xref: /linux/include/linux/avf/virtchnl.h (revision 9410645520e9b820069761f3450ef6661418e279)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2013-2022, Intel Corporation. */
3 
4 #ifndef _VIRTCHNL_H_
5 #define _VIRTCHNL_H_
6 
7 #include <linux/bitops.h>
8 #include <linux/bits.h>
9 #include <linux/overflow.h>
10 #include <uapi/linux/if_ether.h>
11 
12 /* Description:
13  * This header file describes the Virtual Function (VF) - Physical Function
14  * (PF) communication protocol used by the drivers for all devices starting
15  * from our 40G product line
16  *
17  * Admin queue buffer usage:
18  * desc->opcode is always aqc_opc_send_msg_to_pf
19  * flags, retval, datalen, and data addr are all used normally.
20  * The Firmware copies the cookie fields when sending messages between the
21  * PF and VF, but uses all other fields internally. Due to this limitation,
22  * we must send all messages as "indirect", i.e. using an external buffer.
23  *
24  * All the VSI indexes are relative to the VF. Each VF can have maximum of
25  * three VSIs. All the queue indexes are relative to the VSI.  Each VF can
26  * have a maximum of sixteen queues for all of its VSIs.
27  *
28  * The PF is required to return a status code in v_retval for all messages
29  * except RESET_VF, which does not require any response. The returned value
30  * is of virtchnl_status_code type, defined here.
31  *
32  * In general, VF driver initialization should roughly follow the order of
33  * these opcodes. The VF driver must first validate the API version of the
34  * PF driver, then request a reset, then get resources, then configure
35  * queues and interrupts. After these operations are complete, the VF
36  * driver may start its queues, optionally add MAC and VLAN filters, and
37  * process traffic.
38  */
39 
40 /* START GENERIC DEFINES
41  * Need to ensure the following enums and defines hold the same meaning and
42  * value in current and future projects
43  */
44 
45 /* Error Codes */
46 enum virtchnl_status_code {
47 	VIRTCHNL_STATUS_SUCCESS				= 0,
48 	VIRTCHNL_STATUS_ERR_PARAM			= -5,
49 	VIRTCHNL_STATUS_ERR_NO_MEMORY			= -18,
50 	VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH		= -38,
51 	VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR		= -39,
52 	VIRTCHNL_STATUS_ERR_INVALID_VF_ID		= -40,
53 	VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR		= -53,
54 	VIRTCHNL_STATUS_ERR_NOT_SUPPORTED		= -64,
55 };
56 
57 /* Backward compatibility */
58 #define VIRTCHNL_ERR_PARAM VIRTCHNL_STATUS_ERR_PARAM
59 #define VIRTCHNL_STATUS_NOT_SUPPORTED VIRTCHNL_STATUS_ERR_NOT_SUPPORTED
60 
61 #define VIRTCHNL_LINK_SPEED_2_5GB_SHIFT		0x0
62 #define VIRTCHNL_LINK_SPEED_100MB_SHIFT		0x1
63 #define VIRTCHNL_LINK_SPEED_1000MB_SHIFT	0x2
64 #define VIRTCHNL_LINK_SPEED_10GB_SHIFT		0x3
65 #define VIRTCHNL_LINK_SPEED_40GB_SHIFT		0x4
66 #define VIRTCHNL_LINK_SPEED_20GB_SHIFT		0x5
67 #define VIRTCHNL_LINK_SPEED_25GB_SHIFT		0x6
68 #define VIRTCHNL_LINK_SPEED_5GB_SHIFT		0x7
69 
70 enum virtchnl_link_speed {
71 	VIRTCHNL_LINK_SPEED_UNKNOWN	= 0,
72 	VIRTCHNL_LINK_SPEED_100MB	= BIT(VIRTCHNL_LINK_SPEED_100MB_SHIFT),
73 	VIRTCHNL_LINK_SPEED_1GB		= BIT(VIRTCHNL_LINK_SPEED_1000MB_SHIFT),
74 	VIRTCHNL_LINK_SPEED_10GB	= BIT(VIRTCHNL_LINK_SPEED_10GB_SHIFT),
75 	VIRTCHNL_LINK_SPEED_40GB	= BIT(VIRTCHNL_LINK_SPEED_40GB_SHIFT),
76 	VIRTCHNL_LINK_SPEED_20GB	= BIT(VIRTCHNL_LINK_SPEED_20GB_SHIFT),
77 	VIRTCHNL_LINK_SPEED_25GB	= BIT(VIRTCHNL_LINK_SPEED_25GB_SHIFT),
78 	VIRTCHNL_LINK_SPEED_2_5GB	= BIT(VIRTCHNL_LINK_SPEED_2_5GB_SHIFT),
79 	VIRTCHNL_LINK_SPEED_5GB		= BIT(VIRTCHNL_LINK_SPEED_5GB_SHIFT),
80 };
81 
82 /* for hsplit_0 field of Rx HMC context */
83 /* deprecated with AVF 1.0 */
84 enum virtchnl_rx_hsplit {
85 	VIRTCHNL_RX_HSPLIT_NO_SPLIT      = 0,
86 	VIRTCHNL_RX_HSPLIT_SPLIT_L2      = 1,
87 	VIRTCHNL_RX_HSPLIT_SPLIT_IP      = 2,
88 	VIRTCHNL_RX_HSPLIT_SPLIT_TCP_UDP = 4,
89 	VIRTCHNL_RX_HSPLIT_SPLIT_SCTP    = 8,
90 };
91 
92 /* END GENERIC DEFINES */
93 
94 /* Opcodes for VF-PF communication. These are placed in the v_opcode field
95  * of the virtchnl_msg structure.
96  */
97 enum virtchnl_ops {
98 /* The PF sends status change events to VFs using
99  * the VIRTCHNL_OP_EVENT opcode.
100  * VFs send requests to the PF using the other ops.
101  * Use of "advanced opcode" features must be negotiated as part of capabilities
102  * exchange and are not considered part of base mode feature set.
103  */
104 	VIRTCHNL_OP_UNKNOWN = 0,
105 	VIRTCHNL_OP_VERSION = 1, /* must ALWAYS be 1 */
106 	VIRTCHNL_OP_RESET_VF = 2,
107 	VIRTCHNL_OP_GET_VF_RESOURCES = 3,
108 	VIRTCHNL_OP_CONFIG_TX_QUEUE = 4,
109 	VIRTCHNL_OP_CONFIG_RX_QUEUE = 5,
110 	VIRTCHNL_OP_CONFIG_VSI_QUEUES = 6,
111 	VIRTCHNL_OP_CONFIG_IRQ_MAP = 7,
112 	VIRTCHNL_OP_ENABLE_QUEUES = 8,
113 	VIRTCHNL_OP_DISABLE_QUEUES = 9,
114 	VIRTCHNL_OP_ADD_ETH_ADDR = 10,
115 	VIRTCHNL_OP_DEL_ETH_ADDR = 11,
116 	VIRTCHNL_OP_ADD_VLAN = 12,
117 	VIRTCHNL_OP_DEL_VLAN = 13,
118 	VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE = 14,
119 	VIRTCHNL_OP_GET_STATS = 15,
120 	VIRTCHNL_OP_RSVD = 16,
121 	VIRTCHNL_OP_EVENT = 17, /* must ALWAYS be 17 */
122 	VIRTCHNL_OP_CONFIG_RSS_HFUNC = 18,
123 	/* opcode 19 is reserved */
124 	VIRTCHNL_OP_IWARP = 20, /* advanced opcode */
125 	VIRTCHNL_OP_RDMA = VIRTCHNL_OP_IWARP,
126 	VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP = 21, /* advanced opcode */
127 	VIRTCHNL_OP_CONFIG_RDMA_IRQ_MAP = VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP,
128 	VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP = 22, /* advanced opcode */
129 	VIRTCHNL_OP_RELEASE_RDMA_IRQ_MAP = VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP,
130 	VIRTCHNL_OP_CONFIG_RSS_KEY = 23,
131 	VIRTCHNL_OP_CONFIG_RSS_LUT = 24,
132 	VIRTCHNL_OP_GET_RSS_HENA_CAPS = 25,
133 	VIRTCHNL_OP_SET_RSS_HENA = 26,
134 	VIRTCHNL_OP_ENABLE_VLAN_STRIPPING = 27,
135 	VIRTCHNL_OP_DISABLE_VLAN_STRIPPING = 28,
136 	VIRTCHNL_OP_REQUEST_QUEUES = 29,
137 	VIRTCHNL_OP_ENABLE_CHANNELS = 30,
138 	VIRTCHNL_OP_DISABLE_CHANNELS = 31,
139 	VIRTCHNL_OP_ADD_CLOUD_FILTER = 32,
140 	VIRTCHNL_OP_DEL_CLOUD_FILTER = 33,
141 	/* opcode 34 - 43 are reserved */
142 	VIRTCHNL_OP_GET_SUPPORTED_RXDIDS = 44,
143 	VIRTCHNL_OP_ADD_RSS_CFG = 45,
144 	VIRTCHNL_OP_DEL_RSS_CFG = 46,
145 	VIRTCHNL_OP_ADD_FDIR_FILTER = 47,
146 	VIRTCHNL_OP_DEL_FDIR_FILTER = 48,
147 	VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS = 51,
148 	VIRTCHNL_OP_ADD_VLAN_V2 = 52,
149 	VIRTCHNL_OP_DEL_VLAN_V2 = 53,
150 	VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 = 54,
151 	VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 = 55,
152 	VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 = 56,
153 	VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 = 57,
154 	VIRTCHNL_OP_MAX,
155 };
156 
157 /* These macros are used to generate compilation errors if a structure/union
158  * is not exactly the correct length. It gives a divide by zero error if the
159  * structure/union is not of the correct size, otherwise it creates an enum
160  * that is never used.
161  */
162 #define VIRTCHNL_CHECK_STRUCT_LEN(n, X) enum virtchnl_static_assert_enum_##X \
163 	{ virtchnl_static_assert_##X = (n)/((sizeof(struct X) == (n)) ? 1 : 0) }
164 #define VIRTCHNL_CHECK_UNION_LEN(n, X) enum virtchnl_static_asset_enum_##X \
165 	{ virtchnl_static_assert_##X = (n)/((sizeof(union X) == (n)) ? 1 : 0) }
166 
167 /* Message descriptions and data structures. */
168 
169 /* VIRTCHNL_OP_VERSION
170  * VF posts its version number to the PF. PF responds with its version number
171  * in the same format, along with a return code.
172  * Reply from PF has its major/minor versions also in param0 and param1.
173  * If there is a major version mismatch, then the VF cannot operate.
174  * If there is a minor version mismatch, then the VF can operate but should
175  * add a warning to the system log.
176  *
177  * This enum element MUST always be specified as == 1, regardless of other
178  * changes in the API. The PF must always respond to this message without
179  * error regardless of version mismatch.
180  */
181 #define VIRTCHNL_VERSION_MAJOR		1
182 #define VIRTCHNL_VERSION_MINOR		1
183 #define VIRTCHNL_VERSION_MINOR_NO_VF_CAPS	0
184 
185 struct virtchnl_version_info {
186 	u32 major;
187 	u32 minor;
188 };
189 
190 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_version_info);
191 
192 #define VF_IS_V10(_v) (((_v)->major == 1) && ((_v)->minor == 0))
193 #define VF_IS_V11(_ver) (((_ver)->major == 1) && ((_ver)->minor == 1))
194 
195 /* VIRTCHNL_OP_RESET_VF
196  * VF sends this request to PF with no parameters
197  * PF does NOT respond! VF driver must delay then poll VFGEN_RSTAT register
198  * until reset completion is indicated. The admin queue must be reinitialized
199  * after this operation.
200  *
201  * When reset is complete, PF must ensure that all queues in all VSIs associated
202  * with the VF are stopped, all queue configurations in the HMC are set to 0,
203  * and all MAC and VLAN filters (except the default MAC address) on all VSIs
204  * are cleared.
205  */
206 
207 /* VSI types that use VIRTCHNL interface for VF-PF communication. VSI_SRIOV
208  * vsi_type should always be 6 for backward compatibility. Add other fields
209  * as needed.
210  */
211 enum virtchnl_vsi_type {
212 	VIRTCHNL_VSI_TYPE_INVALID = 0,
213 	VIRTCHNL_VSI_SRIOV = 6,
214 };
215 
216 /* VIRTCHNL_OP_GET_VF_RESOURCES
217  * Version 1.0 VF sends this request to PF with no parameters
218  * Version 1.1 VF sends this request to PF with u32 bitmap of its capabilities
219  * PF responds with an indirect message containing
220  * virtchnl_vf_resource and one or more
221  * virtchnl_vsi_resource structures.
222  */
223 
224 struct virtchnl_vsi_resource {
225 	u16 vsi_id;
226 	u16 num_queue_pairs;
227 
228 	/* see enum virtchnl_vsi_type */
229 	s32 vsi_type;
230 	u16 qset_handle;
231 	u8 default_mac_addr[ETH_ALEN];
232 };
233 
234 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vsi_resource);
235 
236 /* VF capability flags
237  * VIRTCHNL_VF_OFFLOAD_L2 flag is inclusive of base mode L2 offloads including
238  * TX/RX Checksum offloading and TSO for non-tunnelled packets.
239  */
240 #define VIRTCHNL_VF_OFFLOAD_L2			BIT(0)
241 #define VIRTCHNL_VF_OFFLOAD_RDMA		BIT(1)
242 #define VIRTCHNL_VF_CAP_RDMA			VIRTCHNL_VF_OFFLOAD_RDMA
243 #define VIRTCHNL_VF_OFFLOAD_RSS_AQ		BIT(3)
244 #define VIRTCHNL_VF_OFFLOAD_RSS_REG		BIT(4)
245 #define VIRTCHNL_VF_OFFLOAD_WB_ON_ITR		BIT(5)
246 #define VIRTCHNL_VF_OFFLOAD_REQ_QUEUES		BIT(6)
247 /* used to negotiate communicating link speeds in Mbps */
248 #define VIRTCHNL_VF_CAP_ADV_LINK_SPEED		BIT(7)
249 #define  VIRTCHNL_VF_OFFLOAD_CRC		BIT(10)
250 #define VIRTCHNL_VF_OFFLOAD_TC_U32		BIT(11)
251 #define VIRTCHNL_VF_OFFLOAD_VLAN_V2		BIT(15)
252 #define VIRTCHNL_VF_OFFLOAD_VLAN		BIT(16)
253 #define VIRTCHNL_VF_OFFLOAD_RX_POLLING		BIT(17)
254 #define VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2	BIT(18)
255 #define VIRTCHNL_VF_OFFLOAD_RSS_PF		BIT(19)
256 #define VIRTCHNL_VF_OFFLOAD_ENCAP		BIT(20)
257 #define VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM		BIT(21)
258 #define VIRTCHNL_VF_OFFLOAD_RX_ENCAP_CSUM	BIT(22)
259 #define VIRTCHNL_VF_OFFLOAD_ADQ			BIT(23)
260 #define VIRTCHNL_VF_OFFLOAD_USO			BIT(25)
261 #define VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC	BIT(26)
262 #define VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF		BIT(27)
263 #define VIRTCHNL_VF_OFFLOAD_FDIR_PF		BIT(28)
264 
265 #define VF_BASE_MODE_OFFLOADS (VIRTCHNL_VF_OFFLOAD_L2 | \
266 			       VIRTCHNL_VF_OFFLOAD_VLAN | \
267 			       VIRTCHNL_VF_OFFLOAD_RSS_PF)
268 
269 struct virtchnl_vf_resource {
270 	u16 num_vsis;
271 	u16 num_queue_pairs;
272 	u16 max_vectors;
273 	u16 max_mtu;
274 
275 	u32 vf_cap_flags;
276 	u32 rss_key_size;
277 	u32 rss_lut_size;
278 
279 	struct virtchnl_vsi_resource vsi_res[];
280 };
281 
282 VIRTCHNL_CHECK_STRUCT_LEN(20, virtchnl_vf_resource);
283 #define virtchnl_vf_resource_LEGACY_SIZEOF	36
284 
285 /* VIRTCHNL_OP_CONFIG_TX_QUEUE
286  * VF sends this message to set up parameters for one TX queue.
287  * External data buffer contains one instance of virtchnl_txq_info.
288  * PF configures requested queue and returns a status code.
289  */
290 
291 /* Tx queue config info */
292 struct virtchnl_txq_info {
293 	u16 vsi_id;
294 	u16 queue_id;
295 	u16 ring_len;		/* number of descriptors, multiple of 8 */
296 	u16 headwb_enabled; /* deprecated with AVF 1.0 */
297 	u64 dma_ring_addr;
298 	u64 dma_headwb_addr; /* deprecated with AVF 1.0 */
299 };
300 
301 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_txq_info);
302 
303 /* VIRTCHNL_OP_CONFIG_RX_QUEUE
304  * VF sends this message to set up parameters for one RX queue.
305  * External data buffer contains one instance of virtchnl_rxq_info.
306  * PF configures requested queue and returns a status code. The
307  * crc_disable flag disables CRC stripping on the VF. Setting
308  * the crc_disable flag to 1 will disable CRC stripping for each
309  * queue in the VF where the flag is set. The VIRTCHNL_VF_OFFLOAD_CRC
310  * offload must have been set prior to sending this info or the PF
311  * will ignore the request. This flag should be set the same for
312  * all of the queues for a VF.
313  */
314 
315 /* Rx queue config info */
316 struct virtchnl_rxq_info {
317 	u16 vsi_id;
318 	u16 queue_id;
319 	u32 ring_len;		/* number of descriptors, multiple of 32 */
320 	u16 hdr_size;
321 	u16 splithdr_enabled; /* deprecated with AVF 1.0 */
322 	u32 databuffer_size;
323 	u32 max_pkt_size;
324 	u8 crc_disable;
325 	u8 rxdid;
326 	u8 pad1[2];
327 	u64 dma_ring_addr;
328 
329 	/* see enum virtchnl_rx_hsplit; deprecated with AVF 1.0 */
330 	s32 rx_split_pos;
331 	u32 pad2;
332 };
333 
334 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_rxq_info);
335 
336 /* VIRTCHNL_OP_CONFIG_VSI_QUEUES
337  * VF sends this message to set parameters for all active TX and RX queues
338  * associated with the specified VSI.
339  * PF configures queues and returns status.
340  * If the number of queues specified is greater than the number of queues
341  * associated with the VSI, an error is returned and no queues are configured.
342  * NOTE: The VF is not required to configure all queues in a single request.
343  * It may send multiple messages. PF drivers must correctly handle all VF
344  * requests.
345  */
346 struct virtchnl_queue_pair_info {
347 	/* NOTE: vsi_id and queue_id should be identical for both queues. */
348 	struct virtchnl_txq_info txq;
349 	struct virtchnl_rxq_info rxq;
350 };
351 
352 VIRTCHNL_CHECK_STRUCT_LEN(64, virtchnl_queue_pair_info);
353 
354 struct virtchnl_vsi_queue_config_info {
355 	u16 vsi_id;
356 	u16 num_queue_pairs;
357 	u32 pad;
358 	struct virtchnl_queue_pair_info qpair[];
359 };
360 
361 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vsi_queue_config_info);
362 #define virtchnl_vsi_queue_config_info_LEGACY_SIZEOF	72
363 
364 /* VIRTCHNL_OP_REQUEST_QUEUES
365  * VF sends this message to request the PF to allocate additional queues to
366  * this VF.  Each VF gets a guaranteed number of queues on init but asking for
367  * additional queues must be negotiated.  This is a best effort request as it
368  * is possible the PF does not have enough queues left to support the request.
369  * If the PF cannot support the number requested it will respond with the
370  * maximum number it is able to support.  If the request is successful, PF will
371  * then reset the VF to institute required changes.
372  */
373 
374 /* VF resource request */
375 struct virtchnl_vf_res_request {
376 	u16 num_queue_pairs;
377 };
378 
379 /* VIRTCHNL_OP_CONFIG_IRQ_MAP
380  * VF uses this message to map vectors to queues.
381  * The rxq_map and txq_map fields are bitmaps used to indicate which queues
382  * are to be associated with the specified vector.
383  * The "other" causes are always mapped to vector 0. The VF may not request
384  * that vector 0 be used for traffic.
385  * PF configures interrupt mapping and returns status.
386  * NOTE: due to hardware requirements, all active queues (both TX and RX)
387  * should be mapped to interrupts, even if the driver intends to operate
388  * only in polling mode. In this case the interrupt may be disabled, but
389  * the ITR timer will still run to trigger writebacks.
390  */
391 struct virtchnl_vector_map {
392 	u16 vsi_id;
393 	u16 vector_id;
394 	u16 rxq_map;
395 	u16 txq_map;
396 	u16 rxitr_idx;
397 	u16 txitr_idx;
398 };
399 
400 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_vector_map);
401 
402 struct virtchnl_irq_map_info {
403 	u16 num_vectors;
404 	struct virtchnl_vector_map vecmap[];
405 };
406 
407 VIRTCHNL_CHECK_STRUCT_LEN(2, virtchnl_irq_map_info);
408 #define virtchnl_irq_map_info_LEGACY_SIZEOF	14
409 
410 /* VIRTCHNL_OP_ENABLE_QUEUES
411  * VIRTCHNL_OP_DISABLE_QUEUES
412  * VF sends these message to enable or disable TX/RX queue pairs.
413  * The queues fields are bitmaps indicating which queues to act upon.
414  * (Currently, we only support 16 queues per VF, but we make the field
415  * u32 to allow for expansion.)
416  * PF performs requested action and returns status.
417  * NOTE: The VF is not required to enable/disable all queues in a single
418  * request. It may send multiple messages.
419  * PF drivers must correctly handle all VF requests.
420  */
421 struct virtchnl_queue_select {
422 	u16 vsi_id;
423 	u16 pad;
424 	u32 rx_queues;
425 	u32 tx_queues;
426 };
427 
428 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_select);
429 
430 /* VIRTCHNL_OP_ADD_ETH_ADDR
431  * VF sends this message in order to add one or more unicast or multicast
432  * address filters for the specified VSI.
433  * PF adds the filters and returns status.
434  */
435 
436 /* VIRTCHNL_OP_DEL_ETH_ADDR
437  * VF sends this message in order to remove one or more unicast or multicast
438  * filters for the specified VSI.
439  * PF removes the filters and returns status.
440  */
441 
442 /* VIRTCHNL_ETHER_ADDR_LEGACY
443  * Prior to adding the @type member to virtchnl_ether_addr, there were 2 pad
444  * bytes. Moving forward all VF drivers should not set type to
445  * VIRTCHNL_ETHER_ADDR_LEGACY. This is only here to not break previous/legacy
446  * behavior. The control plane function (i.e. PF) can use a best effort method
447  * of tracking the primary/device unicast in this case, but there is no
448  * guarantee and functionality depends on the implementation of the PF.
449  */
450 
451 /* VIRTCHNL_ETHER_ADDR_PRIMARY
452  * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_PRIMARY for the
453  * primary/device unicast MAC address filter for VIRTCHNL_OP_ADD_ETH_ADDR and
454  * VIRTCHNL_OP_DEL_ETH_ADDR. This allows for the underlying control plane
455  * function (i.e. PF) to accurately track and use this MAC address for
456  * displaying on the host and for VM/function reset.
457  */
458 
459 /* VIRTCHNL_ETHER_ADDR_EXTRA
460  * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_EXTRA for any extra
461  * unicast and/or multicast filters that are being added/deleted via
462  * VIRTCHNL_OP_DEL_ETH_ADDR/VIRTCHNL_OP_ADD_ETH_ADDR respectively.
463  */
464 struct virtchnl_ether_addr {
465 	u8 addr[ETH_ALEN];
466 	u8 type;
467 #define VIRTCHNL_ETHER_ADDR_LEGACY	0
468 #define VIRTCHNL_ETHER_ADDR_PRIMARY	1
469 #define VIRTCHNL_ETHER_ADDR_EXTRA	2
470 #define VIRTCHNL_ETHER_ADDR_TYPE_MASK	3 /* first two bits of type are valid */
471 	u8 pad;
472 };
473 
474 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_ether_addr);
475 
476 struct virtchnl_ether_addr_list {
477 	u16 vsi_id;
478 	u16 num_elements;
479 	struct virtchnl_ether_addr list[];
480 };
481 
482 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_ether_addr_list);
483 #define virtchnl_ether_addr_list_LEGACY_SIZEOF	12
484 
485 /* VIRTCHNL_OP_ADD_VLAN
486  * VF sends this message to add one or more VLAN tag filters for receives.
487  * PF adds the filters and returns status.
488  * If a port VLAN is configured by the PF, this operation will return an
489  * error to the VF.
490  */
491 
492 /* VIRTCHNL_OP_DEL_VLAN
493  * VF sends this message to remove one or more VLAN tag filters for receives.
494  * PF removes the filters and returns status.
495  * If a port VLAN is configured by the PF, this operation will return an
496  * error to the VF.
497  */
498 
499 struct virtchnl_vlan_filter_list {
500 	u16 vsi_id;
501 	u16 num_elements;
502 	u16 vlan_id[];
503 };
504 
505 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_vlan_filter_list);
506 #define virtchnl_vlan_filter_list_LEGACY_SIZEOF	6
507 
508 /* This enum is used for all of the VIRTCHNL_VF_OFFLOAD_VLAN_V2_CAPS related
509  * structures and opcodes.
510  *
511  * VIRTCHNL_VLAN_UNSUPPORTED - This field is not supported and if a VF driver
512  * populates it the PF should return VIRTCHNL_STATUS_ERR_NOT_SUPPORTED.
513  *
514  * VIRTCHNL_VLAN_ETHERTYPE_8100 - This field supports 0x8100 ethertype.
515  * VIRTCHNL_VLAN_ETHERTYPE_88A8 - This field supports 0x88A8 ethertype.
516  * VIRTCHNL_VLAN_ETHERTYPE_9100 - This field supports 0x9100 ethertype.
517  *
518  * VIRTCHNL_VLAN_ETHERTYPE_AND - Used when multiple ethertypes can be supported
519  * by the PF concurrently. For example, if the PF can support
520  * VIRTCHNL_VLAN_ETHERTYPE_8100 AND VIRTCHNL_VLAN_ETHERTYPE_88A8 filters it
521  * would OR the following bits:
522  *
523  *	VIRTHCNL_VLAN_ETHERTYPE_8100 |
524  *	VIRTCHNL_VLAN_ETHERTYPE_88A8 |
525  *	VIRTCHNL_VLAN_ETHERTYPE_AND;
526  *
527  * The VF would interpret this as VLAN filtering can be supported on both 0x8100
528  * and 0x88A8 VLAN ethertypes.
529  *
530  * VIRTCHNL_ETHERTYPE_XOR - Used when only a single ethertype can be supported
531  * by the PF concurrently. For example if the PF can support
532  * VIRTCHNL_VLAN_ETHERTYPE_8100 XOR VIRTCHNL_VLAN_ETHERTYPE_88A8 stripping
533  * offload it would OR the following bits:
534  *
535  *	VIRTCHNL_VLAN_ETHERTYPE_8100 |
536  *	VIRTCHNL_VLAN_ETHERTYPE_88A8 |
537  *	VIRTCHNL_VLAN_ETHERTYPE_XOR;
538  *
539  * The VF would interpret this as VLAN stripping can be supported on either
540  * 0x8100 or 0x88a8 VLAN ethertypes. So when requesting VLAN stripping via
541  * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 the specified ethertype will override
542  * the previously set value.
543  *
544  * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 - Used to tell the VF to insert and/or
545  * strip the VLAN tag using the L2TAG1 field of the Tx/Rx descriptors.
546  *
547  * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to insert hardware
548  * offloaded VLAN tags using the L2TAG2 field of the Tx descriptor.
549  *
550  * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to strip hardware
551  * offloaded VLAN tags using the L2TAG2_2 field of the Rx descriptor.
552  *
553  * VIRTCHNL_VLAN_PRIO - This field supports VLAN priority bits. This is used for
554  * VLAN filtering if the underlying PF supports it.
555  *
556  * VIRTCHNL_VLAN_TOGGLE_ALLOWED - This field is used to say whether a
557  * certain VLAN capability can be toggled. For example if the underlying PF/CP
558  * allows the VF to toggle VLAN filtering, stripping, and/or insertion it should
559  * set this bit along with the supported ethertypes.
560  */
561 enum virtchnl_vlan_support {
562 	VIRTCHNL_VLAN_UNSUPPORTED =		0,
563 	VIRTCHNL_VLAN_ETHERTYPE_8100 =		BIT(0),
564 	VIRTCHNL_VLAN_ETHERTYPE_88A8 =		BIT(1),
565 	VIRTCHNL_VLAN_ETHERTYPE_9100 =		BIT(2),
566 	VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 =	BIT(8),
567 	VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 =	BIT(9),
568 	VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 =	BIT(10),
569 	VIRTCHNL_VLAN_PRIO =			BIT(24),
570 	VIRTCHNL_VLAN_FILTER_MASK =		BIT(28),
571 	VIRTCHNL_VLAN_ETHERTYPE_AND =		BIT(29),
572 	VIRTCHNL_VLAN_ETHERTYPE_XOR =		BIT(30),
573 	VIRTCHNL_VLAN_TOGGLE =			BIT(31),
574 };
575 
576 /* This structure is used as part of the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS
577  * for filtering, insertion, and stripping capabilities.
578  *
579  * If only outer capabilities are supported (for filtering, insertion, and/or
580  * stripping) then this refers to the outer most or single VLAN from the VF's
581  * perspective.
582  *
583  * If only inner capabilities are supported (for filtering, insertion, and/or
584  * stripping) then this refers to the outer most or single VLAN from the VF's
585  * perspective. Functionally this is the same as if only outer capabilities are
586  * supported. The VF driver is just forced to use the inner fields when
587  * adding/deleting filters and enabling/disabling offloads (if supported).
588  *
589  * If both outer and inner capabilities are supported (for filtering, insertion,
590  * and/or stripping) then outer refers to the outer most or single VLAN and
591  * inner refers to the second VLAN, if it exists, in the packet.
592  *
593  * There is no support for tunneled VLAN offloads, so outer or inner are never
594  * referring to a tunneled packet from the VF's perspective.
595  */
596 struct virtchnl_vlan_supported_caps {
597 	u32 outer;
598 	u32 inner;
599 };
600 
601 /* The PF populates these fields based on the supported VLAN filtering. If a
602  * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will
603  * reject any VIRTCHNL_OP_ADD_VLAN_V2 or VIRTCHNL_OP_DEL_VLAN_V2 messages using
604  * the unsupported fields.
605  *
606  * Also, a VF is only allowed to toggle its VLAN filtering setting if the
607  * VIRTCHNL_VLAN_TOGGLE bit is set.
608  *
609  * The ethertype(s) specified in the ethertype_init field are the ethertypes
610  * enabled for VLAN filtering. VLAN filtering in this case refers to the outer
611  * most VLAN from the VF's perspective. If both inner and outer filtering are
612  * allowed then ethertype_init only refers to the outer most VLAN as only
613  * VLAN ethertype supported for inner VLAN filtering is
614  * VIRTCHNL_VLAN_ETHERTYPE_8100. By default, inner VLAN filtering is disabled
615  * when both inner and outer filtering are allowed.
616  *
617  * The max_filters field tells the VF how many VLAN filters it's allowed to have
618  * at any one time. If it exceeds this amount and tries to add another filter,
619  * then the request will be rejected by the PF. To prevent failures, the VF
620  * should keep track of how many VLAN filters it has added and not attempt to
621  * add more than max_filters.
622  */
623 struct virtchnl_vlan_filtering_caps {
624 	struct virtchnl_vlan_supported_caps filtering_support;
625 	u32 ethertype_init;
626 	u16 max_filters;
627 	u8 pad[2];
628 };
629 
630 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_filtering_caps);
631 
632 /* This enum is used for the virtchnl_vlan_offload_caps structure to specify
633  * if the PF supports a different ethertype for stripping and insertion.
634  *
635  * VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION - The ethertype(s) specified
636  * for stripping affect the ethertype(s) specified for insertion and visa versa
637  * as well. If the VF tries to configure VLAN stripping via
638  * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 with VIRTCHNL_VLAN_ETHERTYPE_8100 then
639  * that will be the ethertype for both stripping and insertion.
640  *
641  * VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED - The ethertype(s) specified for
642  * stripping do not affect the ethertype(s) specified for insertion and visa
643  * versa.
644  */
645 enum virtchnl_vlan_ethertype_match {
646 	VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION = 0,
647 	VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED = 1,
648 };
649 
650 /* The PF populates these fields based on the supported VLAN offloads. If a
651  * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will
652  * reject any VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 or
653  * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 messages using the unsupported fields.
654  *
655  * Also, a VF is only allowed to toggle its VLAN offload setting if the
656  * VIRTCHNL_VLAN_TOGGLE_ALLOWED bit is set.
657  *
658  * The VF driver needs to be aware of how the tags are stripped by hardware and
659  * inserted by the VF driver based on the level of offload support. The PF will
660  * populate these fields based on where the VLAN tags are expected to be
661  * offloaded via the VIRTHCNL_VLAN_TAG_LOCATION_* bits. The VF will need to
662  * interpret these fields. See the definition of the
663  * VIRTCHNL_VLAN_TAG_LOCATION_* bits above the virtchnl_vlan_support
664  * enumeration.
665  */
666 struct virtchnl_vlan_offload_caps {
667 	struct virtchnl_vlan_supported_caps stripping_support;
668 	struct virtchnl_vlan_supported_caps insertion_support;
669 	u32 ethertype_init;
670 	u8 ethertype_match;
671 	u8 pad[3];
672 };
673 
674 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_vlan_offload_caps);
675 
676 /* VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS
677  * VF sends this message to determine its VLAN capabilities.
678  *
679  * PF will mark which capabilities it supports based on hardware support and
680  * current configuration. For example, if a port VLAN is configured the PF will
681  * not allow outer VLAN filtering, stripping, or insertion to be configured so
682  * it will block these features from the VF.
683  *
684  * The VF will need to cross reference its capabilities with the PFs
685  * capabilities in the response message from the PF to determine the VLAN
686  * support.
687  */
688 struct virtchnl_vlan_caps {
689 	struct virtchnl_vlan_filtering_caps filtering;
690 	struct virtchnl_vlan_offload_caps offloads;
691 };
692 
693 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_caps);
694 
695 struct virtchnl_vlan {
696 	u16 tci;	/* tci[15:13] = PCP and tci[11:0] = VID */
697 	u16 tci_mask;	/* only valid if VIRTCHNL_VLAN_FILTER_MASK set in
698 			 * filtering caps
699 			 */
700 	u16 tpid;	/* 0x8100, 0x88a8, etc. and only type(s) set in
701 			 * filtering caps. Note that tpid here does not refer to
702 			 * VIRTCHNL_VLAN_ETHERTYPE_*, but it refers to the
703 			 * actual 2-byte VLAN TPID
704 			 */
705 	u8 pad[2];
706 };
707 
708 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vlan);
709 
710 struct virtchnl_vlan_filter {
711 	struct virtchnl_vlan inner;
712 	struct virtchnl_vlan outer;
713 	u8 pad[16];
714 };
715 
716 VIRTCHNL_CHECK_STRUCT_LEN(32, virtchnl_vlan_filter);
717 
718 /* VIRTCHNL_OP_ADD_VLAN_V2
719  * VIRTCHNL_OP_DEL_VLAN_V2
720  *
721  * VF sends these messages to add/del one or more VLAN tag filters for Rx
722  * traffic.
723  *
724  * The PF attempts to add the filters and returns status.
725  *
726  * The VF should only ever attempt to add/del virtchnl_vlan_filter(s) using the
727  * supported fields negotiated via VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS.
728  */
729 struct virtchnl_vlan_filter_list_v2 {
730 	u16 vport_id;
731 	u16 num_elements;
732 	u8 pad[4];
733 	struct virtchnl_vlan_filter filters[];
734 };
735 
736 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vlan_filter_list_v2);
737 #define virtchnl_vlan_filter_list_v2_LEGACY_SIZEOF	40
738 
739 /* VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
740  * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
741  * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
742  * VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
743  *
744  * VF sends this message to enable or disable VLAN stripping or insertion. It
745  * also needs to specify an ethertype. The VF knows which VLAN ethertypes are
746  * allowed and whether or not it's allowed to enable/disable the specific
747  * offload via the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to
748  * parse the virtchnl_vlan_caps.offloads fields to determine which offload
749  * messages are allowed.
750  *
751  * For example, if the PF populates the virtchnl_vlan_caps.offloads in the
752  * following manner the VF will be allowed to enable and/or disable 0x8100 inner
753  * VLAN insertion and/or stripping via the opcodes listed above. Inner in this
754  * case means the outer most or single VLAN from the VF's perspective. This is
755  * because no outer offloads are supported. See the comments above the
756  * virtchnl_vlan_supported_caps structure for more details.
757  *
758  * virtchnl_vlan_caps.offloads.stripping_support.inner =
759  *			VIRTCHNL_VLAN_TOGGLE |
760  *			VIRTCHNL_VLAN_ETHERTYPE_8100;
761  *
762  * virtchnl_vlan_caps.offloads.insertion_support.inner =
763  *			VIRTCHNL_VLAN_TOGGLE |
764  *			VIRTCHNL_VLAN_ETHERTYPE_8100;
765  *
766  * In order to enable inner (again note that in this case inner is the outer
767  * most or single VLAN from the VF's perspective) VLAN stripping for 0x8100
768  * VLANs, the VF would populate the virtchnl_vlan_setting structure in the
769  * following manner and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message.
770  *
771  * virtchnl_vlan_setting.inner_ethertype_setting =
772  *			VIRTCHNL_VLAN_ETHERTYPE_8100;
773  *
774  * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
775  * initialization.
776  *
777  * The reason that VLAN TPID(s) are not being used for the
778  * outer_ethertype_setting and inner_ethertype_setting fields is because it's
779  * possible a device could support VLAN insertion and/or stripping offload on
780  * multiple ethertypes concurrently, so this method allows a VF to request
781  * multiple ethertypes in one message using the virtchnl_vlan_support
782  * enumeration.
783  *
784  * For example, if the PF populates the virtchnl_vlan_caps.offloads in the
785  * following manner the VF will be allowed to enable 0x8100 and 0x88a8 outer
786  * VLAN insertion and stripping simultaneously. The
787  * virtchnl_vlan_caps.offloads.ethertype_match field will also have to be
788  * populated based on what the PF can support.
789  *
790  * virtchnl_vlan_caps.offloads.stripping_support.outer =
791  *			VIRTCHNL_VLAN_TOGGLE |
792  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
793  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
794  *			VIRTCHNL_VLAN_ETHERTYPE_AND;
795  *
796  * virtchnl_vlan_caps.offloads.insertion_support.outer =
797  *			VIRTCHNL_VLAN_TOGGLE |
798  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
799  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
800  *			VIRTCHNL_VLAN_ETHERTYPE_AND;
801  *
802  * In order to enable outer VLAN stripping for 0x8100 and 0x88a8 VLANs, the VF
803  * would populate the virthcnl_vlan_offload_structure in the following manner
804  * and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message.
805  *
806  * virtchnl_vlan_setting.outer_ethertype_setting =
807  *			VIRTHCNL_VLAN_ETHERTYPE_8100 |
808  *			VIRTHCNL_VLAN_ETHERTYPE_88A8;
809  *
810  * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
811  * initialization.
812  *
813  * There is also the case where a PF and the underlying hardware can support
814  * VLAN offloads on multiple ethertypes, but not concurrently. For example, if
815  * the PF populates the virtchnl_vlan_caps.offloads in the following manner the
816  * VF will be allowed to enable and/or disable 0x8100 XOR 0x88a8 outer VLAN
817  * offloads. The ethertypes must match for stripping and insertion.
818  *
819  * virtchnl_vlan_caps.offloads.stripping_support.outer =
820  *			VIRTCHNL_VLAN_TOGGLE |
821  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
822  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
823  *			VIRTCHNL_VLAN_ETHERTYPE_XOR;
824  *
825  * virtchnl_vlan_caps.offloads.insertion_support.outer =
826  *			VIRTCHNL_VLAN_TOGGLE |
827  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
828  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
829  *			VIRTCHNL_VLAN_ETHERTYPE_XOR;
830  *
831  * virtchnl_vlan_caps.offloads.ethertype_match =
832  *			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
833  *
834  * In order to enable outer VLAN stripping for 0x88a8 VLANs, the VF would
835  * populate the virtchnl_vlan_setting structure in the following manner and send
836  * the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2. Also, this will change the
837  * ethertype for VLAN insertion if it's enabled. So, for completeness, a
838  * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 with the same ethertype should be sent.
839  *
840  * virtchnl_vlan_setting.outer_ethertype_setting = VIRTHCNL_VLAN_ETHERTYPE_88A8;
841  *
842  * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
843  * initialization.
844  */
845 struct virtchnl_vlan_setting {
846 	u32 outer_ethertype_setting;
847 	u32 inner_ethertype_setting;
848 	u16 vport_id;
849 	u8 pad[6];
850 };
851 
852 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_setting);
853 
854 /* VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE
855  * VF sends VSI id and flags.
856  * PF returns status code in retval.
857  * Note: we assume that broadcast accept mode is always enabled.
858  */
859 struct virtchnl_promisc_info {
860 	u16 vsi_id;
861 	u16 flags;
862 };
863 
864 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_promisc_info);
865 
866 #define FLAG_VF_UNICAST_PROMISC	0x00000001
867 #define FLAG_VF_MULTICAST_PROMISC	0x00000002
868 
869 /* VIRTCHNL_OP_GET_STATS
870  * VF sends this message to request stats for the selected VSI. VF uses
871  * the virtchnl_queue_select struct to specify the VSI. The queue_id
872  * field is ignored by the PF.
873  *
874  * PF replies with struct eth_stats in an external buffer.
875  */
876 
877 /* VIRTCHNL_OP_CONFIG_RSS_KEY
878  * VIRTCHNL_OP_CONFIG_RSS_LUT
879  * VF sends these messages to configure RSS. Only supported if both PF
880  * and VF drivers set the VIRTCHNL_VF_OFFLOAD_RSS_PF bit during
881  * configuration negotiation. If this is the case, then the RSS fields in
882  * the VF resource struct are valid.
883  * Both the key and LUT are initialized to 0 by the PF, meaning that
884  * RSS is effectively disabled until set up by the VF.
885  */
886 struct virtchnl_rss_key {
887 	u16 vsi_id;
888 	u16 key_len;
889 	u8 key[];          /* RSS hash key, packed bytes */
890 };
891 
892 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_rss_key);
893 #define virtchnl_rss_key_LEGACY_SIZEOF	6
894 
895 struct virtchnl_rss_lut {
896 	u16 vsi_id;
897 	u16 lut_entries;
898 	u8 lut[];         /* RSS lookup table */
899 };
900 
901 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_rss_lut);
902 #define virtchnl_rss_lut_LEGACY_SIZEOF	6
903 
904 /* VIRTCHNL_OP_GET_RSS_HENA_CAPS
905  * VIRTCHNL_OP_SET_RSS_HENA
906  * VF sends these messages to get and set the hash filter enable bits for RSS.
907  * By default, the PF sets these to all possible traffic types that the
908  * hardware supports. The VF can query this value if it wants to change the
909  * traffic types that are hashed by the hardware.
910  */
911 struct virtchnl_rss_hena {
912 	u64 hena;
913 };
914 
915 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_rss_hena);
916 
917 /* Type of RSS algorithm */
918 enum virtchnl_rss_algorithm {
919 	VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC	= 0,
920 	VIRTCHNL_RSS_ALG_R_ASYMMETRIC		= 1,
921 	VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC	= 2,
922 	VIRTCHNL_RSS_ALG_XOR_SYMMETRIC		= 3,
923 };
924 
925 /* VIRTCHNL_OP_CONFIG_RSS_HFUNC
926  * VF sends this message to configure the RSS hash function. Only supported
927  * if both PF and VF drivers set the VIRTCHNL_VF_OFFLOAD_RSS_PF bit during
928  * configuration negotiation.
929  * The hash function is initialized to VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC
930  * by the PF.
931  */
932 struct virtchnl_rss_hfunc {
933 	u16 vsi_id;
934 	u16 rss_algorithm; /* enum virtchnl_rss_algorithm */
935 	u32 reserved;
936 };
937 
938 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_rss_hfunc);
939 
940 /* VIRTCHNL_OP_ENABLE_CHANNELS
941  * VIRTCHNL_OP_DISABLE_CHANNELS
942  * VF sends these messages to enable or disable channels based on
943  * the user specified queue count and queue offset for each traffic class.
944  * This struct encompasses all the information that the PF needs from
945  * VF to create a channel.
946  */
947 struct virtchnl_channel_info {
948 	u16 count; /* number of queues in a channel */
949 	u16 offset; /* queues in a channel start from 'offset' */
950 	u32 pad;
951 	u64 max_tx_rate;
952 };
953 
954 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_channel_info);
955 
956 struct virtchnl_tc_info {
957 	u32	num_tc;
958 	u32	pad;
959 	struct virtchnl_channel_info list[];
960 };
961 
962 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_tc_info);
963 #define virtchnl_tc_info_LEGACY_SIZEOF	24
964 
965 /* VIRTCHNL_ADD_CLOUD_FILTER
966  * VIRTCHNL_DEL_CLOUD_FILTER
967  * VF sends these messages to add or delete a cloud filter based on the
968  * user specified match and action filters. These structures encompass
969  * all the information that the PF needs from the VF to add/delete a
970  * cloud filter.
971  */
972 
973 struct virtchnl_l4_spec {
974 	u8	src_mac[ETH_ALEN];
975 	u8	dst_mac[ETH_ALEN];
976 	__be16	vlan_id;
977 	__be16	pad; /* reserved for future use */
978 	__be32	src_ip[4];
979 	__be32	dst_ip[4];
980 	__be16	src_port;
981 	__be16	dst_port;
982 };
983 
984 VIRTCHNL_CHECK_STRUCT_LEN(52, virtchnl_l4_spec);
985 
986 union virtchnl_flow_spec {
987 	struct	virtchnl_l4_spec tcp_spec;
988 	u8	buffer[128]; /* reserved for future use */
989 };
990 
991 VIRTCHNL_CHECK_UNION_LEN(128, virtchnl_flow_spec);
992 
993 enum virtchnl_action {
994 	/* action types */
995 	VIRTCHNL_ACTION_DROP = 0,
996 	VIRTCHNL_ACTION_TC_REDIRECT,
997 	VIRTCHNL_ACTION_PASSTHRU,
998 	VIRTCHNL_ACTION_QUEUE,
999 	VIRTCHNL_ACTION_Q_REGION,
1000 	VIRTCHNL_ACTION_MARK,
1001 	VIRTCHNL_ACTION_COUNT,
1002 };
1003 
1004 enum virtchnl_flow_type {
1005 	/* flow types */
1006 	VIRTCHNL_TCP_V4_FLOW = 0,
1007 	VIRTCHNL_TCP_V6_FLOW,
1008 };
1009 
1010 struct virtchnl_filter {
1011 	union	virtchnl_flow_spec data;
1012 	union	virtchnl_flow_spec mask;
1013 
1014 	/* see enum virtchnl_flow_type */
1015 	s32	flow_type;
1016 
1017 	/* see enum virtchnl_action */
1018 	s32	action;
1019 	u32	action_meta;
1020 	u8	field_flags;
1021 	u8	pad[3];
1022 };
1023 
1024 VIRTCHNL_CHECK_STRUCT_LEN(272, virtchnl_filter);
1025 
1026 struct virtchnl_supported_rxdids {
1027 	u64 supported_rxdids;
1028 };
1029 
1030 /* VIRTCHNL_OP_EVENT
1031  * PF sends this message to inform the VF driver of events that may affect it.
1032  * No direct response is expected from the VF, though it may generate other
1033  * messages in response to this one.
1034  */
1035 enum virtchnl_event_codes {
1036 	VIRTCHNL_EVENT_UNKNOWN = 0,
1037 	VIRTCHNL_EVENT_LINK_CHANGE,
1038 	VIRTCHNL_EVENT_RESET_IMPENDING,
1039 	VIRTCHNL_EVENT_PF_DRIVER_CLOSE,
1040 };
1041 
1042 #define PF_EVENT_SEVERITY_INFO		0
1043 #define PF_EVENT_SEVERITY_CERTAIN_DOOM	255
1044 
1045 struct virtchnl_pf_event {
1046 	/* see enum virtchnl_event_codes */
1047 	s32 event;
1048 	union {
1049 		/* If the PF driver does not support the new speed reporting
1050 		 * capabilities then use link_event else use link_event_adv to
1051 		 * get the speed and link information. The ability to understand
1052 		 * new speeds is indicated by setting the capability flag
1053 		 * VIRTCHNL_VF_CAP_ADV_LINK_SPEED in vf_cap_flags parameter
1054 		 * in virtchnl_vf_resource struct and can be used to determine
1055 		 * which link event struct to use below.
1056 		 */
1057 		struct {
1058 			enum virtchnl_link_speed link_speed;
1059 			bool link_status;
1060 			u8 pad[3];
1061 		} link_event;
1062 		struct {
1063 			/* link_speed provided in Mbps */
1064 			u32 link_speed;
1065 			u8 link_status;
1066 			u8 pad[3];
1067 		} link_event_adv;
1068 	} event_data;
1069 
1070 	s32 severity;
1071 };
1072 
1073 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_pf_event);
1074 
1075 /* used to specify if a ceq_idx or aeq_idx is invalid */
1076 #define VIRTCHNL_RDMA_INVALID_QUEUE_IDX	0xFFFF
1077 /* VIRTCHNL_OP_CONFIG_RDMA_IRQ_MAP
1078  * VF uses this message to request PF to map RDMA vectors to RDMA queues.
1079  * The request for this originates from the VF RDMA driver through
1080  * a client interface between VF LAN and VF RDMA driver.
1081  * A vector could have an AEQ and CEQ attached to it although
1082  * there is a single AEQ per VF RDMA instance in which case
1083  * most vectors will have an VIRTCHNL_RDMA_INVALID_QUEUE_IDX for aeq and valid
1084  * idx for ceqs There will never be a case where there will be multiple CEQs
1085  * attached to a single vector.
1086  * PF configures interrupt mapping and returns status.
1087  */
1088 
1089 struct virtchnl_rdma_qv_info {
1090 	u32 v_idx; /* msix_vector */
1091 	u16 ceq_idx; /* set to VIRTCHNL_RDMA_INVALID_QUEUE_IDX if invalid */
1092 	u16 aeq_idx; /* set to VIRTCHNL_RDMA_INVALID_QUEUE_IDX if invalid */
1093 	u8 itr_idx;
1094 	u8 pad[3];
1095 };
1096 
1097 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_rdma_qv_info);
1098 
1099 struct virtchnl_rdma_qvlist_info {
1100 	u32 num_vectors;
1101 	struct virtchnl_rdma_qv_info qv_info[];
1102 };
1103 
1104 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_rdma_qvlist_info);
1105 #define virtchnl_rdma_qvlist_info_LEGACY_SIZEOF	16
1106 
1107 /* VF reset states - these are written into the RSTAT register:
1108  * VFGEN_RSTAT on the VF
1109  * When the PF initiates a reset, it writes 0
1110  * When the reset is complete, it writes 1
1111  * When the PF detects that the VF has recovered, it writes 2
1112  * VF checks this register periodically to determine if a reset has occurred,
1113  * then polls it to know when the reset is complete.
1114  * If either the PF or VF reads the register while the hardware
1115  * is in a reset state, it will return DEADBEEF, which, when masked
1116  * will result in 3.
1117  */
1118 enum virtchnl_vfr_states {
1119 	VIRTCHNL_VFR_INPROGRESS = 0,
1120 	VIRTCHNL_VFR_COMPLETED,
1121 	VIRTCHNL_VFR_VFACTIVE,
1122 };
1123 
1124 #define VIRTCHNL_MAX_NUM_PROTO_HDRS	32
1125 #define VIRTCHNL_MAX_SIZE_RAW_PACKET	1024
1126 #define PROTO_HDR_SHIFT			5
1127 #define PROTO_HDR_FIELD_START(proto_hdr_type) ((proto_hdr_type) << PROTO_HDR_SHIFT)
1128 #define PROTO_HDR_FIELD_MASK ((1UL << PROTO_HDR_SHIFT) - 1)
1129 
1130 /* VF use these macros to configure each protocol header.
1131  * Specify which protocol headers and protocol header fields base on
1132  * virtchnl_proto_hdr_type and virtchnl_proto_hdr_field.
1133  * @param hdr: a struct of virtchnl_proto_hdr
1134  * @param hdr_type: ETH/IPV4/TCP, etc
1135  * @param field: SRC/DST/TEID/SPI, etc
1136  */
1137 #define VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, field) \
1138 	((hdr)->field_selector |= BIT((field) & PROTO_HDR_FIELD_MASK))
1139 #define VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, field) \
1140 	((hdr)->field_selector &= ~BIT((field) & PROTO_HDR_FIELD_MASK))
1141 #define VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val) \
1142 	((hdr)->field_selector & BIT((val) & PROTO_HDR_FIELD_MASK))
1143 #define VIRTCHNL_GET_PROTO_HDR_FIELD(hdr)	((hdr)->field_selector)
1144 
1145 #define VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \
1146 	(VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, \
1147 		VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field))
1148 #define VIRTCHNL_DEL_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \
1149 	(VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, \
1150 		VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field))
1151 
1152 #define VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, hdr_type) \
1153 	((hdr)->type = VIRTCHNL_PROTO_HDR_ ## hdr_type)
1154 #define VIRTCHNL_GET_PROTO_HDR_TYPE(hdr) \
1155 	(((hdr)->type) >> PROTO_HDR_SHIFT)
1156 #define VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) \
1157 	((hdr)->type == ((s32)((val) >> PROTO_HDR_SHIFT)))
1158 #define VIRTCHNL_TEST_PROTO_HDR(hdr, val) \
1159 	(VIRTCHNL_TEST_PROTO_HDR_TYPE((hdr), (val)) && \
1160 	 VIRTCHNL_TEST_PROTO_HDR_FIELD((hdr), (val)))
1161 
1162 /* Protocol header type within a packet segment. A segment consists of one or
1163  * more protocol headers that make up a logical group of protocol headers. Each
1164  * logical group of protocol headers encapsulates or is encapsulated using/by
1165  * tunneling or encapsulation protocols for network virtualization.
1166  */
1167 enum virtchnl_proto_hdr_type {
1168 	VIRTCHNL_PROTO_HDR_NONE,
1169 	VIRTCHNL_PROTO_HDR_ETH,
1170 	VIRTCHNL_PROTO_HDR_S_VLAN,
1171 	VIRTCHNL_PROTO_HDR_C_VLAN,
1172 	VIRTCHNL_PROTO_HDR_IPV4,
1173 	VIRTCHNL_PROTO_HDR_IPV6,
1174 	VIRTCHNL_PROTO_HDR_TCP,
1175 	VIRTCHNL_PROTO_HDR_UDP,
1176 	VIRTCHNL_PROTO_HDR_SCTP,
1177 	VIRTCHNL_PROTO_HDR_GTPU_IP,
1178 	VIRTCHNL_PROTO_HDR_GTPU_EH,
1179 	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
1180 	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
1181 	VIRTCHNL_PROTO_HDR_PPPOE,
1182 	VIRTCHNL_PROTO_HDR_L2TPV3,
1183 	VIRTCHNL_PROTO_HDR_ESP,
1184 	VIRTCHNL_PROTO_HDR_AH,
1185 	VIRTCHNL_PROTO_HDR_PFCP,
1186 };
1187 
1188 /* Protocol header field within a protocol header. */
1189 enum virtchnl_proto_hdr_field {
1190 	/* ETHER */
1191 	VIRTCHNL_PROTO_HDR_ETH_SRC =
1192 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ETH),
1193 	VIRTCHNL_PROTO_HDR_ETH_DST,
1194 	VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE,
1195 	/* S-VLAN */
1196 	VIRTCHNL_PROTO_HDR_S_VLAN_ID =
1197 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_S_VLAN),
1198 	/* C-VLAN */
1199 	VIRTCHNL_PROTO_HDR_C_VLAN_ID =
1200 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_C_VLAN),
1201 	/* IPV4 */
1202 	VIRTCHNL_PROTO_HDR_IPV4_SRC =
1203 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4),
1204 	VIRTCHNL_PROTO_HDR_IPV4_DST,
1205 	VIRTCHNL_PROTO_HDR_IPV4_DSCP,
1206 	VIRTCHNL_PROTO_HDR_IPV4_TTL,
1207 	VIRTCHNL_PROTO_HDR_IPV4_PROT,
1208 	/* IPV6 */
1209 	VIRTCHNL_PROTO_HDR_IPV6_SRC =
1210 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6),
1211 	VIRTCHNL_PROTO_HDR_IPV6_DST,
1212 	VIRTCHNL_PROTO_HDR_IPV6_TC,
1213 	VIRTCHNL_PROTO_HDR_IPV6_HOP_LIMIT,
1214 	VIRTCHNL_PROTO_HDR_IPV6_PROT,
1215 	/* TCP */
1216 	VIRTCHNL_PROTO_HDR_TCP_SRC_PORT =
1217 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_TCP),
1218 	VIRTCHNL_PROTO_HDR_TCP_DST_PORT,
1219 	/* UDP */
1220 	VIRTCHNL_PROTO_HDR_UDP_SRC_PORT =
1221 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_UDP),
1222 	VIRTCHNL_PROTO_HDR_UDP_DST_PORT,
1223 	/* SCTP */
1224 	VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT =
1225 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_SCTP),
1226 	VIRTCHNL_PROTO_HDR_SCTP_DST_PORT,
1227 	/* GTPU_IP */
1228 	VIRTCHNL_PROTO_HDR_GTPU_IP_TEID =
1229 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_IP),
1230 	/* GTPU_EH */
1231 	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU =
1232 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH),
1233 	VIRTCHNL_PROTO_HDR_GTPU_EH_QFI,
1234 	/* PPPOE */
1235 	VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID =
1236 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PPPOE),
1237 	/* L2TPV3 */
1238 	VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID =
1239 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_L2TPV3),
1240 	/* ESP */
1241 	VIRTCHNL_PROTO_HDR_ESP_SPI =
1242 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ESP),
1243 	/* AH */
1244 	VIRTCHNL_PROTO_HDR_AH_SPI =
1245 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_AH),
1246 	/* PFCP */
1247 	VIRTCHNL_PROTO_HDR_PFCP_S_FIELD =
1248 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PFCP),
1249 	VIRTCHNL_PROTO_HDR_PFCP_SEID,
1250 };
1251 
1252 struct virtchnl_proto_hdr {
1253 	/* see enum virtchnl_proto_hdr_type */
1254 	s32 type;
1255 	u32 field_selector; /* a bit mask to select field for header type */
1256 	u8 buffer[64];
1257 	/**
1258 	 * binary buffer in network order for specific header type.
1259 	 * For example, if type = VIRTCHNL_PROTO_HDR_IPV4, a IPv4
1260 	 * header is expected to be copied into the buffer.
1261 	 */
1262 };
1263 
1264 VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_proto_hdr);
1265 
1266 struct virtchnl_proto_hdrs {
1267 	u8 tunnel_level;
1268 	u8 pad[3];
1269 	/**
1270 	 * specify where protocol header start from.
1271 	 * must be 0 when sending a raw packet request.
1272 	 * 0 - from the outer layer
1273 	 * 1 - from the first inner layer
1274 	 * 2 - from the second inner layer
1275 	 * ....
1276 	 **/
1277 	int count; /* the proto layers must < VIRTCHNL_MAX_NUM_PROTO_HDRS */
1278 	union {
1279 		struct virtchnl_proto_hdr
1280 			proto_hdr[VIRTCHNL_MAX_NUM_PROTO_HDRS];
1281 		struct {
1282 			u16 pkt_len;
1283 			u8 spec[VIRTCHNL_MAX_SIZE_RAW_PACKET];
1284 			u8 mask[VIRTCHNL_MAX_SIZE_RAW_PACKET];
1285 		} raw;
1286 	};
1287 };
1288 
1289 VIRTCHNL_CHECK_STRUCT_LEN(2312, virtchnl_proto_hdrs);
1290 
1291 struct virtchnl_rss_cfg {
1292 	struct virtchnl_proto_hdrs proto_hdrs;	   /* protocol headers */
1293 
1294 	/* see enum virtchnl_rss_algorithm; rss algorithm type */
1295 	s32 rss_algorithm;
1296 	u8 reserved[128];                          /* reserve for future */
1297 };
1298 
1299 VIRTCHNL_CHECK_STRUCT_LEN(2444, virtchnl_rss_cfg);
1300 
1301 /* action configuration for FDIR */
1302 struct virtchnl_filter_action {
1303 	/* see enum virtchnl_action type */
1304 	s32 type;
1305 	union {
1306 		/* used for queue and qgroup action */
1307 		struct {
1308 			u16 index;
1309 			u8 region;
1310 		} queue;
1311 		/* used for count action */
1312 		struct {
1313 			/* share counter ID with other flow rules */
1314 			u8 shared;
1315 			u32 id; /* counter ID */
1316 		} count;
1317 		/* used for mark action */
1318 		u32 mark_id;
1319 		u8 reserve[32];
1320 	} act_conf;
1321 };
1322 
1323 VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_filter_action);
1324 
1325 #define VIRTCHNL_MAX_NUM_ACTIONS  8
1326 
1327 struct virtchnl_filter_action_set {
1328 	/* action number must be less then VIRTCHNL_MAX_NUM_ACTIONS */
1329 	int count;
1330 	struct virtchnl_filter_action actions[VIRTCHNL_MAX_NUM_ACTIONS];
1331 };
1332 
1333 VIRTCHNL_CHECK_STRUCT_LEN(292, virtchnl_filter_action_set);
1334 
1335 /* pattern and action for FDIR rule */
1336 struct virtchnl_fdir_rule {
1337 	struct virtchnl_proto_hdrs proto_hdrs;
1338 	struct virtchnl_filter_action_set action_set;
1339 };
1340 
1341 VIRTCHNL_CHECK_STRUCT_LEN(2604, virtchnl_fdir_rule);
1342 
1343 /* Status returned to VF after VF requests FDIR commands
1344  * VIRTCHNL_FDIR_SUCCESS
1345  * VF FDIR related request is successfully done by PF
1346  * The request can be OP_ADD/DEL/QUERY_FDIR_FILTER.
1347  *
1348  * VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE
1349  * OP_ADD_FDIR_FILTER request is failed due to no Hardware resource.
1350  *
1351  * VIRTCHNL_FDIR_FAILURE_RULE_EXIST
1352  * OP_ADD_FDIR_FILTER request is failed due to the rule is already existed.
1353  *
1354  * VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT
1355  * OP_ADD_FDIR_FILTER request is failed due to conflict with existing rule.
1356  *
1357  * VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST
1358  * OP_DEL_FDIR_FILTER request is failed due to this rule doesn't exist.
1359  *
1360  * VIRTCHNL_FDIR_FAILURE_RULE_INVALID
1361  * OP_ADD_FDIR_FILTER request is failed due to parameters validation
1362  * or HW doesn't support.
1363  *
1364  * VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT
1365  * OP_ADD/DEL_FDIR_FILTER request is failed due to timing out
1366  * for programming.
1367  *
1368  * VIRTCHNL_FDIR_FAILURE_QUERY_INVALID
1369  * OP_QUERY_FDIR_FILTER request is failed due to parameters validation,
1370  * for example, VF query counter of a rule who has no counter action.
1371  */
1372 enum virtchnl_fdir_prgm_status {
1373 	VIRTCHNL_FDIR_SUCCESS = 0,
1374 	VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE,
1375 	VIRTCHNL_FDIR_FAILURE_RULE_EXIST,
1376 	VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT,
1377 	VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST,
1378 	VIRTCHNL_FDIR_FAILURE_RULE_INVALID,
1379 	VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT,
1380 	VIRTCHNL_FDIR_FAILURE_QUERY_INVALID,
1381 };
1382 
1383 /* VIRTCHNL_OP_ADD_FDIR_FILTER
1384  * VF sends this request to PF by filling out vsi_id,
1385  * validate_only and rule_cfg. PF will return flow_id
1386  * if the request is successfully done and return add_status to VF.
1387  */
1388 struct virtchnl_fdir_add {
1389 	u16 vsi_id;  /* INPUT */
1390 	/*
1391 	 * 1 for validating a fdir rule, 0 for creating a fdir rule.
1392 	 * Validate and create share one ops: VIRTCHNL_OP_ADD_FDIR_FILTER.
1393 	 */
1394 	u16 validate_only; /* INPUT */
1395 	u32 flow_id;       /* OUTPUT */
1396 	struct virtchnl_fdir_rule rule_cfg; /* INPUT */
1397 
1398 	/* see enum virtchnl_fdir_prgm_status; OUTPUT */
1399 	s32 status;
1400 };
1401 
1402 VIRTCHNL_CHECK_STRUCT_LEN(2616, virtchnl_fdir_add);
1403 
1404 /* VIRTCHNL_OP_DEL_FDIR_FILTER
1405  * VF sends this request to PF by filling out vsi_id
1406  * and flow_id. PF will return del_status to VF.
1407  */
1408 struct virtchnl_fdir_del {
1409 	u16 vsi_id;  /* INPUT */
1410 	u16 pad;
1411 	u32 flow_id; /* INPUT */
1412 
1413 	/* see enum virtchnl_fdir_prgm_status; OUTPUT */
1414 	s32 status;
1415 };
1416 
1417 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_fdir_del);
1418 
1419 #define __vss_byone(p, member, count, old)				      \
1420 	(struct_size(p, member, count) + (old - 1 - struct_size(p, member, 0)))
1421 
1422 #define __vss_byelem(p, member, count, old)				      \
1423 	(struct_size(p, member, count - 1) + (old - struct_size(p, member, 0)))
1424 
1425 #define __vss_full(p, member, count, old)				      \
1426 	(struct_size(p, member, count) + (old - struct_size(p, member, 0)))
1427 
1428 #define __vss(type, func, p, member, count)		\
1429 	struct type: func(p, member, count, type##_LEGACY_SIZEOF)
1430 
1431 #define virtchnl_struct_size(p, m, c)					      \
1432 	_Generic(*p,							      \
1433 		 __vss(virtchnl_vf_resource, __vss_full, p, m, c),	      \
1434 		 __vss(virtchnl_vsi_queue_config_info, __vss_full, p, m, c),  \
1435 		 __vss(virtchnl_irq_map_info, __vss_full, p, m, c),	      \
1436 		 __vss(virtchnl_ether_addr_list, __vss_full, p, m, c),	      \
1437 		 __vss(virtchnl_vlan_filter_list, __vss_full, p, m, c),	      \
1438 		 __vss(virtchnl_vlan_filter_list_v2, __vss_byelem, p, m, c),  \
1439 		 __vss(virtchnl_tc_info, __vss_byelem, p, m, c),	      \
1440 		 __vss(virtchnl_rdma_qvlist_info, __vss_byelem, p, m, c),     \
1441 		 __vss(virtchnl_rss_key, __vss_byone, p, m, c),		      \
1442 		 __vss(virtchnl_rss_lut, __vss_byone, p, m, c))
1443 
1444 /**
1445  * virtchnl_vc_validate_vf_msg
1446  * @ver: Virtchnl version info
1447  * @v_opcode: Opcode for the message
1448  * @msg: pointer to the msg buffer
1449  * @msglen: msg length
1450  *
1451  * validate msg format against struct for each opcode
1452  */
1453 static inline int
virtchnl_vc_validate_vf_msg(struct virtchnl_version_info * ver,u32 v_opcode,u8 * msg,u16 msglen)1454 virtchnl_vc_validate_vf_msg(struct virtchnl_version_info *ver, u32 v_opcode,
1455 			    u8 *msg, u16 msglen)
1456 {
1457 	bool err_msg_format = false;
1458 	u32 valid_len = 0;
1459 
1460 	/* Validate message length. */
1461 	switch (v_opcode) {
1462 	case VIRTCHNL_OP_VERSION:
1463 		valid_len = sizeof(struct virtchnl_version_info);
1464 		break;
1465 	case VIRTCHNL_OP_RESET_VF:
1466 		break;
1467 	case VIRTCHNL_OP_GET_VF_RESOURCES:
1468 		if (VF_IS_V11(ver))
1469 			valid_len = sizeof(u32);
1470 		break;
1471 	case VIRTCHNL_OP_CONFIG_TX_QUEUE:
1472 		valid_len = sizeof(struct virtchnl_txq_info);
1473 		break;
1474 	case VIRTCHNL_OP_CONFIG_RX_QUEUE:
1475 		valid_len = sizeof(struct virtchnl_rxq_info);
1476 		break;
1477 	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
1478 		valid_len = virtchnl_vsi_queue_config_info_LEGACY_SIZEOF;
1479 		if (msglen >= valid_len) {
1480 			struct virtchnl_vsi_queue_config_info *vqc =
1481 			    (struct virtchnl_vsi_queue_config_info *)msg;
1482 			valid_len = virtchnl_struct_size(vqc, qpair,
1483 							 vqc->num_queue_pairs);
1484 			if (vqc->num_queue_pairs == 0)
1485 				err_msg_format = true;
1486 		}
1487 		break;
1488 	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
1489 		valid_len = virtchnl_irq_map_info_LEGACY_SIZEOF;
1490 		if (msglen >= valid_len) {
1491 			struct virtchnl_irq_map_info *vimi =
1492 			    (struct virtchnl_irq_map_info *)msg;
1493 			valid_len = virtchnl_struct_size(vimi, vecmap,
1494 							 vimi->num_vectors);
1495 			if (vimi->num_vectors == 0)
1496 				err_msg_format = true;
1497 		}
1498 		break;
1499 	case VIRTCHNL_OP_ENABLE_QUEUES:
1500 	case VIRTCHNL_OP_DISABLE_QUEUES:
1501 		valid_len = sizeof(struct virtchnl_queue_select);
1502 		break;
1503 	case VIRTCHNL_OP_ADD_ETH_ADDR:
1504 	case VIRTCHNL_OP_DEL_ETH_ADDR:
1505 		valid_len = virtchnl_ether_addr_list_LEGACY_SIZEOF;
1506 		if (msglen >= valid_len) {
1507 			struct virtchnl_ether_addr_list *veal =
1508 			    (struct virtchnl_ether_addr_list *)msg;
1509 			valid_len = virtchnl_struct_size(veal, list,
1510 							 veal->num_elements);
1511 			if (veal->num_elements == 0)
1512 				err_msg_format = true;
1513 		}
1514 		break;
1515 	case VIRTCHNL_OP_ADD_VLAN:
1516 	case VIRTCHNL_OP_DEL_VLAN:
1517 		valid_len = virtchnl_vlan_filter_list_LEGACY_SIZEOF;
1518 		if (msglen >= valid_len) {
1519 			struct virtchnl_vlan_filter_list *vfl =
1520 			    (struct virtchnl_vlan_filter_list *)msg;
1521 			valid_len = virtchnl_struct_size(vfl, vlan_id,
1522 							 vfl->num_elements);
1523 			if (vfl->num_elements == 0)
1524 				err_msg_format = true;
1525 		}
1526 		break;
1527 	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
1528 		valid_len = sizeof(struct virtchnl_promisc_info);
1529 		break;
1530 	case VIRTCHNL_OP_GET_STATS:
1531 		valid_len = sizeof(struct virtchnl_queue_select);
1532 		break;
1533 	case VIRTCHNL_OP_RDMA:
1534 		/* These messages are opaque to us and will be validated in
1535 		 * the RDMA client code. We just need to check for nonzero
1536 		 * length. The firmware will enforce max length restrictions.
1537 		 */
1538 		if (msglen)
1539 			valid_len = msglen;
1540 		else
1541 			err_msg_format = true;
1542 		break;
1543 	case VIRTCHNL_OP_RELEASE_RDMA_IRQ_MAP:
1544 		break;
1545 	case VIRTCHNL_OP_CONFIG_RDMA_IRQ_MAP:
1546 		valid_len = virtchnl_rdma_qvlist_info_LEGACY_SIZEOF;
1547 		if (msglen >= valid_len) {
1548 			struct virtchnl_rdma_qvlist_info *qv =
1549 				(struct virtchnl_rdma_qvlist_info *)msg;
1550 
1551 			valid_len = virtchnl_struct_size(qv, qv_info,
1552 							 qv->num_vectors);
1553 		}
1554 		break;
1555 	case VIRTCHNL_OP_CONFIG_RSS_KEY:
1556 		valid_len = virtchnl_rss_key_LEGACY_SIZEOF;
1557 		if (msglen >= valid_len) {
1558 			struct virtchnl_rss_key *vrk =
1559 				(struct virtchnl_rss_key *)msg;
1560 			valid_len = virtchnl_struct_size(vrk, key,
1561 							 vrk->key_len);
1562 		}
1563 		break;
1564 	case VIRTCHNL_OP_CONFIG_RSS_LUT:
1565 		valid_len = virtchnl_rss_lut_LEGACY_SIZEOF;
1566 		if (msglen >= valid_len) {
1567 			struct virtchnl_rss_lut *vrl =
1568 				(struct virtchnl_rss_lut *)msg;
1569 			valid_len = virtchnl_struct_size(vrl, lut,
1570 							 vrl->lut_entries);
1571 		}
1572 		break;
1573 	case VIRTCHNL_OP_CONFIG_RSS_HFUNC:
1574 		valid_len = sizeof(struct virtchnl_rss_hfunc);
1575 		break;
1576 	case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
1577 		break;
1578 	case VIRTCHNL_OP_SET_RSS_HENA:
1579 		valid_len = sizeof(struct virtchnl_rss_hena);
1580 		break;
1581 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
1582 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
1583 		break;
1584 	case VIRTCHNL_OP_REQUEST_QUEUES:
1585 		valid_len = sizeof(struct virtchnl_vf_res_request);
1586 		break;
1587 	case VIRTCHNL_OP_ENABLE_CHANNELS:
1588 		valid_len = virtchnl_tc_info_LEGACY_SIZEOF;
1589 		if (msglen >= valid_len) {
1590 			struct virtchnl_tc_info *vti =
1591 				(struct virtchnl_tc_info *)msg;
1592 			valid_len = virtchnl_struct_size(vti, list,
1593 							 vti->num_tc);
1594 			if (vti->num_tc == 0)
1595 				err_msg_format = true;
1596 		}
1597 		break;
1598 	case VIRTCHNL_OP_DISABLE_CHANNELS:
1599 		break;
1600 	case VIRTCHNL_OP_ADD_CLOUD_FILTER:
1601 	case VIRTCHNL_OP_DEL_CLOUD_FILTER:
1602 		valid_len = sizeof(struct virtchnl_filter);
1603 		break;
1604 	case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
1605 		break;
1606 	case VIRTCHNL_OP_ADD_RSS_CFG:
1607 	case VIRTCHNL_OP_DEL_RSS_CFG:
1608 		valid_len = sizeof(struct virtchnl_rss_cfg);
1609 		break;
1610 	case VIRTCHNL_OP_ADD_FDIR_FILTER:
1611 		valid_len = sizeof(struct virtchnl_fdir_add);
1612 		break;
1613 	case VIRTCHNL_OP_DEL_FDIR_FILTER:
1614 		valid_len = sizeof(struct virtchnl_fdir_del);
1615 		break;
1616 	case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
1617 		break;
1618 	case VIRTCHNL_OP_ADD_VLAN_V2:
1619 	case VIRTCHNL_OP_DEL_VLAN_V2:
1620 		valid_len = virtchnl_vlan_filter_list_v2_LEGACY_SIZEOF;
1621 		if (msglen >= valid_len) {
1622 			struct virtchnl_vlan_filter_list_v2 *vfl =
1623 			    (struct virtchnl_vlan_filter_list_v2 *)msg;
1624 
1625 			valid_len = virtchnl_struct_size(vfl, filters,
1626 							 vfl->num_elements);
1627 
1628 			if (vfl->num_elements == 0) {
1629 				err_msg_format = true;
1630 				break;
1631 			}
1632 		}
1633 		break;
1634 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
1635 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
1636 	case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
1637 	case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
1638 		valid_len = sizeof(struct virtchnl_vlan_setting);
1639 		break;
1640 	/* These are always errors coming from the VF. */
1641 	case VIRTCHNL_OP_EVENT:
1642 	case VIRTCHNL_OP_UNKNOWN:
1643 	default:
1644 		return VIRTCHNL_STATUS_ERR_PARAM;
1645 	}
1646 	/* few more checks */
1647 	if (err_msg_format || valid_len != msglen)
1648 		return VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH;
1649 
1650 	return 0;
1651 }
1652 #endif /* _VIRTCHNL_H_ */
1653