xref: /linux/drivers/gpu/drm/i915/gt/uc/intel_guc_submission.c (revision 3ef7acec975bde28ab9cef92af76be8fc2ce684d)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5 
6 #include <linux/circ_buf.h>
7 
8 #include "gem/i915_gem_context.h"
9 #include "gem/i915_gem_lmem.h"
10 #include "gt/gen8_engine_cs.h"
11 #include "gt/intel_breadcrumbs.h"
12 #include "gt/intel_context.h"
13 #include "gt/intel_engine_heartbeat.h"
14 #include "gt/intel_engine_pm.h"
15 #include "gt/intel_engine_regs.h"
16 #include "gt/intel_gpu_commands.h"
17 #include "gt/intel_gt.h"
18 #include "gt/intel_gt_clock_utils.h"
19 #include "gt/intel_gt_irq.h"
20 #include "gt/intel_gt_pm.h"
21 #include "gt/intel_gt_regs.h"
22 #include "gt/intel_gt_requests.h"
23 #include "gt/intel_lrc.h"
24 #include "gt/intel_lrc_reg.h"
25 #include "gt/intel_mocs.h"
26 #include "gt/intel_ring.h"
27 
28 #include "intel_guc_ads.h"
29 #include "intel_guc_capture.h"
30 #include "intel_guc_print.h"
31 #include "intel_guc_submission.h"
32 
33 #include "i915_drv.h"
34 #include "i915_reg.h"
35 #include "i915_irq.h"
36 #include "i915_trace.h"
37 
38 /**
39  * DOC: GuC-based command submission
40  *
41  * The Scratch registers:
42  * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
43  * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
44  * triggers an interrupt on the GuC via another register write (0xC4C8).
45  * Firmware writes a success/fail code back to the action register after
46  * processes the request. The kernel driver polls waiting for this update and
47  * then proceeds.
48  *
49  * Command Transport buffers (CTBs):
50  * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host
51  * - G2H) are a message interface between the i915 and GuC.
52  *
53  * Context registration:
54  * Before a context can be submitted it must be registered with the GuC via a
55  * H2G. A unique guc_id is associated with each context. The context is either
56  * registered at request creation time (normal operation) or at submission time
57  * (abnormal operation, e.g. after a reset).
58  *
59  * Context submission:
60  * The i915 updates the LRC tail value in memory. The i915 must enable the
61  * scheduling of the context within the GuC for the GuC to actually consider it.
62  * Therefore, the first time a disabled context is submitted we use a schedule
63  * enable H2G, while follow up submissions are done via the context submit H2G,
64  * which informs the GuC that a previously enabled context has new work
65  * available.
66  *
67  * Context unpin:
68  * To unpin a context a H2G is used to disable scheduling. When the
69  * corresponding G2H returns indicating the scheduling disable operation has
70  * completed it is safe to unpin the context. While a disable is in flight it
71  * isn't safe to resubmit the context so a fence is used to stall all future
72  * requests of that context until the G2H is returned. Because this interaction
73  * with the GuC takes a non-zero amount of time we delay the disabling of
74  * scheduling after the pin count goes to zero by a configurable period of time
75  * (see SCHED_DISABLE_DELAY_MS). The thought is this gives the user a window of
76  * time to resubmit something on the context before doing this costly operation.
77  * This delay is only done if the context isn't closed and the guc_id usage is
78  * less than a threshold (see NUM_SCHED_DISABLE_GUC_IDS_THRESHOLD).
79  *
80  * Context deregistration:
81  * Before a context can be destroyed or if we steal its guc_id we must
82  * deregister the context with the GuC via H2G. If stealing the guc_id it isn't
83  * safe to submit anything to this guc_id until the deregister completes so a
84  * fence is used to stall all requests associated with this guc_id until the
85  * corresponding G2H returns indicating the guc_id has been deregistered.
86  *
87  * submission_state.guc_ids:
88  * Unique number associated with private GuC context data passed in during
89  * context registration / submission / deregistration. 64k available. Simple ida
90  * is used for allocation.
91  *
92  * Stealing guc_ids:
93  * If no guc_ids are available they can be stolen from another context at
94  * request creation time if that context is unpinned. If a guc_id can't be found
95  * we punt this problem to the user as we believe this is near impossible to hit
96  * during normal use cases.
97  *
98  * Locking:
99  * In the GuC submission code we have 3 basic spin locks which protect
100  * everything. Details about each below.
101  *
102  * sched_engine->lock
103  * This is the submission lock for all contexts that share an i915 schedule
104  * engine (sched_engine), thus only one of the contexts which share a
105  * sched_engine can be submitting at a time. Currently only one sched_engine is
106  * used for all of GuC submission but that could change in the future.
107  *
108  * guc->submission_state.lock
109  * Global lock for GuC submission state. Protects guc_ids and destroyed contexts
110  * list.
111  *
112  * ce->guc_state.lock
113  * Protects everything under ce->guc_state. Ensures that a context is in the
114  * correct state before issuing a H2G. e.g. We don't issue a schedule disable
115  * on a disabled context (bad idea), we don't issue a schedule enable when a
116  * schedule disable is in flight, etc... Also protects list of inflight requests
117  * on the context and the priority management state. Lock is individual to each
118  * context.
119  *
120  * Lock ordering rules:
121  * sched_engine->lock -> ce->guc_state.lock
122  * guc->submission_state.lock -> ce->guc_state.lock
123  *
124  * Reset races:
125  * When a full GT reset is triggered it is assumed that some G2H responses to
126  * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be
127  * fatal as we do certain operations upon receiving a G2H (e.g. destroy
128  * contexts, release guc_ids, etc...). When this occurs we can scrub the
129  * context state and cleanup appropriately, however this is quite racey.
130  * To avoid races, the reset code must disable submission before scrubbing for
131  * the missing G2H, while the submission code must check for submission being
132  * disabled and skip sending H2Gs and updating context states when it is. Both
133  * sides must also make sure to hold the relevant locks.
134  */
135 
136 /* GuC Virtual Engine */
137 struct guc_virtual_engine {
138 	struct intel_engine_cs base;
139 	struct intel_context context;
140 };
141 
142 static struct intel_context *
143 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
144 		   unsigned long flags);
145 
146 static struct intel_context *
147 guc_create_parallel(struct intel_engine_cs **engines,
148 		    unsigned int num_siblings,
149 		    unsigned int width);
150 
151 #define GUC_REQUEST_SIZE 64 /* bytes */
152 
153 /*
154  * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous
155  * per the GuC submission interface. A different allocation algorithm is used
156  * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to
157  * partition the guc_id space. We believe the number of multi-lrc contexts in
158  * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for
159  * multi-lrc.
160  */
161 #define NUMBER_MULTI_LRC_GUC_ID(guc)	\
162 	((guc)->submission_state.num_guc_ids / 16)
163 
164 /*
165  * Below is a set of functions which control the GuC scheduling state which
166  * require a lock.
167  */
168 #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER	BIT(0)
169 #define SCHED_STATE_DESTROYED				BIT(1)
170 #define SCHED_STATE_PENDING_DISABLE			BIT(2)
171 #define SCHED_STATE_BANNED				BIT(3)
172 #define SCHED_STATE_ENABLED				BIT(4)
173 #define SCHED_STATE_PENDING_ENABLE			BIT(5)
174 #define SCHED_STATE_REGISTERED				BIT(6)
175 #define SCHED_STATE_POLICY_REQUIRED			BIT(7)
176 #define SCHED_STATE_CLOSED				BIT(8)
177 #define SCHED_STATE_BLOCKED_SHIFT			9
178 #define SCHED_STATE_BLOCKED		BIT(SCHED_STATE_BLOCKED_SHIFT)
179 #define SCHED_STATE_BLOCKED_MASK	(0xfff << SCHED_STATE_BLOCKED_SHIFT)
180 
init_sched_state(struct intel_context * ce)181 static inline void init_sched_state(struct intel_context *ce)
182 {
183 	lockdep_assert_held(&ce->guc_state.lock);
184 	ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK;
185 }
186 
187 /*
188  * Kernel contexts can have SCHED_STATE_REGISTERED after suspend.
189  * A context close can race with the submission path, so SCHED_STATE_CLOSED
190  * can be set immediately before we try to register.
191  */
192 #define SCHED_STATE_VALID_INIT \
193 	(SCHED_STATE_BLOCKED_MASK | \
194 	 SCHED_STATE_CLOSED | \
195 	 SCHED_STATE_REGISTERED)
196 
197 __maybe_unused
sched_state_is_init(struct intel_context * ce)198 static bool sched_state_is_init(struct intel_context *ce)
199 {
200 	return !(ce->guc_state.sched_state & ~SCHED_STATE_VALID_INIT);
201 }
202 
203 static inline bool
context_wait_for_deregister_to_register(struct intel_context * ce)204 context_wait_for_deregister_to_register(struct intel_context *ce)
205 {
206 	return ce->guc_state.sched_state &
207 		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
208 }
209 
210 static inline void
set_context_wait_for_deregister_to_register(struct intel_context * ce)211 set_context_wait_for_deregister_to_register(struct intel_context *ce)
212 {
213 	lockdep_assert_held(&ce->guc_state.lock);
214 	ce->guc_state.sched_state |=
215 		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
216 }
217 
218 static inline void
clr_context_wait_for_deregister_to_register(struct intel_context * ce)219 clr_context_wait_for_deregister_to_register(struct intel_context *ce)
220 {
221 	lockdep_assert_held(&ce->guc_state.lock);
222 	ce->guc_state.sched_state &=
223 		~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
224 }
225 
226 static inline bool
context_destroyed(struct intel_context * ce)227 context_destroyed(struct intel_context *ce)
228 {
229 	return ce->guc_state.sched_state & SCHED_STATE_DESTROYED;
230 }
231 
232 static inline void
set_context_destroyed(struct intel_context * ce)233 set_context_destroyed(struct intel_context *ce)
234 {
235 	lockdep_assert_held(&ce->guc_state.lock);
236 	ce->guc_state.sched_state |= SCHED_STATE_DESTROYED;
237 }
238 
239 static inline void
clr_context_destroyed(struct intel_context * ce)240 clr_context_destroyed(struct intel_context *ce)
241 {
242 	lockdep_assert_held(&ce->guc_state.lock);
243 	ce->guc_state.sched_state &= ~SCHED_STATE_DESTROYED;
244 }
245 
context_pending_disable(struct intel_context * ce)246 static inline bool context_pending_disable(struct intel_context *ce)
247 {
248 	return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE;
249 }
250 
set_context_pending_disable(struct intel_context * ce)251 static inline void set_context_pending_disable(struct intel_context *ce)
252 {
253 	lockdep_assert_held(&ce->guc_state.lock);
254 	ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE;
255 }
256 
clr_context_pending_disable(struct intel_context * ce)257 static inline void clr_context_pending_disable(struct intel_context *ce)
258 {
259 	lockdep_assert_held(&ce->guc_state.lock);
260 	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE;
261 }
262 
context_banned(struct intel_context * ce)263 static inline bool context_banned(struct intel_context *ce)
264 {
265 	return ce->guc_state.sched_state & SCHED_STATE_BANNED;
266 }
267 
set_context_banned(struct intel_context * ce)268 static inline void set_context_banned(struct intel_context *ce)
269 {
270 	lockdep_assert_held(&ce->guc_state.lock);
271 	ce->guc_state.sched_state |= SCHED_STATE_BANNED;
272 }
273 
clr_context_banned(struct intel_context * ce)274 static inline void clr_context_banned(struct intel_context *ce)
275 {
276 	lockdep_assert_held(&ce->guc_state.lock);
277 	ce->guc_state.sched_state &= ~SCHED_STATE_BANNED;
278 }
279 
context_enabled(struct intel_context * ce)280 static inline bool context_enabled(struct intel_context *ce)
281 {
282 	return ce->guc_state.sched_state & SCHED_STATE_ENABLED;
283 }
284 
set_context_enabled(struct intel_context * ce)285 static inline void set_context_enabled(struct intel_context *ce)
286 {
287 	lockdep_assert_held(&ce->guc_state.lock);
288 	ce->guc_state.sched_state |= SCHED_STATE_ENABLED;
289 }
290 
clr_context_enabled(struct intel_context * ce)291 static inline void clr_context_enabled(struct intel_context *ce)
292 {
293 	lockdep_assert_held(&ce->guc_state.lock);
294 	ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED;
295 }
296 
context_pending_enable(struct intel_context * ce)297 static inline bool context_pending_enable(struct intel_context *ce)
298 {
299 	return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE;
300 }
301 
set_context_pending_enable(struct intel_context * ce)302 static inline void set_context_pending_enable(struct intel_context *ce)
303 {
304 	lockdep_assert_held(&ce->guc_state.lock);
305 	ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE;
306 }
307 
clr_context_pending_enable(struct intel_context * ce)308 static inline void clr_context_pending_enable(struct intel_context *ce)
309 {
310 	lockdep_assert_held(&ce->guc_state.lock);
311 	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE;
312 }
313 
context_registered(struct intel_context * ce)314 static inline bool context_registered(struct intel_context *ce)
315 {
316 	return ce->guc_state.sched_state & SCHED_STATE_REGISTERED;
317 }
318 
set_context_registered(struct intel_context * ce)319 static inline void set_context_registered(struct intel_context *ce)
320 {
321 	lockdep_assert_held(&ce->guc_state.lock);
322 	ce->guc_state.sched_state |= SCHED_STATE_REGISTERED;
323 }
324 
clr_context_registered(struct intel_context * ce)325 static inline void clr_context_registered(struct intel_context *ce)
326 {
327 	lockdep_assert_held(&ce->guc_state.lock);
328 	ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED;
329 }
330 
context_policy_required(struct intel_context * ce)331 static inline bool context_policy_required(struct intel_context *ce)
332 {
333 	return ce->guc_state.sched_state & SCHED_STATE_POLICY_REQUIRED;
334 }
335 
set_context_policy_required(struct intel_context * ce)336 static inline void set_context_policy_required(struct intel_context *ce)
337 {
338 	lockdep_assert_held(&ce->guc_state.lock);
339 	ce->guc_state.sched_state |= SCHED_STATE_POLICY_REQUIRED;
340 }
341 
clr_context_policy_required(struct intel_context * ce)342 static inline void clr_context_policy_required(struct intel_context *ce)
343 {
344 	lockdep_assert_held(&ce->guc_state.lock);
345 	ce->guc_state.sched_state &= ~SCHED_STATE_POLICY_REQUIRED;
346 }
347 
context_close_done(struct intel_context * ce)348 static inline bool context_close_done(struct intel_context *ce)
349 {
350 	return ce->guc_state.sched_state & SCHED_STATE_CLOSED;
351 }
352 
set_context_close_done(struct intel_context * ce)353 static inline void set_context_close_done(struct intel_context *ce)
354 {
355 	lockdep_assert_held(&ce->guc_state.lock);
356 	ce->guc_state.sched_state |= SCHED_STATE_CLOSED;
357 }
358 
context_blocked(struct intel_context * ce)359 static inline u32 context_blocked(struct intel_context *ce)
360 {
361 	return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >>
362 		SCHED_STATE_BLOCKED_SHIFT;
363 }
364 
incr_context_blocked(struct intel_context * ce)365 static inline void incr_context_blocked(struct intel_context *ce)
366 {
367 	lockdep_assert_held(&ce->guc_state.lock);
368 
369 	ce->guc_state.sched_state += SCHED_STATE_BLOCKED;
370 
371 	GEM_BUG_ON(!context_blocked(ce));	/* Overflow check */
372 }
373 
decr_context_blocked(struct intel_context * ce)374 static inline void decr_context_blocked(struct intel_context *ce)
375 {
376 	lockdep_assert_held(&ce->guc_state.lock);
377 
378 	GEM_BUG_ON(!context_blocked(ce));	/* Underflow check */
379 
380 	ce->guc_state.sched_state -= SCHED_STATE_BLOCKED;
381 }
382 
383 static struct intel_context *
request_to_scheduling_context(struct i915_request * rq)384 request_to_scheduling_context(struct i915_request *rq)
385 {
386 	return intel_context_to_parent(rq->context);
387 }
388 
context_guc_id_invalid(struct intel_context * ce)389 static inline bool context_guc_id_invalid(struct intel_context *ce)
390 {
391 	return ce->guc_id.id == GUC_INVALID_CONTEXT_ID;
392 }
393 
set_context_guc_id_invalid(struct intel_context * ce)394 static inline void set_context_guc_id_invalid(struct intel_context *ce)
395 {
396 	ce->guc_id.id = GUC_INVALID_CONTEXT_ID;
397 }
398 
ce_to_guc(struct intel_context * ce)399 static inline struct intel_guc *ce_to_guc(struct intel_context *ce)
400 {
401 	return gt_to_guc(ce->engine->gt);
402 }
403 
to_priolist(struct rb_node * rb)404 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
405 {
406 	return rb_entry(rb, struct i915_priolist, node);
407 }
408 
409 /*
410  * When using multi-lrc submission a scratch memory area is reserved in the
411  * parent's context state for the process descriptor, work queue, and handshake
412  * between the parent + children contexts to insert safe preemption points
413  * between each of the BBs. Currently the scratch area is sized to a page.
414  *
415  * The layout of this scratch area is below:
416  * 0						guc_process_desc
417  * + sizeof(struct guc_process_desc)		child go
418  * + CACHELINE_BYTES				child join[0]
419  * ...
420  * + CACHELINE_BYTES				child join[n - 1]
421  * ...						unused
422  * PARENT_SCRATCH_SIZE / 2			work queue start
423  * ...						work queue
424  * PARENT_SCRATCH_SIZE - 1			work queue end
425  */
426 #define WQ_SIZE			(PARENT_SCRATCH_SIZE / 2)
427 #define WQ_OFFSET		(PARENT_SCRATCH_SIZE - WQ_SIZE)
428 
429 struct sync_semaphore {
430 	u32 semaphore;
431 	u8 unused[CACHELINE_BYTES - sizeof(u32)];
432 };
433 
434 struct parent_scratch {
435 	union guc_descs {
436 		struct guc_sched_wq_desc wq_desc;
437 		struct guc_process_desc_v69 pdesc;
438 	} descs;
439 
440 	struct sync_semaphore go;
441 	struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1];
442 
443 	u8 unused[WQ_OFFSET - sizeof(union guc_descs) -
444 		sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)];
445 
446 	u32 wq[WQ_SIZE / sizeof(u32)];
447 };
448 
__get_parent_scratch_offset(struct intel_context * ce)449 static u32 __get_parent_scratch_offset(struct intel_context *ce)
450 {
451 	GEM_BUG_ON(!ce->parallel.guc.parent_page);
452 
453 	return ce->parallel.guc.parent_page * PAGE_SIZE;
454 }
455 
__get_wq_offset(struct intel_context * ce)456 static u32 __get_wq_offset(struct intel_context *ce)
457 {
458 	BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET);
459 
460 	return __get_parent_scratch_offset(ce) + WQ_OFFSET;
461 }
462 
463 static struct parent_scratch *
__get_parent_scratch(struct intel_context * ce)464 __get_parent_scratch(struct intel_context *ce)
465 {
466 	BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE);
467 	BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES);
468 
469 	/*
470 	 * Need to subtract LRC_STATE_OFFSET here as the
471 	 * parallel.guc.parent_page is the offset into ce->state while
472 	 * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET.
473 	 */
474 	return (struct parent_scratch *)
475 		(ce->lrc_reg_state +
476 		 ((__get_parent_scratch_offset(ce) -
477 		   LRC_STATE_OFFSET) / sizeof(u32)));
478 }
479 
480 static struct guc_process_desc_v69 *
__get_process_desc_v69(struct intel_context * ce)481 __get_process_desc_v69(struct intel_context *ce)
482 {
483 	struct parent_scratch *ps = __get_parent_scratch(ce);
484 
485 	return &ps->descs.pdesc;
486 }
487 
488 static struct guc_sched_wq_desc *
__get_wq_desc_v70(struct intel_context * ce)489 __get_wq_desc_v70(struct intel_context *ce)
490 {
491 	struct parent_scratch *ps = __get_parent_scratch(ce);
492 
493 	return &ps->descs.wq_desc;
494 }
495 
get_wq_pointer(struct intel_context * ce,u32 wqi_size)496 static u32 *get_wq_pointer(struct intel_context *ce, u32 wqi_size)
497 {
498 	/*
499 	 * Check for space in work queue. Caching a value of head pointer in
500 	 * intel_context structure in order reduce the number accesses to shared
501 	 * GPU memory which may be across a PCIe bus.
502 	 */
503 #define AVAILABLE_SPACE	\
504 	CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE)
505 	if (wqi_size > AVAILABLE_SPACE) {
506 		ce->parallel.guc.wqi_head = READ_ONCE(*ce->parallel.guc.wq_head);
507 
508 		if (wqi_size > AVAILABLE_SPACE)
509 			return NULL;
510 	}
511 #undef AVAILABLE_SPACE
512 
513 	return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)];
514 }
515 
__get_context(struct intel_guc * guc,u32 id)516 static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id)
517 {
518 	struct intel_context *ce = xa_load(&guc->context_lookup, id);
519 
520 	GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID);
521 
522 	return ce;
523 }
524 
__get_lrc_desc_v69(struct intel_guc * guc,u32 index)525 static struct guc_lrc_desc_v69 *__get_lrc_desc_v69(struct intel_guc *guc, u32 index)
526 {
527 	struct guc_lrc_desc_v69 *base = guc->lrc_desc_pool_vaddr_v69;
528 
529 	if (!base)
530 		return NULL;
531 
532 	GEM_BUG_ON(index >= GUC_MAX_CONTEXT_ID);
533 
534 	return &base[index];
535 }
536 
guc_lrc_desc_pool_create_v69(struct intel_guc * guc)537 static int guc_lrc_desc_pool_create_v69(struct intel_guc *guc)
538 {
539 	u32 size;
540 	int ret;
541 
542 	size = PAGE_ALIGN(sizeof(struct guc_lrc_desc_v69) *
543 			  GUC_MAX_CONTEXT_ID);
544 	ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool_v69,
545 					     (void **)&guc->lrc_desc_pool_vaddr_v69);
546 	if (ret)
547 		return ret;
548 
549 	return 0;
550 }
551 
guc_lrc_desc_pool_destroy_v69(struct intel_guc * guc)552 static void guc_lrc_desc_pool_destroy_v69(struct intel_guc *guc)
553 {
554 	if (!guc->lrc_desc_pool_vaddr_v69)
555 		return;
556 
557 	guc->lrc_desc_pool_vaddr_v69 = NULL;
558 	i915_vma_unpin_and_release(&guc->lrc_desc_pool_v69, I915_VMA_RELEASE_MAP);
559 }
560 
guc_submission_initialized(struct intel_guc * guc)561 static inline bool guc_submission_initialized(struct intel_guc *guc)
562 {
563 	return guc->submission_initialized;
564 }
565 
_reset_lrc_desc_v69(struct intel_guc * guc,u32 id)566 static inline void _reset_lrc_desc_v69(struct intel_guc *guc, u32 id)
567 {
568 	struct guc_lrc_desc_v69 *desc = __get_lrc_desc_v69(guc, id);
569 
570 	if (desc)
571 		memset(desc, 0, sizeof(*desc));
572 }
573 
ctx_id_mapped(struct intel_guc * guc,u32 id)574 static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id)
575 {
576 	return __get_context(guc, id);
577 }
578 
set_ctx_id_mapping(struct intel_guc * guc,u32 id,struct intel_context * ce)579 static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id,
580 				      struct intel_context *ce)
581 {
582 	unsigned long flags;
583 
584 	/*
585 	 * xarray API doesn't have xa_save_irqsave wrapper, so calling the
586 	 * lower level functions directly.
587 	 */
588 	xa_lock_irqsave(&guc->context_lookup, flags);
589 	__xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC);
590 	xa_unlock_irqrestore(&guc->context_lookup, flags);
591 }
592 
clr_ctx_id_mapping(struct intel_guc * guc,u32 id)593 static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id)
594 {
595 	unsigned long flags;
596 
597 	if (unlikely(!guc_submission_initialized(guc)))
598 		return;
599 
600 	_reset_lrc_desc_v69(guc, id);
601 
602 	/*
603 	 * xarray API doesn't have xa_erase_irqsave wrapper, so calling
604 	 * the lower level functions directly.
605 	 */
606 	xa_lock_irqsave(&guc->context_lookup, flags);
607 	__xa_erase(&guc->context_lookup, id);
608 	xa_unlock_irqrestore(&guc->context_lookup, flags);
609 }
610 
decr_outstanding_submission_g2h(struct intel_guc * guc)611 static void decr_outstanding_submission_g2h(struct intel_guc *guc)
612 {
613 	if (atomic_dec_and_test(&guc->outstanding_submission_g2h))
614 		wake_up_all(&guc->ct.wq);
615 }
616 
guc_submission_send_busy_loop(struct intel_guc * guc,const u32 * action,u32 len,u32 g2h_len_dw,bool loop)617 static int guc_submission_send_busy_loop(struct intel_guc *guc,
618 					 const u32 *action,
619 					 u32 len,
620 					 u32 g2h_len_dw,
621 					 bool loop)
622 {
623 	int ret;
624 
625 	/*
626 	 * We always loop when a send requires a reply (i.e. g2h_len_dw > 0),
627 	 * so we don't handle the case where we don't get a reply because we
628 	 * aborted the send due to the channel being busy.
629 	 */
630 	GEM_BUG_ON(g2h_len_dw && !loop);
631 
632 	if (g2h_len_dw)
633 		atomic_inc(&guc->outstanding_submission_g2h);
634 
635 	ret = intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop);
636 	if (ret)
637 		atomic_dec(&guc->outstanding_submission_g2h);
638 
639 	return ret;
640 }
641 
intel_guc_wait_for_pending_msg(struct intel_guc * guc,atomic_t * wait_var,bool interruptible,long timeout)642 int intel_guc_wait_for_pending_msg(struct intel_guc *guc,
643 				   atomic_t *wait_var,
644 				   bool interruptible,
645 				   long timeout)
646 {
647 	const int state = interruptible ?
648 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
649 	DEFINE_WAIT(wait);
650 
651 	might_sleep();
652 	GEM_BUG_ON(timeout < 0);
653 
654 	if (!atomic_read(wait_var))
655 		return 0;
656 
657 	if (!timeout)
658 		return -ETIME;
659 
660 	for (;;) {
661 		prepare_to_wait(&guc->ct.wq, &wait, state);
662 
663 		if (!atomic_read(wait_var))
664 			break;
665 
666 		if (signal_pending_state(state, current)) {
667 			timeout = -EINTR;
668 			break;
669 		}
670 
671 		if (!timeout) {
672 			timeout = -ETIME;
673 			break;
674 		}
675 
676 		timeout = io_schedule_timeout(timeout);
677 	}
678 	finish_wait(&guc->ct.wq, &wait);
679 
680 	return (timeout < 0) ? timeout : 0;
681 }
682 
intel_guc_wait_for_idle(struct intel_guc * guc,long timeout)683 int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout)
684 {
685 	if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc))
686 		return 0;
687 
688 	return intel_guc_wait_for_pending_msg(guc,
689 					      &guc->outstanding_submission_g2h,
690 					      true, timeout);
691 }
692 
693 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop);
694 static int try_context_registration(struct intel_context *ce, bool loop);
695 
__guc_add_request(struct intel_guc * guc,struct i915_request * rq)696 static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq)
697 {
698 	int err = 0;
699 	struct intel_context *ce = request_to_scheduling_context(rq);
700 	u32 action[3];
701 	int len = 0;
702 	u32 g2h_len_dw = 0;
703 	bool enabled;
704 
705 	lockdep_assert_held(&rq->engine->sched_engine->lock);
706 
707 	/*
708 	 * Corner case where requests were sitting in the priority list or a
709 	 * request resubmitted after the context was banned.
710 	 */
711 	if (unlikely(!intel_context_is_schedulable(ce))) {
712 		i915_request_put(i915_request_mark_eio(rq));
713 		intel_engine_signal_breadcrumbs(ce->engine);
714 		return 0;
715 	}
716 
717 	GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
718 	GEM_BUG_ON(context_guc_id_invalid(ce));
719 
720 	if (context_policy_required(ce)) {
721 		err = guc_context_policy_init_v70(ce, false);
722 		if (err)
723 			return err;
724 	}
725 
726 	spin_lock(&ce->guc_state.lock);
727 
728 	/*
729 	 * The request / context will be run on the hardware when scheduling
730 	 * gets enabled in the unblock. For multi-lrc we still submit the
731 	 * context to move the LRC tails.
732 	 */
733 	if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce)))
734 		goto out;
735 
736 	enabled = context_enabled(ce) || context_blocked(ce);
737 
738 	if (!enabled) {
739 		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
740 		action[len++] = ce->guc_id.id;
741 		action[len++] = GUC_CONTEXT_ENABLE;
742 		set_context_pending_enable(ce);
743 		intel_context_get(ce);
744 		g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
745 	} else {
746 		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT;
747 		action[len++] = ce->guc_id.id;
748 	}
749 
750 	err = intel_guc_send_nb(guc, action, len, g2h_len_dw);
751 	if (!enabled && !err) {
752 		trace_intel_context_sched_enable(ce);
753 		atomic_inc(&guc->outstanding_submission_g2h);
754 		set_context_enabled(ce);
755 
756 		/*
757 		 * Without multi-lrc KMD does the submission step (moving the
758 		 * lrc tail) so enabling scheduling is sufficient to submit the
759 		 * context. This isn't the case in multi-lrc submission as the
760 		 * GuC needs to move the tails, hence the need for another H2G
761 		 * to submit a multi-lrc context after enabling scheduling.
762 		 */
763 		if (intel_context_is_parent(ce)) {
764 			action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT;
765 			err = intel_guc_send_nb(guc, action, len - 1, 0);
766 		}
767 	} else if (!enabled) {
768 		clr_context_pending_enable(ce);
769 		intel_context_put(ce);
770 	}
771 	if (likely(!err))
772 		trace_i915_request_guc_submit(rq);
773 
774 out:
775 	spin_unlock(&ce->guc_state.lock);
776 	return err;
777 }
778 
guc_add_request(struct intel_guc * guc,struct i915_request * rq)779 static int guc_add_request(struct intel_guc *guc, struct i915_request *rq)
780 {
781 	int ret = __guc_add_request(guc, rq);
782 
783 	if (unlikely(ret == -EBUSY)) {
784 		guc->stalled_request = rq;
785 		guc->submission_stall_reason = STALL_ADD_REQUEST;
786 	}
787 
788 	return ret;
789 }
790 
guc_set_lrc_tail(struct i915_request * rq)791 static inline void guc_set_lrc_tail(struct i915_request *rq)
792 {
793 	rq->context->lrc_reg_state[CTX_RING_TAIL] =
794 		intel_ring_set_tail(rq->ring, rq->tail);
795 }
796 
rq_prio(const struct i915_request * rq)797 static inline int rq_prio(const struct i915_request *rq)
798 {
799 	return rq->sched.attr.priority;
800 }
801 
is_multi_lrc_rq(struct i915_request * rq)802 static bool is_multi_lrc_rq(struct i915_request *rq)
803 {
804 	return intel_context_is_parallel(rq->context);
805 }
806 
can_merge_rq(struct i915_request * rq,struct i915_request * last)807 static bool can_merge_rq(struct i915_request *rq,
808 			 struct i915_request *last)
809 {
810 	return request_to_scheduling_context(rq) ==
811 		request_to_scheduling_context(last);
812 }
813 
wq_space_until_wrap(struct intel_context * ce)814 static u32 wq_space_until_wrap(struct intel_context *ce)
815 {
816 	return (WQ_SIZE - ce->parallel.guc.wqi_tail);
817 }
818 
write_wqi(struct intel_context * ce,u32 wqi_size)819 static void write_wqi(struct intel_context *ce, u32 wqi_size)
820 {
821 	BUILD_BUG_ON(!is_power_of_2(WQ_SIZE));
822 
823 	/*
824 	 * Ensure WQI are visible before updating tail
825 	 */
826 	intel_guc_write_barrier(ce_to_guc(ce));
827 
828 	ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) &
829 		(WQ_SIZE - 1);
830 	WRITE_ONCE(*ce->parallel.guc.wq_tail, ce->parallel.guc.wqi_tail);
831 }
832 
guc_wq_noop_append(struct intel_context * ce)833 static int guc_wq_noop_append(struct intel_context *ce)
834 {
835 	u32 *wqi = get_wq_pointer(ce, wq_space_until_wrap(ce));
836 	u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1;
837 
838 	if (!wqi)
839 		return -EBUSY;
840 
841 	GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
842 
843 	*wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
844 		FIELD_PREP(WQ_LEN_MASK, len_dw);
845 	ce->parallel.guc.wqi_tail = 0;
846 
847 	return 0;
848 }
849 
__guc_wq_item_append(struct i915_request * rq)850 static int __guc_wq_item_append(struct i915_request *rq)
851 {
852 	struct intel_context *ce = request_to_scheduling_context(rq);
853 	struct intel_context *child;
854 	unsigned int wqi_size = (ce->parallel.number_children + 4) *
855 		sizeof(u32);
856 	u32 *wqi;
857 	u32 len_dw = (wqi_size / sizeof(u32)) - 1;
858 	int ret;
859 
860 	/* Ensure context is in correct state updating work queue */
861 	GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
862 	GEM_BUG_ON(context_guc_id_invalid(ce));
863 	GEM_BUG_ON(context_wait_for_deregister_to_register(ce));
864 	GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id));
865 
866 	/* Insert NOOP if this work queue item will wrap the tail pointer. */
867 	if (wqi_size > wq_space_until_wrap(ce)) {
868 		ret = guc_wq_noop_append(ce);
869 		if (ret)
870 			return ret;
871 	}
872 
873 	wqi = get_wq_pointer(ce, wqi_size);
874 	if (!wqi)
875 		return -EBUSY;
876 
877 	GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
878 
879 	*wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
880 		FIELD_PREP(WQ_LEN_MASK, len_dw);
881 	*wqi++ = ce->lrc.lrca;
882 	*wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) |
883 	       FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64));
884 	*wqi++ = 0;	/* fence_id */
885 	for_each_child(ce, child)
886 		*wqi++ = child->ring->tail / sizeof(u64);
887 
888 	write_wqi(ce, wqi_size);
889 
890 	return 0;
891 }
892 
guc_wq_item_append(struct intel_guc * guc,struct i915_request * rq)893 static int guc_wq_item_append(struct intel_guc *guc,
894 			      struct i915_request *rq)
895 {
896 	struct intel_context *ce = request_to_scheduling_context(rq);
897 	int ret;
898 
899 	if (unlikely(!intel_context_is_schedulable(ce)))
900 		return 0;
901 
902 	ret = __guc_wq_item_append(rq);
903 	if (unlikely(ret == -EBUSY)) {
904 		guc->stalled_request = rq;
905 		guc->submission_stall_reason = STALL_MOVE_LRC_TAIL;
906 	}
907 
908 	return ret;
909 }
910 
multi_lrc_submit(struct i915_request * rq)911 static bool multi_lrc_submit(struct i915_request *rq)
912 {
913 	struct intel_context *ce = request_to_scheduling_context(rq);
914 
915 	intel_ring_set_tail(rq->ring, rq->tail);
916 
917 	/*
918 	 * We expect the front end (execbuf IOCTL) to set this flag on the last
919 	 * request generated from a multi-BB submission. This indicates to the
920 	 * backend (GuC interface) that we should submit this context thus
921 	 * submitting all the requests generated in parallel.
922 	 */
923 	return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) ||
924 	       !intel_context_is_schedulable(ce);
925 }
926 
guc_dequeue_one_context(struct intel_guc * guc)927 static int guc_dequeue_one_context(struct intel_guc *guc)
928 {
929 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
930 	struct i915_request *last = NULL;
931 	bool submit = false;
932 	struct rb_node *rb;
933 	int ret;
934 
935 	lockdep_assert_held(&sched_engine->lock);
936 
937 	if (guc->stalled_request) {
938 		submit = true;
939 		last = guc->stalled_request;
940 
941 		switch (guc->submission_stall_reason) {
942 		case STALL_REGISTER_CONTEXT:
943 			goto register_context;
944 		case STALL_MOVE_LRC_TAIL:
945 			goto move_lrc_tail;
946 		case STALL_ADD_REQUEST:
947 			goto add_request;
948 		default:
949 			MISSING_CASE(guc->submission_stall_reason);
950 		}
951 	}
952 
953 	while ((rb = rb_first_cached(&sched_engine->queue))) {
954 		struct i915_priolist *p = to_priolist(rb);
955 		struct i915_request *rq, *rn;
956 
957 		priolist_for_each_request_consume(rq, rn, p) {
958 			if (last && !can_merge_rq(rq, last))
959 				goto register_context;
960 
961 			list_del_init(&rq->sched.link);
962 
963 			__i915_request_submit(rq);
964 
965 			trace_i915_request_in(rq, 0);
966 			last = rq;
967 
968 			if (is_multi_lrc_rq(rq)) {
969 				/*
970 				 * We need to coalesce all multi-lrc requests in
971 				 * a relationship into a single H2G. We are
972 				 * guaranteed that all of these requests will be
973 				 * submitted sequentially.
974 				 */
975 				if (multi_lrc_submit(rq)) {
976 					submit = true;
977 					goto register_context;
978 				}
979 			} else {
980 				submit = true;
981 			}
982 		}
983 
984 		rb_erase_cached(&p->node, &sched_engine->queue);
985 		i915_priolist_free(p);
986 	}
987 
988 register_context:
989 	if (submit) {
990 		struct intel_context *ce = request_to_scheduling_context(last);
991 
992 		if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) &&
993 			     intel_context_is_schedulable(ce))) {
994 			ret = try_context_registration(ce, false);
995 			if (unlikely(ret == -EPIPE)) {
996 				goto deadlk;
997 			} else if (ret == -EBUSY) {
998 				guc->stalled_request = last;
999 				guc->submission_stall_reason =
1000 					STALL_REGISTER_CONTEXT;
1001 				goto schedule_tasklet;
1002 			} else if (ret != 0) {
1003 				GEM_WARN_ON(ret);	/* Unexpected */
1004 				goto deadlk;
1005 			}
1006 		}
1007 
1008 move_lrc_tail:
1009 		if (is_multi_lrc_rq(last)) {
1010 			ret = guc_wq_item_append(guc, last);
1011 			if (ret == -EBUSY) {
1012 				goto schedule_tasklet;
1013 			} else if (ret != 0) {
1014 				GEM_WARN_ON(ret);	/* Unexpected */
1015 				goto deadlk;
1016 			}
1017 		} else {
1018 			guc_set_lrc_tail(last);
1019 		}
1020 
1021 add_request:
1022 		ret = guc_add_request(guc, last);
1023 		if (unlikely(ret == -EPIPE)) {
1024 			goto deadlk;
1025 		} else if (ret == -EBUSY) {
1026 			goto schedule_tasklet;
1027 		} else if (ret != 0) {
1028 			GEM_WARN_ON(ret);	/* Unexpected */
1029 			goto deadlk;
1030 		}
1031 	}
1032 
1033 	guc->stalled_request = NULL;
1034 	guc->submission_stall_reason = STALL_NONE;
1035 	return submit;
1036 
1037 deadlk:
1038 	sched_engine->tasklet.callback = NULL;
1039 	tasklet_disable_nosync(&sched_engine->tasklet);
1040 	return false;
1041 
1042 schedule_tasklet:
1043 	tasklet_schedule(&sched_engine->tasklet);
1044 	return false;
1045 }
1046 
guc_submission_tasklet(struct tasklet_struct * t)1047 static void guc_submission_tasklet(struct tasklet_struct *t)
1048 {
1049 	struct i915_sched_engine *sched_engine =
1050 		from_tasklet(sched_engine, t, tasklet);
1051 	unsigned long flags;
1052 	bool loop;
1053 
1054 	spin_lock_irqsave(&sched_engine->lock, flags);
1055 
1056 	do {
1057 		loop = guc_dequeue_one_context(sched_engine->private_data);
1058 	} while (loop);
1059 
1060 	i915_sched_engine_reset_on_empty(sched_engine);
1061 
1062 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1063 }
1064 
cs_irq_handler(struct intel_engine_cs * engine,u16 iir)1065 static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir)
1066 {
1067 	if (iir & GT_RENDER_USER_INTERRUPT)
1068 		intel_engine_signal_breadcrumbs(engine);
1069 }
1070 
1071 static void __guc_context_destroy(struct intel_context *ce);
1072 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce);
1073 static void guc_signal_context_fence(struct intel_context *ce);
1074 static void guc_cancel_context_requests(struct intel_context *ce);
1075 static void guc_blocked_fence_complete(struct intel_context *ce);
1076 
scrub_guc_desc_for_outstanding_g2h(struct intel_guc * guc)1077 static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc)
1078 {
1079 	struct intel_context *ce;
1080 	unsigned long index, flags;
1081 	bool pending_disable, pending_enable, deregister, destroyed, banned;
1082 
1083 	xa_lock_irqsave(&guc->context_lookup, flags);
1084 	xa_for_each(&guc->context_lookup, index, ce) {
1085 		/*
1086 		 * Corner case where the ref count on the object is zero but and
1087 		 * deregister G2H was lost. In this case we don't touch the ref
1088 		 * count and finish the destroy of the context.
1089 		 */
1090 		bool do_put = kref_get_unless_zero(&ce->ref);
1091 
1092 		xa_unlock(&guc->context_lookup);
1093 
1094 		if (test_bit(CONTEXT_GUC_INIT, &ce->flags) &&
1095 		    (cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))) {
1096 			/* successful cancel so jump straight to close it */
1097 			intel_context_sched_disable_unpin(ce);
1098 		}
1099 
1100 		spin_lock(&ce->guc_state.lock);
1101 
1102 		/*
1103 		 * Once we are at this point submission_disabled() is guaranteed
1104 		 * to be visible to all callers who set the below flags (see above
1105 		 * flush and flushes in reset_prepare). If submission_disabled()
1106 		 * is set, the caller shouldn't set these flags.
1107 		 */
1108 
1109 		destroyed = context_destroyed(ce);
1110 		pending_enable = context_pending_enable(ce);
1111 		pending_disable = context_pending_disable(ce);
1112 		deregister = context_wait_for_deregister_to_register(ce);
1113 		banned = context_banned(ce);
1114 		init_sched_state(ce);
1115 
1116 		spin_unlock(&ce->guc_state.lock);
1117 
1118 		if (pending_enable || destroyed || deregister) {
1119 			decr_outstanding_submission_g2h(guc);
1120 			if (deregister)
1121 				guc_signal_context_fence(ce);
1122 			if (destroyed) {
1123 				intel_gt_pm_put_async_untracked(guc_to_gt(guc));
1124 				release_guc_id(guc, ce);
1125 				__guc_context_destroy(ce);
1126 			}
1127 			if (pending_enable || deregister)
1128 				intel_context_put(ce);
1129 		}
1130 
1131 		/* Not mutualy exclusive with above if statement. */
1132 		if (pending_disable) {
1133 			guc_signal_context_fence(ce);
1134 			if (banned) {
1135 				guc_cancel_context_requests(ce);
1136 				intel_engine_signal_breadcrumbs(ce->engine);
1137 			}
1138 			intel_context_sched_disable_unpin(ce);
1139 			decr_outstanding_submission_g2h(guc);
1140 
1141 			spin_lock(&ce->guc_state.lock);
1142 			guc_blocked_fence_complete(ce);
1143 			spin_unlock(&ce->guc_state.lock);
1144 
1145 			intel_context_put(ce);
1146 		}
1147 
1148 		if (do_put)
1149 			intel_context_put(ce);
1150 		xa_lock(&guc->context_lookup);
1151 	}
1152 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1153 }
1154 
1155 /*
1156  * GuC stores busyness stats for each engine at context in/out boundaries. A
1157  * context 'in' logs execution start time, 'out' adds in -> out delta to total.
1158  * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with
1159  * GuC.
1160  *
1161  * __i915_pmu_event_read samples engine busyness. When sampling, if context id
1162  * is valid (!= ~0) and start is non-zero, the engine is considered to be
1163  * active. For an active engine total busyness = total + (now - start), where
1164  * 'now' is the time at which the busyness is sampled. For inactive engine,
1165  * total busyness = total.
1166  *
1167  * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain.
1168  *
1169  * The start and total values provided by GuC are 32 bits and wrap around in a
1170  * few minutes. Since perf pmu provides busyness as 64 bit monotonically
1171  * increasing ns values, there is a need for this implementation to account for
1172  * overflows and extend the GuC provided values to 64 bits before returning
1173  * busyness to the user. In order to do that, a worker runs periodically at
1174  * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in
1175  * 27 seconds for a gt clock frequency of 19.2 MHz).
1176  */
1177 
1178 #define WRAP_TIME_CLKS U32_MAX
1179 #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3)
1180 
1181 static void
__extend_last_switch(struct intel_guc * guc,u64 * prev_start,u32 new_start)1182 __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start)
1183 {
1184 	u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1185 	u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp);
1186 
1187 	if (new_start == lower_32_bits(*prev_start))
1188 		return;
1189 
1190 	/*
1191 	 * When gt is unparked, we update the gt timestamp and start the ping
1192 	 * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt
1193 	 * is unparked, all switched in contexts will have a start time that is
1194 	 * within +/- POLL_TIME_CLKS of the most recent gt_stamp.
1195 	 *
1196 	 * If neither gt_stamp nor new_start has rolled over, then the
1197 	 * gt_stamp_hi does not need to be adjusted, however if one of them has
1198 	 * rolled over, we need to adjust gt_stamp_hi accordingly.
1199 	 *
1200 	 * The below conditions address the cases of new_start rollover and
1201 	 * gt_stamp_last rollover respectively.
1202 	 */
1203 	if (new_start < gt_stamp_last &&
1204 	    (new_start - gt_stamp_last) <= POLL_TIME_CLKS)
1205 		gt_stamp_hi++;
1206 
1207 	if (new_start > gt_stamp_last &&
1208 	    (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi)
1209 		gt_stamp_hi--;
1210 
1211 	*prev_start = ((u64)gt_stamp_hi << 32) | new_start;
1212 }
1213 
1214 #define record_read(map_, field_) \
1215 	iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_)
1216 
1217 /*
1218  * GuC updates shared memory and KMD reads it. Since this is not synchronized,
1219  * we run into a race where the value read is inconsistent. Sometimes the
1220  * inconsistency is in reading the upper MSB bytes of the last_in value when
1221  * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper
1222  * 24 bits are zero. Since these are non-zero values, it is non-trivial to
1223  * determine validity of these values. Instead we read the values multiple times
1224  * until they are consistent. In test runs, 3 attempts results in consistent
1225  * values. The upper bound is set to 6 attempts and may need to be tuned as per
1226  * any new occurences.
1227  */
__get_engine_usage_record(struct intel_engine_cs * engine,u32 * last_in,u32 * id,u32 * total)1228 static void __get_engine_usage_record(struct intel_engine_cs *engine,
1229 				      u32 *last_in, u32 *id, u32 *total)
1230 {
1231 	struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine);
1232 	int i = 0;
1233 
1234 	do {
1235 		*last_in = record_read(&rec_map, last_switch_in_stamp);
1236 		*id = record_read(&rec_map, current_context_index);
1237 		*total = record_read(&rec_map, total_runtime);
1238 
1239 		if (record_read(&rec_map, last_switch_in_stamp) == *last_in &&
1240 		    record_read(&rec_map, current_context_index) == *id &&
1241 		    record_read(&rec_map, total_runtime) == *total)
1242 			break;
1243 	} while (++i < 6);
1244 }
1245 
__set_engine_usage_record(struct intel_engine_cs * engine,u32 last_in,u32 id,u32 total)1246 static void __set_engine_usage_record(struct intel_engine_cs *engine,
1247 				      u32 last_in, u32 id, u32 total)
1248 {
1249 	struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine);
1250 
1251 #define record_write(map_, field_, val_) \
1252 	iosys_map_wr_field(map_, 0, struct guc_engine_usage_record, field_, val_)
1253 
1254 	record_write(&rec_map, last_switch_in_stamp, last_in);
1255 	record_write(&rec_map, current_context_index, id);
1256 	record_write(&rec_map, total_runtime, total);
1257 
1258 #undef record_write
1259 }
1260 
guc_update_engine_gt_clks(struct intel_engine_cs * engine)1261 static void guc_update_engine_gt_clks(struct intel_engine_cs *engine)
1262 {
1263 	struct intel_engine_guc_stats *stats = &engine->stats.guc;
1264 	struct intel_guc *guc = gt_to_guc(engine->gt);
1265 	u32 last_switch, ctx_id, total;
1266 
1267 	lockdep_assert_held(&guc->timestamp.lock);
1268 
1269 	__get_engine_usage_record(engine, &last_switch, &ctx_id, &total);
1270 
1271 	stats->running = ctx_id != ~0U && last_switch;
1272 	if (stats->running)
1273 		__extend_last_switch(guc, &stats->start_gt_clk, last_switch);
1274 
1275 	/*
1276 	 * Instead of adjusting the total for overflow, just add the
1277 	 * difference from previous sample stats->total_gt_clks
1278 	 */
1279 	if (total && total != ~0U) {
1280 		stats->total_gt_clks += (u32)(total - stats->prev_total);
1281 		stats->prev_total = total;
1282 	}
1283 }
1284 
gpm_timestamp_shift(struct intel_gt * gt)1285 static u32 gpm_timestamp_shift(struct intel_gt *gt)
1286 {
1287 	intel_wakeref_t wakeref;
1288 	u32 reg, shift;
1289 
1290 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
1291 		reg = intel_uncore_read(gt->uncore, RPM_CONFIG0);
1292 
1293 	shift = (reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
1294 		GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT;
1295 
1296 	return 3 - shift;
1297 }
1298 
guc_update_pm_timestamp(struct intel_guc * guc,ktime_t * now)1299 static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now)
1300 {
1301 	struct intel_gt *gt = guc_to_gt(guc);
1302 	u32 gt_stamp_lo, gt_stamp_hi;
1303 	u64 gpm_ts;
1304 
1305 	lockdep_assert_held(&guc->timestamp.lock);
1306 
1307 	gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1308 	gpm_ts = intel_uncore_read64_2x32(gt->uncore, MISC_STATUS0,
1309 					  MISC_STATUS1) >> guc->timestamp.shift;
1310 	gt_stamp_lo = lower_32_bits(gpm_ts);
1311 	*now = ktime_get();
1312 
1313 	if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp))
1314 		gt_stamp_hi++;
1315 
1316 	guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo;
1317 }
1318 
1319 /*
1320  * Unlike the execlist mode of submission total and active times are in terms of
1321  * gt clocks. The *now parameter is retained to return the cpu time at which the
1322  * busyness was sampled.
1323  */
guc_engine_busyness(struct intel_engine_cs * engine,ktime_t * now)1324 static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now)
1325 {
1326 	struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc;
1327 	struct i915_gpu_error *gpu_error = &engine->i915->gpu_error;
1328 	struct intel_gt *gt = engine->gt;
1329 	struct intel_guc *guc = gt_to_guc(gt);
1330 	u64 total, gt_stamp_saved;
1331 	unsigned long flags;
1332 	u32 reset_count;
1333 	bool in_reset;
1334 	intel_wakeref_t wakeref;
1335 
1336 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1337 
1338 	/*
1339 	 * If a reset happened, we risk reading partially updated engine
1340 	 * busyness from GuC, so we just use the driver stored copy of busyness.
1341 	 * Synchronize with gt reset using reset_count and the
1342 	 * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count
1343 	 * after I915_RESET_BACKOFF flag, so ensure that the reset_count is
1344 	 * usable by checking the flag afterwards.
1345 	 */
1346 	reset_count = i915_reset_count(gpu_error);
1347 	in_reset = test_bit(I915_RESET_BACKOFF, &gt->reset.flags);
1348 
1349 	*now = ktime_get();
1350 
1351 	/*
1352 	 * The active busyness depends on start_gt_clk and gt_stamp.
1353 	 * gt_stamp is updated by i915 only when gt is awake and the
1354 	 * start_gt_clk is derived from GuC state. To get a consistent
1355 	 * view of activity, we query the GuC state only if gt is awake.
1356 	 */
1357 	wakeref = in_reset ? NULL : intel_gt_pm_get_if_awake(gt);
1358 	if (wakeref) {
1359 		stats_saved = *stats;
1360 		gt_stamp_saved = guc->timestamp.gt_stamp;
1361 		/*
1362 		 * Update gt_clks, then gt timestamp to simplify the 'gt_stamp -
1363 		 * start_gt_clk' calculation below for active engines.
1364 		 */
1365 		guc_update_engine_gt_clks(engine);
1366 		guc_update_pm_timestamp(guc, now);
1367 		intel_gt_pm_put_async(gt, wakeref);
1368 		if (i915_reset_count(gpu_error) != reset_count) {
1369 			*stats = stats_saved;
1370 			guc->timestamp.gt_stamp = gt_stamp_saved;
1371 		}
1372 	}
1373 
1374 	total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks);
1375 	if (stats->running) {
1376 		u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk;
1377 
1378 		total += intel_gt_clock_interval_to_ns(gt, clk);
1379 	}
1380 
1381 	if (total > stats->total)
1382 		stats->total = total;
1383 
1384 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1385 
1386 	return ns_to_ktime(stats->total);
1387 }
1388 
guc_enable_busyness_worker(struct intel_guc * guc)1389 static void guc_enable_busyness_worker(struct intel_guc *guc)
1390 {
1391 	mod_delayed_work(system_highpri_wq, &guc->timestamp.work, guc->timestamp.ping_delay);
1392 }
1393 
guc_cancel_busyness_worker(struct intel_guc * guc)1394 static void guc_cancel_busyness_worker(struct intel_guc *guc)
1395 {
1396 	/*
1397 	 * There are many different call stacks that can get here. Some of them
1398 	 * hold the reset mutex. The busyness worker also attempts to acquire the
1399 	 * reset mutex. Synchronously flushing a worker thread requires acquiring
1400 	 * the worker mutex. Lockdep sees this as a conflict. It thinks that the
1401 	 * flush can deadlock because it holds the worker mutex while waiting for
1402 	 * the reset mutex, but another thread is holding the reset mutex and might
1403 	 * attempt to use other worker functions.
1404 	 *
1405 	 * In practice, this scenario does not exist because the busyness worker
1406 	 * does not block waiting for the reset mutex. It does a try-lock on it and
1407 	 * immediately exits if the lock is already held. Unfortunately, the mutex
1408 	 * in question (I915_RESET_BACKOFF) is an i915 implementation which has lockdep
1409 	 * annotation but not to the extent of explaining the 'might lock' is also a
1410 	 * 'does not need to lock'. So one option would be to add more complex lockdep
1411 	 * annotations to ignore the issue (if at all possible). A simpler option is to
1412 	 * just not flush synchronously when a rest in progress. Given that the worker
1413 	 * will just early exit and re-schedule itself anyway, there is no advantage
1414 	 * to running it immediately.
1415 	 *
1416 	 * If a reset is not in progress, then the synchronous flush may be required.
1417 	 * As noted many call stacks lead here, some during suspend and driver unload
1418 	 * which do require a synchronous flush to make sure the worker is stopped
1419 	 * before memory is freed.
1420 	 *
1421 	 * Trying to pass a 'need_sync' or 'in_reset' flag all the way down through
1422 	 * every possible call stack is unfeasible. It would be too intrusive to many
1423 	 * areas that really don't care about the GuC backend. However, there is the
1424 	 * I915_RESET_BACKOFF flag and the gt->reset.mutex can be tested for is_locked.
1425 	 * So just use those. Note that testing both is required due to the hideously
1426 	 * complex nature of the i915 driver's reset code paths.
1427 	 *
1428 	 * And note that in the case of a reset occurring during driver unload
1429 	 * (wedged_on_fini), skipping the cancel in reset_prepare/reset_fini (when the
1430 	 * reset flag/mutex are set) is fine because there is another explicit cancel in
1431 	 * intel_guc_submission_fini (when the reset flag/mutex are not).
1432 	 */
1433 	if (mutex_is_locked(&guc_to_gt(guc)->reset.mutex) ||
1434 	    test_bit(I915_RESET_BACKOFF, &guc_to_gt(guc)->reset.flags))
1435 		cancel_delayed_work(&guc->timestamp.work);
1436 	else
1437 		cancel_delayed_work_sync(&guc->timestamp.work);
1438 }
1439 
__reset_guc_busyness_stats(struct intel_guc * guc)1440 static void __reset_guc_busyness_stats(struct intel_guc *guc)
1441 {
1442 	struct intel_gt *gt = guc_to_gt(guc);
1443 	struct intel_engine_cs *engine;
1444 	enum intel_engine_id id;
1445 	unsigned long flags;
1446 	ktime_t unused;
1447 
1448 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1449 
1450 	guc_update_pm_timestamp(guc, &unused);
1451 	for_each_engine(engine, gt, id) {
1452 		struct intel_engine_guc_stats *stats = &engine->stats.guc;
1453 
1454 		guc_update_engine_gt_clks(engine);
1455 
1456 		/*
1457 		 * If resetting a running context, accumulate the active
1458 		 * time as well since there will be no context switch.
1459 		 */
1460 		if (stats->running) {
1461 			u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk;
1462 
1463 			stats->total_gt_clks += clk;
1464 		}
1465 		stats->prev_total = 0;
1466 		stats->running = 0;
1467 	}
1468 
1469 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1470 }
1471 
__update_guc_busyness_running_state(struct intel_guc * guc)1472 static void __update_guc_busyness_running_state(struct intel_guc *guc)
1473 {
1474 	struct intel_gt *gt = guc_to_gt(guc);
1475 	struct intel_engine_cs *engine;
1476 	enum intel_engine_id id;
1477 	unsigned long flags;
1478 
1479 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1480 	for_each_engine(engine, gt, id)
1481 		engine->stats.guc.running = false;
1482 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1483 }
1484 
__update_guc_busyness_stats(struct intel_guc * guc)1485 static void __update_guc_busyness_stats(struct intel_guc *guc)
1486 {
1487 	struct intel_gt *gt = guc_to_gt(guc);
1488 	struct intel_engine_cs *engine;
1489 	enum intel_engine_id id;
1490 	unsigned long flags;
1491 	ktime_t unused;
1492 
1493 	guc->timestamp.last_stat_jiffies = jiffies;
1494 
1495 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1496 
1497 	guc_update_pm_timestamp(guc, &unused);
1498 	for_each_engine(engine, gt, id)
1499 		guc_update_engine_gt_clks(engine);
1500 
1501 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1502 }
1503 
__guc_context_update_stats(struct intel_context * ce)1504 static void __guc_context_update_stats(struct intel_context *ce)
1505 {
1506 	struct intel_guc *guc = ce_to_guc(ce);
1507 	unsigned long flags;
1508 
1509 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1510 	lrc_update_runtime(ce);
1511 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1512 }
1513 
guc_context_update_stats(struct intel_context * ce)1514 static void guc_context_update_stats(struct intel_context *ce)
1515 {
1516 	if (!intel_context_pin_if_active(ce))
1517 		return;
1518 
1519 	__guc_context_update_stats(ce);
1520 	intel_context_unpin(ce);
1521 }
1522 
guc_timestamp_ping(struct work_struct * wrk)1523 static void guc_timestamp_ping(struct work_struct *wrk)
1524 {
1525 	struct intel_guc *guc = container_of(wrk, typeof(*guc),
1526 					     timestamp.work.work);
1527 	struct intel_uc *uc = container_of(guc, typeof(*uc), guc);
1528 	struct intel_gt *gt = guc_to_gt(guc);
1529 	struct intel_context *ce;
1530 	intel_wakeref_t wakeref;
1531 	unsigned long index;
1532 	int srcu, ret;
1533 
1534 	/*
1535 	 * Ideally the busyness worker should take a gt pm wakeref because the
1536 	 * worker only needs to be active while gt is awake. However, the
1537 	 * gt_park path cancels the worker synchronously and this complicates
1538 	 * the flow if the worker is also running at the same time. The cancel
1539 	 * waits for the worker and when the worker releases the wakeref, that
1540 	 * would call gt_park and would lead to a deadlock.
1541 	 *
1542 	 * The resolution is to take the global pm wakeref if runtime pm is
1543 	 * already active. If not, we don't need to update the busyness stats as
1544 	 * the stats would already be updated when the gt was parked.
1545 	 *
1546 	 * Note:
1547 	 * - We do not requeue the worker if we cannot take a reference to runtime
1548 	 *   pm since intel_guc_busyness_unpark would requeue the worker in the
1549 	 *   resume path.
1550 	 *
1551 	 * - If the gt was parked longer than time taken for GT timestamp to roll
1552 	 *   over, we ignore those rollovers since we don't care about tracking
1553 	 *   the exact GT time. We only care about roll overs when the gt is
1554 	 *   active and running workloads.
1555 	 *
1556 	 * - There is a window of time between gt_park and runtime suspend,
1557 	 *   where the worker may run. This is acceptable since the worker will
1558 	 *   not find any new data to update busyness.
1559 	 */
1560 	wakeref = intel_runtime_pm_get_if_active(&gt->i915->runtime_pm);
1561 	if (!wakeref)
1562 		return;
1563 
1564 	/*
1565 	 * Synchronize with gt reset to make sure the worker does not
1566 	 * corrupt the engine/guc stats. NB: can't actually block waiting
1567 	 * for a reset to complete as the reset requires flushing out
1568 	 * this worker thread if started. So waiting would deadlock.
1569 	 */
1570 	ret = intel_gt_reset_trylock(gt, &srcu);
1571 	if (ret)
1572 		goto err_trylock;
1573 
1574 	__update_guc_busyness_stats(guc);
1575 
1576 	/* adjust context stats for overflow */
1577 	xa_for_each(&guc->context_lookup, index, ce)
1578 		guc_context_update_stats(ce);
1579 
1580 	intel_gt_reset_unlock(gt, srcu);
1581 
1582 	guc_enable_busyness_worker(guc);
1583 
1584 err_trylock:
1585 	intel_runtime_pm_put(&gt->i915->runtime_pm, wakeref);
1586 }
1587 
guc_action_enable_usage_stats(struct intel_guc * guc)1588 static int guc_action_enable_usage_stats(struct intel_guc *guc)
1589 {
1590 	struct intel_gt *gt = guc_to_gt(guc);
1591 	struct intel_engine_cs *engine;
1592 	enum intel_engine_id id;
1593 	u32 offset = intel_guc_engine_usage_offset(guc);
1594 	u32 action[] = {
1595 		INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF,
1596 		offset,
1597 		0,
1598 	};
1599 
1600 	for_each_engine(engine, gt, id)
1601 		__set_engine_usage_record(engine, 0, 0xffffffff, 0);
1602 
1603 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
1604 }
1605 
guc_init_engine_stats(struct intel_guc * guc)1606 static int guc_init_engine_stats(struct intel_guc *guc)
1607 {
1608 	struct intel_gt *gt = guc_to_gt(guc);
1609 	intel_wakeref_t wakeref;
1610 	int ret;
1611 
1612 	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref)
1613 		ret = guc_action_enable_usage_stats(guc);
1614 
1615 	if (ret)
1616 		guc_err(guc, "Failed to enable usage stats: %pe\n", ERR_PTR(ret));
1617 	else
1618 		guc_enable_busyness_worker(guc);
1619 
1620 	return ret;
1621 }
1622 
guc_fini_engine_stats(struct intel_guc * guc)1623 static void guc_fini_engine_stats(struct intel_guc *guc)
1624 {
1625 	guc_cancel_busyness_worker(guc);
1626 }
1627 
intel_guc_busyness_park(struct intel_gt * gt)1628 void intel_guc_busyness_park(struct intel_gt *gt)
1629 {
1630 	struct intel_guc *guc = gt_to_guc(gt);
1631 
1632 	if (!guc_submission_initialized(guc))
1633 		return;
1634 
1635 	/* Assume no engines are running and set running state to false */
1636 	__update_guc_busyness_running_state(guc);
1637 
1638 	/*
1639 	 * There is a race with suspend flow where the worker runs after suspend
1640 	 * and causes an unclaimed register access warning. Cancel the worker
1641 	 * synchronously here.
1642 	 */
1643 	guc_cancel_busyness_worker(guc);
1644 
1645 	/*
1646 	 * Before parking, we should sample engine busyness stats if we need to.
1647 	 * We can skip it if we are less than half a ping from the last time we
1648 	 * sampled the busyness stats.
1649 	 */
1650 	if (guc->timestamp.last_stat_jiffies &&
1651 	    !time_after(jiffies, guc->timestamp.last_stat_jiffies +
1652 			(guc->timestamp.ping_delay / 2)))
1653 		return;
1654 
1655 	__update_guc_busyness_stats(guc);
1656 }
1657 
intel_guc_busyness_unpark(struct intel_gt * gt)1658 void intel_guc_busyness_unpark(struct intel_gt *gt)
1659 {
1660 	struct intel_guc *guc = gt_to_guc(gt);
1661 	unsigned long flags;
1662 	ktime_t unused;
1663 
1664 	if (!guc_submission_initialized(guc))
1665 		return;
1666 
1667 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1668 	guc_update_pm_timestamp(guc, &unused);
1669 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1670 	guc_enable_busyness_worker(guc);
1671 }
1672 
1673 static inline bool
submission_disabled(struct intel_guc * guc)1674 submission_disabled(struct intel_guc *guc)
1675 {
1676 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1677 
1678 	return unlikely(!sched_engine ||
1679 			!__tasklet_is_enabled(&sched_engine->tasklet) ||
1680 			intel_gt_is_wedged(guc_to_gt(guc)));
1681 }
1682 
disable_submission(struct intel_guc * guc)1683 static void disable_submission(struct intel_guc *guc)
1684 {
1685 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1686 
1687 	if (__tasklet_is_enabled(&sched_engine->tasklet)) {
1688 		GEM_BUG_ON(!guc->ct.enabled);
1689 		__tasklet_disable_sync_once(&sched_engine->tasklet);
1690 		sched_engine->tasklet.callback = NULL;
1691 	}
1692 }
1693 
enable_submission(struct intel_guc * guc)1694 static void enable_submission(struct intel_guc *guc)
1695 {
1696 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1697 	unsigned long flags;
1698 
1699 	spin_lock_irqsave(&guc->sched_engine->lock, flags);
1700 	sched_engine->tasklet.callback = guc_submission_tasklet;
1701 	wmb();	/* Make sure callback visible */
1702 	if (!__tasklet_is_enabled(&sched_engine->tasklet) &&
1703 	    __tasklet_enable(&sched_engine->tasklet)) {
1704 		GEM_BUG_ON(!guc->ct.enabled);
1705 
1706 		/* And kick in case we missed a new request submission. */
1707 		tasklet_hi_schedule(&sched_engine->tasklet);
1708 	}
1709 	spin_unlock_irqrestore(&guc->sched_engine->lock, flags);
1710 }
1711 
guc_flush_submissions(struct intel_guc * guc)1712 static void guc_flush_submissions(struct intel_guc *guc)
1713 {
1714 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1715 	unsigned long flags;
1716 
1717 	spin_lock_irqsave(&sched_engine->lock, flags);
1718 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1719 }
1720 
intel_guc_submission_flush_work(struct intel_guc * guc)1721 void intel_guc_submission_flush_work(struct intel_guc *guc)
1722 {
1723 	flush_work(&guc->submission_state.destroyed_worker);
1724 }
1725 
1726 static void guc_flush_destroyed_contexts(struct intel_guc *guc);
1727 
intel_guc_submission_reset_prepare(struct intel_guc * guc)1728 void intel_guc_submission_reset_prepare(struct intel_guc *guc)
1729 {
1730 	if (unlikely(!guc_submission_initialized(guc))) {
1731 		/* Reset called during driver load? GuC not yet initialised! */
1732 		return;
1733 	}
1734 
1735 	intel_gt_park_heartbeats(guc_to_gt(guc));
1736 	disable_submission(guc);
1737 	guc->interrupts.disable(guc);
1738 	__reset_guc_busyness_stats(guc);
1739 
1740 	/* Flush IRQ handler */
1741 	spin_lock_irq(guc_to_gt(guc)->irq_lock);
1742 	spin_unlock_irq(guc_to_gt(guc)->irq_lock);
1743 
1744 	/* Flush tasklet */
1745 	tasklet_disable(&guc->ct.receive_tasklet);
1746 	tasklet_enable(&guc->ct.receive_tasklet);
1747 
1748 	guc_flush_submissions(guc);
1749 	guc_flush_destroyed_contexts(guc);
1750 	flush_work(&guc->ct.requests.worker);
1751 
1752 	scrub_guc_desc_for_outstanding_g2h(guc);
1753 }
1754 
1755 static struct intel_engine_cs *
guc_virtual_get_sibling(struct intel_engine_cs * ve,unsigned int sibling)1756 guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling)
1757 {
1758 	struct intel_engine_cs *engine;
1759 	intel_engine_mask_t tmp, mask = ve->mask;
1760 	unsigned int num_siblings = 0;
1761 
1762 	for_each_engine_masked(engine, ve->gt, mask, tmp)
1763 		if (num_siblings++ == sibling)
1764 			return engine;
1765 
1766 	return NULL;
1767 }
1768 
1769 static inline struct intel_engine_cs *
__context_to_physical_engine(struct intel_context * ce)1770 __context_to_physical_engine(struct intel_context *ce)
1771 {
1772 	struct intel_engine_cs *engine = ce->engine;
1773 
1774 	if (intel_engine_is_virtual(engine))
1775 		engine = guc_virtual_get_sibling(engine, 0);
1776 
1777 	return engine;
1778 }
1779 
guc_reset_state(struct intel_context * ce,u32 head,bool scrub)1780 static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub)
1781 {
1782 	struct intel_engine_cs *engine = __context_to_physical_engine(ce);
1783 
1784 	if (!intel_context_is_schedulable(ce))
1785 		return;
1786 
1787 	GEM_BUG_ON(!intel_context_is_pinned(ce));
1788 
1789 	/*
1790 	 * We want a simple context + ring to execute the breadcrumb update.
1791 	 * We cannot rely on the context being intact across the GPU hang,
1792 	 * so clear it and rebuild just what we need for the breadcrumb.
1793 	 * All pending requests for this context will be zapped, and any
1794 	 * future request will be after userspace has had the opportunity
1795 	 * to recreate its own state.
1796 	 */
1797 	if (scrub)
1798 		lrc_init_regs(ce, engine, true);
1799 
1800 	/* Rerun the request; its payload has been neutered (if guilty). */
1801 	lrc_update_regs(ce, engine, head);
1802 }
1803 
guc_engine_reset_prepare(struct intel_engine_cs * engine)1804 static void guc_engine_reset_prepare(struct intel_engine_cs *engine)
1805 {
1806 	/*
1807 	 * Wa_22011802037: In addition to stopping the cs, we need
1808 	 * to wait for any pending mi force wakeups
1809 	 */
1810 	if (intel_engine_reset_needs_wa_22011802037(engine->gt)) {
1811 		intel_engine_stop_cs(engine);
1812 		intel_engine_wait_for_pending_mi_fw(engine);
1813 	}
1814 }
1815 
guc_reset_nop(struct intel_engine_cs * engine)1816 static void guc_reset_nop(struct intel_engine_cs *engine)
1817 {
1818 }
1819 
guc_rewind_nop(struct intel_engine_cs * engine,bool stalled)1820 static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled)
1821 {
1822 }
1823 
1824 static void
__unwind_incomplete_requests(struct intel_context * ce)1825 __unwind_incomplete_requests(struct intel_context *ce)
1826 {
1827 	struct i915_request *rq, *rn;
1828 	struct list_head *pl;
1829 	int prio = I915_PRIORITY_INVALID;
1830 	struct i915_sched_engine * const sched_engine =
1831 		ce->engine->sched_engine;
1832 	unsigned long flags;
1833 
1834 	spin_lock_irqsave(&sched_engine->lock, flags);
1835 	spin_lock(&ce->guc_state.lock);
1836 	list_for_each_entry_safe_reverse(rq, rn,
1837 					 &ce->guc_state.requests,
1838 					 sched.link) {
1839 		if (i915_request_completed(rq))
1840 			continue;
1841 
1842 		list_del_init(&rq->sched.link);
1843 		__i915_request_unsubmit(rq);
1844 
1845 		/* Push the request back into the queue for later resubmission. */
1846 		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
1847 		if (rq_prio(rq) != prio) {
1848 			prio = rq_prio(rq);
1849 			pl = i915_sched_lookup_priolist(sched_engine, prio);
1850 		}
1851 		GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine));
1852 
1853 		list_add(&rq->sched.link, pl);
1854 		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1855 	}
1856 	spin_unlock(&ce->guc_state.lock);
1857 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1858 }
1859 
__guc_reset_context(struct intel_context * ce,intel_engine_mask_t stalled)1860 static void __guc_reset_context(struct intel_context *ce, intel_engine_mask_t stalled)
1861 {
1862 	bool guilty;
1863 	struct i915_request *rq;
1864 	unsigned long flags;
1865 	u32 head;
1866 	int i, number_children = ce->parallel.number_children;
1867 	struct intel_context *parent = ce;
1868 
1869 	GEM_BUG_ON(intel_context_is_child(ce));
1870 
1871 	intel_context_get(ce);
1872 
1873 	/*
1874 	 * GuC will implicitly mark the context as non-schedulable when it sends
1875 	 * the reset notification. Make sure our state reflects this change. The
1876 	 * context will be marked enabled on resubmission.
1877 	 */
1878 	spin_lock_irqsave(&ce->guc_state.lock, flags);
1879 	clr_context_enabled(ce);
1880 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
1881 
1882 	/*
1883 	 * For each context in the relationship find the hanging request
1884 	 * resetting each context / request as needed
1885 	 */
1886 	for (i = 0; i < number_children + 1; ++i) {
1887 		if (!intel_context_is_pinned(ce))
1888 			goto next_context;
1889 
1890 		guilty = false;
1891 		rq = intel_context_get_active_request(ce);
1892 		if (!rq) {
1893 			head = ce->ring->tail;
1894 			goto out_replay;
1895 		}
1896 
1897 		if (i915_request_started(rq))
1898 			guilty = stalled & ce->engine->mask;
1899 
1900 		GEM_BUG_ON(i915_active_is_idle(&ce->active));
1901 		head = intel_ring_wrap(ce->ring, rq->head);
1902 
1903 		__i915_request_reset(rq, guilty);
1904 		i915_request_put(rq);
1905 out_replay:
1906 		guc_reset_state(ce, head, guilty);
1907 next_context:
1908 		if (i != number_children)
1909 			ce = list_next_entry(ce, parallel.child_link);
1910 	}
1911 
1912 	__unwind_incomplete_requests(parent);
1913 	intel_context_put(parent);
1914 }
1915 
wake_up_all_tlb_invalidate(struct intel_guc * guc)1916 void wake_up_all_tlb_invalidate(struct intel_guc *guc)
1917 {
1918 	struct intel_guc_tlb_wait *wait;
1919 	unsigned long i;
1920 
1921 	if (!intel_guc_tlb_invalidation_is_available(guc))
1922 		return;
1923 
1924 	xa_lock_irq(&guc->tlb_lookup);
1925 	xa_for_each(&guc->tlb_lookup, i, wait)
1926 		wake_up(&wait->wq);
1927 	xa_unlock_irq(&guc->tlb_lookup);
1928 }
1929 
intel_guc_submission_reset(struct intel_guc * guc,intel_engine_mask_t stalled)1930 void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled)
1931 {
1932 	struct intel_context *ce;
1933 	unsigned long index;
1934 	unsigned long flags;
1935 
1936 	if (unlikely(!guc_submission_initialized(guc))) {
1937 		/* Reset called during driver load? GuC not yet initialised! */
1938 		return;
1939 	}
1940 
1941 	xa_lock_irqsave(&guc->context_lookup, flags);
1942 	xa_for_each(&guc->context_lookup, index, ce) {
1943 		if (!kref_get_unless_zero(&ce->ref))
1944 			continue;
1945 
1946 		xa_unlock(&guc->context_lookup);
1947 
1948 		if (intel_context_is_pinned(ce) &&
1949 		    !intel_context_is_child(ce))
1950 			__guc_reset_context(ce, stalled);
1951 
1952 		intel_context_put(ce);
1953 
1954 		xa_lock(&guc->context_lookup);
1955 	}
1956 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1957 
1958 	/* GuC is blown away, drop all references to contexts */
1959 	xa_destroy(&guc->context_lookup);
1960 }
1961 
guc_cancel_context_requests(struct intel_context * ce)1962 static void guc_cancel_context_requests(struct intel_context *ce)
1963 {
1964 	struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine;
1965 	struct i915_request *rq;
1966 	unsigned long flags;
1967 
1968 	/* Mark all executing requests as skipped. */
1969 	spin_lock_irqsave(&sched_engine->lock, flags);
1970 	spin_lock(&ce->guc_state.lock);
1971 	list_for_each_entry(rq, &ce->guc_state.requests, sched.link)
1972 		i915_request_put(i915_request_mark_eio(rq));
1973 	spin_unlock(&ce->guc_state.lock);
1974 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1975 }
1976 
1977 static void
guc_cancel_sched_engine_requests(struct i915_sched_engine * sched_engine)1978 guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine)
1979 {
1980 	struct i915_request *rq, *rn;
1981 	struct rb_node *rb;
1982 	unsigned long flags;
1983 
1984 	/* Can be called during boot if GuC fails to load */
1985 	if (!sched_engine)
1986 		return;
1987 
1988 	/*
1989 	 * Before we call engine->cancel_requests(), we should have exclusive
1990 	 * access to the submission state. This is arranged for us by the
1991 	 * caller disabling the interrupt generation, the tasklet and other
1992 	 * threads that may then access the same state, giving us a free hand
1993 	 * to reset state. However, we still need to let lockdep be aware that
1994 	 * we know this state may be accessed in hardirq context, so we
1995 	 * disable the irq around this manipulation and we want to keep
1996 	 * the spinlock focused on its duties and not accidentally conflate
1997 	 * coverage to the submission's irq state. (Similarly, although we
1998 	 * shouldn't need to disable irq around the manipulation of the
1999 	 * submission's irq state, we also wish to remind ourselves that
2000 	 * it is irq state.)
2001 	 */
2002 	spin_lock_irqsave(&sched_engine->lock, flags);
2003 
2004 	/* Flush the queued requests to the timeline list (for retiring). */
2005 	while ((rb = rb_first_cached(&sched_engine->queue))) {
2006 		struct i915_priolist *p = to_priolist(rb);
2007 
2008 		priolist_for_each_request_consume(rq, rn, p) {
2009 			list_del_init(&rq->sched.link);
2010 
2011 			__i915_request_submit(rq);
2012 
2013 			i915_request_put(i915_request_mark_eio(rq));
2014 		}
2015 
2016 		rb_erase_cached(&p->node, &sched_engine->queue);
2017 		i915_priolist_free(p);
2018 	}
2019 
2020 	/* Remaining _unready_ requests will be nop'ed when submitted */
2021 
2022 	sched_engine->queue_priority_hint = INT_MIN;
2023 	sched_engine->queue = RB_ROOT_CACHED;
2024 
2025 	spin_unlock_irqrestore(&sched_engine->lock, flags);
2026 }
2027 
intel_guc_submission_cancel_requests(struct intel_guc * guc)2028 void intel_guc_submission_cancel_requests(struct intel_guc *guc)
2029 {
2030 	struct intel_context *ce;
2031 	unsigned long index;
2032 	unsigned long flags;
2033 
2034 	xa_lock_irqsave(&guc->context_lookup, flags);
2035 	xa_for_each(&guc->context_lookup, index, ce) {
2036 		if (!kref_get_unless_zero(&ce->ref))
2037 			continue;
2038 
2039 		xa_unlock(&guc->context_lookup);
2040 
2041 		if (intel_context_is_pinned(ce) &&
2042 		    !intel_context_is_child(ce))
2043 			guc_cancel_context_requests(ce);
2044 
2045 		intel_context_put(ce);
2046 
2047 		xa_lock(&guc->context_lookup);
2048 	}
2049 	xa_unlock_irqrestore(&guc->context_lookup, flags);
2050 
2051 	guc_cancel_sched_engine_requests(guc->sched_engine);
2052 
2053 	/* GuC is blown away, drop all references to contexts */
2054 	xa_destroy(&guc->context_lookup);
2055 
2056 	/*
2057 	 * Wedged GT won't respond to any TLB invalidation request. Simply
2058 	 * release all the blocked waiters.
2059 	 */
2060 	wake_up_all_tlb_invalidate(guc);
2061 }
2062 
intel_guc_submission_reset_finish(struct intel_guc * guc)2063 void intel_guc_submission_reset_finish(struct intel_guc *guc)
2064 {
2065 	int outstanding;
2066 
2067 	/* Reset called during driver load or during wedge? */
2068 	if (unlikely(!guc_submission_initialized(guc) ||
2069 		     !intel_guc_is_fw_running(guc) ||
2070 		     intel_gt_is_wedged(guc_to_gt(guc)))) {
2071 		return;
2072 	}
2073 
2074 	/*
2075 	 * Technically possible for either of these values to be non-zero here,
2076 	 * but very unlikely + harmless. Regardless let's add an error so we can
2077 	 * see in CI if this happens frequently / a precursor to taking down the
2078 	 * machine.
2079 	 */
2080 	outstanding = atomic_read(&guc->outstanding_submission_g2h);
2081 	if (outstanding)
2082 		guc_err(guc, "Unexpected outstanding GuC to Host response(s) in reset finish: %d\n",
2083 			outstanding);
2084 	atomic_set(&guc->outstanding_submission_g2h, 0);
2085 
2086 	intel_guc_global_policies_update(guc);
2087 	enable_submission(guc);
2088 	intel_gt_unpark_heartbeats(guc_to_gt(guc));
2089 
2090 	/*
2091 	 * The full GT reset will have cleared the TLB caches and flushed the
2092 	 * G2H message queue; we can release all the blocked waiters.
2093 	 */
2094 	wake_up_all_tlb_invalidate(guc);
2095 }
2096 
2097 static void destroyed_worker_func(struct work_struct *w);
2098 static void reset_fail_worker_func(struct work_struct *w);
2099 
intel_guc_tlb_invalidation_is_available(struct intel_guc * guc)2100 bool intel_guc_tlb_invalidation_is_available(struct intel_guc *guc)
2101 {
2102 	return HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915) &&
2103 		intel_guc_is_ready(guc);
2104 }
2105 
init_tlb_lookup(struct intel_guc * guc)2106 static int init_tlb_lookup(struct intel_guc *guc)
2107 {
2108 	struct intel_guc_tlb_wait *wait;
2109 	int err;
2110 
2111 	if (!HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915))
2112 		return 0;
2113 
2114 	xa_init_flags(&guc->tlb_lookup, XA_FLAGS_ALLOC);
2115 
2116 	wait = kzalloc(sizeof(*wait), GFP_KERNEL);
2117 	if (!wait)
2118 		return -ENOMEM;
2119 
2120 	init_waitqueue_head(&wait->wq);
2121 
2122 	/* Preallocate a shared id for use under memory pressure. */
2123 	err = xa_alloc_cyclic_irq(&guc->tlb_lookup, &guc->serial_slot, wait,
2124 				  xa_limit_32b, &guc->next_seqno, GFP_KERNEL);
2125 	if (err < 0) {
2126 		kfree(wait);
2127 		return err;
2128 	}
2129 
2130 	return 0;
2131 }
2132 
fini_tlb_lookup(struct intel_guc * guc)2133 static void fini_tlb_lookup(struct intel_guc *guc)
2134 {
2135 	struct intel_guc_tlb_wait *wait;
2136 
2137 	if (!HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915))
2138 		return;
2139 
2140 	wait = xa_load(&guc->tlb_lookup, guc->serial_slot);
2141 	if (wait && wait->busy)
2142 		guc_err(guc, "Unexpected busy item in tlb_lookup on fini\n");
2143 	kfree(wait);
2144 
2145 	xa_destroy(&guc->tlb_lookup);
2146 }
2147 
2148 /*
2149  * Set up the memory resources to be shared with the GuC (via the GGTT)
2150  * at firmware loading time.
2151  */
intel_guc_submission_init(struct intel_guc * guc)2152 int intel_guc_submission_init(struct intel_guc *guc)
2153 {
2154 	struct intel_gt *gt = guc_to_gt(guc);
2155 	int ret;
2156 
2157 	if (guc->submission_initialized)
2158 		return 0;
2159 
2160 	if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 0, 0)) {
2161 		ret = guc_lrc_desc_pool_create_v69(guc);
2162 		if (ret)
2163 			return ret;
2164 	}
2165 
2166 	ret = init_tlb_lookup(guc);
2167 	if (ret)
2168 		goto destroy_pool;
2169 
2170 	guc->submission_state.guc_ids_bitmap =
2171 		bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL);
2172 	if (!guc->submission_state.guc_ids_bitmap) {
2173 		ret = -ENOMEM;
2174 		goto destroy_tlb;
2175 	}
2176 
2177 	guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ;
2178 	guc->timestamp.shift = gpm_timestamp_shift(gt);
2179 	guc->submission_initialized = true;
2180 
2181 	return 0;
2182 
2183 destroy_tlb:
2184 	fini_tlb_lookup(guc);
2185 destroy_pool:
2186 	guc_lrc_desc_pool_destroy_v69(guc);
2187 	return ret;
2188 }
2189 
intel_guc_submission_fini(struct intel_guc * guc)2190 void intel_guc_submission_fini(struct intel_guc *guc)
2191 {
2192 	if (!guc->submission_initialized)
2193 		return;
2194 
2195 	guc_fini_engine_stats(guc);
2196 	guc_flush_destroyed_contexts(guc);
2197 	guc_lrc_desc_pool_destroy_v69(guc);
2198 	i915_sched_engine_put(guc->sched_engine);
2199 	bitmap_free(guc->submission_state.guc_ids_bitmap);
2200 	fini_tlb_lookup(guc);
2201 	guc->submission_initialized = false;
2202 }
2203 
queue_request(struct i915_sched_engine * sched_engine,struct i915_request * rq,int prio)2204 static inline void queue_request(struct i915_sched_engine *sched_engine,
2205 				 struct i915_request *rq,
2206 				 int prio)
2207 {
2208 	GEM_BUG_ON(!list_empty(&rq->sched.link));
2209 	list_add_tail(&rq->sched.link,
2210 		      i915_sched_lookup_priolist(sched_engine, prio));
2211 	set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2212 	tasklet_hi_schedule(&sched_engine->tasklet);
2213 }
2214 
guc_bypass_tasklet_submit(struct intel_guc * guc,struct i915_request * rq)2215 static int guc_bypass_tasklet_submit(struct intel_guc *guc,
2216 				     struct i915_request *rq)
2217 {
2218 	int ret = 0;
2219 
2220 	__i915_request_submit(rq);
2221 
2222 	trace_i915_request_in(rq, 0);
2223 
2224 	if (is_multi_lrc_rq(rq)) {
2225 		if (multi_lrc_submit(rq)) {
2226 			ret = guc_wq_item_append(guc, rq);
2227 			if (!ret)
2228 				ret = guc_add_request(guc, rq);
2229 		}
2230 	} else {
2231 		guc_set_lrc_tail(rq);
2232 		ret = guc_add_request(guc, rq);
2233 	}
2234 
2235 	if (unlikely(ret == -EPIPE))
2236 		disable_submission(guc);
2237 
2238 	return ret;
2239 }
2240 
need_tasklet(struct intel_guc * guc,struct i915_request * rq)2241 static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq)
2242 {
2243 	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
2244 	struct intel_context *ce = request_to_scheduling_context(rq);
2245 
2246 	return submission_disabled(guc) || guc->stalled_request ||
2247 		!i915_sched_engine_is_empty(sched_engine) ||
2248 		!ctx_id_mapped(guc, ce->guc_id.id);
2249 }
2250 
guc_submit_request(struct i915_request * rq)2251 static void guc_submit_request(struct i915_request *rq)
2252 {
2253 	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
2254 	struct intel_guc *guc = gt_to_guc(rq->engine->gt);
2255 	unsigned long flags;
2256 
2257 	/* Will be called from irq-context when using foreign fences. */
2258 	spin_lock_irqsave(&sched_engine->lock, flags);
2259 
2260 	if (need_tasklet(guc, rq))
2261 		queue_request(sched_engine, rq, rq_prio(rq));
2262 	else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY)
2263 		tasklet_hi_schedule(&sched_engine->tasklet);
2264 
2265 	spin_unlock_irqrestore(&sched_engine->lock, flags);
2266 }
2267 
new_guc_id(struct intel_guc * guc,struct intel_context * ce)2268 static int new_guc_id(struct intel_guc *guc, struct intel_context *ce)
2269 {
2270 	int ret;
2271 
2272 	GEM_BUG_ON(intel_context_is_child(ce));
2273 
2274 	if (intel_context_is_parent(ce))
2275 		ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap,
2276 					      NUMBER_MULTI_LRC_GUC_ID(guc),
2277 					      order_base_2(ce->parallel.number_children
2278 							   + 1));
2279 	else
2280 		ret = ida_alloc_range(&guc->submission_state.guc_ids,
2281 				      NUMBER_MULTI_LRC_GUC_ID(guc),
2282 				      guc->submission_state.num_guc_ids - 1,
2283 				      GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
2284 	if (unlikely(ret < 0))
2285 		return ret;
2286 
2287 	if (!intel_context_is_parent(ce))
2288 		++guc->submission_state.guc_ids_in_use;
2289 
2290 	ce->guc_id.id = ret;
2291 	return 0;
2292 }
2293 
__release_guc_id(struct intel_guc * guc,struct intel_context * ce)2294 static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2295 {
2296 	GEM_BUG_ON(intel_context_is_child(ce));
2297 
2298 	if (!context_guc_id_invalid(ce)) {
2299 		if (intel_context_is_parent(ce)) {
2300 			bitmap_release_region(guc->submission_state.guc_ids_bitmap,
2301 					      ce->guc_id.id,
2302 					      order_base_2(ce->parallel.number_children
2303 							   + 1));
2304 		} else {
2305 			--guc->submission_state.guc_ids_in_use;
2306 			ida_free(&guc->submission_state.guc_ids,
2307 				 ce->guc_id.id);
2308 		}
2309 		clr_ctx_id_mapping(guc, ce->guc_id.id);
2310 		set_context_guc_id_invalid(ce);
2311 	}
2312 	if (!list_empty(&ce->guc_id.link))
2313 		list_del_init(&ce->guc_id.link);
2314 }
2315 
release_guc_id(struct intel_guc * guc,struct intel_context * ce)2316 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2317 {
2318 	unsigned long flags;
2319 
2320 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2321 	__release_guc_id(guc, ce);
2322 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2323 }
2324 
steal_guc_id(struct intel_guc * guc,struct intel_context * ce)2325 static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce)
2326 {
2327 	struct intel_context *cn;
2328 
2329 	lockdep_assert_held(&guc->submission_state.lock);
2330 	GEM_BUG_ON(intel_context_is_child(ce));
2331 	GEM_BUG_ON(intel_context_is_parent(ce));
2332 
2333 	if (!list_empty(&guc->submission_state.guc_id_list)) {
2334 		cn = list_first_entry(&guc->submission_state.guc_id_list,
2335 				      struct intel_context,
2336 				      guc_id.link);
2337 
2338 		GEM_BUG_ON(atomic_read(&cn->guc_id.ref));
2339 		GEM_BUG_ON(context_guc_id_invalid(cn));
2340 		GEM_BUG_ON(intel_context_is_child(cn));
2341 		GEM_BUG_ON(intel_context_is_parent(cn));
2342 
2343 		list_del_init(&cn->guc_id.link);
2344 		ce->guc_id.id = cn->guc_id.id;
2345 
2346 		spin_lock(&cn->guc_state.lock);
2347 		clr_context_registered(cn);
2348 		spin_unlock(&cn->guc_state.lock);
2349 
2350 		set_context_guc_id_invalid(cn);
2351 
2352 #ifdef CONFIG_DRM_I915_SELFTEST
2353 		guc->number_guc_id_stolen++;
2354 #endif
2355 
2356 		return 0;
2357 	} else {
2358 		return -EAGAIN;
2359 	}
2360 }
2361 
assign_guc_id(struct intel_guc * guc,struct intel_context * ce)2362 static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce)
2363 {
2364 	int ret;
2365 
2366 	lockdep_assert_held(&guc->submission_state.lock);
2367 	GEM_BUG_ON(intel_context_is_child(ce));
2368 
2369 	ret = new_guc_id(guc, ce);
2370 	if (unlikely(ret < 0)) {
2371 		if (intel_context_is_parent(ce))
2372 			return -ENOSPC;
2373 
2374 		ret = steal_guc_id(guc, ce);
2375 		if (ret < 0)
2376 			return ret;
2377 	}
2378 
2379 	if (intel_context_is_parent(ce)) {
2380 		struct intel_context *child;
2381 		int i = 1;
2382 
2383 		for_each_child(ce, child)
2384 			child->guc_id.id = ce->guc_id.id + i++;
2385 	}
2386 
2387 	return 0;
2388 }
2389 
2390 #define PIN_GUC_ID_TRIES	4
pin_guc_id(struct intel_guc * guc,struct intel_context * ce)2391 static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2392 {
2393 	int ret = 0;
2394 	unsigned long flags, tries = PIN_GUC_ID_TRIES;
2395 
2396 	GEM_BUG_ON(atomic_read(&ce->guc_id.ref));
2397 
2398 try_again:
2399 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2400 
2401 	might_lock(&ce->guc_state.lock);
2402 
2403 	if (context_guc_id_invalid(ce)) {
2404 		ret = assign_guc_id(guc, ce);
2405 		if (ret)
2406 			goto out_unlock;
2407 		ret = 1;	/* Indidcates newly assigned guc_id */
2408 	}
2409 	if (!list_empty(&ce->guc_id.link))
2410 		list_del_init(&ce->guc_id.link);
2411 	atomic_inc(&ce->guc_id.ref);
2412 
2413 out_unlock:
2414 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2415 
2416 	/*
2417 	 * -EAGAIN indicates no guc_id are available, let's retire any
2418 	 * outstanding requests to see if that frees up a guc_id. If the first
2419 	 * retire didn't help, insert a sleep with the timeslice duration before
2420 	 * attempting to retire more requests. Double the sleep period each
2421 	 * subsequent pass before finally giving up. The sleep period has max of
2422 	 * 100ms and minimum of 1ms.
2423 	 */
2424 	if (ret == -EAGAIN && --tries) {
2425 		if (PIN_GUC_ID_TRIES - tries > 1) {
2426 			unsigned int timeslice_shifted =
2427 				ce->engine->props.timeslice_duration_ms <<
2428 				(PIN_GUC_ID_TRIES - tries - 2);
2429 			unsigned int max = min_t(unsigned int, 100,
2430 						 timeslice_shifted);
2431 
2432 			msleep(max_t(unsigned int, max, 1));
2433 		}
2434 		intel_gt_retire_requests(guc_to_gt(guc));
2435 		goto try_again;
2436 	}
2437 
2438 	return ret;
2439 }
2440 
unpin_guc_id(struct intel_guc * guc,struct intel_context * ce)2441 static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2442 {
2443 	unsigned long flags;
2444 
2445 	GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0);
2446 	GEM_BUG_ON(intel_context_is_child(ce));
2447 
2448 	if (unlikely(context_guc_id_invalid(ce) ||
2449 		     intel_context_is_parent(ce)))
2450 		return;
2451 
2452 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2453 	if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) &&
2454 	    !atomic_read(&ce->guc_id.ref))
2455 		list_add_tail(&ce->guc_id.link,
2456 			      &guc->submission_state.guc_id_list);
2457 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2458 }
2459 
__guc_action_register_multi_lrc_v69(struct intel_guc * guc,struct intel_context * ce,u32 guc_id,u32 offset,bool loop)2460 static int __guc_action_register_multi_lrc_v69(struct intel_guc *guc,
2461 					       struct intel_context *ce,
2462 					       u32 guc_id,
2463 					       u32 offset,
2464 					       bool loop)
2465 {
2466 	struct intel_context *child;
2467 	u32 action[4 + MAX_ENGINE_INSTANCE];
2468 	int len = 0;
2469 
2470 	GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2471 
2472 	action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2473 	action[len++] = guc_id;
2474 	action[len++] = ce->parallel.number_children + 1;
2475 	action[len++] = offset;
2476 	for_each_child(ce, child) {
2477 		offset += sizeof(struct guc_lrc_desc_v69);
2478 		action[len++] = offset;
2479 	}
2480 
2481 	return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2482 }
2483 
__guc_action_register_multi_lrc_v70(struct intel_guc * guc,struct intel_context * ce,struct guc_ctxt_registration_info * info,bool loop)2484 static int __guc_action_register_multi_lrc_v70(struct intel_guc *guc,
2485 					       struct intel_context *ce,
2486 					       struct guc_ctxt_registration_info *info,
2487 					       bool loop)
2488 {
2489 	struct intel_context *child;
2490 	u32 action[13 + (MAX_ENGINE_INSTANCE * 2)];
2491 	int len = 0;
2492 	u32 next_id;
2493 
2494 	GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2495 
2496 	action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2497 	action[len++] = info->flags;
2498 	action[len++] = info->context_idx;
2499 	action[len++] = info->engine_class;
2500 	action[len++] = info->engine_submit_mask;
2501 	action[len++] = info->wq_desc_lo;
2502 	action[len++] = info->wq_desc_hi;
2503 	action[len++] = info->wq_base_lo;
2504 	action[len++] = info->wq_base_hi;
2505 	action[len++] = info->wq_size;
2506 	action[len++] = ce->parallel.number_children + 1;
2507 	action[len++] = info->hwlrca_lo;
2508 	action[len++] = info->hwlrca_hi;
2509 
2510 	next_id = info->context_idx + 1;
2511 	for_each_child(ce, child) {
2512 		GEM_BUG_ON(next_id++ != child->guc_id.id);
2513 
2514 		/*
2515 		 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2516 		 * only supports 32 bit currently.
2517 		 */
2518 		action[len++] = lower_32_bits(child->lrc.lrca);
2519 		action[len++] = upper_32_bits(child->lrc.lrca);
2520 	}
2521 
2522 	GEM_BUG_ON(len > ARRAY_SIZE(action));
2523 
2524 	return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2525 }
2526 
__guc_action_register_context_v69(struct intel_guc * guc,u32 guc_id,u32 offset,bool loop)2527 static int __guc_action_register_context_v69(struct intel_guc *guc,
2528 					     u32 guc_id,
2529 					     u32 offset,
2530 					     bool loop)
2531 {
2532 	u32 action[] = {
2533 		INTEL_GUC_ACTION_REGISTER_CONTEXT,
2534 		guc_id,
2535 		offset,
2536 	};
2537 
2538 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2539 					     0, loop);
2540 }
2541 
__guc_action_register_context_v70(struct intel_guc * guc,struct guc_ctxt_registration_info * info,bool loop)2542 static int __guc_action_register_context_v70(struct intel_guc *guc,
2543 					     struct guc_ctxt_registration_info *info,
2544 					     bool loop)
2545 {
2546 	u32 action[] = {
2547 		INTEL_GUC_ACTION_REGISTER_CONTEXT,
2548 		info->flags,
2549 		info->context_idx,
2550 		info->engine_class,
2551 		info->engine_submit_mask,
2552 		info->wq_desc_lo,
2553 		info->wq_desc_hi,
2554 		info->wq_base_lo,
2555 		info->wq_base_hi,
2556 		info->wq_size,
2557 		info->hwlrca_lo,
2558 		info->hwlrca_hi,
2559 	};
2560 
2561 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2562 					     0, loop);
2563 }
2564 
2565 static void prepare_context_registration_info_v69(struct intel_context *ce);
2566 static void prepare_context_registration_info_v70(struct intel_context *ce,
2567 						  struct guc_ctxt_registration_info *info);
2568 
2569 static int
register_context_v69(struct intel_guc * guc,struct intel_context * ce,bool loop)2570 register_context_v69(struct intel_guc *guc, struct intel_context *ce, bool loop)
2571 {
2572 	u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool_v69) +
2573 		ce->guc_id.id * sizeof(struct guc_lrc_desc_v69);
2574 
2575 	prepare_context_registration_info_v69(ce);
2576 
2577 	if (intel_context_is_parent(ce))
2578 		return __guc_action_register_multi_lrc_v69(guc, ce, ce->guc_id.id,
2579 							   offset, loop);
2580 	else
2581 		return __guc_action_register_context_v69(guc, ce->guc_id.id,
2582 							 offset, loop);
2583 }
2584 
2585 static int
register_context_v70(struct intel_guc * guc,struct intel_context * ce,bool loop)2586 register_context_v70(struct intel_guc *guc, struct intel_context *ce, bool loop)
2587 {
2588 	struct guc_ctxt_registration_info info;
2589 
2590 	prepare_context_registration_info_v70(ce, &info);
2591 
2592 	if (intel_context_is_parent(ce))
2593 		return __guc_action_register_multi_lrc_v70(guc, ce, &info, loop);
2594 	else
2595 		return __guc_action_register_context_v70(guc, &info, loop);
2596 }
2597 
register_context(struct intel_context * ce,bool loop)2598 static int register_context(struct intel_context *ce, bool loop)
2599 {
2600 	struct intel_guc *guc = ce_to_guc(ce);
2601 	int ret;
2602 
2603 	GEM_BUG_ON(intel_context_is_child(ce));
2604 	trace_intel_context_register(ce);
2605 
2606 	if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0))
2607 		ret = register_context_v70(guc, ce, loop);
2608 	else
2609 		ret = register_context_v69(guc, ce, loop);
2610 
2611 	if (likely(!ret)) {
2612 		unsigned long flags;
2613 
2614 		spin_lock_irqsave(&ce->guc_state.lock, flags);
2615 		set_context_registered(ce);
2616 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2617 
2618 		if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0))
2619 			guc_context_policy_init_v70(ce, loop);
2620 	}
2621 
2622 	return ret;
2623 }
2624 
__guc_action_deregister_context(struct intel_guc * guc,u32 guc_id)2625 static int __guc_action_deregister_context(struct intel_guc *guc,
2626 					   u32 guc_id)
2627 {
2628 	u32 action[] = {
2629 		INTEL_GUC_ACTION_DEREGISTER_CONTEXT,
2630 		guc_id,
2631 	};
2632 
2633 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2634 					     G2H_LEN_DW_DEREGISTER_CONTEXT,
2635 					     true);
2636 }
2637 
deregister_context(struct intel_context * ce,u32 guc_id)2638 static int deregister_context(struct intel_context *ce, u32 guc_id)
2639 {
2640 	struct intel_guc *guc = ce_to_guc(ce);
2641 
2642 	GEM_BUG_ON(intel_context_is_child(ce));
2643 	trace_intel_context_deregister(ce);
2644 
2645 	return __guc_action_deregister_context(guc, guc_id);
2646 }
2647 
clear_children_join_go_memory(struct intel_context * ce)2648 static inline void clear_children_join_go_memory(struct intel_context *ce)
2649 {
2650 	struct parent_scratch *ps = __get_parent_scratch(ce);
2651 	int i;
2652 
2653 	ps->go.semaphore = 0;
2654 	for (i = 0; i < ce->parallel.number_children + 1; ++i)
2655 		ps->join[i].semaphore = 0;
2656 }
2657 
get_children_go_value(struct intel_context * ce)2658 static inline u32 get_children_go_value(struct intel_context *ce)
2659 {
2660 	return __get_parent_scratch(ce)->go.semaphore;
2661 }
2662 
get_children_join_value(struct intel_context * ce,u8 child_index)2663 static inline u32 get_children_join_value(struct intel_context *ce,
2664 					  u8 child_index)
2665 {
2666 	return __get_parent_scratch(ce)->join[child_index].semaphore;
2667 }
2668 
2669 struct context_policy {
2670 	u32 count;
2671 	struct guc_update_context_policy h2g;
2672 };
2673 
__guc_context_policy_action_size(struct context_policy * policy)2674 static u32 __guc_context_policy_action_size(struct context_policy *policy)
2675 {
2676 	size_t bytes = sizeof(policy->h2g.header) +
2677 		       (sizeof(policy->h2g.klv[0]) * policy->count);
2678 
2679 	return bytes / sizeof(u32);
2680 }
2681 
__guc_context_policy_start_klv(struct context_policy * policy,u16 guc_id)2682 static void __guc_context_policy_start_klv(struct context_policy *policy, u16 guc_id)
2683 {
2684 	policy->h2g.header.action = INTEL_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES;
2685 	policy->h2g.header.ctx_id = guc_id;
2686 	policy->count = 0;
2687 }
2688 
2689 #define MAKE_CONTEXT_POLICY_ADD(func, id) \
2690 static void __guc_context_policy_add_##func(struct context_policy *policy, u32 data) \
2691 { \
2692 	GEM_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \
2693 	policy->h2g.klv[policy->count].kl = \
2694 		FIELD_PREP(GUC_KLV_0_KEY, GUC_CONTEXT_POLICIES_KLV_ID_##id) | \
2695 		FIELD_PREP(GUC_KLV_0_LEN, 1); \
2696 	policy->h2g.klv[policy->count].value = data; \
2697 	policy->count++; \
2698 }
2699 
MAKE_CONTEXT_POLICY_ADD(execution_quantum,EXECUTION_QUANTUM)2700 MAKE_CONTEXT_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM)
2701 MAKE_CONTEXT_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT)
2702 MAKE_CONTEXT_POLICY_ADD(priority, SCHEDULING_PRIORITY)
2703 MAKE_CONTEXT_POLICY_ADD(preempt_to_idle, PREEMPT_TO_IDLE_ON_QUANTUM_EXPIRY)
2704 MAKE_CONTEXT_POLICY_ADD(slpc_ctx_freq_req, SLPM_GT_FREQUENCY)
2705 
2706 #undef MAKE_CONTEXT_POLICY_ADD
2707 
2708 static int __guc_context_set_context_policies(struct intel_guc *guc,
2709 					      struct context_policy *policy,
2710 					      bool loop)
2711 {
2712 	return guc_submission_send_busy_loop(guc, (u32 *)&policy->h2g,
2713 					__guc_context_policy_action_size(policy),
2714 					0, loop);
2715 }
2716 
guc_context_policy_init_v70(struct intel_context * ce,bool loop)2717 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop)
2718 {
2719 	struct intel_engine_cs *engine = ce->engine;
2720 	struct intel_guc *guc = gt_to_guc(engine->gt);
2721 	struct context_policy policy;
2722 	u32 execution_quantum;
2723 	u32 preemption_timeout;
2724 	u32 slpc_ctx_freq_req = 0;
2725 	unsigned long flags;
2726 	int ret;
2727 
2728 	/* NB: For both of these, zero means disabled. */
2729 	GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000,
2730 				  execution_quantum));
2731 	GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000,
2732 				  preemption_timeout));
2733 	execution_quantum = engine->props.timeslice_duration_ms * 1000;
2734 	preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2735 
2736 	if (ce->flags & BIT(CONTEXT_LOW_LATENCY))
2737 		slpc_ctx_freq_req |= SLPC_CTX_FREQ_REQ_IS_COMPUTE;
2738 
2739 	__guc_context_policy_start_klv(&policy, ce->guc_id.id);
2740 
2741 	__guc_context_policy_add_priority(&policy, ce->guc_state.prio);
2742 	__guc_context_policy_add_execution_quantum(&policy, execution_quantum);
2743 	__guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
2744 	__guc_context_policy_add_slpc_ctx_freq_req(&policy, slpc_ctx_freq_req);
2745 
2746 	if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2747 		__guc_context_policy_add_preempt_to_idle(&policy, 1);
2748 
2749 	ret = __guc_context_set_context_policies(guc, &policy, loop);
2750 
2751 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2752 	if (ret != 0)
2753 		set_context_policy_required(ce);
2754 	else
2755 		clr_context_policy_required(ce);
2756 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2757 
2758 	return ret;
2759 }
2760 
guc_context_policy_init_v69(struct intel_engine_cs * engine,struct guc_lrc_desc_v69 * desc)2761 static void guc_context_policy_init_v69(struct intel_engine_cs *engine,
2762 					struct guc_lrc_desc_v69 *desc)
2763 {
2764 	desc->policy_flags = 0;
2765 
2766 	if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2767 		desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE_V69;
2768 
2769 	/* NB: For both of these, zero means disabled. */
2770 	GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000,
2771 				  desc->execution_quantum));
2772 	GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000,
2773 				  desc->preemption_timeout));
2774 	desc->execution_quantum = engine->props.timeslice_duration_ms * 1000;
2775 	desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2776 }
2777 
map_guc_prio_to_lrc_desc_prio(u8 prio)2778 static u32 map_guc_prio_to_lrc_desc_prio(u8 prio)
2779 {
2780 	/*
2781 	 * this matches the mapping we do in map_i915_prio_to_guc_prio()
2782 	 * (e.g. prio < I915_PRIORITY_NORMAL maps to GUC_CLIENT_PRIORITY_NORMAL)
2783 	 */
2784 	switch (prio) {
2785 	default:
2786 		MISSING_CASE(prio);
2787 		fallthrough;
2788 	case GUC_CLIENT_PRIORITY_KMD_NORMAL:
2789 		return GEN12_CTX_PRIORITY_NORMAL;
2790 	case GUC_CLIENT_PRIORITY_NORMAL:
2791 		return GEN12_CTX_PRIORITY_LOW;
2792 	case GUC_CLIENT_PRIORITY_HIGH:
2793 	case GUC_CLIENT_PRIORITY_KMD_HIGH:
2794 		return GEN12_CTX_PRIORITY_HIGH;
2795 	}
2796 }
2797 
prepare_context_registration_info_v69(struct intel_context * ce)2798 static void prepare_context_registration_info_v69(struct intel_context *ce)
2799 {
2800 	struct intel_engine_cs *engine = ce->engine;
2801 	struct intel_guc *guc = gt_to_guc(engine->gt);
2802 	u32 ctx_id = ce->guc_id.id;
2803 	struct guc_lrc_desc_v69 *desc;
2804 	struct intel_context *child;
2805 
2806 	GEM_BUG_ON(!engine->mask);
2807 
2808 	/*
2809 	 * Ensure LRC + CT vmas are is same region as write barrier is done
2810 	 * based on CT vma region.
2811 	 */
2812 	GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2813 		   i915_gem_object_is_lmem(ce->ring->vma->obj));
2814 
2815 	desc = __get_lrc_desc_v69(guc, ctx_id);
2816 	GEM_BUG_ON(!desc);
2817 	desc->engine_class = engine_class_to_guc_class(engine->class);
2818 	desc->engine_submit_mask = engine->logical_mask;
2819 	desc->hw_context_desc = ce->lrc.lrca;
2820 	desc->priority = ce->guc_state.prio;
2821 	desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2822 	guc_context_policy_init_v69(engine, desc);
2823 
2824 	/*
2825 	 * If context is a parent, we need to register a process descriptor
2826 	 * describing a work queue and register all child contexts.
2827 	 */
2828 	if (intel_context_is_parent(ce)) {
2829 		struct guc_process_desc_v69 *pdesc;
2830 
2831 		ce->parallel.guc.wqi_tail = 0;
2832 		ce->parallel.guc.wqi_head = 0;
2833 
2834 		desc->process_desc = i915_ggtt_offset(ce->state) +
2835 			__get_parent_scratch_offset(ce);
2836 		desc->wq_addr = i915_ggtt_offset(ce->state) +
2837 			__get_wq_offset(ce);
2838 		desc->wq_size = WQ_SIZE;
2839 
2840 		pdesc = __get_process_desc_v69(ce);
2841 		memset(pdesc, 0, sizeof(*(pdesc)));
2842 		pdesc->stage_id = ce->guc_id.id;
2843 		pdesc->wq_base_addr = desc->wq_addr;
2844 		pdesc->wq_size_bytes = desc->wq_size;
2845 		pdesc->wq_status = WQ_STATUS_ACTIVE;
2846 
2847 		ce->parallel.guc.wq_head = &pdesc->head;
2848 		ce->parallel.guc.wq_tail = &pdesc->tail;
2849 		ce->parallel.guc.wq_status = &pdesc->wq_status;
2850 
2851 		for_each_child(ce, child) {
2852 			desc = __get_lrc_desc_v69(guc, child->guc_id.id);
2853 
2854 			desc->engine_class =
2855 				engine_class_to_guc_class(engine->class);
2856 			desc->hw_context_desc = child->lrc.lrca;
2857 			desc->priority = ce->guc_state.prio;
2858 			desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2859 			guc_context_policy_init_v69(engine, desc);
2860 		}
2861 
2862 		clear_children_join_go_memory(ce);
2863 	}
2864 }
2865 
prepare_context_registration_info_v70(struct intel_context * ce,struct guc_ctxt_registration_info * info)2866 static void prepare_context_registration_info_v70(struct intel_context *ce,
2867 						  struct guc_ctxt_registration_info *info)
2868 {
2869 	struct intel_engine_cs *engine = ce->engine;
2870 	struct intel_guc *guc = gt_to_guc(engine->gt);
2871 	u32 ctx_id = ce->guc_id.id;
2872 
2873 	GEM_BUG_ON(!engine->mask);
2874 
2875 	/*
2876 	 * Ensure LRC + CT vmas are is same region as write barrier is done
2877 	 * based on CT vma region.
2878 	 */
2879 	GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2880 		   i915_gem_object_is_lmem(ce->ring->vma->obj));
2881 
2882 	memset(info, 0, sizeof(*info));
2883 	info->context_idx = ctx_id;
2884 	info->engine_class = engine_class_to_guc_class(engine->class);
2885 	info->engine_submit_mask = engine->logical_mask;
2886 	/*
2887 	 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2888 	 * only supports 32 bit currently.
2889 	 */
2890 	info->hwlrca_lo = lower_32_bits(ce->lrc.lrca);
2891 	info->hwlrca_hi = upper_32_bits(ce->lrc.lrca);
2892 	if (engine->flags & I915_ENGINE_HAS_EU_PRIORITY)
2893 		info->hwlrca_lo |= map_guc_prio_to_lrc_desc_prio(ce->guc_state.prio);
2894 	info->flags = CONTEXT_REGISTRATION_FLAG_KMD;
2895 
2896 	/*
2897 	 * If context is a parent, we need to register a process descriptor
2898 	 * describing a work queue and register all child contexts.
2899 	 */
2900 	if (intel_context_is_parent(ce)) {
2901 		struct guc_sched_wq_desc *wq_desc;
2902 		u64 wq_desc_offset, wq_base_offset;
2903 
2904 		ce->parallel.guc.wqi_tail = 0;
2905 		ce->parallel.guc.wqi_head = 0;
2906 
2907 		wq_desc_offset = (u64)i915_ggtt_offset(ce->state) +
2908 				 __get_parent_scratch_offset(ce);
2909 		wq_base_offset = (u64)i915_ggtt_offset(ce->state) +
2910 				 __get_wq_offset(ce);
2911 		info->wq_desc_lo = lower_32_bits(wq_desc_offset);
2912 		info->wq_desc_hi = upper_32_bits(wq_desc_offset);
2913 		info->wq_base_lo = lower_32_bits(wq_base_offset);
2914 		info->wq_base_hi = upper_32_bits(wq_base_offset);
2915 		info->wq_size = WQ_SIZE;
2916 
2917 		wq_desc = __get_wq_desc_v70(ce);
2918 		memset(wq_desc, 0, sizeof(*wq_desc));
2919 		wq_desc->wq_status = WQ_STATUS_ACTIVE;
2920 
2921 		ce->parallel.guc.wq_head = &wq_desc->head;
2922 		ce->parallel.guc.wq_tail = &wq_desc->tail;
2923 		ce->parallel.guc.wq_status = &wq_desc->wq_status;
2924 
2925 		clear_children_join_go_memory(ce);
2926 	}
2927 }
2928 
try_context_registration(struct intel_context * ce,bool loop)2929 static int try_context_registration(struct intel_context *ce, bool loop)
2930 {
2931 	struct intel_engine_cs *engine = ce->engine;
2932 	struct intel_runtime_pm *runtime_pm = engine->uncore->rpm;
2933 	struct intel_guc *guc = gt_to_guc(engine->gt);
2934 	intel_wakeref_t wakeref;
2935 	u32 ctx_id = ce->guc_id.id;
2936 	bool context_registered;
2937 	int ret = 0;
2938 
2939 	GEM_BUG_ON(!sched_state_is_init(ce));
2940 
2941 	context_registered = ctx_id_mapped(guc, ctx_id);
2942 
2943 	clr_ctx_id_mapping(guc, ctx_id);
2944 	set_ctx_id_mapping(guc, ctx_id, ce);
2945 
2946 	/*
2947 	 * The context_lookup xarray is used to determine if the hardware
2948 	 * context is currently registered. There are two cases in which it
2949 	 * could be registered either the guc_id has been stolen from another
2950 	 * context or the lrc descriptor address of this context has changed. In
2951 	 * either case the context needs to be deregistered with the GuC before
2952 	 * registering this context.
2953 	 */
2954 	if (context_registered) {
2955 		bool disabled;
2956 		unsigned long flags;
2957 
2958 		trace_intel_context_steal_guc_id(ce);
2959 		GEM_BUG_ON(!loop);
2960 
2961 		/* Seal race with Reset */
2962 		spin_lock_irqsave(&ce->guc_state.lock, flags);
2963 		disabled = submission_disabled(guc);
2964 		if (likely(!disabled)) {
2965 			set_context_wait_for_deregister_to_register(ce);
2966 			intel_context_get(ce);
2967 		}
2968 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2969 		if (unlikely(disabled)) {
2970 			clr_ctx_id_mapping(guc, ctx_id);
2971 			return 0;	/* Will get registered later */
2972 		}
2973 
2974 		/*
2975 		 * If stealing the guc_id, this ce has the same guc_id as the
2976 		 * context whose guc_id was stolen.
2977 		 */
2978 		with_intel_runtime_pm(runtime_pm, wakeref)
2979 			ret = deregister_context(ce, ce->guc_id.id);
2980 		if (unlikely(ret == -ENODEV))
2981 			ret = 0;	/* Will get registered later */
2982 	} else {
2983 		with_intel_runtime_pm(runtime_pm, wakeref)
2984 			ret = register_context(ce, loop);
2985 		if (unlikely(ret == -EBUSY)) {
2986 			clr_ctx_id_mapping(guc, ctx_id);
2987 		} else if (unlikely(ret == -ENODEV)) {
2988 			clr_ctx_id_mapping(guc, ctx_id);
2989 			ret = 0;	/* Will get registered later */
2990 		}
2991 	}
2992 
2993 	return ret;
2994 }
2995 
__guc_context_pre_pin(struct intel_context * ce,struct intel_engine_cs * engine,struct i915_gem_ww_ctx * ww,void ** vaddr)2996 static int __guc_context_pre_pin(struct intel_context *ce,
2997 				 struct intel_engine_cs *engine,
2998 				 struct i915_gem_ww_ctx *ww,
2999 				 void **vaddr)
3000 {
3001 	return lrc_pre_pin(ce, engine, ww, vaddr);
3002 }
3003 
__guc_context_pin(struct intel_context * ce,struct intel_engine_cs * engine,void * vaddr)3004 static int __guc_context_pin(struct intel_context *ce,
3005 			     struct intel_engine_cs *engine,
3006 			     void *vaddr)
3007 {
3008 	if (i915_ggtt_offset(ce->state) !=
3009 	    (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK))
3010 		set_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
3011 
3012 	/*
3013 	 * GuC context gets pinned in guc_request_alloc. See that function for
3014 	 * explaination of why.
3015 	 */
3016 
3017 	return lrc_pin(ce, engine, vaddr);
3018 }
3019 
guc_context_pre_pin(struct intel_context * ce,struct i915_gem_ww_ctx * ww,void ** vaddr)3020 static int guc_context_pre_pin(struct intel_context *ce,
3021 			       struct i915_gem_ww_ctx *ww,
3022 			       void **vaddr)
3023 {
3024 	return __guc_context_pre_pin(ce, ce->engine, ww, vaddr);
3025 }
3026 
guc_context_pin(struct intel_context * ce,void * vaddr)3027 static int guc_context_pin(struct intel_context *ce, void *vaddr)
3028 {
3029 	int ret = __guc_context_pin(ce, ce->engine, vaddr);
3030 
3031 	if (likely(!ret && !intel_context_is_barrier(ce)))
3032 		intel_engine_pm_get(ce->engine);
3033 
3034 	return ret;
3035 }
3036 
guc_context_unpin(struct intel_context * ce)3037 static void guc_context_unpin(struct intel_context *ce)
3038 {
3039 	struct intel_guc *guc = ce_to_guc(ce);
3040 
3041 	__guc_context_update_stats(ce);
3042 	unpin_guc_id(guc, ce);
3043 	lrc_unpin(ce);
3044 
3045 	if (likely(!intel_context_is_barrier(ce)))
3046 		intel_engine_pm_put_async(ce->engine);
3047 }
3048 
guc_context_post_unpin(struct intel_context * ce)3049 static void guc_context_post_unpin(struct intel_context *ce)
3050 {
3051 	lrc_post_unpin(ce);
3052 }
3053 
__guc_context_sched_enable(struct intel_guc * guc,struct intel_context * ce)3054 static void __guc_context_sched_enable(struct intel_guc *guc,
3055 				       struct intel_context *ce)
3056 {
3057 	u32 action[] = {
3058 		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
3059 		ce->guc_id.id,
3060 		GUC_CONTEXT_ENABLE
3061 	};
3062 
3063 	trace_intel_context_sched_enable(ce);
3064 
3065 	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
3066 				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
3067 }
3068 
__guc_context_sched_disable(struct intel_guc * guc,struct intel_context * ce,u16 guc_id)3069 static void __guc_context_sched_disable(struct intel_guc *guc,
3070 					struct intel_context *ce,
3071 					u16 guc_id)
3072 {
3073 	u32 action[] = {
3074 		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
3075 		guc_id,	/* ce->guc_id.id not stable */
3076 		GUC_CONTEXT_DISABLE
3077 	};
3078 
3079 	GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID);
3080 
3081 	GEM_BUG_ON(intel_context_is_child(ce));
3082 	trace_intel_context_sched_disable(ce);
3083 
3084 	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
3085 				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
3086 }
3087 
guc_blocked_fence_complete(struct intel_context * ce)3088 static void guc_blocked_fence_complete(struct intel_context *ce)
3089 {
3090 	lockdep_assert_held(&ce->guc_state.lock);
3091 
3092 	if (!i915_sw_fence_done(&ce->guc_state.blocked))
3093 		i915_sw_fence_complete(&ce->guc_state.blocked);
3094 }
3095 
guc_blocked_fence_reinit(struct intel_context * ce)3096 static void guc_blocked_fence_reinit(struct intel_context *ce)
3097 {
3098 	lockdep_assert_held(&ce->guc_state.lock);
3099 	GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked));
3100 
3101 	/*
3102 	 * This fence is always complete unless a pending schedule disable is
3103 	 * outstanding. We arm the fence here and complete it when we receive
3104 	 * the pending schedule disable complete message.
3105 	 */
3106 	i915_sw_fence_fini(&ce->guc_state.blocked);
3107 	i915_sw_fence_reinit(&ce->guc_state.blocked);
3108 	i915_sw_fence_await(&ce->guc_state.blocked);
3109 	i915_sw_fence_commit(&ce->guc_state.blocked);
3110 }
3111 
prep_context_pending_disable(struct intel_context * ce)3112 static u16 prep_context_pending_disable(struct intel_context *ce)
3113 {
3114 	lockdep_assert_held(&ce->guc_state.lock);
3115 
3116 	set_context_pending_disable(ce);
3117 	clr_context_enabled(ce);
3118 	guc_blocked_fence_reinit(ce);
3119 	intel_context_get(ce);
3120 
3121 	return ce->guc_id.id;
3122 }
3123 
guc_context_block(struct intel_context * ce)3124 static struct i915_sw_fence *guc_context_block(struct intel_context *ce)
3125 {
3126 	struct intel_guc *guc = ce_to_guc(ce);
3127 	unsigned long flags;
3128 	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
3129 	intel_wakeref_t wakeref;
3130 	u16 guc_id;
3131 	bool enabled;
3132 
3133 	GEM_BUG_ON(intel_context_is_child(ce));
3134 
3135 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3136 
3137 	incr_context_blocked(ce);
3138 
3139 	enabled = context_enabled(ce);
3140 	if (unlikely(!enabled || submission_disabled(guc))) {
3141 		if (enabled)
3142 			clr_context_enabled(ce);
3143 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3144 		return &ce->guc_state.blocked;
3145 	}
3146 
3147 	/*
3148 	 * We add +2 here as the schedule disable complete CTB handler calls
3149 	 * intel_context_sched_disable_unpin (-2 to pin_count).
3150 	 */
3151 	atomic_add(2, &ce->pin_count);
3152 
3153 	guc_id = prep_context_pending_disable(ce);
3154 
3155 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3156 
3157 	with_intel_runtime_pm(runtime_pm, wakeref)
3158 		__guc_context_sched_disable(guc, ce, guc_id);
3159 
3160 	return &ce->guc_state.blocked;
3161 }
3162 
3163 #define SCHED_STATE_MULTI_BLOCKED_MASK \
3164 	(SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED)
3165 #define SCHED_STATE_NO_UNBLOCK \
3166 	(SCHED_STATE_MULTI_BLOCKED_MASK | \
3167 	 SCHED_STATE_PENDING_DISABLE | \
3168 	 SCHED_STATE_BANNED)
3169 
context_cant_unblock(struct intel_context * ce)3170 static bool context_cant_unblock(struct intel_context *ce)
3171 {
3172 	lockdep_assert_held(&ce->guc_state.lock);
3173 
3174 	return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) ||
3175 		context_guc_id_invalid(ce) ||
3176 		!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id) ||
3177 		!intel_context_is_pinned(ce);
3178 }
3179 
guc_context_unblock(struct intel_context * ce)3180 static void guc_context_unblock(struct intel_context *ce)
3181 {
3182 	struct intel_guc *guc = ce_to_guc(ce);
3183 	unsigned long flags;
3184 	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
3185 	intel_wakeref_t wakeref;
3186 	bool enable;
3187 
3188 	GEM_BUG_ON(context_enabled(ce));
3189 	GEM_BUG_ON(intel_context_is_child(ce));
3190 
3191 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3192 
3193 	if (unlikely(submission_disabled(guc) ||
3194 		     context_cant_unblock(ce))) {
3195 		enable = false;
3196 	} else {
3197 		enable = true;
3198 		set_context_pending_enable(ce);
3199 		set_context_enabled(ce);
3200 		intel_context_get(ce);
3201 	}
3202 
3203 	decr_context_blocked(ce);
3204 
3205 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3206 
3207 	if (enable) {
3208 		with_intel_runtime_pm(runtime_pm, wakeref)
3209 			__guc_context_sched_enable(guc, ce);
3210 	}
3211 }
3212 
guc_context_cancel_request(struct intel_context * ce,struct i915_request * rq)3213 static void guc_context_cancel_request(struct intel_context *ce,
3214 				       struct i915_request *rq)
3215 {
3216 	struct intel_context *block_context =
3217 		request_to_scheduling_context(rq);
3218 
3219 	if (i915_sw_fence_signaled(&rq->submit)) {
3220 		struct i915_sw_fence *fence;
3221 
3222 		intel_context_get(ce);
3223 		fence = guc_context_block(block_context);
3224 		i915_sw_fence_wait(fence);
3225 		if (!i915_request_completed(rq)) {
3226 			__i915_request_skip(rq);
3227 			guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head),
3228 					true);
3229 		}
3230 
3231 		guc_context_unblock(block_context);
3232 		intel_context_put(ce);
3233 	}
3234 }
3235 
__guc_context_set_preemption_timeout(struct intel_guc * guc,u16 guc_id,u32 preemption_timeout)3236 static void __guc_context_set_preemption_timeout(struct intel_guc *guc,
3237 						 u16 guc_id,
3238 						 u32 preemption_timeout)
3239 {
3240 	if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) {
3241 		struct context_policy policy;
3242 
3243 		__guc_context_policy_start_klv(&policy, guc_id);
3244 		__guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
3245 		__guc_context_set_context_policies(guc, &policy, true);
3246 	} else {
3247 		u32 action[] = {
3248 			INTEL_GUC_ACTION_V69_SET_CONTEXT_PREEMPTION_TIMEOUT,
3249 			guc_id,
3250 			preemption_timeout
3251 		};
3252 
3253 		intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3254 	}
3255 }
3256 
3257 static void
guc_context_revoke(struct intel_context * ce,struct i915_request * rq,unsigned int preempt_timeout_ms)3258 guc_context_revoke(struct intel_context *ce, struct i915_request *rq,
3259 		   unsigned int preempt_timeout_ms)
3260 {
3261 	struct intel_guc *guc = ce_to_guc(ce);
3262 	struct intel_runtime_pm *runtime_pm =
3263 		&ce->engine->gt->i915->runtime_pm;
3264 	intel_wakeref_t wakeref;
3265 	unsigned long flags;
3266 
3267 	GEM_BUG_ON(intel_context_is_child(ce));
3268 
3269 	guc_flush_submissions(guc);
3270 
3271 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3272 	set_context_banned(ce);
3273 
3274 	if (submission_disabled(guc) ||
3275 	    (!context_enabled(ce) && !context_pending_disable(ce))) {
3276 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3277 
3278 		guc_cancel_context_requests(ce);
3279 		intel_engine_signal_breadcrumbs(ce->engine);
3280 	} else if (!context_pending_disable(ce)) {
3281 		u16 guc_id;
3282 
3283 		/*
3284 		 * We add +2 here as the schedule disable complete CTB handler
3285 		 * calls intel_context_sched_disable_unpin (-2 to pin_count).
3286 		 */
3287 		atomic_add(2, &ce->pin_count);
3288 
3289 		guc_id = prep_context_pending_disable(ce);
3290 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3291 
3292 		/*
3293 		 * In addition to disabling scheduling, set the preemption
3294 		 * timeout to the minimum value (1 us) so the banned context
3295 		 * gets kicked off the HW ASAP.
3296 		 */
3297 		with_intel_runtime_pm(runtime_pm, wakeref) {
3298 			__guc_context_set_preemption_timeout(guc, guc_id,
3299 							     preempt_timeout_ms);
3300 			__guc_context_sched_disable(guc, ce, guc_id);
3301 		}
3302 	} else {
3303 		if (!context_guc_id_invalid(ce))
3304 			with_intel_runtime_pm(runtime_pm, wakeref)
3305 				__guc_context_set_preemption_timeout(guc,
3306 								     ce->guc_id.id,
3307 								     preempt_timeout_ms);
3308 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3309 	}
3310 }
3311 
do_sched_disable(struct intel_guc * guc,struct intel_context * ce,unsigned long flags)3312 static void do_sched_disable(struct intel_guc *guc, struct intel_context *ce,
3313 			     unsigned long flags)
3314 	__releases(ce->guc_state.lock)
3315 {
3316 	struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm;
3317 	intel_wakeref_t wakeref;
3318 	u16 guc_id;
3319 
3320 	lockdep_assert_held(&ce->guc_state.lock);
3321 	guc_id = prep_context_pending_disable(ce);
3322 
3323 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3324 
3325 	with_intel_runtime_pm(runtime_pm, wakeref)
3326 		__guc_context_sched_disable(guc, ce, guc_id);
3327 }
3328 
bypass_sched_disable(struct intel_guc * guc,struct intel_context * ce)3329 static bool bypass_sched_disable(struct intel_guc *guc,
3330 				 struct intel_context *ce)
3331 {
3332 	lockdep_assert_held(&ce->guc_state.lock);
3333 	GEM_BUG_ON(intel_context_is_child(ce));
3334 
3335 	if (submission_disabled(guc) || context_guc_id_invalid(ce) ||
3336 	    !ctx_id_mapped(guc, ce->guc_id.id)) {
3337 		clr_context_enabled(ce);
3338 		return true;
3339 	}
3340 
3341 	return !context_enabled(ce);
3342 }
3343 
__delay_sched_disable(struct work_struct * wrk)3344 static void __delay_sched_disable(struct work_struct *wrk)
3345 {
3346 	struct intel_context *ce =
3347 		container_of(wrk, typeof(*ce), guc_state.sched_disable_delay_work.work);
3348 	struct intel_guc *guc = ce_to_guc(ce);
3349 	unsigned long flags;
3350 
3351 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3352 
3353 	if (bypass_sched_disable(guc, ce)) {
3354 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3355 		intel_context_sched_disable_unpin(ce);
3356 	} else {
3357 		do_sched_disable(guc, ce, flags);
3358 	}
3359 }
3360 
guc_id_pressure(struct intel_guc * guc,struct intel_context * ce)3361 static bool guc_id_pressure(struct intel_guc *guc, struct intel_context *ce)
3362 {
3363 	/*
3364 	 * parent contexts are perma-pinned, if we are unpinning do schedule
3365 	 * disable immediately.
3366 	 */
3367 	if (intel_context_is_parent(ce))
3368 		return true;
3369 
3370 	/*
3371 	 * If we are beyond the threshold for avail guc_ids, do schedule disable immediately.
3372 	 */
3373 	return guc->submission_state.guc_ids_in_use >
3374 		guc->submission_state.sched_disable_gucid_threshold;
3375 }
3376 
guc_context_sched_disable(struct intel_context * ce)3377 static void guc_context_sched_disable(struct intel_context *ce)
3378 {
3379 	struct intel_guc *guc = ce_to_guc(ce);
3380 	u64 delay = guc->submission_state.sched_disable_delay_ms;
3381 	unsigned long flags;
3382 
3383 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3384 
3385 	if (bypass_sched_disable(guc, ce)) {
3386 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3387 		intel_context_sched_disable_unpin(ce);
3388 	} else if (!intel_context_is_closed(ce) && !guc_id_pressure(guc, ce) &&
3389 		   delay) {
3390 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3391 		mod_delayed_work(system_unbound_wq,
3392 				 &ce->guc_state.sched_disable_delay_work,
3393 				 msecs_to_jiffies(delay));
3394 	} else {
3395 		do_sched_disable(guc, ce, flags);
3396 	}
3397 }
3398 
guc_context_close(struct intel_context * ce)3399 static void guc_context_close(struct intel_context *ce)
3400 {
3401 	unsigned long flags;
3402 
3403 	if (test_bit(CONTEXT_GUC_INIT, &ce->flags) &&
3404 	    cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))
3405 		__delay_sched_disable(&ce->guc_state.sched_disable_delay_work.work);
3406 
3407 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3408 	set_context_close_done(ce);
3409 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3410 }
3411 
guc_lrc_desc_unpin(struct intel_context * ce)3412 static inline int guc_lrc_desc_unpin(struct intel_context *ce)
3413 {
3414 	struct intel_guc *guc = ce_to_guc(ce);
3415 	struct intel_gt *gt = guc_to_gt(guc);
3416 	unsigned long flags;
3417 	bool disabled;
3418 	int ret;
3419 
3420 	GEM_BUG_ON(!intel_gt_pm_is_awake(gt));
3421 	GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id));
3422 	GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id));
3423 	GEM_BUG_ON(context_enabled(ce));
3424 
3425 	/* Seal race with Reset */
3426 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3427 	disabled = submission_disabled(guc);
3428 	if (likely(!disabled)) {
3429 		/*
3430 		 * Take a gt-pm ref and change context state to be destroyed.
3431 		 * NOTE: a G2H IRQ that comes after will put this gt-pm ref back
3432 		 */
3433 		__intel_gt_pm_get(gt);
3434 		set_context_destroyed(ce);
3435 		clr_context_registered(ce);
3436 	}
3437 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3438 
3439 	if (unlikely(disabled)) {
3440 		release_guc_id(guc, ce);
3441 		__guc_context_destroy(ce);
3442 		return 0;
3443 	}
3444 
3445 	/*
3446 	 * GuC is active, lets destroy this context, but at this point we can still be racing
3447 	 * with suspend, so we undo everything if the H2G fails in deregister_context so
3448 	 * that GuC reset will find this context during clean up.
3449 	 */
3450 	ret = deregister_context(ce, ce->guc_id.id);
3451 	if (ret) {
3452 		spin_lock_irqsave(&ce->guc_state.lock, flags);
3453 		set_context_registered(ce);
3454 		clr_context_destroyed(ce);
3455 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3456 		/*
3457 		 * As gt-pm is awake at function entry, intel_wakeref_put_async merely decrements
3458 		 * the wakeref immediately but per function spec usage call this after unlock.
3459 		 */
3460 		intel_wakeref_put_async(&gt->wakeref);
3461 	}
3462 
3463 	return ret;
3464 }
3465 
__guc_context_destroy(struct intel_context * ce)3466 static void __guc_context_destroy(struct intel_context *ce)
3467 {
3468 	GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] ||
3469 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] ||
3470 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] ||
3471 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]);
3472 
3473 	lrc_fini(ce);
3474 	intel_context_fini(ce);
3475 
3476 	if (intel_engine_is_virtual(ce->engine)) {
3477 		struct guc_virtual_engine *ve =
3478 			container_of(ce, typeof(*ve), context);
3479 
3480 		if (ve->base.breadcrumbs)
3481 			intel_breadcrumbs_put(ve->base.breadcrumbs);
3482 
3483 		kfree(ve);
3484 	} else {
3485 		intel_context_free(ce);
3486 	}
3487 }
3488 
guc_flush_destroyed_contexts(struct intel_guc * guc)3489 static void guc_flush_destroyed_contexts(struct intel_guc *guc)
3490 {
3491 	struct intel_context *ce;
3492 	unsigned long flags;
3493 
3494 	GEM_BUG_ON(!submission_disabled(guc) &&
3495 		   guc_submission_initialized(guc));
3496 
3497 	while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3498 		spin_lock_irqsave(&guc->submission_state.lock, flags);
3499 		ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3500 					      struct intel_context,
3501 					      destroyed_link);
3502 		if (ce)
3503 			list_del_init(&ce->destroyed_link);
3504 		spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3505 
3506 		if (!ce)
3507 			break;
3508 
3509 		release_guc_id(guc, ce);
3510 		__guc_context_destroy(ce);
3511 	}
3512 }
3513 
deregister_destroyed_contexts(struct intel_guc * guc)3514 static void deregister_destroyed_contexts(struct intel_guc *guc)
3515 {
3516 	struct intel_context *ce;
3517 	unsigned long flags;
3518 
3519 	while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3520 		spin_lock_irqsave(&guc->submission_state.lock, flags);
3521 		ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3522 					      struct intel_context,
3523 					      destroyed_link);
3524 		if (ce)
3525 			list_del_init(&ce->destroyed_link);
3526 		spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3527 
3528 		if (!ce)
3529 			break;
3530 
3531 		if (guc_lrc_desc_unpin(ce)) {
3532 			/*
3533 			 * This means GuC's CT link severed mid-way which could happen
3534 			 * in suspend-resume corner cases. In this case, put the
3535 			 * context back into the destroyed_contexts list which will
3536 			 * get picked up on the next context deregistration event or
3537 			 * purged in a GuC sanitization event (reset/unload/wedged/...).
3538 			 */
3539 			spin_lock_irqsave(&guc->submission_state.lock, flags);
3540 			list_add_tail(&ce->destroyed_link,
3541 				      &guc->submission_state.destroyed_contexts);
3542 			spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3543 			/* Bail now since the list might never be emptied if h2gs fail */
3544 			break;
3545 		}
3546 
3547 	}
3548 }
3549 
destroyed_worker_func(struct work_struct * w)3550 static void destroyed_worker_func(struct work_struct *w)
3551 {
3552 	struct intel_guc *guc = container_of(w, struct intel_guc,
3553 					     submission_state.destroyed_worker);
3554 	struct intel_gt *gt = guc_to_gt(guc);
3555 	intel_wakeref_t wakeref;
3556 
3557 	/*
3558 	 * In rare cases we can get here via async context-free fence-signals that
3559 	 * come very late in suspend flow or very early in resume flows. In these
3560 	 * cases, GuC won't be ready but just skipping it here is fine as these
3561 	 * pending-destroy-contexts get destroyed totally at GuC reset time at the
3562 	 * end of suspend.. OR.. this worker can be picked up later on the next
3563 	 * context destruction trigger after resume-completes
3564 	 */
3565 	if (!intel_guc_is_ready(guc))
3566 		return;
3567 
3568 	with_intel_gt_pm(gt, wakeref)
3569 		deregister_destroyed_contexts(guc);
3570 }
3571 
guc_context_destroy(struct kref * kref)3572 static void guc_context_destroy(struct kref *kref)
3573 {
3574 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3575 	struct intel_guc *guc = ce_to_guc(ce);
3576 	unsigned long flags;
3577 	bool destroy;
3578 
3579 	/*
3580 	 * If the guc_id is invalid this context has been stolen and we can free
3581 	 * it immediately. Also can be freed immediately if the context is not
3582 	 * registered with the GuC or the GuC is in the middle of a reset.
3583 	 */
3584 	spin_lock_irqsave(&guc->submission_state.lock, flags);
3585 	destroy = submission_disabled(guc) || context_guc_id_invalid(ce) ||
3586 		!ctx_id_mapped(guc, ce->guc_id.id);
3587 	if (likely(!destroy)) {
3588 		if (!list_empty(&ce->guc_id.link))
3589 			list_del_init(&ce->guc_id.link);
3590 		list_add_tail(&ce->destroyed_link,
3591 			      &guc->submission_state.destroyed_contexts);
3592 	} else {
3593 		__release_guc_id(guc, ce);
3594 	}
3595 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3596 	if (unlikely(destroy)) {
3597 		__guc_context_destroy(ce);
3598 		return;
3599 	}
3600 
3601 	/*
3602 	 * We use a worker to issue the H2G to deregister the context as we can
3603 	 * take the GT PM for the first time which isn't allowed from an atomic
3604 	 * context.
3605 	 */
3606 	queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker);
3607 }
3608 
guc_context_alloc(struct intel_context * ce)3609 static int guc_context_alloc(struct intel_context *ce)
3610 {
3611 	return lrc_alloc(ce, ce->engine);
3612 }
3613 
__guc_context_set_prio(struct intel_guc * guc,struct intel_context * ce)3614 static void __guc_context_set_prio(struct intel_guc *guc,
3615 				   struct intel_context *ce)
3616 {
3617 	if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) {
3618 		struct context_policy policy;
3619 
3620 		__guc_context_policy_start_klv(&policy, ce->guc_id.id);
3621 		__guc_context_policy_add_priority(&policy, ce->guc_state.prio);
3622 		__guc_context_set_context_policies(guc, &policy, true);
3623 	} else {
3624 		u32 action[] = {
3625 			INTEL_GUC_ACTION_V69_SET_CONTEXT_PRIORITY,
3626 			ce->guc_id.id,
3627 			ce->guc_state.prio,
3628 		};
3629 
3630 		guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3631 	}
3632 }
3633 
guc_context_set_prio(struct intel_guc * guc,struct intel_context * ce,u8 prio)3634 static void guc_context_set_prio(struct intel_guc *guc,
3635 				 struct intel_context *ce,
3636 				 u8 prio)
3637 {
3638 	GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH ||
3639 		   prio > GUC_CLIENT_PRIORITY_NORMAL);
3640 	lockdep_assert_held(&ce->guc_state.lock);
3641 
3642 	if (ce->guc_state.prio == prio || submission_disabled(guc) ||
3643 	    !context_registered(ce)) {
3644 		ce->guc_state.prio = prio;
3645 		return;
3646 	}
3647 
3648 	ce->guc_state.prio = prio;
3649 	__guc_context_set_prio(guc, ce);
3650 
3651 	trace_intel_context_set_prio(ce);
3652 }
3653 
map_i915_prio_to_guc_prio(int prio)3654 static inline u8 map_i915_prio_to_guc_prio(int prio)
3655 {
3656 	if (prio == I915_PRIORITY_NORMAL)
3657 		return GUC_CLIENT_PRIORITY_KMD_NORMAL;
3658 	else if (prio < I915_PRIORITY_NORMAL)
3659 		return GUC_CLIENT_PRIORITY_NORMAL;
3660 	else if (prio < I915_PRIORITY_DISPLAY)
3661 		return GUC_CLIENT_PRIORITY_HIGH;
3662 	else
3663 		return GUC_CLIENT_PRIORITY_KMD_HIGH;
3664 }
3665 
add_context_inflight_prio(struct intel_context * ce,u8 guc_prio)3666 static inline void add_context_inflight_prio(struct intel_context *ce,
3667 					     u8 guc_prio)
3668 {
3669 	lockdep_assert_held(&ce->guc_state.lock);
3670 	GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3671 
3672 	++ce->guc_state.prio_count[guc_prio];
3673 
3674 	/* Overflow protection */
3675 	GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3676 }
3677 
sub_context_inflight_prio(struct intel_context * ce,u8 guc_prio)3678 static inline void sub_context_inflight_prio(struct intel_context *ce,
3679 					     u8 guc_prio)
3680 {
3681 	lockdep_assert_held(&ce->guc_state.lock);
3682 	GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3683 
3684 	/* Underflow protection */
3685 	GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3686 
3687 	--ce->guc_state.prio_count[guc_prio];
3688 }
3689 
update_context_prio(struct intel_context * ce)3690 static inline void update_context_prio(struct intel_context *ce)
3691 {
3692 	struct intel_guc *guc = &ce->engine->gt->uc.guc;
3693 	int i;
3694 
3695 	BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0);
3696 	BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL);
3697 
3698 	lockdep_assert_held(&ce->guc_state.lock);
3699 
3700 	for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) {
3701 		if (ce->guc_state.prio_count[i]) {
3702 			guc_context_set_prio(guc, ce, i);
3703 			break;
3704 		}
3705 	}
3706 }
3707 
new_guc_prio_higher(u8 old_guc_prio,u8 new_guc_prio)3708 static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio)
3709 {
3710 	/* Lower value is higher priority */
3711 	return new_guc_prio < old_guc_prio;
3712 }
3713 
add_to_context(struct i915_request * rq)3714 static void add_to_context(struct i915_request *rq)
3715 {
3716 	struct intel_context *ce = request_to_scheduling_context(rq);
3717 	u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq));
3718 
3719 	GEM_BUG_ON(intel_context_is_child(ce));
3720 	GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI);
3721 
3722 	spin_lock(&ce->guc_state.lock);
3723 	list_move_tail(&rq->sched.link, &ce->guc_state.requests);
3724 
3725 	if (rq->guc_prio == GUC_PRIO_INIT) {
3726 		rq->guc_prio = new_guc_prio;
3727 		add_context_inflight_prio(ce, rq->guc_prio);
3728 	} else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) {
3729 		sub_context_inflight_prio(ce, rq->guc_prio);
3730 		rq->guc_prio = new_guc_prio;
3731 		add_context_inflight_prio(ce, rq->guc_prio);
3732 	}
3733 	update_context_prio(ce);
3734 
3735 	spin_unlock(&ce->guc_state.lock);
3736 }
3737 
guc_prio_fini(struct i915_request * rq,struct intel_context * ce)3738 static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce)
3739 {
3740 	lockdep_assert_held(&ce->guc_state.lock);
3741 
3742 	if (rq->guc_prio != GUC_PRIO_INIT &&
3743 	    rq->guc_prio != GUC_PRIO_FINI) {
3744 		sub_context_inflight_prio(ce, rq->guc_prio);
3745 		update_context_prio(ce);
3746 	}
3747 	rq->guc_prio = GUC_PRIO_FINI;
3748 }
3749 
remove_from_context(struct i915_request * rq)3750 static void remove_from_context(struct i915_request *rq)
3751 {
3752 	struct intel_context *ce = request_to_scheduling_context(rq);
3753 
3754 	GEM_BUG_ON(intel_context_is_child(ce));
3755 
3756 	spin_lock_irq(&ce->guc_state.lock);
3757 
3758 	list_del_init(&rq->sched.link);
3759 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3760 
3761 	/* Prevent further __await_execution() registering a cb, then flush */
3762 	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3763 
3764 	guc_prio_fini(rq, ce);
3765 
3766 	spin_unlock_irq(&ce->guc_state.lock);
3767 
3768 	atomic_dec(&ce->guc_id.ref);
3769 	i915_request_notify_execute_cb_imm(rq);
3770 }
3771 
3772 static const struct intel_context_ops guc_context_ops = {
3773 	.flags = COPS_RUNTIME_CYCLES,
3774 	.alloc = guc_context_alloc,
3775 
3776 	.close = guc_context_close,
3777 
3778 	.pre_pin = guc_context_pre_pin,
3779 	.pin = guc_context_pin,
3780 	.unpin = guc_context_unpin,
3781 	.post_unpin = guc_context_post_unpin,
3782 
3783 	.revoke = guc_context_revoke,
3784 
3785 	.cancel_request = guc_context_cancel_request,
3786 
3787 	.enter = intel_context_enter_engine,
3788 	.exit = intel_context_exit_engine,
3789 
3790 	.sched_disable = guc_context_sched_disable,
3791 
3792 	.update_stats = guc_context_update_stats,
3793 
3794 	.reset = lrc_reset,
3795 	.destroy = guc_context_destroy,
3796 
3797 	.create_virtual = guc_create_virtual,
3798 	.create_parallel = guc_create_parallel,
3799 };
3800 
submit_work_cb(struct irq_work * wrk)3801 static void submit_work_cb(struct irq_work *wrk)
3802 {
3803 	struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work);
3804 
3805 	might_lock(&rq->engine->sched_engine->lock);
3806 	i915_sw_fence_complete(&rq->submit);
3807 }
3808 
__guc_signal_context_fence(struct intel_context * ce)3809 static void __guc_signal_context_fence(struct intel_context *ce)
3810 {
3811 	struct i915_request *rq, *rn;
3812 
3813 	lockdep_assert_held(&ce->guc_state.lock);
3814 
3815 	if (!list_empty(&ce->guc_state.fences))
3816 		trace_intel_context_fence_release(ce);
3817 
3818 	/*
3819 	 * Use an IRQ to ensure locking order of sched_engine->lock ->
3820 	 * ce->guc_state.lock is preserved.
3821 	 */
3822 	list_for_each_entry_safe(rq, rn, &ce->guc_state.fences,
3823 				 guc_fence_link) {
3824 		list_del(&rq->guc_fence_link);
3825 		irq_work_queue(&rq->submit_work);
3826 	}
3827 
3828 	INIT_LIST_HEAD(&ce->guc_state.fences);
3829 }
3830 
guc_signal_context_fence(struct intel_context * ce)3831 static void guc_signal_context_fence(struct intel_context *ce)
3832 {
3833 	unsigned long flags;
3834 
3835 	GEM_BUG_ON(intel_context_is_child(ce));
3836 
3837 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3838 	clr_context_wait_for_deregister_to_register(ce);
3839 	__guc_signal_context_fence(ce);
3840 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3841 }
3842 
context_needs_register(struct intel_context * ce,bool new_guc_id)3843 static bool context_needs_register(struct intel_context *ce, bool new_guc_id)
3844 {
3845 	return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) ||
3846 		!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)) &&
3847 		!submission_disabled(ce_to_guc(ce));
3848 }
3849 
guc_context_init(struct intel_context * ce)3850 static void guc_context_init(struct intel_context *ce)
3851 {
3852 	const struct i915_gem_context *ctx;
3853 	int prio = I915_CONTEXT_DEFAULT_PRIORITY;
3854 
3855 	rcu_read_lock();
3856 	ctx = rcu_dereference(ce->gem_context);
3857 	if (ctx)
3858 		prio = ctx->sched.priority;
3859 	rcu_read_unlock();
3860 
3861 	ce->guc_state.prio = map_i915_prio_to_guc_prio(prio);
3862 
3863 	INIT_DELAYED_WORK(&ce->guc_state.sched_disable_delay_work,
3864 			  __delay_sched_disable);
3865 
3866 	set_bit(CONTEXT_GUC_INIT, &ce->flags);
3867 }
3868 
guc_request_alloc(struct i915_request * rq)3869 static int guc_request_alloc(struct i915_request *rq)
3870 {
3871 	struct intel_context *ce = request_to_scheduling_context(rq);
3872 	struct intel_guc *guc = ce_to_guc(ce);
3873 	unsigned long flags;
3874 	int ret;
3875 
3876 	GEM_BUG_ON(!intel_context_is_pinned(rq->context));
3877 
3878 	/*
3879 	 * Flush enough space to reduce the likelihood of waiting after
3880 	 * we start building the request - in which case we will just
3881 	 * have to repeat work.
3882 	 */
3883 	rq->reserved_space += GUC_REQUEST_SIZE;
3884 
3885 	/*
3886 	 * Note that after this point, we have committed to using
3887 	 * this request as it is being used to both track the
3888 	 * state of engine initialisation and liveness of the
3889 	 * golden renderstate above. Think twice before you try
3890 	 * to cancel/unwind this request now.
3891 	 */
3892 
3893 	/* Unconditionally invalidate GPU caches and TLBs. */
3894 	ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
3895 	if (ret)
3896 		return ret;
3897 
3898 	rq->reserved_space -= GUC_REQUEST_SIZE;
3899 
3900 	if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags)))
3901 		guc_context_init(ce);
3902 
3903 	/*
3904 	 * If the context gets closed while the execbuf is ongoing, the context
3905 	 * close code will race with the below code to cancel the delayed work.
3906 	 * If the context close wins the race and cancels the work, it will
3907 	 * immediately call the sched disable (see guc_context_close), so there
3908 	 * is a chance we can get past this check while the sched_disable code
3909 	 * is being executed. To make sure that code completes before we check
3910 	 * the status further down, we wait for the close process to complete.
3911 	 * Else, this code path could send a request down thinking that the
3912 	 * context is still in a schedule-enable mode while the GuC ends up
3913 	 * dropping the request completely because the disable did go from the
3914 	 * context_close path right to GuC just prior. In the event the CT is
3915 	 * full, we could potentially need to wait up to 1.5 seconds.
3916 	 */
3917 	if (cancel_delayed_work_sync(&ce->guc_state.sched_disable_delay_work))
3918 		intel_context_sched_disable_unpin(ce);
3919 	else if (intel_context_is_closed(ce))
3920 		if (wait_for(context_close_done(ce), 1500))
3921 			guc_warn(guc, "timed out waiting on context sched close before realloc\n");
3922 	/*
3923 	 * Call pin_guc_id here rather than in the pinning step as with
3924 	 * dma_resv, contexts can be repeatedly pinned / unpinned trashing the
3925 	 * guc_id and creating horrible race conditions. This is especially bad
3926 	 * when guc_id are being stolen due to over subscription. By the time
3927 	 * this function is reached, it is guaranteed that the guc_id will be
3928 	 * persistent until the generated request is retired. Thus, sealing these
3929 	 * race conditions. It is still safe to fail here if guc_id are
3930 	 * exhausted and return -EAGAIN to the user indicating that they can try
3931 	 * again in the future.
3932 	 *
3933 	 * There is no need for a lock here as the timeline mutex ensures at
3934 	 * most one context can be executing this code path at once. The
3935 	 * guc_id_ref is incremented once for every request in flight and
3936 	 * decremented on each retire. When it is zero, a lock around the
3937 	 * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id.
3938 	 */
3939 	if (atomic_add_unless(&ce->guc_id.ref, 1, 0))
3940 		goto out;
3941 
3942 	ret = pin_guc_id(guc, ce);	/* returns 1 if new guc_id assigned */
3943 	if (unlikely(ret < 0))
3944 		return ret;
3945 	if (context_needs_register(ce, !!ret)) {
3946 		ret = try_context_registration(ce, true);
3947 		if (unlikely(ret)) {	/* unwind */
3948 			if (ret == -EPIPE) {
3949 				disable_submission(guc);
3950 				goto out;	/* GPU will be reset */
3951 			}
3952 			atomic_dec(&ce->guc_id.ref);
3953 			unpin_guc_id(guc, ce);
3954 			return ret;
3955 		}
3956 	}
3957 
3958 	clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
3959 
3960 out:
3961 	/*
3962 	 * We block all requests on this context if a G2H is pending for a
3963 	 * schedule disable or context deregistration as the GuC will fail a
3964 	 * schedule enable or context registration if either G2H is pending
3965 	 * respectfully. Once a G2H returns, the fence is released that is
3966 	 * blocking these requests (see guc_signal_context_fence).
3967 	 */
3968 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3969 	if (context_wait_for_deregister_to_register(ce) ||
3970 	    context_pending_disable(ce)) {
3971 		init_irq_work(&rq->submit_work, submit_work_cb);
3972 		i915_sw_fence_await(&rq->submit);
3973 
3974 		list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences);
3975 	}
3976 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3977 
3978 	return 0;
3979 }
3980 
guc_virtual_context_pre_pin(struct intel_context * ce,struct i915_gem_ww_ctx * ww,void ** vaddr)3981 static int guc_virtual_context_pre_pin(struct intel_context *ce,
3982 				       struct i915_gem_ww_ctx *ww,
3983 				       void **vaddr)
3984 {
3985 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3986 
3987 	return __guc_context_pre_pin(ce, engine, ww, vaddr);
3988 }
3989 
guc_virtual_context_pin(struct intel_context * ce,void * vaddr)3990 static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr)
3991 {
3992 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3993 	int ret = __guc_context_pin(ce, engine, vaddr);
3994 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3995 
3996 	if (likely(!ret))
3997 		for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3998 			intel_engine_pm_get(engine);
3999 
4000 	return ret;
4001 }
4002 
guc_virtual_context_unpin(struct intel_context * ce)4003 static void guc_virtual_context_unpin(struct intel_context *ce)
4004 {
4005 	intel_engine_mask_t tmp, mask = ce->engine->mask;
4006 	struct intel_engine_cs *engine;
4007 	struct intel_guc *guc = ce_to_guc(ce);
4008 
4009 	GEM_BUG_ON(context_enabled(ce));
4010 	GEM_BUG_ON(intel_context_is_barrier(ce));
4011 
4012 	unpin_guc_id(guc, ce);
4013 	lrc_unpin(ce);
4014 
4015 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
4016 		intel_engine_pm_put_async(engine);
4017 }
4018 
guc_virtual_context_enter(struct intel_context * ce)4019 static void guc_virtual_context_enter(struct intel_context *ce)
4020 {
4021 	intel_engine_mask_t tmp, mask = ce->engine->mask;
4022 	struct intel_engine_cs *engine;
4023 
4024 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
4025 		intel_engine_pm_get(engine);
4026 
4027 	intel_timeline_enter(ce->timeline);
4028 }
4029 
guc_virtual_context_exit(struct intel_context * ce)4030 static void guc_virtual_context_exit(struct intel_context *ce)
4031 {
4032 	intel_engine_mask_t tmp, mask = ce->engine->mask;
4033 	struct intel_engine_cs *engine;
4034 
4035 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
4036 		intel_engine_pm_put(engine);
4037 
4038 	intel_timeline_exit(ce->timeline);
4039 }
4040 
guc_virtual_context_alloc(struct intel_context * ce)4041 static int guc_virtual_context_alloc(struct intel_context *ce)
4042 {
4043 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
4044 
4045 	return lrc_alloc(ce, engine);
4046 }
4047 
4048 static const struct intel_context_ops virtual_guc_context_ops = {
4049 	.flags = COPS_RUNTIME_CYCLES,
4050 	.alloc = guc_virtual_context_alloc,
4051 
4052 	.close = guc_context_close,
4053 
4054 	.pre_pin = guc_virtual_context_pre_pin,
4055 	.pin = guc_virtual_context_pin,
4056 	.unpin = guc_virtual_context_unpin,
4057 	.post_unpin = guc_context_post_unpin,
4058 
4059 	.revoke = guc_context_revoke,
4060 
4061 	.cancel_request = guc_context_cancel_request,
4062 
4063 	.enter = guc_virtual_context_enter,
4064 	.exit = guc_virtual_context_exit,
4065 
4066 	.sched_disable = guc_context_sched_disable,
4067 	.update_stats = guc_context_update_stats,
4068 
4069 	.destroy = guc_context_destroy,
4070 
4071 	.get_sibling = guc_virtual_get_sibling,
4072 };
4073 
guc_parent_context_pin(struct intel_context * ce,void * vaddr)4074 static int guc_parent_context_pin(struct intel_context *ce, void *vaddr)
4075 {
4076 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
4077 	struct intel_guc *guc = ce_to_guc(ce);
4078 	int ret;
4079 
4080 	GEM_BUG_ON(!intel_context_is_parent(ce));
4081 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4082 
4083 	ret = pin_guc_id(guc, ce);
4084 	if (unlikely(ret < 0))
4085 		return ret;
4086 
4087 	return __guc_context_pin(ce, engine, vaddr);
4088 }
4089 
guc_child_context_pin(struct intel_context * ce,void * vaddr)4090 static int guc_child_context_pin(struct intel_context *ce, void *vaddr)
4091 {
4092 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
4093 
4094 	GEM_BUG_ON(!intel_context_is_child(ce));
4095 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4096 
4097 	__intel_context_pin(ce->parallel.parent);
4098 	return __guc_context_pin(ce, engine, vaddr);
4099 }
4100 
guc_parent_context_unpin(struct intel_context * ce)4101 static void guc_parent_context_unpin(struct intel_context *ce)
4102 {
4103 	struct intel_guc *guc = ce_to_guc(ce);
4104 
4105 	GEM_BUG_ON(context_enabled(ce));
4106 	GEM_BUG_ON(intel_context_is_barrier(ce));
4107 	GEM_BUG_ON(!intel_context_is_parent(ce));
4108 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4109 
4110 	unpin_guc_id(guc, ce);
4111 	lrc_unpin(ce);
4112 }
4113 
guc_child_context_unpin(struct intel_context * ce)4114 static void guc_child_context_unpin(struct intel_context *ce)
4115 {
4116 	GEM_BUG_ON(context_enabled(ce));
4117 	GEM_BUG_ON(intel_context_is_barrier(ce));
4118 	GEM_BUG_ON(!intel_context_is_child(ce));
4119 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4120 
4121 	lrc_unpin(ce);
4122 }
4123 
guc_child_context_post_unpin(struct intel_context * ce)4124 static void guc_child_context_post_unpin(struct intel_context *ce)
4125 {
4126 	GEM_BUG_ON(!intel_context_is_child(ce));
4127 	GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent));
4128 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4129 
4130 	lrc_post_unpin(ce);
4131 	intel_context_unpin(ce->parallel.parent);
4132 }
4133 
guc_child_context_destroy(struct kref * kref)4134 static void guc_child_context_destroy(struct kref *kref)
4135 {
4136 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
4137 
4138 	__guc_context_destroy(ce);
4139 }
4140 
4141 static const struct intel_context_ops virtual_parent_context_ops = {
4142 	.alloc = guc_virtual_context_alloc,
4143 
4144 	.close = guc_context_close,
4145 
4146 	.pre_pin = guc_context_pre_pin,
4147 	.pin = guc_parent_context_pin,
4148 	.unpin = guc_parent_context_unpin,
4149 	.post_unpin = guc_context_post_unpin,
4150 
4151 	.revoke = guc_context_revoke,
4152 
4153 	.cancel_request = guc_context_cancel_request,
4154 
4155 	.enter = guc_virtual_context_enter,
4156 	.exit = guc_virtual_context_exit,
4157 
4158 	.sched_disable = guc_context_sched_disable,
4159 
4160 	.destroy = guc_context_destroy,
4161 
4162 	.get_sibling = guc_virtual_get_sibling,
4163 };
4164 
4165 static const struct intel_context_ops virtual_child_context_ops = {
4166 	.alloc = guc_virtual_context_alloc,
4167 
4168 	.pre_pin = guc_context_pre_pin,
4169 	.pin = guc_child_context_pin,
4170 	.unpin = guc_child_context_unpin,
4171 	.post_unpin = guc_child_context_post_unpin,
4172 
4173 	.cancel_request = guc_context_cancel_request,
4174 
4175 	.enter = guc_virtual_context_enter,
4176 	.exit = guc_virtual_context_exit,
4177 
4178 	.destroy = guc_child_context_destroy,
4179 
4180 	.get_sibling = guc_virtual_get_sibling,
4181 };
4182 
4183 /*
4184  * The below override of the breadcrumbs is enabled when the user configures a
4185  * context for parallel submission (multi-lrc, parent-child).
4186  *
4187  * The overridden breadcrumbs implements an algorithm which allows the GuC to
4188  * safely preempt all the hw contexts configured for parallel submission
4189  * between each BB. The contract between the i915 and GuC is if the parent
4190  * context can be preempted, all the children can be preempted, and the GuC will
4191  * always try to preempt the parent before the children. A handshake between the
4192  * parent / children breadcrumbs ensures the i915 holds up its end of the deal
4193  * creating a window to preempt between each set of BBs.
4194  */
4195 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
4196 						     u64 offset, u32 len,
4197 						     const unsigned int flags);
4198 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
4199 						    u64 offset, u32 len,
4200 						    const unsigned int flags);
4201 static u32 *
4202 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
4203 						 u32 *cs);
4204 static u32 *
4205 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
4206 						u32 *cs);
4207 
4208 static struct intel_context *
guc_create_parallel(struct intel_engine_cs ** engines,unsigned int num_siblings,unsigned int width)4209 guc_create_parallel(struct intel_engine_cs **engines,
4210 		    unsigned int num_siblings,
4211 		    unsigned int width)
4212 {
4213 	struct intel_engine_cs **siblings = NULL;
4214 	struct intel_context *parent = NULL, *ce, *err;
4215 	int i, j;
4216 
4217 	siblings = kmalloc_array(num_siblings,
4218 				 sizeof(*siblings),
4219 				 GFP_KERNEL);
4220 	if (!siblings)
4221 		return ERR_PTR(-ENOMEM);
4222 
4223 	for (i = 0; i < width; ++i) {
4224 		for (j = 0; j < num_siblings; ++j)
4225 			siblings[j] = engines[i * num_siblings + j];
4226 
4227 		ce = intel_engine_create_virtual(siblings, num_siblings,
4228 						 FORCE_VIRTUAL);
4229 		if (IS_ERR(ce)) {
4230 			err = ERR_CAST(ce);
4231 			goto unwind;
4232 		}
4233 
4234 		if (i == 0) {
4235 			parent = ce;
4236 			parent->ops = &virtual_parent_context_ops;
4237 		} else {
4238 			ce->ops = &virtual_child_context_ops;
4239 			intel_context_bind_parent_child(parent, ce);
4240 		}
4241 	}
4242 
4243 	parent->parallel.fence_context = dma_fence_context_alloc(1);
4244 
4245 	parent->engine->emit_bb_start =
4246 		emit_bb_start_parent_no_preempt_mid_batch;
4247 	parent->engine->emit_fini_breadcrumb =
4248 		emit_fini_breadcrumb_parent_no_preempt_mid_batch;
4249 	parent->engine->emit_fini_breadcrumb_dw =
4250 		12 + 4 * parent->parallel.number_children;
4251 	for_each_child(parent, ce) {
4252 		ce->engine->emit_bb_start =
4253 			emit_bb_start_child_no_preempt_mid_batch;
4254 		ce->engine->emit_fini_breadcrumb =
4255 			emit_fini_breadcrumb_child_no_preempt_mid_batch;
4256 		ce->engine->emit_fini_breadcrumb_dw = 16;
4257 	}
4258 
4259 	kfree(siblings);
4260 	return parent;
4261 
4262 unwind:
4263 	if (parent)
4264 		intel_context_put(parent);
4265 	kfree(siblings);
4266 	return err;
4267 }
4268 
4269 static bool
guc_irq_enable_breadcrumbs(struct intel_breadcrumbs * b)4270 guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b)
4271 {
4272 	struct intel_engine_cs *sibling;
4273 	intel_engine_mask_t tmp, mask = b->engine_mask;
4274 	bool result = false;
4275 
4276 	for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
4277 		result |= intel_engine_irq_enable(sibling);
4278 
4279 	return result;
4280 }
4281 
4282 static void
guc_irq_disable_breadcrumbs(struct intel_breadcrumbs * b)4283 guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b)
4284 {
4285 	struct intel_engine_cs *sibling;
4286 	intel_engine_mask_t tmp, mask = b->engine_mask;
4287 
4288 	for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
4289 		intel_engine_irq_disable(sibling);
4290 }
4291 
guc_init_breadcrumbs(struct intel_engine_cs * engine)4292 static void guc_init_breadcrumbs(struct intel_engine_cs *engine)
4293 {
4294 	int i;
4295 
4296 	/*
4297 	 * In GuC submission mode we do not know which physical engine a request
4298 	 * will be scheduled on, this creates a problem because the breadcrumb
4299 	 * interrupt is per physical engine. To work around this we attach
4300 	 * requests and direct all breadcrumb interrupts to the first instance
4301 	 * of an engine per class. In addition all breadcrumb interrupts are
4302 	 * enabled / disabled across an engine class in unison.
4303 	 */
4304 	for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) {
4305 		struct intel_engine_cs *sibling =
4306 			engine->gt->engine_class[engine->class][i];
4307 
4308 		if (sibling) {
4309 			if (engine->breadcrumbs != sibling->breadcrumbs) {
4310 				intel_breadcrumbs_put(engine->breadcrumbs);
4311 				engine->breadcrumbs =
4312 					intel_breadcrumbs_get(sibling->breadcrumbs);
4313 			}
4314 			break;
4315 		}
4316 	}
4317 
4318 	if (engine->breadcrumbs) {
4319 		engine->breadcrumbs->engine_mask |= engine->mask;
4320 		engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs;
4321 		engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs;
4322 	}
4323 }
4324 
guc_bump_inflight_request_prio(struct i915_request * rq,int prio)4325 static void guc_bump_inflight_request_prio(struct i915_request *rq,
4326 					   int prio)
4327 {
4328 	struct intel_context *ce = request_to_scheduling_context(rq);
4329 	u8 new_guc_prio = map_i915_prio_to_guc_prio(prio);
4330 
4331 	/* Short circuit function */
4332 	if (prio < I915_PRIORITY_NORMAL)
4333 		return;
4334 
4335 	spin_lock(&ce->guc_state.lock);
4336 
4337 	if (rq->guc_prio == GUC_PRIO_FINI)
4338 		goto exit;
4339 
4340 	if (!new_guc_prio_higher(rq->guc_prio, new_guc_prio))
4341 		goto exit;
4342 
4343 	if (rq->guc_prio != GUC_PRIO_INIT)
4344 		sub_context_inflight_prio(ce, rq->guc_prio);
4345 
4346 	rq->guc_prio = new_guc_prio;
4347 	add_context_inflight_prio(ce, rq->guc_prio);
4348 	update_context_prio(ce);
4349 
4350 exit:
4351 	spin_unlock(&ce->guc_state.lock);
4352 }
4353 
guc_retire_inflight_request_prio(struct i915_request * rq)4354 static void guc_retire_inflight_request_prio(struct i915_request *rq)
4355 {
4356 	struct intel_context *ce = request_to_scheduling_context(rq);
4357 
4358 	spin_lock(&ce->guc_state.lock);
4359 	guc_prio_fini(rq, ce);
4360 	spin_unlock(&ce->guc_state.lock);
4361 }
4362 
sanitize_hwsp(struct intel_engine_cs * engine)4363 static void sanitize_hwsp(struct intel_engine_cs *engine)
4364 {
4365 	struct intel_timeline *tl;
4366 
4367 	list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
4368 		intel_timeline_reset_seqno(tl);
4369 }
4370 
guc_sanitize(struct intel_engine_cs * engine)4371 static void guc_sanitize(struct intel_engine_cs *engine)
4372 {
4373 	/*
4374 	 * Poison residual state on resume, in case the suspend didn't!
4375 	 *
4376 	 * We have to assume that across suspend/resume (or other loss
4377 	 * of control) that the contents of our pinned buffers has been
4378 	 * lost, replaced by garbage. Since this doesn't always happen,
4379 	 * let's poison such state so that we more quickly spot when
4380 	 * we falsely assume it has been preserved.
4381 	 */
4382 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
4383 		memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
4384 
4385 	/*
4386 	 * The kernel_context HWSP is stored in the status_page. As above,
4387 	 * that may be lost on resume/initialisation, and so we need to
4388 	 * reset the value in the HWSP.
4389 	 */
4390 	sanitize_hwsp(engine);
4391 
4392 	/* And scrub the dirty cachelines for the HWSP */
4393 	drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE);
4394 
4395 	intel_engine_reset_pinned_contexts(engine);
4396 }
4397 
setup_hwsp(struct intel_engine_cs * engine)4398 static void setup_hwsp(struct intel_engine_cs *engine)
4399 {
4400 	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
4401 
4402 	ENGINE_WRITE_FW(engine,
4403 			RING_HWS_PGA,
4404 			i915_ggtt_offset(engine->status_page.vma));
4405 }
4406 
start_engine(struct intel_engine_cs * engine)4407 static void start_engine(struct intel_engine_cs *engine)
4408 {
4409 	ENGINE_WRITE_FW(engine,
4410 			RING_MODE_GEN7,
4411 			_MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
4412 
4413 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
4414 	ENGINE_POSTING_READ(engine, RING_MI_MODE);
4415 }
4416 
guc_resume(struct intel_engine_cs * engine)4417 static int guc_resume(struct intel_engine_cs *engine)
4418 {
4419 	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
4420 
4421 	intel_mocs_init_engine(engine);
4422 
4423 	intel_breadcrumbs_reset(engine->breadcrumbs);
4424 
4425 	setup_hwsp(engine);
4426 	start_engine(engine);
4427 
4428 	if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
4429 		xehp_enable_ccs_engines(engine);
4430 
4431 	return 0;
4432 }
4433 
guc_sched_engine_disabled(struct i915_sched_engine * sched_engine)4434 static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine)
4435 {
4436 	return !sched_engine->tasklet.callback;
4437 }
4438 
guc_set_default_submission(struct intel_engine_cs * engine)4439 static void guc_set_default_submission(struct intel_engine_cs *engine)
4440 {
4441 	engine->submit_request = guc_submit_request;
4442 }
4443 
guc_kernel_context_pin(struct intel_guc * guc,struct intel_context * ce)4444 static inline int guc_kernel_context_pin(struct intel_guc *guc,
4445 					 struct intel_context *ce)
4446 {
4447 	int ret;
4448 
4449 	/*
4450 	 * Note: we purposefully do not check the returns below because
4451 	 * the registration can only fail if a reset is just starting.
4452 	 * This is called at the end of reset so presumably another reset
4453 	 * isn't happening and even it did this code would be run again.
4454 	 */
4455 
4456 	if (context_guc_id_invalid(ce)) {
4457 		ret = pin_guc_id(guc, ce);
4458 
4459 		if (ret < 0)
4460 			return ret;
4461 	}
4462 
4463 	if (!test_bit(CONTEXT_GUC_INIT, &ce->flags))
4464 		guc_context_init(ce);
4465 
4466 	ret = try_context_registration(ce, true);
4467 	if (ret)
4468 		unpin_guc_id(guc, ce);
4469 
4470 	return ret;
4471 }
4472 
guc_init_submission(struct intel_guc * guc)4473 static inline int guc_init_submission(struct intel_guc *guc)
4474 {
4475 	struct intel_gt *gt = guc_to_gt(guc);
4476 	struct intel_engine_cs *engine;
4477 	enum intel_engine_id id;
4478 
4479 	/* make sure all descriptors are clean... */
4480 	xa_destroy(&guc->context_lookup);
4481 
4482 	/*
4483 	 * A reset might have occurred while we had a pending stalled request,
4484 	 * so make sure we clean that up.
4485 	 */
4486 	guc->stalled_request = NULL;
4487 	guc->submission_stall_reason = STALL_NONE;
4488 
4489 	/*
4490 	 * Some contexts might have been pinned before we enabled GuC
4491 	 * submission, so we need to add them to the GuC bookeeping.
4492 	 * Also, after a reset the of the GuC we want to make sure that the
4493 	 * information shared with GuC is properly reset. The kernel LRCs are
4494 	 * not attached to the gem_context, so they need to be added separately.
4495 	 */
4496 	for_each_engine(engine, gt, id) {
4497 		struct intel_context *ce;
4498 
4499 		list_for_each_entry(ce, &engine->pinned_contexts_list,
4500 				    pinned_contexts_link) {
4501 			int ret = guc_kernel_context_pin(guc, ce);
4502 
4503 			if (ret) {
4504 				/* No point in trying to clean up as i915 will wedge on failure */
4505 				return ret;
4506 			}
4507 		}
4508 	}
4509 
4510 	return 0;
4511 }
4512 
guc_release(struct intel_engine_cs * engine)4513 static void guc_release(struct intel_engine_cs *engine)
4514 {
4515 	engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
4516 
4517 	intel_engine_cleanup_common(engine);
4518 	lrc_fini_wa_ctx(engine);
4519 }
4520 
virtual_guc_bump_serial(struct intel_engine_cs * engine)4521 static void virtual_guc_bump_serial(struct intel_engine_cs *engine)
4522 {
4523 	struct intel_engine_cs *e;
4524 	intel_engine_mask_t tmp, mask = engine->mask;
4525 
4526 	for_each_engine_masked(e, engine->gt, mask, tmp)
4527 		e->serial++;
4528 }
4529 
guc_default_vfuncs(struct intel_engine_cs * engine)4530 static void guc_default_vfuncs(struct intel_engine_cs *engine)
4531 {
4532 	/* Default vfuncs which can be overridden by each engine. */
4533 
4534 	engine->resume = guc_resume;
4535 
4536 	engine->cops = &guc_context_ops;
4537 	engine->request_alloc = guc_request_alloc;
4538 	engine->add_active_request = add_to_context;
4539 	engine->remove_active_request = remove_from_context;
4540 
4541 	engine->sched_engine->schedule = i915_schedule;
4542 
4543 	engine->reset.prepare = guc_engine_reset_prepare;
4544 	engine->reset.rewind = guc_rewind_nop;
4545 	engine->reset.cancel = guc_reset_nop;
4546 	engine->reset.finish = guc_reset_nop;
4547 
4548 	engine->emit_flush = gen8_emit_flush_xcs;
4549 	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
4550 	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
4551 	if (GRAPHICS_VER(engine->i915) >= 12) {
4552 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
4553 		engine->emit_flush = gen12_emit_flush_xcs;
4554 	}
4555 	engine->set_default_submission = guc_set_default_submission;
4556 	engine->busyness = guc_engine_busyness;
4557 
4558 	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
4559 	engine->flags |= I915_ENGINE_HAS_PREEMPTION;
4560 	engine->flags |= I915_ENGINE_HAS_TIMESLICES;
4561 
4562 	/* Wa_14014475959:dg2 */
4563 	if (engine->class == COMPUTE_CLASS)
4564 		if (IS_GFX_GT_IP_STEP(engine->gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
4565 		    IS_DG2(engine->i915))
4566 			engine->flags |= I915_ENGINE_USES_WA_HOLD_SWITCHOUT;
4567 
4568 	/* Wa_16019325821 */
4569 	/* Wa_14019159160 */
4570 	if ((engine->class == COMPUTE_CLASS || engine->class == RENDER_CLASS) &&
4571 	    IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74)))
4572 		engine->flags |= I915_ENGINE_USES_WA_HOLD_SWITCHOUT;
4573 
4574 	/*
4575 	 * TODO: GuC supports timeslicing and semaphores as well, but they're
4576 	 * handled by the firmware so some minor tweaks are required before
4577 	 * enabling.
4578 	 *
4579 	 * engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
4580 	 */
4581 
4582 	engine->emit_bb_start = gen8_emit_bb_start;
4583 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
4584 		engine->emit_bb_start = xehp_emit_bb_start;
4585 }
4586 
rcs_submission_override(struct intel_engine_cs * engine)4587 static void rcs_submission_override(struct intel_engine_cs *engine)
4588 {
4589 	switch (GRAPHICS_VER(engine->i915)) {
4590 	case 12:
4591 		engine->emit_flush = gen12_emit_flush_rcs;
4592 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
4593 		break;
4594 	case 11:
4595 		engine->emit_flush = gen11_emit_flush_rcs;
4596 		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
4597 		break;
4598 	default:
4599 		engine->emit_flush = gen8_emit_flush_rcs;
4600 		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
4601 		break;
4602 	}
4603 }
4604 
guc_default_irqs(struct intel_engine_cs * engine)4605 static inline void guc_default_irqs(struct intel_engine_cs *engine)
4606 {
4607 	engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT;
4608 	intel_engine_set_irq_handler(engine, cs_irq_handler);
4609 }
4610 
guc_sched_engine_destroy(struct kref * kref)4611 static void guc_sched_engine_destroy(struct kref *kref)
4612 {
4613 	struct i915_sched_engine *sched_engine =
4614 		container_of(kref, typeof(*sched_engine), ref);
4615 	struct intel_guc *guc = sched_engine->private_data;
4616 
4617 	guc->sched_engine = NULL;
4618 	tasklet_kill(&sched_engine->tasklet); /* flush the callback */
4619 	kfree(sched_engine);
4620 }
4621 
intel_guc_submission_setup(struct intel_engine_cs * engine)4622 int intel_guc_submission_setup(struct intel_engine_cs *engine)
4623 {
4624 	struct drm_i915_private *i915 = engine->i915;
4625 	struct intel_guc *guc = gt_to_guc(engine->gt);
4626 
4627 	/*
4628 	 * The setup relies on several assumptions (e.g. irqs always enabled)
4629 	 * that are only valid on gen11+
4630 	 */
4631 	GEM_BUG_ON(GRAPHICS_VER(i915) < 11);
4632 
4633 	if (!guc->sched_engine) {
4634 		guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
4635 		if (!guc->sched_engine)
4636 			return -ENOMEM;
4637 
4638 		guc->sched_engine->schedule = i915_schedule;
4639 		guc->sched_engine->disabled = guc_sched_engine_disabled;
4640 		guc->sched_engine->private_data = guc;
4641 		guc->sched_engine->destroy = guc_sched_engine_destroy;
4642 		guc->sched_engine->bump_inflight_request_prio =
4643 			guc_bump_inflight_request_prio;
4644 		guc->sched_engine->retire_inflight_request_prio =
4645 			guc_retire_inflight_request_prio;
4646 		tasklet_setup(&guc->sched_engine->tasklet,
4647 			      guc_submission_tasklet);
4648 	}
4649 	i915_sched_engine_put(engine->sched_engine);
4650 	engine->sched_engine = i915_sched_engine_get(guc->sched_engine);
4651 
4652 	guc_default_vfuncs(engine);
4653 	guc_default_irqs(engine);
4654 	guc_init_breadcrumbs(engine);
4655 
4656 	if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
4657 		rcs_submission_override(engine);
4658 
4659 	lrc_init_wa_ctx(engine);
4660 
4661 	/* Finally, take ownership and responsibility for cleanup! */
4662 	engine->sanitize = guc_sanitize;
4663 	engine->release = guc_release;
4664 
4665 	return 0;
4666 }
4667 
4668 struct scheduling_policy {
4669 	/* internal data */
4670 	u32 max_words, num_words;
4671 	u32 count;
4672 	/* API data */
4673 	struct guc_update_scheduling_policy h2g;
4674 };
4675 
__guc_scheduling_policy_action_size(struct scheduling_policy * policy)4676 static u32 __guc_scheduling_policy_action_size(struct scheduling_policy *policy)
4677 {
4678 	u32 *start = (void *)&policy->h2g;
4679 	u32 *end = policy->h2g.data + policy->num_words;
4680 	size_t delta = end - start;
4681 
4682 	return delta;
4683 }
4684 
__guc_scheduling_policy_start_klv(struct scheduling_policy * policy)4685 static struct scheduling_policy *__guc_scheduling_policy_start_klv(struct scheduling_policy *policy)
4686 {
4687 	policy->h2g.header.action = INTEL_GUC_ACTION_UPDATE_SCHEDULING_POLICIES_KLV;
4688 	policy->max_words = ARRAY_SIZE(policy->h2g.data);
4689 	policy->num_words = 0;
4690 	policy->count = 0;
4691 
4692 	return policy;
4693 }
4694 
__guc_scheduling_policy_add_klv(struct scheduling_policy * policy,u32 action,u32 * data,u32 len)4695 static void __guc_scheduling_policy_add_klv(struct scheduling_policy *policy,
4696 					    u32 action, u32 *data, u32 len)
4697 {
4698 	u32 *klv_ptr = policy->h2g.data + policy->num_words;
4699 
4700 	GEM_BUG_ON((policy->num_words + 1 + len) > policy->max_words);
4701 	*(klv_ptr++) = FIELD_PREP(GUC_KLV_0_KEY, action) |
4702 		       FIELD_PREP(GUC_KLV_0_LEN, len);
4703 	memcpy(klv_ptr, data, sizeof(u32) * len);
4704 	policy->num_words += 1 + len;
4705 	policy->count++;
4706 }
4707 
__guc_action_set_scheduling_policies(struct intel_guc * guc,struct scheduling_policy * policy)4708 static int __guc_action_set_scheduling_policies(struct intel_guc *guc,
4709 						struct scheduling_policy *policy)
4710 {
4711 	int ret;
4712 
4713 	ret = intel_guc_send(guc, (u32 *)&policy->h2g,
4714 			     __guc_scheduling_policy_action_size(policy));
4715 	if (ret < 0) {
4716 		guc_probe_error(guc, "Failed to configure global scheduling policies: %pe!\n",
4717 				ERR_PTR(ret));
4718 		return ret;
4719 	}
4720 
4721 	if (ret != policy->count) {
4722 		guc_warn(guc, "global scheduler policy processed %d of %d KLVs!",
4723 			 ret, policy->count);
4724 		if (ret > policy->count)
4725 			return -EPROTO;
4726 	}
4727 
4728 	return 0;
4729 }
4730 
guc_init_global_schedule_policy(struct intel_guc * guc)4731 static int guc_init_global_schedule_policy(struct intel_guc *guc)
4732 {
4733 	struct scheduling_policy policy;
4734 	struct intel_gt *gt = guc_to_gt(guc);
4735 	intel_wakeref_t wakeref;
4736 	int ret;
4737 
4738 	if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 1, 0))
4739 		return 0;
4740 
4741 	__guc_scheduling_policy_start_klv(&policy);
4742 
4743 	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref) {
4744 		u32 yield[] = {
4745 			GLOBAL_SCHEDULE_POLICY_RC_YIELD_DURATION,
4746 			GLOBAL_SCHEDULE_POLICY_RC_YIELD_RATIO,
4747 		};
4748 
4749 		__guc_scheduling_policy_add_klv(&policy,
4750 						GUC_SCHEDULING_POLICIES_KLV_ID_RENDER_COMPUTE_YIELD,
4751 						yield, ARRAY_SIZE(yield));
4752 
4753 		ret = __guc_action_set_scheduling_policies(guc, &policy);
4754 	}
4755 
4756 	return ret;
4757 }
4758 
guc_route_semaphores(struct intel_guc * guc,bool to_guc)4759 static void guc_route_semaphores(struct intel_guc *guc, bool to_guc)
4760 {
4761 	struct intel_gt *gt = guc_to_gt(guc);
4762 	u32 val;
4763 
4764 	if (GRAPHICS_VER(gt->i915) < 12)
4765 		return;
4766 
4767 	if (to_guc)
4768 		val = GUC_SEM_INTR_ROUTE_TO_GUC | GUC_SEM_INTR_ENABLE_ALL;
4769 	else
4770 		val = 0;
4771 
4772 	intel_uncore_write(gt->uncore, GEN12_GUC_SEM_INTR_ENABLES, val);
4773 }
4774 
intel_guc_submission_enable(struct intel_guc * guc)4775 int intel_guc_submission_enable(struct intel_guc *guc)
4776 {
4777 	int ret;
4778 
4779 	/* Semaphore interrupt enable and route to GuC */
4780 	guc_route_semaphores(guc, true);
4781 
4782 	ret = guc_init_submission(guc);
4783 	if (ret)
4784 		goto fail_sem;
4785 
4786 	ret = guc_init_engine_stats(guc);
4787 	if (ret)
4788 		goto fail_sem;
4789 
4790 	ret = guc_init_global_schedule_policy(guc);
4791 	if (ret)
4792 		goto fail_stats;
4793 
4794 	return 0;
4795 
4796 fail_stats:
4797 	guc_fini_engine_stats(guc);
4798 fail_sem:
4799 	guc_route_semaphores(guc, false);
4800 	return ret;
4801 }
4802 
4803 /* Note: By the time we're here, GuC may have already been reset */
intel_guc_submission_disable(struct intel_guc * guc)4804 void intel_guc_submission_disable(struct intel_guc *guc)
4805 {
4806 	guc_cancel_busyness_worker(guc);
4807 
4808 	/* Semaphore interrupt disable and route to host */
4809 	guc_route_semaphores(guc, false);
4810 }
4811 
__guc_submission_supported(struct intel_guc * guc)4812 static bool __guc_submission_supported(struct intel_guc *guc)
4813 {
4814 	/* GuC submission is unavailable for pre-Gen11 */
4815 	return intel_guc_is_supported(guc) &&
4816 	       GRAPHICS_VER(guc_to_i915(guc)) >= 11;
4817 }
4818 
__guc_submission_selected(struct intel_guc * guc)4819 static bool __guc_submission_selected(struct intel_guc *guc)
4820 {
4821 	struct drm_i915_private *i915 = guc_to_i915(guc);
4822 
4823 	if (!intel_guc_submission_is_supported(guc))
4824 		return false;
4825 
4826 	return i915->params.enable_guc & ENABLE_GUC_SUBMISSION;
4827 }
4828 
intel_guc_sched_disable_gucid_threshold_max(struct intel_guc * guc)4829 int intel_guc_sched_disable_gucid_threshold_max(struct intel_guc *guc)
4830 {
4831 	return guc->submission_state.num_guc_ids - NUMBER_MULTI_LRC_GUC_ID(guc);
4832 }
4833 
4834 /*
4835  * This default value of 33 milisecs (+1 milisec round up) ensures 30fps or higher
4836  * workloads are able to enjoy the latency reduction when delaying the schedule-disable
4837  * operation. This matches the 30fps game-render + encode (real world) workload this
4838  * knob was tested against.
4839  */
4840 #define SCHED_DISABLE_DELAY_MS	34
4841 
4842 /*
4843  * A threshold of 75% is a reasonable starting point considering that real world apps
4844  * generally don't get anywhere near this.
4845  */
4846 #define NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(__guc) \
4847 	(((intel_guc_sched_disable_gucid_threshold_max(guc)) * 3) / 4)
4848 
intel_guc_submission_init_early(struct intel_guc * guc)4849 void intel_guc_submission_init_early(struct intel_guc *guc)
4850 {
4851 	xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ);
4852 
4853 	spin_lock_init(&guc->submission_state.lock);
4854 	INIT_LIST_HEAD(&guc->submission_state.guc_id_list);
4855 	ida_init(&guc->submission_state.guc_ids);
4856 	INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts);
4857 	INIT_WORK(&guc->submission_state.destroyed_worker,
4858 		  destroyed_worker_func);
4859 	INIT_WORK(&guc->submission_state.reset_fail_worker,
4860 		  reset_fail_worker_func);
4861 
4862 	spin_lock_init(&guc->timestamp.lock);
4863 	INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping);
4864 
4865 	guc->submission_state.sched_disable_delay_ms = SCHED_DISABLE_DELAY_MS;
4866 	guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID;
4867 	guc->submission_state.sched_disable_gucid_threshold =
4868 		NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(guc);
4869 	guc->submission_supported = __guc_submission_supported(guc);
4870 	guc->submission_selected = __guc_submission_selected(guc);
4871 }
4872 
4873 static inline struct intel_context *
g2h_context_lookup(struct intel_guc * guc,u32 ctx_id)4874 g2h_context_lookup(struct intel_guc *guc, u32 ctx_id)
4875 {
4876 	struct intel_context *ce;
4877 
4878 	if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) {
4879 		guc_err(guc, "Invalid ctx_id %u\n", ctx_id);
4880 		return NULL;
4881 	}
4882 
4883 	ce = __get_context(guc, ctx_id);
4884 	if (unlikely(!ce)) {
4885 		guc_err(guc, "Context is NULL, ctx_id %u\n", ctx_id);
4886 		return NULL;
4887 	}
4888 
4889 	if (unlikely(intel_context_is_child(ce))) {
4890 		guc_err(guc, "Context is child, ctx_id %u\n", ctx_id);
4891 		return NULL;
4892 	}
4893 
4894 	return ce;
4895 }
4896 
wait_wake_outstanding_tlb_g2h(struct intel_guc * guc,u32 seqno)4897 static void wait_wake_outstanding_tlb_g2h(struct intel_guc *guc, u32 seqno)
4898 {
4899 	struct intel_guc_tlb_wait *wait;
4900 	unsigned long flags;
4901 
4902 	xa_lock_irqsave(&guc->tlb_lookup, flags);
4903 	wait = xa_load(&guc->tlb_lookup, seqno);
4904 
4905 	if (wait)
4906 		wake_up(&wait->wq);
4907 	else
4908 		guc_dbg(guc,
4909 			"Stale TLB invalidation response with seqno %d\n", seqno);
4910 
4911 	xa_unlock_irqrestore(&guc->tlb_lookup, flags);
4912 }
4913 
intel_guc_tlb_invalidation_done(struct intel_guc * guc,const u32 * payload,u32 len)4914 int intel_guc_tlb_invalidation_done(struct intel_guc *guc,
4915 				    const u32 *payload, u32 len)
4916 {
4917 	if (len < 1)
4918 		return -EPROTO;
4919 
4920 	wait_wake_outstanding_tlb_g2h(guc, payload[0]);
4921 	return 0;
4922 }
4923 
must_wait_woken(struct wait_queue_entry * wq_entry,long timeout)4924 static long must_wait_woken(struct wait_queue_entry *wq_entry, long timeout)
4925 {
4926 	/*
4927 	 * This is equivalent to wait_woken() with the exception that
4928 	 * we do not wake up early if the kthread task has been completed.
4929 	 * As we are called from page reclaim in any task context,
4930 	 * we may be invoked from stopped kthreads, but we *must*
4931 	 * complete the wait from the HW.
4932 	 */
4933 	do {
4934 		set_current_state(TASK_UNINTERRUPTIBLE);
4935 		if (wq_entry->flags & WQ_FLAG_WOKEN)
4936 			break;
4937 
4938 		timeout = schedule_timeout(timeout);
4939 	} while (timeout);
4940 
4941 	/* See wait_woken() and woken_wake_function() */
4942 	__set_current_state(TASK_RUNNING);
4943 	smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN);
4944 
4945 	return timeout;
4946 }
4947 
intel_gt_is_enabled(const struct intel_gt * gt)4948 static bool intel_gt_is_enabled(const struct intel_gt *gt)
4949 {
4950 	/* Check if GT is wedged or suspended */
4951 	if (intel_gt_is_wedged(gt) || !intel_irqs_enabled(gt->i915))
4952 		return false;
4953 	return true;
4954 }
4955 
guc_send_invalidate_tlb(struct intel_guc * guc,enum intel_guc_tlb_invalidation_type type)4956 static int guc_send_invalidate_tlb(struct intel_guc *guc,
4957 				   enum intel_guc_tlb_invalidation_type type)
4958 {
4959 	struct intel_guc_tlb_wait _wq, *wq = &_wq;
4960 	struct intel_gt *gt = guc_to_gt(guc);
4961 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
4962 	int err;
4963 	u32 seqno;
4964 	u32 action[] = {
4965 		INTEL_GUC_ACTION_TLB_INVALIDATION,
4966 		0,
4967 		REG_FIELD_PREP(INTEL_GUC_TLB_INVAL_TYPE_MASK, type) |
4968 			REG_FIELD_PREP(INTEL_GUC_TLB_INVAL_MODE_MASK,
4969 				       INTEL_GUC_TLB_INVAL_MODE_HEAVY) |
4970 			INTEL_GUC_TLB_INVAL_FLUSH_CACHE,
4971 	};
4972 	u32 size = ARRAY_SIZE(action);
4973 
4974 	/*
4975 	 * Early guard against GT enablement.  TLB invalidation should not be
4976 	 * attempted if the GT is disabled due to suspend/wedge.
4977 	 */
4978 	if (!intel_gt_is_enabled(gt))
4979 		return -EINVAL;
4980 
4981 	init_waitqueue_head(&_wq.wq);
4982 
4983 	if (xa_alloc_cyclic_irq(&guc->tlb_lookup, &seqno, wq,
4984 				xa_limit_32b, &guc->next_seqno,
4985 				GFP_ATOMIC | __GFP_NOWARN) < 0) {
4986 		/* Under severe memory pressure? Serialise TLB allocations */
4987 		xa_lock_irq(&guc->tlb_lookup);
4988 		wq = xa_load(&guc->tlb_lookup, guc->serial_slot);
4989 		wait_event_lock_irq(wq->wq,
4990 				    !READ_ONCE(wq->busy),
4991 				    guc->tlb_lookup.xa_lock);
4992 		/*
4993 		 * Update wq->busy under lock to ensure only one waiter can
4994 		 * issue the TLB invalidation command using the serial slot at a
4995 		 * time. The condition is set to true before releasing the lock
4996 		 * so that other caller continue to wait until woken up again.
4997 		 */
4998 		wq->busy = true;
4999 		xa_unlock_irq(&guc->tlb_lookup);
5000 
5001 		seqno = guc->serial_slot;
5002 	}
5003 
5004 	action[1] = seqno;
5005 
5006 	add_wait_queue(&wq->wq, &wait);
5007 
5008 	/* This is a critical reclaim path and thus we must loop here. */
5009 	err = intel_guc_send_busy_loop(guc, action, size, G2H_LEN_DW_INVALIDATE_TLB, true);
5010 	if (err)
5011 		goto out;
5012 
5013 	/*
5014 	 * Late guard against GT enablement.  It is not an error for the TLB
5015 	 * invalidation to time out if the GT is disabled during the process
5016 	 * due to suspend/wedge.  In fact, the TLB invalidation is cancelled
5017 	 * in this case.
5018 	 */
5019 	if (!must_wait_woken(&wait, intel_guc_ct_max_queue_time_jiffies()) &&
5020 	    intel_gt_is_enabled(gt)) {
5021 		guc_err(guc,
5022 			"TLB invalidation response timed out for seqno %u\n", seqno);
5023 		err = -ETIME;
5024 	}
5025 out:
5026 	remove_wait_queue(&wq->wq, &wait);
5027 	if (seqno != guc->serial_slot)
5028 		xa_erase_irq(&guc->tlb_lookup, seqno);
5029 
5030 	return err;
5031 }
5032 
5033 /* Send a H2G command to invalidate the TLBs at engine level and beyond. */
intel_guc_invalidate_tlb_engines(struct intel_guc * guc)5034 int intel_guc_invalidate_tlb_engines(struct intel_guc *guc)
5035 {
5036 	return guc_send_invalidate_tlb(guc, INTEL_GUC_TLB_INVAL_ENGINES);
5037 }
5038 
5039 /* Send a H2G command to invalidate the GuC's internal TLB. */
intel_guc_invalidate_tlb_guc(struct intel_guc * guc)5040 int intel_guc_invalidate_tlb_guc(struct intel_guc *guc)
5041 {
5042 	return guc_send_invalidate_tlb(guc, INTEL_GUC_TLB_INVAL_GUC);
5043 }
5044 
intel_guc_deregister_done_process_msg(struct intel_guc * guc,const u32 * msg,u32 len)5045 int intel_guc_deregister_done_process_msg(struct intel_guc *guc,
5046 					  const u32 *msg,
5047 					  u32 len)
5048 {
5049 	struct intel_context *ce;
5050 	u32 ctx_id;
5051 
5052 	if (unlikely(len < 1)) {
5053 		guc_err(guc, "Invalid length %u\n", len);
5054 		return -EPROTO;
5055 	}
5056 	ctx_id = msg[0];
5057 
5058 	ce = g2h_context_lookup(guc, ctx_id);
5059 	if (unlikely(!ce))
5060 		return -EPROTO;
5061 
5062 	trace_intel_context_deregister_done(ce);
5063 
5064 #ifdef CONFIG_DRM_I915_SELFTEST
5065 	if (unlikely(ce->drop_deregister)) {
5066 		ce->drop_deregister = false;
5067 		return 0;
5068 	}
5069 #endif
5070 
5071 	if (context_wait_for_deregister_to_register(ce)) {
5072 		struct intel_runtime_pm *runtime_pm =
5073 			&ce->engine->gt->i915->runtime_pm;
5074 		intel_wakeref_t wakeref;
5075 
5076 		/*
5077 		 * Previous owner of this guc_id has been deregistered, now safe
5078 		 * register this context.
5079 		 */
5080 		with_intel_runtime_pm(runtime_pm, wakeref)
5081 			register_context(ce, true);
5082 		guc_signal_context_fence(ce);
5083 		intel_context_put(ce);
5084 	} else if (context_destroyed(ce)) {
5085 		/* Context has been destroyed */
5086 		intel_gt_pm_put_async_untracked(guc_to_gt(guc));
5087 		release_guc_id(guc, ce);
5088 		__guc_context_destroy(ce);
5089 	}
5090 
5091 	decr_outstanding_submission_g2h(guc);
5092 
5093 	return 0;
5094 }
5095 
intel_guc_sched_done_process_msg(struct intel_guc * guc,const u32 * msg,u32 len)5096 int intel_guc_sched_done_process_msg(struct intel_guc *guc,
5097 				     const u32 *msg,
5098 				     u32 len)
5099 {
5100 	struct intel_context *ce;
5101 	unsigned long flags;
5102 	u32 ctx_id;
5103 
5104 	if (unlikely(len < 2)) {
5105 		guc_err(guc, "Invalid length %u\n", len);
5106 		return -EPROTO;
5107 	}
5108 	ctx_id = msg[0];
5109 
5110 	ce = g2h_context_lookup(guc, ctx_id);
5111 	if (unlikely(!ce))
5112 		return -EPROTO;
5113 
5114 	if (unlikely(context_destroyed(ce) ||
5115 		     (!context_pending_enable(ce) &&
5116 		     !context_pending_disable(ce)))) {
5117 		guc_err(guc, "Bad context sched_state 0x%x, ctx_id %u\n",
5118 			ce->guc_state.sched_state, ctx_id);
5119 		return -EPROTO;
5120 	}
5121 
5122 	trace_intel_context_sched_done(ce);
5123 
5124 	if (context_pending_enable(ce)) {
5125 #ifdef CONFIG_DRM_I915_SELFTEST
5126 		if (unlikely(ce->drop_schedule_enable)) {
5127 			ce->drop_schedule_enable = false;
5128 			return 0;
5129 		}
5130 #endif
5131 
5132 		spin_lock_irqsave(&ce->guc_state.lock, flags);
5133 		clr_context_pending_enable(ce);
5134 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
5135 	} else if (context_pending_disable(ce)) {
5136 		bool banned;
5137 
5138 #ifdef CONFIG_DRM_I915_SELFTEST
5139 		if (unlikely(ce->drop_schedule_disable)) {
5140 			ce->drop_schedule_disable = false;
5141 			return 0;
5142 		}
5143 #endif
5144 
5145 		/*
5146 		 * Unpin must be done before __guc_signal_context_fence,
5147 		 * otherwise a race exists between the requests getting
5148 		 * submitted + retired before this unpin completes resulting in
5149 		 * the pin_count going to zero and the context still being
5150 		 * enabled.
5151 		 */
5152 		intel_context_sched_disable_unpin(ce);
5153 
5154 		spin_lock_irqsave(&ce->guc_state.lock, flags);
5155 		banned = context_banned(ce);
5156 		clr_context_banned(ce);
5157 		clr_context_pending_disable(ce);
5158 		__guc_signal_context_fence(ce);
5159 		guc_blocked_fence_complete(ce);
5160 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
5161 
5162 		if (banned) {
5163 			guc_cancel_context_requests(ce);
5164 			intel_engine_signal_breadcrumbs(ce->engine);
5165 		}
5166 	}
5167 
5168 	decr_outstanding_submission_g2h(guc);
5169 	intel_context_put(ce);
5170 
5171 	return 0;
5172 }
5173 
capture_error_state(struct intel_guc * guc,struct intel_context * ce)5174 static void capture_error_state(struct intel_guc *guc,
5175 				struct intel_context *ce)
5176 {
5177 	struct intel_gt *gt = guc_to_gt(guc);
5178 	struct drm_i915_private *i915 = gt->i915;
5179 	intel_wakeref_t wakeref;
5180 	intel_engine_mask_t engine_mask;
5181 
5182 	if (intel_engine_is_virtual(ce->engine)) {
5183 		struct intel_engine_cs *e;
5184 		intel_engine_mask_t tmp, virtual_mask = ce->engine->mask;
5185 
5186 		engine_mask = 0;
5187 		for_each_engine_masked(e, ce->engine->gt, virtual_mask, tmp) {
5188 			bool match = intel_guc_capture_is_matching_engine(gt, ce, e);
5189 
5190 			if (match) {
5191 				intel_engine_set_hung_context(e, ce);
5192 				engine_mask |= e->mask;
5193 				i915_increase_reset_engine_count(&i915->gpu_error,
5194 								 e);
5195 			}
5196 		}
5197 
5198 		if (!engine_mask) {
5199 			guc_warn(guc, "No matching physical engine capture for virtual engine context 0x%04X / %s",
5200 				 ce->guc_id.id, ce->engine->name);
5201 			engine_mask = ~0U;
5202 		}
5203 	} else {
5204 		intel_engine_set_hung_context(ce->engine, ce);
5205 		engine_mask = ce->engine->mask;
5206 		i915_increase_reset_engine_count(&i915->gpu_error, ce->engine);
5207 	}
5208 
5209 	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
5210 		i915_capture_error_state(gt, engine_mask, CORE_DUMP_FLAG_IS_GUC_CAPTURE);
5211 }
5212 
guc_context_replay(struct intel_context * ce)5213 static void guc_context_replay(struct intel_context *ce)
5214 {
5215 	struct i915_sched_engine *sched_engine = ce->engine->sched_engine;
5216 
5217 	__guc_reset_context(ce, ce->engine->mask);
5218 	tasklet_hi_schedule(&sched_engine->tasklet);
5219 }
5220 
guc_handle_context_reset(struct intel_guc * guc,struct intel_context * ce)5221 static void guc_handle_context_reset(struct intel_guc *guc,
5222 				     struct intel_context *ce)
5223 {
5224 	bool capture = intel_context_is_schedulable(ce);
5225 
5226 	trace_intel_context_reset(ce);
5227 
5228 	guc_dbg(guc, "%s context reset notification: 0x%04X on %s, exiting = %s, banned = %s\n",
5229 		capture ? "Got" : "Ignoring",
5230 		ce->guc_id.id, ce->engine->name,
5231 		str_yes_no(intel_context_is_exiting(ce)),
5232 		str_yes_no(intel_context_is_banned(ce)));
5233 
5234 	if (capture) {
5235 		capture_error_state(guc, ce);
5236 		guc_context_replay(ce);
5237 	}
5238 }
5239 
intel_guc_context_reset_process_msg(struct intel_guc * guc,const u32 * msg,u32 len)5240 int intel_guc_context_reset_process_msg(struct intel_guc *guc,
5241 					const u32 *msg, u32 len)
5242 {
5243 	struct intel_context *ce;
5244 	unsigned long flags;
5245 	int ctx_id;
5246 
5247 	if (unlikely(len != 1)) {
5248 		guc_err(guc, "Invalid length %u", len);
5249 		return -EPROTO;
5250 	}
5251 
5252 	ctx_id = msg[0];
5253 
5254 	/*
5255 	 * The context lookup uses the xarray but lookups only require an RCU lock
5256 	 * not the full spinlock. So take the lock explicitly and keep it until the
5257 	 * context has been reference count locked to ensure it can't be destroyed
5258 	 * asynchronously until the reset is done.
5259 	 */
5260 	xa_lock_irqsave(&guc->context_lookup, flags);
5261 	ce = g2h_context_lookup(guc, ctx_id);
5262 	if (ce)
5263 		intel_context_get(ce);
5264 	xa_unlock_irqrestore(&guc->context_lookup, flags);
5265 
5266 	if (unlikely(!ce))
5267 		return -EPROTO;
5268 
5269 	guc_handle_context_reset(guc, ce);
5270 	intel_context_put(ce);
5271 
5272 	return 0;
5273 }
5274 
intel_guc_error_capture_process_msg(struct intel_guc * guc,const u32 * msg,u32 len)5275 int intel_guc_error_capture_process_msg(struct intel_guc *guc,
5276 					const u32 *msg, u32 len)
5277 {
5278 	u32 status;
5279 
5280 	if (unlikely(len != 1)) {
5281 		guc_dbg(guc, "Invalid length %u", len);
5282 		return -EPROTO;
5283 	}
5284 
5285 	status = msg[0] & INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_MASK;
5286 	if (status == INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE)
5287 		guc_warn(guc, "No space for error capture");
5288 
5289 	intel_guc_capture_process(guc);
5290 
5291 	return 0;
5292 }
5293 
5294 struct intel_engine_cs *
intel_guc_lookup_engine(struct intel_guc * guc,u8 guc_class,u8 instance)5295 intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance)
5296 {
5297 	struct intel_gt *gt = guc_to_gt(guc);
5298 	u8 engine_class = guc_class_to_engine_class(guc_class);
5299 
5300 	/* Class index is checked in class converter */
5301 	GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE);
5302 
5303 	return gt->engine_class[engine_class][instance];
5304 }
5305 
reset_fail_worker_func(struct work_struct * w)5306 static void reset_fail_worker_func(struct work_struct *w)
5307 {
5308 	struct intel_guc *guc = container_of(w, struct intel_guc,
5309 					     submission_state.reset_fail_worker);
5310 	struct intel_gt *gt = guc_to_gt(guc);
5311 	intel_engine_mask_t reset_fail_mask;
5312 	unsigned long flags;
5313 
5314 	spin_lock_irqsave(&guc->submission_state.lock, flags);
5315 	reset_fail_mask = guc->submission_state.reset_fail_mask;
5316 	guc->submission_state.reset_fail_mask = 0;
5317 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
5318 
5319 	if (likely(reset_fail_mask)) {
5320 		struct intel_engine_cs *engine;
5321 		enum intel_engine_id id;
5322 
5323 		/*
5324 		 * GuC is toast at this point - it dead loops after sending the failed
5325 		 * reset notification. So need to manually determine the guilty context.
5326 		 * Note that it should be reliable to do this here because the GuC is
5327 		 * toast and will not be scheduling behind the KMD's back.
5328 		 */
5329 		for_each_engine_masked(engine, gt, reset_fail_mask, id)
5330 			intel_guc_find_hung_context(engine);
5331 
5332 		intel_gt_handle_error(gt, reset_fail_mask,
5333 				      I915_ERROR_CAPTURE,
5334 				      "GuC failed to reset engine mask=0x%x",
5335 				      reset_fail_mask);
5336 	}
5337 }
5338 
intel_guc_engine_failure_process_msg(struct intel_guc * guc,const u32 * msg,u32 len)5339 int intel_guc_engine_failure_process_msg(struct intel_guc *guc,
5340 					 const u32 *msg, u32 len)
5341 {
5342 	struct intel_engine_cs *engine;
5343 	u8 guc_class, instance;
5344 	u32 reason;
5345 	unsigned long flags;
5346 
5347 	if (unlikely(len != 3)) {
5348 		guc_err(guc, "Invalid length %u", len);
5349 		return -EPROTO;
5350 	}
5351 
5352 	guc_class = msg[0];
5353 	instance = msg[1];
5354 	reason = msg[2];
5355 
5356 	engine = intel_guc_lookup_engine(guc, guc_class, instance);
5357 	if (unlikely(!engine)) {
5358 		guc_err(guc, "Invalid engine %d:%d", guc_class, instance);
5359 		return -EPROTO;
5360 	}
5361 
5362 	/*
5363 	 * This is an unexpected failure of a hardware feature. So, log a real
5364 	 * error message not just the informational that comes with the reset.
5365 	 */
5366 	guc_err(guc, "Engine reset failed on %d:%d (%s) because 0x%08X",
5367 		guc_class, instance, engine->name, reason);
5368 
5369 	spin_lock_irqsave(&guc->submission_state.lock, flags);
5370 	guc->submission_state.reset_fail_mask |= engine->mask;
5371 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
5372 
5373 	/*
5374 	 * A GT reset flushes this worker queue (G2H handler) so we must use
5375 	 * another worker to trigger a GT reset.
5376 	 */
5377 	queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker);
5378 
5379 	return 0;
5380 }
5381 
intel_guc_find_hung_context(struct intel_engine_cs * engine)5382 void intel_guc_find_hung_context(struct intel_engine_cs *engine)
5383 {
5384 	struct intel_guc *guc = gt_to_guc(engine->gt);
5385 	struct intel_context *ce;
5386 	struct i915_request *rq;
5387 	unsigned long index;
5388 	unsigned long flags;
5389 
5390 	/* Reset called during driver load? GuC not yet initialised! */
5391 	if (unlikely(!guc_submission_initialized(guc)))
5392 		return;
5393 
5394 	xa_lock_irqsave(&guc->context_lookup, flags);
5395 	xa_for_each(&guc->context_lookup, index, ce) {
5396 		bool found;
5397 
5398 		if (!kref_get_unless_zero(&ce->ref))
5399 			continue;
5400 
5401 		xa_unlock(&guc->context_lookup);
5402 
5403 		if (!intel_context_is_pinned(ce))
5404 			goto next;
5405 
5406 		if (intel_engine_is_virtual(ce->engine)) {
5407 			if (!(ce->engine->mask & engine->mask))
5408 				goto next;
5409 		} else {
5410 			if (ce->engine != engine)
5411 				goto next;
5412 		}
5413 
5414 		found = false;
5415 		spin_lock(&ce->guc_state.lock);
5416 		list_for_each_entry(rq, &ce->guc_state.requests, sched.link) {
5417 			if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE)
5418 				continue;
5419 
5420 			found = true;
5421 			break;
5422 		}
5423 		spin_unlock(&ce->guc_state.lock);
5424 
5425 		if (found) {
5426 			intel_engine_set_hung_context(engine, ce);
5427 
5428 			/* Can only cope with one hang at a time... */
5429 			intel_context_put(ce);
5430 			xa_lock(&guc->context_lookup);
5431 			goto done;
5432 		}
5433 
5434 next:
5435 		intel_context_put(ce);
5436 		xa_lock(&guc->context_lookup);
5437 	}
5438 done:
5439 	xa_unlock_irqrestore(&guc->context_lookup, flags);
5440 }
5441 
intel_guc_dump_active_requests(struct intel_engine_cs * engine,struct i915_request * hung_rq,struct drm_printer * m)5442 void intel_guc_dump_active_requests(struct intel_engine_cs *engine,
5443 				    struct i915_request *hung_rq,
5444 				    struct drm_printer *m)
5445 {
5446 	struct intel_guc *guc = gt_to_guc(engine->gt);
5447 	struct intel_context *ce;
5448 	unsigned long index;
5449 	unsigned long flags;
5450 
5451 	/* Reset called during driver load? GuC not yet initialised! */
5452 	if (unlikely(!guc_submission_initialized(guc)))
5453 		return;
5454 
5455 	xa_lock_irqsave(&guc->context_lookup, flags);
5456 	xa_for_each(&guc->context_lookup, index, ce) {
5457 		if (!kref_get_unless_zero(&ce->ref))
5458 			continue;
5459 
5460 		xa_unlock(&guc->context_lookup);
5461 
5462 		if (!intel_context_is_pinned(ce))
5463 			goto next;
5464 
5465 		if (intel_engine_is_virtual(ce->engine)) {
5466 			if (!(ce->engine->mask & engine->mask))
5467 				goto next;
5468 		} else {
5469 			if (ce->engine != engine)
5470 				goto next;
5471 		}
5472 
5473 		spin_lock(&ce->guc_state.lock);
5474 		intel_engine_dump_active_requests(&ce->guc_state.requests,
5475 						  hung_rq, m);
5476 		spin_unlock(&ce->guc_state.lock);
5477 
5478 next:
5479 		intel_context_put(ce);
5480 		xa_lock(&guc->context_lookup);
5481 	}
5482 	xa_unlock_irqrestore(&guc->context_lookup, flags);
5483 }
5484 
intel_guc_submission_print_info(struct intel_guc * guc,struct drm_printer * p)5485 void intel_guc_submission_print_info(struct intel_guc *guc,
5486 				     struct drm_printer *p)
5487 {
5488 	struct i915_sched_engine *sched_engine = guc->sched_engine;
5489 	struct rb_node *rb;
5490 	unsigned long flags;
5491 
5492 	if (!sched_engine)
5493 		return;
5494 
5495 	drm_printf(p, "GuC Submission API Version: %d.%d.%d\n",
5496 		   guc->submission_version.major, guc->submission_version.minor,
5497 		   guc->submission_version.patch);
5498 	drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n",
5499 		   atomic_read(&guc->outstanding_submission_g2h));
5500 	drm_printf(p, "GuC tasklet count: %u\n",
5501 		   atomic_read(&sched_engine->tasklet.count));
5502 
5503 	spin_lock_irqsave(&sched_engine->lock, flags);
5504 	drm_printf(p, "Requests in GuC submit tasklet:\n");
5505 	for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
5506 		struct i915_priolist *pl = to_priolist(rb);
5507 		struct i915_request *rq;
5508 
5509 		priolist_for_each_request(rq, pl)
5510 			drm_printf(p, "guc_id=%u, seqno=%llu\n",
5511 				   rq->context->guc_id.id,
5512 				   rq->fence.seqno);
5513 	}
5514 	spin_unlock_irqrestore(&sched_engine->lock, flags);
5515 	drm_printf(p, "\n");
5516 }
5517 
guc_log_context_priority(struct drm_printer * p,struct intel_context * ce)5518 static inline void guc_log_context_priority(struct drm_printer *p,
5519 					    struct intel_context *ce)
5520 {
5521 	int i;
5522 
5523 	drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio);
5524 	drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n");
5525 	for (i = GUC_CLIENT_PRIORITY_KMD_HIGH;
5526 	     i < GUC_CLIENT_PRIORITY_NUM; ++i) {
5527 		drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n",
5528 			   i, ce->guc_state.prio_count[i]);
5529 	}
5530 	drm_printf(p, "\n");
5531 }
5532 
guc_log_context(struct drm_printer * p,struct intel_context * ce)5533 static inline void guc_log_context(struct drm_printer *p,
5534 				   struct intel_context *ce)
5535 {
5536 	drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id);
5537 	drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca);
5538 	if (intel_context_pin_if_active(ce)) {
5539 		drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n",
5540 			   ce->ring->head,
5541 			   ce->lrc_reg_state[CTX_RING_HEAD]);
5542 		drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n",
5543 			   ce->ring->tail,
5544 			   ce->lrc_reg_state[CTX_RING_TAIL]);
5545 		intel_context_unpin(ce);
5546 	} else {
5547 		drm_printf(p, "\t\tLRC Head: Internal %u, Memory not pinned\n",
5548 			   ce->ring->head);
5549 		drm_printf(p, "\t\tLRC Tail: Internal %u, Memory not pinned\n",
5550 			   ce->ring->tail);
5551 	}
5552 	drm_printf(p, "\t\tContext Pin Count: %u\n",
5553 		   atomic_read(&ce->pin_count));
5554 	drm_printf(p, "\t\tGuC ID Ref Count: %u\n",
5555 		   atomic_read(&ce->guc_id.ref));
5556 	drm_printf(p, "\t\tSchedule State: 0x%x\n",
5557 		   ce->guc_state.sched_state);
5558 }
5559 
intel_guc_submission_print_context_info(struct intel_guc * guc,struct drm_printer * p)5560 void intel_guc_submission_print_context_info(struct intel_guc *guc,
5561 					     struct drm_printer *p)
5562 {
5563 	struct intel_context *ce;
5564 	unsigned long index;
5565 	unsigned long flags;
5566 
5567 	xa_lock_irqsave(&guc->context_lookup, flags);
5568 	xa_for_each(&guc->context_lookup, index, ce) {
5569 		GEM_BUG_ON(intel_context_is_child(ce));
5570 
5571 		guc_log_context(p, ce);
5572 		guc_log_context_priority(p, ce);
5573 
5574 		if (intel_context_is_parent(ce)) {
5575 			struct intel_context *child;
5576 
5577 			drm_printf(p, "\t\tNumber children: %u\n",
5578 				   ce->parallel.number_children);
5579 
5580 			if (ce->parallel.guc.wq_status) {
5581 				drm_printf(p, "\t\tWQI Head: %u\n",
5582 					   READ_ONCE(*ce->parallel.guc.wq_head));
5583 				drm_printf(p, "\t\tWQI Tail: %u\n",
5584 					   READ_ONCE(*ce->parallel.guc.wq_tail));
5585 				drm_printf(p, "\t\tWQI Status: %u\n",
5586 					   READ_ONCE(*ce->parallel.guc.wq_status));
5587 			}
5588 
5589 			if (ce->engine->emit_bb_start ==
5590 			    emit_bb_start_parent_no_preempt_mid_batch) {
5591 				u8 i;
5592 
5593 				drm_printf(p, "\t\tChildren Go: %u\n",
5594 					   get_children_go_value(ce));
5595 				for (i = 0; i < ce->parallel.number_children; ++i)
5596 					drm_printf(p, "\t\tChildren Join: %u\n",
5597 						   get_children_join_value(ce, i));
5598 			}
5599 
5600 			for_each_child(ce, child)
5601 				guc_log_context(p, child);
5602 		}
5603 	}
5604 	xa_unlock_irqrestore(&guc->context_lookup, flags);
5605 }
5606 
get_children_go_addr(struct intel_context * ce)5607 static inline u32 get_children_go_addr(struct intel_context *ce)
5608 {
5609 	GEM_BUG_ON(!intel_context_is_parent(ce));
5610 
5611 	return i915_ggtt_offset(ce->state) +
5612 		__get_parent_scratch_offset(ce) +
5613 		offsetof(struct parent_scratch, go.semaphore);
5614 }
5615 
get_children_join_addr(struct intel_context * ce,u8 child_index)5616 static inline u32 get_children_join_addr(struct intel_context *ce,
5617 					 u8 child_index)
5618 {
5619 	GEM_BUG_ON(!intel_context_is_parent(ce));
5620 
5621 	return i915_ggtt_offset(ce->state) +
5622 		__get_parent_scratch_offset(ce) +
5623 		offsetof(struct parent_scratch, join[child_index].semaphore);
5624 }
5625 
5626 #define PARENT_GO_BB			1
5627 #define PARENT_GO_FINI_BREADCRUMB	0
5628 #define CHILD_GO_BB			1
5629 #define CHILD_GO_FINI_BREADCRUMB	0
emit_bb_start_parent_no_preempt_mid_batch(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags)5630 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
5631 						     u64 offset, u32 len,
5632 						     const unsigned int flags)
5633 {
5634 	struct intel_context *ce = rq->context;
5635 	u32 *cs;
5636 	u8 i;
5637 
5638 	GEM_BUG_ON(!intel_context_is_parent(ce));
5639 
5640 	cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children);
5641 	if (IS_ERR(cs))
5642 		return PTR_ERR(cs);
5643 
5644 	/* Wait on children */
5645 	for (i = 0; i < ce->parallel.number_children; ++i) {
5646 		*cs++ = (MI_SEMAPHORE_WAIT |
5647 			 MI_SEMAPHORE_GLOBAL_GTT |
5648 			 MI_SEMAPHORE_POLL |
5649 			 MI_SEMAPHORE_SAD_EQ_SDD);
5650 		*cs++ = PARENT_GO_BB;
5651 		*cs++ = get_children_join_addr(ce, i);
5652 		*cs++ = 0;
5653 	}
5654 
5655 	/* Turn off preemption */
5656 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
5657 	*cs++ = MI_NOOP;
5658 
5659 	/* Tell children go */
5660 	cs = gen8_emit_ggtt_write(cs,
5661 				  CHILD_GO_BB,
5662 				  get_children_go_addr(ce),
5663 				  0);
5664 
5665 	/* Jump to batch */
5666 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
5667 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
5668 	*cs++ = lower_32_bits(offset);
5669 	*cs++ = upper_32_bits(offset);
5670 	*cs++ = MI_NOOP;
5671 
5672 	intel_ring_advance(rq, cs);
5673 
5674 	return 0;
5675 }
5676 
emit_bb_start_child_no_preempt_mid_batch(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags)5677 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
5678 						    u64 offset, u32 len,
5679 						    const unsigned int flags)
5680 {
5681 	struct intel_context *ce = rq->context;
5682 	struct intel_context *parent = intel_context_to_parent(ce);
5683 	u32 *cs;
5684 
5685 	GEM_BUG_ON(!intel_context_is_child(ce));
5686 
5687 	cs = intel_ring_begin(rq, 12);
5688 	if (IS_ERR(cs))
5689 		return PTR_ERR(cs);
5690 
5691 	/* Signal parent */
5692 	cs = gen8_emit_ggtt_write(cs,
5693 				  PARENT_GO_BB,
5694 				  get_children_join_addr(parent,
5695 							 ce->parallel.child_index),
5696 				  0);
5697 
5698 	/* Wait on parent for go */
5699 	*cs++ = (MI_SEMAPHORE_WAIT |
5700 		 MI_SEMAPHORE_GLOBAL_GTT |
5701 		 MI_SEMAPHORE_POLL |
5702 		 MI_SEMAPHORE_SAD_EQ_SDD);
5703 	*cs++ = CHILD_GO_BB;
5704 	*cs++ = get_children_go_addr(parent);
5705 	*cs++ = 0;
5706 
5707 	/* Turn off preemption */
5708 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
5709 
5710 	/* Jump to batch */
5711 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
5712 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
5713 	*cs++ = lower_32_bits(offset);
5714 	*cs++ = upper_32_bits(offset);
5715 
5716 	intel_ring_advance(rq, cs);
5717 
5718 	return 0;
5719 }
5720 
5721 static u32 *
__emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request * rq,u32 * cs)5722 __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
5723 						   u32 *cs)
5724 {
5725 	struct intel_context *ce = rq->context;
5726 	u8 i;
5727 
5728 	GEM_BUG_ON(!intel_context_is_parent(ce));
5729 
5730 	/* Wait on children */
5731 	for (i = 0; i < ce->parallel.number_children; ++i) {
5732 		*cs++ = (MI_SEMAPHORE_WAIT |
5733 			 MI_SEMAPHORE_GLOBAL_GTT |
5734 			 MI_SEMAPHORE_POLL |
5735 			 MI_SEMAPHORE_SAD_EQ_SDD);
5736 		*cs++ = PARENT_GO_FINI_BREADCRUMB;
5737 		*cs++ = get_children_join_addr(ce, i);
5738 		*cs++ = 0;
5739 	}
5740 
5741 	/* Turn on preemption */
5742 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5743 	*cs++ = MI_NOOP;
5744 
5745 	/* Tell children go */
5746 	cs = gen8_emit_ggtt_write(cs,
5747 				  CHILD_GO_FINI_BREADCRUMB,
5748 				  get_children_go_addr(ce),
5749 				  0);
5750 
5751 	return cs;
5752 }
5753 
5754 /*
5755  * If this true, a submission of multi-lrc requests had an error and the
5756  * requests need to be skipped. The front end (execuf IOCTL) should've called
5757  * i915_request_skip which squashes the BB but we still need to emit the fini
5758  * breadrcrumbs seqno write. At this point we don't know how many of the
5759  * requests in the multi-lrc submission were generated so we can't do the
5760  * handshake between the parent and children (e.g. if 4 requests should be
5761  * generated but 2nd hit an error only 1 would be seen by the GuC backend).
5762  * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error
5763  * has occurred on any of the requests in submission / relationship.
5764  */
skip_handshake(struct i915_request * rq)5765 static inline bool skip_handshake(struct i915_request *rq)
5766 {
5767 	return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags);
5768 }
5769 
5770 #define NON_SKIP_LEN	6
5771 static u32 *
emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request * rq,u32 * cs)5772 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
5773 						 u32 *cs)
5774 {
5775 	struct intel_context *ce = rq->context;
5776 	__maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5777 	__maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5778 
5779 	GEM_BUG_ON(!intel_context_is_parent(ce));
5780 
5781 	if (unlikely(skip_handshake(rq))) {
5782 		/*
5783 		 * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch,
5784 		 * the NON_SKIP_LEN comes from the length of the emits below.
5785 		 */
5786 		memset(cs, 0, sizeof(u32) *
5787 		       (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5788 		cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5789 	} else {
5790 		cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs);
5791 	}
5792 
5793 	/* Emit fini breadcrumb */
5794 	before_fini_breadcrumb_user_interrupt_cs = cs;
5795 	cs = gen8_emit_ggtt_write(cs,
5796 				  rq->fence.seqno,
5797 				  i915_request_active_timeline(rq)->hwsp_offset,
5798 				  0);
5799 
5800 	/* User interrupt */
5801 	*cs++ = MI_USER_INTERRUPT;
5802 	*cs++ = MI_NOOP;
5803 
5804 	/* Ensure our math for skip + emit is correct */
5805 	GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5806 		   cs);
5807 	GEM_BUG_ON(start_fini_breadcrumb_cs +
5808 		   ce->engine->emit_fini_breadcrumb_dw != cs);
5809 
5810 	rq->tail = intel_ring_offset(rq, cs);
5811 
5812 	return cs;
5813 }
5814 
5815 static u32 *
__emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request * rq,u32 * cs)5816 __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5817 						  u32 *cs)
5818 {
5819 	struct intel_context *ce = rq->context;
5820 	struct intel_context *parent = intel_context_to_parent(ce);
5821 
5822 	GEM_BUG_ON(!intel_context_is_child(ce));
5823 
5824 	/* Turn on preemption */
5825 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5826 	*cs++ = MI_NOOP;
5827 
5828 	/* Signal parent */
5829 	cs = gen8_emit_ggtt_write(cs,
5830 				  PARENT_GO_FINI_BREADCRUMB,
5831 				  get_children_join_addr(parent,
5832 							 ce->parallel.child_index),
5833 				  0);
5834 
5835 	/* Wait parent on for go */
5836 	*cs++ = (MI_SEMAPHORE_WAIT |
5837 		 MI_SEMAPHORE_GLOBAL_GTT |
5838 		 MI_SEMAPHORE_POLL |
5839 		 MI_SEMAPHORE_SAD_EQ_SDD);
5840 	*cs++ = CHILD_GO_FINI_BREADCRUMB;
5841 	*cs++ = get_children_go_addr(parent);
5842 	*cs++ = 0;
5843 
5844 	return cs;
5845 }
5846 
5847 static u32 *
emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request * rq,u32 * cs)5848 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5849 						u32 *cs)
5850 {
5851 	struct intel_context *ce = rq->context;
5852 	__maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5853 	__maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5854 
5855 	GEM_BUG_ON(!intel_context_is_child(ce));
5856 
5857 	if (unlikely(skip_handshake(rq))) {
5858 		/*
5859 		 * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch,
5860 		 * the NON_SKIP_LEN comes from the length of the emits below.
5861 		 */
5862 		memset(cs, 0, sizeof(u32) *
5863 		       (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5864 		cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5865 	} else {
5866 		cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs);
5867 	}
5868 
5869 	/* Emit fini breadcrumb */
5870 	before_fini_breadcrumb_user_interrupt_cs = cs;
5871 	cs = gen8_emit_ggtt_write(cs,
5872 				  rq->fence.seqno,
5873 				  i915_request_active_timeline(rq)->hwsp_offset,
5874 				  0);
5875 
5876 	/* User interrupt */
5877 	*cs++ = MI_USER_INTERRUPT;
5878 	*cs++ = MI_NOOP;
5879 
5880 	/* Ensure our math for skip + emit is correct */
5881 	GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5882 		   cs);
5883 	GEM_BUG_ON(start_fini_breadcrumb_cs +
5884 		   ce->engine->emit_fini_breadcrumb_dw != cs);
5885 
5886 	rq->tail = intel_ring_offset(rq, cs);
5887 
5888 	return cs;
5889 }
5890 
5891 #undef NON_SKIP_LEN
5892 
5893 static struct intel_context *
guc_create_virtual(struct intel_engine_cs ** siblings,unsigned int count,unsigned long flags)5894 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
5895 		   unsigned long flags)
5896 {
5897 	struct guc_virtual_engine *ve;
5898 	struct intel_guc *guc;
5899 	unsigned int n;
5900 	int err;
5901 
5902 	ve = kzalloc(sizeof(*ve), GFP_KERNEL);
5903 	if (!ve)
5904 		return ERR_PTR(-ENOMEM);
5905 
5906 	guc = gt_to_guc(siblings[0]->gt);
5907 
5908 	ve->base.i915 = siblings[0]->i915;
5909 	ve->base.gt = siblings[0]->gt;
5910 	ve->base.uncore = siblings[0]->uncore;
5911 	ve->base.id = -1;
5912 
5913 	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
5914 	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5915 	ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5916 	ve->base.saturated = ALL_ENGINES;
5917 
5918 	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
5919 
5920 	ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine);
5921 
5922 	ve->base.cops = &virtual_guc_context_ops;
5923 	ve->base.request_alloc = guc_request_alloc;
5924 	ve->base.bump_serial = virtual_guc_bump_serial;
5925 
5926 	ve->base.submit_request = guc_submit_request;
5927 
5928 	ve->base.flags = I915_ENGINE_IS_VIRTUAL;
5929 
5930 	BUILD_BUG_ON(ilog2(VIRTUAL_ENGINES) < I915_NUM_ENGINES);
5931 	ve->base.mask = VIRTUAL_ENGINES;
5932 
5933 	intel_context_init(&ve->context, &ve->base);
5934 
5935 	for (n = 0; n < count; n++) {
5936 		struct intel_engine_cs *sibling = siblings[n];
5937 
5938 		GEM_BUG_ON(!is_power_of_2(sibling->mask));
5939 		if (sibling->mask & ve->base.mask) {
5940 			guc_dbg(guc, "duplicate %s entry in load balancer\n",
5941 				sibling->name);
5942 			err = -EINVAL;
5943 			goto err_put;
5944 		}
5945 
5946 		ve->base.mask |= sibling->mask;
5947 		ve->base.logical_mask |= sibling->logical_mask;
5948 
5949 		if (n != 0 && ve->base.class != sibling->class) {
5950 			guc_dbg(guc, "invalid mixing of engine class, sibling %d, already %d\n",
5951 				sibling->class, ve->base.class);
5952 			err = -EINVAL;
5953 			goto err_put;
5954 		} else if (n == 0) {
5955 			ve->base.class = sibling->class;
5956 			ve->base.uabi_class = sibling->uabi_class;
5957 			snprintf(ve->base.name, sizeof(ve->base.name),
5958 				 "v%dx%d", ve->base.class, count);
5959 			ve->base.context_size = sibling->context_size;
5960 
5961 			ve->base.add_active_request =
5962 				sibling->add_active_request;
5963 			ve->base.remove_active_request =
5964 				sibling->remove_active_request;
5965 			ve->base.emit_bb_start = sibling->emit_bb_start;
5966 			ve->base.emit_flush = sibling->emit_flush;
5967 			ve->base.emit_init_breadcrumb =
5968 				sibling->emit_init_breadcrumb;
5969 			ve->base.emit_fini_breadcrumb =
5970 				sibling->emit_fini_breadcrumb;
5971 			ve->base.emit_fini_breadcrumb_dw =
5972 				sibling->emit_fini_breadcrumb_dw;
5973 			ve->base.breadcrumbs =
5974 				intel_breadcrumbs_get(sibling->breadcrumbs);
5975 
5976 			ve->base.flags |= sibling->flags;
5977 
5978 			ve->base.props.timeslice_duration_ms =
5979 				sibling->props.timeslice_duration_ms;
5980 			ve->base.props.preempt_timeout_ms =
5981 				sibling->props.preempt_timeout_ms;
5982 		}
5983 	}
5984 
5985 	return &ve->context;
5986 
5987 err_put:
5988 	intel_context_put(&ve->context);
5989 	return ERR_PTR(err);
5990 }
5991 
intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs * ve)5992 bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve)
5993 {
5994 	struct intel_engine_cs *engine;
5995 	intel_engine_mask_t tmp, mask = ve->mask;
5996 
5997 	for_each_engine_masked(engine, ve->gt, mask, tmp)
5998 		if (READ_ONCE(engine->props.heartbeat_interval_ms))
5999 			return true;
6000 
6001 	return false;
6002 }
6003 
6004 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
6005 #include "selftest_guc.c"
6006 #include "selftest_guc_multi_lrc.c"
6007 #include "selftest_guc_hangcheck.c"
6008 #endif
6009