xref: /linux/include/linux/mm_types.h (revision 5635d8bad221701188017a6087fbe25ab245c226)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_TYPES_H
3 #define _LINUX_MM_TYPES_H
4 
5 #include <linux/mm_types_task.h>
6 
7 #include <linux/auxvec.h>
8 #include <linux/kref.h>
9 #include <linux/list.h>
10 #include <linux/spinlock.h>
11 #include <linux/rbtree.h>
12 #include <linux/maple_tree.h>
13 #include <linux/rwsem.h>
14 #include <linux/completion.h>
15 #include <linux/cpumask.h>
16 #include <linux/uprobes.h>
17 #include <linux/rcupdate.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/workqueue.h>
20 #include <linux/seqlock.h>
21 #include <linux/percpu_counter.h>
22 
23 #include <asm/mmu.h>
24 
25 #ifndef AT_VECTOR_SIZE_ARCH
26 #define AT_VECTOR_SIZE_ARCH 0
27 #endif
28 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
29 
30 #define INIT_PASID	0
31 
32 struct address_space;
33 struct mem_cgroup;
34 
35 /*
36  * Each physical page in the system has a struct page associated with
37  * it to keep track of whatever it is we are using the page for at the
38  * moment. Note that we have no way to track which tasks are using
39  * a page, though if it is a pagecache page, rmap structures can tell us
40  * who is mapping it.
41  *
42  * If you allocate the page using alloc_pages(), you can use some of the
43  * space in struct page for your own purposes.  The five words in the main
44  * union are available, except for bit 0 of the first word which must be
45  * kept clear.  Many users use this word to store a pointer to an object
46  * which is guaranteed to be aligned.  If you use the same storage as
47  * page->mapping, you must restore it to NULL before freeing the page.
48  *
49  * The mapcount field must not be used for own purposes.
50  *
51  * If you want to use the refcount field, it must be used in such a way
52  * that other CPUs temporarily incrementing and then decrementing the
53  * refcount does not cause problems.  On receiving the page from
54  * alloc_pages(), the refcount will be positive.
55  *
56  * If you allocate pages of order > 0, you can use some of the fields
57  * in each subpage, but you may need to restore some of their values
58  * afterwards.
59  *
60  * SLUB uses cmpxchg_double() to atomically update its freelist and counters.
61  * That requires that freelist & counters in struct slab be adjacent and
62  * double-word aligned. Because struct slab currently just reinterprets the
63  * bits of struct page, we align all struct pages to double-word boundaries,
64  * and ensure that 'freelist' is aligned within struct slab.
65  */
66 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
67 #define _struct_page_alignment	__aligned(2 * sizeof(unsigned long))
68 #else
69 #define _struct_page_alignment	__aligned(sizeof(unsigned long))
70 #endif
71 
72 struct page {
73 	unsigned long flags;		/* Atomic flags, some possibly
74 					 * updated asynchronously */
75 	/*
76 	 * Five words (20/40 bytes) are available in this union.
77 	 * WARNING: bit 0 of the first word is used for PageTail(). That
78 	 * means the other users of this union MUST NOT use the bit to
79 	 * avoid collision and false-positive PageTail().
80 	 */
81 	union {
82 		struct {	/* Page cache and anonymous pages */
83 			/**
84 			 * @lru: Pageout list, eg. active_list protected by
85 			 * lruvec->lru_lock.  Sometimes used as a generic list
86 			 * by the page owner.
87 			 */
88 			union {
89 				struct list_head lru;
90 
91 				/* Or, for the Unevictable "LRU list" slot */
92 				struct {
93 					/* Always even, to negate PageTail */
94 					void *__filler;
95 					/* Count page's or folio's mlocks */
96 					unsigned int mlock_count;
97 				};
98 
99 				/* Or, free page */
100 				struct list_head buddy_list;
101 				struct list_head pcp_list;
102 			};
103 			/* See page-flags.h for PAGE_MAPPING_FLAGS */
104 			struct address_space *mapping;
105 			union {
106 				pgoff_t index;		/* Our offset within mapping. */
107 				unsigned long share;	/* share count for fsdax */
108 			};
109 			/**
110 			 * @private: Mapping-private opaque data.
111 			 * Usually used for buffer_heads if PagePrivate.
112 			 * Used for swp_entry_t if swapcache flag set.
113 			 * Indicates order in the buddy system if PageBuddy.
114 			 */
115 			unsigned long private;
116 		};
117 		struct {	/* page_pool used by netstack */
118 			/**
119 			 * @pp_magic: magic value to avoid recycling non
120 			 * page_pool allocated pages.
121 			 */
122 			unsigned long pp_magic;
123 			struct page_pool *pp;
124 			unsigned long _pp_mapping_pad;
125 			unsigned long dma_addr;
126 			atomic_long_t pp_ref_count;
127 		};
128 		struct {	/* Tail pages of compound page */
129 			unsigned long compound_head;	/* Bit zero is set */
130 		};
131 		struct {	/* ZONE_DEVICE pages */
132 			/** @pgmap: Points to the hosting device page map. */
133 			struct dev_pagemap *pgmap;
134 			void *zone_device_data;
135 			/*
136 			 * ZONE_DEVICE private pages are counted as being
137 			 * mapped so the next 3 words hold the mapping, index,
138 			 * and private fields from the source anonymous or
139 			 * page cache page while the page is migrated to device
140 			 * private memory.
141 			 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also
142 			 * use the mapping, index, and private fields when
143 			 * pmem backed DAX files are mapped.
144 			 */
145 		};
146 
147 		/** @rcu_head: You can use this to free a page by RCU. */
148 		struct rcu_head rcu_head;
149 	};
150 
151 	union {		/* This union is 4 bytes in size. */
152 		/*
153 		 * For head pages of typed folios, the value stored here
154 		 * allows for determining what this page is used for. The
155 		 * tail pages of typed folios will not store a type
156 		 * (page_type == _mapcount == -1).
157 		 *
158 		 * See page-flags.h for a list of page types which are currently
159 		 * stored here.
160 		 *
161 		 * Owners of typed folios may reuse the lower 16 bit of the
162 		 * head page page_type field after setting the page type,
163 		 * but must reset these 16 bit to -1 before clearing the
164 		 * page type.
165 		 */
166 		unsigned int page_type;
167 
168 		/*
169 		 * For pages that are part of non-typed folios for which mappings
170 		 * are tracked via the RMAP, encodes the number of times this page
171 		 * is directly referenced by a page table.
172 		 *
173 		 * Note that the mapcount is always initialized to -1, so that
174 		 * transitions both from it and to it can be tracked, using
175 		 * atomic_inc_and_test() and atomic_add_negative(-1).
176 		 */
177 		atomic_t _mapcount;
178 	};
179 
180 	/* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
181 	atomic_t _refcount;
182 
183 #ifdef CONFIG_MEMCG
184 	unsigned long memcg_data;
185 #elif defined(CONFIG_SLAB_OBJ_EXT)
186 	unsigned long _unused_slab_obj_exts;
187 #endif
188 
189 	/*
190 	 * On machines where all RAM is mapped into kernel address space,
191 	 * we can simply calculate the virtual address. On machines with
192 	 * highmem some memory is mapped into kernel virtual memory
193 	 * dynamically, so we need a place to store that address.
194 	 * Note that this field could be 16 bits on x86 ... ;)
195 	 *
196 	 * Architectures with slow multiplication can define
197 	 * WANT_PAGE_VIRTUAL in asm/page.h
198 	 */
199 #if defined(WANT_PAGE_VIRTUAL)
200 	void *virtual;			/* Kernel virtual address (NULL if
201 					   not kmapped, ie. highmem) */
202 #endif /* WANT_PAGE_VIRTUAL */
203 
204 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
205 	int _last_cpupid;
206 #endif
207 
208 #ifdef CONFIG_KMSAN
209 	/*
210 	 * KMSAN metadata for this page:
211 	 *  - shadow page: every bit indicates whether the corresponding
212 	 *    bit of the original page is initialized (0) or not (1);
213 	 *  - origin page: every 4 bytes contain an id of the stack trace
214 	 *    where the uninitialized value was created.
215 	 */
216 	struct page *kmsan_shadow;
217 	struct page *kmsan_origin;
218 #endif
219 } _struct_page_alignment;
220 
221 /*
222  * struct encoded_page - a nonexistent type marking this pointer
223  *
224  * An 'encoded_page' pointer is a pointer to a regular 'struct page', but
225  * with the low bits of the pointer indicating extra context-dependent
226  * information. Only used in mmu_gather handling, and this acts as a type
227  * system check on that use.
228  *
229  * We only really have two guaranteed bits in general, although you could
230  * play with 'struct page' alignment (see CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
231  * for more.
232  *
233  * Use the supplied helper functions to endcode/decode the pointer and bits.
234  */
235 struct encoded_page;
236 
237 #define ENCODED_PAGE_BITS			3ul
238 
239 /* Perform rmap removal after we have flushed the TLB. */
240 #define ENCODED_PAGE_BIT_DELAY_RMAP		1ul
241 
242 /*
243  * The next item in an encoded_page array is the "nr_pages" argument, specifying
244  * the number of consecutive pages starting from this page, that all belong to
245  * the same folio. For example, "nr_pages" corresponds to the number of folio
246  * references that must be dropped. If this bit is not set, "nr_pages" is
247  * implicitly 1.
248  */
249 #define ENCODED_PAGE_BIT_NR_PAGES_NEXT		2ul
250 
encode_page(struct page * page,unsigned long flags)251 static __always_inline struct encoded_page *encode_page(struct page *page, unsigned long flags)
252 {
253 	BUILD_BUG_ON(flags > ENCODED_PAGE_BITS);
254 	return (struct encoded_page *)(flags | (unsigned long)page);
255 }
256 
encoded_page_flags(struct encoded_page * page)257 static inline unsigned long encoded_page_flags(struct encoded_page *page)
258 {
259 	return ENCODED_PAGE_BITS & (unsigned long)page;
260 }
261 
encoded_page_ptr(struct encoded_page * page)262 static inline struct page *encoded_page_ptr(struct encoded_page *page)
263 {
264 	return (struct page *)(~ENCODED_PAGE_BITS & (unsigned long)page);
265 }
266 
encode_nr_pages(unsigned long nr)267 static __always_inline struct encoded_page *encode_nr_pages(unsigned long nr)
268 {
269 	VM_WARN_ON_ONCE((nr << 2) >> 2 != nr);
270 	return (struct encoded_page *)(nr << 2);
271 }
272 
encoded_nr_pages(struct encoded_page * page)273 static __always_inline unsigned long encoded_nr_pages(struct encoded_page *page)
274 {
275 	return ((unsigned long)page) >> 2;
276 }
277 
278 /*
279  * A swap entry has to fit into a "unsigned long", as the entry is hidden
280  * in the "index" field of the swapper address space.
281  */
282 typedef struct {
283 	unsigned long val;
284 } swp_entry_t;
285 
286 /**
287  * struct folio - Represents a contiguous set of bytes.
288  * @flags: Identical to the page flags.
289  * @lru: Least Recently Used list; tracks how recently this folio was used.
290  * @mlock_count: Number of times this folio has been pinned by mlock().
291  * @mapping: The file this page belongs to, or refers to the anon_vma for
292  *    anonymous memory.
293  * @index: Offset within the file, in units of pages.  For anonymous memory,
294  *    this is the index from the beginning of the mmap.
295  * @private: Filesystem per-folio data (see folio_attach_private()).
296  * @swap: Used for swp_entry_t if folio_test_swapcache().
297  * @_mapcount: Do not access this member directly.  Use folio_mapcount() to
298  *    find out how many times this folio is mapped by userspace.
299  * @_refcount: Do not access this member directly.  Use folio_ref_count()
300  *    to find how many references there are to this folio.
301  * @memcg_data: Memory Control Group data.
302  * @virtual: Virtual address in the kernel direct map.
303  * @_last_cpupid: IDs of last CPU and last process that accessed the folio.
304  * @_entire_mapcount: Do not use directly, call folio_entire_mapcount().
305  * @_large_mapcount: Do not use directly, call folio_mapcount().
306  * @_nr_pages_mapped: Do not use outside of rmap and debug code.
307  * @_pincount: Do not use directly, call folio_maybe_dma_pinned().
308  * @_folio_nr_pages: Do not use directly, call folio_nr_pages().
309  * @_hugetlb_subpool: Do not use directly, use accessor in hugetlb.h.
310  * @_hugetlb_cgroup: Do not use directly, use accessor in hugetlb_cgroup.h.
311  * @_hugetlb_cgroup_rsvd: Do not use directly, use accessor in hugetlb_cgroup.h.
312  * @_hugetlb_hwpoison: Do not use directly, call raw_hwp_list_head().
313  * @_deferred_list: Folios to be split under memory pressure.
314  * @_unused_slab_obj_exts: Placeholder to match obj_exts in struct slab.
315  *
316  * A folio is a physically, virtually and logically contiguous set
317  * of bytes.  It is a power-of-two in size, and it is aligned to that
318  * same power-of-two.  It is at least as large as %PAGE_SIZE.  If it is
319  * in the page cache, it is at a file offset which is a multiple of that
320  * power-of-two.  It may be mapped into userspace at an address which is
321  * at an arbitrary page offset, but its kernel virtual address is aligned
322  * to its size.
323  */
324 struct folio {
325 	/* private: don't document the anon union */
326 	union {
327 		struct {
328 	/* public: */
329 			unsigned long flags;
330 			union {
331 				struct list_head lru;
332 	/* private: avoid cluttering the output */
333 				struct {
334 					void *__filler;
335 	/* public: */
336 					unsigned int mlock_count;
337 	/* private: */
338 				};
339 	/* public: */
340 			};
341 			struct address_space *mapping;
342 			pgoff_t index;
343 			union {
344 				void *private;
345 				swp_entry_t swap;
346 			};
347 			atomic_t _mapcount;
348 			atomic_t _refcount;
349 #ifdef CONFIG_MEMCG
350 			unsigned long memcg_data;
351 #elif defined(CONFIG_SLAB_OBJ_EXT)
352 			unsigned long _unused_slab_obj_exts;
353 #endif
354 #if defined(WANT_PAGE_VIRTUAL)
355 			void *virtual;
356 #endif
357 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
358 			int _last_cpupid;
359 #endif
360 	/* private: the union with struct page is transitional */
361 		};
362 		struct page page;
363 	};
364 	union {
365 		struct {
366 			unsigned long _flags_1;
367 			unsigned long _head_1;
368 	/* public: */
369 			atomic_t _large_mapcount;
370 			atomic_t _entire_mapcount;
371 			atomic_t _nr_pages_mapped;
372 			atomic_t _pincount;
373 #ifdef CONFIG_64BIT
374 			unsigned int _folio_nr_pages;
375 #endif
376 	/* private: the union with struct page is transitional */
377 		};
378 		struct page __page_1;
379 	};
380 	union {
381 		struct {
382 			unsigned long _flags_2;
383 			unsigned long _head_2;
384 	/* public: */
385 			void *_hugetlb_subpool;
386 			void *_hugetlb_cgroup;
387 			void *_hugetlb_cgroup_rsvd;
388 			void *_hugetlb_hwpoison;
389 	/* private: the union with struct page is transitional */
390 		};
391 		struct {
392 			unsigned long _flags_2a;
393 			unsigned long _head_2a;
394 	/* public: */
395 			struct list_head _deferred_list;
396 	/* private: the union with struct page is transitional */
397 		};
398 		struct page __page_2;
399 	};
400 };
401 
402 #define FOLIO_MATCH(pg, fl)						\
403 	static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl))
404 FOLIO_MATCH(flags, flags);
405 FOLIO_MATCH(lru, lru);
406 FOLIO_MATCH(mapping, mapping);
407 FOLIO_MATCH(compound_head, lru);
408 FOLIO_MATCH(index, index);
409 FOLIO_MATCH(private, private);
410 FOLIO_MATCH(_mapcount, _mapcount);
411 FOLIO_MATCH(_refcount, _refcount);
412 #ifdef CONFIG_MEMCG
413 FOLIO_MATCH(memcg_data, memcg_data);
414 #endif
415 #if defined(WANT_PAGE_VIRTUAL)
416 FOLIO_MATCH(virtual, virtual);
417 #endif
418 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
419 FOLIO_MATCH(_last_cpupid, _last_cpupid);
420 #endif
421 #undef FOLIO_MATCH
422 #define FOLIO_MATCH(pg, fl)						\
423 	static_assert(offsetof(struct folio, fl) ==			\
424 			offsetof(struct page, pg) + sizeof(struct page))
425 FOLIO_MATCH(flags, _flags_1);
426 FOLIO_MATCH(compound_head, _head_1);
427 #undef FOLIO_MATCH
428 #define FOLIO_MATCH(pg, fl)						\
429 	static_assert(offsetof(struct folio, fl) ==			\
430 			offsetof(struct page, pg) + 2 * sizeof(struct page))
431 FOLIO_MATCH(flags, _flags_2);
432 FOLIO_MATCH(compound_head, _head_2);
433 FOLIO_MATCH(flags, _flags_2a);
434 FOLIO_MATCH(compound_head, _head_2a);
435 #undef FOLIO_MATCH
436 
437 /**
438  * struct ptdesc -    Memory descriptor for page tables.
439  * @__page_flags:     Same as page flags. Powerpc only.
440  * @pt_rcu_head:      For freeing page table pages.
441  * @pt_list:          List of used page tables. Used for s390 and x86.
442  * @_pt_pad_1:        Padding that aliases with page's compound head.
443  * @pmd_huge_pte:     Protected by ptdesc->ptl, used for THPs.
444  * @__page_mapping:   Aliases with page->mapping. Unused for page tables.
445  * @pt_index:         Used for s390 gmap.
446  * @pt_mm:            Used for x86 pgds.
447  * @pt_frag_refcount: For fragmented page table tracking. Powerpc only.
448  * @pt_share_count:   Used for HugeTLB PMD page table share count.
449  * @_pt_pad_2:        Padding to ensure proper alignment.
450  * @ptl:              Lock for the page table.
451  * @__page_type:      Same as page->page_type. Unused for page tables.
452  * @__page_refcount:  Same as page refcount.
453  * @pt_memcg_data:    Memcg data. Tracked for page tables here.
454  *
455  * This struct overlays struct page for now. Do not modify without a good
456  * understanding of the issues.
457  */
458 struct ptdesc {
459 	unsigned long __page_flags;
460 
461 	union {
462 		struct rcu_head pt_rcu_head;
463 		struct list_head pt_list;
464 		struct {
465 			unsigned long _pt_pad_1;
466 			pgtable_t pmd_huge_pte;
467 		};
468 	};
469 	unsigned long __page_mapping;
470 
471 	union {
472 		pgoff_t pt_index;
473 		struct mm_struct *pt_mm;
474 		atomic_t pt_frag_refcount;
475 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
476 		atomic_t pt_share_count;
477 #endif
478 	};
479 
480 	union {
481 		unsigned long _pt_pad_2;
482 #if ALLOC_SPLIT_PTLOCKS
483 		spinlock_t *ptl;
484 #else
485 		spinlock_t ptl;
486 #endif
487 	};
488 	unsigned int __page_type;
489 	atomic_t __page_refcount;
490 #ifdef CONFIG_MEMCG
491 	unsigned long pt_memcg_data;
492 #endif
493 };
494 
495 #define TABLE_MATCH(pg, pt)						\
496 	static_assert(offsetof(struct page, pg) == offsetof(struct ptdesc, pt))
497 TABLE_MATCH(flags, __page_flags);
498 TABLE_MATCH(compound_head, pt_list);
499 TABLE_MATCH(compound_head, _pt_pad_1);
500 TABLE_MATCH(mapping, __page_mapping);
501 TABLE_MATCH(index, pt_index);
502 TABLE_MATCH(rcu_head, pt_rcu_head);
503 TABLE_MATCH(page_type, __page_type);
504 TABLE_MATCH(_refcount, __page_refcount);
505 #ifdef CONFIG_MEMCG
506 TABLE_MATCH(memcg_data, pt_memcg_data);
507 #endif
508 #undef TABLE_MATCH
509 static_assert(sizeof(struct ptdesc) <= sizeof(struct page));
510 
511 #define ptdesc_page(pt)			(_Generic((pt),			\
512 	const struct ptdesc *:		(const struct page *)(pt),	\
513 	struct ptdesc *:		(struct page *)(pt)))
514 
515 #define ptdesc_folio(pt)		(_Generic((pt),			\
516 	const struct ptdesc *:		(const struct folio *)(pt),	\
517 	struct ptdesc *:		(struct folio *)(pt)))
518 
519 #define page_ptdesc(p)			(_Generic((p),			\
520 	const struct page *:		(const struct ptdesc *)(p),	\
521 	struct page *:			(struct ptdesc *)(p)))
522 
523 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
ptdesc_pmd_pts_init(struct ptdesc * ptdesc)524 static inline void ptdesc_pmd_pts_init(struct ptdesc *ptdesc)
525 {
526 	atomic_set(&ptdesc->pt_share_count, 0);
527 }
528 
ptdesc_pmd_pts_inc(struct ptdesc * ptdesc)529 static inline void ptdesc_pmd_pts_inc(struct ptdesc *ptdesc)
530 {
531 	atomic_inc(&ptdesc->pt_share_count);
532 }
533 
ptdesc_pmd_pts_dec(struct ptdesc * ptdesc)534 static inline void ptdesc_pmd_pts_dec(struct ptdesc *ptdesc)
535 {
536 	atomic_dec(&ptdesc->pt_share_count);
537 }
538 
ptdesc_pmd_pts_count(struct ptdesc * ptdesc)539 static inline int ptdesc_pmd_pts_count(struct ptdesc *ptdesc)
540 {
541 	return atomic_read(&ptdesc->pt_share_count);
542 }
543 #else
ptdesc_pmd_pts_init(struct ptdesc * ptdesc)544 static inline void ptdesc_pmd_pts_init(struct ptdesc *ptdesc)
545 {
546 }
547 #endif
548 
549 /*
550  * Used for sizing the vmemmap region on some architectures
551  */
552 #define STRUCT_PAGE_MAX_SHIFT	(order_base_2(sizeof(struct page)))
553 
554 /*
555  * page_private can be used on tail pages.  However, PagePrivate is only
556  * checked by the VM on the head page.  So page_private on the tail pages
557  * should be used for data that's ancillary to the head page (eg attaching
558  * buffer heads to tail pages after attaching buffer heads to the head page)
559  */
560 #define page_private(page)		((page)->private)
561 
set_page_private(struct page * page,unsigned long private)562 static inline void set_page_private(struct page *page, unsigned long private)
563 {
564 	page->private = private;
565 }
566 
folio_get_private(struct folio * folio)567 static inline void *folio_get_private(struct folio *folio)
568 {
569 	return folio->private;
570 }
571 
572 typedef unsigned long vm_flags_t;
573 
574 /*
575  * A region containing a mapping of a non-memory backed file under NOMMU
576  * conditions.  These are held in a global tree and are pinned by the VMAs that
577  * map parts of them.
578  */
579 struct vm_region {
580 	struct rb_node	vm_rb;		/* link in global region tree */
581 	vm_flags_t	vm_flags;	/* VMA vm_flags */
582 	unsigned long	vm_start;	/* start address of region */
583 	unsigned long	vm_end;		/* region initialised to here */
584 	unsigned long	vm_top;		/* region allocated to here */
585 	unsigned long	vm_pgoff;	/* the offset in vm_file corresponding to vm_start */
586 	struct file	*vm_file;	/* the backing file or NULL */
587 
588 	int		vm_usage;	/* region usage count (access under nommu_region_sem) */
589 	bool		vm_icache_flushed : 1; /* true if the icache has been flushed for
590 						* this region */
591 };
592 
593 #ifdef CONFIG_USERFAULTFD
594 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
595 struct vm_userfaultfd_ctx {
596 	struct userfaultfd_ctx *ctx;
597 };
598 #else /* CONFIG_USERFAULTFD */
599 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
600 struct vm_userfaultfd_ctx {};
601 #endif /* CONFIG_USERFAULTFD */
602 
603 struct anon_vma_name {
604 	struct kref kref;
605 	/* The name needs to be at the end because it is dynamically sized. */
606 	char name[];
607 };
608 
609 #ifdef CONFIG_ANON_VMA_NAME
610 /*
611  * mmap_lock should be read-locked when calling anon_vma_name(). Caller should
612  * either keep holding the lock while using the returned pointer or it should
613  * raise anon_vma_name refcount before releasing the lock.
614  */
615 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma);
616 struct anon_vma_name *anon_vma_name_alloc(const char *name);
617 void anon_vma_name_free(struct kref *kref);
618 #else /* CONFIG_ANON_VMA_NAME */
anon_vma_name(struct vm_area_struct * vma)619 static inline struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
620 {
621 	return NULL;
622 }
623 
anon_vma_name_alloc(const char * name)624 static inline struct anon_vma_name *anon_vma_name_alloc(const char *name)
625 {
626 	return NULL;
627 }
628 #endif
629 
630 struct vma_lock {
631 	struct rw_semaphore lock;
632 };
633 
634 struct vma_numab_state {
635 	/*
636 	 * Initialised as time in 'jiffies' after which VMA
637 	 * should be scanned.  Delays first scan of new VMA by at
638 	 * least sysctl_numa_balancing_scan_delay:
639 	 */
640 	unsigned long next_scan;
641 
642 	/*
643 	 * Time in jiffies when pids_active[] is reset to
644 	 * detect phase change behaviour:
645 	 */
646 	unsigned long pids_active_reset;
647 
648 	/*
649 	 * Approximate tracking of PIDs that trapped a NUMA hinting
650 	 * fault. May produce false positives due to hash collisions.
651 	 *
652 	 *   [0] Previous PID tracking
653 	 *   [1] Current PID tracking
654 	 *
655 	 * Window moves after next_pid_reset has expired approximately
656 	 * every VMA_PID_RESET_PERIOD jiffies:
657 	 */
658 	unsigned long pids_active[2];
659 
660 	/* MM scan sequence ID when scan first started after VMA creation */
661 	int start_scan_seq;
662 
663 	/*
664 	 * MM scan sequence ID when the VMA was last completely scanned.
665 	 * A VMA is not eligible for scanning if prev_scan_seq == numa_scan_seq
666 	 */
667 	int prev_scan_seq;
668 };
669 
670 /*
671  * This struct describes a virtual memory area. There is one of these
672  * per VM-area/task. A VM area is any part of the process virtual memory
673  * space that has a special rule for the page-fault handlers (ie a shared
674  * library, the executable area etc).
675  *
676  * Only explicitly marked struct members may be accessed by RCU readers before
677  * getting a stable reference.
678  */
679 struct vm_area_struct {
680 	/* The first cache line has the info for VMA tree walking. */
681 
682 	union {
683 		struct {
684 			/* VMA covers [vm_start; vm_end) addresses within mm */
685 			unsigned long vm_start;
686 			unsigned long vm_end;
687 		};
688 #ifdef CONFIG_PER_VMA_LOCK
689 		struct rcu_head vm_rcu;	/* Used for deferred freeing. */
690 #endif
691 	};
692 
693 	/*
694 	 * The address space we belong to.
695 	 * Unstable RCU readers are allowed to read this.
696 	 */
697 	struct mm_struct *vm_mm;
698 	pgprot_t vm_page_prot;          /* Access permissions of this VMA. */
699 
700 	/*
701 	 * Flags, see mm.h.
702 	 * To modify use vm_flags_{init|reset|set|clear|mod} functions.
703 	 */
704 	union {
705 		const vm_flags_t vm_flags;
706 		vm_flags_t __private __vm_flags;
707 	};
708 
709 #ifdef CONFIG_PER_VMA_LOCK
710 	/*
711 	 * Flag to indicate areas detached from the mm->mm_mt tree.
712 	 * Unstable RCU readers are allowed to read this.
713 	 */
714 	bool detached;
715 
716 	/*
717 	 * Can only be written (using WRITE_ONCE()) while holding both:
718 	 *  - mmap_lock (in write mode)
719 	 *  - vm_lock->lock (in write mode)
720 	 * Can be read reliably while holding one of:
721 	 *  - mmap_lock (in read or write mode)
722 	 *  - vm_lock->lock (in read or write mode)
723 	 * Can be read unreliably (using READ_ONCE()) for pessimistic bailout
724 	 * while holding nothing (except RCU to keep the VMA struct allocated).
725 	 *
726 	 * This sequence counter is explicitly allowed to overflow; sequence
727 	 * counter reuse can only lead to occasional unnecessary use of the
728 	 * slowpath.
729 	 */
730 	int vm_lock_seq;
731 	/* Unstable RCU readers are allowed to read this. */
732 	struct vma_lock *vm_lock;
733 #endif
734 
735 	/*
736 	 * For areas with an address space and backing store,
737 	 * linkage into the address_space->i_mmap interval tree.
738 	 *
739 	 */
740 	struct {
741 		struct rb_node rb;
742 		unsigned long rb_subtree_last;
743 	} shared;
744 
745 	/*
746 	 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
747 	 * list, after a COW of one of the file pages.	A MAP_SHARED vma
748 	 * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
749 	 * or brk vma (with NULL file) can only be in an anon_vma list.
750 	 */
751 	struct list_head anon_vma_chain; /* Serialized by mmap_lock &
752 					  * page_table_lock */
753 	struct anon_vma *anon_vma;	/* Serialized by page_table_lock */
754 
755 	/* Function pointers to deal with this struct. */
756 	const struct vm_operations_struct *vm_ops;
757 
758 	/* Information about our backing store: */
759 	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE
760 					   units */
761 	struct file * vm_file;		/* File we map to (can be NULL). */
762 	void * vm_private_data;		/* was vm_pte (shared mem) */
763 
764 #ifdef CONFIG_ANON_VMA_NAME
765 	/*
766 	 * For private and shared anonymous mappings, a pointer to a null
767 	 * terminated string containing the name given to the vma, or NULL if
768 	 * unnamed. Serialized by mmap_lock. Use anon_vma_name to access.
769 	 */
770 	struct anon_vma_name *anon_name;
771 #endif
772 #ifdef CONFIG_SWAP
773 	atomic_long_t swap_readahead_info;
774 #endif
775 #ifndef CONFIG_MMU
776 	struct vm_region *vm_region;	/* NOMMU mapping region */
777 #endif
778 #ifdef CONFIG_NUMA
779 	struct mempolicy *vm_policy;	/* NUMA policy for the VMA */
780 #endif
781 #ifdef CONFIG_NUMA_BALANCING
782 	struct vma_numab_state *numab_state;	/* NUMA Balancing state */
783 #endif
784 	struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
785 } __randomize_layout;
786 
787 #ifdef CONFIG_NUMA
788 #define vma_policy(vma) ((vma)->vm_policy)
789 #else
790 #define vma_policy(vma) NULL
791 #endif
792 
793 #ifdef CONFIG_SCHED_MM_CID
794 struct mm_cid {
795 	u64 time;
796 	int cid;
797 	int recent_cid;
798 };
799 #endif
800 
801 struct kioctx_table;
802 struct iommu_mm_data;
803 struct mm_struct {
804 	struct {
805 		/*
806 		 * Fields which are often written to are placed in a separate
807 		 * cache line.
808 		 */
809 		struct {
810 			/**
811 			 * @mm_count: The number of references to &struct
812 			 * mm_struct (@mm_users count as 1).
813 			 *
814 			 * Use mmgrab()/mmdrop() to modify. When this drops to
815 			 * 0, the &struct mm_struct is freed.
816 			 */
817 			atomic_t mm_count;
818 		} ____cacheline_aligned_in_smp;
819 
820 		struct maple_tree mm_mt;
821 
822 		unsigned long mmap_base;	/* base of mmap area */
823 		unsigned long mmap_legacy_base;	/* base of mmap area in bottom-up allocations */
824 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
825 		/* Base addresses for compatible mmap() */
826 		unsigned long mmap_compat_base;
827 		unsigned long mmap_compat_legacy_base;
828 #endif
829 		unsigned long task_size;	/* size of task vm space */
830 		pgd_t * pgd;
831 
832 #ifdef CONFIG_MEMBARRIER
833 		/**
834 		 * @membarrier_state: Flags controlling membarrier behavior.
835 		 *
836 		 * This field is close to @pgd to hopefully fit in the same
837 		 * cache-line, which needs to be touched by switch_mm().
838 		 */
839 		atomic_t membarrier_state;
840 #endif
841 
842 		/**
843 		 * @mm_users: The number of users including userspace.
844 		 *
845 		 * Use mmget()/mmget_not_zero()/mmput() to modify. When this
846 		 * drops to 0 (i.e. when the task exits and there are no other
847 		 * temporary reference holders), we also release a reference on
848 		 * @mm_count (which may then free the &struct mm_struct if
849 		 * @mm_count also drops to 0).
850 		 */
851 		atomic_t mm_users;
852 
853 #ifdef CONFIG_SCHED_MM_CID
854 		/**
855 		 * @pcpu_cid: Per-cpu current cid.
856 		 *
857 		 * Keep track of the currently allocated mm_cid for each cpu.
858 		 * The per-cpu mm_cid values are serialized by their respective
859 		 * runqueue locks.
860 		 */
861 		struct mm_cid __percpu *pcpu_cid;
862 		/*
863 		 * @mm_cid_next_scan: Next mm_cid scan (in jiffies).
864 		 *
865 		 * When the next mm_cid scan is due (in jiffies).
866 		 */
867 		unsigned long mm_cid_next_scan;
868 		/**
869 		 * @nr_cpus_allowed: Number of CPUs allowed for mm.
870 		 *
871 		 * Number of CPUs allowed in the union of all mm's
872 		 * threads allowed CPUs.
873 		 */
874 		unsigned int nr_cpus_allowed;
875 		/**
876 		 * @max_nr_cid: Maximum number of concurrency IDs allocated.
877 		 *
878 		 * Track the highest number of concurrency IDs allocated for the
879 		 * mm.
880 		 */
881 		atomic_t max_nr_cid;
882 		/**
883 		 * @cpus_allowed_lock: Lock protecting mm cpus_allowed.
884 		 *
885 		 * Provide mutual exclusion for mm cpus_allowed and
886 		 * mm nr_cpus_allowed updates.
887 		 */
888 		raw_spinlock_t cpus_allowed_lock;
889 #endif
890 #ifdef CONFIG_MMU
891 		atomic_long_t pgtables_bytes;	/* size of all page tables */
892 #endif
893 		int map_count;			/* number of VMAs */
894 
895 		spinlock_t page_table_lock; /* Protects page tables and some
896 					     * counters
897 					     */
898 		/*
899 		 * With some kernel config, the current mmap_lock's offset
900 		 * inside 'mm_struct' is at 0x120, which is very optimal, as
901 		 * its two hot fields 'count' and 'owner' sit in 2 different
902 		 * cachelines,  and when mmap_lock is highly contended, both
903 		 * of the 2 fields will be accessed frequently, current layout
904 		 * will help to reduce cache bouncing.
905 		 *
906 		 * So please be careful with adding new fields before
907 		 * mmap_lock, which can easily push the 2 fields into one
908 		 * cacheline.
909 		 */
910 		struct rw_semaphore mmap_lock;
911 
912 		struct list_head mmlist; /* List of maybe swapped mm's.	These
913 					  * are globally strung together off
914 					  * init_mm.mmlist, and are protected
915 					  * by mmlist_lock
916 					  */
917 #ifdef CONFIG_PER_VMA_LOCK
918 		/*
919 		 * This field has lock-like semantics, meaning it is sometimes
920 		 * accessed with ACQUIRE/RELEASE semantics.
921 		 * Roughly speaking, incrementing the sequence number is
922 		 * equivalent to releasing locks on VMAs; reading the sequence
923 		 * number can be part of taking a read lock on a VMA.
924 		 *
925 		 * Can be modified under write mmap_lock using RELEASE
926 		 * semantics.
927 		 * Can be read with no other protection when holding write
928 		 * mmap_lock.
929 		 * Can be read with ACQUIRE semantics if not holding write
930 		 * mmap_lock.
931 		 */
932 		int mm_lock_seq;
933 #endif
934 
935 
936 		unsigned long hiwater_rss; /* High-watermark of RSS usage */
937 		unsigned long hiwater_vm;  /* High-water virtual memory usage */
938 
939 		unsigned long total_vm;	   /* Total pages mapped */
940 		unsigned long locked_vm;   /* Pages that have PG_mlocked set */
941 		atomic64_t    pinned_vm;   /* Refcount permanently increased */
942 		unsigned long data_vm;	   /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
943 		unsigned long exec_vm;	   /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
944 		unsigned long stack_vm;	   /* VM_STACK */
945 		unsigned long def_flags;
946 
947 		/**
948 		 * @write_protect_seq: Locked when any thread is write
949 		 * protecting pages mapped by this mm to enforce a later COW,
950 		 * for instance during page table copying for fork().
951 		 */
952 		seqcount_t write_protect_seq;
953 
954 		spinlock_t arg_lock; /* protect the below fields */
955 
956 		unsigned long start_code, end_code, start_data, end_data;
957 		unsigned long start_brk, brk, start_stack;
958 		unsigned long arg_start, arg_end, env_start, env_end;
959 
960 		unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
961 
962 		struct percpu_counter rss_stat[NR_MM_COUNTERS];
963 
964 		struct linux_binfmt *binfmt;
965 
966 		/* Architecture-specific MM context */
967 		mm_context_t context;
968 
969 		unsigned long flags; /* Must use atomic bitops to access */
970 
971 #ifdef CONFIG_AIO
972 		spinlock_t			ioctx_lock;
973 		struct kioctx_table __rcu	*ioctx_table;
974 #endif
975 #ifdef CONFIG_MEMCG
976 		/*
977 		 * "owner" points to a task that is regarded as the canonical
978 		 * user/owner of this mm. All of the following must be true in
979 		 * order for it to be changed:
980 		 *
981 		 * current == mm->owner
982 		 * current->mm != mm
983 		 * new_owner->mm == mm
984 		 * new_owner->alloc_lock is held
985 		 */
986 		struct task_struct __rcu *owner;
987 #endif
988 		struct user_namespace *user_ns;
989 
990 		/* store ref to file /proc/<pid>/exe symlink points to */
991 		struct file __rcu *exe_file;
992 #ifdef CONFIG_MMU_NOTIFIER
993 		struct mmu_notifier_subscriptions *notifier_subscriptions;
994 #endif
995 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
996 		pgtable_t pmd_huge_pte; /* protected by page_table_lock */
997 #endif
998 #ifdef CONFIG_NUMA_BALANCING
999 		/*
1000 		 * numa_next_scan is the next time that PTEs will be remapped
1001 		 * PROT_NONE to trigger NUMA hinting faults; such faults gather
1002 		 * statistics and migrate pages to new nodes if necessary.
1003 		 */
1004 		unsigned long numa_next_scan;
1005 
1006 		/* Restart point for scanning and remapping PTEs. */
1007 		unsigned long numa_scan_offset;
1008 
1009 		/* numa_scan_seq prevents two threads remapping PTEs. */
1010 		int numa_scan_seq;
1011 #endif
1012 		/*
1013 		 * An operation with batched TLB flushing is going on. Anything
1014 		 * that can move process memory needs to flush the TLB when
1015 		 * moving a PROT_NONE mapped page.
1016 		 */
1017 		atomic_t tlb_flush_pending;
1018 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1019 		/* See flush_tlb_batched_pending() */
1020 		atomic_t tlb_flush_batched;
1021 #endif
1022 		struct uprobes_state uprobes_state;
1023 #ifdef CONFIG_PREEMPT_RT
1024 		struct rcu_head delayed_drop;
1025 #endif
1026 #ifdef CONFIG_HUGETLB_PAGE
1027 		atomic_long_t hugetlb_usage;
1028 #endif
1029 		struct work_struct async_put_work;
1030 
1031 #ifdef CONFIG_IOMMU_MM_DATA
1032 		struct iommu_mm_data *iommu_mm;
1033 #endif
1034 #ifdef CONFIG_KSM
1035 		/*
1036 		 * Represent how many pages of this process are involved in KSM
1037 		 * merging (not including ksm_zero_pages).
1038 		 */
1039 		unsigned long ksm_merging_pages;
1040 		/*
1041 		 * Represent how many pages are checked for ksm merging
1042 		 * including merged and not merged.
1043 		 */
1044 		unsigned long ksm_rmap_items;
1045 		/*
1046 		 * Represent how many empty pages are merged with kernel zero
1047 		 * pages when enabling KSM use_zero_pages.
1048 		 */
1049 		atomic_long_t ksm_zero_pages;
1050 #endif /* CONFIG_KSM */
1051 #ifdef CONFIG_LRU_GEN_WALKS_MMU
1052 		struct {
1053 			/* this mm_struct is on lru_gen_mm_list */
1054 			struct list_head list;
1055 			/*
1056 			 * Set when switching to this mm_struct, as a hint of
1057 			 * whether it has been used since the last time per-node
1058 			 * page table walkers cleared the corresponding bits.
1059 			 */
1060 			unsigned long bitmap;
1061 #ifdef CONFIG_MEMCG
1062 			/* points to the memcg of "owner" above */
1063 			struct mem_cgroup *memcg;
1064 #endif
1065 		} lru_gen;
1066 #endif /* CONFIG_LRU_GEN_WALKS_MMU */
1067 	} __randomize_layout;
1068 
1069 	/*
1070 	 * The mm_cpumask needs to be at the end of mm_struct, because it
1071 	 * is dynamically sized based on nr_cpu_ids.
1072 	 */
1073 	unsigned long cpu_bitmap[];
1074 };
1075 
1076 #define MM_MT_FLAGS	(MT_FLAGS_ALLOC_RANGE | MT_FLAGS_LOCK_EXTERN | \
1077 			 MT_FLAGS_USE_RCU)
1078 extern struct mm_struct init_mm;
1079 
1080 /* Pointer magic because the dynamic array size confuses some compilers. */
mm_init_cpumask(struct mm_struct * mm)1081 static inline void mm_init_cpumask(struct mm_struct *mm)
1082 {
1083 	unsigned long cpu_bitmap = (unsigned long)mm;
1084 
1085 	cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap);
1086 	cpumask_clear((struct cpumask *)cpu_bitmap);
1087 }
1088 
1089 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
mm_cpumask(struct mm_struct * mm)1090 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
1091 {
1092 	return (struct cpumask *)&mm->cpu_bitmap;
1093 }
1094 
1095 #ifdef CONFIG_LRU_GEN
1096 
1097 struct lru_gen_mm_list {
1098 	/* mm_struct list for page table walkers */
1099 	struct list_head fifo;
1100 	/* protects the list above */
1101 	spinlock_t lock;
1102 };
1103 
1104 #endif /* CONFIG_LRU_GEN */
1105 
1106 #ifdef CONFIG_LRU_GEN_WALKS_MMU
1107 
1108 void lru_gen_add_mm(struct mm_struct *mm);
1109 void lru_gen_del_mm(struct mm_struct *mm);
1110 void lru_gen_migrate_mm(struct mm_struct *mm);
1111 
lru_gen_init_mm(struct mm_struct * mm)1112 static inline void lru_gen_init_mm(struct mm_struct *mm)
1113 {
1114 	INIT_LIST_HEAD(&mm->lru_gen.list);
1115 	mm->lru_gen.bitmap = 0;
1116 #ifdef CONFIG_MEMCG
1117 	mm->lru_gen.memcg = NULL;
1118 #endif
1119 }
1120 
lru_gen_use_mm(struct mm_struct * mm)1121 static inline void lru_gen_use_mm(struct mm_struct *mm)
1122 {
1123 	/*
1124 	 * When the bitmap is set, page reclaim knows this mm_struct has been
1125 	 * used since the last time it cleared the bitmap. So it might be worth
1126 	 * walking the page tables of this mm_struct to clear the accessed bit.
1127 	 */
1128 	WRITE_ONCE(mm->lru_gen.bitmap, -1);
1129 }
1130 
1131 #else /* !CONFIG_LRU_GEN_WALKS_MMU */
1132 
lru_gen_add_mm(struct mm_struct * mm)1133 static inline void lru_gen_add_mm(struct mm_struct *mm)
1134 {
1135 }
1136 
lru_gen_del_mm(struct mm_struct * mm)1137 static inline void lru_gen_del_mm(struct mm_struct *mm)
1138 {
1139 }
1140 
lru_gen_migrate_mm(struct mm_struct * mm)1141 static inline void lru_gen_migrate_mm(struct mm_struct *mm)
1142 {
1143 }
1144 
lru_gen_init_mm(struct mm_struct * mm)1145 static inline void lru_gen_init_mm(struct mm_struct *mm)
1146 {
1147 }
1148 
lru_gen_use_mm(struct mm_struct * mm)1149 static inline void lru_gen_use_mm(struct mm_struct *mm)
1150 {
1151 }
1152 
1153 #endif /* CONFIG_LRU_GEN_WALKS_MMU */
1154 
1155 struct vma_iterator {
1156 	struct ma_state mas;
1157 };
1158 
1159 #define VMA_ITERATOR(name, __mm, __addr)				\
1160 	struct vma_iterator name = {					\
1161 		.mas = {						\
1162 			.tree = &(__mm)->mm_mt,				\
1163 			.index = __addr,				\
1164 			.node = NULL,					\
1165 			.status = ma_start,				\
1166 		},							\
1167 	}
1168 
vma_iter_init(struct vma_iterator * vmi,struct mm_struct * mm,unsigned long addr)1169 static inline void vma_iter_init(struct vma_iterator *vmi,
1170 		struct mm_struct *mm, unsigned long addr)
1171 {
1172 	mas_init(&vmi->mas, &mm->mm_mt, addr);
1173 }
1174 
1175 #ifdef CONFIG_SCHED_MM_CID
1176 
1177 enum mm_cid_state {
1178 	MM_CID_UNSET = -1U,		/* Unset state has lazy_put flag set. */
1179 	MM_CID_LAZY_PUT = (1U << 31),
1180 };
1181 
mm_cid_is_unset(int cid)1182 static inline bool mm_cid_is_unset(int cid)
1183 {
1184 	return cid == MM_CID_UNSET;
1185 }
1186 
mm_cid_is_lazy_put(int cid)1187 static inline bool mm_cid_is_lazy_put(int cid)
1188 {
1189 	return !mm_cid_is_unset(cid) && (cid & MM_CID_LAZY_PUT);
1190 }
1191 
mm_cid_is_valid(int cid)1192 static inline bool mm_cid_is_valid(int cid)
1193 {
1194 	return !(cid & MM_CID_LAZY_PUT);
1195 }
1196 
mm_cid_set_lazy_put(int cid)1197 static inline int mm_cid_set_lazy_put(int cid)
1198 {
1199 	return cid | MM_CID_LAZY_PUT;
1200 }
1201 
mm_cid_clear_lazy_put(int cid)1202 static inline int mm_cid_clear_lazy_put(int cid)
1203 {
1204 	return cid & ~MM_CID_LAZY_PUT;
1205 }
1206 
1207 /*
1208  * mm_cpus_allowed: Union of all mm's threads allowed CPUs.
1209  */
mm_cpus_allowed(struct mm_struct * mm)1210 static inline cpumask_t *mm_cpus_allowed(struct mm_struct *mm)
1211 {
1212 	unsigned long bitmap = (unsigned long)mm;
1213 
1214 	bitmap += offsetof(struct mm_struct, cpu_bitmap);
1215 	/* Skip cpu_bitmap */
1216 	bitmap += cpumask_size();
1217 	return (struct cpumask *)bitmap;
1218 }
1219 
1220 /* Accessor for struct mm_struct's cidmask. */
mm_cidmask(struct mm_struct * mm)1221 static inline cpumask_t *mm_cidmask(struct mm_struct *mm)
1222 {
1223 	unsigned long cid_bitmap = (unsigned long)mm_cpus_allowed(mm);
1224 
1225 	/* Skip mm_cpus_allowed */
1226 	cid_bitmap += cpumask_size();
1227 	return (struct cpumask *)cid_bitmap;
1228 }
1229 
mm_init_cid(struct mm_struct * mm,struct task_struct * p)1230 static inline void mm_init_cid(struct mm_struct *mm, struct task_struct *p)
1231 {
1232 	int i;
1233 
1234 	for_each_possible_cpu(i) {
1235 		struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, i);
1236 
1237 		pcpu_cid->cid = MM_CID_UNSET;
1238 		pcpu_cid->recent_cid = MM_CID_UNSET;
1239 		pcpu_cid->time = 0;
1240 	}
1241 	mm->nr_cpus_allowed = p->nr_cpus_allowed;
1242 	atomic_set(&mm->max_nr_cid, 0);
1243 	raw_spin_lock_init(&mm->cpus_allowed_lock);
1244 	cpumask_copy(mm_cpus_allowed(mm), &p->cpus_mask);
1245 	cpumask_clear(mm_cidmask(mm));
1246 }
1247 
mm_alloc_cid_noprof(struct mm_struct * mm,struct task_struct * p)1248 static inline int mm_alloc_cid_noprof(struct mm_struct *mm, struct task_struct *p)
1249 {
1250 	mm->pcpu_cid = alloc_percpu_noprof(struct mm_cid);
1251 	if (!mm->pcpu_cid)
1252 		return -ENOMEM;
1253 	mm_init_cid(mm, p);
1254 	return 0;
1255 }
1256 #define mm_alloc_cid(...)	alloc_hooks(mm_alloc_cid_noprof(__VA_ARGS__))
1257 
mm_destroy_cid(struct mm_struct * mm)1258 static inline void mm_destroy_cid(struct mm_struct *mm)
1259 {
1260 	free_percpu(mm->pcpu_cid);
1261 	mm->pcpu_cid = NULL;
1262 }
1263 
mm_cid_size(void)1264 static inline unsigned int mm_cid_size(void)
1265 {
1266 	return 2 * cpumask_size();	/* mm_cpus_allowed(), mm_cidmask(). */
1267 }
1268 
mm_set_cpus_allowed(struct mm_struct * mm,const struct cpumask * cpumask)1269 static inline void mm_set_cpus_allowed(struct mm_struct *mm, const struct cpumask *cpumask)
1270 {
1271 	struct cpumask *mm_allowed = mm_cpus_allowed(mm);
1272 
1273 	if (!mm)
1274 		return;
1275 	/* The mm_cpus_allowed is the union of each thread allowed CPUs masks. */
1276 	raw_spin_lock(&mm->cpus_allowed_lock);
1277 	cpumask_or(mm_allowed, mm_allowed, cpumask);
1278 	WRITE_ONCE(mm->nr_cpus_allowed, cpumask_weight(mm_allowed));
1279 	raw_spin_unlock(&mm->cpus_allowed_lock);
1280 }
1281 #else /* CONFIG_SCHED_MM_CID */
mm_init_cid(struct mm_struct * mm,struct task_struct * p)1282 static inline void mm_init_cid(struct mm_struct *mm, struct task_struct *p) { }
mm_alloc_cid(struct mm_struct * mm,struct task_struct * p)1283 static inline int mm_alloc_cid(struct mm_struct *mm, struct task_struct *p) { return 0; }
mm_destroy_cid(struct mm_struct * mm)1284 static inline void mm_destroy_cid(struct mm_struct *mm) { }
1285 
mm_cid_size(void)1286 static inline unsigned int mm_cid_size(void)
1287 {
1288 	return 0;
1289 }
mm_set_cpus_allowed(struct mm_struct * mm,const struct cpumask * cpumask)1290 static inline void mm_set_cpus_allowed(struct mm_struct *mm, const struct cpumask *cpumask) { }
1291 #endif /* CONFIG_SCHED_MM_CID */
1292 
1293 struct mmu_gather;
1294 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm);
1295 extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm);
1296 extern void tlb_finish_mmu(struct mmu_gather *tlb);
1297 
1298 struct vm_fault;
1299 
1300 /**
1301  * typedef vm_fault_t - Return type for page fault handlers.
1302  *
1303  * Page fault handlers return a bitmask of %VM_FAULT values.
1304  */
1305 typedef __bitwise unsigned int vm_fault_t;
1306 
1307 /**
1308  * enum vm_fault_reason - Page fault handlers return a bitmask of
1309  * these values to tell the core VM what happened when handling the
1310  * fault. Used to decide whether a process gets delivered SIGBUS or
1311  * just gets major/minor fault counters bumped up.
1312  *
1313  * @VM_FAULT_OOM:		Out Of Memory
1314  * @VM_FAULT_SIGBUS:		Bad access
1315  * @VM_FAULT_MAJOR:		Page read from storage
1316  * @VM_FAULT_HWPOISON:		Hit poisoned small page
1317  * @VM_FAULT_HWPOISON_LARGE:	Hit poisoned large page. Index encoded
1318  *				in upper bits
1319  * @VM_FAULT_SIGSEGV:		segmentation fault
1320  * @VM_FAULT_NOPAGE:		->fault installed the pte, not return page
1321  * @VM_FAULT_LOCKED:		->fault locked the returned page
1322  * @VM_FAULT_RETRY:		->fault blocked, must retry
1323  * @VM_FAULT_FALLBACK:		huge page fault failed, fall back to small
1324  * @VM_FAULT_DONE_COW:		->fault has fully handled COW
1325  * @VM_FAULT_NEEDDSYNC:		->fault did not modify page tables and needs
1326  *				fsync() to complete (for synchronous page faults
1327  *				in DAX)
1328  * @VM_FAULT_COMPLETED:		->fault completed, meanwhile mmap lock released
1329  * @VM_FAULT_HINDEX_MASK:	mask HINDEX value
1330  *
1331  */
1332 enum vm_fault_reason {
1333 	VM_FAULT_OOM            = (__force vm_fault_t)0x000001,
1334 	VM_FAULT_SIGBUS         = (__force vm_fault_t)0x000002,
1335 	VM_FAULT_MAJOR          = (__force vm_fault_t)0x000004,
1336 	VM_FAULT_HWPOISON       = (__force vm_fault_t)0x000010,
1337 	VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020,
1338 	VM_FAULT_SIGSEGV        = (__force vm_fault_t)0x000040,
1339 	VM_FAULT_NOPAGE         = (__force vm_fault_t)0x000100,
1340 	VM_FAULT_LOCKED         = (__force vm_fault_t)0x000200,
1341 	VM_FAULT_RETRY          = (__force vm_fault_t)0x000400,
1342 	VM_FAULT_FALLBACK       = (__force vm_fault_t)0x000800,
1343 	VM_FAULT_DONE_COW       = (__force vm_fault_t)0x001000,
1344 	VM_FAULT_NEEDDSYNC      = (__force vm_fault_t)0x002000,
1345 	VM_FAULT_COMPLETED      = (__force vm_fault_t)0x004000,
1346 	VM_FAULT_HINDEX_MASK    = (__force vm_fault_t)0x0f0000,
1347 };
1348 
1349 /* Encode hstate index for a hwpoisoned large page */
1350 #define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16))
1351 #define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf)
1352 
1353 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS |	\
1354 			VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON |	\
1355 			VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK)
1356 
1357 #define VM_FAULT_RESULT_TRACE \
1358 	{ VM_FAULT_OOM,                 "OOM" },	\
1359 	{ VM_FAULT_SIGBUS,              "SIGBUS" },	\
1360 	{ VM_FAULT_MAJOR,               "MAJOR" },	\
1361 	{ VM_FAULT_HWPOISON,            "HWPOISON" },	\
1362 	{ VM_FAULT_HWPOISON_LARGE,      "HWPOISON_LARGE" },	\
1363 	{ VM_FAULT_SIGSEGV,             "SIGSEGV" },	\
1364 	{ VM_FAULT_NOPAGE,              "NOPAGE" },	\
1365 	{ VM_FAULT_LOCKED,              "LOCKED" },	\
1366 	{ VM_FAULT_RETRY,               "RETRY" },	\
1367 	{ VM_FAULT_FALLBACK,            "FALLBACK" },	\
1368 	{ VM_FAULT_DONE_COW,            "DONE_COW" },	\
1369 	{ VM_FAULT_NEEDDSYNC,           "NEEDDSYNC" },	\
1370 	{ VM_FAULT_COMPLETED,           "COMPLETED" }
1371 
1372 struct vm_special_mapping {
1373 	const char *name;	/* The name, e.g. "[vdso]". */
1374 
1375 	/*
1376 	 * If .fault is not provided, this points to a
1377 	 * NULL-terminated array of pages that back the special mapping.
1378 	 *
1379 	 * This must not be NULL unless .fault is provided.
1380 	 */
1381 	struct page **pages;
1382 
1383 	/*
1384 	 * If non-NULL, then this is called to resolve page faults
1385 	 * on the special mapping.  If used, .pages is not checked.
1386 	 */
1387 	vm_fault_t (*fault)(const struct vm_special_mapping *sm,
1388 				struct vm_area_struct *vma,
1389 				struct vm_fault *vmf);
1390 
1391 	int (*mremap)(const struct vm_special_mapping *sm,
1392 		     struct vm_area_struct *new_vma);
1393 
1394 	void (*close)(const struct vm_special_mapping *sm,
1395 		      struct vm_area_struct *vma);
1396 };
1397 
1398 enum tlb_flush_reason {
1399 	TLB_FLUSH_ON_TASK_SWITCH,
1400 	TLB_REMOTE_SHOOTDOWN,
1401 	TLB_LOCAL_SHOOTDOWN,
1402 	TLB_LOCAL_MM_SHOOTDOWN,
1403 	TLB_REMOTE_SEND_IPI,
1404 	NR_TLB_FLUSH_REASONS,
1405 };
1406 
1407 /**
1408  * enum fault_flag - Fault flag definitions.
1409  * @FAULT_FLAG_WRITE: Fault was a write fault.
1410  * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
1411  * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
1412  * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
1413  * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
1414  * @FAULT_FLAG_TRIED: The fault has been tried once.
1415  * @FAULT_FLAG_USER: The fault originated in userspace.
1416  * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
1417  * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
1418  * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
1419  * @FAULT_FLAG_UNSHARE: The fault is an unsharing request to break COW in a
1420  *                      COW mapping, making sure that an exclusive anon page is
1421  *                      mapped after the fault.
1422  * @FAULT_FLAG_ORIG_PTE_VALID: whether the fault has vmf->orig_pte cached.
1423  *                        We should only access orig_pte if this flag set.
1424  * @FAULT_FLAG_VMA_LOCK: The fault is handled under VMA lock.
1425  *
1426  * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
1427  * whether we would allow page faults to retry by specifying these two
1428  * fault flags correctly.  Currently there can be three legal combinations:
1429  *
1430  * (a) ALLOW_RETRY and !TRIED:  this means the page fault allows retry, and
1431  *                              this is the first try
1432  *
1433  * (b) ALLOW_RETRY and TRIED:   this means the page fault allows retry, and
1434  *                              we've already tried at least once
1435  *
1436  * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
1437  *
1438  * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
1439  * be used.  Note that page faults can be allowed to retry for multiple times,
1440  * in which case we'll have an initial fault with flags (a) then later on
1441  * continuous faults with flags (b).  We should always try to detect pending
1442  * signals before a retry to make sure the continuous page faults can still be
1443  * interrupted if necessary.
1444  *
1445  * The combination FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE is illegal.
1446  * FAULT_FLAG_UNSHARE is ignored and treated like an ordinary read fault when
1447  * applied to mappings that are not COW mappings.
1448  */
1449 enum fault_flag {
1450 	FAULT_FLAG_WRITE =		1 << 0,
1451 	FAULT_FLAG_MKWRITE =		1 << 1,
1452 	FAULT_FLAG_ALLOW_RETRY =	1 << 2,
1453 	FAULT_FLAG_RETRY_NOWAIT = 	1 << 3,
1454 	FAULT_FLAG_KILLABLE =		1 << 4,
1455 	FAULT_FLAG_TRIED = 		1 << 5,
1456 	FAULT_FLAG_USER =		1 << 6,
1457 	FAULT_FLAG_REMOTE =		1 << 7,
1458 	FAULT_FLAG_INSTRUCTION =	1 << 8,
1459 	FAULT_FLAG_INTERRUPTIBLE =	1 << 9,
1460 	FAULT_FLAG_UNSHARE =		1 << 10,
1461 	FAULT_FLAG_ORIG_PTE_VALID =	1 << 11,
1462 	FAULT_FLAG_VMA_LOCK =		1 << 12,
1463 };
1464 
1465 typedef unsigned int __bitwise zap_flags_t;
1466 
1467 /* Flags for clear_young_dirty_ptes(). */
1468 typedef int __bitwise cydp_t;
1469 
1470 /* Clear the access bit */
1471 #define CYDP_CLEAR_YOUNG		((__force cydp_t)BIT(0))
1472 
1473 /* Clear the dirty bit */
1474 #define CYDP_CLEAR_DIRTY		((__force cydp_t)BIT(1))
1475 
1476 /*
1477  * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
1478  * other. Here is what they mean, and how to use them:
1479  *
1480  *
1481  * FIXME: For pages which are part of a filesystem, mappings are subject to the
1482  * lifetime enforced by the filesystem and we need guarantees that longterm
1483  * users like RDMA and V4L2 only establish mappings which coordinate usage with
1484  * the filesystem.  Ideas for this coordination include revoking the longterm
1485  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
1486  * added after the problem with filesystems was found FS DAX VMAs are
1487  * specifically failed.  Filesystem pages are still subject to bugs and use of
1488  * FOLL_LONGTERM should be avoided on those pages.
1489  *
1490  * In the CMA case: long term pins in a CMA region would unnecessarily fragment
1491  * that region.  And so, CMA attempts to migrate the page before pinning, when
1492  * FOLL_LONGTERM is specified.
1493  *
1494  * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
1495  * but an additional pin counting system) will be invoked. This is intended for
1496  * anything that gets a page reference and then touches page data (for example,
1497  * Direct IO). This lets the filesystem know that some non-file-system entity is
1498  * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
1499  * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
1500  * a call to unpin_user_page().
1501  *
1502  * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
1503  * and separate refcounting mechanisms, however, and that means that each has
1504  * its own acquire and release mechanisms:
1505  *
1506  *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
1507  *
1508  *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
1509  *
1510  * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
1511  * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
1512  * calls applied to them, and that's perfectly OK. This is a constraint on the
1513  * callers, not on the pages.)
1514  *
1515  * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
1516  * directly by the caller. That's in order to help avoid mismatches when
1517  * releasing pages: get_user_pages*() pages must be released via put_page(),
1518  * while pin_user_pages*() pages must be released via unpin_user_page().
1519  *
1520  * Please see Documentation/core-api/pin_user_pages.rst for more information.
1521  */
1522 
1523 enum {
1524 	/* check pte is writable */
1525 	FOLL_WRITE = 1 << 0,
1526 	/* do get_page on page */
1527 	FOLL_GET = 1 << 1,
1528 	/* give error on hole if it would be zero */
1529 	FOLL_DUMP = 1 << 2,
1530 	/* get_user_pages read/write w/o permission */
1531 	FOLL_FORCE = 1 << 3,
1532 	/*
1533 	 * if a disk transfer is needed, start the IO and return without waiting
1534 	 * upon it
1535 	 */
1536 	FOLL_NOWAIT = 1 << 4,
1537 	/* do not fault in pages */
1538 	FOLL_NOFAULT = 1 << 5,
1539 	/* check page is hwpoisoned */
1540 	FOLL_HWPOISON = 1 << 6,
1541 	/* don't do file mappings */
1542 	FOLL_ANON = 1 << 7,
1543 	/*
1544 	 * FOLL_LONGTERM indicates that the page will be held for an indefinite
1545 	 * time period _often_ under userspace control.  This is in contrast to
1546 	 * iov_iter_get_pages(), whose usages are transient.
1547 	 */
1548 	FOLL_LONGTERM = 1 << 8,
1549 	/* split huge pmd before returning */
1550 	FOLL_SPLIT_PMD = 1 << 9,
1551 	/* allow returning PCI P2PDMA pages */
1552 	FOLL_PCI_P2PDMA = 1 << 10,
1553 	/* allow interrupts from generic signals */
1554 	FOLL_INTERRUPTIBLE = 1 << 11,
1555 	/*
1556 	 * Always honor (trigger) NUMA hinting faults.
1557 	 *
1558 	 * FOLL_WRITE implicitly honors NUMA hinting faults because a
1559 	 * PROT_NONE-mapped page is not writable (exceptions with FOLL_FORCE
1560 	 * apply). get_user_pages_fast_only() always implicitly honors NUMA
1561 	 * hinting faults.
1562 	 */
1563 	FOLL_HONOR_NUMA_FAULT = 1 << 12,
1564 
1565 	/* See also internal only FOLL flags in mm/internal.h */
1566 };
1567 
1568 /* mm flags */
1569 
1570 /*
1571  * The first two bits represent core dump modes for set-user-ID,
1572  * the modes are SUID_DUMP_* defined in linux/sched/coredump.h
1573  */
1574 #define MMF_DUMPABLE_BITS 2
1575 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
1576 /* coredump filter bits */
1577 #define MMF_DUMP_ANON_PRIVATE	2
1578 #define MMF_DUMP_ANON_SHARED	3
1579 #define MMF_DUMP_MAPPED_PRIVATE	4
1580 #define MMF_DUMP_MAPPED_SHARED	5
1581 #define MMF_DUMP_ELF_HEADERS	6
1582 #define MMF_DUMP_HUGETLB_PRIVATE 7
1583 #define MMF_DUMP_HUGETLB_SHARED  8
1584 #define MMF_DUMP_DAX_PRIVATE	9
1585 #define MMF_DUMP_DAX_SHARED	10
1586 
1587 #define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
1588 #define MMF_DUMP_FILTER_BITS	9
1589 #define MMF_DUMP_FILTER_MASK \
1590 	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
1591 #define MMF_DUMP_FILTER_DEFAULT \
1592 	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
1593 	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
1594 
1595 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
1596 # define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
1597 #else
1598 # define MMF_DUMP_MASK_DEFAULT_ELF	0
1599 #endif
1600 					/* leave room for more dump flags */
1601 #define MMF_VM_MERGEABLE	16	/* KSM may merge identical pages */
1602 #define MMF_VM_HUGEPAGE		17	/* set when mm is available for khugepaged */
1603 
1604 /*
1605  * This one-shot flag is dropped due to necessity of changing exe once again
1606  * on NFS restore
1607  */
1608 //#define MMF_EXE_FILE_CHANGED	18	/* see prctl_set_mm_exe_file() */
1609 
1610 #define MMF_HAS_UPROBES		19	/* has uprobes */
1611 #define MMF_RECALC_UPROBES	20	/* MMF_HAS_UPROBES can be wrong */
1612 #define MMF_OOM_SKIP		21	/* mm is of no interest for the OOM killer */
1613 #define MMF_UNSTABLE		22	/* mm is unstable for copy_from_user */
1614 #define MMF_HUGE_ZERO_PAGE	23      /* mm has ever used the global huge zero page */
1615 #define MMF_DISABLE_THP		24	/* disable THP for all VMAs */
1616 #define MMF_DISABLE_THP_MASK	(1 << MMF_DISABLE_THP)
1617 #define MMF_OOM_REAP_QUEUED	25	/* mm was queued for oom_reaper */
1618 #define MMF_MULTIPROCESS	26	/* mm is shared between processes */
1619 /*
1620  * MMF_HAS_PINNED: Whether this mm has pinned any pages.  This can be either
1621  * replaced in the future by mm.pinned_vm when it becomes stable, or grow into
1622  * a counter on its own. We're aggresive on this bit for now: even if the
1623  * pinned pages were unpinned later on, we'll still keep this bit set for the
1624  * lifecycle of this mm, just for simplicity.
1625  */
1626 #define MMF_HAS_PINNED		27	/* FOLL_PIN has run, never cleared */
1627 
1628 #define MMF_HAS_MDWE		28
1629 #define MMF_HAS_MDWE_MASK	(1 << MMF_HAS_MDWE)
1630 
1631 
1632 #define MMF_HAS_MDWE_NO_INHERIT	29
1633 
1634 #define MMF_VM_MERGE_ANY	30
1635 #define MMF_VM_MERGE_ANY_MASK	(1 << MMF_VM_MERGE_ANY)
1636 
1637 #define MMF_TOPDOWN		31	/* mm searches top down by default */
1638 #define MMF_TOPDOWN_MASK	(1 << MMF_TOPDOWN)
1639 
1640 #define MMF_INIT_MASK		(MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK |\
1641 				 MMF_DISABLE_THP_MASK | MMF_HAS_MDWE_MASK |\
1642 				 MMF_VM_MERGE_ANY_MASK | MMF_TOPDOWN_MASK)
1643 
mmf_init_flags(unsigned long flags)1644 static inline unsigned long mmf_init_flags(unsigned long flags)
1645 {
1646 	if (flags & (1UL << MMF_HAS_MDWE_NO_INHERIT))
1647 		flags &= ~((1UL << MMF_HAS_MDWE) |
1648 			   (1UL << MMF_HAS_MDWE_NO_INHERIT));
1649 	return flags & MMF_INIT_MASK;
1650 }
1651 
1652 #endif /* _LINUX_MM_TYPES_H */
1653