1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2014 Intel Corporation
4 */
5
6 #include <linux/circ_buf.h>
7
8 #include "gem/i915_gem_context.h"
9 #include "gem/i915_gem_lmem.h"
10 #include "gt/gen8_engine_cs.h"
11 #include "gt/intel_breadcrumbs.h"
12 #include "gt/intel_context.h"
13 #include "gt/intel_engine_heartbeat.h"
14 #include "gt/intel_engine_pm.h"
15 #include "gt/intel_engine_regs.h"
16 #include "gt/intel_gpu_commands.h"
17 #include "gt/intel_gt.h"
18 #include "gt/intel_gt_clock_utils.h"
19 #include "gt/intel_gt_irq.h"
20 #include "gt/intel_gt_pm.h"
21 #include "gt/intel_gt_regs.h"
22 #include "gt/intel_gt_requests.h"
23 #include "gt/intel_lrc.h"
24 #include "gt/intel_lrc_reg.h"
25 #include "gt/intel_mocs.h"
26 #include "gt/intel_ring.h"
27
28 #include "intel_guc_ads.h"
29 #include "intel_guc_capture.h"
30 #include "intel_guc_print.h"
31 #include "intel_guc_submission.h"
32
33 #include "i915_drv.h"
34 #include "i915_reg.h"
35 #include "i915_irq.h"
36 #include "i915_trace.h"
37
38 /**
39 * DOC: GuC-based command submission
40 *
41 * The Scratch registers:
42 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
43 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
44 * triggers an interrupt on the GuC via another register write (0xC4C8).
45 * Firmware writes a success/fail code back to the action register after
46 * processes the request. The kernel driver polls waiting for this update and
47 * then proceeds.
48 *
49 * Command Transport buffers (CTBs):
50 * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host
51 * - G2H) are a message interface between the i915 and GuC.
52 *
53 * Context registration:
54 * Before a context can be submitted it must be registered with the GuC via a
55 * H2G. A unique guc_id is associated with each context. The context is either
56 * registered at request creation time (normal operation) or at submission time
57 * (abnormal operation, e.g. after a reset).
58 *
59 * Context submission:
60 * The i915 updates the LRC tail value in memory. The i915 must enable the
61 * scheduling of the context within the GuC for the GuC to actually consider it.
62 * Therefore, the first time a disabled context is submitted we use a schedule
63 * enable H2G, while follow up submissions are done via the context submit H2G,
64 * which informs the GuC that a previously enabled context has new work
65 * available.
66 *
67 * Context unpin:
68 * To unpin a context a H2G is used to disable scheduling. When the
69 * corresponding G2H returns indicating the scheduling disable operation has
70 * completed it is safe to unpin the context. While a disable is in flight it
71 * isn't safe to resubmit the context so a fence is used to stall all future
72 * requests of that context until the G2H is returned. Because this interaction
73 * with the GuC takes a non-zero amount of time we delay the disabling of
74 * scheduling after the pin count goes to zero by a configurable period of time
75 * (see SCHED_DISABLE_DELAY_MS). The thought is this gives the user a window of
76 * time to resubmit something on the context before doing this costly operation.
77 * This delay is only done if the context isn't closed and the guc_id usage is
78 * less than a threshold (see NUM_SCHED_DISABLE_GUC_IDS_THRESHOLD).
79 *
80 * Context deregistration:
81 * Before a context can be destroyed or if we steal its guc_id we must
82 * deregister the context with the GuC via H2G. If stealing the guc_id it isn't
83 * safe to submit anything to this guc_id until the deregister completes so a
84 * fence is used to stall all requests associated with this guc_id until the
85 * corresponding G2H returns indicating the guc_id has been deregistered.
86 *
87 * submission_state.guc_ids:
88 * Unique number associated with private GuC context data passed in during
89 * context registration / submission / deregistration. 64k available. Simple ida
90 * is used for allocation.
91 *
92 * Stealing guc_ids:
93 * If no guc_ids are available they can be stolen from another context at
94 * request creation time if that context is unpinned. If a guc_id can't be found
95 * we punt this problem to the user as we believe this is near impossible to hit
96 * during normal use cases.
97 *
98 * Locking:
99 * In the GuC submission code we have 3 basic spin locks which protect
100 * everything. Details about each below.
101 *
102 * sched_engine->lock
103 * This is the submission lock for all contexts that share an i915 schedule
104 * engine (sched_engine), thus only one of the contexts which share a
105 * sched_engine can be submitting at a time. Currently only one sched_engine is
106 * used for all of GuC submission but that could change in the future.
107 *
108 * guc->submission_state.lock
109 * Global lock for GuC submission state. Protects guc_ids and destroyed contexts
110 * list.
111 *
112 * ce->guc_state.lock
113 * Protects everything under ce->guc_state. Ensures that a context is in the
114 * correct state before issuing a H2G. e.g. We don't issue a schedule disable
115 * on a disabled context (bad idea), we don't issue a schedule enable when a
116 * schedule disable is in flight, etc... Also protects list of inflight requests
117 * on the context and the priority management state. Lock is individual to each
118 * context.
119 *
120 * Lock ordering rules:
121 * sched_engine->lock -> ce->guc_state.lock
122 * guc->submission_state.lock -> ce->guc_state.lock
123 *
124 * Reset races:
125 * When a full GT reset is triggered it is assumed that some G2H responses to
126 * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be
127 * fatal as we do certain operations upon receiving a G2H (e.g. destroy
128 * contexts, release guc_ids, etc...). When this occurs we can scrub the
129 * context state and cleanup appropriately, however this is quite racey.
130 * To avoid races, the reset code must disable submission before scrubbing for
131 * the missing G2H, while the submission code must check for submission being
132 * disabled and skip sending H2Gs and updating context states when it is. Both
133 * sides must also make sure to hold the relevant locks.
134 */
135
136 /* GuC Virtual Engine */
137 struct guc_virtual_engine {
138 struct intel_engine_cs base;
139 struct intel_context context;
140 };
141
142 static struct intel_context *
143 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
144 unsigned long flags);
145
146 static struct intel_context *
147 guc_create_parallel(struct intel_engine_cs **engines,
148 unsigned int num_siblings,
149 unsigned int width);
150
151 #define GUC_REQUEST_SIZE 64 /* bytes */
152
153 /*
154 * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous
155 * per the GuC submission interface. A different allocation algorithm is used
156 * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to
157 * partition the guc_id space. We believe the number of multi-lrc contexts in
158 * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for
159 * multi-lrc.
160 */
161 #define NUMBER_MULTI_LRC_GUC_ID(guc) \
162 ((guc)->submission_state.num_guc_ids / 16)
163
164 /*
165 * Below is a set of functions which control the GuC scheduling state which
166 * require a lock.
167 */
168 #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER BIT(0)
169 #define SCHED_STATE_DESTROYED BIT(1)
170 #define SCHED_STATE_PENDING_DISABLE BIT(2)
171 #define SCHED_STATE_BANNED BIT(3)
172 #define SCHED_STATE_ENABLED BIT(4)
173 #define SCHED_STATE_PENDING_ENABLE BIT(5)
174 #define SCHED_STATE_REGISTERED BIT(6)
175 #define SCHED_STATE_POLICY_REQUIRED BIT(7)
176 #define SCHED_STATE_CLOSED BIT(8)
177 #define SCHED_STATE_BLOCKED_SHIFT 9
178 #define SCHED_STATE_BLOCKED BIT(SCHED_STATE_BLOCKED_SHIFT)
179 #define SCHED_STATE_BLOCKED_MASK (0xfff << SCHED_STATE_BLOCKED_SHIFT)
180
init_sched_state(struct intel_context * ce)181 static inline void init_sched_state(struct intel_context *ce)
182 {
183 lockdep_assert_held(&ce->guc_state.lock);
184 ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK;
185 }
186
187 /*
188 * Kernel contexts can have SCHED_STATE_REGISTERED after suspend.
189 * A context close can race with the submission path, so SCHED_STATE_CLOSED
190 * can be set immediately before we try to register.
191 */
192 #define SCHED_STATE_VALID_INIT \
193 (SCHED_STATE_BLOCKED_MASK | \
194 SCHED_STATE_CLOSED | \
195 SCHED_STATE_REGISTERED)
196
197 __maybe_unused
sched_state_is_init(struct intel_context * ce)198 static bool sched_state_is_init(struct intel_context *ce)
199 {
200 return !(ce->guc_state.sched_state & ~SCHED_STATE_VALID_INIT);
201 }
202
203 static inline bool
context_wait_for_deregister_to_register(struct intel_context * ce)204 context_wait_for_deregister_to_register(struct intel_context *ce)
205 {
206 return ce->guc_state.sched_state &
207 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
208 }
209
210 static inline void
set_context_wait_for_deregister_to_register(struct intel_context * ce)211 set_context_wait_for_deregister_to_register(struct intel_context *ce)
212 {
213 lockdep_assert_held(&ce->guc_state.lock);
214 ce->guc_state.sched_state |=
215 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
216 }
217
218 static inline void
clr_context_wait_for_deregister_to_register(struct intel_context * ce)219 clr_context_wait_for_deregister_to_register(struct intel_context *ce)
220 {
221 lockdep_assert_held(&ce->guc_state.lock);
222 ce->guc_state.sched_state &=
223 ~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
224 }
225
226 static inline bool
context_destroyed(struct intel_context * ce)227 context_destroyed(struct intel_context *ce)
228 {
229 return ce->guc_state.sched_state & SCHED_STATE_DESTROYED;
230 }
231
232 static inline void
set_context_destroyed(struct intel_context * ce)233 set_context_destroyed(struct intel_context *ce)
234 {
235 lockdep_assert_held(&ce->guc_state.lock);
236 ce->guc_state.sched_state |= SCHED_STATE_DESTROYED;
237 }
238
239 static inline void
clr_context_destroyed(struct intel_context * ce)240 clr_context_destroyed(struct intel_context *ce)
241 {
242 lockdep_assert_held(&ce->guc_state.lock);
243 ce->guc_state.sched_state &= ~SCHED_STATE_DESTROYED;
244 }
245
context_pending_disable(struct intel_context * ce)246 static inline bool context_pending_disable(struct intel_context *ce)
247 {
248 return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE;
249 }
250
set_context_pending_disable(struct intel_context * ce)251 static inline void set_context_pending_disable(struct intel_context *ce)
252 {
253 lockdep_assert_held(&ce->guc_state.lock);
254 ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE;
255 }
256
clr_context_pending_disable(struct intel_context * ce)257 static inline void clr_context_pending_disable(struct intel_context *ce)
258 {
259 lockdep_assert_held(&ce->guc_state.lock);
260 ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE;
261 }
262
context_banned(struct intel_context * ce)263 static inline bool context_banned(struct intel_context *ce)
264 {
265 return ce->guc_state.sched_state & SCHED_STATE_BANNED;
266 }
267
set_context_banned(struct intel_context * ce)268 static inline void set_context_banned(struct intel_context *ce)
269 {
270 lockdep_assert_held(&ce->guc_state.lock);
271 ce->guc_state.sched_state |= SCHED_STATE_BANNED;
272 }
273
clr_context_banned(struct intel_context * ce)274 static inline void clr_context_banned(struct intel_context *ce)
275 {
276 lockdep_assert_held(&ce->guc_state.lock);
277 ce->guc_state.sched_state &= ~SCHED_STATE_BANNED;
278 }
279
context_enabled(struct intel_context * ce)280 static inline bool context_enabled(struct intel_context *ce)
281 {
282 return ce->guc_state.sched_state & SCHED_STATE_ENABLED;
283 }
284
set_context_enabled(struct intel_context * ce)285 static inline void set_context_enabled(struct intel_context *ce)
286 {
287 lockdep_assert_held(&ce->guc_state.lock);
288 ce->guc_state.sched_state |= SCHED_STATE_ENABLED;
289 }
290
clr_context_enabled(struct intel_context * ce)291 static inline void clr_context_enabled(struct intel_context *ce)
292 {
293 lockdep_assert_held(&ce->guc_state.lock);
294 ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED;
295 }
296
context_pending_enable(struct intel_context * ce)297 static inline bool context_pending_enable(struct intel_context *ce)
298 {
299 return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE;
300 }
301
set_context_pending_enable(struct intel_context * ce)302 static inline void set_context_pending_enable(struct intel_context *ce)
303 {
304 lockdep_assert_held(&ce->guc_state.lock);
305 ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE;
306 }
307
clr_context_pending_enable(struct intel_context * ce)308 static inline void clr_context_pending_enable(struct intel_context *ce)
309 {
310 lockdep_assert_held(&ce->guc_state.lock);
311 ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE;
312 }
313
context_registered(struct intel_context * ce)314 static inline bool context_registered(struct intel_context *ce)
315 {
316 return ce->guc_state.sched_state & SCHED_STATE_REGISTERED;
317 }
318
set_context_registered(struct intel_context * ce)319 static inline void set_context_registered(struct intel_context *ce)
320 {
321 lockdep_assert_held(&ce->guc_state.lock);
322 ce->guc_state.sched_state |= SCHED_STATE_REGISTERED;
323 }
324
clr_context_registered(struct intel_context * ce)325 static inline void clr_context_registered(struct intel_context *ce)
326 {
327 lockdep_assert_held(&ce->guc_state.lock);
328 ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED;
329 }
330
context_policy_required(struct intel_context * ce)331 static inline bool context_policy_required(struct intel_context *ce)
332 {
333 return ce->guc_state.sched_state & SCHED_STATE_POLICY_REQUIRED;
334 }
335
set_context_policy_required(struct intel_context * ce)336 static inline void set_context_policy_required(struct intel_context *ce)
337 {
338 lockdep_assert_held(&ce->guc_state.lock);
339 ce->guc_state.sched_state |= SCHED_STATE_POLICY_REQUIRED;
340 }
341
clr_context_policy_required(struct intel_context * ce)342 static inline void clr_context_policy_required(struct intel_context *ce)
343 {
344 lockdep_assert_held(&ce->guc_state.lock);
345 ce->guc_state.sched_state &= ~SCHED_STATE_POLICY_REQUIRED;
346 }
347
context_close_done(struct intel_context * ce)348 static inline bool context_close_done(struct intel_context *ce)
349 {
350 return ce->guc_state.sched_state & SCHED_STATE_CLOSED;
351 }
352
set_context_close_done(struct intel_context * ce)353 static inline void set_context_close_done(struct intel_context *ce)
354 {
355 lockdep_assert_held(&ce->guc_state.lock);
356 ce->guc_state.sched_state |= SCHED_STATE_CLOSED;
357 }
358
context_blocked(struct intel_context * ce)359 static inline u32 context_blocked(struct intel_context *ce)
360 {
361 return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >>
362 SCHED_STATE_BLOCKED_SHIFT;
363 }
364
incr_context_blocked(struct intel_context * ce)365 static inline void incr_context_blocked(struct intel_context *ce)
366 {
367 lockdep_assert_held(&ce->guc_state.lock);
368
369 ce->guc_state.sched_state += SCHED_STATE_BLOCKED;
370
371 GEM_BUG_ON(!context_blocked(ce)); /* Overflow check */
372 }
373
decr_context_blocked(struct intel_context * ce)374 static inline void decr_context_blocked(struct intel_context *ce)
375 {
376 lockdep_assert_held(&ce->guc_state.lock);
377
378 GEM_BUG_ON(!context_blocked(ce)); /* Underflow check */
379
380 ce->guc_state.sched_state -= SCHED_STATE_BLOCKED;
381 }
382
383 static struct intel_context *
request_to_scheduling_context(struct i915_request * rq)384 request_to_scheduling_context(struct i915_request *rq)
385 {
386 return intel_context_to_parent(rq->context);
387 }
388
context_guc_id_invalid(struct intel_context * ce)389 static inline bool context_guc_id_invalid(struct intel_context *ce)
390 {
391 return ce->guc_id.id == GUC_INVALID_CONTEXT_ID;
392 }
393
set_context_guc_id_invalid(struct intel_context * ce)394 static inline void set_context_guc_id_invalid(struct intel_context *ce)
395 {
396 ce->guc_id.id = GUC_INVALID_CONTEXT_ID;
397 }
398
ce_to_guc(struct intel_context * ce)399 static inline struct intel_guc *ce_to_guc(struct intel_context *ce)
400 {
401 return gt_to_guc(ce->engine->gt);
402 }
403
to_priolist(struct rb_node * rb)404 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
405 {
406 return rb_entry(rb, struct i915_priolist, node);
407 }
408
409 /*
410 * When using multi-lrc submission a scratch memory area is reserved in the
411 * parent's context state for the process descriptor, work queue, and handshake
412 * between the parent + children contexts to insert safe preemption points
413 * between each of the BBs. Currently the scratch area is sized to a page.
414 *
415 * The layout of this scratch area is below:
416 * 0 guc_process_desc
417 * + sizeof(struct guc_process_desc) child go
418 * + CACHELINE_BYTES child join[0]
419 * ...
420 * + CACHELINE_BYTES child join[n - 1]
421 * ... unused
422 * PARENT_SCRATCH_SIZE / 2 work queue start
423 * ... work queue
424 * PARENT_SCRATCH_SIZE - 1 work queue end
425 */
426 #define WQ_SIZE (PARENT_SCRATCH_SIZE / 2)
427 #define WQ_OFFSET (PARENT_SCRATCH_SIZE - WQ_SIZE)
428
429 struct sync_semaphore {
430 u32 semaphore;
431 u8 unused[CACHELINE_BYTES - sizeof(u32)];
432 };
433
434 struct parent_scratch {
435 union guc_descs {
436 struct guc_sched_wq_desc wq_desc;
437 struct guc_process_desc_v69 pdesc;
438 } descs;
439
440 struct sync_semaphore go;
441 struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1];
442
443 u8 unused[WQ_OFFSET - sizeof(union guc_descs) -
444 sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)];
445
446 u32 wq[WQ_SIZE / sizeof(u32)];
447 };
448
__get_parent_scratch_offset(struct intel_context * ce)449 static u32 __get_parent_scratch_offset(struct intel_context *ce)
450 {
451 GEM_BUG_ON(!ce->parallel.guc.parent_page);
452
453 return ce->parallel.guc.parent_page * PAGE_SIZE;
454 }
455
__get_wq_offset(struct intel_context * ce)456 static u32 __get_wq_offset(struct intel_context *ce)
457 {
458 BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET);
459
460 return __get_parent_scratch_offset(ce) + WQ_OFFSET;
461 }
462
463 static struct parent_scratch *
__get_parent_scratch(struct intel_context * ce)464 __get_parent_scratch(struct intel_context *ce)
465 {
466 BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE);
467 BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES);
468
469 /*
470 * Need to subtract LRC_STATE_OFFSET here as the
471 * parallel.guc.parent_page is the offset into ce->state while
472 * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET.
473 */
474 return (struct parent_scratch *)
475 (ce->lrc_reg_state +
476 ((__get_parent_scratch_offset(ce) -
477 LRC_STATE_OFFSET) / sizeof(u32)));
478 }
479
480 static struct guc_process_desc_v69 *
__get_process_desc_v69(struct intel_context * ce)481 __get_process_desc_v69(struct intel_context *ce)
482 {
483 struct parent_scratch *ps = __get_parent_scratch(ce);
484
485 return &ps->descs.pdesc;
486 }
487
488 static struct guc_sched_wq_desc *
__get_wq_desc_v70(struct intel_context * ce)489 __get_wq_desc_v70(struct intel_context *ce)
490 {
491 struct parent_scratch *ps = __get_parent_scratch(ce);
492
493 return &ps->descs.wq_desc;
494 }
495
get_wq_pointer(struct intel_context * ce,u32 wqi_size)496 static u32 *get_wq_pointer(struct intel_context *ce, u32 wqi_size)
497 {
498 /*
499 * Check for space in work queue. Caching a value of head pointer in
500 * intel_context structure in order reduce the number accesses to shared
501 * GPU memory which may be across a PCIe bus.
502 */
503 #define AVAILABLE_SPACE \
504 CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE)
505 if (wqi_size > AVAILABLE_SPACE) {
506 ce->parallel.guc.wqi_head = READ_ONCE(*ce->parallel.guc.wq_head);
507
508 if (wqi_size > AVAILABLE_SPACE)
509 return NULL;
510 }
511 #undef AVAILABLE_SPACE
512
513 return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)];
514 }
515
__get_context(struct intel_guc * guc,u32 id)516 static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id)
517 {
518 struct intel_context *ce = xa_load(&guc->context_lookup, id);
519
520 GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID);
521
522 return ce;
523 }
524
__get_lrc_desc_v69(struct intel_guc * guc,u32 index)525 static struct guc_lrc_desc_v69 *__get_lrc_desc_v69(struct intel_guc *guc, u32 index)
526 {
527 struct guc_lrc_desc_v69 *base = guc->lrc_desc_pool_vaddr_v69;
528
529 if (!base)
530 return NULL;
531
532 GEM_BUG_ON(index >= GUC_MAX_CONTEXT_ID);
533
534 return &base[index];
535 }
536
guc_lrc_desc_pool_create_v69(struct intel_guc * guc)537 static int guc_lrc_desc_pool_create_v69(struct intel_guc *guc)
538 {
539 u32 size;
540 int ret;
541
542 size = PAGE_ALIGN(sizeof(struct guc_lrc_desc_v69) *
543 GUC_MAX_CONTEXT_ID);
544 ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool_v69,
545 (void **)&guc->lrc_desc_pool_vaddr_v69);
546 if (ret)
547 return ret;
548
549 return 0;
550 }
551
guc_lrc_desc_pool_destroy_v69(struct intel_guc * guc)552 static void guc_lrc_desc_pool_destroy_v69(struct intel_guc *guc)
553 {
554 if (!guc->lrc_desc_pool_vaddr_v69)
555 return;
556
557 guc->lrc_desc_pool_vaddr_v69 = NULL;
558 i915_vma_unpin_and_release(&guc->lrc_desc_pool_v69, I915_VMA_RELEASE_MAP);
559 }
560
guc_submission_initialized(struct intel_guc * guc)561 static inline bool guc_submission_initialized(struct intel_guc *guc)
562 {
563 return guc->submission_initialized;
564 }
565
_reset_lrc_desc_v69(struct intel_guc * guc,u32 id)566 static inline void _reset_lrc_desc_v69(struct intel_guc *guc, u32 id)
567 {
568 struct guc_lrc_desc_v69 *desc = __get_lrc_desc_v69(guc, id);
569
570 if (desc)
571 memset(desc, 0, sizeof(*desc));
572 }
573
ctx_id_mapped(struct intel_guc * guc,u32 id)574 static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id)
575 {
576 return __get_context(guc, id);
577 }
578
set_ctx_id_mapping(struct intel_guc * guc,u32 id,struct intel_context * ce)579 static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id,
580 struct intel_context *ce)
581 {
582 unsigned long flags;
583
584 /*
585 * xarray API doesn't have xa_save_irqsave wrapper, so calling the
586 * lower level functions directly.
587 */
588 xa_lock_irqsave(&guc->context_lookup, flags);
589 __xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC);
590 xa_unlock_irqrestore(&guc->context_lookup, flags);
591 }
592
clr_ctx_id_mapping(struct intel_guc * guc,u32 id)593 static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id)
594 {
595 unsigned long flags;
596
597 if (unlikely(!guc_submission_initialized(guc)))
598 return;
599
600 _reset_lrc_desc_v69(guc, id);
601
602 /*
603 * xarray API doesn't have xa_erase_irqsave wrapper, so calling
604 * the lower level functions directly.
605 */
606 xa_lock_irqsave(&guc->context_lookup, flags);
607 __xa_erase(&guc->context_lookup, id);
608 xa_unlock_irqrestore(&guc->context_lookup, flags);
609 }
610
decr_outstanding_submission_g2h(struct intel_guc * guc)611 static void decr_outstanding_submission_g2h(struct intel_guc *guc)
612 {
613 if (atomic_dec_and_test(&guc->outstanding_submission_g2h))
614 wake_up_all(&guc->ct.wq);
615 }
616
guc_submission_send_busy_loop(struct intel_guc * guc,const u32 * action,u32 len,u32 g2h_len_dw,bool loop)617 static int guc_submission_send_busy_loop(struct intel_guc *guc,
618 const u32 *action,
619 u32 len,
620 u32 g2h_len_dw,
621 bool loop)
622 {
623 int ret;
624
625 /*
626 * We always loop when a send requires a reply (i.e. g2h_len_dw > 0),
627 * so we don't handle the case where we don't get a reply because we
628 * aborted the send due to the channel being busy.
629 */
630 GEM_BUG_ON(g2h_len_dw && !loop);
631
632 if (g2h_len_dw)
633 atomic_inc(&guc->outstanding_submission_g2h);
634
635 ret = intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop);
636 if (ret)
637 atomic_dec(&guc->outstanding_submission_g2h);
638
639 return ret;
640 }
641
intel_guc_wait_for_pending_msg(struct intel_guc * guc,atomic_t * wait_var,bool interruptible,long timeout)642 int intel_guc_wait_for_pending_msg(struct intel_guc *guc,
643 atomic_t *wait_var,
644 bool interruptible,
645 long timeout)
646 {
647 const int state = interruptible ?
648 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
649 DEFINE_WAIT(wait);
650
651 might_sleep();
652 GEM_BUG_ON(timeout < 0);
653
654 if (!atomic_read(wait_var))
655 return 0;
656
657 if (!timeout)
658 return -ETIME;
659
660 for (;;) {
661 prepare_to_wait(&guc->ct.wq, &wait, state);
662
663 if (!atomic_read(wait_var))
664 break;
665
666 if (signal_pending_state(state, current)) {
667 timeout = -EINTR;
668 break;
669 }
670
671 if (!timeout) {
672 timeout = -ETIME;
673 break;
674 }
675
676 timeout = io_schedule_timeout(timeout);
677 }
678 finish_wait(&guc->ct.wq, &wait);
679
680 return (timeout < 0) ? timeout : 0;
681 }
682
intel_guc_wait_for_idle(struct intel_guc * guc,long timeout)683 int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout)
684 {
685 if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc))
686 return 0;
687
688 return intel_guc_wait_for_pending_msg(guc,
689 &guc->outstanding_submission_g2h,
690 true, timeout);
691 }
692
693 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop);
694 static int try_context_registration(struct intel_context *ce, bool loop);
695
__guc_add_request(struct intel_guc * guc,struct i915_request * rq)696 static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq)
697 {
698 int err = 0;
699 struct intel_context *ce = request_to_scheduling_context(rq);
700 u32 action[3];
701 int len = 0;
702 u32 g2h_len_dw = 0;
703 bool enabled;
704
705 lockdep_assert_held(&rq->engine->sched_engine->lock);
706
707 /*
708 * Corner case where requests were sitting in the priority list or a
709 * request resubmitted after the context was banned.
710 */
711 if (unlikely(!intel_context_is_schedulable(ce))) {
712 i915_request_put(i915_request_mark_eio(rq));
713 intel_engine_signal_breadcrumbs(ce->engine);
714 return 0;
715 }
716
717 GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
718 GEM_BUG_ON(context_guc_id_invalid(ce));
719
720 if (context_policy_required(ce)) {
721 err = guc_context_policy_init_v70(ce, false);
722 if (err)
723 return err;
724 }
725
726 spin_lock(&ce->guc_state.lock);
727
728 /*
729 * The request / context will be run on the hardware when scheduling
730 * gets enabled in the unblock. For multi-lrc we still submit the
731 * context to move the LRC tails.
732 */
733 if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce)))
734 goto out;
735
736 enabled = context_enabled(ce) || context_blocked(ce);
737
738 if (!enabled) {
739 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
740 action[len++] = ce->guc_id.id;
741 action[len++] = GUC_CONTEXT_ENABLE;
742 set_context_pending_enable(ce);
743 intel_context_get(ce);
744 g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
745 } else {
746 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT;
747 action[len++] = ce->guc_id.id;
748 }
749
750 err = intel_guc_send_nb(guc, action, len, g2h_len_dw);
751 if (!enabled && !err) {
752 trace_intel_context_sched_enable(ce);
753 atomic_inc(&guc->outstanding_submission_g2h);
754 set_context_enabled(ce);
755
756 /*
757 * Without multi-lrc KMD does the submission step (moving the
758 * lrc tail) so enabling scheduling is sufficient to submit the
759 * context. This isn't the case in multi-lrc submission as the
760 * GuC needs to move the tails, hence the need for another H2G
761 * to submit a multi-lrc context after enabling scheduling.
762 */
763 if (intel_context_is_parent(ce)) {
764 action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT;
765 err = intel_guc_send_nb(guc, action, len - 1, 0);
766 }
767 } else if (!enabled) {
768 clr_context_pending_enable(ce);
769 intel_context_put(ce);
770 }
771 if (likely(!err))
772 trace_i915_request_guc_submit(rq);
773
774 out:
775 spin_unlock(&ce->guc_state.lock);
776 return err;
777 }
778
guc_add_request(struct intel_guc * guc,struct i915_request * rq)779 static int guc_add_request(struct intel_guc *guc, struct i915_request *rq)
780 {
781 int ret = __guc_add_request(guc, rq);
782
783 if (unlikely(ret == -EBUSY)) {
784 guc->stalled_request = rq;
785 guc->submission_stall_reason = STALL_ADD_REQUEST;
786 }
787
788 return ret;
789 }
790
guc_set_lrc_tail(struct i915_request * rq)791 static inline void guc_set_lrc_tail(struct i915_request *rq)
792 {
793 rq->context->lrc_reg_state[CTX_RING_TAIL] =
794 intel_ring_set_tail(rq->ring, rq->tail);
795 }
796
rq_prio(const struct i915_request * rq)797 static inline int rq_prio(const struct i915_request *rq)
798 {
799 return rq->sched.attr.priority;
800 }
801
is_multi_lrc_rq(struct i915_request * rq)802 static bool is_multi_lrc_rq(struct i915_request *rq)
803 {
804 return intel_context_is_parallel(rq->context);
805 }
806
can_merge_rq(struct i915_request * rq,struct i915_request * last)807 static bool can_merge_rq(struct i915_request *rq,
808 struct i915_request *last)
809 {
810 return request_to_scheduling_context(rq) ==
811 request_to_scheduling_context(last);
812 }
813
wq_space_until_wrap(struct intel_context * ce)814 static u32 wq_space_until_wrap(struct intel_context *ce)
815 {
816 return (WQ_SIZE - ce->parallel.guc.wqi_tail);
817 }
818
write_wqi(struct intel_context * ce,u32 wqi_size)819 static void write_wqi(struct intel_context *ce, u32 wqi_size)
820 {
821 BUILD_BUG_ON(!is_power_of_2(WQ_SIZE));
822
823 /*
824 * Ensure WQI are visible before updating tail
825 */
826 intel_guc_write_barrier(ce_to_guc(ce));
827
828 ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) &
829 (WQ_SIZE - 1);
830 WRITE_ONCE(*ce->parallel.guc.wq_tail, ce->parallel.guc.wqi_tail);
831 }
832
guc_wq_noop_append(struct intel_context * ce)833 static int guc_wq_noop_append(struct intel_context *ce)
834 {
835 u32 *wqi = get_wq_pointer(ce, wq_space_until_wrap(ce));
836 u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1;
837
838 if (!wqi)
839 return -EBUSY;
840
841 GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
842
843 *wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
844 FIELD_PREP(WQ_LEN_MASK, len_dw);
845 ce->parallel.guc.wqi_tail = 0;
846
847 return 0;
848 }
849
__guc_wq_item_append(struct i915_request * rq)850 static int __guc_wq_item_append(struct i915_request *rq)
851 {
852 struct intel_context *ce = request_to_scheduling_context(rq);
853 struct intel_context *child;
854 unsigned int wqi_size = (ce->parallel.number_children + 4) *
855 sizeof(u32);
856 u32 *wqi;
857 u32 len_dw = (wqi_size / sizeof(u32)) - 1;
858 int ret;
859
860 /* Ensure context is in correct state updating work queue */
861 GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
862 GEM_BUG_ON(context_guc_id_invalid(ce));
863 GEM_BUG_ON(context_wait_for_deregister_to_register(ce));
864 GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id));
865
866 /* Insert NOOP if this work queue item will wrap the tail pointer. */
867 if (wqi_size > wq_space_until_wrap(ce)) {
868 ret = guc_wq_noop_append(ce);
869 if (ret)
870 return ret;
871 }
872
873 wqi = get_wq_pointer(ce, wqi_size);
874 if (!wqi)
875 return -EBUSY;
876
877 GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
878
879 *wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
880 FIELD_PREP(WQ_LEN_MASK, len_dw);
881 *wqi++ = ce->lrc.lrca;
882 *wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) |
883 FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64));
884 *wqi++ = 0; /* fence_id */
885 for_each_child(ce, child)
886 *wqi++ = child->ring->tail / sizeof(u64);
887
888 write_wqi(ce, wqi_size);
889
890 return 0;
891 }
892
guc_wq_item_append(struct intel_guc * guc,struct i915_request * rq)893 static int guc_wq_item_append(struct intel_guc *guc,
894 struct i915_request *rq)
895 {
896 struct intel_context *ce = request_to_scheduling_context(rq);
897 int ret;
898
899 if (unlikely(!intel_context_is_schedulable(ce)))
900 return 0;
901
902 ret = __guc_wq_item_append(rq);
903 if (unlikely(ret == -EBUSY)) {
904 guc->stalled_request = rq;
905 guc->submission_stall_reason = STALL_MOVE_LRC_TAIL;
906 }
907
908 return ret;
909 }
910
multi_lrc_submit(struct i915_request * rq)911 static bool multi_lrc_submit(struct i915_request *rq)
912 {
913 struct intel_context *ce = request_to_scheduling_context(rq);
914
915 intel_ring_set_tail(rq->ring, rq->tail);
916
917 /*
918 * We expect the front end (execbuf IOCTL) to set this flag on the last
919 * request generated from a multi-BB submission. This indicates to the
920 * backend (GuC interface) that we should submit this context thus
921 * submitting all the requests generated in parallel.
922 */
923 return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) ||
924 !intel_context_is_schedulable(ce);
925 }
926
guc_dequeue_one_context(struct intel_guc * guc)927 static int guc_dequeue_one_context(struct intel_guc *guc)
928 {
929 struct i915_sched_engine * const sched_engine = guc->sched_engine;
930 struct i915_request *last = NULL;
931 bool submit = false;
932 struct rb_node *rb;
933 int ret;
934
935 lockdep_assert_held(&sched_engine->lock);
936
937 if (guc->stalled_request) {
938 submit = true;
939 last = guc->stalled_request;
940
941 switch (guc->submission_stall_reason) {
942 case STALL_REGISTER_CONTEXT:
943 goto register_context;
944 case STALL_MOVE_LRC_TAIL:
945 goto move_lrc_tail;
946 case STALL_ADD_REQUEST:
947 goto add_request;
948 default:
949 MISSING_CASE(guc->submission_stall_reason);
950 }
951 }
952
953 while ((rb = rb_first_cached(&sched_engine->queue))) {
954 struct i915_priolist *p = to_priolist(rb);
955 struct i915_request *rq, *rn;
956
957 priolist_for_each_request_consume(rq, rn, p) {
958 if (last && !can_merge_rq(rq, last))
959 goto register_context;
960
961 list_del_init(&rq->sched.link);
962
963 __i915_request_submit(rq);
964
965 trace_i915_request_in(rq, 0);
966 last = rq;
967
968 if (is_multi_lrc_rq(rq)) {
969 /*
970 * We need to coalesce all multi-lrc requests in
971 * a relationship into a single H2G. We are
972 * guaranteed that all of these requests will be
973 * submitted sequentially.
974 */
975 if (multi_lrc_submit(rq)) {
976 submit = true;
977 goto register_context;
978 }
979 } else {
980 submit = true;
981 }
982 }
983
984 rb_erase_cached(&p->node, &sched_engine->queue);
985 i915_priolist_free(p);
986 }
987
988 register_context:
989 if (submit) {
990 struct intel_context *ce = request_to_scheduling_context(last);
991
992 if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) &&
993 intel_context_is_schedulable(ce))) {
994 ret = try_context_registration(ce, false);
995 if (unlikely(ret == -EPIPE)) {
996 goto deadlk;
997 } else if (ret == -EBUSY) {
998 guc->stalled_request = last;
999 guc->submission_stall_reason =
1000 STALL_REGISTER_CONTEXT;
1001 goto schedule_tasklet;
1002 } else if (ret != 0) {
1003 GEM_WARN_ON(ret); /* Unexpected */
1004 goto deadlk;
1005 }
1006 }
1007
1008 move_lrc_tail:
1009 if (is_multi_lrc_rq(last)) {
1010 ret = guc_wq_item_append(guc, last);
1011 if (ret == -EBUSY) {
1012 goto schedule_tasklet;
1013 } else if (ret != 0) {
1014 GEM_WARN_ON(ret); /* Unexpected */
1015 goto deadlk;
1016 }
1017 } else {
1018 guc_set_lrc_tail(last);
1019 }
1020
1021 add_request:
1022 ret = guc_add_request(guc, last);
1023 if (unlikely(ret == -EPIPE)) {
1024 goto deadlk;
1025 } else if (ret == -EBUSY) {
1026 goto schedule_tasklet;
1027 } else if (ret != 0) {
1028 GEM_WARN_ON(ret); /* Unexpected */
1029 goto deadlk;
1030 }
1031 }
1032
1033 guc->stalled_request = NULL;
1034 guc->submission_stall_reason = STALL_NONE;
1035 return submit;
1036
1037 deadlk:
1038 sched_engine->tasklet.callback = NULL;
1039 tasklet_disable_nosync(&sched_engine->tasklet);
1040 return false;
1041
1042 schedule_tasklet:
1043 tasklet_schedule(&sched_engine->tasklet);
1044 return false;
1045 }
1046
guc_submission_tasklet(struct tasklet_struct * t)1047 static void guc_submission_tasklet(struct tasklet_struct *t)
1048 {
1049 struct i915_sched_engine *sched_engine =
1050 from_tasklet(sched_engine, t, tasklet);
1051 unsigned long flags;
1052 bool loop;
1053
1054 spin_lock_irqsave(&sched_engine->lock, flags);
1055
1056 do {
1057 loop = guc_dequeue_one_context(sched_engine->private_data);
1058 } while (loop);
1059
1060 i915_sched_engine_reset_on_empty(sched_engine);
1061
1062 spin_unlock_irqrestore(&sched_engine->lock, flags);
1063 }
1064
cs_irq_handler(struct intel_engine_cs * engine,u16 iir)1065 static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir)
1066 {
1067 if (iir & GT_RENDER_USER_INTERRUPT)
1068 intel_engine_signal_breadcrumbs(engine);
1069 }
1070
1071 static void __guc_context_destroy(struct intel_context *ce);
1072 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce);
1073 static void guc_signal_context_fence(struct intel_context *ce);
1074 static void guc_cancel_context_requests(struct intel_context *ce);
1075 static void guc_blocked_fence_complete(struct intel_context *ce);
1076
scrub_guc_desc_for_outstanding_g2h(struct intel_guc * guc)1077 static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc)
1078 {
1079 struct intel_context *ce;
1080 unsigned long index, flags;
1081 bool pending_disable, pending_enable, deregister, destroyed, banned;
1082
1083 xa_lock_irqsave(&guc->context_lookup, flags);
1084 xa_for_each(&guc->context_lookup, index, ce) {
1085 /*
1086 * Corner case where the ref count on the object is zero but and
1087 * deregister G2H was lost. In this case we don't touch the ref
1088 * count and finish the destroy of the context.
1089 */
1090 bool do_put = kref_get_unless_zero(&ce->ref);
1091
1092 xa_unlock(&guc->context_lookup);
1093
1094 if (test_bit(CONTEXT_GUC_INIT, &ce->flags) &&
1095 (cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))) {
1096 /* successful cancel so jump straight to close it */
1097 intel_context_sched_disable_unpin(ce);
1098 }
1099
1100 spin_lock(&ce->guc_state.lock);
1101
1102 /*
1103 * Once we are at this point submission_disabled() is guaranteed
1104 * to be visible to all callers who set the below flags (see above
1105 * flush and flushes in reset_prepare). If submission_disabled()
1106 * is set, the caller shouldn't set these flags.
1107 */
1108
1109 destroyed = context_destroyed(ce);
1110 pending_enable = context_pending_enable(ce);
1111 pending_disable = context_pending_disable(ce);
1112 deregister = context_wait_for_deregister_to_register(ce);
1113 banned = context_banned(ce);
1114 init_sched_state(ce);
1115
1116 spin_unlock(&ce->guc_state.lock);
1117
1118 if (pending_enable || destroyed || deregister) {
1119 decr_outstanding_submission_g2h(guc);
1120 if (deregister)
1121 guc_signal_context_fence(ce);
1122 if (destroyed) {
1123 intel_gt_pm_put_async_untracked(guc_to_gt(guc));
1124 release_guc_id(guc, ce);
1125 __guc_context_destroy(ce);
1126 }
1127 if (pending_enable || deregister)
1128 intel_context_put(ce);
1129 }
1130
1131 /* Not mutualy exclusive with above if statement. */
1132 if (pending_disable) {
1133 guc_signal_context_fence(ce);
1134 if (banned) {
1135 guc_cancel_context_requests(ce);
1136 intel_engine_signal_breadcrumbs(ce->engine);
1137 }
1138 intel_context_sched_disable_unpin(ce);
1139 decr_outstanding_submission_g2h(guc);
1140
1141 spin_lock(&ce->guc_state.lock);
1142 guc_blocked_fence_complete(ce);
1143 spin_unlock(&ce->guc_state.lock);
1144
1145 intel_context_put(ce);
1146 }
1147
1148 if (do_put)
1149 intel_context_put(ce);
1150 xa_lock(&guc->context_lookup);
1151 }
1152 xa_unlock_irqrestore(&guc->context_lookup, flags);
1153 }
1154
1155 /*
1156 * GuC stores busyness stats for each engine at context in/out boundaries. A
1157 * context 'in' logs execution start time, 'out' adds in -> out delta to total.
1158 * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with
1159 * GuC.
1160 *
1161 * __i915_pmu_event_read samples engine busyness. When sampling, if context id
1162 * is valid (!= ~0) and start is non-zero, the engine is considered to be
1163 * active. For an active engine total busyness = total + (now - start), where
1164 * 'now' is the time at which the busyness is sampled. For inactive engine,
1165 * total busyness = total.
1166 *
1167 * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain.
1168 *
1169 * The start and total values provided by GuC are 32 bits and wrap around in a
1170 * few minutes. Since perf pmu provides busyness as 64 bit monotonically
1171 * increasing ns values, there is a need for this implementation to account for
1172 * overflows and extend the GuC provided values to 64 bits before returning
1173 * busyness to the user. In order to do that, a worker runs periodically at
1174 * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in
1175 * 27 seconds for a gt clock frequency of 19.2 MHz).
1176 */
1177
1178 #define WRAP_TIME_CLKS U32_MAX
1179 #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3)
1180
1181 static void
__extend_last_switch(struct intel_guc * guc,u64 * prev_start,u32 new_start)1182 __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start)
1183 {
1184 u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1185 u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp);
1186
1187 if (new_start == lower_32_bits(*prev_start))
1188 return;
1189
1190 /*
1191 * When gt is unparked, we update the gt timestamp and start the ping
1192 * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt
1193 * is unparked, all switched in contexts will have a start time that is
1194 * within +/- POLL_TIME_CLKS of the most recent gt_stamp.
1195 *
1196 * If neither gt_stamp nor new_start has rolled over, then the
1197 * gt_stamp_hi does not need to be adjusted, however if one of them has
1198 * rolled over, we need to adjust gt_stamp_hi accordingly.
1199 *
1200 * The below conditions address the cases of new_start rollover and
1201 * gt_stamp_last rollover respectively.
1202 */
1203 if (new_start < gt_stamp_last &&
1204 (new_start - gt_stamp_last) <= POLL_TIME_CLKS)
1205 gt_stamp_hi++;
1206
1207 if (new_start > gt_stamp_last &&
1208 (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi)
1209 gt_stamp_hi--;
1210
1211 *prev_start = ((u64)gt_stamp_hi << 32) | new_start;
1212 }
1213
1214 #define record_read(map_, field_) \
1215 iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_)
1216
1217 /*
1218 * GuC updates shared memory and KMD reads it. Since this is not synchronized,
1219 * we run into a race where the value read is inconsistent. Sometimes the
1220 * inconsistency is in reading the upper MSB bytes of the last_in value when
1221 * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper
1222 * 24 bits are zero. Since these are non-zero values, it is non-trivial to
1223 * determine validity of these values. Instead we read the values multiple times
1224 * until they are consistent. In test runs, 3 attempts results in consistent
1225 * values. The upper bound is set to 6 attempts and may need to be tuned as per
1226 * any new occurences.
1227 */
__get_engine_usage_record(struct intel_engine_cs * engine,u32 * last_in,u32 * id,u32 * total)1228 static void __get_engine_usage_record(struct intel_engine_cs *engine,
1229 u32 *last_in, u32 *id, u32 *total)
1230 {
1231 struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine);
1232 int i = 0;
1233
1234 do {
1235 *last_in = record_read(&rec_map, last_switch_in_stamp);
1236 *id = record_read(&rec_map, current_context_index);
1237 *total = record_read(&rec_map, total_runtime);
1238
1239 if (record_read(&rec_map, last_switch_in_stamp) == *last_in &&
1240 record_read(&rec_map, current_context_index) == *id &&
1241 record_read(&rec_map, total_runtime) == *total)
1242 break;
1243 } while (++i < 6);
1244 }
1245
__set_engine_usage_record(struct intel_engine_cs * engine,u32 last_in,u32 id,u32 total)1246 static void __set_engine_usage_record(struct intel_engine_cs *engine,
1247 u32 last_in, u32 id, u32 total)
1248 {
1249 struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine);
1250
1251 #define record_write(map_, field_, val_) \
1252 iosys_map_wr_field(map_, 0, struct guc_engine_usage_record, field_, val_)
1253
1254 record_write(&rec_map, last_switch_in_stamp, last_in);
1255 record_write(&rec_map, current_context_index, id);
1256 record_write(&rec_map, total_runtime, total);
1257
1258 #undef record_write
1259 }
1260
guc_update_engine_gt_clks(struct intel_engine_cs * engine)1261 static void guc_update_engine_gt_clks(struct intel_engine_cs *engine)
1262 {
1263 struct intel_engine_guc_stats *stats = &engine->stats.guc;
1264 struct intel_guc *guc = gt_to_guc(engine->gt);
1265 u32 last_switch, ctx_id, total;
1266
1267 lockdep_assert_held(&guc->timestamp.lock);
1268
1269 __get_engine_usage_record(engine, &last_switch, &ctx_id, &total);
1270
1271 stats->running = ctx_id != ~0U && last_switch;
1272 if (stats->running)
1273 __extend_last_switch(guc, &stats->start_gt_clk, last_switch);
1274
1275 /*
1276 * Instead of adjusting the total for overflow, just add the
1277 * difference from previous sample stats->total_gt_clks
1278 */
1279 if (total && total != ~0U) {
1280 stats->total_gt_clks += (u32)(total - stats->prev_total);
1281 stats->prev_total = total;
1282 }
1283 }
1284
gpm_timestamp_shift(struct intel_gt * gt)1285 static u32 gpm_timestamp_shift(struct intel_gt *gt)
1286 {
1287 intel_wakeref_t wakeref;
1288 u32 reg, shift;
1289
1290 with_intel_runtime_pm(gt->uncore->rpm, wakeref)
1291 reg = intel_uncore_read(gt->uncore, RPM_CONFIG0);
1292
1293 shift = (reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
1294 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT;
1295
1296 return 3 - shift;
1297 }
1298
guc_update_pm_timestamp(struct intel_guc * guc,ktime_t * now)1299 static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now)
1300 {
1301 struct intel_gt *gt = guc_to_gt(guc);
1302 u32 gt_stamp_lo, gt_stamp_hi;
1303 u64 gpm_ts;
1304
1305 lockdep_assert_held(&guc->timestamp.lock);
1306
1307 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1308 gpm_ts = intel_uncore_read64_2x32(gt->uncore, MISC_STATUS0,
1309 MISC_STATUS1) >> guc->timestamp.shift;
1310 gt_stamp_lo = lower_32_bits(gpm_ts);
1311 *now = ktime_get();
1312
1313 if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp))
1314 gt_stamp_hi++;
1315
1316 guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo;
1317 }
1318
1319 /*
1320 * Unlike the execlist mode of submission total and active times are in terms of
1321 * gt clocks. The *now parameter is retained to return the cpu time at which the
1322 * busyness was sampled.
1323 */
guc_engine_busyness(struct intel_engine_cs * engine,ktime_t * now)1324 static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now)
1325 {
1326 struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc;
1327 struct i915_gpu_error *gpu_error = &engine->i915->gpu_error;
1328 struct intel_gt *gt = engine->gt;
1329 struct intel_guc *guc = gt_to_guc(gt);
1330 u64 total, gt_stamp_saved;
1331 unsigned long flags;
1332 u32 reset_count;
1333 bool in_reset;
1334 intel_wakeref_t wakeref;
1335
1336 spin_lock_irqsave(&guc->timestamp.lock, flags);
1337
1338 /*
1339 * If a reset happened, we risk reading partially updated engine
1340 * busyness from GuC, so we just use the driver stored copy of busyness.
1341 * Synchronize with gt reset using reset_count and the
1342 * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count
1343 * after I915_RESET_BACKOFF flag, so ensure that the reset_count is
1344 * usable by checking the flag afterwards.
1345 */
1346 reset_count = i915_reset_count(gpu_error);
1347 in_reset = test_bit(I915_RESET_BACKOFF, >->reset.flags);
1348
1349 *now = ktime_get();
1350
1351 /*
1352 * The active busyness depends on start_gt_clk and gt_stamp.
1353 * gt_stamp is updated by i915 only when gt is awake and the
1354 * start_gt_clk is derived from GuC state. To get a consistent
1355 * view of activity, we query the GuC state only if gt is awake.
1356 */
1357 wakeref = in_reset ? NULL : intel_gt_pm_get_if_awake(gt);
1358 if (wakeref) {
1359 stats_saved = *stats;
1360 gt_stamp_saved = guc->timestamp.gt_stamp;
1361 /*
1362 * Update gt_clks, then gt timestamp to simplify the 'gt_stamp -
1363 * start_gt_clk' calculation below for active engines.
1364 */
1365 guc_update_engine_gt_clks(engine);
1366 guc_update_pm_timestamp(guc, now);
1367 intel_gt_pm_put_async(gt, wakeref);
1368 if (i915_reset_count(gpu_error) != reset_count) {
1369 *stats = stats_saved;
1370 guc->timestamp.gt_stamp = gt_stamp_saved;
1371 }
1372 }
1373
1374 total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks);
1375 if (stats->running) {
1376 u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk;
1377
1378 total += intel_gt_clock_interval_to_ns(gt, clk);
1379 }
1380
1381 if (total > stats->total)
1382 stats->total = total;
1383
1384 spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1385
1386 return ns_to_ktime(stats->total);
1387 }
1388
guc_enable_busyness_worker(struct intel_guc * guc)1389 static void guc_enable_busyness_worker(struct intel_guc *guc)
1390 {
1391 mod_delayed_work(system_highpri_wq, &guc->timestamp.work, guc->timestamp.ping_delay);
1392 }
1393
guc_cancel_busyness_worker(struct intel_guc * guc)1394 static void guc_cancel_busyness_worker(struct intel_guc *guc)
1395 {
1396 /*
1397 * There are many different call stacks that can get here. Some of them
1398 * hold the reset mutex. The busyness worker also attempts to acquire the
1399 * reset mutex. Synchronously flushing a worker thread requires acquiring
1400 * the worker mutex. Lockdep sees this as a conflict. It thinks that the
1401 * flush can deadlock because it holds the worker mutex while waiting for
1402 * the reset mutex, but another thread is holding the reset mutex and might
1403 * attempt to use other worker functions.
1404 *
1405 * In practice, this scenario does not exist because the busyness worker
1406 * does not block waiting for the reset mutex. It does a try-lock on it and
1407 * immediately exits if the lock is already held. Unfortunately, the mutex
1408 * in question (I915_RESET_BACKOFF) is an i915 implementation which has lockdep
1409 * annotation but not to the extent of explaining the 'might lock' is also a
1410 * 'does not need to lock'. So one option would be to add more complex lockdep
1411 * annotations to ignore the issue (if at all possible). A simpler option is to
1412 * just not flush synchronously when a rest in progress. Given that the worker
1413 * will just early exit and re-schedule itself anyway, there is no advantage
1414 * to running it immediately.
1415 *
1416 * If a reset is not in progress, then the synchronous flush may be required.
1417 * As noted many call stacks lead here, some during suspend and driver unload
1418 * which do require a synchronous flush to make sure the worker is stopped
1419 * before memory is freed.
1420 *
1421 * Trying to pass a 'need_sync' or 'in_reset' flag all the way down through
1422 * every possible call stack is unfeasible. It would be too intrusive to many
1423 * areas that really don't care about the GuC backend. However, there is the
1424 * I915_RESET_BACKOFF flag and the gt->reset.mutex can be tested for is_locked.
1425 * So just use those. Note that testing both is required due to the hideously
1426 * complex nature of the i915 driver's reset code paths.
1427 *
1428 * And note that in the case of a reset occurring during driver unload
1429 * (wedged_on_fini), skipping the cancel in reset_prepare/reset_fini (when the
1430 * reset flag/mutex are set) is fine because there is another explicit cancel in
1431 * intel_guc_submission_fini (when the reset flag/mutex are not).
1432 */
1433 if (mutex_is_locked(&guc_to_gt(guc)->reset.mutex) ||
1434 test_bit(I915_RESET_BACKOFF, &guc_to_gt(guc)->reset.flags))
1435 cancel_delayed_work(&guc->timestamp.work);
1436 else
1437 cancel_delayed_work_sync(&guc->timestamp.work);
1438 }
1439
__reset_guc_busyness_stats(struct intel_guc * guc)1440 static void __reset_guc_busyness_stats(struct intel_guc *guc)
1441 {
1442 struct intel_gt *gt = guc_to_gt(guc);
1443 struct intel_engine_cs *engine;
1444 enum intel_engine_id id;
1445 unsigned long flags;
1446 ktime_t unused;
1447
1448 spin_lock_irqsave(&guc->timestamp.lock, flags);
1449
1450 guc_update_pm_timestamp(guc, &unused);
1451 for_each_engine(engine, gt, id) {
1452 struct intel_engine_guc_stats *stats = &engine->stats.guc;
1453
1454 guc_update_engine_gt_clks(engine);
1455
1456 /*
1457 * If resetting a running context, accumulate the active
1458 * time as well since there will be no context switch.
1459 */
1460 if (stats->running) {
1461 u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk;
1462
1463 stats->total_gt_clks += clk;
1464 }
1465 stats->prev_total = 0;
1466 stats->running = 0;
1467 }
1468
1469 spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1470 }
1471
__update_guc_busyness_running_state(struct intel_guc * guc)1472 static void __update_guc_busyness_running_state(struct intel_guc *guc)
1473 {
1474 struct intel_gt *gt = guc_to_gt(guc);
1475 struct intel_engine_cs *engine;
1476 enum intel_engine_id id;
1477 unsigned long flags;
1478
1479 spin_lock_irqsave(&guc->timestamp.lock, flags);
1480 for_each_engine(engine, gt, id)
1481 engine->stats.guc.running = false;
1482 spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1483 }
1484
__update_guc_busyness_stats(struct intel_guc * guc)1485 static void __update_guc_busyness_stats(struct intel_guc *guc)
1486 {
1487 struct intel_gt *gt = guc_to_gt(guc);
1488 struct intel_engine_cs *engine;
1489 enum intel_engine_id id;
1490 unsigned long flags;
1491 ktime_t unused;
1492
1493 guc->timestamp.last_stat_jiffies = jiffies;
1494
1495 spin_lock_irqsave(&guc->timestamp.lock, flags);
1496
1497 guc_update_pm_timestamp(guc, &unused);
1498 for_each_engine(engine, gt, id)
1499 guc_update_engine_gt_clks(engine);
1500
1501 spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1502 }
1503
__guc_context_update_stats(struct intel_context * ce)1504 static void __guc_context_update_stats(struct intel_context *ce)
1505 {
1506 struct intel_guc *guc = ce_to_guc(ce);
1507 unsigned long flags;
1508
1509 spin_lock_irqsave(&guc->timestamp.lock, flags);
1510 lrc_update_runtime(ce);
1511 spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1512 }
1513
guc_context_update_stats(struct intel_context * ce)1514 static void guc_context_update_stats(struct intel_context *ce)
1515 {
1516 if (!intel_context_pin_if_active(ce))
1517 return;
1518
1519 __guc_context_update_stats(ce);
1520 intel_context_unpin(ce);
1521 }
1522
guc_timestamp_ping(struct work_struct * wrk)1523 static void guc_timestamp_ping(struct work_struct *wrk)
1524 {
1525 struct intel_guc *guc = container_of(wrk, typeof(*guc),
1526 timestamp.work.work);
1527 struct intel_uc *uc = container_of(guc, typeof(*uc), guc);
1528 struct intel_gt *gt = guc_to_gt(guc);
1529 struct intel_context *ce;
1530 intel_wakeref_t wakeref;
1531 unsigned long index;
1532 int srcu, ret;
1533
1534 /*
1535 * Ideally the busyness worker should take a gt pm wakeref because the
1536 * worker only needs to be active while gt is awake. However, the
1537 * gt_park path cancels the worker synchronously and this complicates
1538 * the flow if the worker is also running at the same time. The cancel
1539 * waits for the worker and when the worker releases the wakeref, that
1540 * would call gt_park and would lead to a deadlock.
1541 *
1542 * The resolution is to take the global pm wakeref if runtime pm is
1543 * already active. If not, we don't need to update the busyness stats as
1544 * the stats would already be updated when the gt was parked.
1545 *
1546 * Note:
1547 * - We do not requeue the worker if we cannot take a reference to runtime
1548 * pm since intel_guc_busyness_unpark would requeue the worker in the
1549 * resume path.
1550 *
1551 * - If the gt was parked longer than time taken for GT timestamp to roll
1552 * over, we ignore those rollovers since we don't care about tracking
1553 * the exact GT time. We only care about roll overs when the gt is
1554 * active and running workloads.
1555 *
1556 * - There is a window of time between gt_park and runtime suspend,
1557 * where the worker may run. This is acceptable since the worker will
1558 * not find any new data to update busyness.
1559 */
1560 wakeref = intel_runtime_pm_get_if_active(>->i915->runtime_pm);
1561 if (!wakeref)
1562 return;
1563
1564 /*
1565 * Synchronize with gt reset to make sure the worker does not
1566 * corrupt the engine/guc stats. NB: can't actually block waiting
1567 * for a reset to complete as the reset requires flushing out
1568 * this worker thread if started. So waiting would deadlock.
1569 */
1570 ret = intel_gt_reset_trylock(gt, &srcu);
1571 if (ret)
1572 goto err_trylock;
1573
1574 __update_guc_busyness_stats(guc);
1575
1576 /* adjust context stats for overflow */
1577 xa_for_each(&guc->context_lookup, index, ce)
1578 guc_context_update_stats(ce);
1579
1580 intel_gt_reset_unlock(gt, srcu);
1581
1582 guc_enable_busyness_worker(guc);
1583
1584 err_trylock:
1585 intel_runtime_pm_put(>->i915->runtime_pm, wakeref);
1586 }
1587
guc_action_enable_usage_stats(struct intel_guc * guc)1588 static int guc_action_enable_usage_stats(struct intel_guc *guc)
1589 {
1590 struct intel_gt *gt = guc_to_gt(guc);
1591 struct intel_engine_cs *engine;
1592 enum intel_engine_id id;
1593 u32 offset = intel_guc_engine_usage_offset(guc);
1594 u32 action[] = {
1595 INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF,
1596 offset,
1597 0,
1598 };
1599
1600 for_each_engine(engine, gt, id)
1601 __set_engine_usage_record(engine, 0, 0xffffffff, 0);
1602
1603 return intel_guc_send(guc, action, ARRAY_SIZE(action));
1604 }
1605
guc_init_engine_stats(struct intel_guc * guc)1606 static int guc_init_engine_stats(struct intel_guc *guc)
1607 {
1608 struct intel_gt *gt = guc_to_gt(guc);
1609 intel_wakeref_t wakeref;
1610 int ret;
1611
1612 with_intel_runtime_pm(>->i915->runtime_pm, wakeref)
1613 ret = guc_action_enable_usage_stats(guc);
1614
1615 if (ret)
1616 guc_err(guc, "Failed to enable usage stats: %pe\n", ERR_PTR(ret));
1617 else
1618 guc_enable_busyness_worker(guc);
1619
1620 return ret;
1621 }
1622
guc_fini_engine_stats(struct intel_guc * guc)1623 static void guc_fini_engine_stats(struct intel_guc *guc)
1624 {
1625 guc_cancel_busyness_worker(guc);
1626 }
1627
intel_guc_busyness_park(struct intel_gt * gt)1628 void intel_guc_busyness_park(struct intel_gt *gt)
1629 {
1630 struct intel_guc *guc = gt_to_guc(gt);
1631
1632 if (!guc_submission_initialized(guc))
1633 return;
1634
1635 /* Assume no engines are running and set running state to false */
1636 __update_guc_busyness_running_state(guc);
1637
1638 /*
1639 * There is a race with suspend flow where the worker runs after suspend
1640 * and causes an unclaimed register access warning. Cancel the worker
1641 * synchronously here.
1642 */
1643 guc_cancel_busyness_worker(guc);
1644
1645 /*
1646 * Before parking, we should sample engine busyness stats if we need to.
1647 * We can skip it if we are less than half a ping from the last time we
1648 * sampled the busyness stats.
1649 */
1650 if (guc->timestamp.last_stat_jiffies &&
1651 !time_after(jiffies, guc->timestamp.last_stat_jiffies +
1652 (guc->timestamp.ping_delay / 2)))
1653 return;
1654
1655 __update_guc_busyness_stats(guc);
1656 }
1657
intel_guc_busyness_unpark(struct intel_gt * gt)1658 void intel_guc_busyness_unpark(struct intel_gt *gt)
1659 {
1660 struct intel_guc *guc = gt_to_guc(gt);
1661 unsigned long flags;
1662 ktime_t unused;
1663
1664 if (!guc_submission_initialized(guc))
1665 return;
1666
1667 spin_lock_irqsave(&guc->timestamp.lock, flags);
1668 guc_update_pm_timestamp(guc, &unused);
1669 spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1670 guc_enable_busyness_worker(guc);
1671 }
1672
1673 static inline bool
submission_disabled(struct intel_guc * guc)1674 submission_disabled(struct intel_guc *guc)
1675 {
1676 struct i915_sched_engine * const sched_engine = guc->sched_engine;
1677
1678 return unlikely(!sched_engine ||
1679 !__tasklet_is_enabled(&sched_engine->tasklet) ||
1680 intel_gt_is_wedged(guc_to_gt(guc)));
1681 }
1682
disable_submission(struct intel_guc * guc)1683 static void disable_submission(struct intel_guc *guc)
1684 {
1685 struct i915_sched_engine * const sched_engine = guc->sched_engine;
1686
1687 if (__tasklet_is_enabled(&sched_engine->tasklet)) {
1688 GEM_BUG_ON(!guc->ct.enabled);
1689 __tasklet_disable_sync_once(&sched_engine->tasklet);
1690 sched_engine->tasklet.callback = NULL;
1691 }
1692 }
1693
enable_submission(struct intel_guc * guc)1694 static void enable_submission(struct intel_guc *guc)
1695 {
1696 struct i915_sched_engine * const sched_engine = guc->sched_engine;
1697 unsigned long flags;
1698
1699 spin_lock_irqsave(&guc->sched_engine->lock, flags);
1700 sched_engine->tasklet.callback = guc_submission_tasklet;
1701 wmb(); /* Make sure callback visible */
1702 if (!__tasklet_is_enabled(&sched_engine->tasklet) &&
1703 __tasklet_enable(&sched_engine->tasklet)) {
1704 GEM_BUG_ON(!guc->ct.enabled);
1705
1706 /* And kick in case we missed a new request submission. */
1707 tasklet_hi_schedule(&sched_engine->tasklet);
1708 }
1709 spin_unlock_irqrestore(&guc->sched_engine->lock, flags);
1710 }
1711
guc_flush_submissions(struct intel_guc * guc)1712 static void guc_flush_submissions(struct intel_guc *guc)
1713 {
1714 struct i915_sched_engine * const sched_engine = guc->sched_engine;
1715 unsigned long flags;
1716
1717 spin_lock_irqsave(&sched_engine->lock, flags);
1718 spin_unlock_irqrestore(&sched_engine->lock, flags);
1719 }
1720
intel_guc_submission_flush_work(struct intel_guc * guc)1721 void intel_guc_submission_flush_work(struct intel_guc *guc)
1722 {
1723 flush_work(&guc->submission_state.destroyed_worker);
1724 }
1725
1726 static void guc_flush_destroyed_contexts(struct intel_guc *guc);
1727
intel_guc_submission_reset_prepare(struct intel_guc * guc)1728 void intel_guc_submission_reset_prepare(struct intel_guc *guc)
1729 {
1730 if (unlikely(!guc_submission_initialized(guc))) {
1731 /* Reset called during driver load? GuC not yet initialised! */
1732 return;
1733 }
1734
1735 intel_gt_park_heartbeats(guc_to_gt(guc));
1736 disable_submission(guc);
1737 guc->interrupts.disable(guc);
1738 __reset_guc_busyness_stats(guc);
1739
1740 /* Flush IRQ handler */
1741 spin_lock_irq(guc_to_gt(guc)->irq_lock);
1742 spin_unlock_irq(guc_to_gt(guc)->irq_lock);
1743
1744 /* Flush tasklet */
1745 tasklet_disable(&guc->ct.receive_tasklet);
1746 tasklet_enable(&guc->ct.receive_tasklet);
1747
1748 guc_flush_submissions(guc);
1749 guc_flush_destroyed_contexts(guc);
1750 flush_work(&guc->ct.requests.worker);
1751
1752 scrub_guc_desc_for_outstanding_g2h(guc);
1753 }
1754
1755 static struct intel_engine_cs *
guc_virtual_get_sibling(struct intel_engine_cs * ve,unsigned int sibling)1756 guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling)
1757 {
1758 struct intel_engine_cs *engine;
1759 intel_engine_mask_t tmp, mask = ve->mask;
1760 unsigned int num_siblings = 0;
1761
1762 for_each_engine_masked(engine, ve->gt, mask, tmp)
1763 if (num_siblings++ == sibling)
1764 return engine;
1765
1766 return NULL;
1767 }
1768
1769 static inline struct intel_engine_cs *
__context_to_physical_engine(struct intel_context * ce)1770 __context_to_physical_engine(struct intel_context *ce)
1771 {
1772 struct intel_engine_cs *engine = ce->engine;
1773
1774 if (intel_engine_is_virtual(engine))
1775 engine = guc_virtual_get_sibling(engine, 0);
1776
1777 return engine;
1778 }
1779
guc_reset_state(struct intel_context * ce,u32 head,bool scrub)1780 static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub)
1781 {
1782 struct intel_engine_cs *engine = __context_to_physical_engine(ce);
1783
1784 if (!intel_context_is_schedulable(ce))
1785 return;
1786
1787 GEM_BUG_ON(!intel_context_is_pinned(ce));
1788
1789 /*
1790 * We want a simple context + ring to execute the breadcrumb update.
1791 * We cannot rely on the context being intact across the GPU hang,
1792 * so clear it and rebuild just what we need for the breadcrumb.
1793 * All pending requests for this context will be zapped, and any
1794 * future request will be after userspace has had the opportunity
1795 * to recreate its own state.
1796 */
1797 if (scrub)
1798 lrc_init_regs(ce, engine, true);
1799
1800 /* Rerun the request; its payload has been neutered (if guilty). */
1801 lrc_update_regs(ce, engine, head);
1802 }
1803
guc_engine_reset_prepare(struct intel_engine_cs * engine)1804 static void guc_engine_reset_prepare(struct intel_engine_cs *engine)
1805 {
1806 /*
1807 * Wa_22011802037: In addition to stopping the cs, we need
1808 * to wait for any pending mi force wakeups
1809 */
1810 if (intel_engine_reset_needs_wa_22011802037(engine->gt)) {
1811 intel_engine_stop_cs(engine);
1812 intel_engine_wait_for_pending_mi_fw(engine);
1813 }
1814 }
1815
guc_reset_nop(struct intel_engine_cs * engine)1816 static void guc_reset_nop(struct intel_engine_cs *engine)
1817 {
1818 }
1819
guc_rewind_nop(struct intel_engine_cs * engine,bool stalled)1820 static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled)
1821 {
1822 }
1823
1824 static void
__unwind_incomplete_requests(struct intel_context * ce)1825 __unwind_incomplete_requests(struct intel_context *ce)
1826 {
1827 struct i915_request *rq, *rn;
1828 struct list_head *pl;
1829 int prio = I915_PRIORITY_INVALID;
1830 struct i915_sched_engine * const sched_engine =
1831 ce->engine->sched_engine;
1832 unsigned long flags;
1833
1834 spin_lock_irqsave(&sched_engine->lock, flags);
1835 spin_lock(&ce->guc_state.lock);
1836 list_for_each_entry_safe_reverse(rq, rn,
1837 &ce->guc_state.requests,
1838 sched.link) {
1839 if (i915_request_completed(rq))
1840 continue;
1841
1842 list_del_init(&rq->sched.link);
1843 __i915_request_unsubmit(rq);
1844
1845 /* Push the request back into the queue for later resubmission. */
1846 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
1847 if (rq_prio(rq) != prio) {
1848 prio = rq_prio(rq);
1849 pl = i915_sched_lookup_priolist(sched_engine, prio);
1850 }
1851 GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine));
1852
1853 list_add(&rq->sched.link, pl);
1854 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1855 }
1856 spin_unlock(&ce->guc_state.lock);
1857 spin_unlock_irqrestore(&sched_engine->lock, flags);
1858 }
1859
__guc_reset_context(struct intel_context * ce,intel_engine_mask_t stalled)1860 static void __guc_reset_context(struct intel_context *ce, intel_engine_mask_t stalled)
1861 {
1862 bool guilty;
1863 struct i915_request *rq;
1864 unsigned long flags;
1865 u32 head;
1866 int i, number_children = ce->parallel.number_children;
1867 struct intel_context *parent = ce;
1868
1869 GEM_BUG_ON(intel_context_is_child(ce));
1870
1871 intel_context_get(ce);
1872
1873 /*
1874 * GuC will implicitly mark the context as non-schedulable when it sends
1875 * the reset notification. Make sure our state reflects this change. The
1876 * context will be marked enabled on resubmission.
1877 */
1878 spin_lock_irqsave(&ce->guc_state.lock, flags);
1879 clr_context_enabled(ce);
1880 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
1881
1882 /*
1883 * For each context in the relationship find the hanging request
1884 * resetting each context / request as needed
1885 */
1886 for (i = 0; i < number_children + 1; ++i) {
1887 if (!intel_context_is_pinned(ce))
1888 goto next_context;
1889
1890 guilty = false;
1891 rq = intel_context_get_active_request(ce);
1892 if (!rq) {
1893 head = ce->ring->tail;
1894 goto out_replay;
1895 }
1896
1897 if (i915_request_started(rq))
1898 guilty = stalled & ce->engine->mask;
1899
1900 GEM_BUG_ON(i915_active_is_idle(&ce->active));
1901 head = intel_ring_wrap(ce->ring, rq->head);
1902
1903 __i915_request_reset(rq, guilty);
1904 i915_request_put(rq);
1905 out_replay:
1906 guc_reset_state(ce, head, guilty);
1907 next_context:
1908 if (i != number_children)
1909 ce = list_next_entry(ce, parallel.child_link);
1910 }
1911
1912 __unwind_incomplete_requests(parent);
1913 intel_context_put(parent);
1914 }
1915
wake_up_all_tlb_invalidate(struct intel_guc * guc)1916 void wake_up_all_tlb_invalidate(struct intel_guc *guc)
1917 {
1918 struct intel_guc_tlb_wait *wait;
1919 unsigned long i;
1920
1921 if (!intel_guc_tlb_invalidation_is_available(guc))
1922 return;
1923
1924 xa_lock_irq(&guc->tlb_lookup);
1925 xa_for_each(&guc->tlb_lookup, i, wait)
1926 wake_up(&wait->wq);
1927 xa_unlock_irq(&guc->tlb_lookup);
1928 }
1929
intel_guc_submission_reset(struct intel_guc * guc,intel_engine_mask_t stalled)1930 void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled)
1931 {
1932 struct intel_context *ce;
1933 unsigned long index;
1934 unsigned long flags;
1935
1936 if (unlikely(!guc_submission_initialized(guc))) {
1937 /* Reset called during driver load? GuC not yet initialised! */
1938 return;
1939 }
1940
1941 xa_lock_irqsave(&guc->context_lookup, flags);
1942 xa_for_each(&guc->context_lookup, index, ce) {
1943 if (!kref_get_unless_zero(&ce->ref))
1944 continue;
1945
1946 xa_unlock(&guc->context_lookup);
1947
1948 if (intel_context_is_pinned(ce) &&
1949 !intel_context_is_child(ce))
1950 __guc_reset_context(ce, stalled);
1951
1952 intel_context_put(ce);
1953
1954 xa_lock(&guc->context_lookup);
1955 }
1956 xa_unlock_irqrestore(&guc->context_lookup, flags);
1957
1958 /* GuC is blown away, drop all references to contexts */
1959 xa_destroy(&guc->context_lookup);
1960 }
1961
guc_cancel_context_requests(struct intel_context * ce)1962 static void guc_cancel_context_requests(struct intel_context *ce)
1963 {
1964 struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine;
1965 struct i915_request *rq;
1966 unsigned long flags;
1967
1968 /* Mark all executing requests as skipped. */
1969 spin_lock_irqsave(&sched_engine->lock, flags);
1970 spin_lock(&ce->guc_state.lock);
1971 list_for_each_entry(rq, &ce->guc_state.requests, sched.link)
1972 i915_request_put(i915_request_mark_eio(rq));
1973 spin_unlock(&ce->guc_state.lock);
1974 spin_unlock_irqrestore(&sched_engine->lock, flags);
1975 }
1976
1977 static void
guc_cancel_sched_engine_requests(struct i915_sched_engine * sched_engine)1978 guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine)
1979 {
1980 struct i915_request *rq, *rn;
1981 struct rb_node *rb;
1982 unsigned long flags;
1983
1984 /* Can be called during boot if GuC fails to load */
1985 if (!sched_engine)
1986 return;
1987
1988 /*
1989 * Before we call engine->cancel_requests(), we should have exclusive
1990 * access to the submission state. This is arranged for us by the
1991 * caller disabling the interrupt generation, the tasklet and other
1992 * threads that may then access the same state, giving us a free hand
1993 * to reset state. However, we still need to let lockdep be aware that
1994 * we know this state may be accessed in hardirq context, so we
1995 * disable the irq around this manipulation and we want to keep
1996 * the spinlock focused on its duties and not accidentally conflate
1997 * coverage to the submission's irq state. (Similarly, although we
1998 * shouldn't need to disable irq around the manipulation of the
1999 * submission's irq state, we also wish to remind ourselves that
2000 * it is irq state.)
2001 */
2002 spin_lock_irqsave(&sched_engine->lock, flags);
2003
2004 /* Flush the queued requests to the timeline list (for retiring). */
2005 while ((rb = rb_first_cached(&sched_engine->queue))) {
2006 struct i915_priolist *p = to_priolist(rb);
2007
2008 priolist_for_each_request_consume(rq, rn, p) {
2009 list_del_init(&rq->sched.link);
2010
2011 __i915_request_submit(rq);
2012
2013 i915_request_put(i915_request_mark_eio(rq));
2014 }
2015
2016 rb_erase_cached(&p->node, &sched_engine->queue);
2017 i915_priolist_free(p);
2018 }
2019
2020 /* Remaining _unready_ requests will be nop'ed when submitted */
2021
2022 sched_engine->queue_priority_hint = INT_MIN;
2023 sched_engine->queue = RB_ROOT_CACHED;
2024
2025 spin_unlock_irqrestore(&sched_engine->lock, flags);
2026 }
2027
intel_guc_submission_cancel_requests(struct intel_guc * guc)2028 void intel_guc_submission_cancel_requests(struct intel_guc *guc)
2029 {
2030 struct intel_context *ce;
2031 unsigned long index;
2032 unsigned long flags;
2033
2034 xa_lock_irqsave(&guc->context_lookup, flags);
2035 xa_for_each(&guc->context_lookup, index, ce) {
2036 if (!kref_get_unless_zero(&ce->ref))
2037 continue;
2038
2039 xa_unlock(&guc->context_lookup);
2040
2041 if (intel_context_is_pinned(ce) &&
2042 !intel_context_is_child(ce))
2043 guc_cancel_context_requests(ce);
2044
2045 intel_context_put(ce);
2046
2047 xa_lock(&guc->context_lookup);
2048 }
2049 xa_unlock_irqrestore(&guc->context_lookup, flags);
2050
2051 guc_cancel_sched_engine_requests(guc->sched_engine);
2052
2053 /* GuC is blown away, drop all references to contexts */
2054 xa_destroy(&guc->context_lookup);
2055
2056 /*
2057 * Wedged GT won't respond to any TLB invalidation request. Simply
2058 * release all the blocked waiters.
2059 */
2060 wake_up_all_tlb_invalidate(guc);
2061 }
2062
intel_guc_submission_reset_finish(struct intel_guc * guc)2063 void intel_guc_submission_reset_finish(struct intel_guc *guc)
2064 {
2065 int outstanding;
2066
2067 /* Reset called during driver load or during wedge? */
2068 if (unlikely(!guc_submission_initialized(guc) ||
2069 !intel_guc_is_fw_running(guc) ||
2070 intel_gt_is_wedged(guc_to_gt(guc)))) {
2071 return;
2072 }
2073
2074 /*
2075 * Technically possible for either of these values to be non-zero here,
2076 * but very unlikely + harmless. Regardless let's add an error so we can
2077 * see in CI if this happens frequently / a precursor to taking down the
2078 * machine.
2079 */
2080 outstanding = atomic_read(&guc->outstanding_submission_g2h);
2081 if (outstanding)
2082 guc_err(guc, "Unexpected outstanding GuC to Host response(s) in reset finish: %d\n",
2083 outstanding);
2084 atomic_set(&guc->outstanding_submission_g2h, 0);
2085
2086 intel_guc_global_policies_update(guc);
2087 enable_submission(guc);
2088 intel_gt_unpark_heartbeats(guc_to_gt(guc));
2089
2090 /*
2091 * The full GT reset will have cleared the TLB caches and flushed the
2092 * G2H message queue; we can release all the blocked waiters.
2093 */
2094 wake_up_all_tlb_invalidate(guc);
2095 }
2096
2097 static void destroyed_worker_func(struct work_struct *w);
2098 static void reset_fail_worker_func(struct work_struct *w);
2099
intel_guc_tlb_invalidation_is_available(struct intel_guc * guc)2100 bool intel_guc_tlb_invalidation_is_available(struct intel_guc *guc)
2101 {
2102 return HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915) &&
2103 intel_guc_is_ready(guc);
2104 }
2105
init_tlb_lookup(struct intel_guc * guc)2106 static int init_tlb_lookup(struct intel_guc *guc)
2107 {
2108 struct intel_guc_tlb_wait *wait;
2109 int err;
2110
2111 if (!HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915))
2112 return 0;
2113
2114 xa_init_flags(&guc->tlb_lookup, XA_FLAGS_ALLOC);
2115
2116 wait = kzalloc(sizeof(*wait), GFP_KERNEL);
2117 if (!wait)
2118 return -ENOMEM;
2119
2120 init_waitqueue_head(&wait->wq);
2121
2122 /* Preallocate a shared id for use under memory pressure. */
2123 err = xa_alloc_cyclic_irq(&guc->tlb_lookup, &guc->serial_slot, wait,
2124 xa_limit_32b, &guc->next_seqno, GFP_KERNEL);
2125 if (err < 0) {
2126 kfree(wait);
2127 return err;
2128 }
2129
2130 return 0;
2131 }
2132
fini_tlb_lookup(struct intel_guc * guc)2133 static void fini_tlb_lookup(struct intel_guc *guc)
2134 {
2135 struct intel_guc_tlb_wait *wait;
2136
2137 if (!HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915))
2138 return;
2139
2140 wait = xa_load(&guc->tlb_lookup, guc->serial_slot);
2141 if (wait && wait->busy)
2142 guc_err(guc, "Unexpected busy item in tlb_lookup on fini\n");
2143 kfree(wait);
2144
2145 xa_destroy(&guc->tlb_lookup);
2146 }
2147
2148 /*
2149 * Set up the memory resources to be shared with the GuC (via the GGTT)
2150 * at firmware loading time.
2151 */
intel_guc_submission_init(struct intel_guc * guc)2152 int intel_guc_submission_init(struct intel_guc *guc)
2153 {
2154 struct intel_gt *gt = guc_to_gt(guc);
2155 int ret;
2156
2157 if (guc->submission_initialized)
2158 return 0;
2159
2160 if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 0, 0)) {
2161 ret = guc_lrc_desc_pool_create_v69(guc);
2162 if (ret)
2163 return ret;
2164 }
2165
2166 ret = init_tlb_lookup(guc);
2167 if (ret)
2168 goto destroy_pool;
2169
2170 guc->submission_state.guc_ids_bitmap =
2171 bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL);
2172 if (!guc->submission_state.guc_ids_bitmap) {
2173 ret = -ENOMEM;
2174 goto destroy_tlb;
2175 }
2176
2177 guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ;
2178 guc->timestamp.shift = gpm_timestamp_shift(gt);
2179 guc->submission_initialized = true;
2180
2181 return 0;
2182
2183 destroy_tlb:
2184 fini_tlb_lookup(guc);
2185 destroy_pool:
2186 guc_lrc_desc_pool_destroy_v69(guc);
2187 return ret;
2188 }
2189
intel_guc_submission_fini(struct intel_guc * guc)2190 void intel_guc_submission_fini(struct intel_guc *guc)
2191 {
2192 if (!guc->submission_initialized)
2193 return;
2194
2195 guc_fini_engine_stats(guc);
2196 guc_flush_destroyed_contexts(guc);
2197 guc_lrc_desc_pool_destroy_v69(guc);
2198 i915_sched_engine_put(guc->sched_engine);
2199 bitmap_free(guc->submission_state.guc_ids_bitmap);
2200 fini_tlb_lookup(guc);
2201 guc->submission_initialized = false;
2202 }
2203
queue_request(struct i915_sched_engine * sched_engine,struct i915_request * rq,int prio)2204 static inline void queue_request(struct i915_sched_engine *sched_engine,
2205 struct i915_request *rq,
2206 int prio)
2207 {
2208 GEM_BUG_ON(!list_empty(&rq->sched.link));
2209 list_add_tail(&rq->sched.link,
2210 i915_sched_lookup_priolist(sched_engine, prio));
2211 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2212 tasklet_hi_schedule(&sched_engine->tasklet);
2213 }
2214
guc_bypass_tasklet_submit(struct intel_guc * guc,struct i915_request * rq)2215 static int guc_bypass_tasklet_submit(struct intel_guc *guc,
2216 struct i915_request *rq)
2217 {
2218 int ret = 0;
2219
2220 __i915_request_submit(rq);
2221
2222 trace_i915_request_in(rq, 0);
2223
2224 if (is_multi_lrc_rq(rq)) {
2225 if (multi_lrc_submit(rq)) {
2226 ret = guc_wq_item_append(guc, rq);
2227 if (!ret)
2228 ret = guc_add_request(guc, rq);
2229 }
2230 } else {
2231 guc_set_lrc_tail(rq);
2232 ret = guc_add_request(guc, rq);
2233 }
2234
2235 if (unlikely(ret == -EPIPE))
2236 disable_submission(guc);
2237
2238 return ret;
2239 }
2240
need_tasklet(struct intel_guc * guc,struct i915_request * rq)2241 static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq)
2242 {
2243 struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
2244 struct intel_context *ce = request_to_scheduling_context(rq);
2245
2246 return submission_disabled(guc) || guc->stalled_request ||
2247 !i915_sched_engine_is_empty(sched_engine) ||
2248 !ctx_id_mapped(guc, ce->guc_id.id);
2249 }
2250
guc_submit_request(struct i915_request * rq)2251 static void guc_submit_request(struct i915_request *rq)
2252 {
2253 struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
2254 struct intel_guc *guc = gt_to_guc(rq->engine->gt);
2255 unsigned long flags;
2256
2257 /* Will be called from irq-context when using foreign fences. */
2258 spin_lock_irqsave(&sched_engine->lock, flags);
2259
2260 if (need_tasklet(guc, rq))
2261 queue_request(sched_engine, rq, rq_prio(rq));
2262 else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY)
2263 tasklet_hi_schedule(&sched_engine->tasklet);
2264
2265 spin_unlock_irqrestore(&sched_engine->lock, flags);
2266 }
2267
new_guc_id(struct intel_guc * guc,struct intel_context * ce)2268 static int new_guc_id(struct intel_guc *guc, struct intel_context *ce)
2269 {
2270 int ret;
2271
2272 GEM_BUG_ON(intel_context_is_child(ce));
2273
2274 if (intel_context_is_parent(ce))
2275 ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap,
2276 NUMBER_MULTI_LRC_GUC_ID(guc),
2277 order_base_2(ce->parallel.number_children
2278 + 1));
2279 else
2280 ret = ida_alloc_range(&guc->submission_state.guc_ids,
2281 NUMBER_MULTI_LRC_GUC_ID(guc),
2282 guc->submission_state.num_guc_ids - 1,
2283 GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
2284 if (unlikely(ret < 0))
2285 return ret;
2286
2287 if (!intel_context_is_parent(ce))
2288 ++guc->submission_state.guc_ids_in_use;
2289
2290 ce->guc_id.id = ret;
2291 return 0;
2292 }
2293
__release_guc_id(struct intel_guc * guc,struct intel_context * ce)2294 static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2295 {
2296 GEM_BUG_ON(intel_context_is_child(ce));
2297
2298 if (!context_guc_id_invalid(ce)) {
2299 if (intel_context_is_parent(ce)) {
2300 bitmap_release_region(guc->submission_state.guc_ids_bitmap,
2301 ce->guc_id.id,
2302 order_base_2(ce->parallel.number_children
2303 + 1));
2304 } else {
2305 --guc->submission_state.guc_ids_in_use;
2306 ida_free(&guc->submission_state.guc_ids,
2307 ce->guc_id.id);
2308 }
2309 clr_ctx_id_mapping(guc, ce->guc_id.id);
2310 set_context_guc_id_invalid(ce);
2311 }
2312 if (!list_empty(&ce->guc_id.link))
2313 list_del_init(&ce->guc_id.link);
2314 }
2315
release_guc_id(struct intel_guc * guc,struct intel_context * ce)2316 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2317 {
2318 unsigned long flags;
2319
2320 spin_lock_irqsave(&guc->submission_state.lock, flags);
2321 __release_guc_id(guc, ce);
2322 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2323 }
2324
steal_guc_id(struct intel_guc * guc,struct intel_context * ce)2325 static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce)
2326 {
2327 struct intel_context *cn;
2328
2329 lockdep_assert_held(&guc->submission_state.lock);
2330 GEM_BUG_ON(intel_context_is_child(ce));
2331 GEM_BUG_ON(intel_context_is_parent(ce));
2332
2333 if (!list_empty(&guc->submission_state.guc_id_list)) {
2334 cn = list_first_entry(&guc->submission_state.guc_id_list,
2335 struct intel_context,
2336 guc_id.link);
2337
2338 GEM_BUG_ON(atomic_read(&cn->guc_id.ref));
2339 GEM_BUG_ON(context_guc_id_invalid(cn));
2340 GEM_BUG_ON(intel_context_is_child(cn));
2341 GEM_BUG_ON(intel_context_is_parent(cn));
2342
2343 list_del_init(&cn->guc_id.link);
2344 ce->guc_id.id = cn->guc_id.id;
2345
2346 spin_lock(&cn->guc_state.lock);
2347 clr_context_registered(cn);
2348 spin_unlock(&cn->guc_state.lock);
2349
2350 set_context_guc_id_invalid(cn);
2351
2352 #ifdef CONFIG_DRM_I915_SELFTEST
2353 guc->number_guc_id_stolen++;
2354 #endif
2355
2356 return 0;
2357 } else {
2358 return -EAGAIN;
2359 }
2360 }
2361
assign_guc_id(struct intel_guc * guc,struct intel_context * ce)2362 static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce)
2363 {
2364 int ret;
2365
2366 lockdep_assert_held(&guc->submission_state.lock);
2367 GEM_BUG_ON(intel_context_is_child(ce));
2368
2369 ret = new_guc_id(guc, ce);
2370 if (unlikely(ret < 0)) {
2371 if (intel_context_is_parent(ce))
2372 return -ENOSPC;
2373
2374 ret = steal_guc_id(guc, ce);
2375 if (ret < 0)
2376 return ret;
2377 }
2378
2379 if (intel_context_is_parent(ce)) {
2380 struct intel_context *child;
2381 int i = 1;
2382
2383 for_each_child(ce, child)
2384 child->guc_id.id = ce->guc_id.id + i++;
2385 }
2386
2387 return 0;
2388 }
2389
2390 #define PIN_GUC_ID_TRIES 4
pin_guc_id(struct intel_guc * guc,struct intel_context * ce)2391 static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2392 {
2393 int ret = 0;
2394 unsigned long flags, tries = PIN_GUC_ID_TRIES;
2395
2396 GEM_BUG_ON(atomic_read(&ce->guc_id.ref));
2397
2398 try_again:
2399 spin_lock_irqsave(&guc->submission_state.lock, flags);
2400
2401 might_lock(&ce->guc_state.lock);
2402
2403 if (context_guc_id_invalid(ce)) {
2404 ret = assign_guc_id(guc, ce);
2405 if (ret)
2406 goto out_unlock;
2407 ret = 1; /* Indidcates newly assigned guc_id */
2408 }
2409 if (!list_empty(&ce->guc_id.link))
2410 list_del_init(&ce->guc_id.link);
2411 atomic_inc(&ce->guc_id.ref);
2412
2413 out_unlock:
2414 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2415
2416 /*
2417 * -EAGAIN indicates no guc_id are available, let's retire any
2418 * outstanding requests to see if that frees up a guc_id. If the first
2419 * retire didn't help, insert a sleep with the timeslice duration before
2420 * attempting to retire more requests. Double the sleep period each
2421 * subsequent pass before finally giving up. The sleep period has max of
2422 * 100ms and minimum of 1ms.
2423 */
2424 if (ret == -EAGAIN && --tries) {
2425 if (PIN_GUC_ID_TRIES - tries > 1) {
2426 unsigned int timeslice_shifted =
2427 ce->engine->props.timeslice_duration_ms <<
2428 (PIN_GUC_ID_TRIES - tries - 2);
2429 unsigned int max = min_t(unsigned int, 100,
2430 timeslice_shifted);
2431
2432 msleep(max_t(unsigned int, max, 1));
2433 }
2434 intel_gt_retire_requests(guc_to_gt(guc));
2435 goto try_again;
2436 }
2437
2438 return ret;
2439 }
2440
unpin_guc_id(struct intel_guc * guc,struct intel_context * ce)2441 static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2442 {
2443 unsigned long flags;
2444
2445 GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0);
2446 GEM_BUG_ON(intel_context_is_child(ce));
2447
2448 if (unlikely(context_guc_id_invalid(ce) ||
2449 intel_context_is_parent(ce)))
2450 return;
2451
2452 spin_lock_irqsave(&guc->submission_state.lock, flags);
2453 if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) &&
2454 !atomic_read(&ce->guc_id.ref))
2455 list_add_tail(&ce->guc_id.link,
2456 &guc->submission_state.guc_id_list);
2457 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2458 }
2459
__guc_action_register_multi_lrc_v69(struct intel_guc * guc,struct intel_context * ce,u32 guc_id,u32 offset,bool loop)2460 static int __guc_action_register_multi_lrc_v69(struct intel_guc *guc,
2461 struct intel_context *ce,
2462 u32 guc_id,
2463 u32 offset,
2464 bool loop)
2465 {
2466 struct intel_context *child;
2467 u32 action[4 + MAX_ENGINE_INSTANCE];
2468 int len = 0;
2469
2470 GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2471
2472 action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2473 action[len++] = guc_id;
2474 action[len++] = ce->parallel.number_children + 1;
2475 action[len++] = offset;
2476 for_each_child(ce, child) {
2477 offset += sizeof(struct guc_lrc_desc_v69);
2478 action[len++] = offset;
2479 }
2480
2481 return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2482 }
2483
__guc_action_register_multi_lrc_v70(struct intel_guc * guc,struct intel_context * ce,struct guc_ctxt_registration_info * info,bool loop)2484 static int __guc_action_register_multi_lrc_v70(struct intel_guc *guc,
2485 struct intel_context *ce,
2486 struct guc_ctxt_registration_info *info,
2487 bool loop)
2488 {
2489 struct intel_context *child;
2490 u32 action[13 + (MAX_ENGINE_INSTANCE * 2)];
2491 int len = 0;
2492 u32 next_id;
2493
2494 GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2495
2496 action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2497 action[len++] = info->flags;
2498 action[len++] = info->context_idx;
2499 action[len++] = info->engine_class;
2500 action[len++] = info->engine_submit_mask;
2501 action[len++] = info->wq_desc_lo;
2502 action[len++] = info->wq_desc_hi;
2503 action[len++] = info->wq_base_lo;
2504 action[len++] = info->wq_base_hi;
2505 action[len++] = info->wq_size;
2506 action[len++] = ce->parallel.number_children + 1;
2507 action[len++] = info->hwlrca_lo;
2508 action[len++] = info->hwlrca_hi;
2509
2510 next_id = info->context_idx + 1;
2511 for_each_child(ce, child) {
2512 GEM_BUG_ON(next_id++ != child->guc_id.id);
2513
2514 /*
2515 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2516 * only supports 32 bit currently.
2517 */
2518 action[len++] = lower_32_bits(child->lrc.lrca);
2519 action[len++] = upper_32_bits(child->lrc.lrca);
2520 }
2521
2522 GEM_BUG_ON(len > ARRAY_SIZE(action));
2523
2524 return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2525 }
2526
__guc_action_register_context_v69(struct intel_guc * guc,u32 guc_id,u32 offset,bool loop)2527 static int __guc_action_register_context_v69(struct intel_guc *guc,
2528 u32 guc_id,
2529 u32 offset,
2530 bool loop)
2531 {
2532 u32 action[] = {
2533 INTEL_GUC_ACTION_REGISTER_CONTEXT,
2534 guc_id,
2535 offset,
2536 };
2537
2538 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2539 0, loop);
2540 }
2541
__guc_action_register_context_v70(struct intel_guc * guc,struct guc_ctxt_registration_info * info,bool loop)2542 static int __guc_action_register_context_v70(struct intel_guc *guc,
2543 struct guc_ctxt_registration_info *info,
2544 bool loop)
2545 {
2546 u32 action[] = {
2547 INTEL_GUC_ACTION_REGISTER_CONTEXT,
2548 info->flags,
2549 info->context_idx,
2550 info->engine_class,
2551 info->engine_submit_mask,
2552 info->wq_desc_lo,
2553 info->wq_desc_hi,
2554 info->wq_base_lo,
2555 info->wq_base_hi,
2556 info->wq_size,
2557 info->hwlrca_lo,
2558 info->hwlrca_hi,
2559 };
2560
2561 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2562 0, loop);
2563 }
2564
2565 static void prepare_context_registration_info_v69(struct intel_context *ce);
2566 static void prepare_context_registration_info_v70(struct intel_context *ce,
2567 struct guc_ctxt_registration_info *info);
2568
2569 static int
register_context_v69(struct intel_guc * guc,struct intel_context * ce,bool loop)2570 register_context_v69(struct intel_guc *guc, struct intel_context *ce, bool loop)
2571 {
2572 u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool_v69) +
2573 ce->guc_id.id * sizeof(struct guc_lrc_desc_v69);
2574
2575 prepare_context_registration_info_v69(ce);
2576
2577 if (intel_context_is_parent(ce))
2578 return __guc_action_register_multi_lrc_v69(guc, ce, ce->guc_id.id,
2579 offset, loop);
2580 else
2581 return __guc_action_register_context_v69(guc, ce->guc_id.id,
2582 offset, loop);
2583 }
2584
2585 static int
register_context_v70(struct intel_guc * guc,struct intel_context * ce,bool loop)2586 register_context_v70(struct intel_guc *guc, struct intel_context *ce, bool loop)
2587 {
2588 struct guc_ctxt_registration_info info;
2589
2590 prepare_context_registration_info_v70(ce, &info);
2591
2592 if (intel_context_is_parent(ce))
2593 return __guc_action_register_multi_lrc_v70(guc, ce, &info, loop);
2594 else
2595 return __guc_action_register_context_v70(guc, &info, loop);
2596 }
2597
register_context(struct intel_context * ce,bool loop)2598 static int register_context(struct intel_context *ce, bool loop)
2599 {
2600 struct intel_guc *guc = ce_to_guc(ce);
2601 int ret;
2602
2603 GEM_BUG_ON(intel_context_is_child(ce));
2604 trace_intel_context_register(ce);
2605
2606 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0))
2607 ret = register_context_v70(guc, ce, loop);
2608 else
2609 ret = register_context_v69(guc, ce, loop);
2610
2611 if (likely(!ret)) {
2612 unsigned long flags;
2613
2614 spin_lock_irqsave(&ce->guc_state.lock, flags);
2615 set_context_registered(ce);
2616 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2617
2618 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0))
2619 guc_context_policy_init_v70(ce, loop);
2620 }
2621
2622 return ret;
2623 }
2624
__guc_action_deregister_context(struct intel_guc * guc,u32 guc_id)2625 static int __guc_action_deregister_context(struct intel_guc *guc,
2626 u32 guc_id)
2627 {
2628 u32 action[] = {
2629 INTEL_GUC_ACTION_DEREGISTER_CONTEXT,
2630 guc_id,
2631 };
2632
2633 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2634 G2H_LEN_DW_DEREGISTER_CONTEXT,
2635 true);
2636 }
2637
deregister_context(struct intel_context * ce,u32 guc_id)2638 static int deregister_context(struct intel_context *ce, u32 guc_id)
2639 {
2640 struct intel_guc *guc = ce_to_guc(ce);
2641
2642 GEM_BUG_ON(intel_context_is_child(ce));
2643 trace_intel_context_deregister(ce);
2644
2645 return __guc_action_deregister_context(guc, guc_id);
2646 }
2647
clear_children_join_go_memory(struct intel_context * ce)2648 static inline void clear_children_join_go_memory(struct intel_context *ce)
2649 {
2650 struct parent_scratch *ps = __get_parent_scratch(ce);
2651 int i;
2652
2653 ps->go.semaphore = 0;
2654 for (i = 0; i < ce->parallel.number_children + 1; ++i)
2655 ps->join[i].semaphore = 0;
2656 }
2657
get_children_go_value(struct intel_context * ce)2658 static inline u32 get_children_go_value(struct intel_context *ce)
2659 {
2660 return __get_parent_scratch(ce)->go.semaphore;
2661 }
2662
get_children_join_value(struct intel_context * ce,u8 child_index)2663 static inline u32 get_children_join_value(struct intel_context *ce,
2664 u8 child_index)
2665 {
2666 return __get_parent_scratch(ce)->join[child_index].semaphore;
2667 }
2668
2669 struct context_policy {
2670 u32 count;
2671 struct guc_update_context_policy h2g;
2672 };
2673
__guc_context_policy_action_size(struct context_policy * policy)2674 static u32 __guc_context_policy_action_size(struct context_policy *policy)
2675 {
2676 size_t bytes = sizeof(policy->h2g.header) +
2677 (sizeof(policy->h2g.klv[0]) * policy->count);
2678
2679 return bytes / sizeof(u32);
2680 }
2681
__guc_context_policy_start_klv(struct context_policy * policy,u16 guc_id)2682 static void __guc_context_policy_start_klv(struct context_policy *policy, u16 guc_id)
2683 {
2684 policy->h2g.header.action = INTEL_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES;
2685 policy->h2g.header.ctx_id = guc_id;
2686 policy->count = 0;
2687 }
2688
2689 #define MAKE_CONTEXT_POLICY_ADD(func, id) \
2690 static void __guc_context_policy_add_##func(struct context_policy *policy, u32 data) \
2691 { \
2692 GEM_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \
2693 policy->h2g.klv[policy->count].kl = \
2694 FIELD_PREP(GUC_KLV_0_KEY, GUC_CONTEXT_POLICIES_KLV_ID_##id) | \
2695 FIELD_PREP(GUC_KLV_0_LEN, 1); \
2696 policy->h2g.klv[policy->count].value = data; \
2697 policy->count++; \
2698 }
2699
MAKE_CONTEXT_POLICY_ADD(execution_quantum,EXECUTION_QUANTUM)2700 MAKE_CONTEXT_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM)
2701 MAKE_CONTEXT_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT)
2702 MAKE_CONTEXT_POLICY_ADD(priority, SCHEDULING_PRIORITY)
2703 MAKE_CONTEXT_POLICY_ADD(preempt_to_idle, PREEMPT_TO_IDLE_ON_QUANTUM_EXPIRY)
2704 MAKE_CONTEXT_POLICY_ADD(slpc_ctx_freq_req, SLPM_GT_FREQUENCY)
2705
2706 #undef MAKE_CONTEXT_POLICY_ADD
2707
2708 static int __guc_context_set_context_policies(struct intel_guc *guc,
2709 struct context_policy *policy,
2710 bool loop)
2711 {
2712 return guc_submission_send_busy_loop(guc, (u32 *)&policy->h2g,
2713 __guc_context_policy_action_size(policy),
2714 0, loop);
2715 }
2716
guc_context_policy_init_v70(struct intel_context * ce,bool loop)2717 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop)
2718 {
2719 struct intel_engine_cs *engine = ce->engine;
2720 struct intel_guc *guc = gt_to_guc(engine->gt);
2721 struct context_policy policy;
2722 u32 execution_quantum;
2723 u32 preemption_timeout;
2724 u32 slpc_ctx_freq_req = 0;
2725 unsigned long flags;
2726 int ret;
2727
2728 /* NB: For both of these, zero means disabled. */
2729 GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000,
2730 execution_quantum));
2731 GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000,
2732 preemption_timeout));
2733 execution_quantum = engine->props.timeslice_duration_ms * 1000;
2734 preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2735
2736 if (ce->flags & BIT(CONTEXT_LOW_LATENCY))
2737 slpc_ctx_freq_req |= SLPC_CTX_FREQ_REQ_IS_COMPUTE;
2738
2739 __guc_context_policy_start_klv(&policy, ce->guc_id.id);
2740
2741 __guc_context_policy_add_priority(&policy, ce->guc_state.prio);
2742 __guc_context_policy_add_execution_quantum(&policy, execution_quantum);
2743 __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
2744 __guc_context_policy_add_slpc_ctx_freq_req(&policy, slpc_ctx_freq_req);
2745
2746 if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2747 __guc_context_policy_add_preempt_to_idle(&policy, 1);
2748
2749 ret = __guc_context_set_context_policies(guc, &policy, loop);
2750
2751 spin_lock_irqsave(&ce->guc_state.lock, flags);
2752 if (ret != 0)
2753 set_context_policy_required(ce);
2754 else
2755 clr_context_policy_required(ce);
2756 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2757
2758 return ret;
2759 }
2760
guc_context_policy_init_v69(struct intel_engine_cs * engine,struct guc_lrc_desc_v69 * desc)2761 static void guc_context_policy_init_v69(struct intel_engine_cs *engine,
2762 struct guc_lrc_desc_v69 *desc)
2763 {
2764 desc->policy_flags = 0;
2765
2766 if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2767 desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE_V69;
2768
2769 /* NB: For both of these, zero means disabled. */
2770 GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000,
2771 desc->execution_quantum));
2772 GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000,
2773 desc->preemption_timeout));
2774 desc->execution_quantum = engine->props.timeslice_duration_ms * 1000;
2775 desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2776 }
2777
map_guc_prio_to_lrc_desc_prio(u8 prio)2778 static u32 map_guc_prio_to_lrc_desc_prio(u8 prio)
2779 {
2780 /*
2781 * this matches the mapping we do in map_i915_prio_to_guc_prio()
2782 * (e.g. prio < I915_PRIORITY_NORMAL maps to GUC_CLIENT_PRIORITY_NORMAL)
2783 */
2784 switch (prio) {
2785 default:
2786 MISSING_CASE(prio);
2787 fallthrough;
2788 case GUC_CLIENT_PRIORITY_KMD_NORMAL:
2789 return GEN12_CTX_PRIORITY_NORMAL;
2790 case GUC_CLIENT_PRIORITY_NORMAL:
2791 return GEN12_CTX_PRIORITY_LOW;
2792 case GUC_CLIENT_PRIORITY_HIGH:
2793 case GUC_CLIENT_PRIORITY_KMD_HIGH:
2794 return GEN12_CTX_PRIORITY_HIGH;
2795 }
2796 }
2797
prepare_context_registration_info_v69(struct intel_context * ce)2798 static void prepare_context_registration_info_v69(struct intel_context *ce)
2799 {
2800 struct intel_engine_cs *engine = ce->engine;
2801 struct intel_guc *guc = gt_to_guc(engine->gt);
2802 u32 ctx_id = ce->guc_id.id;
2803 struct guc_lrc_desc_v69 *desc;
2804 struct intel_context *child;
2805
2806 GEM_BUG_ON(!engine->mask);
2807
2808 /*
2809 * Ensure LRC + CT vmas are is same region as write barrier is done
2810 * based on CT vma region.
2811 */
2812 GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2813 i915_gem_object_is_lmem(ce->ring->vma->obj));
2814
2815 desc = __get_lrc_desc_v69(guc, ctx_id);
2816 GEM_BUG_ON(!desc);
2817 desc->engine_class = engine_class_to_guc_class(engine->class);
2818 desc->engine_submit_mask = engine->logical_mask;
2819 desc->hw_context_desc = ce->lrc.lrca;
2820 desc->priority = ce->guc_state.prio;
2821 desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2822 guc_context_policy_init_v69(engine, desc);
2823
2824 /*
2825 * If context is a parent, we need to register a process descriptor
2826 * describing a work queue and register all child contexts.
2827 */
2828 if (intel_context_is_parent(ce)) {
2829 struct guc_process_desc_v69 *pdesc;
2830
2831 ce->parallel.guc.wqi_tail = 0;
2832 ce->parallel.guc.wqi_head = 0;
2833
2834 desc->process_desc = i915_ggtt_offset(ce->state) +
2835 __get_parent_scratch_offset(ce);
2836 desc->wq_addr = i915_ggtt_offset(ce->state) +
2837 __get_wq_offset(ce);
2838 desc->wq_size = WQ_SIZE;
2839
2840 pdesc = __get_process_desc_v69(ce);
2841 memset(pdesc, 0, sizeof(*(pdesc)));
2842 pdesc->stage_id = ce->guc_id.id;
2843 pdesc->wq_base_addr = desc->wq_addr;
2844 pdesc->wq_size_bytes = desc->wq_size;
2845 pdesc->wq_status = WQ_STATUS_ACTIVE;
2846
2847 ce->parallel.guc.wq_head = &pdesc->head;
2848 ce->parallel.guc.wq_tail = &pdesc->tail;
2849 ce->parallel.guc.wq_status = &pdesc->wq_status;
2850
2851 for_each_child(ce, child) {
2852 desc = __get_lrc_desc_v69(guc, child->guc_id.id);
2853
2854 desc->engine_class =
2855 engine_class_to_guc_class(engine->class);
2856 desc->hw_context_desc = child->lrc.lrca;
2857 desc->priority = ce->guc_state.prio;
2858 desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2859 guc_context_policy_init_v69(engine, desc);
2860 }
2861
2862 clear_children_join_go_memory(ce);
2863 }
2864 }
2865
prepare_context_registration_info_v70(struct intel_context * ce,struct guc_ctxt_registration_info * info)2866 static void prepare_context_registration_info_v70(struct intel_context *ce,
2867 struct guc_ctxt_registration_info *info)
2868 {
2869 struct intel_engine_cs *engine = ce->engine;
2870 struct intel_guc *guc = gt_to_guc(engine->gt);
2871 u32 ctx_id = ce->guc_id.id;
2872
2873 GEM_BUG_ON(!engine->mask);
2874
2875 /*
2876 * Ensure LRC + CT vmas are is same region as write barrier is done
2877 * based on CT vma region.
2878 */
2879 GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2880 i915_gem_object_is_lmem(ce->ring->vma->obj));
2881
2882 memset(info, 0, sizeof(*info));
2883 info->context_idx = ctx_id;
2884 info->engine_class = engine_class_to_guc_class(engine->class);
2885 info->engine_submit_mask = engine->logical_mask;
2886 /*
2887 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2888 * only supports 32 bit currently.
2889 */
2890 info->hwlrca_lo = lower_32_bits(ce->lrc.lrca);
2891 info->hwlrca_hi = upper_32_bits(ce->lrc.lrca);
2892 if (engine->flags & I915_ENGINE_HAS_EU_PRIORITY)
2893 info->hwlrca_lo |= map_guc_prio_to_lrc_desc_prio(ce->guc_state.prio);
2894 info->flags = CONTEXT_REGISTRATION_FLAG_KMD;
2895
2896 /*
2897 * If context is a parent, we need to register a process descriptor
2898 * describing a work queue and register all child contexts.
2899 */
2900 if (intel_context_is_parent(ce)) {
2901 struct guc_sched_wq_desc *wq_desc;
2902 u64 wq_desc_offset, wq_base_offset;
2903
2904 ce->parallel.guc.wqi_tail = 0;
2905 ce->parallel.guc.wqi_head = 0;
2906
2907 wq_desc_offset = (u64)i915_ggtt_offset(ce->state) +
2908 __get_parent_scratch_offset(ce);
2909 wq_base_offset = (u64)i915_ggtt_offset(ce->state) +
2910 __get_wq_offset(ce);
2911 info->wq_desc_lo = lower_32_bits(wq_desc_offset);
2912 info->wq_desc_hi = upper_32_bits(wq_desc_offset);
2913 info->wq_base_lo = lower_32_bits(wq_base_offset);
2914 info->wq_base_hi = upper_32_bits(wq_base_offset);
2915 info->wq_size = WQ_SIZE;
2916
2917 wq_desc = __get_wq_desc_v70(ce);
2918 memset(wq_desc, 0, sizeof(*wq_desc));
2919 wq_desc->wq_status = WQ_STATUS_ACTIVE;
2920
2921 ce->parallel.guc.wq_head = &wq_desc->head;
2922 ce->parallel.guc.wq_tail = &wq_desc->tail;
2923 ce->parallel.guc.wq_status = &wq_desc->wq_status;
2924
2925 clear_children_join_go_memory(ce);
2926 }
2927 }
2928
try_context_registration(struct intel_context * ce,bool loop)2929 static int try_context_registration(struct intel_context *ce, bool loop)
2930 {
2931 struct intel_engine_cs *engine = ce->engine;
2932 struct intel_runtime_pm *runtime_pm = engine->uncore->rpm;
2933 struct intel_guc *guc = gt_to_guc(engine->gt);
2934 intel_wakeref_t wakeref;
2935 u32 ctx_id = ce->guc_id.id;
2936 bool context_registered;
2937 int ret = 0;
2938
2939 GEM_BUG_ON(!sched_state_is_init(ce));
2940
2941 context_registered = ctx_id_mapped(guc, ctx_id);
2942
2943 clr_ctx_id_mapping(guc, ctx_id);
2944 set_ctx_id_mapping(guc, ctx_id, ce);
2945
2946 /*
2947 * The context_lookup xarray is used to determine if the hardware
2948 * context is currently registered. There are two cases in which it
2949 * could be registered either the guc_id has been stolen from another
2950 * context or the lrc descriptor address of this context has changed. In
2951 * either case the context needs to be deregistered with the GuC before
2952 * registering this context.
2953 */
2954 if (context_registered) {
2955 bool disabled;
2956 unsigned long flags;
2957
2958 trace_intel_context_steal_guc_id(ce);
2959 GEM_BUG_ON(!loop);
2960
2961 /* Seal race with Reset */
2962 spin_lock_irqsave(&ce->guc_state.lock, flags);
2963 disabled = submission_disabled(guc);
2964 if (likely(!disabled)) {
2965 set_context_wait_for_deregister_to_register(ce);
2966 intel_context_get(ce);
2967 }
2968 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2969 if (unlikely(disabled)) {
2970 clr_ctx_id_mapping(guc, ctx_id);
2971 return 0; /* Will get registered later */
2972 }
2973
2974 /*
2975 * If stealing the guc_id, this ce has the same guc_id as the
2976 * context whose guc_id was stolen.
2977 */
2978 with_intel_runtime_pm(runtime_pm, wakeref)
2979 ret = deregister_context(ce, ce->guc_id.id);
2980 if (unlikely(ret == -ENODEV))
2981 ret = 0; /* Will get registered later */
2982 } else {
2983 with_intel_runtime_pm(runtime_pm, wakeref)
2984 ret = register_context(ce, loop);
2985 if (unlikely(ret == -EBUSY)) {
2986 clr_ctx_id_mapping(guc, ctx_id);
2987 } else if (unlikely(ret == -ENODEV)) {
2988 clr_ctx_id_mapping(guc, ctx_id);
2989 ret = 0; /* Will get registered later */
2990 }
2991 }
2992
2993 return ret;
2994 }
2995
__guc_context_pre_pin(struct intel_context * ce,struct intel_engine_cs * engine,struct i915_gem_ww_ctx * ww,void ** vaddr)2996 static int __guc_context_pre_pin(struct intel_context *ce,
2997 struct intel_engine_cs *engine,
2998 struct i915_gem_ww_ctx *ww,
2999 void **vaddr)
3000 {
3001 return lrc_pre_pin(ce, engine, ww, vaddr);
3002 }
3003
__guc_context_pin(struct intel_context * ce,struct intel_engine_cs * engine,void * vaddr)3004 static int __guc_context_pin(struct intel_context *ce,
3005 struct intel_engine_cs *engine,
3006 void *vaddr)
3007 {
3008 if (i915_ggtt_offset(ce->state) !=
3009 (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK))
3010 set_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
3011
3012 /*
3013 * GuC context gets pinned in guc_request_alloc. See that function for
3014 * explaination of why.
3015 */
3016
3017 return lrc_pin(ce, engine, vaddr);
3018 }
3019
guc_context_pre_pin(struct intel_context * ce,struct i915_gem_ww_ctx * ww,void ** vaddr)3020 static int guc_context_pre_pin(struct intel_context *ce,
3021 struct i915_gem_ww_ctx *ww,
3022 void **vaddr)
3023 {
3024 return __guc_context_pre_pin(ce, ce->engine, ww, vaddr);
3025 }
3026
guc_context_pin(struct intel_context * ce,void * vaddr)3027 static int guc_context_pin(struct intel_context *ce, void *vaddr)
3028 {
3029 int ret = __guc_context_pin(ce, ce->engine, vaddr);
3030
3031 if (likely(!ret && !intel_context_is_barrier(ce)))
3032 intel_engine_pm_get(ce->engine);
3033
3034 return ret;
3035 }
3036
guc_context_unpin(struct intel_context * ce)3037 static void guc_context_unpin(struct intel_context *ce)
3038 {
3039 struct intel_guc *guc = ce_to_guc(ce);
3040
3041 __guc_context_update_stats(ce);
3042 unpin_guc_id(guc, ce);
3043 lrc_unpin(ce);
3044
3045 if (likely(!intel_context_is_barrier(ce)))
3046 intel_engine_pm_put_async(ce->engine);
3047 }
3048
guc_context_post_unpin(struct intel_context * ce)3049 static void guc_context_post_unpin(struct intel_context *ce)
3050 {
3051 lrc_post_unpin(ce);
3052 }
3053
__guc_context_sched_enable(struct intel_guc * guc,struct intel_context * ce)3054 static void __guc_context_sched_enable(struct intel_guc *guc,
3055 struct intel_context *ce)
3056 {
3057 u32 action[] = {
3058 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
3059 ce->guc_id.id,
3060 GUC_CONTEXT_ENABLE
3061 };
3062
3063 trace_intel_context_sched_enable(ce);
3064
3065 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
3066 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
3067 }
3068
__guc_context_sched_disable(struct intel_guc * guc,struct intel_context * ce,u16 guc_id)3069 static void __guc_context_sched_disable(struct intel_guc *guc,
3070 struct intel_context *ce,
3071 u16 guc_id)
3072 {
3073 u32 action[] = {
3074 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
3075 guc_id, /* ce->guc_id.id not stable */
3076 GUC_CONTEXT_DISABLE
3077 };
3078
3079 GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID);
3080
3081 GEM_BUG_ON(intel_context_is_child(ce));
3082 trace_intel_context_sched_disable(ce);
3083
3084 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
3085 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
3086 }
3087
guc_blocked_fence_complete(struct intel_context * ce)3088 static void guc_blocked_fence_complete(struct intel_context *ce)
3089 {
3090 lockdep_assert_held(&ce->guc_state.lock);
3091
3092 if (!i915_sw_fence_done(&ce->guc_state.blocked))
3093 i915_sw_fence_complete(&ce->guc_state.blocked);
3094 }
3095
guc_blocked_fence_reinit(struct intel_context * ce)3096 static void guc_blocked_fence_reinit(struct intel_context *ce)
3097 {
3098 lockdep_assert_held(&ce->guc_state.lock);
3099 GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked));
3100
3101 /*
3102 * This fence is always complete unless a pending schedule disable is
3103 * outstanding. We arm the fence here and complete it when we receive
3104 * the pending schedule disable complete message.
3105 */
3106 i915_sw_fence_fini(&ce->guc_state.blocked);
3107 i915_sw_fence_reinit(&ce->guc_state.blocked);
3108 i915_sw_fence_await(&ce->guc_state.blocked);
3109 i915_sw_fence_commit(&ce->guc_state.blocked);
3110 }
3111
prep_context_pending_disable(struct intel_context * ce)3112 static u16 prep_context_pending_disable(struct intel_context *ce)
3113 {
3114 lockdep_assert_held(&ce->guc_state.lock);
3115
3116 set_context_pending_disable(ce);
3117 clr_context_enabled(ce);
3118 guc_blocked_fence_reinit(ce);
3119 intel_context_get(ce);
3120
3121 return ce->guc_id.id;
3122 }
3123
guc_context_block(struct intel_context * ce)3124 static struct i915_sw_fence *guc_context_block(struct intel_context *ce)
3125 {
3126 struct intel_guc *guc = ce_to_guc(ce);
3127 unsigned long flags;
3128 struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
3129 intel_wakeref_t wakeref;
3130 u16 guc_id;
3131 bool enabled;
3132
3133 GEM_BUG_ON(intel_context_is_child(ce));
3134
3135 spin_lock_irqsave(&ce->guc_state.lock, flags);
3136
3137 incr_context_blocked(ce);
3138
3139 enabled = context_enabled(ce);
3140 if (unlikely(!enabled || submission_disabled(guc))) {
3141 if (enabled)
3142 clr_context_enabled(ce);
3143 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3144 return &ce->guc_state.blocked;
3145 }
3146
3147 /*
3148 * We add +2 here as the schedule disable complete CTB handler calls
3149 * intel_context_sched_disable_unpin (-2 to pin_count).
3150 */
3151 atomic_add(2, &ce->pin_count);
3152
3153 guc_id = prep_context_pending_disable(ce);
3154
3155 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3156
3157 with_intel_runtime_pm(runtime_pm, wakeref)
3158 __guc_context_sched_disable(guc, ce, guc_id);
3159
3160 return &ce->guc_state.blocked;
3161 }
3162
3163 #define SCHED_STATE_MULTI_BLOCKED_MASK \
3164 (SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED)
3165 #define SCHED_STATE_NO_UNBLOCK \
3166 (SCHED_STATE_MULTI_BLOCKED_MASK | \
3167 SCHED_STATE_PENDING_DISABLE | \
3168 SCHED_STATE_BANNED)
3169
context_cant_unblock(struct intel_context * ce)3170 static bool context_cant_unblock(struct intel_context *ce)
3171 {
3172 lockdep_assert_held(&ce->guc_state.lock);
3173
3174 return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) ||
3175 context_guc_id_invalid(ce) ||
3176 !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id) ||
3177 !intel_context_is_pinned(ce);
3178 }
3179
guc_context_unblock(struct intel_context * ce)3180 static void guc_context_unblock(struct intel_context *ce)
3181 {
3182 struct intel_guc *guc = ce_to_guc(ce);
3183 unsigned long flags;
3184 struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
3185 intel_wakeref_t wakeref;
3186 bool enable;
3187
3188 GEM_BUG_ON(context_enabled(ce));
3189 GEM_BUG_ON(intel_context_is_child(ce));
3190
3191 spin_lock_irqsave(&ce->guc_state.lock, flags);
3192
3193 if (unlikely(submission_disabled(guc) ||
3194 context_cant_unblock(ce))) {
3195 enable = false;
3196 } else {
3197 enable = true;
3198 set_context_pending_enable(ce);
3199 set_context_enabled(ce);
3200 intel_context_get(ce);
3201 }
3202
3203 decr_context_blocked(ce);
3204
3205 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3206
3207 if (enable) {
3208 with_intel_runtime_pm(runtime_pm, wakeref)
3209 __guc_context_sched_enable(guc, ce);
3210 }
3211 }
3212
guc_context_cancel_request(struct intel_context * ce,struct i915_request * rq)3213 static void guc_context_cancel_request(struct intel_context *ce,
3214 struct i915_request *rq)
3215 {
3216 struct intel_context *block_context =
3217 request_to_scheduling_context(rq);
3218
3219 if (i915_sw_fence_signaled(&rq->submit)) {
3220 struct i915_sw_fence *fence;
3221
3222 intel_context_get(ce);
3223 fence = guc_context_block(block_context);
3224 i915_sw_fence_wait(fence);
3225 if (!i915_request_completed(rq)) {
3226 __i915_request_skip(rq);
3227 guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head),
3228 true);
3229 }
3230
3231 guc_context_unblock(block_context);
3232 intel_context_put(ce);
3233 }
3234 }
3235
__guc_context_set_preemption_timeout(struct intel_guc * guc,u16 guc_id,u32 preemption_timeout)3236 static void __guc_context_set_preemption_timeout(struct intel_guc *guc,
3237 u16 guc_id,
3238 u32 preemption_timeout)
3239 {
3240 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) {
3241 struct context_policy policy;
3242
3243 __guc_context_policy_start_klv(&policy, guc_id);
3244 __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
3245 __guc_context_set_context_policies(guc, &policy, true);
3246 } else {
3247 u32 action[] = {
3248 INTEL_GUC_ACTION_V69_SET_CONTEXT_PREEMPTION_TIMEOUT,
3249 guc_id,
3250 preemption_timeout
3251 };
3252
3253 intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3254 }
3255 }
3256
3257 static void
guc_context_revoke(struct intel_context * ce,struct i915_request * rq,unsigned int preempt_timeout_ms)3258 guc_context_revoke(struct intel_context *ce, struct i915_request *rq,
3259 unsigned int preempt_timeout_ms)
3260 {
3261 struct intel_guc *guc = ce_to_guc(ce);
3262 struct intel_runtime_pm *runtime_pm =
3263 &ce->engine->gt->i915->runtime_pm;
3264 intel_wakeref_t wakeref;
3265 unsigned long flags;
3266
3267 GEM_BUG_ON(intel_context_is_child(ce));
3268
3269 guc_flush_submissions(guc);
3270
3271 spin_lock_irqsave(&ce->guc_state.lock, flags);
3272 set_context_banned(ce);
3273
3274 if (submission_disabled(guc) ||
3275 (!context_enabled(ce) && !context_pending_disable(ce))) {
3276 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3277
3278 guc_cancel_context_requests(ce);
3279 intel_engine_signal_breadcrumbs(ce->engine);
3280 } else if (!context_pending_disable(ce)) {
3281 u16 guc_id;
3282
3283 /*
3284 * We add +2 here as the schedule disable complete CTB handler
3285 * calls intel_context_sched_disable_unpin (-2 to pin_count).
3286 */
3287 atomic_add(2, &ce->pin_count);
3288
3289 guc_id = prep_context_pending_disable(ce);
3290 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3291
3292 /*
3293 * In addition to disabling scheduling, set the preemption
3294 * timeout to the minimum value (1 us) so the banned context
3295 * gets kicked off the HW ASAP.
3296 */
3297 with_intel_runtime_pm(runtime_pm, wakeref) {
3298 __guc_context_set_preemption_timeout(guc, guc_id,
3299 preempt_timeout_ms);
3300 __guc_context_sched_disable(guc, ce, guc_id);
3301 }
3302 } else {
3303 if (!context_guc_id_invalid(ce))
3304 with_intel_runtime_pm(runtime_pm, wakeref)
3305 __guc_context_set_preemption_timeout(guc,
3306 ce->guc_id.id,
3307 preempt_timeout_ms);
3308 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3309 }
3310 }
3311
do_sched_disable(struct intel_guc * guc,struct intel_context * ce,unsigned long flags)3312 static void do_sched_disable(struct intel_guc *guc, struct intel_context *ce,
3313 unsigned long flags)
3314 __releases(ce->guc_state.lock)
3315 {
3316 struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm;
3317 intel_wakeref_t wakeref;
3318 u16 guc_id;
3319
3320 lockdep_assert_held(&ce->guc_state.lock);
3321 guc_id = prep_context_pending_disable(ce);
3322
3323 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3324
3325 with_intel_runtime_pm(runtime_pm, wakeref)
3326 __guc_context_sched_disable(guc, ce, guc_id);
3327 }
3328
bypass_sched_disable(struct intel_guc * guc,struct intel_context * ce)3329 static bool bypass_sched_disable(struct intel_guc *guc,
3330 struct intel_context *ce)
3331 {
3332 lockdep_assert_held(&ce->guc_state.lock);
3333 GEM_BUG_ON(intel_context_is_child(ce));
3334
3335 if (submission_disabled(guc) || context_guc_id_invalid(ce) ||
3336 !ctx_id_mapped(guc, ce->guc_id.id)) {
3337 clr_context_enabled(ce);
3338 return true;
3339 }
3340
3341 return !context_enabled(ce);
3342 }
3343
__delay_sched_disable(struct work_struct * wrk)3344 static void __delay_sched_disable(struct work_struct *wrk)
3345 {
3346 struct intel_context *ce =
3347 container_of(wrk, typeof(*ce), guc_state.sched_disable_delay_work.work);
3348 struct intel_guc *guc = ce_to_guc(ce);
3349 unsigned long flags;
3350
3351 spin_lock_irqsave(&ce->guc_state.lock, flags);
3352
3353 if (bypass_sched_disable(guc, ce)) {
3354 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3355 intel_context_sched_disable_unpin(ce);
3356 } else {
3357 do_sched_disable(guc, ce, flags);
3358 }
3359 }
3360
guc_id_pressure(struct intel_guc * guc,struct intel_context * ce)3361 static bool guc_id_pressure(struct intel_guc *guc, struct intel_context *ce)
3362 {
3363 /*
3364 * parent contexts are perma-pinned, if we are unpinning do schedule
3365 * disable immediately.
3366 */
3367 if (intel_context_is_parent(ce))
3368 return true;
3369
3370 /*
3371 * If we are beyond the threshold for avail guc_ids, do schedule disable immediately.
3372 */
3373 return guc->submission_state.guc_ids_in_use >
3374 guc->submission_state.sched_disable_gucid_threshold;
3375 }
3376
guc_context_sched_disable(struct intel_context * ce)3377 static void guc_context_sched_disable(struct intel_context *ce)
3378 {
3379 struct intel_guc *guc = ce_to_guc(ce);
3380 u64 delay = guc->submission_state.sched_disable_delay_ms;
3381 unsigned long flags;
3382
3383 spin_lock_irqsave(&ce->guc_state.lock, flags);
3384
3385 if (bypass_sched_disable(guc, ce)) {
3386 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3387 intel_context_sched_disable_unpin(ce);
3388 } else if (!intel_context_is_closed(ce) && !guc_id_pressure(guc, ce) &&
3389 delay) {
3390 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3391 mod_delayed_work(system_unbound_wq,
3392 &ce->guc_state.sched_disable_delay_work,
3393 msecs_to_jiffies(delay));
3394 } else {
3395 do_sched_disable(guc, ce, flags);
3396 }
3397 }
3398
guc_context_close(struct intel_context * ce)3399 static void guc_context_close(struct intel_context *ce)
3400 {
3401 unsigned long flags;
3402
3403 if (test_bit(CONTEXT_GUC_INIT, &ce->flags) &&
3404 cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))
3405 __delay_sched_disable(&ce->guc_state.sched_disable_delay_work.work);
3406
3407 spin_lock_irqsave(&ce->guc_state.lock, flags);
3408 set_context_close_done(ce);
3409 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3410 }
3411
guc_lrc_desc_unpin(struct intel_context * ce)3412 static inline int guc_lrc_desc_unpin(struct intel_context *ce)
3413 {
3414 struct intel_guc *guc = ce_to_guc(ce);
3415 struct intel_gt *gt = guc_to_gt(guc);
3416 unsigned long flags;
3417 bool disabled;
3418 int ret;
3419
3420 GEM_BUG_ON(!intel_gt_pm_is_awake(gt));
3421 GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id));
3422 GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id));
3423 GEM_BUG_ON(context_enabled(ce));
3424
3425 /* Seal race with Reset */
3426 spin_lock_irqsave(&ce->guc_state.lock, flags);
3427 disabled = submission_disabled(guc);
3428 if (likely(!disabled)) {
3429 /*
3430 * Take a gt-pm ref and change context state to be destroyed.
3431 * NOTE: a G2H IRQ that comes after will put this gt-pm ref back
3432 */
3433 __intel_gt_pm_get(gt);
3434 set_context_destroyed(ce);
3435 clr_context_registered(ce);
3436 }
3437 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3438
3439 if (unlikely(disabled)) {
3440 release_guc_id(guc, ce);
3441 __guc_context_destroy(ce);
3442 return 0;
3443 }
3444
3445 /*
3446 * GuC is active, lets destroy this context, but at this point we can still be racing
3447 * with suspend, so we undo everything if the H2G fails in deregister_context so
3448 * that GuC reset will find this context during clean up.
3449 */
3450 ret = deregister_context(ce, ce->guc_id.id);
3451 if (ret) {
3452 spin_lock_irqsave(&ce->guc_state.lock, flags);
3453 set_context_registered(ce);
3454 clr_context_destroyed(ce);
3455 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3456 /*
3457 * As gt-pm is awake at function entry, intel_wakeref_put_async merely decrements
3458 * the wakeref immediately but per function spec usage call this after unlock.
3459 */
3460 intel_wakeref_put_async(>->wakeref);
3461 }
3462
3463 return ret;
3464 }
3465
__guc_context_destroy(struct intel_context * ce)3466 static void __guc_context_destroy(struct intel_context *ce)
3467 {
3468 GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] ||
3469 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] ||
3470 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] ||
3471 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]);
3472
3473 lrc_fini(ce);
3474 intel_context_fini(ce);
3475
3476 if (intel_engine_is_virtual(ce->engine)) {
3477 struct guc_virtual_engine *ve =
3478 container_of(ce, typeof(*ve), context);
3479
3480 if (ve->base.breadcrumbs)
3481 intel_breadcrumbs_put(ve->base.breadcrumbs);
3482
3483 kfree(ve);
3484 } else {
3485 intel_context_free(ce);
3486 }
3487 }
3488
guc_flush_destroyed_contexts(struct intel_guc * guc)3489 static void guc_flush_destroyed_contexts(struct intel_guc *guc)
3490 {
3491 struct intel_context *ce;
3492 unsigned long flags;
3493
3494 GEM_BUG_ON(!submission_disabled(guc) &&
3495 guc_submission_initialized(guc));
3496
3497 while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3498 spin_lock_irqsave(&guc->submission_state.lock, flags);
3499 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3500 struct intel_context,
3501 destroyed_link);
3502 if (ce)
3503 list_del_init(&ce->destroyed_link);
3504 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3505
3506 if (!ce)
3507 break;
3508
3509 release_guc_id(guc, ce);
3510 __guc_context_destroy(ce);
3511 }
3512 }
3513
deregister_destroyed_contexts(struct intel_guc * guc)3514 static void deregister_destroyed_contexts(struct intel_guc *guc)
3515 {
3516 struct intel_context *ce;
3517 unsigned long flags;
3518
3519 while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3520 spin_lock_irqsave(&guc->submission_state.lock, flags);
3521 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3522 struct intel_context,
3523 destroyed_link);
3524 if (ce)
3525 list_del_init(&ce->destroyed_link);
3526 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3527
3528 if (!ce)
3529 break;
3530
3531 if (guc_lrc_desc_unpin(ce)) {
3532 /*
3533 * This means GuC's CT link severed mid-way which could happen
3534 * in suspend-resume corner cases. In this case, put the
3535 * context back into the destroyed_contexts list which will
3536 * get picked up on the next context deregistration event or
3537 * purged in a GuC sanitization event (reset/unload/wedged/...).
3538 */
3539 spin_lock_irqsave(&guc->submission_state.lock, flags);
3540 list_add_tail(&ce->destroyed_link,
3541 &guc->submission_state.destroyed_contexts);
3542 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3543 /* Bail now since the list might never be emptied if h2gs fail */
3544 break;
3545 }
3546
3547 }
3548 }
3549
destroyed_worker_func(struct work_struct * w)3550 static void destroyed_worker_func(struct work_struct *w)
3551 {
3552 struct intel_guc *guc = container_of(w, struct intel_guc,
3553 submission_state.destroyed_worker);
3554 struct intel_gt *gt = guc_to_gt(guc);
3555 intel_wakeref_t wakeref;
3556
3557 /*
3558 * In rare cases we can get here via async context-free fence-signals that
3559 * come very late in suspend flow or very early in resume flows. In these
3560 * cases, GuC won't be ready but just skipping it here is fine as these
3561 * pending-destroy-contexts get destroyed totally at GuC reset time at the
3562 * end of suspend.. OR.. this worker can be picked up later on the next
3563 * context destruction trigger after resume-completes
3564 */
3565 if (!intel_guc_is_ready(guc))
3566 return;
3567
3568 with_intel_gt_pm(gt, wakeref)
3569 deregister_destroyed_contexts(guc);
3570 }
3571
guc_context_destroy(struct kref * kref)3572 static void guc_context_destroy(struct kref *kref)
3573 {
3574 struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3575 struct intel_guc *guc = ce_to_guc(ce);
3576 unsigned long flags;
3577 bool destroy;
3578
3579 /*
3580 * If the guc_id is invalid this context has been stolen and we can free
3581 * it immediately. Also can be freed immediately if the context is not
3582 * registered with the GuC or the GuC is in the middle of a reset.
3583 */
3584 spin_lock_irqsave(&guc->submission_state.lock, flags);
3585 destroy = submission_disabled(guc) || context_guc_id_invalid(ce) ||
3586 !ctx_id_mapped(guc, ce->guc_id.id);
3587 if (likely(!destroy)) {
3588 if (!list_empty(&ce->guc_id.link))
3589 list_del_init(&ce->guc_id.link);
3590 list_add_tail(&ce->destroyed_link,
3591 &guc->submission_state.destroyed_contexts);
3592 } else {
3593 __release_guc_id(guc, ce);
3594 }
3595 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3596 if (unlikely(destroy)) {
3597 __guc_context_destroy(ce);
3598 return;
3599 }
3600
3601 /*
3602 * We use a worker to issue the H2G to deregister the context as we can
3603 * take the GT PM for the first time which isn't allowed from an atomic
3604 * context.
3605 */
3606 queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker);
3607 }
3608
guc_context_alloc(struct intel_context * ce)3609 static int guc_context_alloc(struct intel_context *ce)
3610 {
3611 return lrc_alloc(ce, ce->engine);
3612 }
3613
__guc_context_set_prio(struct intel_guc * guc,struct intel_context * ce)3614 static void __guc_context_set_prio(struct intel_guc *guc,
3615 struct intel_context *ce)
3616 {
3617 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) {
3618 struct context_policy policy;
3619
3620 __guc_context_policy_start_klv(&policy, ce->guc_id.id);
3621 __guc_context_policy_add_priority(&policy, ce->guc_state.prio);
3622 __guc_context_set_context_policies(guc, &policy, true);
3623 } else {
3624 u32 action[] = {
3625 INTEL_GUC_ACTION_V69_SET_CONTEXT_PRIORITY,
3626 ce->guc_id.id,
3627 ce->guc_state.prio,
3628 };
3629
3630 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3631 }
3632 }
3633
guc_context_set_prio(struct intel_guc * guc,struct intel_context * ce,u8 prio)3634 static void guc_context_set_prio(struct intel_guc *guc,
3635 struct intel_context *ce,
3636 u8 prio)
3637 {
3638 GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH ||
3639 prio > GUC_CLIENT_PRIORITY_NORMAL);
3640 lockdep_assert_held(&ce->guc_state.lock);
3641
3642 if (ce->guc_state.prio == prio || submission_disabled(guc) ||
3643 !context_registered(ce)) {
3644 ce->guc_state.prio = prio;
3645 return;
3646 }
3647
3648 ce->guc_state.prio = prio;
3649 __guc_context_set_prio(guc, ce);
3650
3651 trace_intel_context_set_prio(ce);
3652 }
3653
map_i915_prio_to_guc_prio(int prio)3654 static inline u8 map_i915_prio_to_guc_prio(int prio)
3655 {
3656 if (prio == I915_PRIORITY_NORMAL)
3657 return GUC_CLIENT_PRIORITY_KMD_NORMAL;
3658 else if (prio < I915_PRIORITY_NORMAL)
3659 return GUC_CLIENT_PRIORITY_NORMAL;
3660 else if (prio < I915_PRIORITY_DISPLAY)
3661 return GUC_CLIENT_PRIORITY_HIGH;
3662 else
3663 return GUC_CLIENT_PRIORITY_KMD_HIGH;
3664 }
3665
add_context_inflight_prio(struct intel_context * ce,u8 guc_prio)3666 static inline void add_context_inflight_prio(struct intel_context *ce,
3667 u8 guc_prio)
3668 {
3669 lockdep_assert_held(&ce->guc_state.lock);
3670 GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3671
3672 ++ce->guc_state.prio_count[guc_prio];
3673
3674 /* Overflow protection */
3675 GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3676 }
3677
sub_context_inflight_prio(struct intel_context * ce,u8 guc_prio)3678 static inline void sub_context_inflight_prio(struct intel_context *ce,
3679 u8 guc_prio)
3680 {
3681 lockdep_assert_held(&ce->guc_state.lock);
3682 GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3683
3684 /* Underflow protection */
3685 GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3686
3687 --ce->guc_state.prio_count[guc_prio];
3688 }
3689
update_context_prio(struct intel_context * ce)3690 static inline void update_context_prio(struct intel_context *ce)
3691 {
3692 struct intel_guc *guc = &ce->engine->gt->uc.guc;
3693 int i;
3694
3695 BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0);
3696 BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL);
3697
3698 lockdep_assert_held(&ce->guc_state.lock);
3699
3700 for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) {
3701 if (ce->guc_state.prio_count[i]) {
3702 guc_context_set_prio(guc, ce, i);
3703 break;
3704 }
3705 }
3706 }
3707
new_guc_prio_higher(u8 old_guc_prio,u8 new_guc_prio)3708 static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio)
3709 {
3710 /* Lower value is higher priority */
3711 return new_guc_prio < old_guc_prio;
3712 }
3713
add_to_context(struct i915_request * rq)3714 static void add_to_context(struct i915_request *rq)
3715 {
3716 struct intel_context *ce = request_to_scheduling_context(rq);
3717 u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq));
3718
3719 GEM_BUG_ON(intel_context_is_child(ce));
3720 GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI);
3721
3722 spin_lock(&ce->guc_state.lock);
3723 list_move_tail(&rq->sched.link, &ce->guc_state.requests);
3724
3725 if (rq->guc_prio == GUC_PRIO_INIT) {
3726 rq->guc_prio = new_guc_prio;
3727 add_context_inflight_prio(ce, rq->guc_prio);
3728 } else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) {
3729 sub_context_inflight_prio(ce, rq->guc_prio);
3730 rq->guc_prio = new_guc_prio;
3731 add_context_inflight_prio(ce, rq->guc_prio);
3732 }
3733 update_context_prio(ce);
3734
3735 spin_unlock(&ce->guc_state.lock);
3736 }
3737
guc_prio_fini(struct i915_request * rq,struct intel_context * ce)3738 static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce)
3739 {
3740 lockdep_assert_held(&ce->guc_state.lock);
3741
3742 if (rq->guc_prio != GUC_PRIO_INIT &&
3743 rq->guc_prio != GUC_PRIO_FINI) {
3744 sub_context_inflight_prio(ce, rq->guc_prio);
3745 update_context_prio(ce);
3746 }
3747 rq->guc_prio = GUC_PRIO_FINI;
3748 }
3749
remove_from_context(struct i915_request * rq)3750 static void remove_from_context(struct i915_request *rq)
3751 {
3752 struct intel_context *ce = request_to_scheduling_context(rq);
3753
3754 GEM_BUG_ON(intel_context_is_child(ce));
3755
3756 spin_lock_irq(&ce->guc_state.lock);
3757
3758 list_del_init(&rq->sched.link);
3759 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3760
3761 /* Prevent further __await_execution() registering a cb, then flush */
3762 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3763
3764 guc_prio_fini(rq, ce);
3765
3766 spin_unlock_irq(&ce->guc_state.lock);
3767
3768 atomic_dec(&ce->guc_id.ref);
3769 i915_request_notify_execute_cb_imm(rq);
3770 }
3771
3772 static const struct intel_context_ops guc_context_ops = {
3773 .flags = COPS_RUNTIME_CYCLES,
3774 .alloc = guc_context_alloc,
3775
3776 .close = guc_context_close,
3777
3778 .pre_pin = guc_context_pre_pin,
3779 .pin = guc_context_pin,
3780 .unpin = guc_context_unpin,
3781 .post_unpin = guc_context_post_unpin,
3782
3783 .revoke = guc_context_revoke,
3784
3785 .cancel_request = guc_context_cancel_request,
3786
3787 .enter = intel_context_enter_engine,
3788 .exit = intel_context_exit_engine,
3789
3790 .sched_disable = guc_context_sched_disable,
3791
3792 .update_stats = guc_context_update_stats,
3793
3794 .reset = lrc_reset,
3795 .destroy = guc_context_destroy,
3796
3797 .create_virtual = guc_create_virtual,
3798 .create_parallel = guc_create_parallel,
3799 };
3800
submit_work_cb(struct irq_work * wrk)3801 static void submit_work_cb(struct irq_work *wrk)
3802 {
3803 struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work);
3804
3805 might_lock(&rq->engine->sched_engine->lock);
3806 i915_sw_fence_complete(&rq->submit);
3807 }
3808
__guc_signal_context_fence(struct intel_context * ce)3809 static void __guc_signal_context_fence(struct intel_context *ce)
3810 {
3811 struct i915_request *rq, *rn;
3812
3813 lockdep_assert_held(&ce->guc_state.lock);
3814
3815 if (!list_empty(&ce->guc_state.fences))
3816 trace_intel_context_fence_release(ce);
3817
3818 /*
3819 * Use an IRQ to ensure locking order of sched_engine->lock ->
3820 * ce->guc_state.lock is preserved.
3821 */
3822 list_for_each_entry_safe(rq, rn, &ce->guc_state.fences,
3823 guc_fence_link) {
3824 list_del(&rq->guc_fence_link);
3825 irq_work_queue(&rq->submit_work);
3826 }
3827
3828 INIT_LIST_HEAD(&ce->guc_state.fences);
3829 }
3830
guc_signal_context_fence(struct intel_context * ce)3831 static void guc_signal_context_fence(struct intel_context *ce)
3832 {
3833 unsigned long flags;
3834
3835 GEM_BUG_ON(intel_context_is_child(ce));
3836
3837 spin_lock_irqsave(&ce->guc_state.lock, flags);
3838 clr_context_wait_for_deregister_to_register(ce);
3839 __guc_signal_context_fence(ce);
3840 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3841 }
3842
context_needs_register(struct intel_context * ce,bool new_guc_id)3843 static bool context_needs_register(struct intel_context *ce, bool new_guc_id)
3844 {
3845 return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) ||
3846 !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)) &&
3847 !submission_disabled(ce_to_guc(ce));
3848 }
3849
guc_context_init(struct intel_context * ce)3850 static void guc_context_init(struct intel_context *ce)
3851 {
3852 const struct i915_gem_context *ctx;
3853 int prio = I915_CONTEXT_DEFAULT_PRIORITY;
3854
3855 rcu_read_lock();
3856 ctx = rcu_dereference(ce->gem_context);
3857 if (ctx)
3858 prio = ctx->sched.priority;
3859 rcu_read_unlock();
3860
3861 ce->guc_state.prio = map_i915_prio_to_guc_prio(prio);
3862
3863 INIT_DELAYED_WORK(&ce->guc_state.sched_disable_delay_work,
3864 __delay_sched_disable);
3865
3866 set_bit(CONTEXT_GUC_INIT, &ce->flags);
3867 }
3868
guc_request_alloc(struct i915_request * rq)3869 static int guc_request_alloc(struct i915_request *rq)
3870 {
3871 struct intel_context *ce = request_to_scheduling_context(rq);
3872 struct intel_guc *guc = ce_to_guc(ce);
3873 unsigned long flags;
3874 int ret;
3875
3876 GEM_BUG_ON(!intel_context_is_pinned(rq->context));
3877
3878 /*
3879 * Flush enough space to reduce the likelihood of waiting after
3880 * we start building the request - in which case we will just
3881 * have to repeat work.
3882 */
3883 rq->reserved_space += GUC_REQUEST_SIZE;
3884
3885 /*
3886 * Note that after this point, we have committed to using
3887 * this request as it is being used to both track the
3888 * state of engine initialisation and liveness of the
3889 * golden renderstate above. Think twice before you try
3890 * to cancel/unwind this request now.
3891 */
3892
3893 /* Unconditionally invalidate GPU caches and TLBs. */
3894 ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
3895 if (ret)
3896 return ret;
3897
3898 rq->reserved_space -= GUC_REQUEST_SIZE;
3899
3900 if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags)))
3901 guc_context_init(ce);
3902
3903 /*
3904 * If the context gets closed while the execbuf is ongoing, the context
3905 * close code will race with the below code to cancel the delayed work.
3906 * If the context close wins the race and cancels the work, it will
3907 * immediately call the sched disable (see guc_context_close), so there
3908 * is a chance we can get past this check while the sched_disable code
3909 * is being executed. To make sure that code completes before we check
3910 * the status further down, we wait for the close process to complete.
3911 * Else, this code path could send a request down thinking that the
3912 * context is still in a schedule-enable mode while the GuC ends up
3913 * dropping the request completely because the disable did go from the
3914 * context_close path right to GuC just prior. In the event the CT is
3915 * full, we could potentially need to wait up to 1.5 seconds.
3916 */
3917 if (cancel_delayed_work_sync(&ce->guc_state.sched_disable_delay_work))
3918 intel_context_sched_disable_unpin(ce);
3919 else if (intel_context_is_closed(ce))
3920 if (wait_for(context_close_done(ce), 1500))
3921 guc_warn(guc, "timed out waiting on context sched close before realloc\n");
3922 /*
3923 * Call pin_guc_id here rather than in the pinning step as with
3924 * dma_resv, contexts can be repeatedly pinned / unpinned trashing the
3925 * guc_id and creating horrible race conditions. This is especially bad
3926 * when guc_id are being stolen due to over subscription. By the time
3927 * this function is reached, it is guaranteed that the guc_id will be
3928 * persistent until the generated request is retired. Thus, sealing these
3929 * race conditions. It is still safe to fail here if guc_id are
3930 * exhausted and return -EAGAIN to the user indicating that they can try
3931 * again in the future.
3932 *
3933 * There is no need for a lock here as the timeline mutex ensures at
3934 * most one context can be executing this code path at once. The
3935 * guc_id_ref is incremented once for every request in flight and
3936 * decremented on each retire. When it is zero, a lock around the
3937 * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id.
3938 */
3939 if (atomic_add_unless(&ce->guc_id.ref, 1, 0))
3940 goto out;
3941
3942 ret = pin_guc_id(guc, ce); /* returns 1 if new guc_id assigned */
3943 if (unlikely(ret < 0))
3944 return ret;
3945 if (context_needs_register(ce, !!ret)) {
3946 ret = try_context_registration(ce, true);
3947 if (unlikely(ret)) { /* unwind */
3948 if (ret == -EPIPE) {
3949 disable_submission(guc);
3950 goto out; /* GPU will be reset */
3951 }
3952 atomic_dec(&ce->guc_id.ref);
3953 unpin_guc_id(guc, ce);
3954 return ret;
3955 }
3956 }
3957
3958 clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
3959
3960 out:
3961 /*
3962 * We block all requests on this context if a G2H is pending for a
3963 * schedule disable or context deregistration as the GuC will fail a
3964 * schedule enable or context registration if either G2H is pending
3965 * respectfully. Once a G2H returns, the fence is released that is
3966 * blocking these requests (see guc_signal_context_fence).
3967 */
3968 spin_lock_irqsave(&ce->guc_state.lock, flags);
3969 if (context_wait_for_deregister_to_register(ce) ||
3970 context_pending_disable(ce)) {
3971 init_irq_work(&rq->submit_work, submit_work_cb);
3972 i915_sw_fence_await(&rq->submit);
3973
3974 list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences);
3975 }
3976 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3977
3978 return 0;
3979 }
3980
guc_virtual_context_pre_pin(struct intel_context * ce,struct i915_gem_ww_ctx * ww,void ** vaddr)3981 static int guc_virtual_context_pre_pin(struct intel_context *ce,
3982 struct i915_gem_ww_ctx *ww,
3983 void **vaddr)
3984 {
3985 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3986
3987 return __guc_context_pre_pin(ce, engine, ww, vaddr);
3988 }
3989
guc_virtual_context_pin(struct intel_context * ce,void * vaddr)3990 static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr)
3991 {
3992 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3993 int ret = __guc_context_pin(ce, engine, vaddr);
3994 intel_engine_mask_t tmp, mask = ce->engine->mask;
3995
3996 if (likely(!ret))
3997 for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3998 intel_engine_pm_get(engine);
3999
4000 return ret;
4001 }
4002
guc_virtual_context_unpin(struct intel_context * ce)4003 static void guc_virtual_context_unpin(struct intel_context *ce)
4004 {
4005 intel_engine_mask_t tmp, mask = ce->engine->mask;
4006 struct intel_engine_cs *engine;
4007 struct intel_guc *guc = ce_to_guc(ce);
4008
4009 GEM_BUG_ON(context_enabled(ce));
4010 GEM_BUG_ON(intel_context_is_barrier(ce));
4011
4012 unpin_guc_id(guc, ce);
4013 lrc_unpin(ce);
4014
4015 for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
4016 intel_engine_pm_put_async(engine);
4017 }
4018
guc_virtual_context_enter(struct intel_context * ce)4019 static void guc_virtual_context_enter(struct intel_context *ce)
4020 {
4021 intel_engine_mask_t tmp, mask = ce->engine->mask;
4022 struct intel_engine_cs *engine;
4023
4024 for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
4025 intel_engine_pm_get(engine);
4026
4027 intel_timeline_enter(ce->timeline);
4028 }
4029
guc_virtual_context_exit(struct intel_context * ce)4030 static void guc_virtual_context_exit(struct intel_context *ce)
4031 {
4032 intel_engine_mask_t tmp, mask = ce->engine->mask;
4033 struct intel_engine_cs *engine;
4034
4035 for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
4036 intel_engine_pm_put(engine);
4037
4038 intel_timeline_exit(ce->timeline);
4039 }
4040
guc_virtual_context_alloc(struct intel_context * ce)4041 static int guc_virtual_context_alloc(struct intel_context *ce)
4042 {
4043 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
4044
4045 return lrc_alloc(ce, engine);
4046 }
4047
4048 static const struct intel_context_ops virtual_guc_context_ops = {
4049 .flags = COPS_RUNTIME_CYCLES,
4050 .alloc = guc_virtual_context_alloc,
4051
4052 .close = guc_context_close,
4053
4054 .pre_pin = guc_virtual_context_pre_pin,
4055 .pin = guc_virtual_context_pin,
4056 .unpin = guc_virtual_context_unpin,
4057 .post_unpin = guc_context_post_unpin,
4058
4059 .revoke = guc_context_revoke,
4060
4061 .cancel_request = guc_context_cancel_request,
4062
4063 .enter = guc_virtual_context_enter,
4064 .exit = guc_virtual_context_exit,
4065
4066 .sched_disable = guc_context_sched_disable,
4067 .update_stats = guc_context_update_stats,
4068
4069 .destroy = guc_context_destroy,
4070
4071 .get_sibling = guc_virtual_get_sibling,
4072 };
4073
guc_parent_context_pin(struct intel_context * ce,void * vaddr)4074 static int guc_parent_context_pin(struct intel_context *ce, void *vaddr)
4075 {
4076 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
4077 struct intel_guc *guc = ce_to_guc(ce);
4078 int ret;
4079
4080 GEM_BUG_ON(!intel_context_is_parent(ce));
4081 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4082
4083 ret = pin_guc_id(guc, ce);
4084 if (unlikely(ret < 0))
4085 return ret;
4086
4087 return __guc_context_pin(ce, engine, vaddr);
4088 }
4089
guc_child_context_pin(struct intel_context * ce,void * vaddr)4090 static int guc_child_context_pin(struct intel_context *ce, void *vaddr)
4091 {
4092 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
4093
4094 GEM_BUG_ON(!intel_context_is_child(ce));
4095 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4096
4097 __intel_context_pin(ce->parallel.parent);
4098 return __guc_context_pin(ce, engine, vaddr);
4099 }
4100
guc_parent_context_unpin(struct intel_context * ce)4101 static void guc_parent_context_unpin(struct intel_context *ce)
4102 {
4103 struct intel_guc *guc = ce_to_guc(ce);
4104
4105 GEM_BUG_ON(context_enabled(ce));
4106 GEM_BUG_ON(intel_context_is_barrier(ce));
4107 GEM_BUG_ON(!intel_context_is_parent(ce));
4108 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4109
4110 unpin_guc_id(guc, ce);
4111 lrc_unpin(ce);
4112 }
4113
guc_child_context_unpin(struct intel_context * ce)4114 static void guc_child_context_unpin(struct intel_context *ce)
4115 {
4116 GEM_BUG_ON(context_enabled(ce));
4117 GEM_BUG_ON(intel_context_is_barrier(ce));
4118 GEM_BUG_ON(!intel_context_is_child(ce));
4119 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4120
4121 lrc_unpin(ce);
4122 }
4123
guc_child_context_post_unpin(struct intel_context * ce)4124 static void guc_child_context_post_unpin(struct intel_context *ce)
4125 {
4126 GEM_BUG_ON(!intel_context_is_child(ce));
4127 GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent));
4128 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4129
4130 lrc_post_unpin(ce);
4131 intel_context_unpin(ce->parallel.parent);
4132 }
4133
guc_child_context_destroy(struct kref * kref)4134 static void guc_child_context_destroy(struct kref *kref)
4135 {
4136 struct intel_context *ce = container_of(kref, typeof(*ce), ref);
4137
4138 __guc_context_destroy(ce);
4139 }
4140
4141 static const struct intel_context_ops virtual_parent_context_ops = {
4142 .alloc = guc_virtual_context_alloc,
4143
4144 .close = guc_context_close,
4145
4146 .pre_pin = guc_context_pre_pin,
4147 .pin = guc_parent_context_pin,
4148 .unpin = guc_parent_context_unpin,
4149 .post_unpin = guc_context_post_unpin,
4150
4151 .revoke = guc_context_revoke,
4152
4153 .cancel_request = guc_context_cancel_request,
4154
4155 .enter = guc_virtual_context_enter,
4156 .exit = guc_virtual_context_exit,
4157
4158 .sched_disable = guc_context_sched_disable,
4159
4160 .destroy = guc_context_destroy,
4161
4162 .get_sibling = guc_virtual_get_sibling,
4163 };
4164
4165 static const struct intel_context_ops virtual_child_context_ops = {
4166 .alloc = guc_virtual_context_alloc,
4167
4168 .pre_pin = guc_context_pre_pin,
4169 .pin = guc_child_context_pin,
4170 .unpin = guc_child_context_unpin,
4171 .post_unpin = guc_child_context_post_unpin,
4172
4173 .cancel_request = guc_context_cancel_request,
4174
4175 .enter = guc_virtual_context_enter,
4176 .exit = guc_virtual_context_exit,
4177
4178 .destroy = guc_child_context_destroy,
4179
4180 .get_sibling = guc_virtual_get_sibling,
4181 };
4182
4183 /*
4184 * The below override of the breadcrumbs is enabled when the user configures a
4185 * context for parallel submission (multi-lrc, parent-child).
4186 *
4187 * The overridden breadcrumbs implements an algorithm which allows the GuC to
4188 * safely preempt all the hw contexts configured for parallel submission
4189 * between each BB. The contract between the i915 and GuC is if the parent
4190 * context can be preempted, all the children can be preempted, and the GuC will
4191 * always try to preempt the parent before the children. A handshake between the
4192 * parent / children breadcrumbs ensures the i915 holds up its end of the deal
4193 * creating a window to preempt between each set of BBs.
4194 */
4195 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
4196 u64 offset, u32 len,
4197 const unsigned int flags);
4198 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
4199 u64 offset, u32 len,
4200 const unsigned int flags);
4201 static u32 *
4202 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
4203 u32 *cs);
4204 static u32 *
4205 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
4206 u32 *cs);
4207
4208 static struct intel_context *
guc_create_parallel(struct intel_engine_cs ** engines,unsigned int num_siblings,unsigned int width)4209 guc_create_parallel(struct intel_engine_cs **engines,
4210 unsigned int num_siblings,
4211 unsigned int width)
4212 {
4213 struct intel_engine_cs **siblings = NULL;
4214 struct intel_context *parent = NULL, *ce, *err;
4215 int i, j;
4216
4217 siblings = kmalloc_array(num_siblings,
4218 sizeof(*siblings),
4219 GFP_KERNEL);
4220 if (!siblings)
4221 return ERR_PTR(-ENOMEM);
4222
4223 for (i = 0; i < width; ++i) {
4224 for (j = 0; j < num_siblings; ++j)
4225 siblings[j] = engines[i * num_siblings + j];
4226
4227 ce = intel_engine_create_virtual(siblings, num_siblings,
4228 FORCE_VIRTUAL);
4229 if (IS_ERR(ce)) {
4230 err = ERR_CAST(ce);
4231 goto unwind;
4232 }
4233
4234 if (i == 0) {
4235 parent = ce;
4236 parent->ops = &virtual_parent_context_ops;
4237 } else {
4238 ce->ops = &virtual_child_context_ops;
4239 intel_context_bind_parent_child(parent, ce);
4240 }
4241 }
4242
4243 parent->parallel.fence_context = dma_fence_context_alloc(1);
4244
4245 parent->engine->emit_bb_start =
4246 emit_bb_start_parent_no_preempt_mid_batch;
4247 parent->engine->emit_fini_breadcrumb =
4248 emit_fini_breadcrumb_parent_no_preempt_mid_batch;
4249 parent->engine->emit_fini_breadcrumb_dw =
4250 12 + 4 * parent->parallel.number_children;
4251 for_each_child(parent, ce) {
4252 ce->engine->emit_bb_start =
4253 emit_bb_start_child_no_preempt_mid_batch;
4254 ce->engine->emit_fini_breadcrumb =
4255 emit_fini_breadcrumb_child_no_preempt_mid_batch;
4256 ce->engine->emit_fini_breadcrumb_dw = 16;
4257 }
4258
4259 kfree(siblings);
4260 return parent;
4261
4262 unwind:
4263 if (parent)
4264 intel_context_put(parent);
4265 kfree(siblings);
4266 return err;
4267 }
4268
4269 static bool
guc_irq_enable_breadcrumbs(struct intel_breadcrumbs * b)4270 guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b)
4271 {
4272 struct intel_engine_cs *sibling;
4273 intel_engine_mask_t tmp, mask = b->engine_mask;
4274 bool result = false;
4275
4276 for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
4277 result |= intel_engine_irq_enable(sibling);
4278
4279 return result;
4280 }
4281
4282 static void
guc_irq_disable_breadcrumbs(struct intel_breadcrumbs * b)4283 guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b)
4284 {
4285 struct intel_engine_cs *sibling;
4286 intel_engine_mask_t tmp, mask = b->engine_mask;
4287
4288 for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
4289 intel_engine_irq_disable(sibling);
4290 }
4291
guc_init_breadcrumbs(struct intel_engine_cs * engine)4292 static void guc_init_breadcrumbs(struct intel_engine_cs *engine)
4293 {
4294 int i;
4295
4296 /*
4297 * In GuC submission mode we do not know which physical engine a request
4298 * will be scheduled on, this creates a problem because the breadcrumb
4299 * interrupt is per physical engine. To work around this we attach
4300 * requests and direct all breadcrumb interrupts to the first instance
4301 * of an engine per class. In addition all breadcrumb interrupts are
4302 * enabled / disabled across an engine class in unison.
4303 */
4304 for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) {
4305 struct intel_engine_cs *sibling =
4306 engine->gt->engine_class[engine->class][i];
4307
4308 if (sibling) {
4309 if (engine->breadcrumbs != sibling->breadcrumbs) {
4310 intel_breadcrumbs_put(engine->breadcrumbs);
4311 engine->breadcrumbs =
4312 intel_breadcrumbs_get(sibling->breadcrumbs);
4313 }
4314 break;
4315 }
4316 }
4317
4318 if (engine->breadcrumbs) {
4319 engine->breadcrumbs->engine_mask |= engine->mask;
4320 engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs;
4321 engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs;
4322 }
4323 }
4324
guc_bump_inflight_request_prio(struct i915_request * rq,int prio)4325 static void guc_bump_inflight_request_prio(struct i915_request *rq,
4326 int prio)
4327 {
4328 struct intel_context *ce = request_to_scheduling_context(rq);
4329 u8 new_guc_prio = map_i915_prio_to_guc_prio(prio);
4330
4331 /* Short circuit function */
4332 if (prio < I915_PRIORITY_NORMAL)
4333 return;
4334
4335 spin_lock(&ce->guc_state.lock);
4336
4337 if (rq->guc_prio == GUC_PRIO_FINI)
4338 goto exit;
4339
4340 if (!new_guc_prio_higher(rq->guc_prio, new_guc_prio))
4341 goto exit;
4342
4343 if (rq->guc_prio != GUC_PRIO_INIT)
4344 sub_context_inflight_prio(ce, rq->guc_prio);
4345
4346 rq->guc_prio = new_guc_prio;
4347 add_context_inflight_prio(ce, rq->guc_prio);
4348 update_context_prio(ce);
4349
4350 exit:
4351 spin_unlock(&ce->guc_state.lock);
4352 }
4353
guc_retire_inflight_request_prio(struct i915_request * rq)4354 static void guc_retire_inflight_request_prio(struct i915_request *rq)
4355 {
4356 struct intel_context *ce = request_to_scheduling_context(rq);
4357
4358 spin_lock(&ce->guc_state.lock);
4359 guc_prio_fini(rq, ce);
4360 spin_unlock(&ce->guc_state.lock);
4361 }
4362
sanitize_hwsp(struct intel_engine_cs * engine)4363 static void sanitize_hwsp(struct intel_engine_cs *engine)
4364 {
4365 struct intel_timeline *tl;
4366
4367 list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
4368 intel_timeline_reset_seqno(tl);
4369 }
4370
guc_sanitize(struct intel_engine_cs * engine)4371 static void guc_sanitize(struct intel_engine_cs *engine)
4372 {
4373 /*
4374 * Poison residual state on resume, in case the suspend didn't!
4375 *
4376 * We have to assume that across suspend/resume (or other loss
4377 * of control) that the contents of our pinned buffers has been
4378 * lost, replaced by garbage. Since this doesn't always happen,
4379 * let's poison such state so that we more quickly spot when
4380 * we falsely assume it has been preserved.
4381 */
4382 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
4383 memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
4384
4385 /*
4386 * The kernel_context HWSP is stored in the status_page. As above,
4387 * that may be lost on resume/initialisation, and so we need to
4388 * reset the value in the HWSP.
4389 */
4390 sanitize_hwsp(engine);
4391
4392 /* And scrub the dirty cachelines for the HWSP */
4393 drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE);
4394
4395 intel_engine_reset_pinned_contexts(engine);
4396 }
4397
setup_hwsp(struct intel_engine_cs * engine)4398 static void setup_hwsp(struct intel_engine_cs *engine)
4399 {
4400 intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
4401
4402 ENGINE_WRITE_FW(engine,
4403 RING_HWS_PGA,
4404 i915_ggtt_offset(engine->status_page.vma));
4405 }
4406
start_engine(struct intel_engine_cs * engine)4407 static void start_engine(struct intel_engine_cs *engine)
4408 {
4409 ENGINE_WRITE_FW(engine,
4410 RING_MODE_GEN7,
4411 _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
4412
4413 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
4414 ENGINE_POSTING_READ(engine, RING_MI_MODE);
4415 }
4416
guc_resume(struct intel_engine_cs * engine)4417 static int guc_resume(struct intel_engine_cs *engine)
4418 {
4419 assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
4420
4421 intel_mocs_init_engine(engine);
4422
4423 intel_breadcrumbs_reset(engine->breadcrumbs);
4424
4425 setup_hwsp(engine);
4426 start_engine(engine);
4427
4428 if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
4429 xehp_enable_ccs_engines(engine);
4430
4431 return 0;
4432 }
4433
guc_sched_engine_disabled(struct i915_sched_engine * sched_engine)4434 static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine)
4435 {
4436 return !sched_engine->tasklet.callback;
4437 }
4438
guc_set_default_submission(struct intel_engine_cs * engine)4439 static void guc_set_default_submission(struct intel_engine_cs *engine)
4440 {
4441 engine->submit_request = guc_submit_request;
4442 }
4443
guc_kernel_context_pin(struct intel_guc * guc,struct intel_context * ce)4444 static inline int guc_kernel_context_pin(struct intel_guc *guc,
4445 struct intel_context *ce)
4446 {
4447 int ret;
4448
4449 /*
4450 * Note: we purposefully do not check the returns below because
4451 * the registration can only fail if a reset is just starting.
4452 * This is called at the end of reset so presumably another reset
4453 * isn't happening and even it did this code would be run again.
4454 */
4455
4456 if (context_guc_id_invalid(ce)) {
4457 ret = pin_guc_id(guc, ce);
4458
4459 if (ret < 0)
4460 return ret;
4461 }
4462
4463 if (!test_bit(CONTEXT_GUC_INIT, &ce->flags))
4464 guc_context_init(ce);
4465
4466 ret = try_context_registration(ce, true);
4467 if (ret)
4468 unpin_guc_id(guc, ce);
4469
4470 return ret;
4471 }
4472
guc_init_submission(struct intel_guc * guc)4473 static inline int guc_init_submission(struct intel_guc *guc)
4474 {
4475 struct intel_gt *gt = guc_to_gt(guc);
4476 struct intel_engine_cs *engine;
4477 enum intel_engine_id id;
4478
4479 /* make sure all descriptors are clean... */
4480 xa_destroy(&guc->context_lookup);
4481
4482 /*
4483 * A reset might have occurred while we had a pending stalled request,
4484 * so make sure we clean that up.
4485 */
4486 guc->stalled_request = NULL;
4487 guc->submission_stall_reason = STALL_NONE;
4488
4489 /*
4490 * Some contexts might have been pinned before we enabled GuC
4491 * submission, so we need to add them to the GuC bookeeping.
4492 * Also, after a reset the of the GuC we want to make sure that the
4493 * information shared with GuC is properly reset. The kernel LRCs are
4494 * not attached to the gem_context, so they need to be added separately.
4495 */
4496 for_each_engine(engine, gt, id) {
4497 struct intel_context *ce;
4498
4499 list_for_each_entry(ce, &engine->pinned_contexts_list,
4500 pinned_contexts_link) {
4501 int ret = guc_kernel_context_pin(guc, ce);
4502
4503 if (ret) {
4504 /* No point in trying to clean up as i915 will wedge on failure */
4505 return ret;
4506 }
4507 }
4508 }
4509
4510 return 0;
4511 }
4512
guc_release(struct intel_engine_cs * engine)4513 static void guc_release(struct intel_engine_cs *engine)
4514 {
4515 engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
4516
4517 intel_engine_cleanup_common(engine);
4518 lrc_fini_wa_ctx(engine);
4519 }
4520
virtual_guc_bump_serial(struct intel_engine_cs * engine)4521 static void virtual_guc_bump_serial(struct intel_engine_cs *engine)
4522 {
4523 struct intel_engine_cs *e;
4524 intel_engine_mask_t tmp, mask = engine->mask;
4525
4526 for_each_engine_masked(e, engine->gt, mask, tmp)
4527 e->serial++;
4528 }
4529
guc_default_vfuncs(struct intel_engine_cs * engine)4530 static void guc_default_vfuncs(struct intel_engine_cs *engine)
4531 {
4532 /* Default vfuncs which can be overridden by each engine. */
4533
4534 engine->resume = guc_resume;
4535
4536 engine->cops = &guc_context_ops;
4537 engine->request_alloc = guc_request_alloc;
4538 engine->add_active_request = add_to_context;
4539 engine->remove_active_request = remove_from_context;
4540
4541 engine->sched_engine->schedule = i915_schedule;
4542
4543 engine->reset.prepare = guc_engine_reset_prepare;
4544 engine->reset.rewind = guc_rewind_nop;
4545 engine->reset.cancel = guc_reset_nop;
4546 engine->reset.finish = guc_reset_nop;
4547
4548 engine->emit_flush = gen8_emit_flush_xcs;
4549 engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
4550 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
4551 if (GRAPHICS_VER(engine->i915) >= 12) {
4552 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
4553 engine->emit_flush = gen12_emit_flush_xcs;
4554 }
4555 engine->set_default_submission = guc_set_default_submission;
4556 engine->busyness = guc_engine_busyness;
4557
4558 engine->flags |= I915_ENGINE_SUPPORTS_STATS;
4559 engine->flags |= I915_ENGINE_HAS_PREEMPTION;
4560 engine->flags |= I915_ENGINE_HAS_TIMESLICES;
4561
4562 /* Wa_14014475959:dg2 */
4563 if (engine->class == COMPUTE_CLASS)
4564 if (IS_GFX_GT_IP_STEP(engine->gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
4565 IS_DG2(engine->i915))
4566 engine->flags |= I915_ENGINE_USES_WA_HOLD_SWITCHOUT;
4567
4568 /* Wa_16019325821 */
4569 /* Wa_14019159160 */
4570 if ((engine->class == COMPUTE_CLASS || engine->class == RENDER_CLASS) &&
4571 IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74)))
4572 engine->flags |= I915_ENGINE_USES_WA_HOLD_SWITCHOUT;
4573
4574 /*
4575 * TODO: GuC supports timeslicing and semaphores as well, but they're
4576 * handled by the firmware so some minor tweaks are required before
4577 * enabling.
4578 *
4579 * engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
4580 */
4581
4582 engine->emit_bb_start = gen8_emit_bb_start;
4583 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
4584 engine->emit_bb_start = xehp_emit_bb_start;
4585 }
4586
rcs_submission_override(struct intel_engine_cs * engine)4587 static void rcs_submission_override(struct intel_engine_cs *engine)
4588 {
4589 switch (GRAPHICS_VER(engine->i915)) {
4590 case 12:
4591 engine->emit_flush = gen12_emit_flush_rcs;
4592 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
4593 break;
4594 case 11:
4595 engine->emit_flush = gen11_emit_flush_rcs;
4596 engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
4597 break;
4598 default:
4599 engine->emit_flush = gen8_emit_flush_rcs;
4600 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
4601 break;
4602 }
4603 }
4604
guc_default_irqs(struct intel_engine_cs * engine)4605 static inline void guc_default_irqs(struct intel_engine_cs *engine)
4606 {
4607 engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT;
4608 intel_engine_set_irq_handler(engine, cs_irq_handler);
4609 }
4610
guc_sched_engine_destroy(struct kref * kref)4611 static void guc_sched_engine_destroy(struct kref *kref)
4612 {
4613 struct i915_sched_engine *sched_engine =
4614 container_of(kref, typeof(*sched_engine), ref);
4615 struct intel_guc *guc = sched_engine->private_data;
4616
4617 guc->sched_engine = NULL;
4618 tasklet_kill(&sched_engine->tasklet); /* flush the callback */
4619 kfree(sched_engine);
4620 }
4621
intel_guc_submission_setup(struct intel_engine_cs * engine)4622 int intel_guc_submission_setup(struct intel_engine_cs *engine)
4623 {
4624 struct drm_i915_private *i915 = engine->i915;
4625 struct intel_guc *guc = gt_to_guc(engine->gt);
4626
4627 /*
4628 * The setup relies on several assumptions (e.g. irqs always enabled)
4629 * that are only valid on gen11+
4630 */
4631 GEM_BUG_ON(GRAPHICS_VER(i915) < 11);
4632
4633 if (!guc->sched_engine) {
4634 guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
4635 if (!guc->sched_engine)
4636 return -ENOMEM;
4637
4638 guc->sched_engine->schedule = i915_schedule;
4639 guc->sched_engine->disabled = guc_sched_engine_disabled;
4640 guc->sched_engine->private_data = guc;
4641 guc->sched_engine->destroy = guc_sched_engine_destroy;
4642 guc->sched_engine->bump_inflight_request_prio =
4643 guc_bump_inflight_request_prio;
4644 guc->sched_engine->retire_inflight_request_prio =
4645 guc_retire_inflight_request_prio;
4646 tasklet_setup(&guc->sched_engine->tasklet,
4647 guc_submission_tasklet);
4648 }
4649 i915_sched_engine_put(engine->sched_engine);
4650 engine->sched_engine = i915_sched_engine_get(guc->sched_engine);
4651
4652 guc_default_vfuncs(engine);
4653 guc_default_irqs(engine);
4654 guc_init_breadcrumbs(engine);
4655
4656 if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
4657 rcs_submission_override(engine);
4658
4659 lrc_init_wa_ctx(engine);
4660
4661 /* Finally, take ownership and responsibility for cleanup! */
4662 engine->sanitize = guc_sanitize;
4663 engine->release = guc_release;
4664
4665 return 0;
4666 }
4667
4668 struct scheduling_policy {
4669 /* internal data */
4670 u32 max_words, num_words;
4671 u32 count;
4672 /* API data */
4673 struct guc_update_scheduling_policy h2g;
4674 };
4675
__guc_scheduling_policy_action_size(struct scheduling_policy * policy)4676 static u32 __guc_scheduling_policy_action_size(struct scheduling_policy *policy)
4677 {
4678 u32 *start = (void *)&policy->h2g;
4679 u32 *end = policy->h2g.data + policy->num_words;
4680 size_t delta = end - start;
4681
4682 return delta;
4683 }
4684
__guc_scheduling_policy_start_klv(struct scheduling_policy * policy)4685 static struct scheduling_policy *__guc_scheduling_policy_start_klv(struct scheduling_policy *policy)
4686 {
4687 policy->h2g.header.action = INTEL_GUC_ACTION_UPDATE_SCHEDULING_POLICIES_KLV;
4688 policy->max_words = ARRAY_SIZE(policy->h2g.data);
4689 policy->num_words = 0;
4690 policy->count = 0;
4691
4692 return policy;
4693 }
4694
__guc_scheduling_policy_add_klv(struct scheduling_policy * policy,u32 action,u32 * data,u32 len)4695 static void __guc_scheduling_policy_add_klv(struct scheduling_policy *policy,
4696 u32 action, u32 *data, u32 len)
4697 {
4698 u32 *klv_ptr = policy->h2g.data + policy->num_words;
4699
4700 GEM_BUG_ON((policy->num_words + 1 + len) > policy->max_words);
4701 *(klv_ptr++) = FIELD_PREP(GUC_KLV_0_KEY, action) |
4702 FIELD_PREP(GUC_KLV_0_LEN, len);
4703 memcpy(klv_ptr, data, sizeof(u32) * len);
4704 policy->num_words += 1 + len;
4705 policy->count++;
4706 }
4707
__guc_action_set_scheduling_policies(struct intel_guc * guc,struct scheduling_policy * policy)4708 static int __guc_action_set_scheduling_policies(struct intel_guc *guc,
4709 struct scheduling_policy *policy)
4710 {
4711 int ret;
4712
4713 ret = intel_guc_send(guc, (u32 *)&policy->h2g,
4714 __guc_scheduling_policy_action_size(policy));
4715 if (ret < 0) {
4716 guc_probe_error(guc, "Failed to configure global scheduling policies: %pe!\n",
4717 ERR_PTR(ret));
4718 return ret;
4719 }
4720
4721 if (ret != policy->count) {
4722 guc_warn(guc, "global scheduler policy processed %d of %d KLVs!",
4723 ret, policy->count);
4724 if (ret > policy->count)
4725 return -EPROTO;
4726 }
4727
4728 return 0;
4729 }
4730
guc_init_global_schedule_policy(struct intel_guc * guc)4731 static int guc_init_global_schedule_policy(struct intel_guc *guc)
4732 {
4733 struct scheduling_policy policy;
4734 struct intel_gt *gt = guc_to_gt(guc);
4735 intel_wakeref_t wakeref;
4736 int ret;
4737
4738 if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 1, 0))
4739 return 0;
4740
4741 __guc_scheduling_policy_start_klv(&policy);
4742
4743 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) {
4744 u32 yield[] = {
4745 GLOBAL_SCHEDULE_POLICY_RC_YIELD_DURATION,
4746 GLOBAL_SCHEDULE_POLICY_RC_YIELD_RATIO,
4747 };
4748
4749 __guc_scheduling_policy_add_klv(&policy,
4750 GUC_SCHEDULING_POLICIES_KLV_ID_RENDER_COMPUTE_YIELD,
4751 yield, ARRAY_SIZE(yield));
4752
4753 ret = __guc_action_set_scheduling_policies(guc, &policy);
4754 }
4755
4756 return ret;
4757 }
4758
guc_route_semaphores(struct intel_guc * guc,bool to_guc)4759 static void guc_route_semaphores(struct intel_guc *guc, bool to_guc)
4760 {
4761 struct intel_gt *gt = guc_to_gt(guc);
4762 u32 val;
4763
4764 if (GRAPHICS_VER(gt->i915) < 12)
4765 return;
4766
4767 if (to_guc)
4768 val = GUC_SEM_INTR_ROUTE_TO_GUC | GUC_SEM_INTR_ENABLE_ALL;
4769 else
4770 val = 0;
4771
4772 intel_uncore_write(gt->uncore, GEN12_GUC_SEM_INTR_ENABLES, val);
4773 }
4774
intel_guc_submission_enable(struct intel_guc * guc)4775 int intel_guc_submission_enable(struct intel_guc *guc)
4776 {
4777 int ret;
4778
4779 /* Semaphore interrupt enable and route to GuC */
4780 guc_route_semaphores(guc, true);
4781
4782 ret = guc_init_submission(guc);
4783 if (ret)
4784 goto fail_sem;
4785
4786 ret = guc_init_engine_stats(guc);
4787 if (ret)
4788 goto fail_sem;
4789
4790 ret = guc_init_global_schedule_policy(guc);
4791 if (ret)
4792 goto fail_stats;
4793
4794 return 0;
4795
4796 fail_stats:
4797 guc_fini_engine_stats(guc);
4798 fail_sem:
4799 guc_route_semaphores(guc, false);
4800 return ret;
4801 }
4802
4803 /* Note: By the time we're here, GuC may have already been reset */
intel_guc_submission_disable(struct intel_guc * guc)4804 void intel_guc_submission_disable(struct intel_guc *guc)
4805 {
4806 guc_cancel_busyness_worker(guc);
4807
4808 /* Semaphore interrupt disable and route to host */
4809 guc_route_semaphores(guc, false);
4810 }
4811
__guc_submission_supported(struct intel_guc * guc)4812 static bool __guc_submission_supported(struct intel_guc *guc)
4813 {
4814 /* GuC submission is unavailable for pre-Gen11 */
4815 return intel_guc_is_supported(guc) &&
4816 GRAPHICS_VER(guc_to_i915(guc)) >= 11;
4817 }
4818
__guc_submission_selected(struct intel_guc * guc)4819 static bool __guc_submission_selected(struct intel_guc *guc)
4820 {
4821 struct drm_i915_private *i915 = guc_to_i915(guc);
4822
4823 if (!intel_guc_submission_is_supported(guc))
4824 return false;
4825
4826 return i915->params.enable_guc & ENABLE_GUC_SUBMISSION;
4827 }
4828
intel_guc_sched_disable_gucid_threshold_max(struct intel_guc * guc)4829 int intel_guc_sched_disable_gucid_threshold_max(struct intel_guc *guc)
4830 {
4831 return guc->submission_state.num_guc_ids - NUMBER_MULTI_LRC_GUC_ID(guc);
4832 }
4833
4834 /*
4835 * This default value of 33 milisecs (+1 milisec round up) ensures 30fps or higher
4836 * workloads are able to enjoy the latency reduction when delaying the schedule-disable
4837 * operation. This matches the 30fps game-render + encode (real world) workload this
4838 * knob was tested against.
4839 */
4840 #define SCHED_DISABLE_DELAY_MS 34
4841
4842 /*
4843 * A threshold of 75% is a reasonable starting point considering that real world apps
4844 * generally don't get anywhere near this.
4845 */
4846 #define NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(__guc) \
4847 (((intel_guc_sched_disable_gucid_threshold_max(guc)) * 3) / 4)
4848
intel_guc_submission_init_early(struct intel_guc * guc)4849 void intel_guc_submission_init_early(struct intel_guc *guc)
4850 {
4851 xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ);
4852
4853 spin_lock_init(&guc->submission_state.lock);
4854 INIT_LIST_HEAD(&guc->submission_state.guc_id_list);
4855 ida_init(&guc->submission_state.guc_ids);
4856 INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts);
4857 INIT_WORK(&guc->submission_state.destroyed_worker,
4858 destroyed_worker_func);
4859 INIT_WORK(&guc->submission_state.reset_fail_worker,
4860 reset_fail_worker_func);
4861
4862 spin_lock_init(&guc->timestamp.lock);
4863 INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping);
4864
4865 guc->submission_state.sched_disable_delay_ms = SCHED_DISABLE_DELAY_MS;
4866 guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID;
4867 guc->submission_state.sched_disable_gucid_threshold =
4868 NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(guc);
4869 guc->submission_supported = __guc_submission_supported(guc);
4870 guc->submission_selected = __guc_submission_selected(guc);
4871 }
4872
4873 static inline struct intel_context *
g2h_context_lookup(struct intel_guc * guc,u32 ctx_id)4874 g2h_context_lookup(struct intel_guc *guc, u32 ctx_id)
4875 {
4876 struct intel_context *ce;
4877
4878 if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) {
4879 guc_err(guc, "Invalid ctx_id %u\n", ctx_id);
4880 return NULL;
4881 }
4882
4883 ce = __get_context(guc, ctx_id);
4884 if (unlikely(!ce)) {
4885 guc_err(guc, "Context is NULL, ctx_id %u\n", ctx_id);
4886 return NULL;
4887 }
4888
4889 if (unlikely(intel_context_is_child(ce))) {
4890 guc_err(guc, "Context is child, ctx_id %u\n", ctx_id);
4891 return NULL;
4892 }
4893
4894 return ce;
4895 }
4896
wait_wake_outstanding_tlb_g2h(struct intel_guc * guc,u32 seqno)4897 static void wait_wake_outstanding_tlb_g2h(struct intel_guc *guc, u32 seqno)
4898 {
4899 struct intel_guc_tlb_wait *wait;
4900 unsigned long flags;
4901
4902 xa_lock_irqsave(&guc->tlb_lookup, flags);
4903 wait = xa_load(&guc->tlb_lookup, seqno);
4904
4905 if (wait)
4906 wake_up(&wait->wq);
4907 else
4908 guc_dbg(guc,
4909 "Stale TLB invalidation response with seqno %d\n", seqno);
4910
4911 xa_unlock_irqrestore(&guc->tlb_lookup, flags);
4912 }
4913
intel_guc_tlb_invalidation_done(struct intel_guc * guc,const u32 * payload,u32 len)4914 int intel_guc_tlb_invalidation_done(struct intel_guc *guc,
4915 const u32 *payload, u32 len)
4916 {
4917 if (len < 1)
4918 return -EPROTO;
4919
4920 wait_wake_outstanding_tlb_g2h(guc, payload[0]);
4921 return 0;
4922 }
4923
must_wait_woken(struct wait_queue_entry * wq_entry,long timeout)4924 static long must_wait_woken(struct wait_queue_entry *wq_entry, long timeout)
4925 {
4926 /*
4927 * This is equivalent to wait_woken() with the exception that
4928 * we do not wake up early if the kthread task has been completed.
4929 * As we are called from page reclaim in any task context,
4930 * we may be invoked from stopped kthreads, but we *must*
4931 * complete the wait from the HW.
4932 */
4933 do {
4934 set_current_state(TASK_UNINTERRUPTIBLE);
4935 if (wq_entry->flags & WQ_FLAG_WOKEN)
4936 break;
4937
4938 timeout = schedule_timeout(timeout);
4939 } while (timeout);
4940
4941 /* See wait_woken() and woken_wake_function() */
4942 __set_current_state(TASK_RUNNING);
4943 smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN);
4944
4945 return timeout;
4946 }
4947
intel_gt_is_enabled(const struct intel_gt * gt)4948 static bool intel_gt_is_enabled(const struct intel_gt *gt)
4949 {
4950 /* Check if GT is wedged or suspended */
4951 if (intel_gt_is_wedged(gt) || !intel_irqs_enabled(gt->i915))
4952 return false;
4953 return true;
4954 }
4955
guc_send_invalidate_tlb(struct intel_guc * guc,enum intel_guc_tlb_invalidation_type type)4956 static int guc_send_invalidate_tlb(struct intel_guc *guc,
4957 enum intel_guc_tlb_invalidation_type type)
4958 {
4959 struct intel_guc_tlb_wait _wq, *wq = &_wq;
4960 struct intel_gt *gt = guc_to_gt(guc);
4961 DEFINE_WAIT_FUNC(wait, woken_wake_function);
4962 int err;
4963 u32 seqno;
4964 u32 action[] = {
4965 INTEL_GUC_ACTION_TLB_INVALIDATION,
4966 0,
4967 REG_FIELD_PREP(INTEL_GUC_TLB_INVAL_TYPE_MASK, type) |
4968 REG_FIELD_PREP(INTEL_GUC_TLB_INVAL_MODE_MASK,
4969 INTEL_GUC_TLB_INVAL_MODE_HEAVY) |
4970 INTEL_GUC_TLB_INVAL_FLUSH_CACHE,
4971 };
4972 u32 size = ARRAY_SIZE(action);
4973
4974 /*
4975 * Early guard against GT enablement. TLB invalidation should not be
4976 * attempted if the GT is disabled due to suspend/wedge.
4977 */
4978 if (!intel_gt_is_enabled(gt))
4979 return -EINVAL;
4980
4981 init_waitqueue_head(&_wq.wq);
4982
4983 if (xa_alloc_cyclic_irq(&guc->tlb_lookup, &seqno, wq,
4984 xa_limit_32b, &guc->next_seqno,
4985 GFP_ATOMIC | __GFP_NOWARN) < 0) {
4986 /* Under severe memory pressure? Serialise TLB allocations */
4987 xa_lock_irq(&guc->tlb_lookup);
4988 wq = xa_load(&guc->tlb_lookup, guc->serial_slot);
4989 wait_event_lock_irq(wq->wq,
4990 !READ_ONCE(wq->busy),
4991 guc->tlb_lookup.xa_lock);
4992 /*
4993 * Update wq->busy under lock to ensure only one waiter can
4994 * issue the TLB invalidation command using the serial slot at a
4995 * time. The condition is set to true before releasing the lock
4996 * so that other caller continue to wait until woken up again.
4997 */
4998 wq->busy = true;
4999 xa_unlock_irq(&guc->tlb_lookup);
5000
5001 seqno = guc->serial_slot;
5002 }
5003
5004 action[1] = seqno;
5005
5006 add_wait_queue(&wq->wq, &wait);
5007
5008 /* This is a critical reclaim path and thus we must loop here. */
5009 err = intel_guc_send_busy_loop(guc, action, size, G2H_LEN_DW_INVALIDATE_TLB, true);
5010 if (err)
5011 goto out;
5012
5013 /*
5014 * Late guard against GT enablement. It is not an error for the TLB
5015 * invalidation to time out if the GT is disabled during the process
5016 * due to suspend/wedge. In fact, the TLB invalidation is cancelled
5017 * in this case.
5018 */
5019 if (!must_wait_woken(&wait, intel_guc_ct_max_queue_time_jiffies()) &&
5020 intel_gt_is_enabled(gt)) {
5021 guc_err(guc,
5022 "TLB invalidation response timed out for seqno %u\n", seqno);
5023 err = -ETIME;
5024 }
5025 out:
5026 remove_wait_queue(&wq->wq, &wait);
5027 if (seqno != guc->serial_slot)
5028 xa_erase_irq(&guc->tlb_lookup, seqno);
5029
5030 return err;
5031 }
5032
5033 /* Send a H2G command to invalidate the TLBs at engine level and beyond. */
intel_guc_invalidate_tlb_engines(struct intel_guc * guc)5034 int intel_guc_invalidate_tlb_engines(struct intel_guc *guc)
5035 {
5036 return guc_send_invalidate_tlb(guc, INTEL_GUC_TLB_INVAL_ENGINES);
5037 }
5038
5039 /* Send a H2G command to invalidate the GuC's internal TLB. */
intel_guc_invalidate_tlb_guc(struct intel_guc * guc)5040 int intel_guc_invalidate_tlb_guc(struct intel_guc *guc)
5041 {
5042 return guc_send_invalidate_tlb(guc, INTEL_GUC_TLB_INVAL_GUC);
5043 }
5044
intel_guc_deregister_done_process_msg(struct intel_guc * guc,const u32 * msg,u32 len)5045 int intel_guc_deregister_done_process_msg(struct intel_guc *guc,
5046 const u32 *msg,
5047 u32 len)
5048 {
5049 struct intel_context *ce;
5050 u32 ctx_id;
5051
5052 if (unlikely(len < 1)) {
5053 guc_err(guc, "Invalid length %u\n", len);
5054 return -EPROTO;
5055 }
5056 ctx_id = msg[0];
5057
5058 ce = g2h_context_lookup(guc, ctx_id);
5059 if (unlikely(!ce))
5060 return -EPROTO;
5061
5062 trace_intel_context_deregister_done(ce);
5063
5064 #ifdef CONFIG_DRM_I915_SELFTEST
5065 if (unlikely(ce->drop_deregister)) {
5066 ce->drop_deregister = false;
5067 return 0;
5068 }
5069 #endif
5070
5071 if (context_wait_for_deregister_to_register(ce)) {
5072 struct intel_runtime_pm *runtime_pm =
5073 &ce->engine->gt->i915->runtime_pm;
5074 intel_wakeref_t wakeref;
5075
5076 /*
5077 * Previous owner of this guc_id has been deregistered, now safe
5078 * register this context.
5079 */
5080 with_intel_runtime_pm(runtime_pm, wakeref)
5081 register_context(ce, true);
5082 guc_signal_context_fence(ce);
5083 intel_context_put(ce);
5084 } else if (context_destroyed(ce)) {
5085 /* Context has been destroyed */
5086 intel_gt_pm_put_async_untracked(guc_to_gt(guc));
5087 release_guc_id(guc, ce);
5088 __guc_context_destroy(ce);
5089 }
5090
5091 decr_outstanding_submission_g2h(guc);
5092
5093 return 0;
5094 }
5095
intel_guc_sched_done_process_msg(struct intel_guc * guc,const u32 * msg,u32 len)5096 int intel_guc_sched_done_process_msg(struct intel_guc *guc,
5097 const u32 *msg,
5098 u32 len)
5099 {
5100 struct intel_context *ce;
5101 unsigned long flags;
5102 u32 ctx_id;
5103
5104 if (unlikely(len < 2)) {
5105 guc_err(guc, "Invalid length %u\n", len);
5106 return -EPROTO;
5107 }
5108 ctx_id = msg[0];
5109
5110 ce = g2h_context_lookup(guc, ctx_id);
5111 if (unlikely(!ce))
5112 return -EPROTO;
5113
5114 if (unlikely(context_destroyed(ce) ||
5115 (!context_pending_enable(ce) &&
5116 !context_pending_disable(ce)))) {
5117 guc_err(guc, "Bad context sched_state 0x%x, ctx_id %u\n",
5118 ce->guc_state.sched_state, ctx_id);
5119 return -EPROTO;
5120 }
5121
5122 trace_intel_context_sched_done(ce);
5123
5124 if (context_pending_enable(ce)) {
5125 #ifdef CONFIG_DRM_I915_SELFTEST
5126 if (unlikely(ce->drop_schedule_enable)) {
5127 ce->drop_schedule_enable = false;
5128 return 0;
5129 }
5130 #endif
5131
5132 spin_lock_irqsave(&ce->guc_state.lock, flags);
5133 clr_context_pending_enable(ce);
5134 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
5135 } else if (context_pending_disable(ce)) {
5136 bool banned;
5137
5138 #ifdef CONFIG_DRM_I915_SELFTEST
5139 if (unlikely(ce->drop_schedule_disable)) {
5140 ce->drop_schedule_disable = false;
5141 return 0;
5142 }
5143 #endif
5144
5145 /*
5146 * Unpin must be done before __guc_signal_context_fence,
5147 * otherwise a race exists between the requests getting
5148 * submitted + retired before this unpin completes resulting in
5149 * the pin_count going to zero and the context still being
5150 * enabled.
5151 */
5152 intel_context_sched_disable_unpin(ce);
5153
5154 spin_lock_irqsave(&ce->guc_state.lock, flags);
5155 banned = context_banned(ce);
5156 clr_context_banned(ce);
5157 clr_context_pending_disable(ce);
5158 __guc_signal_context_fence(ce);
5159 guc_blocked_fence_complete(ce);
5160 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
5161
5162 if (banned) {
5163 guc_cancel_context_requests(ce);
5164 intel_engine_signal_breadcrumbs(ce->engine);
5165 }
5166 }
5167
5168 decr_outstanding_submission_g2h(guc);
5169 intel_context_put(ce);
5170
5171 return 0;
5172 }
5173
capture_error_state(struct intel_guc * guc,struct intel_context * ce)5174 static void capture_error_state(struct intel_guc *guc,
5175 struct intel_context *ce)
5176 {
5177 struct intel_gt *gt = guc_to_gt(guc);
5178 struct drm_i915_private *i915 = gt->i915;
5179 intel_wakeref_t wakeref;
5180 intel_engine_mask_t engine_mask;
5181
5182 if (intel_engine_is_virtual(ce->engine)) {
5183 struct intel_engine_cs *e;
5184 intel_engine_mask_t tmp, virtual_mask = ce->engine->mask;
5185
5186 engine_mask = 0;
5187 for_each_engine_masked(e, ce->engine->gt, virtual_mask, tmp) {
5188 bool match = intel_guc_capture_is_matching_engine(gt, ce, e);
5189
5190 if (match) {
5191 intel_engine_set_hung_context(e, ce);
5192 engine_mask |= e->mask;
5193 i915_increase_reset_engine_count(&i915->gpu_error,
5194 e);
5195 }
5196 }
5197
5198 if (!engine_mask) {
5199 guc_warn(guc, "No matching physical engine capture for virtual engine context 0x%04X / %s",
5200 ce->guc_id.id, ce->engine->name);
5201 engine_mask = ~0U;
5202 }
5203 } else {
5204 intel_engine_set_hung_context(ce->engine, ce);
5205 engine_mask = ce->engine->mask;
5206 i915_increase_reset_engine_count(&i915->gpu_error, ce->engine);
5207 }
5208
5209 with_intel_runtime_pm(&i915->runtime_pm, wakeref)
5210 i915_capture_error_state(gt, engine_mask, CORE_DUMP_FLAG_IS_GUC_CAPTURE);
5211 }
5212
guc_context_replay(struct intel_context * ce)5213 static void guc_context_replay(struct intel_context *ce)
5214 {
5215 struct i915_sched_engine *sched_engine = ce->engine->sched_engine;
5216
5217 __guc_reset_context(ce, ce->engine->mask);
5218 tasklet_hi_schedule(&sched_engine->tasklet);
5219 }
5220
guc_handle_context_reset(struct intel_guc * guc,struct intel_context * ce)5221 static void guc_handle_context_reset(struct intel_guc *guc,
5222 struct intel_context *ce)
5223 {
5224 bool capture = intel_context_is_schedulable(ce);
5225
5226 trace_intel_context_reset(ce);
5227
5228 guc_dbg(guc, "%s context reset notification: 0x%04X on %s, exiting = %s, banned = %s\n",
5229 capture ? "Got" : "Ignoring",
5230 ce->guc_id.id, ce->engine->name,
5231 str_yes_no(intel_context_is_exiting(ce)),
5232 str_yes_no(intel_context_is_banned(ce)));
5233
5234 if (capture) {
5235 capture_error_state(guc, ce);
5236 guc_context_replay(ce);
5237 }
5238 }
5239
intel_guc_context_reset_process_msg(struct intel_guc * guc,const u32 * msg,u32 len)5240 int intel_guc_context_reset_process_msg(struct intel_guc *guc,
5241 const u32 *msg, u32 len)
5242 {
5243 struct intel_context *ce;
5244 unsigned long flags;
5245 int ctx_id;
5246
5247 if (unlikely(len != 1)) {
5248 guc_err(guc, "Invalid length %u", len);
5249 return -EPROTO;
5250 }
5251
5252 ctx_id = msg[0];
5253
5254 /*
5255 * The context lookup uses the xarray but lookups only require an RCU lock
5256 * not the full spinlock. So take the lock explicitly and keep it until the
5257 * context has been reference count locked to ensure it can't be destroyed
5258 * asynchronously until the reset is done.
5259 */
5260 xa_lock_irqsave(&guc->context_lookup, flags);
5261 ce = g2h_context_lookup(guc, ctx_id);
5262 if (ce)
5263 intel_context_get(ce);
5264 xa_unlock_irqrestore(&guc->context_lookup, flags);
5265
5266 if (unlikely(!ce))
5267 return -EPROTO;
5268
5269 guc_handle_context_reset(guc, ce);
5270 intel_context_put(ce);
5271
5272 return 0;
5273 }
5274
intel_guc_error_capture_process_msg(struct intel_guc * guc,const u32 * msg,u32 len)5275 int intel_guc_error_capture_process_msg(struct intel_guc *guc,
5276 const u32 *msg, u32 len)
5277 {
5278 u32 status;
5279
5280 if (unlikely(len != 1)) {
5281 guc_dbg(guc, "Invalid length %u", len);
5282 return -EPROTO;
5283 }
5284
5285 status = msg[0] & INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_MASK;
5286 if (status == INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE)
5287 guc_warn(guc, "No space for error capture");
5288
5289 intel_guc_capture_process(guc);
5290
5291 return 0;
5292 }
5293
5294 struct intel_engine_cs *
intel_guc_lookup_engine(struct intel_guc * guc,u8 guc_class,u8 instance)5295 intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance)
5296 {
5297 struct intel_gt *gt = guc_to_gt(guc);
5298 u8 engine_class = guc_class_to_engine_class(guc_class);
5299
5300 /* Class index is checked in class converter */
5301 GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE);
5302
5303 return gt->engine_class[engine_class][instance];
5304 }
5305
reset_fail_worker_func(struct work_struct * w)5306 static void reset_fail_worker_func(struct work_struct *w)
5307 {
5308 struct intel_guc *guc = container_of(w, struct intel_guc,
5309 submission_state.reset_fail_worker);
5310 struct intel_gt *gt = guc_to_gt(guc);
5311 intel_engine_mask_t reset_fail_mask;
5312 unsigned long flags;
5313
5314 spin_lock_irqsave(&guc->submission_state.lock, flags);
5315 reset_fail_mask = guc->submission_state.reset_fail_mask;
5316 guc->submission_state.reset_fail_mask = 0;
5317 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
5318
5319 if (likely(reset_fail_mask)) {
5320 struct intel_engine_cs *engine;
5321 enum intel_engine_id id;
5322
5323 /*
5324 * GuC is toast at this point - it dead loops after sending the failed
5325 * reset notification. So need to manually determine the guilty context.
5326 * Note that it should be reliable to do this here because the GuC is
5327 * toast and will not be scheduling behind the KMD's back.
5328 */
5329 for_each_engine_masked(engine, gt, reset_fail_mask, id)
5330 intel_guc_find_hung_context(engine);
5331
5332 intel_gt_handle_error(gt, reset_fail_mask,
5333 I915_ERROR_CAPTURE,
5334 "GuC failed to reset engine mask=0x%x",
5335 reset_fail_mask);
5336 }
5337 }
5338
intel_guc_engine_failure_process_msg(struct intel_guc * guc,const u32 * msg,u32 len)5339 int intel_guc_engine_failure_process_msg(struct intel_guc *guc,
5340 const u32 *msg, u32 len)
5341 {
5342 struct intel_engine_cs *engine;
5343 u8 guc_class, instance;
5344 u32 reason;
5345 unsigned long flags;
5346
5347 if (unlikely(len != 3)) {
5348 guc_err(guc, "Invalid length %u", len);
5349 return -EPROTO;
5350 }
5351
5352 guc_class = msg[0];
5353 instance = msg[1];
5354 reason = msg[2];
5355
5356 engine = intel_guc_lookup_engine(guc, guc_class, instance);
5357 if (unlikely(!engine)) {
5358 guc_err(guc, "Invalid engine %d:%d", guc_class, instance);
5359 return -EPROTO;
5360 }
5361
5362 /*
5363 * This is an unexpected failure of a hardware feature. So, log a real
5364 * error message not just the informational that comes with the reset.
5365 */
5366 guc_err(guc, "Engine reset failed on %d:%d (%s) because 0x%08X",
5367 guc_class, instance, engine->name, reason);
5368
5369 spin_lock_irqsave(&guc->submission_state.lock, flags);
5370 guc->submission_state.reset_fail_mask |= engine->mask;
5371 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
5372
5373 /*
5374 * A GT reset flushes this worker queue (G2H handler) so we must use
5375 * another worker to trigger a GT reset.
5376 */
5377 queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker);
5378
5379 return 0;
5380 }
5381
intel_guc_find_hung_context(struct intel_engine_cs * engine)5382 void intel_guc_find_hung_context(struct intel_engine_cs *engine)
5383 {
5384 struct intel_guc *guc = gt_to_guc(engine->gt);
5385 struct intel_context *ce;
5386 struct i915_request *rq;
5387 unsigned long index;
5388 unsigned long flags;
5389
5390 /* Reset called during driver load? GuC not yet initialised! */
5391 if (unlikely(!guc_submission_initialized(guc)))
5392 return;
5393
5394 xa_lock_irqsave(&guc->context_lookup, flags);
5395 xa_for_each(&guc->context_lookup, index, ce) {
5396 bool found;
5397
5398 if (!kref_get_unless_zero(&ce->ref))
5399 continue;
5400
5401 xa_unlock(&guc->context_lookup);
5402
5403 if (!intel_context_is_pinned(ce))
5404 goto next;
5405
5406 if (intel_engine_is_virtual(ce->engine)) {
5407 if (!(ce->engine->mask & engine->mask))
5408 goto next;
5409 } else {
5410 if (ce->engine != engine)
5411 goto next;
5412 }
5413
5414 found = false;
5415 spin_lock(&ce->guc_state.lock);
5416 list_for_each_entry(rq, &ce->guc_state.requests, sched.link) {
5417 if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE)
5418 continue;
5419
5420 found = true;
5421 break;
5422 }
5423 spin_unlock(&ce->guc_state.lock);
5424
5425 if (found) {
5426 intel_engine_set_hung_context(engine, ce);
5427
5428 /* Can only cope with one hang at a time... */
5429 intel_context_put(ce);
5430 xa_lock(&guc->context_lookup);
5431 goto done;
5432 }
5433
5434 next:
5435 intel_context_put(ce);
5436 xa_lock(&guc->context_lookup);
5437 }
5438 done:
5439 xa_unlock_irqrestore(&guc->context_lookup, flags);
5440 }
5441
intel_guc_dump_active_requests(struct intel_engine_cs * engine,struct i915_request * hung_rq,struct drm_printer * m)5442 void intel_guc_dump_active_requests(struct intel_engine_cs *engine,
5443 struct i915_request *hung_rq,
5444 struct drm_printer *m)
5445 {
5446 struct intel_guc *guc = gt_to_guc(engine->gt);
5447 struct intel_context *ce;
5448 unsigned long index;
5449 unsigned long flags;
5450
5451 /* Reset called during driver load? GuC not yet initialised! */
5452 if (unlikely(!guc_submission_initialized(guc)))
5453 return;
5454
5455 xa_lock_irqsave(&guc->context_lookup, flags);
5456 xa_for_each(&guc->context_lookup, index, ce) {
5457 if (!kref_get_unless_zero(&ce->ref))
5458 continue;
5459
5460 xa_unlock(&guc->context_lookup);
5461
5462 if (!intel_context_is_pinned(ce))
5463 goto next;
5464
5465 if (intel_engine_is_virtual(ce->engine)) {
5466 if (!(ce->engine->mask & engine->mask))
5467 goto next;
5468 } else {
5469 if (ce->engine != engine)
5470 goto next;
5471 }
5472
5473 spin_lock(&ce->guc_state.lock);
5474 intel_engine_dump_active_requests(&ce->guc_state.requests,
5475 hung_rq, m);
5476 spin_unlock(&ce->guc_state.lock);
5477
5478 next:
5479 intel_context_put(ce);
5480 xa_lock(&guc->context_lookup);
5481 }
5482 xa_unlock_irqrestore(&guc->context_lookup, flags);
5483 }
5484
intel_guc_submission_print_info(struct intel_guc * guc,struct drm_printer * p)5485 void intel_guc_submission_print_info(struct intel_guc *guc,
5486 struct drm_printer *p)
5487 {
5488 struct i915_sched_engine *sched_engine = guc->sched_engine;
5489 struct rb_node *rb;
5490 unsigned long flags;
5491
5492 if (!sched_engine)
5493 return;
5494
5495 drm_printf(p, "GuC Submission API Version: %d.%d.%d\n",
5496 guc->submission_version.major, guc->submission_version.minor,
5497 guc->submission_version.patch);
5498 drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n",
5499 atomic_read(&guc->outstanding_submission_g2h));
5500 drm_printf(p, "GuC tasklet count: %u\n",
5501 atomic_read(&sched_engine->tasklet.count));
5502
5503 spin_lock_irqsave(&sched_engine->lock, flags);
5504 drm_printf(p, "Requests in GuC submit tasklet:\n");
5505 for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
5506 struct i915_priolist *pl = to_priolist(rb);
5507 struct i915_request *rq;
5508
5509 priolist_for_each_request(rq, pl)
5510 drm_printf(p, "guc_id=%u, seqno=%llu\n",
5511 rq->context->guc_id.id,
5512 rq->fence.seqno);
5513 }
5514 spin_unlock_irqrestore(&sched_engine->lock, flags);
5515 drm_printf(p, "\n");
5516 }
5517
guc_log_context_priority(struct drm_printer * p,struct intel_context * ce)5518 static inline void guc_log_context_priority(struct drm_printer *p,
5519 struct intel_context *ce)
5520 {
5521 int i;
5522
5523 drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio);
5524 drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n");
5525 for (i = GUC_CLIENT_PRIORITY_KMD_HIGH;
5526 i < GUC_CLIENT_PRIORITY_NUM; ++i) {
5527 drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n",
5528 i, ce->guc_state.prio_count[i]);
5529 }
5530 drm_printf(p, "\n");
5531 }
5532
guc_log_context(struct drm_printer * p,struct intel_context * ce)5533 static inline void guc_log_context(struct drm_printer *p,
5534 struct intel_context *ce)
5535 {
5536 drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id);
5537 drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca);
5538 if (intel_context_pin_if_active(ce)) {
5539 drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n",
5540 ce->ring->head,
5541 ce->lrc_reg_state[CTX_RING_HEAD]);
5542 drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n",
5543 ce->ring->tail,
5544 ce->lrc_reg_state[CTX_RING_TAIL]);
5545 intel_context_unpin(ce);
5546 } else {
5547 drm_printf(p, "\t\tLRC Head: Internal %u, Memory not pinned\n",
5548 ce->ring->head);
5549 drm_printf(p, "\t\tLRC Tail: Internal %u, Memory not pinned\n",
5550 ce->ring->tail);
5551 }
5552 drm_printf(p, "\t\tContext Pin Count: %u\n",
5553 atomic_read(&ce->pin_count));
5554 drm_printf(p, "\t\tGuC ID Ref Count: %u\n",
5555 atomic_read(&ce->guc_id.ref));
5556 drm_printf(p, "\t\tSchedule State: 0x%x\n",
5557 ce->guc_state.sched_state);
5558 }
5559
intel_guc_submission_print_context_info(struct intel_guc * guc,struct drm_printer * p)5560 void intel_guc_submission_print_context_info(struct intel_guc *guc,
5561 struct drm_printer *p)
5562 {
5563 struct intel_context *ce;
5564 unsigned long index;
5565 unsigned long flags;
5566
5567 xa_lock_irqsave(&guc->context_lookup, flags);
5568 xa_for_each(&guc->context_lookup, index, ce) {
5569 GEM_BUG_ON(intel_context_is_child(ce));
5570
5571 guc_log_context(p, ce);
5572 guc_log_context_priority(p, ce);
5573
5574 if (intel_context_is_parent(ce)) {
5575 struct intel_context *child;
5576
5577 drm_printf(p, "\t\tNumber children: %u\n",
5578 ce->parallel.number_children);
5579
5580 if (ce->parallel.guc.wq_status) {
5581 drm_printf(p, "\t\tWQI Head: %u\n",
5582 READ_ONCE(*ce->parallel.guc.wq_head));
5583 drm_printf(p, "\t\tWQI Tail: %u\n",
5584 READ_ONCE(*ce->parallel.guc.wq_tail));
5585 drm_printf(p, "\t\tWQI Status: %u\n",
5586 READ_ONCE(*ce->parallel.guc.wq_status));
5587 }
5588
5589 if (ce->engine->emit_bb_start ==
5590 emit_bb_start_parent_no_preempt_mid_batch) {
5591 u8 i;
5592
5593 drm_printf(p, "\t\tChildren Go: %u\n",
5594 get_children_go_value(ce));
5595 for (i = 0; i < ce->parallel.number_children; ++i)
5596 drm_printf(p, "\t\tChildren Join: %u\n",
5597 get_children_join_value(ce, i));
5598 }
5599
5600 for_each_child(ce, child)
5601 guc_log_context(p, child);
5602 }
5603 }
5604 xa_unlock_irqrestore(&guc->context_lookup, flags);
5605 }
5606
get_children_go_addr(struct intel_context * ce)5607 static inline u32 get_children_go_addr(struct intel_context *ce)
5608 {
5609 GEM_BUG_ON(!intel_context_is_parent(ce));
5610
5611 return i915_ggtt_offset(ce->state) +
5612 __get_parent_scratch_offset(ce) +
5613 offsetof(struct parent_scratch, go.semaphore);
5614 }
5615
get_children_join_addr(struct intel_context * ce,u8 child_index)5616 static inline u32 get_children_join_addr(struct intel_context *ce,
5617 u8 child_index)
5618 {
5619 GEM_BUG_ON(!intel_context_is_parent(ce));
5620
5621 return i915_ggtt_offset(ce->state) +
5622 __get_parent_scratch_offset(ce) +
5623 offsetof(struct parent_scratch, join[child_index].semaphore);
5624 }
5625
5626 #define PARENT_GO_BB 1
5627 #define PARENT_GO_FINI_BREADCRUMB 0
5628 #define CHILD_GO_BB 1
5629 #define CHILD_GO_FINI_BREADCRUMB 0
emit_bb_start_parent_no_preempt_mid_batch(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags)5630 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
5631 u64 offset, u32 len,
5632 const unsigned int flags)
5633 {
5634 struct intel_context *ce = rq->context;
5635 u32 *cs;
5636 u8 i;
5637
5638 GEM_BUG_ON(!intel_context_is_parent(ce));
5639
5640 cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children);
5641 if (IS_ERR(cs))
5642 return PTR_ERR(cs);
5643
5644 /* Wait on children */
5645 for (i = 0; i < ce->parallel.number_children; ++i) {
5646 *cs++ = (MI_SEMAPHORE_WAIT |
5647 MI_SEMAPHORE_GLOBAL_GTT |
5648 MI_SEMAPHORE_POLL |
5649 MI_SEMAPHORE_SAD_EQ_SDD);
5650 *cs++ = PARENT_GO_BB;
5651 *cs++ = get_children_join_addr(ce, i);
5652 *cs++ = 0;
5653 }
5654
5655 /* Turn off preemption */
5656 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
5657 *cs++ = MI_NOOP;
5658
5659 /* Tell children go */
5660 cs = gen8_emit_ggtt_write(cs,
5661 CHILD_GO_BB,
5662 get_children_go_addr(ce),
5663 0);
5664
5665 /* Jump to batch */
5666 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
5667 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
5668 *cs++ = lower_32_bits(offset);
5669 *cs++ = upper_32_bits(offset);
5670 *cs++ = MI_NOOP;
5671
5672 intel_ring_advance(rq, cs);
5673
5674 return 0;
5675 }
5676
emit_bb_start_child_no_preempt_mid_batch(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags)5677 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
5678 u64 offset, u32 len,
5679 const unsigned int flags)
5680 {
5681 struct intel_context *ce = rq->context;
5682 struct intel_context *parent = intel_context_to_parent(ce);
5683 u32 *cs;
5684
5685 GEM_BUG_ON(!intel_context_is_child(ce));
5686
5687 cs = intel_ring_begin(rq, 12);
5688 if (IS_ERR(cs))
5689 return PTR_ERR(cs);
5690
5691 /* Signal parent */
5692 cs = gen8_emit_ggtt_write(cs,
5693 PARENT_GO_BB,
5694 get_children_join_addr(parent,
5695 ce->parallel.child_index),
5696 0);
5697
5698 /* Wait on parent for go */
5699 *cs++ = (MI_SEMAPHORE_WAIT |
5700 MI_SEMAPHORE_GLOBAL_GTT |
5701 MI_SEMAPHORE_POLL |
5702 MI_SEMAPHORE_SAD_EQ_SDD);
5703 *cs++ = CHILD_GO_BB;
5704 *cs++ = get_children_go_addr(parent);
5705 *cs++ = 0;
5706
5707 /* Turn off preemption */
5708 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
5709
5710 /* Jump to batch */
5711 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
5712 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
5713 *cs++ = lower_32_bits(offset);
5714 *cs++ = upper_32_bits(offset);
5715
5716 intel_ring_advance(rq, cs);
5717
5718 return 0;
5719 }
5720
5721 static u32 *
__emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request * rq,u32 * cs)5722 __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
5723 u32 *cs)
5724 {
5725 struct intel_context *ce = rq->context;
5726 u8 i;
5727
5728 GEM_BUG_ON(!intel_context_is_parent(ce));
5729
5730 /* Wait on children */
5731 for (i = 0; i < ce->parallel.number_children; ++i) {
5732 *cs++ = (MI_SEMAPHORE_WAIT |
5733 MI_SEMAPHORE_GLOBAL_GTT |
5734 MI_SEMAPHORE_POLL |
5735 MI_SEMAPHORE_SAD_EQ_SDD);
5736 *cs++ = PARENT_GO_FINI_BREADCRUMB;
5737 *cs++ = get_children_join_addr(ce, i);
5738 *cs++ = 0;
5739 }
5740
5741 /* Turn on preemption */
5742 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5743 *cs++ = MI_NOOP;
5744
5745 /* Tell children go */
5746 cs = gen8_emit_ggtt_write(cs,
5747 CHILD_GO_FINI_BREADCRUMB,
5748 get_children_go_addr(ce),
5749 0);
5750
5751 return cs;
5752 }
5753
5754 /*
5755 * If this true, a submission of multi-lrc requests had an error and the
5756 * requests need to be skipped. The front end (execuf IOCTL) should've called
5757 * i915_request_skip which squashes the BB but we still need to emit the fini
5758 * breadrcrumbs seqno write. At this point we don't know how many of the
5759 * requests in the multi-lrc submission were generated so we can't do the
5760 * handshake between the parent and children (e.g. if 4 requests should be
5761 * generated but 2nd hit an error only 1 would be seen by the GuC backend).
5762 * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error
5763 * has occurred on any of the requests in submission / relationship.
5764 */
skip_handshake(struct i915_request * rq)5765 static inline bool skip_handshake(struct i915_request *rq)
5766 {
5767 return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags);
5768 }
5769
5770 #define NON_SKIP_LEN 6
5771 static u32 *
emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request * rq,u32 * cs)5772 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
5773 u32 *cs)
5774 {
5775 struct intel_context *ce = rq->context;
5776 __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5777 __maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5778
5779 GEM_BUG_ON(!intel_context_is_parent(ce));
5780
5781 if (unlikely(skip_handshake(rq))) {
5782 /*
5783 * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch,
5784 * the NON_SKIP_LEN comes from the length of the emits below.
5785 */
5786 memset(cs, 0, sizeof(u32) *
5787 (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5788 cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5789 } else {
5790 cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs);
5791 }
5792
5793 /* Emit fini breadcrumb */
5794 before_fini_breadcrumb_user_interrupt_cs = cs;
5795 cs = gen8_emit_ggtt_write(cs,
5796 rq->fence.seqno,
5797 i915_request_active_timeline(rq)->hwsp_offset,
5798 0);
5799
5800 /* User interrupt */
5801 *cs++ = MI_USER_INTERRUPT;
5802 *cs++ = MI_NOOP;
5803
5804 /* Ensure our math for skip + emit is correct */
5805 GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5806 cs);
5807 GEM_BUG_ON(start_fini_breadcrumb_cs +
5808 ce->engine->emit_fini_breadcrumb_dw != cs);
5809
5810 rq->tail = intel_ring_offset(rq, cs);
5811
5812 return cs;
5813 }
5814
5815 static u32 *
__emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request * rq,u32 * cs)5816 __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5817 u32 *cs)
5818 {
5819 struct intel_context *ce = rq->context;
5820 struct intel_context *parent = intel_context_to_parent(ce);
5821
5822 GEM_BUG_ON(!intel_context_is_child(ce));
5823
5824 /* Turn on preemption */
5825 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5826 *cs++ = MI_NOOP;
5827
5828 /* Signal parent */
5829 cs = gen8_emit_ggtt_write(cs,
5830 PARENT_GO_FINI_BREADCRUMB,
5831 get_children_join_addr(parent,
5832 ce->parallel.child_index),
5833 0);
5834
5835 /* Wait parent on for go */
5836 *cs++ = (MI_SEMAPHORE_WAIT |
5837 MI_SEMAPHORE_GLOBAL_GTT |
5838 MI_SEMAPHORE_POLL |
5839 MI_SEMAPHORE_SAD_EQ_SDD);
5840 *cs++ = CHILD_GO_FINI_BREADCRUMB;
5841 *cs++ = get_children_go_addr(parent);
5842 *cs++ = 0;
5843
5844 return cs;
5845 }
5846
5847 static u32 *
emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request * rq,u32 * cs)5848 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5849 u32 *cs)
5850 {
5851 struct intel_context *ce = rq->context;
5852 __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5853 __maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5854
5855 GEM_BUG_ON(!intel_context_is_child(ce));
5856
5857 if (unlikely(skip_handshake(rq))) {
5858 /*
5859 * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch,
5860 * the NON_SKIP_LEN comes from the length of the emits below.
5861 */
5862 memset(cs, 0, sizeof(u32) *
5863 (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5864 cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5865 } else {
5866 cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs);
5867 }
5868
5869 /* Emit fini breadcrumb */
5870 before_fini_breadcrumb_user_interrupt_cs = cs;
5871 cs = gen8_emit_ggtt_write(cs,
5872 rq->fence.seqno,
5873 i915_request_active_timeline(rq)->hwsp_offset,
5874 0);
5875
5876 /* User interrupt */
5877 *cs++ = MI_USER_INTERRUPT;
5878 *cs++ = MI_NOOP;
5879
5880 /* Ensure our math for skip + emit is correct */
5881 GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5882 cs);
5883 GEM_BUG_ON(start_fini_breadcrumb_cs +
5884 ce->engine->emit_fini_breadcrumb_dw != cs);
5885
5886 rq->tail = intel_ring_offset(rq, cs);
5887
5888 return cs;
5889 }
5890
5891 #undef NON_SKIP_LEN
5892
5893 static struct intel_context *
guc_create_virtual(struct intel_engine_cs ** siblings,unsigned int count,unsigned long flags)5894 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
5895 unsigned long flags)
5896 {
5897 struct guc_virtual_engine *ve;
5898 struct intel_guc *guc;
5899 unsigned int n;
5900 int err;
5901
5902 ve = kzalloc(sizeof(*ve), GFP_KERNEL);
5903 if (!ve)
5904 return ERR_PTR(-ENOMEM);
5905
5906 guc = gt_to_guc(siblings[0]->gt);
5907
5908 ve->base.i915 = siblings[0]->i915;
5909 ve->base.gt = siblings[0]->gt;
5910 ve->base.uncore = siblings[0]->uncore;
5911 ve->base.id = -1;
5912
5913 ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
5914 ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5915 ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5916 ve->base.saturated = ALL_ENGINES;
5917
5918 snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
5919
5920 ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine);
5921
5922 ve->base.cops = &virtual_guc_context_ops;
5923 ve->base.request_alloc = guc_request_alloc;
5924 ve->base.bump_serial = virtual_guc_bump_serial;
5925
5926 ve->base.submit_request = guc_submit_request;
5927
5928 ve->base.flags = I915_ENGINE_IS_VIRTUAL;
5929
5930 BUILD_BUG_ON(ilog2(VIRTUAL_ENGINES) < I915_NUM_ENGINES);
5931 ve->base.mask = VIRTUAL_ENGINES;
5932
5933 intel_context_init(&ve->context, &ve->base);
5934
5935 for (n = 0; n < count; n++) {
5936 struct intel_engine_cs *sibling = siblings[n];
5937
5938 GEM_BUG_ON(!is_power_of_2(sibling->mask));
5939 if (sibling->mask & ve->base.mask) {
5940 guc_dbg(guc, "duplicate %s entry in load balancer\n",
5941 sibling->name);
5942 err = -EINVAL;
5943 goto err_put;
5944 }
5945
5946 ve->base.mask |= sibling->mask;
5947 ve->base.logical_mask |= sibling->logical_mask;
5948
5949 if (n != 0 && ve->base.class != sibling->class) {
5950 guc_dbg(guc, "invalid mixing of engine class, sibling %d, already %d\n",
5951 sibling->class, ve->base.class);
5952 err = -EINVAL;
5953 goto err_put;
5954 } else if (n == 0) {
5955 ve->base.class = sibling->class;
5956 ve->base.uabi_class = sibling->uabi_class;
5957 snprintf(ve->base.name, sizeof(ve->base.name),
5958 "v%dx%d", ve->base.class, count);
5959 ve->base.context_size = sibling->context_size;
5960
5961 ve->base.add_active_request =
5962 sibling->add_active_request;
5963 ve->base.remove_active_request =
5964 sibling->remove_active_request;
5965 ve->base.emit_bb_start = sibling->emit_bb_start;
5966 ve->base.emit_flush = sibling->emit_flush;
5967 ve->base.emit_init_breadcrumb =
5968 sibling->emit_init_breadcrumb;
5969 ve->base.emit_fini_breadcrumb =
5970 sibling->emit_fini_breadcrumb;
5971 ve->base.emit_fini_breadcrumb_dw =
5972 sibling->emit_fini_breadcrumb_dw;
5973 ve->base.breadcrumbs =
5974 intel_breadcrumbs_get(sibling->breadcrumbs);
5975
5976 ve->base.flags |= sibling->flags;
5977
5978 ve->base.props.timeslice_duration_ms =
5979 sibling->props.timeslice_duration_ms;
5980 ve->base.props.preempt_timeout_ms =
5981 sibling->props.preempt_timeout_ms;
5982 }
5983 }
5984
5985 return &ve->context;
5986
5987 err_put:
5988 intel_context_put(&ve->context);
5989 return ERR_PTR(err);
5990 }
5991
intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs * ve)5992 bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve)
5993 {
5994 struct intel_engine_cs *engine;
5995 intel_engine_mask_t tmp, mask = ve->mask;
5996
5997 for_each_engine_masked(engine, ve->gt, mask, tmp)
5998 if (READ_ONCE(engine->props.heartbeat_interval_ms))
5999 return true;
6000
6001 return false;
6002 }
6003
6004 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
6005 #include "selftest_guc.c"
6006 #include "selftest_guc_multi_lrc.c"
6007 #include "selftest_guc_hangcheck.c"
6008 #endif
6009