xref: /linux/include/linux/avf/virtchnl.h (revision 1a9239bb4253f9076b5b4b2a1a4e8d7defd77a95)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2013-2022, Intel Corporation. */
3 
4 #ifndef _VIRTCHNL_H_
5 #define _VIRTCHNL_H_
6 
7 #include <linux/bitops.h>
8 #include <linux/bits.h>
9 #include <linux/overflow.h>
10 #include <uapi/linux/if_ether.h>
11 
12 /* Description:
13  * This header file describes the Virtual Function (VF) - Physical Function
14  * (PF) communication protocol used by the drivers for all devices starting
15  * from our 40G product line
16  *
17  * Admin queue buffer usage:
18  * desc->opcode is always aqc_opc_send_msg_to_pf
19  * flags, retval, datalen, and data addr are all used normally.
20  * The Firmware copies the cookie fields when sending messages between the
21  * PF and VF, but uses all other fields internally. Due to this limitation,
22  * we must send all messages as "indirect", i.e. using an external buffer.
23  *
24  * All the VSI indexes are relative to the VF. Each VF can have maximum of
25  * three VSIs. All the queue indexes are relative to the VSI.  Each VF can
26  * have a maximum of sixteen queues for all of its VSIs.
27  *
28  * The PF is required to return a status code in v_retval for all messages
29  * except RESET_VF, which does not require any response. The returned value
30  * is of virtchnl_status_code type, defined here.
31  *
32  * In general, VF driver initialization should roughly follow the order of
33  * these opcodes. The VF driver must first validate the API version of the
34  * PF driver, then request a reset, then get resources, then configure
35  * queues and interrupts. After these operations are complete, the VF
36  * driver may start its queues, optionally add MAC and VLAN filters, and
37  * process traffic.
38  */
39 
40 /* START GENERIC DEFINES
41  * Need to ensure the following enums and defines hold the same meaning and
42  * value in current and future projects
43  */
44 
45 /* Error Codes */
46 enum virtchnl_status_code {
47 	VIRTCHNL_STATUS_SUCCESS				= 0,
48 	VIRTCHNL_STATUS_ERR_PARAM			= -5,
49 	VIRTCHNL_STATUS_ERR_NO_MEMORY			= -18,
50 	VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH		= -38,
51 	VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR		= -39,
52 	VIRTCHNL_STATUS_ERR_INVALID_VF_ID		= -40,
53 	VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR		= -53,
54 	VIRTCHNL_STATUS_ERR_NOT_SUPPORTED		= -64,
55 };
56 
57 /* Backward compatibility */
58 #define VIRTCHNL_ERR_PARAM VIRTCHNL_STATUS_ERR_PARAM
59 #define VIRTCHNL_STATUS_NOT_SUPPORTED VIRTCHNL_STATUS_ERR_NOT_SUPPORTED
60 
61 #define VIRTCHNL_LINK_SPEED_2_5GB_SHIFT		0x0
62 #define VIRTCHNL_LINK_SPEED_100MB_SHIFT		0x1
63 #define VIRTCHNL_LINK_SPEED_1000MB_SHIFT	0x2
64 #define VIRTCHNL_LINK_SPEED_10GB_SHIFT		0x3
65 #define VIRTCHNL_LINK_SPEED_40GB_SHIFT		0x4
66 #define VIRTCHNL_LINK_SPEED_20GB_SHIFT		0x5
67 #define VIRTCHNL_LINK_SPEED_25GB_SHIFT		0x6
68 #define VIRTCHNL_LINK_SPEED_5GB_SHIFT		0x7
69 
70 enum virtchnl_link_speed {
71 	VIRTCHNL_LINK_SPEED_UNKNOWN	= 0,
72 	VIRTCHNL_LINK_SPEED_100MB	= BIT(VIRTCHNL_LINK_SPEED_100MB_SHIFT),
73 	VIRTCHNL_LINK_SPEED_1GB		= BIT(VIRTCHNL_LINK_SPEED_1000MB_SHIFT),
74 	VIRTCHNL_LINK_SPEED_10GB	= BIT(VIRTCHNL_LINK_SPEED_10GB_SHIFT),
75 	VIRTCHNL_LINK_SPEED_40GB	= BIT(VIRTCHNL_LINK_SPEED_40GB_SHIFT),
76 	VIRTCHNL_LINK_SPEED_20GB	= BIT(VIRTCHNL_LINK_SPEED_20GB_SHIFT),
77 	VIRTCHNL_LINK_SPEED_25GB	= BIT(VIRTCHNL_LINK_SPEED_25GB_SHIFT),
78 	VIRTCHNL_LINK_SPEED_2_5GB	= BIT(VIRTCHNL_LINK_SPEED_2_5GB_SHIFT),
79 	VIRTCHNL_LINK_SPEED_5GB		= BIT(VIRTCHNL_LINK_SPEED_5GB_SHIFT),
80 };
81 
82 /* for hsplit_0 field of Rx HMC context */
83 /* deprecated with AVF 1.0 */
84 enum virtchnl_rx_hsplit {
85 	VIRTCHNL_RX_HSPLIT_NO_SPLIT      = 0,
86 	VIRTCHNL_RX_HSPLIT_SPLIT_L2      = 1,
87 	VIRTCHNL_RX_HSPLIT_SPLIT_IP      = 2,
88 	VIRTCHNL_RX_HSPLIT_SPLIT_TCP_UDP = 4,
89 	VIRTCHNL_RX_HSPLIT_SPLIT_SCTP    = 8,
90 };
91 
92 enum virtchnl_bw_limit_type {
93 	VIRTCHNL_BW_SHAPER = 0,
94 };
95 /* END GENERIC DEFINES */
96 
97 /* Opcodes for VF-PF communication. These are placed in the v_opcode field
98  * of the virtchnl_msg structure.
99  */
100 enum virtchnl_ops {
101 /* The PF sends status change events to VFs using
102  * the VIRTCHNL_OP_EVENT opcode.
103  * VFs send requests to the PF using the other ops.
104  * Use of "advanced opcode" features must be negotiated as part of capabilities
105  * exchange and are not considered part of base mode feature set.
106  */
107 	VIRTCHNL_OP_UNKNOWN = 0,
108 	VIRTCHNL_OP_VERSION = 1, /* must ALWAYS be 1 */
109 	VIRTCHNL_OP_RESET_VF = 2,
110 	VIRTCHNL_OP_GET_VF_RESOURCES = 3,
111 	VIRTCHNL_OP_CONFIG_TX_QUEUE = 4,
112 	VIRTCHNL_OP_CONFIG_RX_QUEUE = 5,
113 	VIRTCHNL_OP_CONFIG_VSI_QUEUES = 6,
114 	VIRTCHNL_OP_CONFIG_IRQ_MAP = 7,
115 	VIRTCHNL_OP_ENABLE_QUEUES = 8,
116 	VIRTCHNL_OP_DISABLE_QUEUES = 9,
117 	VIRTCHNL_OP_ADD_ETH_ADDR = 10,
118 	VIRTCHNL_OP_DEL_ETH_ADDR = 11,
119 	VIRTCHNL_OP_ADD_VLAN = 12,
120 	VIRTCHNL_OP_DEL_VLAN = 13,
121 	VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE = 14,
122 	VIRTCHNL_OP_GET_STATS = 15,
123 	VIRTCHNL_OP_RSVD = 16,
124 	VIRTCHNL_OP_EVENT = 17, /* must ALWAYS be 17 */
125 	VIRTCHNL_OP_CONFIG_RSS_HFUNC = 18,
126 	/* opcode 19 is reserved */
127 	VIRTCHNL_OP_IWARP = 20, /* advanced opcode */
128 	VIRTCHNL_OP_RDMA = VIRTCHNL_OP_IWARP,
129 	VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP = 21, /* advanced opcode */
130 	VIRTCHNL_OP_CONFIG_RDMA_IRQ_MAP = VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP,
131 	VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP = 22, /* advanced opcode */
132 	VIRTCHNL_OP_RELEASE_RDMA_IRQ_MAP = VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP,
133 	VIRTCHNL_OP_CONFIG_RSS_KEY = 23,
134 	VIRTCHNL_OP_CONFIG_RSS_LUT = 24,
135 	VIRTCHNL_OP_GET_RSS_HENA_CAPS = 25,
136 	VIRTCHNL_OP_SET_RSS_HENA = 26,
137 	VIRTCHNL_OP_ENABLE_VLAN_STRIPPING = 27,
138 	VIRTCHNL_OP_DISABLE_VLAN_STRIPPING = 28,
139 	VIRTCHNL_OP_REQUEST_QUEUES = 29,
140 	VIRTCHNL_OP_ENABLE_CHANNELS = 30,
141 	VIRTCHNL_OP_DISABLE_CHANNELS = 31,
142 	VIRTCHNL_OP_ADD_CLOUD_FILTER = 32,
143 	VIRTCHNL_OP_DEL_CLOUD_FILTER = 33,
144 	/* opcode 34 - 43 are reserved */
145 	VIRTCHNL_OP_GET_SUPPORTED_RXDIDS = 44,
146 	VIRTCHNL_OP_ADD_RSS_CFG = 45,
147 	VIRTCHNL_OP_DEL_RSS_CFG = 46,
148 	VIRTCHNL_OP_ADD_FDIR_FILTER = 47,
149 	VIRTCHNL_OP_DEL_FDIR_FILTER = 48,
150 	VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS = 51,
151 	VIRTCHNL_OP_ADD_VLAN_V2 = 52,
152 	VIRTCHNL_OP_DEL_VLAN_V2 = 53,
153 	VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 = 54,
154 	VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 = 55,
155 	VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 = 56,
156 	VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 = 57,
157 	/* opcode 58 and 59 are reserved */
158 	VIRTCHNL_OP_1588_PTP_GET_CAPS = 60,
159 	VIRTCHNL_OP_1588_PTP_GET_TIME = 61,
160 	/* opcode 62 - 65 are reserved */
161 	VIRTCHNL_OP_GET_QOS_CAPS = 66,
162 	/* opcode 68 through 111 are reserved */
163 	VIRTCHNL_OP_CONFIG_QUEUE_BW = 112,
164 	VIRTCHNL_OP_CONFIG_QUANTA = 113,
165 	VIRTCHNL_OP_MAX,
166 };
167 
168 /* These macros are used to generate compilation errors if a structure/union
169  * is not exactly the correct length. It gives a divide by zero error if the
170  * structure/union is not of the correct size, otherwise it creates an enum
171  * that is never used.
172  */
173 #define VIRTCHNL_CHECK_STRUCT_LEN(n, X) enum virtchnl_static_assert_enum_##X \
174 	{ virtchnl_static_assert_##X = (n)/((sizeof(struct X) == (n)) ? 1 : 0) }
175 #define VIRTCHNL_CHECK_UNION_LEN(n, X) enum virtchnl_static_asset_enum_##X \
176 	{ virtchnl_static_assert_##X = (n)/((sizeof(union X) == (n)) ? 1 : 0) }
177 
178 /* Message descriptions and data structures. */
179 
180 /* VIRTCHNL_OP_VERSION
181  * VF posts its version number to the PF. PF responds with its version number
182  * in the same format, along with a return code.
183  * Reply from PF has its major/minor versions also in param0 and param1.
184  * If there is a major version mismatch, then the VF cannot operate.
185  * If there is a minor version mismatch, then the VF can operate but should
186  * add a warning to the system log.
187  *
188  * This enum element MUST always be specified as == 1, regardless of other
189  * changes in the API. The PF must always respond to this message without
190  * error regardless of version mismatch.
191  */
192 #define VIRTCHNL_VERSION_MAJOR		1
193 #define VIRTCHNL_VERSION_MINOR		1
194 #define VIRTCHNL_VERSION_MINOR_NO_VF_CAPS	0
195 
196 struct virtchnl_version_info {
197 	u32 major;
198 	u32 minor;
199 };
200 
201 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_version_info);
202 
203 #define VF_IS_V10(_v) (((_v)->major == 1) && ((_v)->minor == 0))
204 #define VF_IS_V11(_ver) (((_ver)->major == 1) && ((_ver)->minor == 1))
205 
206 /* VIRTCHNL_OP_RESET_VF
207  * VF sends this request to PF with no parameters
208  * PF does NOT respond! VF driver must delay then poll VFGEN_RSTAT register
209  * until reset completion is indicated. The admin queue must be reinitialized
210  * after this operation.
211  *
212  * When reset is complete, PF must ensure that all queues in all VSIs associated
213  * with the VF are stopped, all queue configurations in the HMC are set to 0,
214  * and all MAC and VLAN filters (except the default MAC address) on all VSIs
215  * are cleared.
216  */
217 
218 /* VSI types that use VIRTCHNL interface for VF-PF communication. VSI_SRIOV
219  * vsi_type should always be 6 for backward compatibility. Add other fields
220  * as needed.
221  */
222 enum virtchnl_vsi_type {
223 	VIRTCHNL_VSI_TYPE_INVALID = 0,
224 	VIRTCHNL_VSI_SRIOV = 6,
225 };
226 
227 /* VIRTCHNL_OP_GET_VF_RESOURCES
228  * Version 1.0 VF sends this request to PF with no parameters
229  * Version 1.1 VF sends this request to PF with u32 bitmap of its capabilities
230  * PF responds with an indirect message containing
231  * virtchnl_vf_resource and one or more
232  * virtchnl_vsi_resource structures.
233  */
234 
235 struct virtchnl_vsi_resource {
236 	u16 vsi_id;
237 	u16 num_queue_pairs;
238 
239 	/* see enum virtchnl_vsi_type */
240 	s32 vsi_type;
241 	u16 qset_handle;
242 	u8 default_mac_addr[ETH_ALEN];
243 };
244 
245 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vsi_resource);
246 
247 /* VF capability flags
248  * VIRTCHNL_VF_OFFLOAD_L2 flag is inclusive of base mode L2 offloads including
249  * TX/RX Checksum offloading and TSO for non-tunnelled packets.
250  */
251 #define VIRTCHNL_VF_OFFLOAD_L2			BIT(0)
252 #define VIRTCHNL_VF_OFFLOAD_RDMA		BIT(1)
253 #define VIRTCHNL_VF_CAP_RDMA			VIRTCHNL_VF_OFFLOAD_RDMA
254 #define VIRTCHNL_VF_OFFLOAD_RSS_AQ		BIT(3)
255 #define VIRTCHNL_VF_OFFLOAD_RSS_REG		BIT(4)
256 #define VIRTCHNL_VF_OFFLOAD_WB_ON_ITR		BIT(5)
257 #define VIRTCHNL_VF_OFFLOAD_REQ_QUEUES		BIT(6)
258 /* used to negotiate communicating link speeds in Mbps */
259 #define VIRTCHNL_VF_CAP_ADV_LINK_SPEED		BIT(7)
260 #define  VIRTCHNL_VF_OFFLOAD_CRC		BIT(10)
261 #define VIRTCHNL_VF_OFFLOAD_TC_U32		BIT(11)
262 #define VIRTCHNL_VF_OFFLOAD_VLAN_V2		BIT(15)
263 #define VIRTCHNL_VF_OFFLOAD_VLAN		BIT(16)
264 #define VIRTCHNL_VF_OFFLOAD_RX_POLLING		BIT(17)
265 #define VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2	BIT(18)
266 #define VIRTCHNL_VF_OFFLOAD_RSS_PF		BIT(19)
267 #define VIRTCHNL_VF_OFFLOAD_ENCAP		BIT(20)
268 #define VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM		BIT(21)
269 #define VIRTCHNL_VF_OFFLOAD_RX_ENCAP_CSUM	BIT(22)
270 #define VIRTCHNL_VF_OFFLOAD_ADQ			BIT(23)
271 #define VIRTCHNL_VF_OFFLOAD_USO			BIT(25)
272 #define VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC	BIT(26)
273 #define VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF		BIT(27)
274 #define VIRTCHNL_VF_OFFLOAD_FDIR_PF		BIT(28)
275 #define VIRTCHNL_VF_OFFLOAD_QOS			BIT(29)
276 #define VIRTCHNL_VF_CAP_PTP			BIT(31)
277 
278 #define VF_BASE_MODE_OFFLOADS (VIRTCHNL_VF_OFFLOAD_L2 | \
279 			       VIRTCHNL_VF_OFFLOAD_VLAN | \
280 			       VIRTCHNL_VF_OFFLOAD_RSS_PF)
281 
282 struct virtchnl_vf_resource {
283 	u16 num_vsis;
284 	u16 num_queue_pairs;
285 	u16 max_vectors;
286 	u16 max_mtu;
287 
288 	u32 vf_cap_flags;
289 	u32 rss_key_size;
290 	u32 rss_lut_size;
291 
292 	struct virtchnl_vsi_resource vsi_res[];
293 };
294 
295 VIRTCHNL_CHECK_STRUCT_LEN(20, virtchnl_vf_resource);
296 #define virtchnl_vf_resource_LEGACY_SIZEOF	36
297 
298 /* VIRTCHNL_OP_CONFIG_TX_QUEUE
299  * VF sends this message to set up parameters for one TX queue.
300  * External data buffer contains one instance of virtchnl_txq_info.
301  * PF configures requested queue and returns a status code.
302  */
303 
304 /* Tx queue config info */
305 struct virtchnl_txq_info {
306 	u16 vsi_id;
307 	u16 queue_id;
308 	u16 ring_len;		/* number of descriptors, multiple of 8 */
309 	u16 headwb_enabled; /* deprecated with AVF 1.0 */
310 	u64 dma_ring_addr;
311 	u64 dma_headwb_addr; /* deprecated with AVF 1.0 */
312 };
313 
314 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_txq_info);
315 
316 /* RX descriptor IDs (range from 0 to 63) */
317 enum virtchnl_rx_desc_ids {
318 	VIRTCHNL_RXDID_0_16B_BASE		= 0,
319 	VIRTCHNL_RXDID_1_32B_BASE		= 1,
320 	VIRTCHNL_RXDID_2_FLEX_SQ_NIC		= 2,
321 	VIRTCHNL_RXDID_3_FLEX_SQ_SW		= 3,
322 	VIRTCHNL_RXDID_4_FLEX_SQ_NIC_VEB	= 4,
323 	VIRTCHNL_RXDID_5_FLEX_SQ_NIC_ACL	= 5,
324 	VIRTCHNL_RXDID_6_FLEX_SQ_NIC_2		= 6,
325 	VIRTCHNL_RXDID_7_HW_RSVD		= 7,
326 	/* 8 through 15 are reserved */
327 	VIRTCHNL_RXDID_16_COMMS_GENERIC		= 16,
328 	VIRTCHNL_RXDID_17_COMMS_AUX_VLAN	= 17,
329 	VIRTCHNL_RXDID_18_COMMS_AUX_IPV4	= 18,
330 	VIRTCHNL_RXDID_19_COMMS_AUX_IPV6	= 19,
331 	VIRTCHNL_RXDID_20_COMMS_AUX_FLOW	= 20,
332 	VIRTCHNL_RXDID_21_COMMS_AUX_TCP		= 21,
333 	/* 22 through 63 are reserved */
334 };
335 
336 #define VIRTCHNL_RXDID_BIT(x)			BIT_ULL(VIRTCHNL_RXDID_##x)
337 
338 /* RX descriptor ID bitmasks */
339 enum virtchnl_rx_desc_id_bitmasks {
340 	VIRTCHNL_RXDID_0_16B_BASE_M		= VIRTCHNL_RXDID_BIT(0_16B_BASE),
341 	VIRTCHNL_RXDID_1_32B_BASE_M		= VIRTCHNL_RXDID_BIT(1_32B_BASE),
342 	VIRTCHNL_RXDID_2_FLEX_SQ_NIC_M		= VIRTCHNL_RXDID_BIT(2_FLEX_SQ_NIC),
343 	VIRTCHNL_RXDID_3_FLEX_SQ_SW_M		= VIRTCHNL_RXDID_BIT(3_FLEX_SQ_SW),
344 	VIRTCHNL_RXDID_4_FLEX_SQ_NIC_VEB_M	= VIRTCHNL_RXDID_BIT(4_FLEX_SQ_NIC_VEB),
345 	VIRTCHNL_RXDID_5_FLEX_SQ_NIC_ACL_M	= VIRTCHNL_RXDID_BIT(5_FLEX_SQ_NIC_ACL),
346 	VIRTCHNL_RXDID_6_FLEX_SQ_NIC_2_M	= VIRTCHNL_RXDID_BIT(6_FLEX_SQ_NIC_2),
347 	VIRTCHNL_RXDID_7_HW_RSVD_M		= VIRTCHNL_RXDID_BIT(7_HW_RSVD),
348 	/* 8 through 15 are reserved */
349 	VIRTCHNL_RXDID_16_COMMS_GENERIC_M	= VIRTCHNL_RXDID_BIT(16_COMMS_GENERIC),
350 	VIRTCHNL_RXDID_17_COMMS_AUX_VLAN_M	= VIRTCHNL_RXDID_BIT(17_COMMS_AUX_VLAN),
351 	VIRTCHNL_RXDID_18_COMMS_AUX_IPV4_M	= VIRTCHNL_RXDID_BIT(18_COMMS_AUX_IPV4),
352 	VIRTCHNL_RXDID_19_COMMS_AUX_IPV6_M	= VIRTCHNL_RXDID_BIT(19_COMMS_AUX_IPV6),
353 	VIRTCHNL_RXDID_20_COMMS_AUX_FLOW_M	= VIRTCHNL_RXDID_BIT(20_COMMS_AUX_FLOW),
354 	VIRTCHNL_RXDID_21_COMMS_AUX_TCP_M	= VIRTCHNL_RXDID_BIT(21_COMMS_AUX_TCP),
355 	/* 22 through 63 are reserved */
356 };
357 
358 /* virtchnl_rxq_info_flags - definition of bits in the flags field of the
359  *			     virtchnl_rxq_info structure.
360  *
361  * @VIRTCHNL_PTP_RX_TSTAMP: request to enable Rx timestamping
362  *
363  * Other flag bits are currently reserved and they may be extended in the
364  * future.
365  */
366 enum virtchnl_rxq_info_flags {
367 	VIRTCHNL_PTP_RX_TSTAMP = BIT(0),
368 };
369 
370 /* VIRTCHNL_OP_CONFIG_RX_QUEUE
371  * VF sends this message to set up parameters for one RX queue.
372  * External data buffer contains one instance of virtchnl_rxq_info.
373  * PF configures requested queue and returns a status code. The
374  * crc_disable flag disables CRC stripping on the VF. Setting
375  * the crc_disable flag to 1 will disable CRC stripping for each
376  * queue in the VF where the flag is set. The VIRTCHNL_VF_OFFLOAD_CRC
377  * offload must have been set prior to sending this info or the PF
378  * will ignore the request. This flag should be set the same for
379  * all of the queues for a VF.
380  */
381 
382 /* Rx queue config info */
383 struct virtchnl_rxq_info {
384 	u16 vsi_id;
385 	u16 queue_id;
386 	u32 ring_len;		/* number of descriptors, multiple of 32 */
387 	u16 hdr_size;
388 	u16 splithdr_enabled; /* deprecated with AVF 1.0 */
389 	u32 databuffer_size;
390 	u32 max_pkt_size;
391 	u8 crc_disable;
392 	/* see enum virtchnl_rx_desc_ids;
393 	 * only used when VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC is supported. Note
394 	 * that when the offload is not supported, the descriptor format aligns
395 	 * with VIRTCHNL_RXDID_1_32B_BASE.
396 	 */
397 	enum virtchnl_rx_desc_ids rxdid:8;
398 	enum virtchnl_rxq_info_flags flags:8; /* see virtchnl_rxq_info_flags */
399 	u8 pad1;
400 	u64 dma_ring_addr;
401 
402 	/* see enum virtchnl_rx_hsplit; deprecated with AVF 1.0 */
403 	s32 rx_split_pos;
404 	u32 pad2;
405 };
406 
407 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_rxq_info);
408 
409 /* VIRTCHNL_OP_CONFIG_VSI_QUEUES
410  * VF sends this message to set parameters for all active TX and RX queues
411  * associated with the specified VSI.
412  * PF configures queues and returns status.
413  * If the number of queues specified is greater than the number of queues
414  * associated with the VSI, an error is returned and no queues are configured.
415  * NOTE: The VF is not required to configure all queues in a single request.
416  * It may send multiple messages. PF drivers must correctly handle all VF
417  * requests.
418  */
419 struct virtchnl_queue_pair_info {
420 	/* NOTE: vsi_id and queue_id should be identical for both queues. */
421 	struct virtchnl_txq_info txq;
422 	struct virtchnl_rxq_info rxq;
423 };
424 
425 VIRTCHNL_CHECK_STRUCT_LEN(64, virtchnl_queue_pair_info);
426 
427 struct virtchnl_vsi_queue_config_info {
428 	u16 vsi_id;
429 	u16 num_queue_pairs;
430 	u32 pad;
431 	struct virtchnl_queue_pair_info qpair[];
432 };
433 
434 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vsi_queue_config_info);
435 #define virtchnl_vsi_queue_config_info_LEGACY_SIZEOF	72
436 
437 /* VIRTCHNL_OP_REQUEST_QUEUES
438  * VF sends this message to request the PF to allocate additional queues to
439  * this VF.  Each VF gets a guaranteed number of queues on init but asking for
440  * additional queues must be negotiated.  This is a best effort request as it
441  * is possible the PF does not have enough queues left to support the request.
442  * If the PF cannot support the number requested it will respond with the
443  * maximum number it is able to support.  If the request is successful, PF will
444  * then reset the VF to institute required changes.
445  */
446 
447 /* VF resource request */
448 struct virtchnl_vf_res_request {
449 	u16 num_queue_pairs;
450 };
451 
452 /* VIRTCHNL_OP_CONFIG_IRQ_MAP
453  * VF uses this message to map vectors to queues.
454  * The rxq_map and txq_map fields are bitmaps used to indicate which queues
455  * are to be associated with the specified vector.
456  * The "other" causes are always mapped to vector 0. The VF may not request
457  * that vector 0 be used for traffic.
458  * PF configures interrupt mapping and returns status.
459  * NOTE: due to hardware requirements, all active queues (both TX and RX)
460  * should be mapped to interrupts, even if the driver intends to operate
461  * only in polling mode. In this case the interrupt may be disabled, but
462  * the ITR timer will still run to trigger writebacks.
463  */
464 struct virtchnl_vector_map {
465 	u16 vsi_id;
466 	u16 vector_id;
467 	u16 rxq_map;
468 	u16 txq_map;
469 	u16 rxitr_idx;
470 	u16 txitr_idx;
471 };
472 
473 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_vector_map);
474 
475 struct virtchnl_irq_map_info {
476 	u16 num_vectors;
477 	struct virtchnl_vector_map vecmap[];
478 };
479 
480 VIRTCHNL_CHECK_STRUCT_LEN(2, virtchnl_irq_map_info);
481 #define virtchnl_irq_map_info_LEGACY_SIZEOF	14
482 
483 /* VIRTCHNL_OP_ENABLE_QUEUES
484  * VIRTCHNL_OP_DISABLE_QUEUES
485  * VF sends these message to enable or disable TX/RX queue pairs.
486  * The queues fields are bitmaps indicating which queues to act upon.
487  * (Currently, we only support 16 queues per VF, but we make the field
488  * u32 to allow for expansion.)
489  * PF performs requested action and returns status.
490  * NOTE: The VF is not required to enable/disable all queues in a single
491  * request. It may send multiple messages.
492  * PF drivers must correctly handle all VF requests.
493  */
494 struct virtchnl_queue_select {
495 	u16 vsi_id;
496 	u16 pad;
497 	u32 rx_queues;
498 	u32 tx_queues;
499 };
500 
501 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_select);
502 
503 /* VIRTCHNL_OP_ADD_ETH_ADDR
504  * VF sends this message in order to add one or more unicast or multicast
505  * address filters for the specified VSI.
506  * PF adds the filters and returns status.
507  */
508 
509 /* VIRTCHNL_OP_DEL_ETH_ADDR
510  * VF sends this message in order to remove one or more unicast or multicast
511  * filters for the specified VSI.
512  * PF removes the filters and returns status.
513  */
514 
515 /* VIRTCHNL_ETHER_ADDR_LEGACY
516  * Prior to adding the @type member to virtchnl_ether_addr, there were 2 pad
517  * bytes. Moving forward all VF drivers should not set type to
518  * VIRTCHNL_ETHER_ADDR_LEGACY. This is only here to not break previous/legacy
519  * behavior. The control plane function (i.e. PF) can use a best effort method
520  * of tracking the primary/device unicast in this case, but there is no
521  * guarantee and functionality depends on the implementation of the PF.
522  */
523 
524 /* VIRTCHNL_ETHER_ADDR_PRIMARY
525  * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_PRIMARY for the
526  * primary/device unicast MAC address filter for VIRTCHNL_OP_ADD_ETH_ADDR and
527  * VIRTCHNL_OP_DEL_ETH_ADDR. This allows for the underlying control plane
528  * function (i.e. PF) to accurately track and use this MAC address for
529  * displaying on the host and for VM/function reset.
530  */
531 
532 /* VIRTCHNL_ETHER_ADDR_EXTRA
533  * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_EXTRA for any extra
534  * unicast and/or multicast filters that are being added/deleted via
535  * VIRTCHNL_OP_DEL_ETH_ADDR/VIRTCHNL_OP_ADD_ETH_ADDR respectively.
536  */
537 struct virtchnl_ether_addr {
538 	u8 addr[ETH_ALEN];
539 	u8 type;
540 #define VIRTCHNL_ETHER_ADDR_LEGACY	0
541 #define VIRTCHNL_ETHER_ADDR_PRIMARY	1
542 #define VIRTCHNL_ETHER_ADDR_EXTRA	2
543 #define VIRTCHNL_ETHER_ADDR_TYPE_MASK	3 /* first two bits of type are valid */
544 	u8 pad;
545 };
546 
547 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_ether_addr);
548 
549 struct virtchnl_ether_addr_list {
550 	u16 vsi_id;
551 	u16 num_elements;
552 	struct virtchnl_ether_addr list[];
553 };
554 
555 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_ether_addr_list);
556 #define virtchnl_ether_addr_list_LEGACY_SIZEOF	12
557 
558 /* VIRTCHNL_OP_ADD_VLAN
559  * VF sends this message to add one or more VLAN tag filters for receives.
560  * PF adds the filters and returns status.
561  * If a port VLAN is configured by the PF, this operation will return an
562  * error to the VF.
563  */
564 
565 /* VIRTCHNL_OP_DEL_VLAN
566  * VF sends this message to remove one or more VLAN tag filters for receives.
567  * PF removes the filters and returns status.
568  * If a port VLAN is configured by the PF, this operation will return an
569  * error to the VF.
570  */
571 
572 struct virtchnl_vlan_filter_list {
573 	u16 vsi_id;
574 	u16 num_elements;
575 	u16 vlan_id[];
576 };
577 
578 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_vlan_filter_list);
579 #define virtchnl_vlan_filter_list_LEGACY_SIZEOF	6
580 
581 /* This enum is used for all of the VIRTCHNL_VF_OFFLOAD_VLAN_V2_CAPS related
582  * structures and opcodes.
583  *
584  * VIRTCHNL_VLAN_UNSUPPORTED - This field is not supported and if a VF driver
585  * populates it the PF should return VIRTCHNL_STATUS_ERR_NOT_SUPPORTED.
586  *
587  * VIRTCHNL_VLAN_ETHERTYPE_8100 - This field supports 0x8100 ethertype.
588  * VIRTCHNL_VLAN_ETHERTYPE_88A8 - This field supports 0x88A8 ethertype.
589  * VIRTCHNL_VLAN_ETHERTYPE_9100 - This field supports 0x9100 ethertype.
590  *
591  * VIRTCHNL_VLAN_ETHERTYPE_AND - Used when multiple ethertypes can be supported
592  * by the PF concurrently. For example, if the PF can support
593  * VIRTCHNL_VLAN_ETHERTYPE_8100 AND VIRTCHNL_VLAN_ETHERTYPE_88A8 filters it
594  * would OR the following bits:
595  *
596  *	VIRTHCNL_VLAN_ETHERTYPE_8100 |
597  *	VIRTCHNL_VLAN_ETHERTYPE_88A8 |
598  *	VIRTCHNL_VLAN_ETHERTYPE_AND;
599  *
600  * The VF would interpret this as VLAN filtering can be supported on both 0x8100
601  * and 0x88A8 VLAN ethertypes.
602  *
603  * VIRTCHNL_ETHERTYPE_XOR - Used when only a single ethertype can be supported
604  * by the PF concurrently. For example if the PF can support
605  * VIRTCHNL_VLAN_ETHERTYPE_8100 XOR VIRTCHNL_VLAN_ETHERTYPE_88A8 stripping
606  * offload it would OR the following bits:
607  *
608  *	VIRTCHNL_VLAN_ETHERTYPE_8100 |
609  *	VIRTCHNL_VLAN_ETHERTYPE_88A8 |
610  *	VIRTCHNL_VLAN_ETHERTYPE_XOR;
611  *
612  * The VF would interpret this as VLAN stripping can be supported on either
613  * 0x8100 or 0x88a8 VLAN ethertypes. So when requesting VLAN stripping via
614  * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 the specified ethertype will override
615  * the previously set value.
616  *
617  * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 - Used to tell the VF to insert and/or
618  * strip the VLAN tag using the L2TAG1 field of the Tx/Rx descriptors.
619  *
620  * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to insert hardware
621  * offloaded VLAN tags using the L2TAG2 field of the Tx descriptor.
622  *
623  * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to strip hardware
624  * offloaded VLAN tags using the L2TAG2_2 field of the Rx descriptor.
625  *
626  * VIRTCHNL_VLAN_PRIO - This field supports VLAN priority bits. This is used for
627  * VLAN filtering if the underlying PF supports it.
628  *
629  * VIRTCHNL_VLAN_TOGGLE_ALLOWED - This field is used to say whether a
630  * certain VLAN capability can be toggled. For example if the underlying PF/CP
631  * allows the VF to toggle VLAN filtering, stripping, and/or insertion it should
632  * set this bit along with the supported ethertypes.
633  */
634 enum virtchnl_vlan_support {
635 	VIRTCHNL_VLAN_UNSUPPORTED =		0,
636 	VIRTCHNL_VLAN_ETHERTYPE_8100 =		BIT(0),
637 	VIRTCHNL_VLAN_ETHERTYPE_88A8 =		BIT(1),
638 	VIRTCHNL_VLAN_ETHERTYPE_9100 =		BIT(2),
639 	VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 =	BIT(8),
640 	VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 =	BIT(9),
641 	VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 =	BIT(10),
642 	VIRTCHNL_VLAN_PRIO =			BIT(24),
643 	VIRTCHNL_VLAN_FILTER_MASK =		BIT(28),
644 	VIRTCHNL_VLAN_ETHERTYPE_AND =		BIT(29),
645 	VIRTCHNL_VLAN_ETHERTYPE_XOR =		BIT(30),
646 	VIRTCHNL_VLAN_TOGGLE =			BIT(31),
647 };
648 
649 /* This structure is used as part of the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS
650  * for filtering, insertion, and stripping capabilities.
651  *
652  * If only outer capabilities are supported (for filtering, insertion, and/or
653  * stripping) then this refers to the outer most or single VLAN from the VF's
654  * perspective.
655  *
656  * If only inner capabilities are supported (for filtering, insertion, and/or
657  * stripping) then this refers to the outer most or single VLAN from the VF's
658  * perspective. Functionally this is the same as if only outer capabilities are
659  * supported. The VF driver is just forced to use the inner fields when
660  * adding/deleting filters and enabling/disabling offloads (if supported).
661  *
662  * If both outer and inner capabilities are supported (for filtering, insertion,
663  * and/or stripping) then outer refers to the outer most or single VLAN and
664  * inner refers to the second VLAN, if it exists, in the packet.
665  *
666  * There is no support for tunneled VLAN offloads, so outer or inner are never
667  * referring to a tunneled packet from the VF's perspective.
668  */
669 struct virtchnl_vlan_supported_caps {
670 	u32 outer;
671 	u32 inner;
672 };
673 
674 /* The PF populates these fields based on the supported VLAN filtering. If a
675  * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will
676  * reject any VIRTCHNL_OP_ADD_VLAN_V2 or VIRTCHNL_OP_DEL_VLAN_V2 messages using
677  * the unsupported fields.
678  *
679  * Also, a VF is only allowed to toggle its VLAN filtering setting if the
680  * VIRTCHNL_VLAN_TOGGLE bit is set.
681  *
682  * The ethertype(s) specified in the ethertype_init field are the ethertypes
683  * enabled for VLAN filtering. VLAN filtering in this case refers to the outer
684  * most VLAN from the VF's perspective. If both inner and outer filtering are
685  * allowed then ethertype_init only refers to the outer most VLAN as only
686  * VLAN ethertype supported for inner VLAN filtering is
687  * VIRTCHNL_VLAN_ETHERTYPE_8100. By default, inner VLAN filtering is disabled
688  * when both inner and outer filtering are allowed.
689  *
690  * The max_filters field tells the VF how many VLAN filters it's allowed to have
691  * at any one time. If it exceeds this amount and tries to add another filter,
692  * then the request will be rejected by the PF. To prevent failures, the VF
693  * should keep track of how many VLAN filters it has added and not attempt to
694  * add more than max_filters.
695  */
696 struct virtchnl_vlan_filtering_caps {
697 	struct virtchnl_vlan_supported_caps filtering_support;
698 	u32 ethertype_init;
699 	u16 max_filters;
700 	u8 pad[2];
701 };
702 
703 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_filtering_caps);
704 
705 /* This enum is used for the virtchnl_vlan_offload_caps structure to specify
706  * if the PF supports a different ethertype for stripping and insertion.
707  *
708  * VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION - The ethertype(s) specified
709  * for stripping affect the ethertype(s) specified for insertion and visa versa
710  * as well. If the VF tries to configure VLAN stripping via
711  * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 with VIRTCHNL_VLAN_ETHERTYPE_8100 then
712  * that will be the ethertype for both stripping and insertion.
713  *
714  * VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED - The ethertype(s) specified for
715  * stripping do not affect the ethertype(s) specified for insertion and visa
716  * versa.
717  */
718 enum virtchnl_vlan_ethertype_match {
719 	VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION = 0,
720 	VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED = 1,
721 };
722 
723 /* The PF populates these fields based on the supported VLAN offloads. If a
724  * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will
725  * reject any VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 or
726  * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 messages using the unsupported fields.
727  *
728  * Also, a VF is only allowed to toggle its VLAN offload setting if the
729  * VIRTCHNL_VLAN_TOGGLE_ALLOWED bit is set.
730  *
731  * The VF driver needs to be aware of how the tags are stripped by hardware and
732  * inserted by the VF driver based on the level of offload support. The PF will
733  * populate these fields based on where the VLAN tags are expected to be
734  * offloaded via the VIRTHCNL_VLAN_TAG_LOCATION_* bits. The VF will need to
735  * interpret these fields. See the definition of the
736  * VIRTCHNL_VLAN_TAG_LOCATION_* bits above the virtchnl_vlan_support
737  * enumeration.
738  */
739 struct virtchnl_vlan_offload_caps {
740 	struct virtchnl_vlan_supported_caps stripping_support;
741 	struct virtchnl_vlan_supported_caps insertion_support;
742 	u32 ethertype_init;
743 	u8 ethertype_match;
744 	u8 pad[3];
745 };
746 
747 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_vlan_offload_caps);
748 
749 /* VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS
750  * VF sends this message to determine its VLAN capabilities.
751  *
752  * PF will mark which capabilities it supports based on hardware support and
753  * current configuration. For example, if a port VLAN is configured the PF will
754  * not allow outer VLAN filtering, stripping, or insertion to be configured so
755  * it will block these features from the VF.
756  *
757  * The VF will need to cross reference its capabilities with the PFs
758  * capabilities in the response message from the PF to determine the VLAN
759  * support.
760  */
761 struct virtchnl_vlan_caps {
762 	struct virtchnl_vlan_filtering_caps filtering;
763 	struct virtchnl_vlan_offload_caps offloads;
764 };
765 
766 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_caps);
767 
768 struct virtchnl_vlan {
769 	u16 tci;	/* tci[15:13] = PCP and tci[11:0] = VID */
770 	u16 tci_mask;	/* only valid if VIRTCHNL_VLAN_FILTER_MASK set in
771 			 * filtering caps
772 			 */
773 	u16 tpid;	/* 0x8100, 0x88a8, etc. and only type(s) set in
774 			 * filtering caps. Note that tpid here does not refer to
775 			 * VIRTCHNL_VLAN_ETHERTYPE_*, but it refers to the
776 			 * actual 2-byte VLAN TPID
777 			 */
778 	u8 pad[2];
779 };
780 
781 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vlan);
782 
783 struct virtchnl_vlan_filter {
784 	struct virtchnl_vlan inner;
785 	struct virtchnl_vlan outer;
786 	u8 pad[16];
787 };
788 
789 VIRTCHNL_CHECK_STRUCT_LEN(32, virtchnl_vlan_filter);
790 
791 /* VIRTCHNL_OP_ADD_VLAN_V2
792  * VIRTCHNL_OP_DEL_VLAN_V2
793  *
794  * VF sends these messages to add/del one or more VLAN tag filters for Rx
795  * traffic.
796  *
797  * The PF attempts to add the filters and returns status.
798  *
799  * The VF should only ever attempt to add/del virtchnl_vlan_filter(s) using the
800  * supported fields negotiated via VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS.
801  */
802 struct virtchnl_vlan_filter_list_v2 {
803 	u16 vport_id;
804 	u16 num_elements;
805 	u8 pad[4];
806 	struct virtchnl_vlan_filter filters[];
807 };
808 
809 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vlan_filter_list_v2);
810 #define virtchnl_vlan_filter_list_v2_LEGACY_SIZEOF	40
811 
812 /* VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
813  * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
814  * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
815  * VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
816  *
817  * VF sends this message to enable or disable VLAN stripping or insertion. It
818  * also needs to specify an ethertype. The VF knows which VLAN ethertypes are
819  * allowed and whether or not it's allowed to enable/disable the specific
820  * offload via the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to
821  * parse the virtchnl_vlan_caps.offloads fields to determine which offload
822  * messages are allowed.
823  *
824  * For example, if the PF populates the virtchnl_vlan_caps.offloads in the
825  * following manner the VF will be allowed to enable and/or disable 0x8100 inner
826  * VLAN insertion and/or stripping via the opcodes listed above. Inner in this
827  * case means the outer most or single VLAN from the VF's perspective. This is
828  * because no outer offloads are supported. See the comments above the
829  * virtchnl_vlan_supported_caps structure for more details.
830  *
831  * virtchnl_vlan_caps.offloads.stripping_support.inner =
832  *			VIRTCHNL_VLAN_TOGGLE |
833  *			VIRTCHNL_VLAN_ETHERTYPE_8100;
834  *
835  * virtchnl_vlan_caps.offloads.insertion_support.inner =
836  *			VIRTCHNL_VLAN_TOGGLE |
837  *			VIRTCHNL_VLAN_ETHERTYPE_8100;
838  *
839  * In order to enable inner (again note that in this case inner is the outer
840  * most or single VLAN from the VF's perspective) VLAN stripping for 0x8100
841  * VLANs, the VF would populate the virtchnl_vlan_setting structure in the
842  * following manner and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message.
843  *
844  * virtchnl_vlan_setting.inner_ethertype_setting =
845  *			VIRTCHNL_VLAN_ETHERTYPE_8100;
846  *
847  * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
848  * initialization.
849  *
850  * The reason that VLAN TPID(s) are not being used for the
851  * outer_ethertype_setting and inner_ethertype_setting fields is because it's
852  * possible a device could support VLAN insertion and/or stripping offload on
853  * multiple ethertypes concurrently, so this method allows a VF to request
854  * multiple ethertypes in one message using the virtchnl_vlan_support
855  * enumeration.
856  *
857  * For example, if the PF populates the virtchnl_vlan_caps.offloads in the
858  * following manner the VF will be allowed to enable 0x8100 and 0x88a8 outer
859  * VLAN insertion and stripping simultaneously. The
860  * virtchnl_vlan_caps.offloads.ethertype_match field will also have to be
861  * populated based on what the PF can support.
862  *
863  * virtchnl_vlan_caps.offloads.stripping_support.outer =
864  *			VIRTCHNL_VLAN_TOGGLE |
865  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
866  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
867  *			VIRTCHNL_VLAN_ETHERTYPE_AND;
868  *
869  * virtchnl_vlan_caps.offloads.insertion_support.outer =
870  *			VIRTCHNL_VLAN_TOGGLE |
871  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
872  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
873  *			VIRTCHNL_VLAN_ETHERTYPE_AND;
874  *
875  * In order to enable outer VLAN stripping for 0x8100 and 0x88a8 VLANs, the VF
876  * would populate the virthcnl_vlan_offload_structure in the following manner
877  * and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message.
878  *
879  * virtchnl_vlan_setting.outer_ethertype_setting =
880  *			VIRTHCNL_VLAN_ETHERTYPE_8100 |
881  *			VIRTHCNL_VLAN_ETHERTYPE_88A8;
882  *
883  * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
884  * initialization.
885  *
886  * There is also the case where a PF and the underlying hardware can support
887  * VLAN offloads on multiple ethertypes, but not concurrently. For example, if
888  * the PF populates the virtchnl_vlan_caps.offloads in the following manner the
889  * VF will be allowed to enable and/or disable 0x8100 XOR 0x88a8 outer VLAN
890  * offloads. The ethertypes must match for stripping and insertion.
891  *
892  * virtchnl_vlan_caps.offloads.stripping_support.outer =
893  *			VIRTCHNL_VLAN_TOGGLE |
894  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
895  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
896  *			VIRTCHNL_VLAN_ETHERTYPE_XOR;
897  *
898  * virtchnl_vlan_caps.offloads.insertion_support.outer =
899  *			VIRTCHNL_VLAN_TOGGLE |
900  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
901  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
902  *			VIRTCHNL_VLAN_ETHERTYPE_XOR;
903  *
904  * virtchnl_vlan_caps.offloads.ethertype_match =
905  *			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
906  *
907  * In order to enable outer VLAN stripping for 0x88a8 VLANs, the VF would
908  * populate the virtchnl_vlan_setting structure in the following manner and send
909  * the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2. Also, this will change the
910  * ethertype for VLAN insertion if it's enabled. So, for completeness, a
911  * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 with the same ethertype should be sent.
912  *
913  * virtchnl_vlan_setting.outer_ethertype_setting = VIRTHCNL_VLAN_ETHERTYPE_88A8;
914  *
915  * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
916  * initialization.
917  */
918 struct virtchnl_vlan_setting {
919 	u32 outer_ethertype_setting;
920 	u32 inner_ethertype_setting;
921 	u16 vport_id;
922 	u8 pad[6];
923 };
924 
925 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_setting);
926 
927 /* VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE
928  * VF sends VSI id and flags.
929  * PF returns status code in retval.
930  * Note: we assume that broadcast accept mode is always enabled.
931  */
932 struct virtchnl_promisc_info {
933 	u16 vsi_id;
934 	u16 flags;
935 };
936 
937 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_promisc_info);
938 
939 #define FLAG_VF_UNICAST_PROMISC	0x00000001
940 #define FLAG_VF_MULTICAST_PROMISC	0x00000002
941 
942 /* VIRTCHNL_OP_GET_STATS
943  * VF sends this message to request stats for the selected VSI. VF uses
944  * the virtchnl_queue_select struct to specify the VSI. The queue_id
945  * field is ignored by the PF.
946  *
947  * PF replies with struct eth_stats in an external buffer.
948  */
949 
950 /* VIRTCHNL_OP_CONFIG_RSS_KEY
951  * VIRTCHNL_OP_CONFIG_RSS_LUT
952  * VF sends these messages to configure RSS. Only supported if both PF
953  * and VF drivers set the VIRTCHNL_VF_OFFLOAD_RSS_PF bit during
954  * configuration negotiation. If this is the case, then the RSS fields in
955  * the VF resource struct are valid.
956  * Both the key and LUT are initialized to 0 by the PF, meaning that
957  * RSS is effectively disabled until set up by the VF.
958  */
959 struct virtchnl_rss_key {
960 	u16 vsi_id;
961 	u16 key_len;
962 	u8 key[];          /* RSS hash key, packed bytes */
963 };
964 
965 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_rss_key);
966 #define virtchnl_rss_key_LEGACY_SIZEOF	6
967 
968 struct virtchnl_rss_lut {
969 	u16 vsi_id;
970 	u16 lut_entries;
971 	u8 lut[];         /* RSS lookup table */
972 };
973 
974 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_rss_lut);
975 #define virtchnl_rss_lut_LEGACY_SIZEOF	6
976 
977 /* VIRTCHNL_OP_GET_RSS_HENA_CAPS
978  * VIRTCHNL_OP_SET_RSS_HENA
979  * VF sends these messages to get and set the hash filter enable bits for RSS.
980  * By default, the PF sets these to all possible traffic types that the
981  * hardware supports. The VF can query this value if it wants to change the
982  * traffic types that are hashed by the hardware.
983  */
984 struct virtchnl_rss_hena {
985 	u64 hena;
986 };
987 
988 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_rss_hena);
989 
990 /* Type of RSS algorithm */
991 enum virtchnl_rss_algorithm {
992 	VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC	= 0,
993 	VIRTCHNL_RSS_ALG_R_ASYMMETRIC		= 1,
994 	VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC	= 2,
995 	VIRTCHNL_RSS_ALG_XOR_SYMMETRIC		= 3,
996 };
997 
998 /* VIRTCHNL_OP_CONFIG_RSS_HFUNC
999  * VF sends this message to configure the RSS hash function. Only supported
1000  * if both PF and VF drivers set the VIRTCHNL_VF_OFFLOAD_RSS_PF bit during
1001  * configuration negotiation.
1002  * The hash function is initialized to VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC
1003  * by the PF.
1004  */
1005 struct virtchnl_rss_hfunc {
1006 	u16 vsi_id;
1007 	u16 rss_algorithm; /* enum virtchnl_rss_algorithm */
1008 	u32 reserved;
1009 };
1010 
1011 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_rss_hfunc);
1012 
1013 /* VIRTCHNL_OP_ENABLE_CHANNELS
1014  * VIRTCHNL_OP_DISABLE_CHANNELS
1015  * VF sends these messages to enable or disable channels based on
1016  * the user specified queue count and queue offset for each traffic class.
1017  * This struct encompasses all the information that the PF needs from
1018  * VF to create a channel.
1019  */
1020 struct virtchnl_channel_info {
1021 	u16 count; /* number of queues in a channel */
1022 	u16 offset; /* queues in a channel start from 'offset' */
1023 	u32 pad;
1024 	u64 max_tx_rate;
1025 };
1026 
1027 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_channel_info);
1028 
1029 struct virtchnl_tc_info {
1030 	u32	num_tc;
1031 	u32	pad;
1032 	struct virtchnl_channel_info list[];
1033 };
1034 
1035 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_tc_info);
1036 #define virtchnl_tc_info_LEGACY_SIZEOF	24
1037 
1038 /* VIRTCHNL_ADD_CLOUD_FILTER
1039  * VIRTCHNL_DEL_CLOUD_FILTER
1040  * VF sends these messages to add or delete a cloud filter based on the
1041  * user specified match and action filters. These structures encompass
1042  * all the information that the PF needs from the VF to add/delete a
1043  * cloud filter.
1044  */
1045 
1046 struct virtchnl_l4_spec {
1047 	u8	src_mac[ETH_ALEN];
1048 	u8	dst_mac[ETH_ALEN];
1049 	__be16	vlan_id;
1050 	__be16	pad; /* reserved for future use */
1051 	__be32	src_ip[4];
1052 	__be32	dst_ip[4];
1053 	__be16	src_port;
1054 	__be16	dst_port;
1055 };
1056 
1057 VIRTCHNL_CHECK_STRUCT_LEN(52, virtchnl_l4_spec);
1058 
1059 union virtchnl_flow_spec {
1060 	struct	virtchnl_l4_spec tcp_spec;
1061 	u8	buffer[128]; /* reserved for future use */
1062 };
1063 
1064 VIRTCHNL_CHECK_UNION_LEN(128, virtchnl_flow_spec);
1065 
1066 enum virtchnl_action {
1067 	/* action types */
1068 	VIRTCHNL_ACTION_DROP = 0,
1069 	VIRTCHNL_ACTION_TC_REDIRECT,
1070 	VIRTCHNL_ACTION_PASSTHRU,
1071 	VIRTCHNL_ACTION_QUEUE,
1072 	VIRTCHNL_ACTION_Q_REGION,
1073 	VIRTCHNL_ACTION_MARK,
1074 	VIRTCHNL_ACTION_COUNT,
1075 };
1076 
1077 enum virtchnl_flow_type {
1078 	/* flow types */
1079 	VIRTCHNL_TCP_V4_FLOW = 0,
1080 	VIRTCHNL_TCP_V6_FLOW,
1081 };
1082 
1083 struct virtchnl_filter {
1084 	union	virtchnl_flow_spec data;
1085 	union	virtchnl_flow_spec mask;
1086 
1087 	/* see enum virtchnl_flow_type */
1088 	s32	flow_type;
1089 
1090 	/* see enum virtchnl_action */
1091 	s32	action;
1092 	u32	action_meta;
1093 	u8	field_flags;
1094 	u8	pad[3];
1095 };
1096 
1097 VIRTCHNL_CHECK_STRUCT_LEN(272, virtchnl_filter);
1098 
1099 /* VIRTCHNL_OP_EVENT
1100  * PF sends this message to inform the VF driver of events that may affect it.
1101  * No direct response is expected from the VF, though it may generate other
1102  * messages in response to this one.
1103  */
1104 enum virtchnl_event_codes {
1105 	VIRTCHNL_EVENT_UNKNOWN = 0,
1106 	VIRTCHNL_EVENT_LINK_CHANGE,
1107 	VIRTCHNL_EVENT_RESET_IMPENDING,
1108 	VIRTCHNL_EVENT_PF_DRIVER_CLOSE,
1109 };
1110 
1111 #define PF_EVENT_SEVERITY_INFO		0
1112 #define PF_EVENT_SEVERITY_CERTAIN_DOOM	255
1113 
1114 struct virtchnl_pf_event {
1115 	/* see enum virtchnl_event_codes */
1116 	s32 event;
1117 	union {
1118 		/* If the PF driver does not support the new speed reporting
1119 		 * capabilities then use link_event else use link_event_adv to
1120 		 * get the speed and link information. The ability to understand
1121 		 * new speeds is indicated by setting the capability flag
1122 		 * VIRTCHNL_VF_CAP_ADV_LINK_SPEED in vf_cap_flags parameter
1123 		 * in virtchnl_vf_resource struct and can be used to determine
1124 		 * which link event struct to use below.
1125 		 */
1126 		struct {
1127 			enum virtchnl_link_speed link_speed;
1128 			bool link_status;
1129 			u8 pad[3];
1130 		} link_event;
1131 		struct {
1132 			/* link_speed provided in Mbps */
1133 			u32 link_speed;
1134 			u8 link_status;
1135 			u8 pad[3];
1136 		} link_event_adv;
1137 	} event_data;
1138 
1139 	s32 severity;
1140 };
1141 
1142 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_pf_event);
1143 
1144 /* used to specify if a ceq_idx or aeq_idx is invalid */
1145 #define VIRTCHNL_RDMA_INVALID_QUEUE_IDX	0xFFFF
1146 /* VIRTCHNL_OP_CONFIG_RDMA_IRQ_MAP
1147  * VF uses this message to request PF to map RDMA vectors to RDMA queues.
1148  * The request for this originates from the VF RDMA driver through
1149  * a client interface between VF LAN and VF RDMA driver.
1150  * A vector could have an AEQ and CEQ attached to it although
1151  * there is a single AEQ per VF RDMA instance in which case
1152  * most vectors will have an VIRTCHNL_RDMA_INVALID_QUEUE_IDX for aeq and valid
1153  * idx for ceqs There will never be a case where there will be multiple CEQs
1154  * attached to a single vector.
1155  * PF configures interrupt mapping and returns status.
1156  */
1157 
1158 struct virtchnl_rdma_qv_info {
1159 	u32 v_idx; /* msix_vector */
1160 	u16 ceq_idx; /* set to VIRTCHNL_RDMA_INVALID_QUEUE_IDX if invalid */
1161 	u16 aeq_idx; /* set to VIRTCHNL_RDMA_INVALID_QUEUE_IDX if invalid */
1162 	u8 itr_idx;
1163 	u8 pad[3];
1164 };
1165 
1166 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_rdma_qv_info);
1167 
1168 struct virtchnl_rdma_qvlist_info {
1169 	u32 num_vectors;
1170 	struct virtchnl_rdma_qv_info qv_info[];
1171 };
1172 
1173 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_rdma_qvlist_info);
1174 #define virtchnl_rdma_qvlist_info_LEGACY_SIZEOF	16
1175 
1176 /* VF reset states - these are written into the RSTAT register:
1177  * VFGEN_RSTAT on the VF
1178  * When the PF initiates a reset, it writes 0
1179  * When the reset is complete, it writes 1
1180  * When the PF detects that the VF has recovered, it writes 2
1181  * VF checks this register periodically to determine if a reset has occurred,
1182  * then polls it to know when the reset is complete.
1183  * If either the PF or VF reads the register while the hardware
1184  * is in a reset state, it will return DEADBEEF, which, when masked
1185  * will result in 3.
1186  */
1187 enum virtchnl_vfr_states {
1188 	VIRTCHNL_VFR_INPROGRESS = 0,
1189 	VIRTCHNL_VFR_COMPLETED,
1190 	VIRTCHNL_VFR_VFACTIVE,
1191 };
1192 
1193 #define VIRTCHNL_MAX_NUM_PROTO_HDRS	32
1194 #define VIRTCHNL_MAX_SIZE_RAW_PACKET	1024
1195 #define PROTO_HDR_SHIFT			5
1196 #define PROTO_HDR_FIELD_START(proto_hdr_type) ((proto_hdr_type) << PROTO_HDR_SHIFT)
1197 #define PROTO_HDR_FIELD_MASK ((1UL << PROTO_HDR_SHIFT) - 1)
1198 
1199 /* VF use these macros to configure each protocol header.
1200  * Specify which protocol headers and protocol header fields base on
1201  * virtchnl_proto_hdr_type and virtchnl_proto_hdr_field.
1202  * @param hdr: a struct of virtchnl_proto_hdr
1203  * @param hdr_type: ETH/IPV4/TCP, etc
1204  * @param field: SRC/DST/TEID/SPI, etc
1205  */
1206 #define VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, field) \
1207 	((hdr)->field_selector |= BIT((field) & PROTO_HDR_FIELD_MASK))
1208 #define VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, field) \
1209 	((hdr)->field_selector &= ~BIT((field) & PROTO_HDR_FIELD_MASK))
1210 #define VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val) \
1211 	((hdr)->field_selector & BIT((val) & PROTO_HDR_FIELD_MASK))
1212 #define VIRTCHNL_GET_PROTO_HDR_FIELD(hdr)	((hdr)->field_selector)
1213 
1214 #define VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \
1215 	(VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, \
1216 		VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field))
1217 #define VIRTCHNL_DEL_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \
1218 	(VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, \
1219 		VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field))
1220 
1221 #define VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, hdr_type) \
1222 	((hdr)->type = VIRTCHNL_PROTO_HDR_ ## hdr_type)
1223 #define VIRTCHNL_GET_PROTO_HDR_TYPE(hdr) \
1224 	(((hdr)->type) >> PROTO_HDR_SHIFT)
1225 #define VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) \
1226 	((hdr)->type == ((s32)((val) >> PROTO_HDR_SHIFT)))
1227 #define VIRTCHNL_TEST_PROTO_HDR(hdr, val) \
1228 	(VIRTCHNL_TEST_PROTO_HDR_TYPE((hdr), (val)) && \
1229 	 VIRTCHNL_TEST_PROTO_HDR_FIELD((hdr), (val)))
1230 
1231 /* Protocol header type within a packet segment. A segment consists of one or
1232  * more protocol headers that make up a logical group of protocol headers. Each
1233  * logical group of protocol headers encapsulates or is encapsulated using/by
1234  * tunneling or encapsulation protocols for network virtualization.
1235  */
1236 enum virtchnl_proto_hdr_type {
1237 	VIRTCHNL_PROTO_HDR_NONE,
1238 	VIRTCHNL_PROTO_HDR_ETH,
1239 	VIRTCHNL_PROTO_HDR_S_VLAN,
1240 	VIRTCHNL_PROTO_HDR_C_VLAN,
1241 	VIRTCHNL_PROTO_HDR_IPV4,
1242 	VIRTCHNL_PROTO_HDR_IPV6,
1243 	VIRTCHNL_PROTO_HDR_TCP,
1244 	VIRTCHNL_PROTO_HDR_UDP,
1245 	VIRTCHNL_PROTO_HDR_SCTP,
1246 	VIRTCHNL_PROTO_HDR_GTPU_IP,
1247 	VIRTCHNL_PROTO_HDR_GTPU_EH,
1248 	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
1249 	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
1250 	VIRTCHNL_PROTO_HDR_PPPOE,
1251 	VIRTCHNL_PROTO_HDR_L2TPV3,
1252 	VIRTCHNL_PROTO_HDR_ESP,
1253 	VIRTCHNL_PROTO_HDR_AH,
1254 	VIRTCHNL_PROTO_HDR_PFCP,
1255 };
1256 
1257 /* Protocol header field within a protocol header. */
1258 enum virtchnl_proto_hdr_field {
1259 	/* ETHER */
1260 	VIRTCHNL_PROTO_HDR_ETH_SRC =
1261 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ETH),
1262 	VIRTCHNL_PROTO_HDR_ETH_DST,
1263 	VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE,
1264 	/* S-VLAN */
1265 	VIRTCHNL_PROTO_HDR_S_VLAN_ID =
1266 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_S_VLAN),
1267 	/* C-VLAN */
1268 	VIRTCHNL_PROTO_HDR_C_VLAN_ID =
1269 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_C_VLAN),
1270 	/* IPV4 */
1271 	VIRTCHNL_PROTO_HDR_IPV4_SRC =
1272 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4),
1273 	VIRTCHNL_PROTO_HDR_IPV4_DST,
1274 	VIRTCHNL_PROTO_HDR_IPV4_DSCP,
1275 	VIRTCHNL_PROTO_HDR_IPV4_TTL,
1276 	VIRTCHNL_PROTO_HDR_IPV4_PROT,
1277 	/* IPV6 */
1278 	VIRTCHNL_PROTO_HDR_IPV6_SRC =
1279 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6),
1280 	VIRTCHNL_PROTO_HDR_IPV6_DST,
1281 	VIRTCHNL_PROTO_HDR_IPV6_TC,
1282 	VIRTCHNL_PROTO_HDR_IPV6_HOP_LIMIT,
1283 	VIRTCHNL_PROTO_HDR_IPV6_PROT,
1284 	/* TCP */
1285 	VIRTCHNL_PROTO_HDR_TCP_SRC_PORT =
1286 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_TCP),
1287 	VIRTCHNL_PROTO_HDR_TCP_DST_PORT,
1288 	/* UDP */
1289 	VIRTCHNL_PROTO_HDR_UDP_SRC_PORT =
1290 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_UDP),
1291 	VIRTCHNL_PROTO_HDR_UDP_DST_PORT,
1292 	/* SCTP */
1293 	VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT =
1294 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_SCTP),
1295 	VIRTCHNL_PROTO_HDR_SCTP_DST_PORT,
1296 	/* GTPU_IP */
1297 	VIRTCHNL_PROTO_HDR_GTPU_IP_TEID =
1298 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_IP),
1299 	/* GTPU_EH */
1300 	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU =
1301 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH),
1302 	VIRTCHNL_PROTO_HDR_GTPU_EH_QFI,
1303 	/* PPPOE */
1304 	VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID =
1305 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PPPOE),
1306 	/* L2TPV3 */
1307 	VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID =
1308 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_L2TPV3),
1309 	/* ESP */
1310 	VIRTCHNL_PROTO_HDR_ESP_SPI =
1311 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ESP),
1312 	/* AH */
1313 	VIRTCHNL_PROTO_HDR_AH_SPI =
1314 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_AH),
1315 	/* PFCP */
1316 	VIRTCHNL_PROTO_HDR_PFCP_S_FIELD =
1317 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PFCP),
1318 	VIRTCHNL_PROTO_HDR_PFCP_SEID,
1319 };
1320 
1321 struct virtchnl_proto_hdr {
1322 	/* see enum virtchnl_proto_hdr_type */
1323 	s32 type;
1324 	u32 field_selector; /* a bit mask to select field for header type */
1325 	u8 buffer[64];
1326 	/**
1327 	 * binary buffer in network order for specific header type.
1328 	 * For example, if type = VIRTCHNL_PROTO_HDR_IPV4, a IPv4
1329 	 * header is expected to be copied into the buffer.
1330 	 */
1331 };
1332 
1333 VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_proto_hdr);
1334 
1335 struct virtchnl_proto_hdrs {
1336 	u8 tunnel_level;
1337 	u8 pad[3];
1338 	/**
1339 	 * specify where protocol header start from.
1340 	 * must be 0 when sending a raw packet request.
1341 	 * 0 - from the outer layer
1342 	 * 1 - from the first inner layer
1343 	 * 2 - from the second inner layer
1344 	 * ....
1345 	 **/
1346 	u32 count; /* the proto layers must < VIRTCHNL_MAX_NUM_PROTO_HDRS */
1347 	union {
1348 		struct virtchnl_proto_hdr
1349 			proto_hdr[VIRTCHNL_MAX_NUM_PROTO_HDRS];
1350 		struct {
1351 			u16 pkt_len;
1352 			u8 spec[VIRTCHNL_MAX_SIZE_RAW_PACKET];
1353 			u8 mask[VIRTCHNL_MAX_SIZE_RAW_PACKET];
1354 		} raw;
1355 	};
1356 };
1357 
1358 VIRTCHNL_CHECK_STRUCT_LEN(2312, virtchnl_proto_hdrs);
1359 
1360 struct virtchnl_rss_cfg {
1361 	struct virtchnl_proto_hdrs proto_hdrs;	   /* protocol headers */
1362 
1363 	/* see enum virtchnl_rss_algorithm; rss algorithm type */
1364 	s32 rss_algorithm;
1365 	u8 reserved[128];                          /* reserve for future */
1366 };
1367 
1368 VIRTCHNL_CHECK_STRUCT_LEN(2444, virtchnl_rss_cfg);
1369 
1370 /* action configuration for FDIR */
1371 struct virtchnl_filter_action {
1372 	/* see enum virtchnl_action type */
1373 	s32 type;
1374 	union {
1375 		/* used for queue and qgroup action */
1376 		struct {
1377 			u16 index;
1378 			u8 region;
1379 		} queue;
1380 		/* used for count action */
1381 		struct {
1382 			/* share counter ID with other flow rules */
1383 			u8 shared;
1384 			u32 id; /* counter ID */
1385 		} count;
1386 		/* used for mark action */
1387 		u32 mark_id;
1388 		u8 reserve[32];
1389 	} act_conf;
1390 };
1391 
1392 VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_filter_action);
1393 
1394 #define VIRTCHNL_MAX_NUM_ACTIONS  8
1395 
1396 struct virtchnl_filter_action_set {
1397 	/* action number must be less then VIRTCHNL_MAX_NUM_ACTIONS */
1398 	u32 count;
1399 	struct virtchnl_filter_action actions[VIRTCHNL_MAX_NUM_ACTIONS];
1400 };
1401 
1402 VIRTCHNL_CHECK_STRUCT_LEN(292, virtchnl_filter_action_set);
1403 
1404 /* pattern and action for FDIR rule */
1405 struct virtchnl_fdir_rule {
1406 	struct virtchnl_proto_hdrs proto_hdrs;
1407 	struct virtchnl_filter_action_set action_set;
1408 };
1409 
1410 VIRTCHNL_CHECK_STRUCT_LEN(2604, virtchnl_fdir_rule);
1411 
1412 /* Status returned to VF after VF requests FDIR commands
1413  * VIRTCHNL_FDIR_SUCCESS
1414  * VF FDIR related request is successfully done by PF
1415  * The request can be OP_ADD/DEL/QUERY_FDIR_FILTER.
1416  *
1417  * VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE
1418  * OP_ADD_FDIR_FILTER request is failed due to no Hardware resource.
1419  *
1420  * VIRTCHNL_FDIR_FAILURE_RULE_EXIST
1421  * OP_ADD_FDIR_FILTER request is failed due to the rule is already existed.
1422  *
1423  * VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT
1424  * OP_ADD_FDIR_FILTER request is failed due to conflict with existing rule.
1425  *
1426  * VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST
1427  * OP_DEL_FDIR_FILTER request is failed due to this rule doesn't exist.
1428  *
1429  * VIRTCHNL_FDIR_FAILURE_RULE_INVALID
1430  * OP_ADD_FDIR_FILTER request is failed due to parameters validation
1431  * or HW doesn't support.
1432  *
1433  * VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT
1434  * OP_ADD/DEL_FDIR_FILTER request is failed due to timing out
1435  * for programming.
1436  *
1437  * VIRTCHNL_FDIR_FAILURE_QUERY_INVALID
1438  * OP_QUERY_FDIR_FILTER request is failed due to parameters validation,
1439  * for example, VF query counter of a rule who has no counter action.
1440  */
1441 enum virtchnl_fdir_prgm_status {
1442 	VIRTCHNL_FDIR_SUCCESS = 0,
1443 	VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE,
1444 	VIRTCHNL_FDIR_FAILURE_RULE_EXIST,
1445 	VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT,
1446 	VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST,
1447 	VIRTCHNL_FDIR_FAILURE_RULE_INVALID,
1448 	VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT,
1449 	VIRTCHNL_FDIR_FAILURE_QUERY_INVALID,
1450 };
1451 
1452 /* VIRTCHNL_OP_ADD_FDIR_FILTER
1453  * VF sends this request to PF by filling out vsi_id,
1454  * validate_only and rule_cfg. PF will return flow_id
1455  * if the request is successfully done and return add_status to VF.
1456  */
1457 struct virtchnl_fdir_add {
1458 	u16 vsi_id;  /* INPUT */
1459 	/*
1460 	 * 1 for validating a fdir rule, 0 for creating a fdir rule.
1461 	 * Validate and create share one ops: VIRTCHNL_OP_ADD_FDIR_FILTER.
1462 	 */
1463 	u16 validate_only; /* INPUT */
1464 	u32 flow_id;       /* OUTPUT */
1465 	struct virtchnl_fdir_rule rule_cfg; /* INPUT */
1466 
1467 	/* see enum virtchnl_fdir_prgm_status; OUTPUT */
1468 	s32 status;
1469 };
1470 
1471 VIRTCHNL_CHECK_STRUCT_LEN(2616, virtchnl_fdir_add);
1472 
1473 /* VIRTCHNL_OP_DEL_FDIR_FILTER
1474  * VF sends this request to PF by filling out vsi_id
1475  * and flow_id. PF will return del_status to VF.
1476  */
1477 struct virtchnl_fdir_del {
1478 	u16 vsi_id;  /* INPUT */
1479 	u16 pad;
1480 	u32 flow_id; /* INPUT */
1481 
1482 	/* see enum virtchnl_fdir_prgm_status; OUTPUT */
1483 	s32 status;
1484 };
1485 
1486 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_fdir_del);
1487 
1488 #define VIRTCHNL_1588_PTP_CAP_RX_TSTAMP		BIT(1)
1489 #define VIRTCHNL_1588_PTP_CAP_READ_PHC		BIT(2)
1490 
1491 /**
1492  * struct virtchnl_ptp_caps - Defines the PTP caps available to the VF.
1493  * @caps: On send, VF sets what capabilities it requests. On reply, PF
1494  *        indicates what has been enabled for this VF. The PF shall not set
1495  *        bits which were not requested by the VF.
1496  * @rsvd: Reserved bits for future extension.
1497  *
1498  * Structure that defines the PTP capabilities available to the VF. The VF
1499  * sends VIRTCHNL_OP_1588_PTP_GET_CAPS, and must fill in the ptp_caps field
1500  * indicating what capabilities it is requesting. The PF will respond with the
1501  * same message with the virtchnl_ptp_caps structure indicating what is
1502  * enabled for the VF.
1503  *
1504  * VIRTCHNL_1588_PTP_CAP_RX_TSTAMP indicates that the VF receive queues have
1505  * receive timestamps enabled in the flexible descriptors. Note that this
1506  * requires a VF to also negotiate to enable advanced flexible descriptors in
1507  * the receive path instead of the default legacy descriptor format.
1508  *
1509  * VIRTCHNL_1588_PTP_CAP_READ_PHC indicates that the VF may read the PHC time
1510  * via the VIRTCHNL_OP_1588_PTP_GET_TIME command.
1511  *
1512  * Note that in the future, additional capability flags may be added which
1513  * indicate additional extended support. All fields marked as reserved by this
1514  * header will be set to zero. VF implementations should verify this to ensure
1515  * that future extensions do not break compatibility.
1516  */
1517 struct virtchnl_ptp_caps {
1518 	u32 caps;
1519 	u8 rsvd[44];
1520 };
1521 
1522 VIRTCHNL_CHECK_STRUCT_LEN(48, virtchnl_ptp_caps);
1523 
1524 /**
1525  * struct virtchnl_phc_time - Contains the 64bits of PHC clock time in ns.
1526  * @time: PHC time in nanoseconds
1527  * @rsvd: Reserved for future extension
1528  *
1529  * Structure received with VIRTCHNL_OP_1588_PTP_GET_TIME. Contains the 64bits
1530  * of PHC clock time in nanoseconds.
1531  *
1532  * VIRTCHNL_OP_1588_PTP_GET_TIME may be sent to request the current time of
1533  * the PHC. This op is available in case direct access via the PHC registers
1534  * is not available.
1535  */
1536 struct virtchnl_phc_time {
1537 	u64 time;
1538 	u8 rsvd[8];
1539 };
1540 
1541 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_phc_time);
1542 
1543 struct virtchnl_shaper_bw {
1544 	/* Unit is Kbps */
1545 	u32 committed;
1546 	u32 peak;
1547 };
1548 
1549 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_shaper_bw);
1550 
1551 /* VIRTCHNL_OP_GET_QOS_CAPS
1552  * VF sends this message to get its QoS Caps, such as
1553  * TC number, Arbiter and Bandwidth.
1554  */
1555 struct virtchnl_qos_cap_elem {
1556 	u8 tc_num;
1557 	u8 tc_prio;
1558 #define VIRTCHNL_ABITER_STRICT      0
1559 #define VIRTCHNL_ABITER_ETS         2
1560 	u8 arbiter;
1561 #define VIRTCHNL_STRICT_WEIGHT      1
1562 	u8 weight;
1563 	enum virtchnl_bw_limit_type type;
1564 	union {
1565 		struct virtchnl_shaper_bw shaper;
1566 		u8 pad2[32];
1567 	};
1568 };
1569 
1570 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_qos_cap_elem);
1571 
1572 struct virtchnl_qos_cap_list {
1573 	u16 vsi_id;
1574 	u16 num_elem;
1575 	struct virtchnl_qos_cap_elem cap[];
1576 };
1577 
1578 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_qos_cap_list);
1579 #define virtchnl_qos_cap_list_LEGACY_SIZEOF	44
1580 
1581 /* VIRTCHNL_OP_CONFIG_QUEUE_BW */
1582 struct virtchnl_queue_bw {
1583 	u16 queue_id;
1584 	u8 tc;
1585 	u8 pad;
1586 	struct virtchnl_shaper_bw shaper;
1587 };
1588 
1589 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_bw);
1590 
1591 struct virtchnl_queues_bw_cfg {
1592 	u16 vsi_id;
1593 	u16 num_queues;
1594 	struct virtchnl_queue_bw cfg[];
1595 };
1596 
1597 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_queues_bw_cfg);
1598 #define virtchnl_queues_bw_cfg_LEGACY_SIZEOF	16
1599 
1600 enum virtchnl_queue_type {
1601 	VIRTCHNL_QUEUE_TYPE_TX			= 0,
1602 	VIRTCHNL_QUEUE_TYPE_RX			= 1,
1603 };
1604 
1605 /* structure to specify a chunk of contiguous queues */
1606 struct virtchnl_queue_chunk {
1607 	/* see enum virtchnl_queue_type */
1608 	s32 type;
1609 	u16 start_queue_id;
1610 	u16 num_queues;
1611 };
1612 
1613 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_queue_chunk);
1614 
1615 struct virtchnl_quanta_cfg {
1616 	u16 quanta_size;
1617 	u16 pad;
1618 	struct virtchnl_queue_chunk queue_select;
1619 };
1620 
1621 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_quanta_cfg);
1622 
1623 #define __vss_byone(p, member, count, old)				      \
1624 	(struct_size(p, member, count) + (old - 1 - struct_size(p, member, 0)))
1625 
1626 #define __vss_byelem(p, member, count, old)				      \
1627 	(struct_size(p, member, count - 1) + (old - struct_size(p, member, 0)))
1628 
1629 #define __vss_full(p, member, count, old)				      \
1630 	(struct_size(p, member, count) + (old - struct_size(p, member, 0)))
1631 
1632 #define __vss(type, func, p, member, count)		\
1633 	struct type: func(p, member, count, type##_LEGACY_SIZEOF)
1634 
1635 #define virtchnl_struct_size(p, m, c)					      \
1636 	_Generic(*p,							      \
1637 		 __vss(virtchnl_vf_resource, __vss_full, p, m, c),	      \
1638 		 __vss(virtchnl_vsi_queue_config_info, __vss_full, p, m, c),  \
1639 		 __vss(virtchnl_irq_map_info, __vss_full, p, m, c),	      \
1640 		 __vss(virtchnl_ether_addr_list, __vss_full, p, m, c),	      \
1641 		 __vss(virtchnl_vlan_filter_list, __vss_full, p, m, c),	      \
1642 		 __vss(virtchnl_vlan_filter_list_v2, __vss_byelem, p, m, c),  \
1643 		 __vss(virtchnl_tc_info, __vss_byelem, p, m, c),	      \
1644 		 __vss(virtchnl_rdma_qvlist_info, __vss_byelem, p, m, c),     \
1645 		 __vss(virtchnl_qos_cap_list, __vss_byelem, p, m, c),	      \
1646 		 __vss(virtchnl_queues_bw_cfg, __vss_byelem, p, m, c),	      \
1647 		 __vss(virtchnl_rss_key, __vss_byone, p, m, c),		      \
1648 		 __vss(virtchnl_rss_lut, __vss_byone, p, m, c))
1649 
1650 /**
1651  * virtchnl_vc_validate_vf_msg
1652  * @ver: Virtchnl version info
1653  * @v_opcode: Opcode for the message
1654  * @msg: pointer to the msg buffer
1655  * @msglen: msg length
1656  *
1657  * validate msg format against struct for each opcode
1658  */
1659 static inline int
virtchnl_vc_validate_vf_msg(struct virtchnl_version_info * ver,u32 v_opcode,u8 * msg,u16 msglen)1660 virtchnl_vc_validate_vf_msg(struct virtchnl_version_info *ver, u32 v_opcode,
1661 			    u8 *msg, u16 msglen)
1662 {
1663 	bool err_msg_format = false;
1664 	u32 valid_len = 0;
1665 
1666 	/* Validate message length. */
1667 	switch (v_opcode) {
1668 	case VIRTCHNL_OP_VERSION:
1669 		valid_len = sizeof(struct virtchnl_version_info);
1670 		break;
1671 	case VIRTCHNL_OP_RESET_VF:
1672 		break;
1673 	case VIRTCHNL_OP_GET_VF_RESOURCES:
1674 		if (VF_IS_V11(ver))
1675 			valid_len = sizeof(u32);
1676 		break;
1677 	case VIRTCHNL_OP_CONFIG_TX_QUEUE:
1678 		valid_len = sizeof(struct virtchnl_txq_info);
1679 		break;
1680 	case VIRTCHNL_OP_CONFIG_RX_QUEUE:
1681 		valid_len = sizeof(struct virtchnl_rxq_info);
1682 		break;
1683 	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
1684 		valid_len = virtchnl_vsi_queue_config_info_LEGACY_SIZEOF;
1685 		if (msglen >= valid_len) {
1686 			struct virtchnl_vsi_queue_config_info *vqc =
1687 			    (struct virtchnl_vsi_queue_config_info *)msg;
1688 			valid_len = virtchnl_struct_size(vqc, qpair,
1689 							 vqc->num_queue_pairs);
1690 			if (vqc->num_queue_pairs == 0)
1691 				err_msg_format = true;
1692 		}
1693 		break;
1694 	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
1695 		valid_len = virtchnl_irq_map_info_LEGACY_SIZEOF;
1696 		if (msglen >= valid_len) {
1697 			struct virtchnl_irq_map_info *vimi =
1698 			    (struct virtchnl_irq_map_info *)msg;
1699 			valid_len = virtchnl_struct_size(vimi, vecmap,
1700 							 vimi->num_vectors);
1701 			if (vimi->num_vectors == 0)
1702 				err_msg_format = true;
1703 		}
1704 		break;
1705 	case VIRTCHNL_OP_ENABLE_QUEUES:
1706 	case VIRTCHNL_OP_DISABLE_QUEUES:
1707 		valid_len = sizeof(struct virtchnl_queue_select);
1708 		break;
1709 	case VIRTCHNL_OP_ADD_ETH_ADDR:
1710 	case VIRTCHNL_OP_DEL_ETH_ADDR:
1711 		valid_len = virtchnl_ether_addr_list_LEGACY_SIZEOF;
1712 		if (msglen >= valid_len) {
1713 			struct virtchnl_ether_addr_list *veal =
1714 			    (struct virtchnl_ether_addr_list *)msg;
1715 			valid_len = virtchnl_struct_size(veal, list,
1716 							 veal->num_elements);
1717 			if (veal->num_elements == 0)
1718 				err_msg_format = true;
1719 		}
1720 		break;
1721 	case VIRTCHNL_OP_ADD_VLAN:
1722 	case VIRTCHNL_OP_DEL_VLAN:
1723 		valid_len = virtchnl_vlan_filter_list_LEGACY_SIZEOF;
1724 		if (msglen >= valid_len) {
1725 			struct virtchnl_vlan_filter_list *vfl =
1726 			    (struct virtchnl_vlan_filter_list *)msg;
1727 			valid_len = virtchnl_struct_size(vfl, vlan_id,
1728 							 vfl->num_elements);
1729 			if (vfl->num_elements == 0)
1730 				err_msg_format = true;
1731 		}
1732 		break;
1733 	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
1734 		valid_len = sizeof(struct virtchnl_promisc_info);
1735 		break;
1736 	case VIRTCHNL_OP_GET_STATS:
1737 		valid_len = sizeof(struct virtchnl_queue_select);
1738 		break;
1739 	case VIRTCHNL_OP_RDMA:
1740 		/* These messages are opaque to us and will be validated in
1741 		 * the RDMA client code. We just need to check for nonzero
1742 		 * length. The firmware will enforce max length restrictions.
1743 		 */
1744 		if (msglen)
1745 			valid_len = msglen;
1746 		else
1747 			err_msg_format = true;
1748 		break;
1749 	case VIRTCHNL_OP_RELEASE_RDMA_IRQ_MAP:
1750 		break;
1751 	case VIRTCHNL_OP_CONFIG_RDMA_IRQ_MAP:
1752 		valid_len = virtchnl_rdma_qvlist_info_LEGACY_SIZEOF;
1753 		if (msglen >= valid_len) {
1754 			struct virtchnl_rdma_qvlist_info *qv =
1755 				(struct virtchnl_rdma_qvlist_info *)msg;
1756 
1757 			valid_len = virtchnl_struct_size(qv, qv_info,
1758 							 qv->num_vectors);
1759 		}
1760 		break;
1761 	case VIRTCHNL_OP_CONFIG_RSS_KEY:
1762 		valid_len = virtchnl_rss_key_LEGACY_SIZEOF;
1763 		if (msglen >= valid_len) {
1764 			struct virtchnl_rss_key *vrk =
1765 				(struct virtchnl_rss_key *)msg;
1766 			valid_len = virtchnl_struct_size(vrk, key,
1767 							 vrk->key_len);
1768 		}
1769 		break;
1770 	case VIRTCHNL_OP_CONFIG_RSS_LUT:
1771 		valid_len = virtchnl_rss_lut_LEGACY_SIZEOF;
1772 		if (msglen >= valid_len) {
1773 			struct virtchnl_rss_lut *vrl =
1774 				(struct virtchnl_rss_lut *)msg;
1775 			valid_len = virtchnl_struct_size(vrl, lut,
1776 							 vrl->lut_entries);
1777 		}
1778 		break;
1779 	case VIRTCHNL_OP_CONFIG_RSS_HFUNC:
1780 		valid_len = sizeof(struct virtchnl_rss_hfunc);
1781 		break;
1782 	case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
1783 		break;
1784 	case VIRTCHNL_OP_SET_RSS_HENA:
1785 		valid_len = sizeof(struct virtchnl_rss_hena);
1786 		break;
1787 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
1788 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
1789 		break;
1790 	case VIRTCHNL_OP_REQUEST_QUEUES:
1791 		valid_len = sizeof(struct virtchnl_vf_res_request);
1792 		break;
1793 	case VIRTCHNL_OP_ENABLE_CHANNELS:
1794 		valid_len = virtchnl_tc_info_LEGACY_SIZEOF;
1795 		if (msglen >= valid_len) {
1796 			struct virtchnl_tc_info *vti =
1797 				(struct virtchnl_tc_info *)msg;
1798 			valid_len = virtchnl_struct_size(vti, list,
1799 							 vti->num_tc);
1800 			if (vti->num_tc == 0)
1801 				err_msg_format = true;
1802 		}
1803 		break;
1804 	case VIRTCHNL_OP_DISABLE_CHANNELS:
1805 		break;
1806 	case VIRTCHNL_OP_ADD_CLOUD_FILTER:
1807 	case VIRTCHNL_OP_DEL_CLOUD_FILTER:
1808 		valid_len = sizeof(struct virtchnl_filter);
1809 		break;
1810 	case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
1811 		break;
1812 	case VIRTCHNL_OP_ADD_RSS_CFG:
1813 	case VIRTCHNL_OP_DEL_RSS_CFG:
1814 		valid_len = sizeof(struct virtchnl_rss_cfg);
1815 		break;
1816 	case VIRTCHNL_OP_ADD_FDIR_FILTER:
1817 		valid_len = sizeof(struct virtchnl_fdir_add);
1818 		break;
1819 	case VIRTCHNL_OP_DEL_FDIR_FILTER:
1820 		valid_len = sizeof(struct virtchnl_fdir_del);
1821 		break;
1822 	case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
1823 		break;
1824 	case VIRTCHNL_OP_ADD_VLAN_V2:
1825 	case VIRTCHNL_OP_DEL_VLAN_V2:
1826 		valid_len = virtchnl_vlan_filter_list_v2_LEGACY_SIZEOF;
1827 		if (msglen >= valid_len) {
1828 			struct virtchnl_vlan_filter_list_v2 *vfl =
1829 			    (struct virtchnl_vlan_filter_list_v2 *)msg;
1830 
1831 			valid_len = virtchnl_struct_size(vfl, filters,
1832 							 vfl->num_elements);
1833 
1834 			if (vfl->num_elements == 0) {
1835 				err_msg_format = true;
1836 				break;
1837 			}
1838 		}
1839 		break;
1840 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
1841 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
1842 	case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
1843 	case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
1844 		valid_len = sizeof(struct virtchnl_vlan_setting);
1845 		break;
1846 	case VIRTCHNL_OP_GET_QOS_CAPS:
1847 		break;
1848 	case VIRTCHNL_OP_CONFIG_QUEUE_BW:
1849 		valid_len = virtchnl_queues_bw_cfg_LEGACY_SIZEOF;
1850 		if (msglen >= valid_len) {
1851 			struct virtchnl_queues_bw_cfg *q_bw =
1852 				(struct virtchnl_queues_bw_cfg *)msg;
1853 
1854 			valid_len = virtchnl_struct_size(q_bw, cfg,
1855 							 q_bw->num_queues);
1856 			if (q_bw->num_queues == 0) {
1857 				err_msg_format = true;
1858 				break;
1859 			}
1860 		}
1861 		break;
1862 	case VIRTCHNL_OP_CONFIG_QUANTA:
1863 		valid_len = sizeof(struct virtchnl_quanta_cfg);
1864 		if (msglen >= valid_len) {
1865 			struct virtchnl_quanta_cfg *q_quanta =
1866 				(struct virtchnl_quanta_cfg *)msg;
1867 
1868 			if (q_quanta->quanta_size == 0 ||
1869 			    q_quanta->queue_select.num_queues == 0) {
1870 				err_msg_format = true;
1871 				break;
1872 			}
1873 		}
1874 		break;
1875 	case VIRTCHNL_OP_1588_PTP_GET_CAPS:
1876 		valid_len = sizeof(struct virtchnl_ptp_caps);
1877 		break;
1878 	case VIRTCHNL_OP_1588_PTP_GET_TIME:
1879 		valid_len = sizeof(struct virtchnl_phc_time);
1880 		break;
1881 	/* These are always errors coming from the VF. */
1882 	case VIRTCHNL_OP_EVENT:
1883 	case VIRTCHNL_OP_UNKNOWN:
1884 	default:
1885 		return VIRTCHNL_STATUS_ERR_PARAM;
1886 	}
1887 	/* few more checks */
1888 	if (err_msg_format || valid_len != msglen)
1889 		return VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH;
1890 
1891 	return 0;
1892 }
1893 #endif /* _VIRTCHNL_H_ */
1894