context_registration_info_v69(struct intel_context *ce);
2505 static void prepare_context_registration_info_v70(struct intel_context *ce,
2506 struct guc_ctxt_registration_info *info);
2507
2508 static int
register_context_v69(struct intel_guc * guc,struct intel_context * ce,bool loop)2509 register_context_v69(struct intel_guc *guc, struct intel_context *ce, bool loop)
2510 {
2511 u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool_v69) +
2512 ce->guc_id.id * sizeof(struct guc_lrc_desc_v69);
2513
2514 prepare_context_registration_info_v69(ce);
2515
2516 if (intel_context_is_parent(ce))
2517 return __guc_action_register_multi_lrc_v69(guc, ce, ce->guc_id.id,
2518 offset, loop);
2519 else
2520 return __guc_action_register_context_v69(guc, ce->guc_id.id,
2521 offset, loop);
2522 }
2523
2524 static int
register_context_v70(struct intel_guc * guc,struct intel_context * ce,bool loop)2525 register_context_v70(struct intel_guc *guc, struct intel_context *ce, bool loop)
2526 {
2527 struct guc_ctxt_registration_info info;
2528
2529 prepare_context_registration_info_v70(ce, &info);
2530
2531 if (intel_context_is_parent(ce))
2532 return __guc_action_register_multi_lrc_v70(guc, ce, &info, loop);
2533 else
2534 return __guc_action_register_context_v70(guc, &info, loop);
2535 }
2536
register_context(struct intel_context * ce,bool loop)2537 static int register_context(struct intel_context *ce, bool loop)
2538 {
2539 struct intel_guc *guc = ce_to_guc(ce);
2540 int ret;
2541
2542 GEM_BUG_ON(intel_context_is_child(ce));
2543 trace_intel_context_register(ce);
2544
2545 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0))
2546 ret = register_context_v70(guc, ce, loop);
2547 else
2548 ret = register_context_v69(guc, ce, loop);
2549
2550 if (likely(!ret)) {
2551 unsigned long flags;
2552
2553 spin_lock_irqsave(&ce->guc_state.lock, flags);
2554 set_context_registered(ce);
2555 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2556
2557 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0))
2558 guc_context_policy_init_v70(ce, loop);
2559 }
2560
2561 return ret;
2562 }
2563
__guc_action_deregister_context(struct intel_guc * guc,u32 guc_id)2564 static int __guc_action_deregister_context(struct intel_guc *guc,
2565 u32 guc_id)
2566 {
2567 u32 action[] = {
2568 INTEL_GUC_ACTION_DEREGISTER_CONTEXT,
2569 guc_id,
2570 };
2571
2572 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2573 G2H_LEN_DW_DEREGISTER_CONTEXT,
2574 true);
2575 }
2576
deregister_context(struct intel_context * ce,u32 guc_id)2577 static int deregister_context(struct intel_context *ce, u32 guc_id)
2578 {
2579 struct intel_guc *guc = ce_to_guc(ce);
2580
2581 GEM_BUG_ON(intel_context_is_child(ce));
2582 trace_intel_context_deregister(ce);
2583
2584 return __guc_action_deregister_context(guc, guc_id);
2585 }
2586
clear_children_join_go_memory(struct intel_context * ce)2587 static inline void clear_children_join_go_memory(struct intel_context *ce)
2588 {
2589 struct parent_scratch *ps = __get_parent_scratch(ce);
2590 int i;
2591
2592 ps->go.semaphore = 0;
2593 for (i = 0; i < ce->parallel.number_children + 1; ++i)
2594 ps->join[i].semaphore = 0;
2595 }
2596
get_children_go_value(struct intel_context * ce)2597 static inline u32 get_children_go_value(struct intel_context *ce)
2598 {
2599 return __get_parent_scratch(ce)->go.semaphore;
2600 }
2601
get_children_join_value(struct intel_context * ce,u8 child_index)2602 static inline u32 get_children_join_value(struct intel_context *ce,
2603 u8 child_index)
2604 {
2605 return __get_parent_scratch(ce)->join[child_index].semaphore;
2606 }
2607
2608 struct context_policy {
2609 u32 count;
2610 struct guc_update_context_policy h2g;
2611 };
2612
__guc_context_policy_action_size(struct context_policy * policy)2613 static u32 __guc_context_policy_action_size(struct context_policy *policy)
2614 {
2615 size_t bytes = sizeof(policy->h2g.header) +
2616 (sizeof(policy->h2g.klv[0]) * policy->count);
2617
2618 return bytes / sizeof(u32);
2619 }
2620
__guc_context_policy_start_klv(struct context_policy * policy,u16 guc_id)2621 static void __guc_context_policy_start_klv(struct context_policy *policy, u16 guc_id)
2622 {
2623 policy->h2g.header.action = INTEL_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES;
2624 policy->h2g.header.ctx_id = guc_id;
2625 policy->count = 0;
2626 }
2627
2628 #define MAKE_CONTEXT_POLICY_ADD(func, id) \
2629 static void __guc_context_policy_add_##func(struct context_policy *policy, u32 data) \
2630 { \
2631 GEM_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \
2632 policy->h2g.klv[policy->count].kl = \
2633 FIELD_PREP(GUC_KLV_0_KEY, GUC_CONTEXT_POLICIES_KLV_ID_##id) | \
2634 FIELD_PREP(GUC_KLV_0_LEN, 1); \
2635 policy->h2g.klv[policy->count].value = data; \
2636 policy->count++; \
2637 }
2638
MAKE_CONTEXT_POLICY_ADD(execution_quantum,EXECUTION_QUANTUM)2639 MAKE_CONTEXT_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM)
2640 MAKE_CONTEXT_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT)
2641 MAKE_CONTEXT_POLICY_ADD(priority, SCHEDULING_PRIORITY)
2642 MAKE_CONTEXT_POLICY_ADD(preempt_to_idle, PREEMPT_TO_IDLE_ON_QUANTUM_EXPIRY)
2643 MAKE_CONTEXT_POLICY_ADD(slpc_ctx_freq_req, SLPM_GT_FREQUENCY)
2644
2645 #undef MAKE_CONTEXT_POLICY_ADD
2646
2647 static int __guc_context_set_context_policies(struct intel_guc *guc,
2648 struct context_policy *policy,
2649 bool loop)
2650 {
2651 return guc_submission_send_busy_loop(guc, (u32 *)&policy->h2g,
2652 __guc_context_policy_action_size(policy),
2653 0, loop);
2654 }
2655
guc_context_policy_init_v70(struct intel_context * ce,bool loop)2656 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop)
2657 {
2658 struct intel_engine_cs *engine = ce->engine;
2659 struct intel_guc *guc = gt_to_guc(engine->gt);
2660 struct context_policy policy;
2661 u32 execution_quantum;
2662 u32 preemption_timeout;
2663 u32 slpc_ctx_freq_req = 0;
2664 unsigned long flags;
2665 int ret;
2666
2667 /* NB: For both of these, zero means disabled. */
2668 GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000,
2669 execution_quantum));
2670 GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000,
2671 preemption_timeout));
2672 execution_quantum = engine->props.timeslice_duration_ms * 1000;
2673 preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2674
2675 if (ce->flags & BIT(CONTEXT_LOW_LATENCY))
2676 slpc_ctx_freq_req |= SLPC_CTX_FREQ_REQ_IS_COMPUTE;
2677
2678 __guc_context_policy_start_klv(&policy, ce->guc_id.id);
2679
2680 __guc_context_policy_add_priority(&policy, ce->guc_state.prio);
2681 __guc_context_policy_add_execution_quantum(&policy, execution_quantum);
2682 __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
2683 __guc_context_policy_add_slpc_ctx_freq_req(&policy, slpc_ctx_freq_req);
2684
2685 if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2686 __guc_context_policy_add_preempt_to_idle(&policy, 1);
2687
2688 ret = __guc_context_set_context_policies(guc, &policy, loop);
2689
2690 spin_lock_irqsave(&ce->guc_state.lock, flags);
2691 if (ret != 0)
2692 set_context_policy_required(ce);
2693 else
2694 clr_context_policy_required(ce);
2695 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2696
2697 return ret;
2698 }
2699
guc_context_policy_init_v69(struct intel_engine_cs * engine,struct guc_lrc_desc_v69 * desc)2700 static void guc_context_policy_init_v69(struct intel_engine_cs *engine,
2701 struct guc_lrc_desc_v69 *desc)
2702 {
2703 desc->policy_flags = 0;
2704
2705 if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2706 desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE_V69;
2707
2708 /* NB: For both of these, zero means disabled. */
2709 GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000,
2710 desc->execution_quantum));
2711 GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000,
2712 desc->preemption_timeout));
2713 desc->execution_quantum = engine->props.timeslice_duration_ms * 1000;
2714 desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2715 }
2716
map_guc_prio_to_lrc_desc_prio(u8 prio)2717 static u32 map_guc_prio_to_lrc_desc_prio(u8 prio)
2718 {
2719 /*
2720 * this matches the mapping we do in map_i915_prio_to_guc_prio()
2721 * (e.g. prio < I915_PRIORITY_NORMAL maps to GUC_CLIENT_PRIORITY_NORMAL)
2722 */
2723 switch (prio) {
2724 default:
2725 MISSING_CASE(prio);
2726 fallthrough;
2727 case GUC_CLIENT_PRIORITY_KMD_NORMAL:
2728 return GEN12_CTX_PRIORITY_NORMAL;
2729 case GUC_CLIENT_PRIORITY_NORMAL:
2730 return GEN12_CTX_PRIORITY_LOW;
2731 case GUC_CLIENT_PRIORITY_HIGH:
2732 case GUC_CLIENT_PRIORITY_KMD_HIGH:
2733 return GEN12_CTX_PRIORITY_HIGH;
2734 }
2735 }
2736
prepare_context_registration_info_v69(struct intel_context * ce)2737 static void prepare_context_registration_info_v69(struct intel_context *ce)
2738 {
2739 struct intel_engine_cs *engine = ce->engine;
2740 struct intel_guc *guc = gt_to_guc(engine->gt);
2741 u32 ctx_id = ce->guc_id.id;
2742 struct guc_lrc_desc_v69 *desc;
2743 struct intel_context *child;
2744
2745 GEM_BUG_ON(!engine->mask);
2746
2747 /*
2748 * Ensure LRC + CT vmas are is same region as write barrier is done
2749 * based on CT vma region.
2750 */
2751 GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2752 i915_gem_object_is_lmem(ce->ring->vma->obj));
2753
2754 desc = __get_lrc_desc_v69(guc, ctx_id);
2755 GEM_BUG_ON(!desc);
2756 desc->engine_class = engine_class_to_guc_class(engine->class);
2757 desc->engine_submit_mask = engine->logical_mask;
2758 desc->hw_context_desc = ce->lrc.lrca;
2759 desc->priority = ce->guc_state.prio;
2760 desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2761 guc_context_policy_init_v69(engine, desc);
2762
2763 /*
2764 * If context is a parent, we need to register a process descriptor
2765 * describing a work queue and register all child contexts.
2766 */
2767 if (intel_context_is_parent(ce)) {
2768 struct guc_process_desc_v69 *pdesc;
2769
2770 ce->parallel.guc.wqi_tail = 0;
2771 ce->parallel.guc.wqi_head = 0;
2772
2773 desc->process_desc = i915_ggtt_offset(ce->state) +
2774 __get_parent_scratch_offset(ce);
2775 desc->wq_addr = i915_ggtt_offset(ce->state) +
2776 __get_wq_offset(ce);
2777 desc->wq_size = WQ_SIZE;
2778
2779 pdesc = __get_process_desc_v69(ce);
2780 memset(pdesc, 0, sizeof(*(pdesc)));
2781 pdesc->stage_id = ce->guc_id.id;
2782 pdesc->wq_base_addr = desc->wq_addr;
2783 pdesc->wq_size_bytes = desc->wq_size;
2784 pdesc->wq_status = WQ_STATUS_ACTIVE;
2785
2786 ce->parallel.guc.wq_head = &pdesc->head;
2787 ce->parallel.guc.wq_tail = &pdesc->tail;
2788 ce->parallel.guc.wq_status = &pdesc->wq_status;
2789
2790 for_each_child(ce, child) {
2791 desc = __get_lrc_desc_v69(guc, child->guc_id.id);
2792
2793 desc->engine_class =
2794 engine_class_to_guc_class(engine->class);
2795 desc->hw_context_desc = child->lrc.lrca;
2796 desc->priority = ce->guc_state.prio;
2797 desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2798 guc_context_policy_init_v69(engine, desc);
2799 }
2800
2801 clear_children_join_go_memory(ce);
2802 }
2803 }
2804
prepare_context_registration_info_v70(struct intel_context * ce,struct guc_ctxt_registration_info * info)2805 static void prepare_context_registration_info_v70(struct intel_context *ce,
2806 struct guc_ctxt_registration_info *info)
2807 {
2808 struct intel_engine_cs *engine = ce->engine;
2809 struct intel_guc *guc = gt_to_guc(engine->gt);
2810 u32 ctx_id = ce->guc_id.id;
2811
2812 GEM_BUG_ON(!engine->mask);
2813
2814 /*
2815 * Ensure LRC + CT vmas are is same region as write barrier is done
2816 * based on CT vma region.
2817 */
2818 GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2819 i915_gem_object_is_lmem(ce->ring->vma->obj));
2820
2821 memset(info, 0, sizeof(*info));
2822 info->context_idx = ctx_id;
2823 info->engine_class = engine_class_to_guc_class(engine->class);
2824 info->engine_submit_mask = engine->logical_mask;
2825 /*
2826 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2827 * only supports 32 bit currently.
2828 */
2829 info->hwlrca_lo = lower_32_bits(ce->lrc.lrca);
2830 info->hwlrca_hi = upper_32_bits(ce->lrc.lrca);
2831 if (engine->flags & I915_ENGINE_HAS_EU_PRIORITY)
2832 info->hwlrca_lo |= map_guc_prio_to_lrc_desc_prio(ce->guc_state.prio);
2833 info->flags = CONTEXT_REGISTRATION_FLAG_KMD;
2834
2835 /*
2836 * If context is a parent, we need to register a process descriptor
2837 * describing a work queue and register all child contexts.
2838 */
2839 if (intel_context_is_parent(ce)) {
2840 struct guc_sched_wq_desc *wq_desc;
2841 u64 wq_desc_offset, wq_base_offset;
2842
2843 ce->parallel.guc.wqi_tail = 0;
2844 ce->parallel.guc.wqi_head = 0;
2845
2846 wq_desc_offset = (u64)i915_ggtt_offset(ce->state) +
2847 __get_parent_scratch_offset(ce);
2848 wq_base_offset = (u64)i915_ggtt_offset(ce->state) +
2849 __get_wq_offset(ce);
2850 info->wq_desc_lo = lower_32_bits(wq_desc_offset);
2851 info->wq_desc_hi = upper_32_bits(wq_desc_offset);
2852 info->wq_base_lo = lower_32_bits(wq_base_offset);
2853 info->wq_base_hi = upper_32_bits(wq_base_offset);
2854 info->wq_size = WQ_SIZE;
2855
2856 wq_desc = __get_wq_desc_v70(ce);
2857 memset(wq_desc, 0, sizeof(*wq_desc));
2858 wq_desc->wq_status = WQ_STATUS_ACTIVE;
2859
2860 ce->parallel.guc.wq_head = &wq_desc->head;
2861 ce->parallel.guc.wq_tail = &wq_desc->tail;
2862 ce->parallel.guc.wq_status = &wq_desc->wq_status;
2863
2864 clear_children_join_go_memory(ce);
2865 }
2866 }
2867
try_context_registration(struct intel_context * ce,bool loop)2868 static int try_context_registration(struct intel_context *ce, bool loop)
2869 {
2870 struct intel_engine_cs *engine = ce->engine;
2871 struct intel_runtime_pm *runtime_pm = engine->uncore->rpm;
2872 struct intel_guc *guc = gt_to_guc(engine->gt);
2873 intel_wakeref_t wakeref;
2874 u32 ctx_id = ce->guc_id.id;
2875 bool context_registered;
2876 int ret = 0;
2877
2878 GEM_BUG_ON(!sched_state_is_init(ce));
2879
2880 context_registered = ctx_id_mapped(guc, ctx_id);
2881
2882 clr_ctx_id_mapping(guc, ctx_id);
2883 set_ctx_id_mapping(guc, ctx_id, ce);
2884
2885 /*
2886 * The context_lookup xarray is used to determine if the hardware
2887 * context is currently registered. There are two cases in which it
2888 * could be registered either the guc_id has been stolen from another
2889 * context or the lrc descriptor address of this context has changed. In
2890 * either case the context needs to be deregistered with the GuC before
2891 * registering this context.
2892 */
2893 if (context_registered) {
2894 bool disabled;
2895 unsigned long flags;
2896
2897 trace_intel_context_steal_guc_id(ce);
2898 GEM_BUG_ON(!loop);
2899
2900 /* Seal race with Reset */
2901 spin_lock_irqsave(&ce->guc_state.lock, flags);
2902 disabled = submission_disabled(guc);
2903 if (likely(!disabled)) {
2904 set_context_wait_for_deregister_to_register(ce);
2905 intel_context_get(ce);
2906 }
2907 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2908 if (unlikely(disabled)) {
2909 clr_ctx_id_mapping(guc, ctx_id);
2910 return 0; /* Will get registered later */
2911 }
2912
2913 /*
2914 * If stealing the guc_id, this ce has the same guc_id as the
2915 * context whose guc_id was stolen.
2916 */
2917 with_intel_runtime_pm(runtime_pm, wakeref)
2918 ret = deregister_context(ce, ce->guc_id.id);
2919 if (unlikely(ret == -ENODEV))
2920 ret = 0; /* Will get registered later */
2921 } else {
2922 with_intel_runtime_pm(runtime_pm, wakeref)
2923 ret = register_context(ce, loop);
2924 if (unlikely(ret == -EBUSY)) {
2925 clr_ctx_id_mapping(guc, ctx_id);
2926 } else if (unlikely(ret == -ENODEV)) {
2927 clr_ctx_id_mapping(guc, ctx_id);
2928 ret = 0; /* Will get registered later */
2929 }
2930 }
2931
2932 return ret;
2933 }
2934
__guc_context_pre_pin(struct intel_context * ce,struct intel_engine_cs * engine,struct i915_gem_ww_ctx * ww,void ** vaddr)2935 static int __guc_context_pre_pin(struct intel_context *ce,
2936 struct intel_engine_cs *engine,
2937 struct i915_gem_ww_ctx *ww,
2938 void **vaddr)
2939 {
2940 return lrc_pre_pin(ce, engine, ww, vaddr);
2941 }
2942
__guc_context_pin(struct intel_context * ce,struct intel_engine_cs * engine,void * vaddr)2943 static int __guc_context_pin(struct intel_context *ce,
2944 struct intel_engine_cs *engine,
2945 void *vaddr)
2946 {
2947 if (i915_ggtt_offset(ce->state) !=
2948 (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK))
2949 set_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
2950
2951 /*
2952 * GuC context gets pinned in guc_request_alloc. See that function for
2953 * explaination of why.
2954 */
2955
2956 return lrc_pin(ce, engine, vaddr);
2957 }
2958
guc_context_pre_pin(struct intel_context * ce,struct i915_gem_ww_ctx * ww,void ** vaddr)2959 static int guc_context_pre_pin(struct intel_context *ce,
2960 struct i915_gem_ww_ctx *ww,
2961 void **vaddr)
2962 {
2963 return __guc_context_pre_pin(ce, ce->engine, ww, vaddr);
2964 }
2965
guc_context_pin(struct intel_context * ce,void * vaddr)2966 static int guc_context_pin(struct intel_context *ce, void *vaddr)
2967 {
2968 int ret = __guc_context_pin(ce, ce->engine, vaddr);
2969
2970 if (likely(!ret && !intel_context_is_barrier(ce)))
2971 intel_engine_pm_get(ce->engine);
2972
2973 return ret;
2974 }
2975
guc_context_unpin(struct intel_context * ce)2976 static void guc_context_unpin(struct intel_context *ce)
2977 {
2978 struct intel_guc *guc = ce_to_guc(ce);
2979
2980 __guc_context_update_stats(ce);
2981 unpin_guc_id(guc, ce);
2982 lrc_unpin(ce);
2983
2984 if (likely(!intel_context_is_barrier(ce)))
2985 intel_engine_pm_put_async(ce->engine);
2986 }
2987
guc_context_post_unpin(struct intel_context * ce)2988 static void guc_context_post_unpin(struct intel_context *ce)
2989 {
2990 lrc_post_unpin(ce);
2991 }
2992
__guc_context_sched_enable(struct intel_guc * guc,struct intel_context * ce)2993 static void __guc_context_sched_enable(struct intel_guc *guc,
2994 struct intel_context *ce)
2995 {
2996 u32 action[] = {
2997 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2998 ce->guc_id.id,
2999 GUC_CONTEXT_ENABLE
3000 };
3001
3002 trace_intel_context_sched_enable(ce);
3003
3004 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
3005 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
3006 }
3007
__guc_context_sched_disable(struct intel_guc * guc,struct intel_context * ce,u16 guc_id)3008 static void __guc_context_sched_disable(struct intel_guc *guc,
3009 struct intel_context *ce,
3010 u16 guc_id)
3011 {
3012 u32 action[] = {
3013 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
3014 guc_id, /* ce->guc_id.id not stable */
3015 GUC_CONTEXT_DISABLE
3016 };
3017
3018 GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID);
3019
3020 GEM_BUG_ON(intel_context_is_child(ce));
3021 trace_intel_context_sched_disable(ce);
3022
3023 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
3024 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
3025 }
3026
guc_blocked_fence_complete(struct intel_context * ce)3027 static void guc_blocked_fence_complete(struct intel_context *ce)
3028 {
3029 lockdep_assert_held(&ce->guc_state.lock);
3030
3031 if (!i915_sw_fence_done(&ce->guc_state.blocked))
3032 i915_sw_fence_complete(&ce->guc_state.blocked);
3033 }
3034
guc_blocked_fence_reinit(struct intel_context * ce)3035 static void guc_blocked_fence_reinit(struct intel_context *ce)
3036 {
3037 lockdep_assert_held(&ce->guc_state.lock);
3038 GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked));
3039
3040 /*
3041 * This fence is always complete unless a pending schedule disable is
3042 * outstanding. We arm the fence here and complete it when we receive
3043 * the pending schedule disable complete message.
3044 */
3045 i915_sw_fence_fini(&ce->guc_state.blocked);
3046 i915_sw_fence_reinit(&ce->guc_state.blocked);
3047 i915_sw_fence_await(&ce->guc_state.blocked);
3048 i915_sw_fence_commit(&ce->guc_state.blocked);
3049 }
3050
prep_context_pending_disable(struct intel_context * ce)3051 static u16 prep_context_pending_disable(struct intel_context *ce)
3052 {
3053 lockdep_assert_held(&ce->guc_state.lock);
3054
3055 set_context_pending_disable(ce);
3056 clr_context_enabled(ce);
3057 guc_blocked_fence_reinit(ce);
3058 intel_context_get(ce);
3059
3060 return ce->guc_id.id;
3061 }
3062
guc_context_block(struct intel_context * ce)3063 static struct i915_sw_fence *guc_context_block(struct intel_context *ce)
3064 {
3065 struct intel_guc *guc = ce_to_guc(ce);
3066 unsigned long flags;
3067 struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
3068 intel_wakeref_t wakeref;
3069 u16 guc_id;
3070 bool enabled;
3071
3072 GEM_BUG_ON(intel_context_is_child(ce));
3073
3074 spin_lock_irqsave(&ce->guc_state.lock, flags);
3075
3076 incr_context_blocked(ce);
3077
3078 enabled = context_enabled(ce);
3079 if (unlikely(!enabled || submission_disabled(guc))) {
3080 if (enabled)
3081 clr_context_enabled(ce);
3082 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3083 return &ce->guc_state.blocked;
3084 }
3085
3086 /*
3087 * We add +2 here as the schedule disable complete CTB handler calls
3088 * intel_context_sched_disable_unpin (-2 to pin_count).
3089 */
3090 atomic_add(2, &ce->pin_count);
3091
3092 guc_id = prep_context_pending_disable(ce);
3093
3094 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3095
3096 with_intel_runtime_pm(runtime_pm, wakeref)
3097 __guc_context_sched_disable(guc, ce, guc_id);
3098
3099 return &ce->guc_state.blocked;
3100 }
3101
3102 #define SCHED_STATE_MULTI_BLOCKED_MASK \
3103 (SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED)
3104 #define SCHED_STATE_NO_UNBLOCK \
3105 (SCHED_STATE_MULTI_BLOCKED_MASK | \
3106 SCHED_STATE_PENDING_DISABLE | \
3107 SCHED_STATE_BANNED)
3108
context_cant_unblock(struct intel_context * ce)3109 static bool context_cant_unblock(struct intel_context *ce)
3110 {
3111 lockdep_assert_held(&ce->guc_state.lock);
3112
3113 return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) ||
3114 context_guc_id_invalid(ce) ||
3115 !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id) ||
3116 !intel_context_is_pinned(ce);
3117 }
3118
guc_context_unblock(struct intel_context * ce)3119 static void guc_context_unblock(struct intel_context *ce)
3120 {
3121 struct intel_guc *guc = ce_to_guc(ce);
3122 unsigned long flags;
3123 struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
3124 intel_wakeref_t wakeref;
3125 bool enable;
3126
3127 GEM_BUG_ON(context_enabled(ce));
3128 GEM_BUG_ON(intel_context_is_child(ce));
3129
3130 spin_lock_irqsave(&ce->guc_state.lock, flags);
3131
3132 if (unlikely(submission_disabled(guc) ||
3133 context_cant_unblock(ce))) {
3134 enable = false;
3135 } else {
3136 enable = true;
3137 set_context_pending_enable(ce);
3138 set_context_enabled(ce);
3139 intel_context_get(ce);
3140 }
3141
3142 decr_context_blocked(ce);
3143
3144 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3145
3146 if (enable) {
3147 with_intel_runtime_pm(runtime_pm, wakeref)
3148 __guc_context_sched_enable(guc, ce);
3149 }
3150 }
3151
guc_context_cancel_request(struct intel_context * ce,struct i915_request * rq)3152 static void guc_context_cancel_request(struct intel_context *ce,
3153 struct i915_request *rq)
3154 {
3155 struct intel_context *block_context =
3156 request_to_scheduling_context(rq);
3157
3158 if (i915_sw_fence_signaled(&rq->submit)) {
3159 struct i915_sw_fence *fence;
3160
3161 intel_context_get(ce);
3162 fence = guc_context_block(block_context);
3163 i915_sw_fence_wait(fence);
3164 if (!i915_request_completed(rq)) {
3165 __i915_request_skip(rq);
3166 guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head),
3167 true);
3168 }
3169
3170 guc_context_unblock(block_context);
3171 intel_context_put(ce);
3172 }
3173 }
3174
__guc_context_set_preemption_timeout(struct intel_guc * guc,u16 guc_id,u32 preemption_timeout)3175 static void __guc_context_set_preemption_timeout(struct intel_guc *guc,
3176 u16 guc_id,
3177 u32 preemption_timeout)
3178 {
3179 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) {
3180 struct context_policy policy;
3181
3182 __guc_context_policy_start_klv(&policy, guc_id);
3183 __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
3184 __guc_context_set_context_policies(guc, &policy, true);
3185 } else {
3186 u32 action[] = {
3187 INTEL_GUC_ACTION_V69_SET_CONTEXT_PREEMPTION_TIMEOUT,
3188 guc_id,
3189 preemption_timeout
3190 };
3191
3192 intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3193 }
3194 }
3195
3196 static void
guc_context_revoke(struct intel_context * ce,struct i915_request * rq,unsigned int preempt_timeout_ms)3197 guc_context_revoke(struct intel_context *ce, struct i915_request *rq,
3198 unsigned int preempt_timeout_ms)
3199 {
3200 struct intel_guc *guc = ce_to_guc(ce);
3201 struct intel_runtime_pm *runtime_pm =
3202 &ce->engine->gt->i915->runtime_pm;
3203 intel_wakeref_t wakeref;
3204 unsigned long flags;
3205
3206 GEM_BUG_ON(intel_context_is_child(ce));
3207
3208 guc_flush_submissions(guc);
3209
3210 spin_lock_irqsave(&ce->guc_state.lock, flags);
3211 set_context_banned(ce);
3212
3213 if (submission_disabled(guc) ||
3214 (!context_enabled(ce) && !context_pending_disable(ce))) {
3215 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3216
3217 guc_cancel_context_requests(ce);
3218 intel_engine_signal_breadcrumbs(ce->engine);
3219 } else if (!context_pending_disable(ce)) {
3220 u16 guc_id;
3221
3222 /*
3223 * We add +2 here as the schedule disable complete CTB handler
3224 * calls intel_context_sched_disable_unpin (-2 to pin_count).
3225 */
3226 atomic_add(2, &ce->pin_count);
3227
3228 guc_id = prep_context_pending_disable(ce);
3229 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3230
3231 /*
3232 * In addition to disabling scheduling, set the preemption
3233 * timeout to the minimum value (1 us) so the banned context
3234 * gets kicked off the HW ASAP.
3235 */
3236 with_intel_runtime_pm(runtime_pm, wakeref) {
3237 __guc_context_set_preemption_timeout(guc, guc_id,
3238 preempt_timeout_ms);
3239 __guc_context_sched_disable(guc, ce, guc_id);
3240 }
3241 } else {
3242 if (!context_guc_id_invalid(ce))
3243 with_intel_runtime_pm(runtime_pm, wakeref)
3244 __guc_context_set_preemption_timeout(guc,
3245 ce->guc_id.id,
3246 preempt_timeout_ms);
3247 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3248 }
3249 }
3250
do_sched_disable(struct intel_guc * guc,struct intel_context * ce,unsigned long flags)3251 static void do_sched_disable(struct intel_guc *guc, struct intel_context *ce,
3252 unsigned long flags)
3253 __releases(ce->guc_state.lock)
3254 {
3255 struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm;
3256 intel_wakeref_t wakeref;
3257 u16 guc_id;
3258
3259 lockdep_assert_held(&ce->guc_state.lock);
3260 guc_id = prep_context_pending_disable(ce);
3261
3262 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3263
3264 with_intel_runtime_pm(runtime_pm, wakeref)
3265 __guc_context_sched_disable(guc, ce, guc_id);
3266 }
3267
bypass_sched_disable(struct intel_guc * guc,struct intel_context * ce)3268 static bool bypass_sched_disable(struct intel_guc *guc,
3269 struct intel_context *ce)
3270 {
3271 lockdep_assert_held(&ce->guc_state.lock);
3272 GEM_BUG_ON(intel_context_is_child(ce));
3273
3274 if (submission_disabled(guc) || context_guc_id_invalid(ce) ||
3275 !ctx_id_mapped(guc, ce->guc_id.id)) {
3276 clr_context_enabled(ce);
3277 return true;
3278 }
3279
3280 return !context_enabled(ce);
3281 }
3282
__delay_sched_disable(struct work_struct * wrk)3283 static void __delay_sched_disable(struct work_struct *wrk)
3284 {
3285 struct intel_context *ce =
3286 container_of(wrk, typeof(*ce), guc_state.sched_disable_delay_work.work);
3287 struct intel_guc *guc = ce_to_guc(ce);
3288 unsigned long flags;
3289
3290 spin_lock_irqsave(&ce->guc_state.lock, flags);
3291
3292 if (bypass_sched_disable(guc, ce)) {
3293 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3294 intel_context_sched_disable_unpin(ce);
3295 } else {
3296 do_sched_disable(guc, ce, flags);
3297 }
3298 }
3299
guc_id_pressure(struct intel_guc * guc,struct intel_context * ce)3300 static bool guc_id_pressure(struct intel_guc *guc, struct intel_context *ce)
3301 {
3302 /*
3303 * parent contexts are perma-pinned, if we are unpinning do schedule
3304 * disable immediately.
3305 */
3306 if (intel_context_is_parent(ce))
3307 return true;
3308
3309 /*
3310 * If we are beyond the threshold for avail guc_ids, do schedule disable immediately.
3311 */
3312 return guc->submission_state.guc_ids_in_use >
3313 guc->submission_state.sched_disable_gucid_threshold;
3314 }
3315
guc_context_sched_disable(struct intel_context * ce)3316 static void guc_context_sched_disable(struct intel_context *ce)
3317 {
3318 struct intel_guc *guc = ce_to_guc(ce);
3319 u64 delay = guc->submission_state.sched_disable_delay_ms;
3320 unsigned long flags;
3321
3322 spin_lock_irqsave(&ce->guc_state.lock, flags);
3323
3324 if (bypass_sched_disable(guc, ce)) {
3325 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3326 intel_context_sched_disable_unpin(ce);
3327 } else if (!intel_context_is_closed(ce) && !guc_id_pressure(guc, ce) &&
3328 delay) {
3329 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3330 mod_delayed_work(system_unbound_wq,
3331 &ce->guc_state.sched_disable_delay_work,
3332 msecs_to_jiffies(delay));
3333 } else {
3334 do_sched_disable(guc, ce, flags);
3335 }
3336 }
3337
guc_context_close(struct intel_context * ce)3338 static void guc_context_close(struct intel_context *ce)
3339 {
3340 unsigned long flags;
3341
3342 if (test_bit(CONTEXT_GUC_INIT, &ce->flags) &&
3343 cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))
3344 __delay_sched_disable(&ce->guc_state.sched_disable_delay_work.work);
3345
3346 spin_lock_irqsave(&ce->guc_state.lock, flags);
3347 set_context_close_done(ce);
3348 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3349 }
3350
guc_lrc_desc_unpin(struct intel_context * ce)3351 static inline int guc_lrc_desc_unpin(struct intel_context *ce)
3352 {
3353 struct intel_guc *guc = ce_to_guc(ce);
3354 struct intel_gt *gt = guc_to_gt(guc);
3355 unsigned long flags;
3356 bool disabled;
3357 int ret;
3358
3359 GEM_BUG_ON(!intel_gt_pm_is_awake(gt));
3360 GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id));
3361 GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id));
3362 GEM_BUG_ON(context_enabled(ce));
3363
3364 /* Seal race with Reset */
3365 spin_lock_irqsave(&ce->guc_state.lock, flags);
3366 disabled = submission_disabled(guc);
3367 if (likely(!disabled)) {
3368 /*
3369 * Take a gt-pm ref and change context state to be destroyed.
3370 * NOTE: a G2H IRQ that comes after will put this gt-pm ref back
3371 */
3372 __intel_gt_pm_get(gt);
3373 set_context_destroyed(ce);
3374 clr_context_registered(ce);
3375 }
3376 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3377
3378 if (unlikely(disabled)) {
3379 release_guc_id(guc, ce);
3380 __guc_context_destroy(ce);
3381 return 0;
3382 }
3383
3384 /*
3385 * GuC is active, lets destroy this context, but at this point we can still be racing
3386 * with suspend, so we undo everything if the H2G fails in deregister_context so
3387 * that GuC reset will find this context during clean up.
3388 */
3389 ret = deregister_context(ce, ce->guc_id.id);
3390 if (ret) {
3391 spin_lock(&ce->guc_state.lock);
3392 set_context_registered(ce);
3393 clr_context_destroyed(ce);
3394 spin_unlock(&ce->guc_state.lock);
3395 /*
3396 * As gt-pm is awake at function entry, intel_wakeref_put_async merely decrements
3397 * the wakeref immediately but per function spec usage call this after unlock.
3398 */
3399 intel_wakeref_put_async(>->wakeref);
3400 }
3401
3402 return ret;
3403 }
3404
__guc_context_destroy(struct intel_context * ce)3405 static void __guc_context_destroy(struct intel_context *ce)
3406 {
3407 GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] ||
3408 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] ||
3409 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] ||
3410 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]);
3411
3412 lrc_fini(ce);
3413 intel_context_fini(ce);
3414
3415 if (intel_engine_is_virtual(ce->engine)) {
3416 struct guc_virtual_engine *ve =
3417 container_of(ce, typeof(*ve), context);
3418
3419 if (ve->base.breadcrumbs)
3420 intel_breadcrumbs_put(ve->base.breadcrumbs);
3421
3422 kfree(ve);
3423 } else {
3424 intel_context_free(ce);
3425 }
3426 }
3427
guc_flush_destroyed_contexts(struct intel_guc * guc)3428 static void guc_flush_destroyed_contexts(struct intel_guc *guc)
3429 {
3430 struct intel_context *ce;
3431 unsigned long flags;
3432
3433 GEM_BUG_ON(!submission_disabled(guc) &&
3434 guc_submission_initialized(guc));
3435
3436 while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3437 spin_lock_irqsave(&guc->submission_state.lock, flags);
3438 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3439 struct intel_context,
3440 destroyed_link);
3441 if (ce)
3442 list_del_init(&ce->destroyed_link);
3443 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3444
3445 if (!ce)
3446 break;
3447
3448 release_guc_id(guc, ce);
3449 __guc_context_destroy(ce);
3450 }
3451 }
3452
deregister_destroyed_contexts(struct intel_guc * guc)3453 static void deregister_destroyed_contexts(struct intel_guc *guc)
3454 {
3455 struct intel_context *ce;
3456 unsigned long flags;
3457
3458 while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3459 spin_lock_irqsave(&guc->submission_state.lock, flags);
3460 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3461 struct intel_context,
3462 destroyed_link);
3463 if (ce)
3464 list_del_init(&ce->destroyed_link);
3465 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3466
3467 if (!ce)
3468 break;
3469
3470 if (guc_lrc_desc_unpin(ce)) {
3471 /*
3472 * This means GuC's CT link severed mid-way which could happen
3473 * in suspend-resume corner cases. In this case, put the
3474 * context back into the destroyed_contexts list which will
3475 * get picked up on the next context deregistration event or
3476 * purged in a GuC sanitization event (reset/unload/wedged/...).
3477 */
3478 spin_lock_irqsave(&guc->submission_state.lock, flags);
3479 list_add_tail(&ce->destroyed_link,
3480 &guc->submission_state.destroyed_contexts);
3481 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3482 /* Bail now since the list might never be emptied if h2gs fail */
3483 break;
3484 }
3485
3486 }
3487 }
3488
destroyed_worker_func(struct work_struct * w)3489 static void destroyed_worker_func(struct work_struct *w)
3490 {
3491 struct intel_guc *guc = container_of(w, struct intel_guc,
3492 submission_state.destroyed_worker);
3493 struct intel_gt *gt = guc_to_gt(guc);
3494 intel_wakeref_t wakeref;
3495
3496 /*
3497 * In rare cases we can get here via async context-free fence-signals that
3498 * come very late in suspend flow or very early in resume flows. In these
3499 * cases, GuC won't be ready but just skipping it here is fine as these
3500 * pending-destroy-contexts get destroyed totally at GuC reset time at the
3501 * end of suspend.. OR.. this worker can be picked up later on the next
3502 * context destruction trigger after resume-completes
3503 */
3504 if (!intel_guc_is_ready(guc))
3505 return;
3506
3507 with_intel_gt_pm(gt, wakeref)
3508 deregister_destroyed_contexts(guc);
3509 }
3510
guc_context_destroy(struct kref * kref)3511 static void guc_context_destroy(struct kref *kref)
3512 {
3513 struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3514 struct intel_guc *guc = ce_to_guc(ce);
3515 unsigned long flags;
3516 bool destroy;
3517
3518 /*
3519 * If the guc_id is invalid this context has been stolen and we can free
3520 * it immediately. Also can be freed immediately if the context is not
3521 * registered with the GuC or the GuC is in the middle of a reset.
3522 */
3523 spin_lock_irqsave(&guc->submission_state.lock, flags);
3524 destroy = submission_disabled(guc) || context_guc_id_invalid(ce) ||
3525 !ctx_id_mapped(guc, ce->guc_id.id);
3526 if (likely(!destroy)) {
3527 if (!list_empty(&ce->guc_id.link))
3528 list_del_init(&ce->guc_id.link);
3529 list_add_tail(&ce->destroyed_link,
3530 &guc->submission_state.destroyed_contexts);
3531 } else {
3532 __release_guc_id(guc, ce);
3533 }
3534 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3535 if (unlikely(destroy)) {
3536 __guc_context_destroy(ce);
3537 return;
3538 }
3539
3540 /*
3541 * We use a worker to issue the H2G to deregister the context as we can
3542 * take the GT PM for the first time which isn't allowed from an atomic
3543 * context.
3544 */
3545 queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker);
3546 }
3547
guc_context_alloc(struct intel_context * ce)3548 static int guc_context_alloc(struct intel_context *ce)
3549 {
3550 return lrc_alloc(ce, ce->engine);
3551 }
3552
__guc_context_set_prio(struct intel_guc * guc,struct intel_context * ce)3553 static void __guc_context_set_prio(struct intel_guc *guc,
3554 struct intel_context *ce)
3555 {
3556 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) {
3557 struct context_policy policy;
3558
3559 __guc_context_policy_start_klv(&policy, ce->guc_id.id);
3560 __guc_context_policy_add_priority(&policy, ce->guc_state.prio);
3561 __guc_context_set_context_policies(guc, &policy, true);
3562 } else {
3563 u32 action[] = {
3564 INTEL_GUC_ACTION_V69_SET_CONTEXT_PRIORITY,
3565 ce->guc_id.id,
3566 ce->guc_state.prio,
3567 };
3568
3569 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3570 }
3571 }
3572
guc_context_set_prio(struct intel_guc * guc,struct intel_context * ce,u8 prio)3573 static void guc_context_set_prio(struct intel_guc *guc,
3574 struct intel_context *ce,
3575 u8 prio)
3576 {
3577 GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH ||
3578 prio > GUC_CLIENT_PRIORITY_NORMAL);
3579 lockdep_assert_held(&ce->guc_state.lock);
3580
3581 if (ce->guc_state.prio == prio || submission_disabled(guc) ||
3582 !context_registered(ce)) {
3583 ce->guc_state.prio = prio;
3584 return;
3585 }
3586
3587 ce->guc_state.prio = prio;
3588 __guc_context_set_prio(guc, ce);
3589
3590 trace_intel_context_set_prio(ce);
3591 }
3592
map_i915_prio_to_guc_prio(int prio)3593 static inline u8 map_i915_prio_to_guc_prio(int prio)
3594 {
3595 if (prio == I915_PRIORITY_NORMAL)
3596 return GUC_CLIENT_PRIORITY_KMD_NORMAL;
3597 else if (prio < I915_PRIORITY_NORMAL)
3598 return GUC_CLIENT_PRIORITY_NORMAL;
3599 else if (prio < I915_PRIORITY_DISPLAY)
3600 return GUC_CLIENT_PRIORITY_HIGH;
3601 else
3602 return GUC_CLIENT_PRIORITY_KMD_HIGH;
3603 }
3604
add_context_inflight_prio(struct intel_context * ce,u8 guc_prio)3605 static inline void add_context_inflight_prio(struct intel_context *ce,
3606 u8 guc_prio)
3607 {
3608 lockdep_assert_held(&ce->guc_state.lock);
3609 GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3610
3611 ++ce->guc_state.prio_count[guc_prio];
3612
3613 /* Overflow protection */
3614 GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3615 }
3616
sub_context_inflight_prio(struct intel_context * ce,u8 guc_prio)3617 static inline void sub_context_inflight_prio(struct intel_context *ce,
3618 u8 guc_prio)
3619 {
3620 lockdep_assert_held(&ce->guc_state.lock);
3621 GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3622
3623 /* Underflow protection */
3624 GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3625
3626 --ce->guc_state.prio_count[guc_prio];
3627 }
3628
update_context_prio(struct intel_context * ce)3629 static inline void update_context_prio(struct intel_context *ce)
3630 {
3631 struct intel_guc *guc = &ce->engine->gt->uc.guc;
3632 int i;
3633
3634 BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0);
3635 BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL);
3636
3637 lockdep_assert_held(&ce->guc_state.lock);
3638
3639 for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) {
3640 if (ce->guc_state.prio_count[i]) {
3641 guc_context_set_prio(guc, ce, i);
3642 break;
3643 }
3644 }
3645 }
3646
new_guc_prio_higher(u8 old_guc_prio,u8 new_guc_prio)3647 static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio)
3648 {
3649 /* Lower value is higher priority */
3650 return new_guc_prio < old_guc_prio;
3651 }
3652
add_to_context(struct i915_request * rq)3653 static void add_to_context(struct i915_request *rq)
3654 {
3655 struct intel_context *ce = request_to_scheduling_context(rq);
3656 u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq));
3657
3658 GEM_BUG_ON(intel_context_is_child(ce));
3659 GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI);
3660
3661 spin_lock(&ce->guc_state.lock);
3662 list_move_tail(&rq->sched.link, &ce->guc_state.requests);
3663
3664 if (rq->guc_prio == GUC_PRIO_INIT) {
3665 rq->guc_prio = new_guc_prio;
3666 add_context_inflight_prio(ce, rq->guc_prio);
3667 } else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) {
3668 sub_context_inflight_prio(ce, rq->guc_prio);
3669 rq->guc_prio = new_guc_prio;
3670 add_context_inflight_prio(ce, rq->guc_prio);
3671 }
3672 update_context_prio(ce);
3673
3674 spin_unlock(&ce->guc_state.lock);
3675 }
3676
guc_prio_fini(struct i915_request * rq,struct intel_context * ce)3677 static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce)
3678 {
3679 lockdep_assert_held(&ce->guc_state.lock);
3680
3681 if (rq->guc_prio != GUC_PRIO_INIT &&
3682 rq->guc_prio != GUC_PRIO_FINI) {
3683 sub_context_inflight_prio(ce, rq->guc_prio);
3684 update_context_prio(ce);
3685 }
3686 rq->guc_prio = GUC_PRIO_FINI;
3687 }
3688
remove_from_context(struct i915_request * rq)3689 static void remove_from_context(struct i915_request *rq)
3690 {
3691 struct intel_context *ce = request_to_scheduling_context(rq);
3692
3693 GEM_BUG_ON(intel_context_is_child(ce));
3694
3695 spin_lock_irq(&ce->guc_state.lock);
3696
3697 list_del_init(&rq->sched.link);
3698 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3699
3700 /* Prevent further __await_execution() registering a cb, then flush */
3701 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3702
3703 guc_prio_fini(rq, ce);
3704
3705 spin_unlock_irq(&ce->guc_state.lock);
3706
3707 atomic_dec(&ce->guc_id.ref);
3708 i915_request_notify_execute_cb_imm(rq);
3709 }
3710
3711 static const struct intel_context_ops guc_context_ops = {
3712 .flags = COPS_RUNTIME_CYCLES,
3713 .alloc = guc_context_alloc,
3714
3715 .close = guc_context_close,
3716
3717 .pre_pin = guc_context_pre_pin,
3718 .pin = guc_context_pin,
3719 .unpin = guc_context_unpin,
3720 .post_unpin = guc_context_post_unpin,
3721
3722 .revoke = guc_context_revoke,
3723
3724 .cancel_request = guc_context_cancel_request,
3725
3726 .enter = intel_context_enter_engine,
3727 .exit = intel_context_exit_engine,
3728
3729 .sched_disable = guc_context_sched_disable,
3730
3731 .update_stats = guc_context_update_stats,
3732
3733 .reset = lrc_reset,
3734 .destroy = guc_context_destroy,
3735
3736 .create_virtual = guc_create_virtual,
3737 .create_parallel = guc_create_parallel,
3738 };
3739
submit_work_cb(struct irq_work * wrk)3740 static void submit_work_cb(struct irq_work *wrk)
3741 {
3742 struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work);
3743
3744 might_lock(&rq->engine->sched_engine->lock);
3745 i915_sw_fence_complete(&rq->submit);
3746 }
3747
__guc_signal_context_fence(struct intel_context * ce)3748 static void __guc_signal_context_fence(struct intel_context *ce)
3749 {
3750 struct i915_request *rq, *rn;
3751
3752 lockdep_assert_held(&ce->guc_state.lock);
3753
3754 if (!list_empty(&ce->guc_state.fences))
3755 trace_intel_context_fence_release(ce);
3756
3757 /*
3758 * Use an IRQ to ensure locking order of sched_engine->lock ->
3759 * ce->guc_state.lock is preserved.
3760 */
3761 list_for_each_entry_safe(rq, rn, &ce->guc_state.fences,
3762 guc_fence_link) {
3763 list_del(&rq->guc_fence_link);
3764 irq_work_queue(&rq->submit_work);
3765 }
3766
3767 INIT_LIST_HEAD(&ce->guc_state.fences);
3768 }
3769
guc_signal_context_fence(struct intel_context * ce)3770 static void guc_signal_context_fence(struct intel_context *ce)
3771 {
3772 unsigned long flags;
3773
3774 GEM_BUG_ON(intel_context_is_child(ce));
3775
3776 spin_lock_irqsave(&ce->guc_state.lock, flags);
3777 clr_context_wait_for_deregister_to_register(ce);
3778 __guc_signal_context_fence(ce);
3779 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3780 }
3781
context_needs_register(struct intel_context * ce,bool new_guc_id)3782 static bool context_needs_register(struct intel_context *ce, bool new_guc_id)
3783 {
3784 return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) ||
3785 !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)) &&
3786 !submission_disabled(ce_to_guc(ce));
3787 }
3788
guc_context_init(struct intel_context * ce)3789 static void guc_context_init(struct intel_context *ce)
3790 {
3791 const struct i915_gem_context *ctx;
3792 int prio = I915_CONTEXT_DEFAULT_PRIORITY;
3793
3794 rcu_read_lock();
3795 ctx = rcu_dereference(ce->gem_context);
3796 if (ctx)
3797 prio = ctx->sched.priority;
3798 rcu_read_unlock();
3799
3800 ce->guc_state.prio = map_i915_prio_to_guc_prio(prio);
3801
3802 INIT_DELAYED_WORK(&ce->guc_state.sched_disable_delay_work,
3803 __delay_sched_disable);
3804
3805 set_bit(CONTEXT_GUC_INIT, &ce->flags);
3806 }
3807
guc_request_alloc(struct i915_request * rq)3808 static int guc_request_alloc(struct i915_request *rq)
3809 {
3810 struct intel_context *ce = request_to_scheduling_context(rq);
3811 struct intel_guc *guc = ce_to_guc(ce);
3812 unsigned long flags;
3813 int ret;
3814
3815 GEM_BUG_ON(!intel_context_is_pinned(rq->context));
3816
3817 /*
3818 * Flush enough space to reduce the likelihood of waiting after
3819 * we start building the request - in which case we will just
3820 * have to repeat work.
3821 */
3822 rq->reserved_space += GUC_REQUEST_SIZE;
3823
3824 /*
3825 * Note that after this point, we have committed to using
3826 * this request as it is being used to both track the
3827 * state of engine initialisation and liveness of the
3828 * golden renderstate above. Think twice before you try
3829 * to cancel/unwind this request now.
3830 */
3831
3832 /* Unconditionally invalidate GPU caches and TLBs. */
3833 ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
3834 if (ret)
3835 return ret;
3836
3837 rq->reserved_space -= GUC_REQUEST_SIZE;
3838
3839 if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags)))
3840 guc_context_init(ce);
3841
3842 /*
3843 * If the context gets closed while the execbuf is ongoing, the context
3844 * close code will race with the below code to cancel the delayed work.
3845 * If the context close wins the race and cancels the work, it will
3846 * immediately call the sched disable (see guc_context_close), so there
3847 * is a chance we can get past this check while the sched_disable code
3848 * is being executed. To make sure that code completes before we check
3849 * the status further down, we wait for the close process to complete.
3850 * Else, this code path could send a request down thinking that the
3851 * context is still in a schedule-enable mode while the GuC ends up
3852 * dropping the request completely because the disable did go from the
3853 * context_close path right to GuC just prior. In the event the CT is
3854 * full, we could potentially need to wait up to 1.5 seconds.
3855 */
3856 if (cancel_delayed_work_sync(&ce->guc_state.sched_disable_delay_work))
3857 intel_context_sched_disable_unpin(ce);
3858 else if (intel_context_is_closed(ce))
3859 if (wait_for(context_close_done(ce), 1500))
3860 guc_warn(guc, "timed out waiting on context sched close before realloc\n");
3861 /*
3862 * Call pin_guc_id here rather than in the pinning step as with
3863 * dma_resv, contexts can be repeatedly pinned / unpinned trashing the
3864 * guc_id and creating horrible race conditions. This is especially bad
3865 * when guc_id are being stolen due to over subscription. By the time
3866 * this function is reached, it is guaranteed that the guc_id will be
3867 * persistent until the generated request is retired. Thus, sealing these
3868 * race conditions. It is still safe to fail here if guc_id are
3869 * exhausted and return -EAGAIN to the user indicating that they can try
3870 * again in the future.
3871 *
3872 * There is no need for a lock here as the timeline mutex ensures at
3873 * most one context can be executing this code path at once. The
3874 * guc_id_ref is incremented once for every request in flight and
3875 * decremented on each retire. When it is zero, a lock around the
3876 * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id.
3877 */
3878 if (atomic_add_unless(&ce->guc_id.ref, 1, 0))
3879 goto out;
3880
3881 ret = pin_guc_id(guc, ce); /* returns 1 if new guc_id assigned */
3882 if (unlikely(ret < 0))
3883 return ret;
3884 if (context_needs_register(ce, !!ret)) {
3885 ret = try_context_registration(ce, true);
3886 if (unlikely(ret)) { /* unwind */
3887 if (ret == -EPIPE) {
3888 disable_submission(guc);
3889 goto out; /* GPU will be reset */
3890 }
3891 atomic_dec(&ce->guc_id.ref);
3892 unpin_guc_id(guc, ce);
3893 return ret;
3894 }
3895 }
3896
3897 clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
3898
3899 out:
3900 /*
3901 * We block all requests on this context if a G2H is pending for a
3902 * schedule disable or context deregistration as the GuC will fail a
3903 * schedule enable or context registration if either G2H is pending
3904 * respectfully. Once a G2H returns, the fence is released that is
3905 * blocking these requests (see guc_signal_context_fence).
3906 */
3907 spin_lock_irqsave(&ce->guc_state.lock, flags);
3908 if (context_wait_for_deregister_to_register(ce) ||
3909 context_pending_disable(ce)) {
3910 init_irq_work(&rq->submit_work, submit_work_cb);
3911 i915_sw_fence_await(&rq->submit);
3912
3913 list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences);
3914 }
3915 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3916
3917 return 0;
3918 }
3919
guc_virtual_context_pre_pin(struct intel_context * ce,struct i915_gem_ww_ctx * ww,void ** vaddr)3920 static int guc_virtual_context_pre_pin(struct intel_context *ce,
3921 struct i915_gem_ww_ctx *ww,
3922 void **vaddr)
3923 {
3924 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3925
3926 return __guc_context_pre_pin(ce, engine, ww, vaddr);
3927 }
3928
guc_virtual_context_pin(struct intel_context * ce,void * vaddr)3929 static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr)
3930 {
3931 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3932 int ret = __guc_context_pin(ce, engine, vaddr);
3933 intel_engine_mask_t tmp, mask = ce->engine->mask;
3934
3935 if (likely(!ret))
3936 for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3937 intel_engine_pm_get(engine);
3938
3939 return ret;
3940 }
3941
guc_virtual_context_unpin(struct intel_context * ce)3942 static void guc_virtual_context_unpin(struct intel_context *ce)
3943 {
3944 intel_engine_mask_t tmp, mask = ce->engine->mask;
3945 struct intel_engine_cs *engine;
3946 struct intel_guc *guc = ce_to_guc(ce);
3947
3948 GEM_BUG_ON(context_enabled(ce));
3949 GEM_BUG_ON(intel_context_is_barrier(ce));
3950
3951 unpin_guc_id(guc, ce);
3952 lrc_unpin(ce);
3953
3954 for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3955 intel_engine_pm_put_async(engine);
3956 }
3957
guc_virtual_context_enter(struct intel_context * ce)3958 static void guc_virtual_context_enter(struct intel_context *ce)
3959 {
3960 intel_engine_mask_t tmp, mask = ce->engine->mask;
3961 struct intel_engine_cs *engine;
3962
3963 for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3964 intel_engine_pm_get(engine);
3965
3966 intel_timeline_enter(ce->timeline);
3967 }
3968
guc_virtual_context_exit(struct intel_context * ce)3969 static void guc_virtual_context_exit(struct intel_context *ce)
3970 {
3971 intel_engine_mask_t tmp, mask = ce->engine->mask;
3972 struct intel_engine_cs *engine;
3973
3974 for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3975 intel_engine_pm_put(engine);
3976
3977 intel_timeline_exit(ce->timeline);
3978 }
3979
guc_virtual_context_alloc(struct intel_context * ce)3980 static int guc_virtual_context_alloc(struct intel_context *ce)
3981 {
3982 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3983
3984 return lrc_alloc(ce, engine);
3985 }
3986
3987 static const struct intel_context_ops virtual_guc_context_ops = {
3988 .flags = COPS_RUNTIME_CYCLES,
3989 .alloc = guc_virtual_context_alloc,
3990
3991 .close = guc_context_close,
3992
3993 .pre_pin = guc_virtual_context_pre_pin,
3994 .pin = guc_virtual_context_pin,
3995 .unpin = guc_virtual_context_unpin,
3996 .post_unpin = guc_context_post_unpin,
3997
3998 .revoke = guc_context_revoke,
3999
4000 .cancel_request = guc_context_cancel_request,
4001
4002 .enter = guc_virtual_context_enter,
4003 .exit = guc_virtual_context_exit,
4004
4005 .sched_disable = guc_context_sched_disable,
4006 .update_stats = guc_context_update_stats,
4007
4008 .destroy = guc_context_destroy,
4009
4010 .get_sibling = guc_virtual_get_sibling,
4011 };
4012
guc_parent_context_pin(struct intel_context * ce,void * vaddr)4013 static int guc_parent_context_pin(struct intel_context *ce, void *vaddr)
4014 {
4015 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
4016 struct intel_guc *guc = ce_to_guc(ce);
4017 int ret;
4018
4019 GEM_BUG_ON(!intel_context_is_parent(ce));
4020 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4021
4022 ret = pin_guc_id(guc, ce);
4023 if (unlikely(ret < 0))
4024 return ret;
4025
4026 return __guc_context_pin(ce, engine, vaddr);
4027 }
4028
guc_child_context_pin(struct intel_context * ce,void * vaddr)4029 static int guc_child_context_pin(struct intel_context *ce, void *vaddr)
4030 {
4031 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
4032
4033 GEM_BUG_ON(!intel_context_is_child(ce));
4034 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4035
4036 __intel_context_pin(ce->parallel.parent);
4037 return __guc_context_pin(ce, engine, vaddr);
4038 }
4039
guc_parent_context_unpin(struct intel_context * ce)4040 static void guc_parent_context_unpin(struct intel_context *ce)
4041 {
4042 struct intel_guc *guc = ce_to_guc(ce);
4043
4044 GEM_BUG_ON(context_enabled(ce));
4045 GEM_BUG_ON(intel_context_is_barrier(ce));
4046 GEM_BUG_ON(!intel_context_is_parent(ce));
4047 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4048
4049 unpin_guc_id(guc, ce);
4050 lrc_unpin(ce);
4051 }
4052
guc_child_context_unpin(struct intel_context * ce)4053 static void guc_child_context_unpin(struct intel_context *ce)
4054 {
4055 GEM_BUG_ON(context_enabled(ce));
4056 GEM_BUG_ON(intel_context_is_barrier(ce));
4057 GEM_BUG_ON(!intel_context_is_child(ce));
4058 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4059
4060 lrc_unpin(ce);
4061 }
4062
guc_child_context_post_unpin(struct intel_context * ce)4063 static void guc_child_context_post_unpin(struct intel_context *ce)
4064 {
4065 GEM_BUG_ON(!intel_context_is_child(ce));
4066 GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent));
4067 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4068
4069 lrc_post_unpin(ce);
4070 intel_context_unpin(ce->parallel.parent);
4071 }
4072
guc_child_context_destroy(struct kref * kref)4073 static void guc_child_context_destroy(struct kref *kref)
4074 {
4075 struct intel_context *ce = container_of(kref, typeof(*ce), ref);
4076
4077 __guc_context_destroy(ce);
4078 }
4079
4080 static const struct intel_context_ops virtual_parent_context_ops = {
4081 .alloc = guc_virtual_context_alloc,
4082
4083 .close = guc_context_close,
4084
4085 .pre_pin = guc_context_pre_pin,
4086 .pin = guc_parent_context_pin,
4087 .unpin = guc_parent_context_unpin,
4088 .post_unpin = guc_context_post_unpin,
4089
4090 .revoke = guc_context_revoke,
4091
4092 .cancel_request = guc_context_cancel_request,
4093
4094 .enter = guc_virtual_context_enter,
4095 .exit = guc_virtual_context_exit,
4096
4097 .sched_disable = guc_context_sched_disable,
4098
4099 .destroy = guc_context_destroy,
4100
4101 .get_sibling = guc_virtual_get_sibling,
4102 };
4103
4104 static const struct intel_context_ops virtual_child_context_ops = {
4105 .alloc = guc_virtual_context_alloc,
4106
4107 .pre_pin = guc_context_pre_pin,
4108 .pin = guc_child_context_pin,
4109 .unpin = guc_child_context_unpin,
4110 .post_unpin = guc_child_context_post_unpin,
4111
4112 .cancel_request = guc_context_cancel_request,
4113
4114 .enter = guc_virtual_context_enter,
4115 .exit = guc_virtual_context_exit,
4116
4117 .destroy = guc_child_context_destroy,
4118
4119 .get_sibling = guc_virtual_get_sibling,
4120 };
4121
4122 /*
4123 * The below override of the breadcrumbs is enabled when the user configures a
4124 * context for parallel submission (multi-lrc, parent-child).
4125 *
4126 * The overridden breadcrumbs implements an algorithm which allows the GuC to
4127 * safely preempt all the hw contexts configured for parallel submission
4128 * between each BB. The contract between the i915 and GuC is if the parent
4129 * context can be preempted, all the children can be preempted, and the GuC will
4130 * always try to preempt the parent before the children. A handshake between the
4131 * parent / children breadcrumbs ensures the i915 holds up its end of the deal
4132 * creating a window to preempt between each set of BBs.
4133 */
4134 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
4135 u64 offset, u32 len,
4136 const unsigned int flags);
4137 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
4138 u64 offset, u32 len,
4139 const unsigned int flags);
4140 static u32 *
4141 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
4142 u32 *cs);
4143 static u32 *
4144 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
4145 u32 *cs);
4146
4147 static struct intel_context *
guc_create_parallel(struct intel_engine_cs ** engines,unsigned int num_siblings,unsigned int width)4148 guc_create_parallel(struct intel_engine_cs **engines,
4149 unsigned int num_siblings,
4150 unsigned int width)
4151 {
4152 struct intel_engine_cs **siblings = NULL;
4153 struct intel_context *parent = NULL, *ce, *err;
4154 int i, j;
4155
4156 siblings = kmalloc_array(num_siblings,
4157 sizeof(*siblings),
4158 GFP_KERNEL);
4159 if (!siblings)
4160 return ERR_PTR(-ENOMEM);
4161
4162 for (i = 0; i < width; ++i) {
4163 for (j = 0; j < num_siblings; ++j)
4164 siblings[j] = engines[i * num_siblings + j];
4165
4166 ce = intel_engine_create_virtual(siblings, num_siblings,
4167 FORCE_VIRTUAL);
4168 if (IS_ERR(ce)) {
4169 err = ERR_CAST(ce);
4170 goto unwind;
4171 }
4172
4173 if (i == 0) {
4174 parent = ce;
4175 parent->ops = &virtual_parent_context_ops;
4176 } else {
4177 ce->ops = &virtual_child_context_ops;
4178 intel_context_bind_parent_child(parent, ce);
4179 }
4180 }
4181
4182 parent->parallel.fence_context = dma_fence_context_alloc(1);
4183
4184 parent->engine->emit_bb_start =
4185 emit_bb_start_parent_no_preempt_mid_batch;
4186 parent->engine->emit_fini_breadcrumb =
4187 emit_fini_breadcrumb_parent_no_preempt_mid_batch;
4188 parent->engine->emit_fini_breadcrumb_dw =
4189 12 + 4 * parent->parallel.number_children;
4190 for_each_child(parent, ce) {
4191 ce->engine->emit_bb_start =
4192 emit_bb_start_child_no_preempt_mid_batch;
4193 ce->engine->emit_fini_breadcrumb =
4194 emit_fini_breadcrumb_child_no_preempt_mid_batch;
4195 ce->engine->emit_fini_breadcrumb_dw = 16;
4196 }
4197
4198 kfree(siblings);
4199 return parent;
4200
4201 unwind:
4202 if (parent)
4203 intel_context_put(parent);
4204 kfree(siblings);
4205 return err;
4206 }
4207
4208 static bool
guc_irq_enable_breadcrumbs(struct intel_breadcrumbs * b)4209 guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b)
4210 {
4211 struct intel_engine_cs *sibling;
4212 intel_engine_mask_t tmp, mask = b->engine_mask;
4213 bool result = false;
4214
4215 for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
4216 result |= intel_engine_irq_enable(sibling);
4217
4218 return result;
4219 }
4220
4221 static void
guc_irq_disable_breadcrumbs(struct intel_breadcrumbs * b)4222 guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b)
4223 {
4224 struct intel_engine_cs *sibling;
4225 intel_engine_mask_t tmp, mask = b->engine_mask;
4226
4227 for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
4228 intel_engine_irq_disable(sibling);
4229 }
4230
guc_init_breadcrumbs(struct intel_engine_cs * engine)4231 static void guc_init_breadcrumbs(struct intel_engine_cs *engine)
4232 {
4233 int i;
4234
4235 /*
4236 * In GuC submission mode we do not know which physical engine a request
4237 * will be scheduled on, this creates a problem because the breadcrumb
4238 * interrupt is per physical engine. To work around this we attach
4239 * requests and direct all breadcrumb interrupts to the first instance
4240 * of an engine per class. In addition all breadcrumb interrupts are
4241 * enabled / disabled across an engine class in unison.
4242 */
4243 for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) {
4244 struct intel_engine_cs *sibling =
4245 engine->gt->engine_class[engine->class][i];
4246
4247 if (sibling) {
4248 if (engine->breadcrumbs != sibling->breadcrumbs) {
4249 intel_breadcrumbs_put(engine->breadcrumbs);
4250 engine->breadcrumbs =
4251 intel_breadcrumbs_get(sibling->breadcrumbs);
4252 }
4253 break;
4254 }
4255 }
4256
4257 if (engine->breadcrumbs) {
4258 engine->breadcrumbs->engine_mask |= engine->mask;
4259 engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs;
4260 engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs;
4261 }
4262 }
4263
guc_bump_inflight_request_prio(struct i915_request * rq,int prio)4264 static void guc_bump_inflight_request_prio(struct i915_request *rq,
4265 int prio)
4266 {
4267 struct intel_context *ce = request_to_scheduling_context(rq);
4268 u8 new_guc_prio = map_i915_prio_to_guc_prio(prio);
4269
4270 /* Short circuit function */
4271 if (prio < I915_PRIORITY_NORMAL)
4272 return;
4273
4274 spin_lock(&ce->guc_state.lock);
4275
4276 if (rq->guc_prio == GUC_PRIO_FINI)
4277 goto exit;
4278
4279 if (!new_guc_prio_higher(rq->guc_prio, new_guc_prio))
4280 goto exit;
4281
4282 if (rq->guc_prio != GUC_PRIO_INIT)
4283 sub_context_inflight_prio(ce, rq->guc_prio);
4284
4285 rq->guc_prio = new_guc_prio;
4286 add_context_inflight_prio(ce, rq->guc_prio);
4287 update_context_prio(ce);
4288
4289 exit:
4290 spin_unlock(&ce->guc_state.lock);
4291 }
4292
guc_retire_inflight_request_prio(struct i915_request * rq)4293 static void guc_retire_inflight_request_prio(struct i915_request *rq)
4294 {
4295 struct intel_context *ce = request_to_scheduling_context(rq);
4296
4297 spin_lock(&ce->guc_state.lock);
4298 guc_prio_fini(rq, ce);
4299 spin_unlock(&ce->guc_state.lock);
4300 }
4301
sanitize_hwsp(struct intel_engine_cs * engine)4302 static void sanitize_hwsp(struct intel_engine_cs *engine)
4303 {
4304 struct intel_timeline *tl;
4305
4306 list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
4307 intel_timeline_reset_seqno(tl);
4308 }
4309
guc_sanitize(struct intel_engine_cs * engine)4310 static void guc_sanitize(struct intel_engine_cs *engine)
4311 {
4312 /*
4313 * Poison residual state on resume, in case the suspend didn't!
4314 *
4315 * We have to assume that across suspend/resume (or other loss
4316 * of control) that the contents of our pinned buffers has been
4317 * lost, replaced by garbage. Since this doesn't always happen,
4318 * let's poison such state so that we more quickly spot when
4319 * we falsely assume it has been preserved.
4320 */
4321 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
4322 memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
4323
4324 /*
4325 * The kernel_context HWSP is stored in the status_page. As above,
4326 * that may be lost on resume/initialisation, and so we need to
4327 * reset the value in the HWSP.
4328 */
4329 sanitize_hwsp(engine);
4330
4331 /* And scrub the dirty cachelines for the HWSP */
4332 drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE);
4333
4334 intel_engine_reset_pinned_contexts(engine);
4335 }
4336
setup_hwsp(struct intel_engine_cs * engine)4337 static void setup_hwsp(struct intel_engine_cs *engine)
4338 {
4339 intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
4340
4341 ENGINE_WRITE_FW(engine,
4342 RING_HWS_PGA,
4343 i915_ggtt_offset(engine->status_page.vma));
4344 }
4345
start_engine(struct intel_engine_cs * engine)4346 static void start_engine(struct intel_engine_cs *engine)
4347 {
4348 ENGINE_WRITE_FW(engine,
4349 RING_MODE_GEN7,
4350 _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
4351
4352 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
4353 ENGINE_POSTING_READ(engine, RING_MI_MODE);
4354 }
4355
guc_resume(struct intel_engine_cs * engine)4356 static int guc_resume(struct intel_engine_cs *engine)
4357 {
4358 assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
4359
4360 intel_mocs_init_engine(engine);
4361
4362 intel_breadcrumbs_reset(engine->breadcrumbs);
4363
4364 setup_hwsp(engine);
4365 start_engine(engine);
4366
4367 if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
4368 xehp_enable_ccs_engines(engine);
4369
4370 return 0;
4371 }
4372
guc_sched_engine_disabled(struct i915_sched_engine * sched_engine)4373 static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine)
4374 {
4375 return !sched_engine->tasklet.callback;
4376 }
4377
guc_set_default_submission(struct intel_engine_cs * engine)4378 static void guc_set_default_submission(struct intel_engine_cs *engine)
4379 {
4380 engine->submit_request = guc_submit_request;
4381 }
4382
guc_kernel_context_pin(struct intel_guc * guc,struct intel_context * ce)4383 static inline int guc_kernel_context_pin(struct intel_guc *guc,
4384 struct intel_context *ce)
4385 {
4386 int ret;
4387
4388 /*
4389 * Note: we purposefully do not check the returns below because
4390 * the registration can only fail if a reset is just starting.
4391 * This is called at the end of reset so presumably another reset
4392 * isn't happening and even it did this code would be run again.
4393 */
4394
4395 if (context_guc_id_invalid(ce)) {
4396 ret = pin_guc_id(guc, ce);
4397
4398 if (ret < 0)
4399 return ret;
4400 }
4401
4402 if (!test_bit(CONTEXT_GUC_INIT, &ce->flags))
4403 guc_context_init(ce);
4404
4405 ret = try_context_registration(ce, true);
4406 if (ret)
4407 unpin_guc_id(guc, ce);
4408
4409 return ret;
4410 }
4411
guc_init_submission(struct intel_guc * guc)4412 static inline int guc_init_submission(struct intel_guc *guc)
4413 {
4414 struct intel_gt *gt = guc_to_gt(guc);
4415 struct intel_engine_cs *engine;
4416 enum intel_engine_id id;
4417
4418 /* make sure all descriptors are clean... */
4419 xa_destroy(&guc->context_lookup);
4420
4421 /*
4422 * A reset might have occurred while we had a pending stalled request,
4423 * so make sure we clean that up.
4424 */
4425 guc->stalled_request = NULL;
4426 guc->submission_stall_reason = STALL_NONE;
4427
4428 /*
4429 * Some contexts might have been pinned before we enabled GuC
4430 * submission, so we need to add them to the GuC bookeeping.
4431 * Also, after a reset the of the GuC we want to make sure that the
4432 * information shared with GuC is properly reset. The kernel LRCs are
4433 * not attached to the gem_context, so they need to be added separately.
4434 */
4435 for_each_engine(engine, gt, id) {
4436 struct intel_context *ce;
4437
4438 list_for_each_entry(ce, &engine->pinned_contexts_list,
4439 pinned_contexts_link) {
4440 int ret = guc_kernel_context_pin(guc, ce);
4441
4442 if (ret) {
4443 /* No point in trying to clean up as i915 will wedge on failure */
4444 return ret;
4445 }
4446 }
4447 }
4448
4449 return 0;
4450 }
4451
guc_release(struct intel_engine_cs * engine)4452 static void guc_release(struct intel_engine_cs *engine)
4453 {
4454 engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
4455
4456 intel_engine_cleanup_common(engine);
4457 lrc_fini_wa_ctx(engine);
4458 }
4459
virtual_guc_bump_serial(struct intel_engine_cs * engine)4460 static void virtual_guc_bump_serial(struct intel_engine_cs *engine)
4461 {
4462 struct intel_engine_cs *e;
4463 intel_engine_mask_t tmp, mask = engine->mask;
4464
4465 for_each_engine_masked(e, engine->gt, mask, tmp)
4466 e->serial++;
4467 }
4468
guc_default_vfuncs(struct intel_engine_cs * engine)4469 static void guc_default_vfuncs(struct intel_engine_cs *engine)
4470 {
4471 /* Default vfuncs which can be overridden by each engine. */
4472
4473 engine->resume = guc_resume;
4474
4475 engine->cops = &guc_context_ops;
4476 engine->request_alloc = guc_request_alloc;
4477 engine->add_active_request = add_to_context;
4478 engine->remove_active_request = remove_from_context;
4479
4480 engine->sched_engine->schedule = i915_schedule;
4481
4482 engine->reset.prepare = guc_engine_reset_prepare;
4483 engine->reset.rewind = guc_rewind_nop;
4484 engine->reset.cancel = guc_reset_nop;
4485 engine->reset.finish = guc_reset_nop;
4486
4487 engine->emit_flush = gen8_emit_flush_xcs;
4488 engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
4489 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
4490 if (GRAPHICS_VER(engine->i915) >= 12) {
4491 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
4492 engine->emit_flush = gen12_emit_flush_xcs;
4493 }
4494 engine->set_default_submission = guc_set_default_submission;
4495 engine->busyness = guc_engine_busyness;
4496
4497 engine->flags |= I915_ENGINE_SUPPORTS_STATS;
4498 engine->flags |= I915_ENGINE_HAS_PREEMPTION;
4499 engine->flags |= I915_ENGINE_HAS_TIMESLICES;
4500
4501 /* Wa_14014475959:dg2 */
4502 if (engine->class == COMPUTE_CLASS)
4503 if (IS_GFX_GT_IP_STEP(engine->gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
4504 IS_DG2(engine->i915))
4505 engine->flags |= I915_ENGINE_USES_WA_HOLD_SWITCHOUT;
4506
4507 /* Wa_16019325821 */
4508 /* Wa_14019159160 */
4509 if ((engine->class == COMPUTE_CLASS || engine->class == RENDER_CLASS) &&
4510 IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74)))
4511 engine->flags |= I915_ENGINE_USES_WA_HOLD_SWITCHOUT;
4512
4513 /*
4514 * TODO: GuC supports timeslicing and semaphores as well, but they're
4515 * handled by the firmware so some minor tweaks are required before
4516 * enabling.
4517 *
4518 * engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
4519 */
4520
4521 engine->emit_bb_start = gen8_emit_bb_start;
4522 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
4523 engine->emit_bb_start = xehp_emit_bb_start;
4524 }
4525
rcs_submission_override(struct intel_engine_cs * engine)4526 static void rcs_submission_override(struct intel_engine_cs *engine)
4527 {
4528 switch (GRAPHICS_VER(engine->i915)) {
4529 case 12:
4530 engine->emit_flush = gen12_emit_flush_rcs;
4531 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
4532 break;
4533 case 11:
4534 engine->emit_flush = gen11_emit_flush_rcs;
4535 engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
4536 break;
4537 default:
4538 engine->emit_flush = gen8_emit_flush_rcs;
4539 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
4540 break;
4541 }
4542 }
4543
guc_default_irqs(struct intel_engine_cs * engine)4544 static inline void guc_default_irqs(struct intel_engine_cs *engine)
4545 {
4546 engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT;
4547 intel_engine_set_irq_handler(engine, cs_irq_handler);
4548 }
4549
guc_sched_engine_destroy(struct kref * kref)4550 static void guc_sched_engine_destroy(struct kref *kref)
4551 {
4552 struct i915_sched_engine *sched_engine =
4553 container_of(kref, typeof(*sched_engine), ref);
4554 struct intel_guc *guc = sched_engine->private_data;
4555
4556 guc->sched_engine = NULL;
4557 tasklet_kill(&sched_engine->tasklet); /* flush the callback */
4558 kfree(sched_engine);
4559 }
4560
intel_guc_submission_setup(struct intel_engine_cs * engine)4561 int intel_guc_submission_setup(struct intel_engine_cs *engine)
4562 {
4563 struct drm_i915_private *i915 = engine->i915;
4564 struct intel_guc *guc = gt_to_guc(engine->gt);
4565
4566 /*
4567 * The setup relies on several assumptions (e.g. irqs always enabled)
4568 * that are only valid on gen11+
4569 */
4570 GEM_BUG_ON(GRAPHICS_VER(i915) < 11);
4571
4572 if (!guc->sched_engine) {
4573 guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
4574 if (!guc->sched_engine)
4575 return -ENOMEM;
4576
4577 guc->sched_engine->schedule = i915_schedule;
4578 guc->sched_engine->disabled = guc_sched_engine_disabled;
4579 guc->sched_engine->private_data = guc;
4580 guc->sched_engine->destroy = guc_sched_engine_destroy;
4581 guc->sched_engine->bump_inflight_request_prio =
4582 guc_bump_inflight_request_prio;
4583 guc->sched_engine->retire_inflight_request_prio =
4584 guc_retire_inflight_request_prio;
4585 tasklet_setup(&guc->sched_engine->tasklet,
4586 guc_submission_tasklet);
4587 }
4588 i915_sched_engine_put(engine->sched_engine);
4589 engine->sched_engine = i915_sched_engine_get(guc->sched_engine);
4590
4591 guc_default_vfuncs(engine);
4592 guc_default_irqs(engine);
4593 guc_init_breadcrumbs(engine);
4594
4595 if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
4596 rcs_submission_override(engine);
4597
4598 lrc_init_wa_ctx(engine);
4599
4600 /* Finally, take ownership and responsibility for cleanup! */
4601 engine->sanitize = guc_sanitize;
4602 engine->release = guc_release;
4603
4604 return 0;
4605 }
4606
4607 struct scheduling_policy {
4608 /* internal data */
4609 u32 max_words, num_words;
4610 u32 count;
4611 /* API data */
4612 struct guc_update_scheduling_policy h2g;
4613 };
4614
__guc_scheduling_policy_action_size(struct scheduling_policy * policy)4615 static u32 __guc_scheduling_policy_action_size(struct scheduling_policy *policy)
4616 {
4617 u32 *start = (void *)&policy->h2g;
4618 u32 *end = policy->h2g.data + policy->num_words;
4619 size_t delta = end - start;
4620
4621 return delta;
4622 }
4623
__guc_scheduling_policy_start_klv(struct scheduling_policy * policy)4624 static struct scheduling_policy *__guc_scheduling_policy_start_klv(struct scheduling_policy *policy)
4625 {
4626 policy->h2g.header.action = INTEL_GUC_ACTION_UPDATE_SCHEDULING_POLICIES_KLV;
4627 policy->max_words = ARRAY_SIZE(policy->h2g.data);
4628 policy->num_words = 0;
4629 policy->count = 0;
4630
4631 return policy;
4632 }
4633
__guc_scheduling_policy_add_klv(struct scheduling_policy * policy,u32 action,u32 * data,u32 len)4634 static void __guc_scheduling_policy_add_klv(struct scheduling_policy *policy,
4635 u32 action, u32 *data, u32 len)
4636 {
4637 u32 *klv_ptr = policy->h2g.data + policy->num_words;
4638
4639 GEM_BUG_ON((policy->num_words + 1 + len) > policy->max_words);
4640 *(klv_ptr++) = FIELD_PREP(GUC_KLV_0_KEY, action) |
4641 FIELD_PREP(GUC_KLV_0_LEN, len);
4642 memcpy(klv_ptr, data, sizeof(u32) * len);
4643 policy->num_words += 1 + len;
4644 policy->count++;
4645 }
4646
__guc_action_set_scheduling_policies(struct intel_guc * guc,struct scheduling_policy * policy)4647 static int __guc_action_set_scheduling_policies(struct intel_guc *guc,
4648 struct scheduling_policy *policy)
4649 {
4650 int ret;
4651
4652 ret = intel_guc_send(guc, (u32 *)&policy->h2g,
4653 __guc_scheduling_policy_action_size(policy));
4654 if (ret < 0) {
4655 guc_probe_error(guc, "Failed to configure global scheduling policies: %pe!\n",
4656 ERR_PTR(ret));
4657 return ret;
4658 }
4659
4660 if (ret != policy->count) {
4661 guc_warn(guc, "global scheduler policy processed %d of %d KLVs!",
4662 ret, policy->count);
4663 if (ret > policy->count)
4664 return -EPROTO;
4665 }
4666
4667 return 0;
4668 }
4669
guc_init_global_schedule_policy(struct intel_guc * guc)4670 static int guc_init_global_schedule_policy(struct intel_guc *guc)
4671 {
4672 struct scheduling_policy policy;
4673 struct intel_gt *gt = guc_to_gt(guc);
4674 intel_wakeref_t wakeref;
4675 int ret;
4676
4677 if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 1, 0))
4678 return 0;
4679
4680 __guc_scheduling_policy_start_klv(&policy);
4681
4682 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) {
4683 u32 yield[] = {
4684 GLOBAL_SCHEDULE_POLICY_RC_YIELD_DURATION,
4685 GLOBAL_SCHEDULE_POLICY_RC_YIELD_RATIO,
4686 };
4687
4688 __guc_scheduling_policy_add_klv(&policy,
4689 GUC_SCHEDULING_POLICIES_KLV_ID_RENDER_COMPUTE_YIELD,
4690 yield, ARRAY_SIZE(yield));
4691
4692 ret = __guc_action_set_scheduling_policies(guc, &policy);
4693 }
4694
4695 return ret;
4696 }
4697
guc_route_semaphores(struct intel_guc * guc,bool to_guc)4698 static void guc_route_semaphores(struct intel_guc *guc, bool to_guc)
4699 {
4700 struct intel_gt *gt = guc_to_gt(guc);
4701 u32 val;
4702
4703 if (GRAPHICS_VER(gt->i915) < 12)
4704 return;
4705
4706 if (to_guc)
4707 val = GUC_SEM_INTR_ROUTE_TO_GUC | GUC_SEM_INTR_ENABLE_ALL;
4708 else
4709 val = 0;
4710
4711 intel_uncore_write(gt->uncore, GEN12_GUC_SEM_INTR_ENABLES, val);
4712 }
4713
intel_guc_submission_enable(struct intel_guc * guc)4714 int intel_guc_submission_enable(struct intel_guc *guc)
4715 {
4716 int ret;
4717
4718 /* Semaphore interrupt enable and route to GuC */
4719 guc_route_semaphores(guc, true);
4720
4721 ret = guc_init_submission(guc);
4722 if (ret)
4723 goto fail_sem;
4724
4725 ret = guc_init_engine_stats(guc);
4726 if (ret)
4727 goto fail_sem;
4728
4729 ret = guc_init_global_schedule_policy(guc);
4730 if (ret)
4731 goto fail_stats;
4732
4733 return 0;
4734
4735 fail_stats:
4736 guc_fini_engine_stats(guc);
4737 fail_sem:
4738 guc_route_semaphores(guc, false);
4739 return ret;
4740 }
4741
4742 /* Note: By the time we're here, GuC may have already been reset */
intel_guc_submission_disable(struct intel_guc * guc)4743 void intel_guc_submission_disable(struct intel_guc *guc)
4744 {
4745 guc_cancel_busyness_worker(guc);
4746
4747 /* Semaphore interrupt disable and route to host */
4748 guc_route_semaphores(guc, false);
4749 }
4750
__guc_submission_supported(struct intel_guc * guc)4751 static bool __guc_submission_supported(struct intel_guc *guc)
4752 {
4753 /* GuC submission is unavailable for pre-Gen11 */
4754 return intel_guc_is_supported(guc) &&
4755 GRAPHICS_VER(guc_to_i915(guc)) >= 11;
4756 }
4757
__guc_submission_selected(struct intel_guc * guc)4758 static bool __guc_submission_selected(struct intel_guc *guc)
4759 {
4760 struct drm_i915_private *i915 = guc_to_i915(guc);
4761
4762 if (!intel_guc_submission_is_supported(guc))
4763 return false;
4764
4765 return i915->params.enable_guc & ENABLE_GUC_SUBMISSION;
4766 }
4767
intel_guc_sched_disable_gucid_threshold_max(struct intel_guc * guc)4768 int intel_guc_sched_disable_gucid_threshold_max(struct intel_guc *guc)
4769 {
4770 return guc->submission_state.num_guc_ids - NUMBER_MULTI_LRC_GUC_ID(guc);
4771 }
4772
4773 /*
4774 * This default value of 33 milisecs (+1 milisec round up) ensures 30fps or higher
4775 * workloads are able to enjoy the latency reduction when delaying the schedule-disable
4776 * operation. This matches the 30fps game-render + encode (real world) workload this
4777 * knob was tested against.
4778 */
4779 #define SCHED_DISABLE_DELAY_MS 34
4780
4781 /*
4782 * A threshold of 75% is a reasonable starting point considering that real world apps
4783 * generally don't get anywhere near this.
4784 */
4785 #define NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(__guc) \
4786 (((intel_guc_sched_disable_gucid_threshold_max(guc)) * 3) / 4)
4787
intel_guc_submission_init_early(struct intel_guc * guc)4788 void intel_guc_submission_init_early(struct intel_guc *guc)
4789 {
4790 xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ);
4791
4792 spin_lock_init(&guc->submission_state.lock);
4793 INIT_LIST_HEAD(&guc->submission_state.guc_id_list);
4794 ida_init(&guc->submission_state.guc_ids);
4795 INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts);
4796 INIT_WORK(&guc->submission_state.destroyed_worker,
4797 destroyed_worker_func);
4798 INIT_WORK(&guc->submission_state.reset_fail_worker,
4799 reset_fail_worker_func);
4800
4801 spin_lock_init(&guc->timestamp.lock);
4802 INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping);
4803
4804 guc->submission_state.sched_disable_delay_ms = SCHED_DISABLE_DELAY_MS;
4805 guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID;
4806 guc->submission_state.sched_disable_gucid_threshold =
4807 NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(guc);
4808 guc->submission_supported = __guc_submission_supported(guc);
4809 guc->submission_selected = __guc_submission_selected(guc);
4810 }
4811
4812 static inline struct intel_context *
g2h_context_lookup(struct intel_guc * guc,u32 ctx_id)4813 g2h_context_lookup(struct intel_guc *guc, u32 ctx_id)
4814 {
4815 struct intel_context *ce;
4816
4817 if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) {
4818 guc_err(guc, "Invalid ctx_id %u\n", ctx_id);
4819 return NULL;
4820 }
4821
4822 ce = __get_context(guc, ctx_id);
4823 if (unlikely(!ce)) {
4824 guc_err(guc, "Context is NULL, ctx_id %u\n", ctx_id);
4825 return NULL;
4826 }
4827
4828 if (unlikely(intel_context_is_child(ce))) {
4829 guc_err(guc, "Context is child, ctx_id %u\n", ctx_id);
4830 return NULL;
4831 }
4832
4833 return ce;
4834 }
4835
wait_wake_outstanding_tlb_g2h(struct intel_guc * guc,u32 seqno)4836 static void wait_wake_outstanding_tlb_g2h(struct intel_guc *guc, u32 seqno)
4837 {
4838 struct intel_guc_tlb_wait *wait;
4839 unsigned long flags;
4840
4841 xa_lock_irqsave(&guc->tlb_lookup, flags);
4842 wait = xa_load(&guc->tlb_lookup, seqno);
4843
4844 if (wait)
4845 wake_up(&wait->wq);
4846 else
4847 guc_dbg(guc,
4848 "Stale TLB invalidation response with seqno %d\n", seqno);
4849
4850 xa_unlock_irqrestore(&guc->tlb_lookup, flags);
4851 }
4852
intel_guc_tlb_invalidation_done(struct intel_guc * guc,const u32 * payload,u32 len)4853 int intel_guc_tlb_invalidation_done(struct intel_guc *guc,
4854 const u32 *payload, u32 len)
4855 {
4856 if (len < 1)
4857 return -EPROTO;
4858
4859 wait_wake_outstanding_tlb_g2h(guc, payload[0]);
4860 return 0;
4861 }
4862
must_wait_woken(struct wait_queue_entry * wq_entry,long timeout)4863 static long must_wait_woken(struct wait_queue_entry *wq_entry, long timeout)
4864 {
4865 /*
4866 * This is equivalent to wait_woken() with the exception that
4867 * we do not wake up early if the kthread task has been completed.
4868 * As we are called from page reclaim in any task context,
4869 * we may be invoked from stopped kthreads, but we *must*
4870 * complete the wait from the HW.
4871 */
4872 do {
4873 set_current_state(TASK_UNINTERRUPTIBLE);
4874 if (wq_entry->flags & WQ_FLAG_WOKEN)
4875 break;
4876
4877 timeout = schedule_timeout(timeout);
4878 } while (timeout);
4879
4880 /* See wait_woken() and woken_wake_function() */
4881 __set_current_state(TASK_RUNNING);
4882 smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN);
4883
4884 return timeout;
4885 }
4886
intel_gt_is_enabled(const struct intel_gt * gt)4887 static bool intel_gt_is_enabled(const struct intel_gt *gt)
4888 {
4889 /* Check if GT is wedged or suspended */
4890 if (intel_gt_is_wedged(gt) || !intel_irqs_enabled(gt->i915))
4891 return false;
4892 return true;
4893 }
4894
guc_send_invalidate_tlb(struct intel_guc * guc,enum intel_guc_tlb_invalidation_type type)4895 static int guc_send_invalidate_tlb(struct intel_guc *guc,
4896 enum intel_guc_tlb_invalidation_type type)
4897 {
4898 struct intel_guc_tlb_wait _wq, *wq = &_wq;
4899 struct intel_gt *gt = guc_to_gt(guc);
4900 DEFINE_WAIT_FUNC(wait, woken_wake_function);
4901 int err;
4902 u32 seqno;
4903 u32 action[] = {
4904 INTEL_GUC_ACTION_TLB_INVALIDATION,
4905 0,
4906 REG_FIELD_PREP(INTEL_GUC_TLB_INVAL_TYPE_MASK, type) |
4907 REG_FIELD_PREP(INTEL_GUC_TLB_INVAL_MODE_MASK,
4908 INTEL_GUC_TLB_INVAL_MODE_HEAVY) |
4909 INTEL_GUC_TLB_INVAL_FLUSH_CACHE,
4910 };
4911 u32 size = ARRAY_SIZE(action);
4912
4913 /*
4914 * Early guard against GT enablement. TLB invalidation should not be
4915 * attempted if the GT is disabled due to suspend/wedge.
4916 */
4917 if (!intel_gt_is_enabled(gt))
4918 return -EINVAL;
4919
4920 init_waitqueue_head(&_wq.wq);
4921
4922 if (xa_alloc_cyclic_irq(&guc->tlb_lookup, &seqno, wq,
4923 xa_limit_32b, &guc->next_seqno,
4924 GFP_ATOMIC | __GFP_NOWARN) < 0) {
4925 /* Under severe memory pressure? Serialise TLB allocations */
4926 xa_lock_irq(&guc->tlb_lookup);
4927 wq = xa_load(&guc->tlb_lookup, guc->serial_slot);
4928 wait_event_lock_irq(wq->wq,
4929 !READ_ONCE(wq->busy),
4930 guc->tlb_lookup.xa_lock);
4931 /*
4932 * Update wq->busy under lock to ensure only one waiter can
4933 * issue the TLB invalidation command using the serial slot at a
4934 * time. The condition is set to true before releasing the lock
4935 * so that other caller continue to wait until woken up again.
4936 */
4937 wq->busy = true;
4938 xa_unlock_irq(&guc->tlb_lookup);
4939
4940 seqno = guc->serial_slot;
4941 }
4942
4943 action[1] = seqno;
4944
4945 add_wait_queue(&wq->wq, &wait);
4946
4947 /* This is a critical reclaim path and thus we must loop here. */
4948 err = intel_guc_send_busy_loop(guc, action, size, G2H_LEN_DW_INVALIDATE_TLB, true);
4949 if (err)
4950 goto out;
4951
4952 /*
4953 * Late guard against GT enablement. It is not an error for the TLB
4954 * invalidation to time out if the GT is disabled during the process
4955 * due to suspend/wedge. In fact, the TLB invalidation is cancelled
4956 * in this case.
4957 */
4958 if (!must_wait_woken(&wait, intel_guc_ct_max_queue_time_jiffies()) &&
4959 intel_gt_is_enabled(gt)) {
4960 guc_err(guc,
4961 "TLB invalidation response timed out for seqno %u\n", seqno);
4962 err = -ETIME;
4963 }
4964 out:
4965 remove_wait_queue(&wq->wq, &wait);
4966 if (seqno != guc->serial_slot)
4967 xa_erase_irq(&guc->tlb_lookup, seqno);
4968
4969 return err;
4970 }
4971
4972 /* Send a H2G command to invalidate the TLBs at engine level and beyond. */
intel_guc_invalidate_tlb_engines(struct intel_guc * guc)4973 int intel_guc_invalidate_tlb_engines(struct intel_guc *guc)
4974 {
4975 return guc_send_invalidate_tlb(guc, INTEL_GUC_TLB_INVAL_ENGINES);
4976 }
4977
4978 /* Send a H2G command to invalidate the GuC's internal TLB. */
intel_guc_invalidate_tlb_guc(struct intel_guc * guc)4979 int intel_guc_invalidate_tlb_guc(struct intel_guc *guc)
4980 {
4981 return guc_send_invalidate_tlb(guc, INTEL_GUC_TLB_INVAL_GUC);
4982 }
4983
intel_guc_deregister_done_process_msg(struct intel_guc * guc,const u32 * msg,u32 len)4984 int intel_guc_deregister_done_process_msg(struct intel_guc *guc,
4985 const u32 *msg,
4986 u32 len)
4987 {
4988 struct intel_context *ce;
4989 u32 ctx_id;
4990
4991 if (unlikely(len < 1)) {
4992 guc_err(guc, "Invalid length %u\n", len);
4993 return -EPROTO;
4994 }
4995 ctx_id = msg[0];
4996
4997 ce = g2h_context_lookup(guc, ctx_id);
4998 if (unlikely(!ce))
4999 return -EPROTO;
5000
5001 trace_intel_context_deregister_done(ce);
5002
5003 #ifdef CONFIG_DRM_I915_SELFTEST
5004 if (unlikely(ce->drop_deregister)) {
5005 ce->drop_deregister = false;
5006 return 0;
5007 }
5008 #endif
5009
5010 if (context_wait_for_deregister_to_register(ce)) {
5011 struct intel_runtime_pm *runtime_pm =
5012 &ce->engine->gt->i915->runtime_pm;
5013 intel_wakeref_t wakeref;
5014
5015 /*
5016 * Previous owner of this guc_id has been deregistered, now safe
5017 * register this context.
5018 */
5019 with_intel_runtime_pm(runtime_pm, wakeref)
5020 register_context(ce, true);
5021 guc_signal_context_fence(ce);
5022 intel_context_put(ce);
5023 } else if (context_destroyed(ce)) {
5024 /* Context has been destroyed */
5025 intel_gt_pm_put_async_untracked(guc_to_gt(guc));
5026 release_guc_id(guc, ce);
5027 __guc_context_destroy(ce);
5028 }
5029
5030 decr_outstanding_submission_g2h(guc);
5031
5032 return 0;
5033 }
5034
intel_guc_sched_done_process_msg(struct intel_guc * guc,const u32 * msg,u32 len)5035 int intel_guc_sched_done_process_msg(struct intel_guc *guc,
5036 const u32 *msg,
5037 u32 len)
5038 {
5039 struct intel_context *ce;
5040 unsigned long flags;
5041 u32 ctx_id;
5042
5043 if (unlikely(len < 2)) {
5044 guc_err(guc, "Invalid length %u\n", len);
5045 return -EPROTO;
5046 }
5047 ctx_id = msg[0];
5048
5049 ce = g2h_context_lookup(guc, ctx_id);
5050 if (unlikely(!ce))
5051 return -EPROTO;
5052
5053 if (unlikely(context_destroyed(ce) ||
5054 (!context_pending_enable(ce) &&
5055 !context_pending_disable(ce)))) {
5056 guc_err(guc, "Bad context sched_state 0x%x, ctx_id %u\n",
5057 ce->guc_state.sched_state, ctx_id);
5058 return -EPROTO;
5059 }
5060
5061 trace_intel_context_sched_done(ce);
5062
5063 if (context_pending_enable(ce)) {
5064 #ifdef CONFIG_DRM_I915_SELFTEST
5065 if (unlikely(ce->drop_schedule_enable)) {
5066 ce->drop_schedule_enable = false;
5067 return 0;
5068 }
5069 #endif
5070
5071 spin_lock_irqsave(&ce->guc_state.lock, flags);
5072 clr_context_pending_enable(ce);
5073 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
5074 } else if (context_pending_disable(ce)) {
5075 bool banned;
5076
5077 #ifdef CONFIG_DRM_I915_SELFTEST
5078 if (unlikely(ce->drop_schedule_disable)) {
5079 ce->drop_schedule_disable = false;
5080 return 0;
5081 }
5082 #endif
5083
5084 /*
5085 * Unpin must be done before __guc_signal_context_fence,
5086 * otherwise a race exists between the requests getting
5087 * submitted + retired before this unpin completes resulting in
5088 * the pin_count going to zero and the context still being
5089 * enabled.
5090 */
5091 intel_context_sched_disable_unpin(ce);
5092
5093 spin_lock_irqsave(&ce->guc_state.lock, flags);
5094 banned = context_banned(ce);
5095 clr_context_banned(ce);
5096 clr_context_pending_disable(ce);
5097 __guc_signal_context_fence(ce);
5098 guc_blocked_fence_complete(ce);
5099 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
5100
5101 if (banned) {
5102 guc_cancel_context_requests(ce);
5103 intel_engine_signal_breadcrumbs(ce->engine);
5104 }
5105 }
5106
5107 decr_outstanding_submission_g2h(guc);
5108 intel_context_put(ce);
5109
5110 return 0;
5111 }
5112
capture_error_state(struct intel_guc * guc,struct intel_context * ce)5113 static void capture_error_state(struct intel_guc *guc,
5114 struct intel_context *ce)
5115 {
5116 struct intel_gt *gt = guc_to_gt(guc);
5117 struct drm_i915_private *i915 = gt->i915;
5118 intel_wakeref_t wakeref;
5119 intel_engine_mask_t engine_mask;
5120
5121 if (intel_engine_is_virtual(ce->engine)) {
5122 struct intel_engine_cs *e;
5123 intel_engine_mask_t tmp, virtual_mask = ce->engine->mask;
5124
5125 engine_mask = 0;
5126 for_each_engine_masked(e, ce->engine->gt, virtual_mask, tmp) {
5127 bool match = intel_guc_capture_is_matching_engine(gt, ce, e);
5128
5129 if (match) {
5130 intel_engine_set_hung_context(e, ce);
5131 engine_mask |= e->mask;
5132 i915_increase_reset_engine_count(&i915->gpu_error,
5133 e);
5134 }
5135 }
5136
5137 if (!engine_mask) {
5138 guc_warn(guc, "No matching physical engine capture for virtual engine context 0x%04X / %s",
5139 ce->guc_id.id, ce->engine->name);
5140 engine_mask = ~0U;
5141 }
5142 } else {
5143 intel_engine_set_hung_context(ce->engine, ce);
5144 engine_mask = ce->engine->mask;
5145 i915_increase_reset_engine_count(&i915->gpu_error, ce->engine);
5146 }
5147
5148 with_intel_runtime_pm(&i915->runtime_pm, wakeref)
5149 i915_capture_error_state(gt, engine_mask, CORE_DUMP_FLAG_IS_GUC_CAPTURE);
5150 }
5151
guc_context_replay(struct intel_context * ce)5152 static void guc_context_replay(struct intel_context *ce)
5153 {
5154 struct i915_sched_engine *sched_engine = ce->engine->sched_engine;
5155
5156 __guc_reset_context(ce, ce->engine->mask);
5157 tasklet_hi_schedule(&sched_engine->tasklet);
5158 }
5159
guc_handle_context_reset(struct intel_guc * guc,struct intel_context * ce)5160 static void guc_handle_context_reset(struct intel_guc *guc,
5161 struct intel_context *ce)
5162 {
5163 bool capture = intel_context_is_schedulable(ce);
5164
5165 trace_intel_context_reset(ce);
5166
5167 guc_dbg(guc, "%s context reset notification: 0x%04X on %s, exiting = %s, banned = %s\n",
5168 capture ? "Got" : "Ignoring",
5169 ce->guc_id.id, ce->engine->name,
5170 str_yes_no(intel_context_is_exiting(ce)),
5171 str_yes_no(intel_context_is_banned(ce)));
5172
5173 if (capture) {
5174 capture_error_state(guc, ce);
5175 guc_context_replay(ce);
5176 }
5177 }
5178
intel_guc_context_reset_process_msg(struct intel_guc * guc,const u32 * msg,u32 len)5179 int intel_guc_context_reset_process_msg(struct intel_guc *guc,
5180 const u32 *msg, u32 len)
5181 {
5182 struct intel_context *ce;
5183 unsigned long flags;
5184 int ctx_id;
5185
5186 if (unlikely(len != 1)) {
5187 guc_err(guc, "Invalid length %u", len);
5188 return -EPROTO;
5189 }
5190
5191 ctx_id = msg[0];
5192
5193 /*
5194 * The context lookup uses the xarray but lookups only require an RCU lock
5195 * not the full spinlock. So take the lock explicitly and keep it until the
5196 * context has been reference count locked to ensure it can't be destroyed
5197 * asynchronously until the reset is done.
5198 */
5199 xa_lock_irqsave(&guc->context_lookup, flags);
5200 ce = g2h_context_lookup(guc, ctx_id);
5201 if (ce)
5202 intel_context_get(ce);
5203 xa_unlock_irqrestore(&guc->context_lookup, flags);
5204
5205 if (unlikely(!ce))
5206 return -EPROTO;
5207
5208 guc_handle_context_reset(guc, ce);
5209 intel_context_put(ce);
5210
5211 return 0;
5212 }
5213
intel_guc_error_capture_process_msg(struct intel_guc * guc,const u32 * msg,u32 len)5214 int intel_guc_error_capture_process_msg(struct intel_guc *guc,
5215 const u32 *msg, u32 len)
5216 {
5217 u32 status;
5218
5219 if (unlikely(len != 1)) {
5220 guc_dbg(guc, "Invalid length %u", len);
5221 return -EPROTO;
5222 }
5223
5224 status = msg[0] & INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_MASK;
5225 if (status == INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE)
5226 guc_warn(guc, "No space for error capture");
5227
5228 intel_guc_capture_process(guc);
5229
5230 return 0;
5231 }
5232
5233 struct intel_engine_cs *
intel_guc_lookup_engine(struct intel_guc * guc,u8 guc_class,u8 instance)5234 intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance)
5235 {
5236 struct intel_gt *gt = guc_to_gt(guc);
5237 u8 engine_class = guc_class_to_engine_class(guc_class);
5238
5239 /* Class index is checked in class converter */
5240 GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE);
5241
5242 return gt->engine_class[engine_class][instance];
5243 }
5244
reset_fail_worker_func(struct work_struct * w)5245 static void reset_fail_worker_func(struct work_struct *w)
5246 {
5247 struct intel_guc *guc = container_of(w, struct intel_guc,
5248 submission_state.reset_fail_worker);
5249 struct intel_gt *gt = guc_to_gt(guc);
5250 intel_engine_mask_t reset_fail_mask;
5251 unsigned long flags;
5252
5253 spin_lock_irqsave(&guc->submission_state.lock, flags);
5254 reset_fail_mask = guc->submission_state.reset_fail_mask;
5255 guc->submission_state.reset_fail_mask = 0;
5256 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
5257
5258 if (likely(reset_fail_mask)) {
5259 struct intel_engine_cs *engine;
5260 enum intel_engine_id id;
5261
5262 /*
5263 * GuC is toast at this point - it dead loops after sending the failed
5264 * reset notification. So need to manually determine the guilty context.
5265 * Note that it should be reliable to do this here because the GuC is
5266 * toast and will not be scheduling behind the KMD's back.
5267 */
5268 for_each_engine_masked(engine, gt, reset_fail_mask, id)
5269 intel_guc_find_hung_context(engine);
5270
5271 intel_gt_handle_error(gt, reset_fail_mask,
5272 I915_ERROR_CAPTURE,
5273 "GuC failed to reset engine mask=0x%x",
5274 reset_fail_mask);
5275 }
5276 }
5277
intel_guc_engine_failure_process_msg(struct intel_guc * guc,const u32 * msg,u32 len)5278 int intel_guc_engine_failure_process_msg(struct intel_guc *guc,
5279 const u32 *msg, u32 len)
5280 {
5281 struct intel_engine_cs *engine;
5282 u8 guc_class, instance;
5283 u32 reason;
5284 unsigned long flags;
5285
5286 if (unlikely(len != 3)) {
5287 guc_err(guc, "Invalid length %u", len);
5288 return -EPROTO;
5289 }
5290
5291 guc_class = msg[0];
5292 instance = msg[1];
5293 reason = msg[2];
5294
5295 engine = intel_guc_lookup_engine(guc, guc_class, instance);
5296 if (unlikely(!engine)) {
5297 guc_err(guc, "Invalid engine %d:%d", guc_class, instance);
5298 return -EPROTO;
5299 }
5300
5301 /*
5302 * This is an unexpected failure of a hardware feature. So, log a real
5303 * error message not just the informational that comes with the reset.
5304 */
5305 guc_err(guc, "Engine reset failed on %d:%d (%s) because 0x%08X",
5306 guc_class, instance, engine->name, reason);
5307
5308 spin_lock_irqsave(&guc->submission_state.lock, flags);
5309 guc->submission_state.reset_fail_mask |= engine->mask;
5310 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
5311
5312 /*
5313 * A GT reset flushes this worker queue (G2H handler) so we must use
5314 * another worker to trigger a GT reset.
5315 */
5316 queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker);
5317
5318 return 0;
5319 }
5320
intel_guc_find_hung_context(struct intel_engine_cs * engine)5321 void intel_guc_find_hung_context(struct intel_engine_cs *engine)
5322 {
5323 struct intel_guc *guc = gt_to_guc(engine->gt);
5324 struct intel_context *ce;
5325 struct i915_request *rq;
5326 unsigned long index;
5327 unsigned long flags;
5328
5329 /* Reset called during driver load? GuC not yet initialised! */
5330 if (unlikely(!guc_submission_initialized(guc)))
5331 return;
5332
5333 xa_lock_irqsave(&guc->context_lookup, flags);
5334 xa_for_each(&guc->context_lookup, index, ce) {
5335 bool found;
5336
5337 if (!kref_get_unless_zero(&ce->ref))
5338 continue;
5339
5340 xa_unlock(&guc->context_lookup);
5341
5342 if (!intel_context_is_pinned(ce))
5343 goto next;
5344
5345 if (intel_engine_is_virtual(ce->engine)) {
5346 if (!(ce->engine->mask & engine->mask))
5347 goto next;
5348 } else {
5349 if (ce->engine != engine)
5350 goto next;
5351 }
5352
5353 found = false;
5354 spin_lock(&ce->guc_state.lock);
5355 list_for_each_entry(rq, &ce->guc_state.requests, sched.link) {
5356 if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE)
5357 continue;
5358
5359 found = true;
5360 break;
5361 }
5362 spin_unlock(&ce->guc_state.lock);
5363
5364 if (found) {
5365 intel_engine_set_hung_context(engine, ce);
5366
5367 /* Can only cope with one hang at a time... */
5368 intel_context_put(ce);
5369 xa_lock(&guc->context_lookup);
5370 goto done;
5371 }
5372
5373 next:
5374 intel_context_put(ce);
5375 xa_lock(&guc->context_lookup);
5376 }
5377 done:
5378 xa_unlock_irqrestore(&guc->context_lookup, flags);
5379 }
5380
intel_guc_dump_active_requests(struct intel_engine_cs * engine,struct i915_request * hung_rq,struct drm_printer * m)5381 void intel_guc_dump_active_requests(struct intel_engine_cs *engine,
5382 struct i915_request *hung_rq,
5383 struct drm_printer *m)
5384 {
5385 struct intel_guc *guc = gt_to_guc(engine->gt);
5386 struct intel_context *ce;
5387 unsigned long index;
5388 unsigned long flags;
5389
5390 /* Reset called during driver load? GuC not yet initialised! */
5391 if (unlikely(!guc_submission_initialized(guc)))
5392 return;
5393
5394 xa_lock_irqsave(&guc->context_lookup, flags);
5395 xa_for_each(&guc->context_lookup, index, ce) {
5396 if (!kref_get_unless_zero(&ce->ref))
5397 continue;
5398
5399 xa_unlock(&guc->context_lookup);
5400
5401 if (!intel_context_is_pinned(ce))
5402 goto next;
5403
5404 if (intel_engine_is_virtual(ce->engine)) {
5405 if (!(ce->engine->mask & engine->mask))
5406 goto next;
5407 } else {
5408 if (ce->engine != engine)
5409 goto next;
5410 }
5411
5412 spin_lock(&ce->guc_state.lock);
5413 intel_engine_dump_active_requests(&ce->guc_state.requests,
5414 hung_rq, m);
5415 spin_unlock(&ce->guc_state.lock);
5416
5417 next:
5418 intel_context_put(ce);
5419 xa_lock(&guc->context_lookup);
5420 }
5421 xa_unlock_irqrestore(&guc->context_lookup, flags);
5422 }
5423
intel_guc_submission_print_info(struct intel_guc * guc,struct drm_printer * p)5424 void intel_guc_submission_print_info(struct intel_guc *guc,
5425 struct drm_printer *p)
5426 {
5427 struct i915_sched_engine *sched_engine = guc->sched_engine;
5428 struct rb_node *rb;
5429 unsigned long flags;
5430
5431 if (!sched_engine)
5432 return;
5433
5434 drm_printf(p, "GuC Submission API Version: %d.%d.%d\n",
5435 guc->submission_version.major, guc->submission_version.minor,
5436 guc->submission_version.patch);
5437 drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n",
5438 atomic_read(&guc->outstanding_submission_g2h));
5439 drm_printf(p, "GuC tasklet count: %u\n",
5440 atomic_read(&sched_engine->tasklet.count));
5441
5442 spin_lock_irqsave(&sched_engine->lock, flags);
5443 drm_printf(p, "Requests in GuC submit tasklet:\n");
5444 for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
5445 struct i915_priolist *pl = to_priolist(rb);
5446 struct i915_request *rq;
5447
5448 priolist_for_each_request(rq, pl)
5449 drm_printf(p, "guc_id=%u, seqno=%llu\n",
5450 rq->context->guc_id.id,
5451 rq->fence.seqno);
5452 }
5453 spin_unlock_irqrestore(&sched_engine->lock, flags);
5454 drm_printf(p, "\n");
5455 }
5456
guc_log_context_priority(struct drm_printer * p,struct intel_context * ce)5457 static inline void guc_log_context_priority(struct drm_printer *p,
5458 struct intel_context *ce)
5459 {
5460 int i;
5461
5462 drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio);
5463 drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n");
5464 for (i = GUC_CLIENT_PRIORITY_KMD_HIGH;
5465 i < GUC_CLIENT_PRIORITY_NUM; ++i) {
5466 drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n",
5467 i, ce->guc_state.prio_count[i]);
5468 }
5469 drm_printf(p, "\n");
5470 }
5471
guc_log_context(struct drm_printer * p,struct intel_context * ce)5472 static inline void guc_log_context(struct drm_printer *p,
5473 struct intel_context *ce)
5474 {
5475 drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id);
5476 drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca);
5477 drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n",
5478 ce->ring->head,
5479 ce->lrc_reg_state[CTX_RING_HEAD]);
5480 drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n",
5481 ce->ring->tail,
5482 ce->lrc_reg_state[CTX_RING_TAIL]);
5483 drm_printf(p, "\t\tContext Pin Count: %u\n",
5484 atomic_read(&ce->pin_count));
5485 drm_printf(p, "\t\tGuC ID Ref Count: %u\n",
5486 atomic_read(&ce->guc_id.ref));
5487 drm_printf(p, "\t\tSchedule State: 0x%x\n",
5488 ce->guc_state.sched_state);
5489 }
5490
intel_guc_submission_print_context_info(struct intel_guc * guc,struct drm_printer * p)5491 void intel_guc_submission_print_context_info(struct intel_guc *guc,
5492 struct drm_printer *p)
5493 {
5494 struct intel_context *ce;
5495 unsigned long index;
5496 unsigned long flags;
5497
5498 xa_lock_irqsave(&guc->context_lookup, flags);
5499 xa_for_each(&guc->context_lookup, index, ce) {
5500 GEM_BUG_ON(intel_context_is_child(ce));
5501
5502 guc_log_context(p, ce);
5503 guc_log_context_priority(p, ce);
5504
5505 if (intel_context_is_parent(ce)) {
5506 struct intel_context *child;
5507
5508 drm_printf(p, "\t\tNumber children: %u\n",
5509 ce->parallel.number_children);
5510
5511 if (ce->parallel.guc.wq_status) {
5512 drm_printf(p, "\t\tWQI Head: %u\n",
5513 READ_ONCE(*ce->parallel.guc.wq_head));
5514 drm_printf(p, "\t\tWQI Tail: %u\n",
5515 READ_ONCE(*ce->parallel.guc.wq_tail));
5516 drm_printf(p, "\t\tWQI Status: %u\n",
5517 READ_ONCE(*ce->parallel.guc.wq_status));
5518 }
5519
5520 if (ce->engine->emit_bb_start ==
5521 emit_bb_start_parent_no_preempt_mid_batch) {
5522 u8 i;
5523
5524 drm_printf(p, "\t\tChildren Go: %u\n",
5525 get_children_go_value(ce));
5526 for (i = 0; i < ce->parallel.number_children; ++i)
5527 drm_printf(p, "\t\tChildren Join: %u\n",
5528 get_children_join_value(ce, i));
5529 }
5530
5531 for_each_child(ce, child)
5532 guc_log_context(p, child);
5533 }
5534 }
5535 xa_unlock_irqrestore(&guc->context_lookup, flags);
5536 }
5537
get_children_go_addr(struct intel_context * ce)5538 static inline u32 get_children_go_addr(struct intel_context *ce)
5539 {
5540 GEM_BUG_ON(!intel_context_is_parent(ce));
5541
5542 return i915_ggtt_offset(ce->state) +
5543 __get_parent_scratch_offset(ce) +
5544 offsetof(struct parent_scratch, go.semaphore);
5545 }
5546
get_children_join_addr(struct intel_context * ce,u8 child_index)5547 static inline u32 get_children_join_addr(struct intel_context *ce,
5548 u8 child_index)
5549 {
5550 GEM_BUG_ON(!intel_context_is_parent(ce));
5551
5552 return i915_ggtt_offset(ce->state) +
5553 __get_parent_scratch_offset(ce) +
5554 offsetof(struct parent_scratch, join[child_index].semaphore);
5555 }
5556
5557 #define PARENT_GO_BB 1
5558 #define PARENT_GO_FINI_BREADCRUMB 0
5559 #define CHILD_GO_BB 1
5560 #define CHILD_GO_FINI_BREADCRUMB 0
emit_bb_start_parent_no_preempt_mid_batch(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags)5561 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
5562 u64 offset, u32 len,
5563 const unsigned int flags)
5564 {
5565 struct intel_context *ce = rq->context;
5566 u32 *cs;
5567 u8 i;
5568
5569 GEM_BUG_ON(!intel_context_is_parent(ce));
5570
5571 cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children);
5572 if (IS_ERR(cs))
5573 return PTR_ERR(cs);
5574
5575 /* Wait on children */
5576 for (i = 0; i < ce->parallel.number_children; ++i) {
5577 *cs++ = (MI_SEMAPHORE_WAIT |
5578 MI_SEMAPHORE_GLOBAL_GTT |
5579 MI_SEMAPHORE_POLL |
5580 MI_SEMAPHORE_SAD_EQ_SDD);
5581 *cs++ = PARENT_GO_BB;
5582 *cs++ = get_children_join_addr(ce, i);
5583 *cs++ = 0;
5584 }
5585
5586 /* Turn off preemption */
5587 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
5588 *cs++ = MI_NOOP;
5589
5590 /* Tell children go */
5591 cs = gen8_emit_ggtt_write(cs,
5592 CHILD_GO_BB,
5593 get_children_go_addr(ce),
5594 0);
5595
5596 /* Jump to batch */
5597 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
5598 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
5599 *cs++ = lower_32_bits(offset);
5600 *cs++ = upper_32_bits(offset);
5601 *cs++ = MI_NOOP;
5602
5603 intel_ring_advance(rq, cs);
5604
5605 return 0;
5606 }
5607
emit_bb_start_child_no_preempt_mid_batch(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags)5608 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
5609 u64 offset, u32 len,
5610 const unsigned int flags)
5611 {
5612 struct intel_context *ce = rq->context;
5613 struct intel_context *parent = intel_context_to_parent(ce);
5614 u32 *cs;
5615
5616 GEM_BUG_ON(!intel_context_is_child(ce));
5617
5618 cs = intel_ring_begin(rq, 12);
5619 if (IS_ERR(cs))
5620 return PTR_ERR(cs);
5621
5622 /* Signal parent */
5623 cs = gen8_emit_ggtt_write(cs,
5624 PARENT_GO_BB,
5625 get_children_join_addr(parent,
5626 ce->parallel.child_index),
5627 0);
5628
5629 /* Wait on parent for go */
5630 *cs++ = (MI_SEMAPHORE_WAIT |
5631 MI_SEMAPHORE_GLOBAL_GTT |
5632 MI_SEMAPHORE_POLL |
5633 MI_SEMAPHORE_SAD_EQ_SDD);
5634 *cs++ = CHILD_GO_BB;
5635 *cs++ = get_children_go_addr(parent);
5636 *cs++ = 0;
5637
5638 /* Turn off preemption */
5639 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
5640
5641 /* Jump to batch */
5642 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
5643 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
5644 *cs++ = lower_32_bits(offset);
5645 *cs++ = upper_32_bits(offset);
5646
5647 intel_ring_advance(rq, cs);
5648
5649 return 0;
5650 }
5651
5652 static u32 *
__emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request * rq,u32 * cs)5653 __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
5654 u32 *cs)
5655 {
5656 struct intel_context *ce = rq->context;
5657 u8 i;
5658
5659 GEM_BUG_ON(!intel_context_is_parent(ce));
5660
5661 /* Wait on children */
5662 for (i = 0; i < ce->parallel.number_children; ++i) {
5663 *cs++ = (MI_SEMAPHORE_WAIT |
5664 MI_SEMAPHORE_GLOBAL_GTT |
5665 MI_SEMAPHORE_POLL |
5666 MI_SEMAPHORE_SAD_EQ_SDD);
5667 *cs++ = PARENT_GO_FINI_BREADCRUMB;
5668 *cs++ = get_children_join_addr(ce, i);
5669 *cs++ = 0;
5670 }
5671
5672 /* Turn on preemption */
5673 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5674 *cs++ = MI_NOOP;
5675
5676 /* Tell children go */
5677 cs = gen8_emit_ggtt_write(cs,
5678 CHILD_GO_FINI_BREADCRUMB,
5679 get_children_go_addr(ce),
5680 0);
5681
5682 return cs;
5683 }
5684
5685 /*
5686 * If this true, a submission of multi-lrc requests had an error and the
5687 * requests need to be skipped. The front end (execuf IOCTL) should've called
5688 * i915_request_skip which squashes the BB but we still need to emit the fini
5689 * breadrcrumbs seqno write. At this point we don't know how many of the
5690 * requests in the multi-lrc submission were generated so we can't do the
5691 * handshake between the parent and children (e.g. if 4 requests should be
5692 * generated but 2nd hit an error only 1 would be seen by the GuC backend).
5693 * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error
5694 * has occurred on any of the requests in submission / relationship.
5695 */
skip_handshake(struct i915_request * rq)5696 static inline bool skip_handshake(struct i915_request *rq)
5697 {
5698 return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags);
5699 }
5700
5701 #define NON_SKIP_LEN 6
5702 static u32 *
emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request * rq,u32 * cs)5703 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
5704 u32 *cs)
5705 {
5706 struct intel_context *ce = rq->context;
5707 __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5708 __maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5709
5710 GEM_BUG_ON(!intel_context_is_parent(ce));
5711
5712 if (unlikely(skip_handshake(rq))) {
5713 /*
5714 * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch,
5715 * the NON_SKIP_LEN comes from the length of the emits below.
5716 */
5717 memset(cs, 0, sizeof(u32) *
5718 (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5719 cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5720 } else {
5721 cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs);
5722 }
5723
5724 /* Emit fini breadcrumb */
5725 before_fini_breadcrumb_user_interrupt_cs = cs;
5726 cs = gen8_emit_ggtt_write(cs,
5727 rq->fence.seqno,
5728 i915_request_active_timeline(rq)->hwsp_offset,
5729 0);
5730
5731 /* User interrupt */
5732 *cs++ = MI_USER_INTERRUPT;
5733 *cs++ = MI_NOOP;
5734
5735 /* Ensure our math for skip + emit is correct */
5736 GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5737 cs);
5738 GEM_BUG_ON(start_fini_breadcrumb_cs +
5739 ce->engine->emit_fini_breadcrumb_dw != cs);
5740
5741 rq->tail = intel_ring_offset(rq, cs);
5742
5743 return cs;
5744 }
5745
5746 static u32 *
__emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request * rq,u32 * cs)5747 __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5748 u32 *cs)
5749 {
5750 struct intel_context *ce = rq->context;
5751 struct intel_context *parent = intel_context_to_parent(ce);
5752
5753 GEM_BUG_ON(!intel_context_is_child(ce));
5754
5755 /* Turn on preemption */
5756 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5757 *cs++ = MI_NOOP;
5758
5759 /* Signal parent */
5760 cs = gen8_emit_ggtt_write(cs,
5761 PARENT_GO_FINI_BREADCRUMB,
5762 get_children_join_addr(parent,
5763 ce->parallel.child_index),
5764 0);
5765
5766 /* Wait parent on for go */
5767 *cs++ = (MI_SEMAPHORE_WAIT |
5768 MI_SEMAPHORE_GLOBAL_GTT |
5769 MI_SEMAPHORE_POLL |
5770 MI_SEMAPHORE_SAD_EQ_SDD);
5771 *cs++ = CHILD_GO_FINI_BREADCRUMB;
5772 *cs++ = get_children_go_addr(parent);
5773 *cs++ = 0;
5774
5775 return cs;
5776 }
5777
5778 static u32 *
emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request * rq,u32 * cs)5779 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5780 u32 *cs)
5781 {
5782 struct intel_context *ce = rq->context;
5783 __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5784 __maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5785
5786 GEM_BUG_ON(!intel_context_is_child(ce));
5787
5788 if (unlikely(skip_handshake(rq))) {
5789 /*
5790 * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch,
5791 * the NON_SKIP_LEN comes from the length of the emits below.
5792 */
5793 memset(cs, 0, sizeof(u32) *
5794 (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5795 cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5796 } else {
5797 cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs);
5798 }
5799
5800 /* Emit fini breadcrumb */
5801 before_fini_breadcrumb_user_interrupt_cs = cs;
5802 cs = gen8_emit_ggtt_write(cs,
5803 rq->fence.seqno,
5804 i915_request_active_timeline(rq)->hwsp_offset,
5805 0);
5806
5807 /* User interrupt */
5808 *cs++ = MI_USER_INTERRUPT;
5809 *cs++ = MI_NOOP;
5810
5811 /* Ensure our math for skip + emit is correct */
5812 GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5813 cs);
5814 GEM_BUG_ON(start_fini_breadcrumb_cs +
5815 ce->engine->emit_fini_breadcrumb_dw != cs);
5816
5817 rq->tail = intel_ring_offset(rq, cs);
5818
5819 return cs;
5820 }
5821
5822 #undef NON_SKIP_LEN
5823
5824 static struct intel_context *
guc_create_virtual(struct intel_engine_cs ** siblings,unsigned int count,unsigned long flags)5825 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
5826 unsigned long flags)
5827 {
5828 struct guc_virtual_engine *ve;
5829 struct intel_guc *guc;
5830 unsigned int n;
5831 int err;
5832
5833 ve = kzalloc(sizeof(*ve), GFP_KERNEL);
5834 if (!ve)
5835 return ERR_PTR(-ENOMEM);
5836
5837 guc = gt_to_guc(siblings[0]->gt);
5838
5839 ve->base.i915 = siblings[0]->i915;
5840 ve->base.gt = siblings[0]->gt;
5841 ve->base.uncore = siblings[0]->uncore;
5842 ve->base.id = -1;
5843
5844 ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
5845 ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5846 ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5847 ve->base.saturated = ALL_ENGINES;
5848
5849 snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
5850
5851 ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine);
5852
5853 ve->base.cops = &virtual_guc_context_ops;
5854 ve->base.request_alloc = guc_request_alloc;
5855 ve->base.bump_serial = virtual_guc_bump_serial;
5856
5857 ve->base.submit_request = guc_submit_request;
5858
5859 ve->base.flags = I915_ENGINE_IS_VIRTUAL;
5860
5861 BUILD_BUG_ON(ilog2(VIRTUAL_ENGINES) < I915_NUM_ENGINES);
5862 ve->base.mask = VIRTUAL_ENGINES;
5863
5864 intel_context_init(&ve->context, &ve->base);
5865
5866 for (n = 0; n < count; n++) {
5867 struct intel_engine_cs *sibling = siblings[n];
5868
5869 GEM_BUG_ON(!is_power_of_2(sibling->mask));
5870 if (sibling->mask & ve->base.mask) {
5871 guc_dbg(guc, "duplicate %s entry in load balancer\n",
5872 sibling->name);
5873 err = -EINVAL;
5874 goto err_put;
5875 }
5876
5877 ve->base.mask |= sibling->mask;
5878 ve->base.logical_mask |= sibling->logical_mask;
5879
5880 if (n != 0 && ve->base.class != sibling->class) {
5881 guc_dbg(guc, "invalid mixing of engine class, sibling %d, already %d\n",
5882 sibling->class, ve->base.class);
5883 err = -EINVAL;
5884 goto err_put;
5885 } else if (n == 0) {
5886 ve->base.class = sibling->class;
5887 ve->base.uabi_class = sibling->uabi_class;
5888 snprintf(ve->base.name, sizeof(ve->base.name),
5889 "v%dx%d", ve->base.class, count);
5890 ve->base.context_size = sibling->context_size;
5891
5892 ve->base.add_active_request =
5893 sibling->add_active_request;
5894 ve->base.remove_active_request =
5895 sibling->remove_active_request;
5896 ve->base.emit_bb_start = sibling->emit_bb_start;
5897 ve->base.emit_flush = sibling->emit_flush;
5898 ve->base.emit_init_breadcrumb =
5899 sibling->emit_init_breadcrumb;
5900 ve->base.emit_fini_breadcrumb =
5901 sibling->emit_fini_breadcrumb;
5902 ve->base.emit_fini_breadcrumb_dw =
5903 sibling->emit_fini_breadcrumb_dw;
5904 ve->base.breadcrumbs =
5905 intel_breadcrumbs_get(sibling->breadcrumbs);
5906
5907 ve->base.flags |= sibling->flags;
5908
5909 ve->base.props.timeslice_duration_ms =
5910 sibling->props.timeslice_duration_ms;
5911 ve->base.props.preempt_timeout_ms =
5912 sibling->props.preempt_timeout_ms;
5913 }
5914 }
5915
5916 return &ve->context;
5917
5918 err_put:
5919 intel_context_put(&ve->context);
5920 return ERR_PTR(err);
5921 }
5922
intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs * ve)5923 bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve)
5924 {
5925 struct intel_engine_cs *engine;
5926 intel_engine_mask_t tmp, mask = ve->mask;
5927
5928 for_each_engine_masked(engine, ve->gt, mask, tmp)
5929 if (READ_ONCE(engine->props.heartbeat_interval_ms))
5930 return true;
5931
5932 return false;
5933 }
5934
5935 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5936 #include "selftest_guc.c"
5937 #include "selftest_guc_multi_lrc.c"
5938 #include "selftest_guc_hangcheck.c"
5939 #endif
5940