1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Cryptographic API.
4 //
5 // Support for Samsung S5PV210 and Exynos HW acceleration.
6 //
7 // Copyright (C) 2011 NetUP Inc. All rights reserved.
8 // Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved.
9 //
10 // Hash part based on omap-sham.c driver.
11
12 #include <linux/clk.h>
13 #include <linux/crypto.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/errno.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/platform_device.h>
24 #include <linux/scatterlist.h>
25
26 #include <crypto/ctr.h>
27 #include <crypto/aes.h>
28 #include <crypto/algapi.h>
29 #include <crypto/scatterwalk.h>
30
31 #include <crypto/hash.h>
32 #include <crypto/md5.h>
33 #include <crypto/sha1.h>
34 #include <crypto/sha2.h>
35 #include <crypto/internal/hash.h>
36
37 #define _SBF(s, v) ((v) << (s))
38
39 /* Feed control registers */
40 #define SSS_REG_FCINTSTAT 0x0000
41 #define SSS_FCINTSTAT_HPARTINT BIT(7)
42 #define SSS_FCINTSTAT_HDONEINT BIT(5)
43 #define SSS_FCINTSTAT_BRDMAINT BIT(3)
44 #define SSS_FCINTSTAT_BTDMAINT BIT(2)
45 #define SSS_FCINTSTAT_HRDMAINT BIT(1)
46 #define SSS_FCINTSTAT_PKDMAINT BIT(0)
47
48 #define SSS_REG_FCINTENSET 0x0004
49 #define SSS_FCINTENSET_HPARTINTENSET BIT(7)
50 #define SSS_FCINTENSET_HDONEINTENSET BIT(5)
51 #define SSS_FCINTENSET_BRDMAINTENSET BIT(3)
52 #define SSS_FCINTENSET_BTDMAINTENSET BIT(2)
53 #define SSS_FCINTENSET_HRDMAINTENSET BIT(1)
54 #define SSS_FCINTENSET_PKDMAINTENSET BIT(0)
55
56 #define SSS_REG_FCINTENCLR 0x0008
57 #define SSS_FCINTENCLR_HPARTINTENCLR BIT(7)
58 #define SSS_FCINTENCLR_HDONEINTENCLR BIT(5)
59 #define SSS_FCINTENCLR_BRDMAINTENCLR BIT(3)
60 #define SSS_FCINTENCLR_BTDMAINTENCLR BIT(2)
61 #define SSS_FCINTENCLR_HRDMAINTENCLR BIT(1)
62 #define SSS_FCINTENCLR_PKDMAINTENCLR BIT(0)
63
64 #define SSS_REG_FCINTPEND 0x000C
65 #define SSS_FCINTPEND_HPARTINTP BIT(7)
66 #define SSS_FCINTPEND_HDONEINTP BIT(5)
67 #define SSS_FCINTPEND_BRDMAINTP BIT(3)
68 #define SSS_FCINTPEND_BTDMAINTP BIT(2)
69 #define SSS_FCINTPEND_HRDMAINTP BIT(1)
70 #define SSS_FCINTPEND_PKDMAINTP BIT(0)
71
72 #define SSS_REG_FCFIFOSTAT 0x0010
73 #define SSS_FCFIFOSTAT_BRFIFOFUL BIT(7)
74 #define SSS_FCFIFOSTAT_BRFIFOEMP BIT(6)
75 #define SSS_FCFIFOSTAT_BTFIFOFUL BIT(5)
76 #define SSS_FCFIFOSTAT_BTFIFOEMP BIT(4)
77 #define SSS_FCFIFOSTAT_HRFIFOFUL BIT(3)
78 #define SSS_FCFIFOSTAT_HRFIFOEMP BIT(2)
79 #define SSS_FCFIFOSTAT_PKFIFOFUL BIT(1)
80 #define SSS_FCFIFOSTAT_PKFIFOEMP BIT(0)
81
82 #define SSS_REG_FCFIFOCTRL 0x0014
83 #define SSS_FCFIFOCTRL_DESSEL BIT(2)
84 #define SSS_HASHIN_INDEPENDENT _SBF(0, 0x00)
85 #define SSS_HASHIN_CIPHER_INPUT _SBF(0, 0x01)
86 #define SSS_HASHIN_CIPHER_OUTPUT _SBF(0, 0x02)
87 #define SSS_HASHIN_MASK _SBF(0, 0x03)
88
89 #define SSS_REG_FCBRDMAS 0x0020
90 #define SSS_REG_FCBRDMAL 0x0024
91 #define SSS_REG_FCBRDMAC 0x0028
92 #define SSS_FCBRDMAC_BYTESWAP BIT(1)
93 #define SSS_FCBRDMAC_FLUSH BIT(0)
94
95 #define SSS_REG_FCBTDMAS 0x0030
96 #define SSS_REG_FCBTDMAL 0x0034
97 #define SSS_REG_FCBTDMAC 0x0038
98 #define SSS_FCBTDMAC_BYTESWAP BIT(1)
99 #define SSS_FCBTDMAC_FLUSH BIT(0)
100
101 #define SSS_REG_FCHRDMAS 0x0040
102 #define SSS_REG_FCHRDMAL 0x0044
103 #define SSS_REG_FCHRDMAC 0x0048
104 #define SSS_FCHRDMAC_BYTESWAP BIT(1)
105 #define SSS_FCHRDMAC_FLUSH BIT(0)
106
107 #define SSS_REG_FCPKDMAS 0x0050
108 #define SSS_REG_FCPKDMAL 0x0054
109 #define SSS_REG_FCPKDMAC 0x0058
110 #define SSS_FCPKDMAC_BYTESWAP BIT(3)
111 #define SSS_FCPKDMAC_DESCEND BIT(2)
112 #define SSS_FCPKDMAC_TRANSMIT BIT(1)
113 #define SSS_FCPKDMAC_FLUSH BIT(0)
114
115 #define SSS_REG_FCPKDMAO 0x005C
116
117 /* AES registers */
118 #define SSS_REG_AES_CONTROL 0x00
119 #define SSS_AES_BYTESWAP_DI BIT(11)
120 #define SSS_AES_BYTESWAP_DO BIT(10)
121 #define SSS_AES_BYTESWAP_IV BIT(9)
122 #define SSS_AES_BYTESWAP_CNT BIT(8)
123 #define SSS_AES_BYTESWAP_KEY BIT(7)
124 #define SSS_AES_KEY_CHANGE_MODE BIT(6)
125 #define SSS_AES_KEY_SIZE_128 _SBF(4, 0x00)
126 #define SSS_AES_KEY_SIZE_192 _SBF(4, 0x01)
127 #define SSS_AES_KEY_SIZE_256 _SBF(4, 0x02)
128 #define SSS_AES_FIFO_MODE BIT(3)
129 #define SSS_AES_CHAIN_MODE_ECB _SBF(1, 0x00)
130 #define SSS_AES_CHAIN_MODE_CBC _SBF(1, 0x01)
131 #define SSS_AES_CHAIN_MODE_CTR _SBF(1, 0x02)
132 #define SSS_AES_MODE_DECRYPT BIT(0)
133
134 #define SSS_REG_AES_STATUS 0x04
135 #define SSS_AES_BUSY BIT(2)
136 #define SSS_AES_INPUT_READY BIT(1)
137 #define SSS_AES_OUTPUT_READY BIT(0)
138
139 #define SSS_REG_AES_IN_DATA(s) (0x10 + (s << 2))
140 #define SSS_REG_AES_OUT_DATA(s) (0x20 + (s << 2))
141 #define SSS_REG_AES_IV_DATA(s) (0x30 + (s << 2))
142 #define SSS_REG_AES_CNT_DATA(s) (0x40 + (s << 2))
143 #define SSS_REG_AES_KEY_DATA(s) (0x80 + (s << 2))
144
145 #define SSS_REG(dev, reg) ((dev)->ioaddr + (SSS_REG_##reg))
146 #define SSS_READ(dev, reg) __raw_readl(SSS_REG(dev, reg))
147 #define SSS_WRITE(dev, reg, val) __raw_writel((val), SSS_REG(dev, reg))
148
149 #define SSS_AES_REG(dev, reg) ((dev)->aes_ioaddr + SSS_REG_##reg)
150 #define SSS_AES_WRITE(dev, reg, val) __raw_writel((val), \
151 SSS_AES_REG(dev, reg))
152
153 /* HW engine modes */
154 #define FLAGS_AES_DECRYPT BIT(0)
155 #define FLAGS_AES_MODE_MASK _SBF(1, 0x03)
156 #define FLAGS_AES_CBC _SBF(1, 0x01)
157 #define FLAGS_AES_CTR _SBF(1, 0x02)
158
159 #define AES_KEY_LEN 16
160 #define CRYPTO_QUEUE_LEN 1
161
162 /* HASH registers */
163 #define SSS_REG_HASH_CTRL 0x00
164
165 #define SSS_HASH_USER_IV_EN BIT(5)
166 #define SSS_HASH_INIT_BIT BIT(4)
167 #define SSS_HASH_ENGINE_SHA1 _SBF(1, 0x00)
168 #define SSS_HASH_ENGINE_MD5 _SBF(1, 0x01)
169 #define SSS_HASH_ENGINE_SHA256 _SBF(1, 0x02)
170
171 #define SSS_HASH_ENGINE_MASK _SBF(1, 0x03)
172
173 #define SSS_REG_HASH_CTRL_PAUSE 0x04
174
175 #define SSS_HASH_PAUSE BIT(0)
176
177 #define SSS_REG_HASH_CTRL_FIFO 0x08
178
179 #define SSS_HASH_FIFO_MODE_DMA BIT(0)
180 #define SSS_HASH_FIFO_MODE_CPU 0
181
182 #define SSS_REG_HASH_CTRL_SWAP 0x0C
183
184 #define SSS_HASH_BYTESWAP_DI BIT(3)
185 #define SSS_HASH_BYTESWAP_DO BIT(2)
186 #define SSS_HASH_BYTESWAP_IV BIT(1)
187 #define SSS_HASH_BYTESWAP_KEY BIT(0)
188
189 #define SSS_REG_HASH_STATUS 0x10
190
191 #define SSS_HASH_STATUS_MSG_DONE BIT(6)
192 #define SSS_HASH_STATUS_PARTIAL_DONE BIT(4)
193 #define SSS_HASH_STATUS_BUFFER_READY BIT(0)
194
195 #define SSS_REG_HASH_MSG_SIZE_LOW 0x20
196 #define SSS_REG_HASH_MSG_SIZE_HIGH 0x24
197
198 #define SSS_REG_HASH_PRE_MSG_SIZE_LOW 0x28
199 #define SSS_REG_HASH_PRE_MSG_SIZE_HIGH 0x2C
200
201 #define SSS_REG_HASH_IV(s) (0xB0 + ((s) << 2))
202 #define SSS_REG_HASH_OUT(s) (0x100 + ((s) << 2))
203
204 #define HASH_BLOCK_SIZE 64
205 #define HASH_REG_SIZEOF 4
206 #define HASH_MD5_MAX_REG (MD5_DIGEST_SIZE / HASH_REG_SIZEOF)
207 #define HASH_SHA1_MAX_REG (SHA1_DIGEST_SIZE / HASH_REG_SIZEOF)
208 #define HASH_SHA256_MAX_REG (SHA256_DIGEST_SIZE / HASH_REG_SIZEOF)
209
210 /*
211 * HASH bit numbers, used by device, setting in dev->hash_flags with
212 * functions set_bit(), clear_bit() or tested with test_bit() or BIT(),
213 * to keep HASH state BUSY or FREE, or to signal state from irq_handler
214 * to hash_tasklet. SGS keep track of allocated memory for scatterlist
215 */
216 #define HASH_FLAGS_BUSY 0
217 #define HASH_FLAGS_FINAL 1
218 #define HASH_FLAGS_DMA_ACTIVE 2
219 #define HASH_FLAGS_OUTPUT_READY 3
220 #define HASH_FLAGS_DMA_READY 4
221 #define HASH_FLAGS_SGS_COPIED 5
222 #define HASH_FLAGS_SGS_ALLOCED 6
223
224 /* HASH HW constants */
225 #define BUFLEN HASH_BLOCK_SIZE
226
227 #define SSS_HASH_QUEUE_LENGTH 10
228
229 /**
230 * struct samsung_aes_variant - platform specific SSS driver data
231 * @aes_offset: AES register offset from SSS module's base.
232 * @hash_offset: HASH register offset from SSS module's base.
233 * @clk_names: names of clocks needed to run SSS IP
234 *
235 * Specifies platform specific configuration of SSS module.
236 * Note: A structure for driver specific platform data is used for future
237 * expansion of its usage.
238 */
239 struct samsung_aes_variant {
240 unsigned int aes_offset;
241 unsigned int hash_offset;
242 const char *clk_names[2];
243 };
244
245 struct s5p_aes_reqctx {
246 unsigned long mode;
247 };
248
249 struct s5p_aes_ctx {
250 struct s5p_aes_dev *dev;
251
252 u8 aes_key[AES_MAX_KEY_SIZE];
253 u8 nonce[CTR_RFC3686_NONCE_SIZE];
254 int keylen;
255 };
256
257 /**
258 * struct s5p_aes_dev - Crypto device state container
259 * @dev: Associated device
260 * @clk: Clock for accessing hardware
261 * @pclk: APB bus clock necessary to access the hardware
262 * @ioaddr: Mapped IO memory region
263 * @aes_ioaddr: Per-varian offset for AES block IO memory
264 * @irq_fc: Feed control interrupt line
265 * @req: Crypto request currently handled by the device
266 * @ctx: Configuration for currently handled crypto request
267 * @sg_src: Scatter list with source data for currently handled block
268 * in device. This is DMA-mapped into device.
269 * @sg_dst: Scatter list with destination data for currently handled block
270 * in device. This is DMA-mapped into device.
271 * @sg_src_cpy: In case of unaligned access, copied scatter list
272 * with source data.
273 * @sg_dst_cpy: In case of unaligned access, copied scatter list
274 * with destination data.
275 * @tasklet: New request scheduling jib
276 * @queue: Crypto queue
277 * @busy: Indicates whether the device is currently handling some request
278 * thus it uses some of the fields from this state, like:
279 * req, ctx, sg_src/dst (and copies). This essentially
280 * protects against concurrent access to these fields.
281 * @lock: Lock for protecting both access to device hardware registers
282 * and fields related to current request (including the busy field).
283 * @res: Resources for hash.
284 * @io_hash_base: Per-variant offset for HASH block IO memory.
285 * @hash_lock: Lock for protecting hash_req, hash_queue and hash_flags
286 * variable.
287 * @hash_flags: Flags for current HASH op.
288 * @hash_queue: Async hash queue.
289 * @hash_tasklet: New HASH request scheduling job.
290 * @xmit_buf: Buffer for current HASH request transfer into SSS block.
291 * @hash_req: Current request sending to SSS HASH block.
292 * @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block.
293 * @hash_sg_cnt: Counter for hash_sg_iter.
294 *
295 * @use_hash: true if HASH algs enabled
296 */
297 struct s5p_aes_dev {
298 struct device *dev;
299 struct clk *clk;
300 struct clk *pclk;
301 void __iomem *ioaddr;
302 void __iomem *aes_ioaddr;
303 int irq_fc;
304
305 struct skcipher_request *req;
306 struct s5p_aes_ctx *ctx;
307 struct scatterlist *sg_src;
308 struct scatterlist *sg_dst;
309
310 struct scatterlist *sg_src_cpy;
311 struct scatterlist *sg_dst_cpy;
312
313 struct tasklet_struct tasklet;
314 struct crypto_queue queue;
315 bool busy;
316 spinlock_t lock;
317
318 struct resource *res;
319 void __iomem *io_hash_base;
320
321 spinlock_t hash_lock; /* protect hash_ vars */
322 unsigned long hash_flags;
323 struct crypto_queue hash_queue;
324 struct tasklet_struct hash_tasklet;
325
326 u8 xmit_buf[BUFLEN];
327 struct ahash_request *hash_req;
328 struct scatterlist *hash_sg_iter;
329 unsigned int hash_sg_cnt;
330
331 bool use_hash;
332 };
333
334 /**
335 * struct s5p_hash_reqctx - HASH request context
336 * @dd: Associated device
337 * @op_update: Current request operation (OP_UPDATE or OP_FINAL)
338 * @digcnt: Number of bytes processed by HW (without buffer[] ones)
339 * @digest: Digest message or IV for partial result
340 * @nregs: Number of HW registers for digest or IV read/write
341 * @engine: Bits for selecting type of HASH in SSS block
342 * @sg: sg for DMA transfer
343 * @sg_len: Length of sg for DMA transfer
344 * @sgl: sg for joining buffer and req->src scatterlist
345 * @skip: Skip offset in req->src for current op
346 * @total: Total number of bytes for current request
347 * @finup: Keep state for finup or final.
348 * @error: Keep track of error.
349 * @bufcnt: Number of bytes holded in buffer[]
350 * @buffer: For byte(s) from end of req->src in UPDATE op
351 */
352 struct s5p_hash_reqctx {
353 struct s5p_aes_dev *dd;
354 bool op_update;
355
356 u64 digcnt;
357 u8 digest[SHA256_DIGEST_SIZE];
358
359 unsigned int nregs; /* digest_size / sizeof(reg) */
360 u32 engine;
361
362 struct scatterlist *sg;
363 unsigned int sg_len;
364 struct scatterlist sgl[2];
365 unsigned int skip;
366 unsigned int total;
367 bool finup;
368 bool error;
369
370 u32 bufcnt;
371 u8 buffer[];
372 };
373
374 /**
375 * struct s5p_hash_ctx - HASH transformation context
376 * @dd: Associated device
377 * @flags: Bits for algorithm HASH.
378 * @fallback: Software transformation for zero message or size < BUFLEN.
379 */
380 struct s5p_hash_ctx {
381 struct s5p_aes_dev *dd;
382 unsigned long flags;
383 struct crypto_shash *fallback;
384 };
385
386 static const struct samsung_aes_variant s5p_aes_data = {
387 .aes_offset = 0x4000,
388 .hash_offset = 0x6000,
389 .clk_names = { "secss", },
390 };
391
392 static const struct samsung_aes_variant exynos_aes_data = {
393 .aes_offset = 0x200,
394 .hash_offset = 0x400,
395 .clk_names = { "secss", },
396 };
397
398 static const struct samsung_aes_variant exynos5433_slim_aes_data = {
399 .aes_offset = 0x400,
400 .hash_offset = 0x800,
401 .clk_names = { "aclk", "pclk", },
402 };
403
404 static const struct of_device_id s5p_sss_dt_match[] = {
405 {
406 .compatible = "samsung,s5pv210-secss",
407 .data = &s5p_aes_data,
408 },
409 {
410 .compatible = "samsung,exynos4210-secss",
411 .data = &exynos_aes_data,
412 },
413 {
414 .compatible = "samsung,exynos5433-slim-sss",
415 .data = &exynos5433_slim_aes_data,
416 },
417 { },
418 };
419 MODULE_DEVICE_TABLE(of, s5p_sss_dt_match);
420
find_s5p_sss_version(const struct platform_device * pdev)421 static inline const struct samsung_aes_variant *find_s5p_sss_version
422 (const struct platform_device *pdev)
423 {
424 if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node))
425 return of_device_get_match_data(&pdev->dev);
426
427 return (const struct samsung_aes_variant *)
428 platform_get_device_id(pdev)->driver_data;
429 }
430
431 static struct s5p_aes_dev *s5p_dev;
432
s5p_set_dma_indata(struct s5p_aes_dev * dev,const struct scatterlist * sg)433 static void s5p_set_dma_indata(struct s5p_aes_dev *dev,
434 const struct scatterlist *sg)
435 {
436 SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg));
437 SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg));
438 }
439
s5p_set_dma_outdata(struct s5p_aes_dev * dev,const struct scatterlist * sg)440 static void s5p_set_dma_outdata(struct s5p_aes_dev *dev,
441 const struct scatterlist *sg)
442 {
443 SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg));
444 SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg));
445 }
446
s5p_free_sg_cpy(struct s5p_aes_dev * dev,struct scatterlist ** sg)447 static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg)
448 {
449 int len;
450
451 if (!*sg)
452 return;
453
454 len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE);
455 free_pages((unsigned long)sg_virt(*sg), get_order(len));
456
457 kfree(*sg);
458 *sg = NULL;
459 }
460
s5p_sg_copy_buf(void * buf,struct scatterlist * sg,unsigned int nbytes,int out)461 static void s5p_sg_copy_buf(void *buf, struct scatterlist *sg,
462 unsigned int nbytes, int out)
463 {
464 struct scatter_walk walk;
465
466 if (!nbytes)
467 return;
468
469 scatterwalk_start(&walk, sg);
470 scatterwalk_copychunks(buf, &walk, nbytes, out);
471 scatterwalk_done(&walk, out, 0);
472 }
473
s5p_sg_done(struct s5p_aes_dev * dev)474 static void s5p_sg_done(struct s5p_aes_dev *dev)
475 {
476 struct skcipher_request *req = dev->req;
477 struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req);
478
479 if (dev->sg_dst_cpy) {
480 dev_dbg(dev->dev,
481 "Copying %d bytes of output data back to original place\n",
482 dev->req->cryptlen);
483 s5p_sg_copy_buf(sg_virt(dev->sg_dst_cpy), dev->req->dst,
484 dev->req->cryptlen, 1);
485 }
486 s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
487 s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
488 if (reqctx->mode & FLAGS_AES_CBC)
489 memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), AES_BLOCK_SIZE);
490
491 else if (reqctx->mode & FLAGS_AES_CTR)
492 memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), AES_BLOCK_SIZE);
493 }
494
495 /* Calls the completion. Cannot be called with dev->lock hold. */
s5p_aes_complete(struct skcipher_request * req,int err)496 static void s5p_aes_complete(struct skcipher_request *req, int err)
497 {
498 skcipher_request_complete(req, err);
499 }
500
s5p_unset_outdata(struct s5p_aes_dev * dev)501 static void s5p_unset_outdata(struct s5p_aes_dev *dev)
502 {
503 dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE);
504 }
505
s5p_unset_indata(struct s5p_aes_dev * dev)506 static void s5p_unset_indata(struct s5p_aes_dev *dev)
507 {
508 dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE);
509 }
510
s5p_make_sg_cpy(struct s5p_aes_dev * dev,struct scatterlist * src,struct scatterlist ** dst)511 static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src,
512 struct scatterlist **dst)
513 {
514 void *pages;
515 int len;
516
517 *dst = kmalloc(sizeof(**dst), GFP_ATOMIC);
518 if (!*dst)
519 return -ENOMEM;
520
521 len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE);
522 pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len));
523 if (!pages) {
524 kfree(*dst);
525 *dst = NULL;
526 return -ENOMEM;
527 }
528
529 s5p_sg_copy_buf(pages, src, dev->req->cryptlen, 0);
530
531 sg_init_table(*dst, 1);
532 sg_set_buf(*dst, pages, len);
533
534 return 0;
535 }
536
s5p_set_outdata(struct s5p_aes_dev * dev,struct scatterlist * sg)537 static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
538 {
539 if (!sg->length)
540 return -EINVAL;
541
542 if (!dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE))
543 return -ENOMEM;
544
545 dev->sg_dst = sg;
546
547 return 0;
548 }
549
s5p_set_indata(struct s5p_aes_dev * dev,struct scatterlist * sg)550 static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
551 {
552 if (!sg->length)
553 return -EINVAL;
554
555 if (!dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE))
556 return -ENOMEM;
557
558 dev->sg_src = sg;
559
560 return 0;
561 }
562
563 /*
564 * Returns -ERRNO on error (mapping of new data failed).
565 * On success returns:
566 * - 0 if there is no more data,
567 * - 1 if new transmitting (output) data is ready and its address+length
568 * have to be written to device (by calling s5p_set_dma_outdata()).
569 */
s5p_aes_tx(struct s5p_aes_dev * dev)570 static int s5p_aes_tx(struct s5p_aes_dev *dev)
571 {
572 int ret = 0;
573
574 s5p_unset_outdata(dev);
575
576 if (!sg_is_last(dev->sg_dst)) {
577 ret = s5p_set_outdata(dev, sg_next(dev->sg_dst));
578 if (!ret)
579 ret = 1;
580 }
581
582 return ret;
583 }
584
585 /*
586 * Returns -ERRNO on error (mapping of new data failed).
587 * On success returns:
588 * - 0 if there is no more data,
589 * - 1 if new receiving (input) data is ready and its address+length
590 * have to be written to device (by calling s5p_set_dma_indata()).
591 */
s5p_aes_rx(struct s5p_aes_dev * dev)592 static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/)
593 {
594 int ret = 0;
595
596 s5p_unset_indata(dev);
597
598 if (!sg_is_last(dev->sg_src)) {
599 ret = s5p_set_indata(dev, sg_next(dev->sg_src));
600 if (!ret)
601 ret = 1;
602 }
603
604 return ret;
605 }
606
s5p_hash_read(struct s5p_aes_dev * dd,u32 offset)607 static inline u32 s5p_hash_read(struct s5p_aes_dev *dd, u32 offset)
608 {
609 return __raw_readl(dd->io_hash_base + offset);
610 }
611
s5p_hash_write(struct s5p_aes_dev * dd,u32 offset,u32 value)612 static inline void s5p_hash_write(struct s5p_aes_dev *dd,
613 u32 offset, u32 value)
614 {
615 __raw_writel(value, dd->io_hash_base + offset);
616 }
617
618 /**
619 * s5p_set_dma_hashdata() - start DMA with sg
620 * @dev: device
621 * @sg: scatterlist ready to DMA transmit
622 */
s5p_set_dma_hashdata(struct s5p_aes_dev * dev,const struct scatterlist * sg)623 static void s5p_set_dma_hashdata(struct s5p_aes_dev *dev,
624 const struct scatterlist *sg)
625 {
626 dev->hash_sg_cnt--;
627 SSS_WRITE(dev, FCHRDMAS, sg_dma_address(sg));
628 SSS_WRITE(dev, FCHRDMAL, sg_dma_len(sg)); /* DMA starts */
629 }
630
631 /**
632 * s5p_hash_rx() - get next hash_sg_iter
633 * @dev: device
634 *
635 * Return:
636 * 2 if there is no more data and it is UPDATE op
637 * 1 if new receiving (input) data is ready and can be written to device
638 * 0 if there is no more data and it is FINAL op
639 */
s5p_hash_rx(struct s5p_aes_dev * dev)640 static int s5p_hash_rx(struct s5p_aes_dev *dev)
641 {
642 if (dev->hash_sg_cnt > 0) {
643 dev->hash_sg_iter = sg_next(dev->hash_sg_iter);
644 return 1;
645 }
646
647 set_bit(HASH_FLAGS_DMA_READY, &dev->hash_flags);
648 if (test_bit(HASH_FLAGS_FINAL, &dev->hash_flags))
649 return 0;
650
651 return 2;
652 }
653
s5p_aes_interrupt(int irq,void * dev_id)654 static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id)
655 {
656 struct platform_device *pdev = dev_id;
657 struct s5p_aes_dev *dev = platform_get_drvdata(pdev);
658 struct skcipher_request *req;
659 int err_dma_tx = 0;
660 int err_dma_rx = 0;
661 int err_dma_hx = 0;
662 bool tx_end = false;
663 bool hx_end = false;
664 unsigned long flags;
665 u32 status, st_bits;
666 int err;
667
668 spin_lock_irqsave(&dev->lock, flags);
669
670 /*
671 * Handle rx or tx interrupt. If there is still data (scatterlist did not
672 * reach end), then map next scatterlist entry.
673 * In case of such mapping error, s5p_aes_complete() should be called.
674 *
675 * If there is no more data in tx scatter list, call s5p_aes_complete()
676 * and schedule new tasklet.
677 *
678 * Handle hx interrupt. If there is still data map next entry.
679 */
680 status = SSS_READ(dev, FCINTSTAT);
681 if (status & SSS_FCINTSTAT_BRDMAINT)
682 err_dma_rx = s5p_aes_rx(dev);
683
684 if (status & SSS_FCINTSTAT_BTDMAINT) {
685 if (sg_is_last(dev->sg_dst))
686 tx_end = true;
687 err_dma_tx = s5p_aes_tx(dev);
688 }
689
690 if (status & SSS_FCINTSTAT_HRDMAINT)
691 err_dma_hx = s5p_hash_rx(dev);
692
693 st_bits = status & (SSS_FCINTSTAT_BRDMAINT | SSS_FCINTSTAT_BTDMAINT |
694 SSS_FCINTSTAT_HRDMAINT);
695 /* clear DMA bits */
696 SSS_WRITE(dev, FCINTPEND, st_bits);
697
698 /* clear HASH irq bits */
699 if (status & (SSS_FCINTSTAT_HDONEINT | SSS_FCINTSTAT_HPARTINT)) {
700 /* cannot have both HPART and HDONE */
701 if (status & SSS_FCINTSTAT_HPARTINT)
702 st_bits = SSS_HASH_STATUS_PARTIAL_DONE;
703
704 if (status & SSS_FCINTSTAT_HDONEINT)
705 st_bits = SSS_HASH_STATUS_MSG_DONE;
706
707 set_bit(HASH_FLAGS_OUTPUT_READY, &dev->hash_flags);
708 s5p_hash_write(dev, SSS_REG_HASH_STATUS, st_bits);
709 hx_end = true;
710 /* when DONE or PART, do not handle HASH DMA */
711 err_dma_hx = 0;
712 }
713
714 if (err_dma_rx < 0) {
715 err = err_dma_rx;
716 goto error;
717 }
718 if (err_dma_tx < 0) {
719 err = err_dma_tx;
720 goto error;
721 }
722
723 if (tx_end) {
724 s5p_sg_done(dev);
725 if (err_dma_hx == 1)
726 s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
727
728 spin_unlock_irqrestore(&dev->lock, flags);
729
730 s5p_aes_complete(dev->req, 0);
731 /* Device is still busy */
732 tasklet_schedule(&dev->tasklet);
733 } else {
734 /*
735 * Writing length of DMA block (either receiving or
736 * transmitting) will start the operation immediately, so this
737 * should be done at the end (even after clearing pending
738 * interrupts to not miss the interrupt).
739 */
740 if (err_dma_tx == 1)
741 s5p_set_dma_outdata(dev, dev->sg_dst);
742 if (err_dma_rx == 1)
743 s5p_set_dma_indata(dev, dev->sg_src);
744 if (err_dma_hx == 1)
745 s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
746
747 spin_unlock_irqrestore(&dev->lock, flags);
748 }
749
750 goto hash_irq_end;
751
752 error:
753 s5p_sg_done(dev);
754 dev->busy = false;
755 req = dev->req;
756 if (err_dma_hx == 1)
757 s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
758
759 spin_unlock_irqrestore(&dev->lock, flags);
760 s5p_aes_complete(req, err);
761
762 hash_irq_end:
763 /*
764 * Note about else if:
765 * when hash_sg_iter reaches end and its UPDATE op,
766 * issue SSS_HASH_PAUSE and wait for HPART irq
767 */
768 if (hx_end)
769 tasklet_schedule(&dev->hash_tasklet);
770 else if (err_dma_hx == 2)
771 s5p_hash_write(dev, SSS_REG_HASH_CTRL_PAUSE,
772 SSS_HASH_PAUSE);
773
774 return IRQ_HANDLED;
775 }
776
777 /**
778 * s5p_hash_read_msg() - read message or IV from HW
779 * @req: AHASH request
780 */
s5p_hash_read_msg(struct ahash_request * req)781 static void s5p_hash_read_msg(struct ahash_request *req)
782 {
783 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
784 struct s5p_aes_dev *dd = ctx->dd;
785 u32 *hash = (u32 *)ctx->digest;
786 unsigned int i;
787
788 for (i = 0; i < ctx->nregs; i++)
789 hash[i] = s5p_hash_read(dd, SSS_REG_HASH_OUT(i));
790 }
791
792 /**
793 * s5p_hash_write_ctx_iv() - write IV for next partial/finup op.
794 * @dd: device
795 * @ctx: request context
796 */
s5p_hash_write_ctx_iv(struct s5p_aes_dev * dd,const struct s5p_hash_reqctx * ctx)797 static void s5p_hash_write_ctx_iv(struct s5p_aes_dev *dd,
798 const struct s5p_hash_reqctx *ctx)
799 {
800 const u32 *hash = (const u32 *)ctx->digest;
801 unsigned int i;
802
803 for (i = 0; i < ctx->nregs; i++)
804 s5p_hash_write(dd, SSS_REG_HASH_IV(i), hash[i]);
805 }
806
807 /**
808 * s5p_hash_write_iv() - write IV for next partial/finup op.
809 * @req: AHASH request
810 */
s5p_hash_write_iv(struct ahash_request * req)811 static void s5p_hash_write_iv(struct ahash_request *req)
812 {
813 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
814
815 s5p_hash_write_ctx_iv(ctx->dd, ctx);
816 }
817
818 /**
819 * s5p_hash_copy_result() - copy digest into req->result
820 * @req: AHASH request
821 */
s5p_hash_copy_result(struct ahash_request * req)822 static void s5p_hash_copy_result(struct ahash_request *req)
823 {
824 const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
825
826 if (!req->result)
827 return;
828
829 memcpy(req->result, ctx->digest, ctx->nregs * HASH_REG_SIZEOF);
830 }
831
832 /**
833 * s5p_hash_dma_flush() - flush HASH DMA
834 * @dev: secss device
835 */
s5p_hash_dma_flush(struct s5p_aes_dev * dev)836 static void s5p_hash_dma_flush(struct s5p_aes_dev *dev)
837 {
838 SSS_WRITE(dev, FCHRDMAC, SSS_FCHRDMAC_FLUSH);
839 }
840
841 /**
842 * s5p_hash_dma_enable() - enable DMA mode for HASH
843 * @dev: secss device
844 *
845 * enable DMA mode for HASH
846 */
s5p_hash_dma_enable(struct s5p_aes_dev * dev)847 static void s5p_hash_dma_enable(struct s5p_aes_dev *dev)
848 {
849 s5p_hash_write(dev, SSS_REG_HASH_CTRL_FIFO, SSS_HASH_FIFO_MODE_DMA);
850 }
851
852 /**
853 * s5p_hash_irq_disable() - disable irq HASH signals
854 * @dev: secss device
855 * @flags: bitfield with irq's to be disabled
856 */
s5p_hash_irq_disable(struct s5p_aes_dev * dev,u32 flags)857 static void s5p_hash_irq_disable(struct s5p_aes_dev *dev, u32 flags)
858 {
859 SSS_WRITE(dev, FCINTENCLR, flags);
860 }
861
862 /**
863 * s5p_hash_irq_enable() - enable irq signals
864 * @dev: secss device
865 * @flags: bitfield with irq's to be enabled
866 */
s5p_hash_irq_enable(struct s5p_aes_dev * dev,int flags)867 static void s5p_hash_irq_enable(struct s5p_aes_dev *dev, int flags)
868 {
869 SSS_WRITE(dev, FCINTENSET, flags);
870 }
871
872 /**
873 * s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH
874 * @dev: secss device
875 * @hashflow: HASH stream flow with/without crypto AES/DES
876 */
s5p_hash_set_flow(struct s5p_aes_dev * dev,u32 hashflow)877 static void s5p_hash_set_flow(struct s5p_aes_dev *dev, u32 hashflow)
878 {
879 unsigned long flags;
880 u32 flow;
881
882 spin_lock_irqsave(&dev->lock, flags);
883
884 flow = SSS_READ(dev, FCFIFOCTRL);
885 flow &= ~SSS_HASHIN_MASK;
886 flow |= hashflow;
887 SSS_WRITE(dev, FCFIFOCTRL, flow);
888
889 spin_unlock_irqrestore(&dev->lock, flags);
890 }
891
892 /**
893 * s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS
894 * @dev: secss device
895 * @hashflow: HASH stream flow with/without AES/DES
896 *
897 * flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW,
898 * enable HASH irq's HRDMA, HDONE, HPART
899 */
s5p_ahash_dma_init(struct s5p_aes_dev * dev,u32 hashflow)900 static void s5p_ahash_dma_init(struct s5p_aes_dev *dev, u32 hashflow)
901 {
902 s5p_hash_irq_disable(dev, SSS_FCINTENCLR_HRDMAINTENCLR |
903 SSS_FCINTENCLR_HDONEINTENCLR |
904 SSS_FCINTENCLR_HPARTINTENCLR);
905 s5p_hash_dma_flush(dev);
906
907 s5p_hash_dma_enable(dev);
908 s5p_hash_set_flow(dev, hashflow & SSS_HASHIN_MASK);
909 s5p_hash_irq_enable(dev, SSS_FCINTENSET_HRDMAINTENSET |
910 SSS_FCINTENSET_HDONEINTENSET |
911 SSS_FCINTENSET_HPARTINTENSET);
912 }
913
914 /**
915 * s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing
916 * @dd: secss device
917 * @length: length for request
918 * @final: true if final op
919 *
920 * Prepare SSS HASH block for processing bytes in DMA mode. If it is called
921 * after previous updates, fill up IV words. For final, calculate and set
922 * lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH
923 * length as 2^63 so it will be never reached and set to zero prelow and
924 * prehigh.
925 *
926 * This function does not start DMA transfer.
927 */
s5p_hash_write_ctrl(struct s5p_aes_dev * dd,size_t length,bool final)928 static void s5p_hash_write_ctrl(struct s5p_aes_dev *dd, size_t length,
929 bool final)
930 {
931 struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
932 u32 prelow, prehigh, low, high;
933 u32 configflags, swapflags;
934 u64 tmplen;
935
936 configflags = ctx->engine | SSS_HASH_INIT_BIT;
937
938 if (likely(ctx->digcnt)) {
939 s5p_hash_write_ctx_iv(dd, ctx);
940 configflags |= SSS_HASH_USER_IV_EN;
941 }
942
943 if (final) {
944 /* number of bytes for last part */
945 low = length;
946 high = 0;
947 /* total number of bits prev hashed */
948 tmplen = ctx->digcnt * 8;
949 prelow = (u32)tmplen;
950 prehigh = (u32)(tmplen >> 32);
951 } else {
952 prelow = 0;
953 prehigh = 0;
954 low = 0;
955 high = BIT(31);
956 }
957
958 swapflags = SSS_HASH_BYTESWAP_DI | SSS_HASH_BYTESWAP_DO |
959 SSS_HASH_BYTESWAP_IV | SSS_HASH_BYTESWAP_KEY;
960
961 s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_LOW, low);
962 s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_HIGH, high);
963 s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_LOW, prelow);
964 s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_HIGH, prehigh);
965
966 s5p_hash_write(dd, SSS_REG_HASH_CTRL_SWAP, swapflags);
967 s5p_hash_write(dd, SSS_REG_HASH_CTRL, configflags);
968 }
969
970 /**
971 * s5p_hash_xmit_dma() - start DMA hash processing
972 * @dd: secss device
973 * @length: length for request
974 * @final: true if final op
975 *
976 * Update digcnt here, as it is needed for finup/final op.
977 */
s5p_hash_xmit_dma(struct s5p_aes_dev * dd,size_t length,bool final)978 static int s5p_hash_xmit_dma(struct s5p_aes_dev *dd, size_t length,
979 bool final)
980 {
981 struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
982 unsigned int cnt;
983
984 cnt = dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
985 if (!cnt) {
986 dev_err(dd->dev, "dma_map_sg error\n");
987 ctx->error = true;
988 return -EINVAL;
989 }
990
991 set_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
992 dd->hash_sg_iter = ctx->sg;
993 dd->hash_sg_cnt = cnt;
994 s5p_hash_write_ctrl(dd, length, final);
995 ctx->digcnt += length;
996 ctx->total -= length;
997
998 /* catch last interrupt */
999 if (final)
1000 set_bit(HASH_FLAGS_FINAL, &dd->hash_flags);
1001
1002 s5p_set_dma_hashdata(dd, dd->hash_sg_iter); /* DMA starts */
1003
1004 return -EINPROGRESS;
1005 }
1006
1007 /**
1008 * s5p_hash_copy_sgs() - copy request's bytes into new buffer
1009 * @ctx: request context
1010 * @sg: source scatterlist request
1011 * @new_len: number of bytes to process from sg
1012 *
1013 * Allocate new buffer, copy data for HASH into it. If there was xmit_buf
1014 * filled, copy it first, then copy data from sg into it. Prepare one sgl[0]
1015 * with allocated buffer.
1016 *
1017 * Set bit in dd->hash_flag so we can free it after irq ends processing.
1018 */
s5p_hash_copy_sgs(struct s5p_hash_reqctx * ctx,struct scatterlist * sg,unsigned int new_len)1019 static int s5p_hash_copy_sgs(struct s5p_hash_reqctx *ctx,
1020 struct scatterlist *sg, unsigned int new_len)
1021 {
1022 unsigned int pages, len;
1023 void *buf;
1024
1025 len = new_len + ctx->bufcnt;
1026 pages = get_order(len);
1027
1028 buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
1029 if (!buf) {
1030 dev_err(ctx->dd->dev, "alloc pages for unaligned case.\n");
1031 ctx->error = true;
1032 return -ENOMEM;
1033 }
1034
1035 if (ctx->bufcnt)
1036 memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt);
1037
1038 scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->skip,
1039 new_len, 0);
1040 sg_init_table(ctx->sgl, 1);
1041 sg_set_buf(ctx->sgl, buf, len);
1042 ctx->sg = ctx->sgl;
1043 ctx->sg_len = 1;
1044 ctx->bufcnt = 0;
1045 ctx->skip = 0;
1046 set_bit(HASH_FLAGS_SGS_COPIED, &ctx->dd->hash_flags);
1047
1048 return 0;
1049 }
1050
1051 /**
1052 * s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy
1053 * @ctx: request context
1054 * @sg: source scatterlist request
1055 * @new_len: number of bytes to process from sg
1056 *
1057 * Allocate new scatterlist table, copy data for HASH into it. If there was
1058 * xmit_buf filled, prepare it first, then copy page, length and offset from
1059 * source sg into it, adjusting begin and/or end for skip offset and
1060 * hash_later value.
1061 *
1062 * Resulting sg table will be assigned to ctx->sg. Set flag so we can free
1063 * it after irq ends processing.
1064 */
s5p_hash_copy_sg_lists(struct s5p_hash_reqctx * ctx,struct scatterlist * sg,unsigned int new_len)1065 static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx *ctx,
1066 struct scatterlist *sg, unsigned int new_len)
1067 {
1068 unsigned int skip = ctx->skip, n = sg_nents(sg);
1069 struct scatterlist *tmp;
1070 unsigned int len;
1071
1072 if (ctx->bufcnt)
1073 n++;
1074
1075 ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL);
1076 if (!ctx->sg) {
1077 ctx->error = true;
1078 return -ENOMEM;
1079 }
1080
1081 sg_init_table(ctx->sg, n);
1082
1083 tmp = ctx->sg;
1084
1085 ctx->sg_len = 0;
1086
1087 if (ctx->bufcnt) {
1088 sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt);
1089 tmp = sg_next(tmp);
1090 ctx->sg_len++;
1091 }
1092
1093 while (sg && skip >= sg->length) {
1094 skip -= sg->length;
1095 sg = sg_next(sg);
1096 }
1097
1098 while (sg && new_len) {
1099 len = sg->length - skip;
1100 if (new_len < len)
1101 len = new_len;
1102
1103 new_len -= len;
1104 sg_set_page(tmp, sg_page(sg), len, sg->offset + skip);
1105 skip = 0;
1106 if (new_len <= 0)
1107 sg_mark_end(tmp);
1108
1109 tmp = sg_next(tmp);
1110 ctx->sg_len++;
1111 sg = sg_next(sg);
1112 }
1113
1114 set_bit(HASH_FLAGS_SGS_ALLOCED, &ctx->dd->hash_flags);
1115
1116 return 0;
1117 }
1118
1119 /**
1120 * s5p_hash_prepare_sgs() - prepare sg for processing
1121 * @ctx: request context
1122 * @sg: source scatterlist request
1123 * @new_len: number of bytes to process from sg
1124 * @final: final flag
1125 *
1126 * Check two conditions: (1) if buffers in sg have len aligned data, and (2)
1127 * sg table have good aligned elements (list_ok). If one of this checks fails,
1128 * then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy
1129 * data into this buffer and prepare request in sgl, or (2) allocates new sg
1130 * table and prepare sg elements.
1131 *
1132 * For digest or finup all conditions can be good, and we may not need any
1133 * fixes.
1134 */
s5p_hash_prepare_sgs(struct s5p_hash_reqctx * ctx,struct scatterlist * sg,unsigned int new_len,bool final)1135 static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx *ctx,
1136 struct scatterlist *sg,
1137 unsigned int new_len, bool final)
1138 {
1139 unsigned int skip = ctx->skip, nbytes = new_len, n = 0;
1140 bool aligned = true, list_ok = true;
1141 struct scatterlist *sg_tmp = sg;
1142
1143 if (!sg || !sg->length || !new_len)
1144 return 0;
1145
1146 if (skip || !final)
1147 list_ok = false;
1148
1149 while (nbytes > 0 && sg_tmp) {
1150 n++;
1151 if (skip >= sg_tmp->length) {
1152 skip -= sg_tmp->length;
1153 if (!sg_tmp->length) {
1154 aligned = false;
1155 break;
1156 }
1157 } else {
1158 if (!IS_ALIGNED(sg_tmp->length - skip, BUFLEN)) {
1159 aligned = false;
1160 break;
1161 }
1162
1163 if (nbytes < sg_tmp->length - skip) {
1164 list_ok = false;
1165 break;
1166 }
1167
1168 nbytes -= sg_tmp->length - skip;
1169 skip = 0;
1170 }
1171
1172 sg_tmp = sg_next(sg_tmp);
1173 }
1174
1175 if (!aligned)
1176 return s5p_hash_copy_sgs(ctx, sg, new_len);
1177 else if (!list_ok)
1178 return s5p_hash_copy_sg_lists(ctx, sg, new_len);
1179
1180 /*
1181 * Have aligned data from previous operation and/or current
1182 * Note: will enter here only if (digest or finup) and aligned
1183 */
1184 if (ctx->bufcnt) {
1185 ctx->sg_len = n;
1186 sg_init_table(ctx->sgl, 2);
1187 sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, ctx->bufcnt);
1188 sg_chain(ctx->sgl, 2, sg);
1189 ctx->sg = ctx->sgl;
1190 ctx->sg_len++;
1191 } else {
1192 ctx->sg = sg;
1193 ctx->sg_len = n;
1194 }
1195
1196 return 0;
1197 }
1198
1199 /**
1200 * s5p_hash_prepare_request() - prepare request for processing
1201 * @req: AHASH request
1202 * @update: true if UPDATE op
1203 *
1204 * Note 1: we can have update flag _and_ final flag at the same time.
1205 * Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or
1206 * either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or
1207 * we have final op
1208 */
s5p_hash_prepare_request(struct ahash_request * req,bool update)1209 static int s5p_hash_prepare_request(struct ahash_request *req, bool update)
1210 {
1211 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1212 bool final = ctx->finup;
1213 int xmit_len, hash_later, nbytes;
1214 int ret;
1215
1216 if (update)
1217 nbytes = req->nbytes;
1218 else
1219 nbytes = 0;
1220
1221 ctx->total = nbytes + ctx->bufcnt;
1222 if (!ctx->total)
1223 return 0;
1224
1225 if (nbytes && (!IS_ALIGNED(ctx->bufcnt, BUFLEN))) {
1226 /* bytes left from previous request, so fill up to BUFLEN */
1227 int len = BUFLEN - ctx->bufcnt % BUFLEN;
1228
1229 if (len > nbytes)
1230 len = nbytes;
1231
1232 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1233 0, len, 0);
1234 ctx->bufcnt += len;
1235 nbytes -= len;
1236 ctx->skip = len;
1237 } else {
1238 ctx->skip = 0;
1239 }
1240
1241 if (ctx->bufcnt)
1242 memcpy(ctx->dd->xmit_buf, ctx->buffer, ctx->bufcnt);
1243
1244 xmit_len = ctx->total;
1245 if (final) {
1246 hash_later = 0;
1247 } else {
1248 if (IS_ALIGNED(xmit_len, BUFLEN))
1249 xmit_len -= BUFLEN;
1250 else
1251 xmit_len -= xmit_len & (BUFLEN - 1);
1252
1253 hash_later = ctx->total - xmit_len;
1254 /* copy hash_later bytes from end of req->src */
1255 /* previous bytes are in xmit_buf, so no overwrite */
1256 scatterwalk_map_and_copy(ctx->buffer, req->src,
1257 req->nbytes - hash_later,
1258 hash_later, 0);
1259 }
1260
1261 if (xmit_len > BUFLEN) {
1262 ret = s5p_hash_prepare_sgs(ctx, req->src, nbytes - hash_later,
1263 final);
1264 if (ret)
1265 return ret;
1266 } else {
1267 /* have buffered data only */
1268 if (unlikely(!ctx->bufcnt)) {
1269 /* first update didn't fill up buffer */
1270 scatterwalk_map_and_copy(ctx->dd->xmit_buf, req->src,
1271 0, xmit_len, 0);
1272 }
1273
1274 sg_init_table(ctx->sgl, 1);
1275 sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, xmit_len);
1276
1277 ctx->sg = ctx->sgl;
1278 ctx->sg_len = 1;
1279 }
1280
1281 ctx->bufcnt = hash_later;
1282 if (!final)
1283 ctx->total = xmit_len;
1284
1285 return 0;
1286 }
1287
1288 /**
1289 * s5p_hash_update_dma_stop() - unmap DMA
1290 * @dd: secss device
1291 *
1292 * Unmap scatterlist ctx->sg.
1293 */
s5p_hash_update_dma_stop(struct s5p_aes_dev * dd)1294 static void s5p_hash_update_dma_stop(struct s5p_aes_dev *dd)
1295 {
1296 const struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
1297
1298 dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
1299 clear_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
1300 }
1301
1302 /**
1303 * s5p_hash_finish() - copy calculated digest to crypto layer
1304 * @req: AHASH request
1305 */
s5p_hash_finish(struct ahash_request * req)1306 static void s5p_hash_finish(struct ahash_request *req)
1307 {
1308 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1309 struct s5p_aes_dev *dd = ctx->dd;
1310
1311 if (ctx->digcnt)
1312 s5p_hash_copy_result(req);
1313
1314 dev_dbg(dd->dev, "hash_finish digcnt: %lld\n", ctx->digcnt);
1315 }
1316
1317 /**
1318 * s5p_hash_finish_req() - finish request
1319 * @req: AHASH request
1320 * @err: error
1321 */
s5p_hash_finish_req(struct ahash_request * req,int err)1322 static void s5p_hash_finish_req(struct ahash_request *req, int err)
1323 {
1324 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1325 struct s5p_aes_dev *dd = ctx->dd;
1326 unsigned long flags;
1327
1328 if (test_bit(HASH_FLAGS_SGS_COPIED, &dd->hash_flags))
1329 free_pages((unsigned long)sg_virt(ctx->sg),
1330 get_order(ctx->sg->length));
1331
1332 if (test_bit(HASH_FLAGS_SGS_ALLOCED, &dd->hash_flags))
1333 kfree(ctx->sg);
1334
1335 ctx->sg = NULL;
1336 dd->hash_flags &= ~(BIT(HASH_FLAGS_SGS_ALLOCED) |
1337 BIT(HASH_FLAGS_SGS_COPIED));
1338
1339 if (!err && !ctx->error) {
1340 s5p_hash_read_msg(req);
1341 if (test_bit(HASH_FLAGS_FINAL, &dd->hash_flags))
1342 s5p_hash_finish(req);
1343 } else {
1344 ctx->error = true;
1345 }
1346
1347 spin_lock_irqsave(&dd->hash_lock, flags);
1348 dd->hash_flags &= ~(BIT(HASH_FLAGS_BUSY) | BIT(HASH_FLAGS_FINAL) |
1349 BIT(HASH_FLAGS_DMA_READY) |
1350 BIT(HASH_FLAGS_OUTPUT_READY));
1351 spin_unlock_irqrestore(&dd->hash_lock, flags);
1352
1353 if (req->base.complete)
1354 ahash_request_complete(req, err);
1355 }
1356
1357 /**
1358 * s5p_hash_handle_queue() - handle hash queue
1359 * @dd: device s5p_aes_dev
1360 * @req: AHASH request
1361 *
1362 * If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the
1363 * device then processes the first request from the dd->queue
1364 *
1365 * Returns: see s5p_hash_final below.
1366 */
s5p_hash_handle_queue(struct s5p_aes_dev * dd,struct ahash_request * req)1367 static int s5p_hash_handle_queue(struct s5p_aes_dev *dd,
1368 struct ahash_request *req)
1369 {
1370 struct crypto_async_request *async_req, *backlog;
1371 struct s5p_hash_reqctx *ctx;
1372 unsigned long flags;
1373 int err = 0, ret = 0;
1374
1375 retry:
1376 spin_lock_irqsave(&dd->hash_lock, flags);
1377 if (req)
1378 ret = ahash_enqueue_request(&dd->hash_queue, req);
1379
1380 if (test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1381 spin_unlock_irqrestore(&dd->hash_lock, flags);
1382 return ret;
1383 }
1384
1385 backlog = crypto_get_backlog(&dd->hash_queue);
1386 async_req = crypto_dequeue_request(&dd->hash_queue);
1387 if (async_req)
1388 set_bit(HASH_FLAGS_BUSY, &dd->hash_flags);
1389
1390 spin_unlock_irqrestore(&dd->hash_lock, flags);
1391
1392 if (!async_req)
1393 return ret;
1394
1395 if (backlog)
1396 crypto_request_complete(backlog, -EINPROGRESS);
1397
1398 req = ahash_request_cast(async_req);
1399 dd->hash_req = req;
1400 ctx = ahash_request_ctx(req);
1401
1402 err = s5p_hash_prepare_request(req, ctx->op_update);
1403 if (err || !ctx->total)
1404 goto out;
1405
1406 dev_dbg(dd->dev, "handling new req, op_update: %u, nbytes: %d\n",
1407 ctx->op_update, req->nbytes);
1408
1409 s5p_ahash_dma_init(dd, SSS_HASHIN_INDEPENDENT);
1410 if (ctx->digcnt)
1411 s5p_hash_write_iv(req); /* restore hash IV */
1412
1413 if (ctx->op_update) { /* HASH_OP_UPDATE */
1414 err = s5p_hash_xmit_dma(dd, ctx->total, ctx->finup);
1415 if (err != -EINPROGRESS && ctx->finup && !ctx->error)
1416 /* no final() after finup() */
1417 err = s5p_hash_xmit_dma(dd, ctx->total, true);
1418 } else { /* HASH_OP_FINAL */
1419 err = s5p_hash_xmit_dma(dd, ctx->total, true);
1420 }
1421 out:
1422 if (err != -EINPROGRESS) {
1423 /* hash_tasklet_cb will not finish it, so do it here */
1424 s5p_hash_finish_req(req, err);
1425 req = NULL;
1426
1427 /*
1428 * Execute next request immediately if there is anything
1429 * in queue.
1430 */
1431 goto retry;
1432 }
1433
1434 return ret;
1435 }
1436
1437 /**
1438 * s5p_hash_tasklet_cb() - hash tasklet
1439 * @data: ptr to s5p_aes_dev
1440 */
s5p_hash_tasklet_cb(unsigned long data)1441 static void s5p_hash_tasklet_cb(unsigned long data)
1442 {
1443 struct s5p_aes_dev *dd = (struct s5p_aes_dev *)data;
1444
1445 if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1446 s5p_hash_handle_queue(dd, NULL);
1447 return;
1448 }
1449
1450 if (test_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags)) {
1451 if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE,
1452 &dd->hash_flags)) {
1453 s5p_hash_update_dma_stop(dd);
1454 }
1455
1456 if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY,
1457 &dd->hash_flags)) {
1458 /* hash or semi-hash ready */
1459 clear_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags);
1460 goto finish;
1461 }
1462 }
1463
1464 return;
1465
1466 finish:
1467 /* finish curent request */
1468 s5p_hash_finish_req(dd->hash_req, 0);
1469
1470 /* If we are not busy, process next req */
1471 if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags))
1472 s5p_hash_handle_queue(dd, NULL);
1473 }
1474
1475 /**
1476 * s5p_hash_enqueue() - enqueue request
1477 * @req: AHASH request
1478 * @op: operation UPDATE (true) or FINAL (false)
1479 *
1480 * Returns: see s5p_hash_final below.
1481 */
s5p_hash_enqueue(struct ahash_request * req,bool op)1482 static int s5p_hash_enqueue(struct ahash_request *req, bool op)
1483 {
1484 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1485 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1486
1487 ctx->op_update = op;
1488
1489 return s5p_hash_handle_queue(tctx->dd, req);
1490 }
1491
1492 /**
1493 * s5p_hash_update() - process the hash input data
1494 * @req: AHASH request
1495 *
1496 * If request will fit in buffer, copy it and return immediately
1497 * else enqueue it with OP_UPDATE.
1498 *
1499 * Returns: see s5p_hash_final below.
1500 */
s5p_hash_update(struct ahash_request * req)1501 static int s5p_hash_update(struct ahash_request *req)
1502 {
1503 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1504
1505 if (!req->nbytes)
1506 return 0;
1507
1508 if (ctx->bufcnt + req->nbytes <= BUFLEN) {
1509 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1510 0, req->nbytes, 0);
1511 ctx->bufcnt += req->nbytes;
1512 return 0;
1513 }
1514
1515 return s5p_hash_enqueue(req, true); /* HASH_OP_UPDATE */
1516 }
1517
1518 /**
1519 * s5p_hash_final() - close up hash and calculate digest
1520 * @req: AHASH request
1521 *
1522 * Note: in final req->src do not have any data, and req->nbytes can be
1523 * non-zero.
1524 *
1525 * If there were no input data processed yet and the buffered hash data is
1526 * less than BUFLEN (64) then calculate the final hash immediately by using
1527 * SW algorithm fallback.
1528 *
1529 * Otherwise enqueues the current AHASH request with OP_FINAL operation op
1530 * and finalize hash message in HW. Note that if digcnt!=0 then there were
1531 * previous update op, so there are always some buffered bytes in ctx->buffer,
1532 * which means that ctx->bufcnt!=0
1533 *
1534 * Returns:
1535 * 0 if the request has been processed immediately,
1536 * -EINPROGRESS if the operation has been queued for later execution or is set
1537 * to processing by HW,
1538 * -EBUSY if queue is full and request should be resubmitted later,
1539 * other negative values denotes an error.
1540 */
s5p_hash_final(struct ahash_request * req)1541 static int s5p_hash_final(struct ahash_request *req)
1542 {
1543 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1544
1545 ctx->finup = true;
1546 if (ctx->error)
1547 return -EINVAL; /* uncompleted hash is not needed */
1548
1549 if (!ctx->digcnt && ctx->bufcnt < BUFLEN) {
1550 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1551
1552 return crypto_shash_tfm_digest(tctx->fallback, ctx->buffer,
1553 ctx->bufcnt, req->result);
1554 }
1555
1556 return s5p_hash_enqueue(req, false); /* HASH_OP_FINAL */
1557 }
1558
1559 /**
1560 * s5p_hash_finup() - process last req->src and calculate digest
1561 * @req: AHASH request containing the last update data
1562 *
1563 * Return values: see s5p_hash_final above.
1564 */
s5p_hash_finup(struct ahash_request * req)1565 static int s5p_hash_finup(struct ahash_request *req)
1566 {
1567 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1568 int err1, err2;
1569
1570 ctx->finup = true;
1571
1572 err1 = s5p_hash_update(req);
1573 if (err1 == -EINPROGRESS || err1 == -EBUSY)
1574 return err1;
1575
1576 /*
1577 * final() has to be always called to cleanup resources even if
1578 * update() failed, except EINPROGRESS or calculate digest for small
1579 * size
1580 */
1581 err2 = s5p_hash_final(req);
1582
1583 return err1 ?: err2;
1584 }
1585
1586 /**
1587 * s5p_hash_init() - initialize AHASH request contex
1588 * @req: AHASH request
1589 *
1590 * Init async hash request context.
1591 */
s5p_hash_init(struct ahash_request * req)1592 static int s5p_hash_init(struct ahash_request *req)
1593 {
1594 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1595 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1596 struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1597
1598 ctx->dd = tctx->dd;
1599 ctx->error = false;
1600 ctx->finup = false;
1601 ctx->bufcnt = 0;
1602 ctx->digcnt = 0;
1603 ctx->total = 0;
1604 ctx->skip = 0;
1605
1606 dev_dbg(tctx->dd->dev, "init: digest size: %d\n",
1607 crypto_ahash_digestsize(tfm));
1608
1609 switch (crypto_ahash_digestsize(tfm)) {
1610 case MD5_DIGEST_SIZE:
1611 ctx->engine = SSS_HASH_ENGINE_MD5;
1612 ctx->nregs = HASH_MD5_MAX_REG;
1613 break;
1614 case SHA1_DIGEST_SIZE:
1615 ctx->engine = SSS_HASH_ENGINE_SHA1;
1616 ctx->nregs = HASH_SHA1_MAX_REG;
1617 break;
1618 case SHA256_DIGEST_SIZE:
1619 ctx->engine = SSS_HASH_ENGINE_SHA256;
1620 ctx->nregs = HASH_SHA256_MAX_REG;
1621 break;
1622 default:
1623 ctx->error = true;
1624 return -EINVAL;
1625 }
1626
1627 return 0;
1628 }
1629
1630 /**
1631 * s5p_hash_digest - calculate digest from req->src
1632 * @req: AHASH request
1633 *
1634 * Return values: see s5p_hash_final above.
1635 */
s5p_hash_digest(struct ahash_request * req)1636 static int s5p_hash_digest(struct ahash_request *req)
1637 {
1638 return s5p_hash_init(req) ?: s5p_hash_finup(req);
1639 }
1640
1641 /**
1642 * s5p_hash_cra_init_alg - init crypto alg transformation
1643 * @tfm: crypto transformation
1644 */
s5p_hash_cra_init_alg(struct crypto_tfm * tfm)1645 static int s5p_hash_cra_init_alg(struct crypto_tfm *tfm)
1646 {
1647 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1648 const char *alg_name = crypto_tfm_alg_name(tfm);
1649
1650 tctx->dd = s5p_dev;
1651 /* Allocate a fallback and abort if it failed. */
1652 tctx->fallback = crypto_alloc_shash(alg_name, 0,
1653 CRYPTO_ALG_NEED_FALLBACK);
1654 if (IS_ERR(tctx->fallback)) {
1655 pr_err("fallback alloc fails for '%s'\n", alg_name);
1656 return PTR_ERR(tctx->fallback);
1657 }
1658
1659 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1660 sizeof(struct s5p_hash_reqctx) + BUFLEN);
1661
1662 return 0;
1663 }
1664
1665 /**
1666 * s5p_hash_cra_init - init crypto tfm
1667 * @tfm: crypto transformation
1668 */
s5p_hash_cra_init(struct crypto_tfm * tfm)1669 static int s5p_hash_cra_init(struct crypto_tfm *tfm)
1670 {
1671 return s5p_hash_cra_init_alg(tfm);
1672 }
1673
1674 /**
1675 * s5p_hash_cra_exit - exit crypto tfm
1676 * @tfm: crypto transformation
1677 *
1678 * free allocated fallback
1679 */
s5p_hash_cra_exit(struct crypto_tfm * tfm)1680 static void s5p_hash_cra_exit(struct crypto_tfm *tfm)
1681 {
1682 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1683
1684 crypto_free_shash(tctx->fallback);
1685 tctx->fallback = NULL;
1686 }
1687
1688 /**
1689 * s5p_hash_export - export hash state
1690 * @req: AHASH request
1691 * @out: buffer for exported state
1692 */
s5p_hash_export(struct ahash_request * req,void * out)1693 static int s5p_hash_export(struct ahash_request *req, void *out)
1694 {
1695 const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1696
1697 memcpy(out, ctx, sizeof(*ctx) + ctx->bufcnt);
1698
1699 return 0;
1700 }
1701
1702 /**
1703 * s5p_hash_import - import hash state
1704 * @req: AHASH request
1705 * @in: buffer with state to be imported from
1706 */
s5p_hash_import(struct ahash_request * req,const void * in)1707 static int s5p_hash_import(struct ahash_request *req, const void *in)
1708 {
1709 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1710 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1711 struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1712 const struct s5p_hash_reqctx *ctx_in = in;
1713
1714 memcpy(ctx, in, sizeof(*ctx) + BUFLEN);
1715 if (ctx_in->bufcnt > BUFLEN) {
1716 ctx->error = true;
1717 return -EINVAL;
1718 }
1719
1720 ctx->dd = tctx->dd;
1721 ctx->error = false;
1722
1723 return 0;
1724 }
1725
1726 static struct ahash_alg algs_sha1_md5_sha256[] = {
1727 {
1728 .init = s5p_hash_init,
1729 .update = s5p_hash_update,
1730 .final = s5p_hash_final,
1731 .finup = s5p_hash_finup,
1732 .digest = s5p_hash_digest,
1733 .export = s5p_hash_export,
1734 .import = s5p_hash_import,
1735 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1736 .halg.digestsize = SHA1_DIGEST_SIZE,
1737 .halg.base = {
1738 .cra_name = "sha1",
1739 .cra_driver_name = "exynos-sha1",
1740 .cra_priority = 100,
1741 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1742 CRYPTO_ALG_ASYNC |
1743 CRYPTO_ALG_NEED_FALLBACK,
1744 .cra_blocksize = HASH_BLOCK_SIZE,
1745 .cra_ctxsize = sizeof(struct s5p_hash_ctx),
1746 .cra_module = THIS_MODULE,
1747 .cra_init = s5p_hash_cra_init,
1748 .cra_exit = s5p_hash_cra_exit,
1749 }
1750 },
1751 {
1752 .init = s5p_hash_init,
1753 .update = s5p_hash_update,
1754 .final = s5p_hash_final,
1755 .finup = s5p_hash_finup,
1756 .digest = s5p_hash_digest,
1757 .export = s5p_hash_export,
1758 .import = s5p_hash_import,
1759 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1760 .halg.digestsize = MD5_DIGEST_SIZE,
1761 .halg.base = {
1762 .cra_name = "md5",
1763 .cra_driver_name = "exynos-md5",
1764 .cra_priority = 100,
1765 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1766 CRYPTO_ALG_ASYNC |
1767 CRYPTO_ALG_NEED_FALLBACK,
1768 .cra_blocksize = HASH_BLOCK_SIZE,
1769 .cra_ctxsize = sizeof(struct s5p_hash_ctx),
1770 .cra_module = THIS_MODULE,
1771 .cra_init = s5p_hash_cra_init,
1772 .cra_exit = s5p_hash_cra_exit,
1773 }
1774 },
1775 {
1776 .init = s5p_hash_init,
1777 .update = s5p_hash_update,
1778 .final = s5p_hash_final,
1779 .finup = s5p_hash_finup,
1780 .digest = s5p_hash_digest,
1781 .export = s5p_hash_export,
1782 .import = s5p_hash_import,
1783 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1784 .halg.digestsize = SHA256_DIGEST_SIZE,
1785 .halg.base = {
1786 .cra_name = "sha256",
1787 .cra_driver_name = "exynos-sha256",
1788 .cra_priority = 100,
1789 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1790 CRYPTO_ALG_ASYNC |
1791 CRYPTO_ALG_NEED_FALLBACK,
1792 .cra_blocksize = HASH_BLOCK_SIZE,
1793 .cra_ctxsize = sizeof(struct s5p_hash_ctx),
1794 .cra_module = THIS_MODULE,
1795 .cra_init = s5p_hash_cra_init,
1796 .cra_exit = s5p_hash_cra_exit,
1797 }
1798 }
1799
1800 };
1801
s5p_set_aes(struct s5p_aes_dev * dev,const u8 * key,const u8 * iv,const u8 * ctr,unsigned int keylen)1802 static void s5p_set_aes(struct s5p_aes_dev *dev,
1803 const u8 *key, const u8 *iv, const u8 *ctr,
1804 unsigned int keylen)
1805 {
1806 void __iomem *keystart;
1807
1808 if (iv)
1809 memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv,
1810 AES_BLOCK_SIZE);
1811
1812 if (ctr)
1813 memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), ctr,
1814 AES_BLOCK_SIZE);
1815
1816 if (keylen == AES_KEYSIZE_256)
1817 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0);
1818 else if (keylen == AES_KEYSIZE_192)
1819 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2);
1820 else
1821 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4);
1822
1823 memcpy_toio(keystart, key, keylen);
1824 }
1825
s5p_is_sg_aligned(struct scatterlist * sg)1826 static bool s5p_is_sg_aligned(struct scatterlist *sg)
1827 {
1828 while (sg) {
1829 if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
1830 return false;
1831 sg = sg_next(sg);
1832 }
1833
1834 return true;
1835 }
1836
s5p_set_indata_start(struct s5p_aes_dev * dev,struct skcipher_request * req)1837 static int s5p_set_indata_start(struct s5p_aes_dev *dev,
1838 struct skcipher_request *req)
1839 {
1840 struct scatterlist *sg;
1841 int err;
1842
1843 dev->sg_src_cpy = NULL;
1844 sg = req->src;
1845 if (!s5p_is_sg_aligned(sg)) {
1846 dev_dbg(dev->dev,
1847 "At least one unaligned source scatter list, making a copy\n");
1848 err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy);
1849 if (err)
1850 return err;
1851
1852 sg = dev->sg_src_cpy;
1853 }
1854
1855 err = s5p_set_indata(dev, sg);
1856 if (err) {
1857 s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
1858 return err;
1859 }
1860
1861 return 0;
1862 }
1863
s5p_set_outdata_start(struct s5p_aes_dev * dev,struct skcipher_request * req)1864 static int s5p_set_outdata_start(struct s5p_aes_dev *dev,
1865 struct skcipher_request *req)
1866 {
1867 struct scatterlist *sg;
1868 int err;
1869
1870 dev->sg_dst_cpy = NULL;
1871 sg = req->dst;
1872 if (!s5p_is_sg_aligned(sg)) {
1873 dev_dbg(dev->dev,
1874 "At least one unaligned dest scatter list, making a copy\n");
1875 err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy);
1876 if (err)
1877 return err;
1878
1879 sg = dev->sg_dst_cpy;
1880 }
1881
1882 err = s5p_set_outdata(dev, sg);
1883 if (err) {
1884 s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
1885 return err;
1886 }
1887
1888 return 0;
1889 }
1890
s5p_aes_crypt_start(struct s5p_aes_dev * dev,unsigned long mode)1891 static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode)
1892 {
1893 struct skcipher_request *req = dev->req;
1894 u32 aes_control;
1895 unsigned long flags;
1896 int err;
1897 u8 *iv, *ctr;
1898
1899 /* This sets bit [13:12] to 00, which selects 128-bit counter */
1900 aes_control = SSS_AES_KEY_CHANGE_MODE;
1901 if (mode & FLAGS_AES_DECRYPT)
1902 aes_control |= SSS_AES_MODE_DECRYPT;
1903
1904 if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC) {
1905 aes_control |= SSS_AES_CHAIN_MODE_CBC;
1906 iv = req->iv;
1907 ctr = NULL;
1908 } else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR) {
1909 aes_control |= SSS_AES_CHAIN_MODE_CTR;
1910 iv = NULL;
1911 ctr = req->iv;
1912 } else {
1913 iv = NULL; /* AES_ECB */
1914 ctr = NULL;
1915 }
1916
1917 if (dev->ctx->keylen == AES_KEYSIZE_192)
1918 aes_control |= SSS_AES_KEY_SIZE_192;
1919 else if (dev->ctx->keylen == AES_KEYSIZE_256)
1920 aes_control |= SSS_AES_KEY_SIZE_256;
1921
1922 aes_control |= SSS_AES_FIFO_MODE;
1923
1924 /* as a variant it is possible to use byte swapping on DMA side */
1925 aes_control |= SSS_AES_BYTESWAP_DI
1926 | SSS_AES_BYTESWAP_DO
1927 | SSS_AES_BYTESWAP_IV
1928 | SSS_AES_BYTESWAP_KEY
1929 | SSS_AES_BYTESWAP_CNT;
1930
1931 spin_lock_irqsave(&dev->lock, flags);
1932
1933 SSS_WRITE(dev, FCINTENCLR,
1934 SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR);
1935 SSS_WRITE(dev, FCFIFOCTRL, 0x00);
1936
1937 err = s5p_set_indata_start(dev, req);
1938 if (err)
1939 goto indata_error;
1940
1941 err = s5p_set_outdata_start(dev, req);
1942 if (err)
1943 goto outdata_error;
1944
1945 SSS_AES_WRITE(dev, AES_CONTROL, aes_control);
1946 s5p_set_aes(dev, dev->ctx->aes_key, iv, ctr, dev->ctx->keylen);
1947
1948 s5p_set_dma_indata(dev, dev->sg_src);
1949 s5p_set_dma_outdata(dev, dev->sg_dst);
1950
1951 SSS_WRITE(dev, FCINTENSET,
1952 SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET);
1953
1954 spin_unlock_irqrestore(&dev->lock, flags);
1955
1956 return;
1957
1958 outdata_error:
1959 s5p_unset_indata(dev);
1960
1961 indata_error:
1962 s5p_sg_done(dev);
1963 dev->busy = false;
1964 spin_unlock_irqrestore(&dev->lock, flags);
1965 s5p_aes_complete(req, err);
1966 }
1967
s5p_tasklet_cb(unsigned long data)1968 static void s5p_tasklet_cb(unsigned long data)
1969 {
1970 struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data;
1971 struct crypto_async_request *async_req, *backlog;
1972 struct s5p_aes_reqctx *reqctx;
1973 unsigned long flags;
1974
1975 spin_lock_irqsave(&dev->lock, flags);
1976 backlog = crypto_get_backlog(&dev->queue);
1977 async_req = crypto_dequeue_request(&dev->queue);
1978
1979 if (!async_req) {
1980 dev->busy = false;
1981 spin_unlock_irqrestore(&dev->lock, flags);
1982 return;
1983 }
1984 spin_unlock_irqrestore(&dev->lock, flags);
1985
1986 if (backlog)
1987 crypto_request_complete(backlog, -EINPROGRESS);
1988
1989 dev->req = skcipher_request_cast(async_req);
1990 dev->ctx = crypto_tfm_ctx(dev->req->base.tfm);
1991 reqctx = skcipher_request_ctx(dev->req);
1992
1993 s5p_aes_crypt_start(dev, reqctx->mode);
1994 }
1995
s5p_aes_handle_req(struct s5p_aes_dev * dev,struct skcipher_request * req)1996 static int s5p_aes_handle_req(struct s5p_aes_dev *dev,
1997 struct skcipher_request *req)
1998 {
1999 unsigned long flags;
2000 int err;
2001
2002 spin_lock_irqsave(&dev->lock, flags);
2003 err = crypto_enqueue_request(&dev->queue, &req->base);
2004 if (dev->busy) {
2005 spin_unlock_irqrestore(&dev->lock, flags);
2006 return err;
2007 }
2008 dev->busy = true;
2009
2010 spin_unlock_irqrestore(&dev->lock, flags);
2011
2012 tasklet_schedule(&dev->tasklet);
2013
2014 return err;
2015 }
2016
s5p_aes_crypt(struct skcipher_request * req,unsigned long mode)2017 static int s5p_aes_crypt(struct skcipher_request *req, unsigned long mode)
2018 {
2019 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
2020 struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req);
2021 struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
2022 struct s5p_aes_dev *dev = ctx->dev;
2023
2024 if (!req->cryptlen)
2025 return 0;
2026
2027 if (!IS_ALIGNED(req->cryptlen, AES_BLOCK_SIZE) &&
2028 ((mode & FLAGS_AES_MODE_MASK) != FLAGS_AES_CTR)) {
2029 dev_dbg(dev->dev, "request size is not exact amount of AES blocks\n");
2030 return -EINVAL;
2031 }
2032
2033 reqctx->mode = mode;
2034
2035 return s5p_aes_handle_req(dev, req);
2036 }
2037
s5p_aes_setkey(struct crypto_skcipher * cipher,const u8 * key,unsigned int keylen)2038 static int s5p_aes_setkey(struct crypto_skcipher *cipher,
2039 const u8 *key, unsigned int keylen)
2040 {
2041 struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher);
2042 struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
2043
2044 if (keylen != AES_KEYSIZE_128 &&
2045 keylen != AES_KEYSIZE_192 &&
2046 keylen != AES_KEYSIZE_256)
2047 return -EINVAL;
2048
2049 memcpy(ctx->aes_key, key, keylen);
2050 ctx->keylen = keylen;
2051
2052 return 0;
2053 }
2054
s5p_aes_ecb_encrypt(struct skcipher_request * req)2055 static int s5p_aes_ecb_encrypt(struct skcipher_request *req)
2056 {
2057 return s5p_aes_crypt(req, 0);
2058 }
2059
s5p_aes_ecb_decrypt(struct skcipher_request * req)2060 static int s5p_aes_ecb_decrypt(struct skcipher_request *req)
2061 {
2062 return s5p_aes_crypt(req, FLAGS_AES_DECRYPT);
2063 }
2064
s5p_aes_cbc_encrypt(struct skcipher_request * req)2065 static int s5p_aes_cbc_encrypt(struct skcipher_request *req)
2066 {
2067 return s5p_aes_crypt(req, FLAGS_AES_CBC);
2068 }
2069
s5p_aes_cbc_decrypt(struct skcipher_request * req)2070 static int s5p_aes_cbc_decrypt(struct skcipher_request *req)
2071 {
2072 return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC);
2073 }
2074
s5p_aes_ctr_crypt(struct skcipher_request * req)2075 static int s5p_aes_ctr_crypt(struct skcipher_request *req)
2076 {
2077 return s5p_aes_crypt(req, FLAGS_AES_CTR);
2078 }
2079
s5p_aes_init_tfm(struct crypto_skcipher * tfm)2080 static int s5p_aes_init_tfm(struct crypto_skcipher *tfm)
2081 {
2082 struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
2083
2084 ctx->dev = s5p_dev;
2085 crypto_skcipher_set_reqsize(tfm, sizeof(struct s5p_aes_reqctx));
2086
2087 return 0;
2088 }
2089
2090 static struct skcipher_alg algs[] = {
2091 {
2092 .base.cra_name = "ecb(aes)",
2093 .base.cra_driver_name = "ecb-aes-s5p",
2094 .base.cra_priority = 100,
2095 .base.cra_flags = CRYPTO_ALG_ASYNC |
2096 CRYPTO_ALG_KERN_DRIVER_ONLY,
2097 .base.cra_blocksize = AES_BLOCK_SIZE,
2098 .base.cra_ctxsize = sizeof(struct s5p_aes_ctx),
2099 .base.cra_alignmask = 0x0f,
2100 .base.cra_module = THIS_MODULE,
2101
2102 .min_keysize = AES_MIN_KEY_SIZE,
2103 .max_keysize = AES_MAX_KEY_SIZE,
2104 .setkey = s5p_aes_setkey,
2105 .encrypt = s5p_aes_ecb_encrypt,
2106 .decrypt = s5p_aes_ecb_decrypt,
2107 .init = s5p_aes_init_tfm,
2108 },
2109 {
2110 .base.cra_name = "cbc(aes)",
2111 .base.cra_driver_name = "cbc-aes-s5p",
2112 .base.cra_priority = 100,
2113 .base.cra_flags = CRYPTO_ALG_ASYNC |
2114 CRYPTO_ALG_KERN_DRIVER_ONLY,
2115 .base.cra_blocksize = AES_BLOCK_SIZE,
2116 .base.cra_ctxsize = sizeof(struct s5p_aes_ctx),
2117 .base.cra_alignmask = 0x0f,
2118 .base.cra_module = THIS_MODULE,
2119
2120 .min_keysize = AES_MIN_KEY_SIZE,
2121 .max_keysize = AES_MAX_KEY_SIZE,
2122 .ivsize = AES_BLOCK_SIZE,
2123 .setkey = s5p_aes_setkey,
2124 .encrypt = s5p_aes_cbc_encrypt,
2125 .decrypt = s5p_aes_cbc_decrypt,
2126 .init = s5p_aes_init_tfm,
2127 },
2128 {
2129 .base.cra_name = "ctr(aes)",
2130 .base.cra_driver_name = "ctr-aes-s5p",
2131 .base.cra_priority = 100,
2132 .base.cra_flags = CRYPTO_ALG_ASYNC |
2133 CRYPTO_ALG_KERN_DRIVER_ONLY,
2134 .base.cra_blocksize = 1,
2135 .base.cra_ctxsize = sizeof(struct s5p_aes_ctx),
2136 .base.cra_alignmask = 0x0f,
2137 .base.cra_module = THIS_MODULE,
2138
2139 .min_keysize = AES_MIN_KEY_SIZE,
2140 .max_keysize = AES_MAX_KEY_SIZE,
2141 .ivsize = AES_BLOCK_SIZE,
2142 .setkey = s5p_aes_setkey,
2143 .encrypt = s5p_aes_ctr_crypt,
2144 .decrypt = s5p_aes_ctr_crypt,
2145 .init = s5p_aes_init_tfm,
2146 },
2147 };
2148
s5p_aes_probe(struct platform_device * pdev)2149 static int s5p_aes_probe(struct platform_device *pdev)
2150 {
2151 struct device *dev = &pdev->dev;
2152 int i, j, err;
2153 const struct samsung_aes_variant *variant;
2154 struct s5p_aes_dev *pdata;
2155 struct resource *res;
2156 unsigned int hash_i;
2157
2158 if (s5p_dev)
2159 return -EEXIST;
2160
2161 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2162 if (!pdata)
2163 return -ENOMEM;
2164
2165 variant = find_s5p_sss_version(pdev);
2166 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2167 if (!res)
2168 return -EINVAL;
2169
2170 /*
2171 * Note: HASH and PRNG uses the same registers in secss, avoid
2172 * overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG
2173 * is enabled in config. We need larger size for HASH registers in
2174 * secss, current describe only AES/DES
2175 */
2176 if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH)) {
2177 if (variant == &exynos_aes_data) {
2178 res->end += 0x300;
2179 pdata->use_hash = true;
2180 }
2181 }
2182
2183 pdata->res = res;
2184 pdata->ioaddr = devm_ioremap_resource(dev, res);
2185 if (IS_ERR(pdata->ioaddr)) {
2186 if (!pdata->use_hash)
2187 return PTR_ERR(pdata->ioaddr);
2188 /* try AES without HASH */
2189 res->end -= 0x300;
2190 pdata->use_hash = false;
2191 pdata->ioaddr = devm_ioremap_resource(dev, res);
2192 if (IS_ERR(pdata->ioaddr))
2193 return PTR_ERR(pdata->ioaddr);
2194 }
2195
2196 pdata->clk = devm_clk_get(dev, variant->clk_names[0]);
2197 if (IS_ERR(pdata->clk))
2198 return dev_err_probe(dev, PTR_ERR(pdata->clk),
2199 "failed to find secss clock %s\n",
2200 variant->clk_names[0]);
2201
2202 err = clk_prepare_enable(pdata->clk);
2203 if (err < 0) {
2204 dev_err(dev, "Enabling clock %s failed, err %d\n",
2205 variant->clk_names[0], err);
2206 return err;
2207 }
2208
2209 if (variant->clk_names[1]) {
2210 pdata->pclk = devm_clk_get(dev, variant->clk_names[1]);
2211 if (IS_ERR(pdata->pclk)) {
2212 err = dev_err_probe(dev, PTR_ERR(pdata->pclk),
2213 "failed to find clock %s\n",
2214 variant->clk_names[1]);
2215 goto err_clk;
2216 }
2217
2218 err = clk_prepare_enable(pdata->pclk);
2219 if (err < 0) {
2220 dev_err(dev, "Enabling clock %s failed, err %d\n",
2221 variant->clk_names[0], err);
2222 goto err_clk;
2223 }
2224 } else {
2225 pdata->pclk = NULL;
2226 }
2227
2228 spin_lock_init(&pdata->lock);
2229 spin_lock_init(&pdata->hash_lock);
2230
2231 pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset;
2232 pdata->io_hash_base = pdata->ioaddr + variant->hash_offset;
2233
2234 pdata->irq_fc = platform_get_irq(pdev, 0);
2235 if (pdata->irq_fc < 0) {
2236 err = pdata->irq_fc;
2237 dev_warn(dev, "feed control interrupt is not available.\n");
2238 goto err_irq;
2239 }
2240 err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL,
2241 s5p_aes_interrupt, IRQF_ONESHOT,
2242 pdev->name, pdev);
2243 if (err < 0) {
2244 dev_warn(dev, "feed control interrupt is not available.\n");
2245 goto err_irq;
2246 }
2247
2248 pdata->busy = false;
2249 pdata->dev = dev;
2250 platform_set_drvdata(pdev, pdata);
2251 s5p_dev = pdata;
2252
2253 tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata);
2254 crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN);
2255
2256 for (i = 0; i < ARRAY_SIZE(algs); i++) {
2257 err = crypto_register_skcipher(&algs[i]);
2258 if (err)
2259 goto err_algs;
2260 }
2261
2262 if (pdata->use_hash) {
2263 tasklet_init(&pdata->hash_tasklet, s5p_hash_tasklet_cb,
2264 (unsigned long)pdata);
2265 crypto_init_queue(&pdata->hash_queue, SSS_HASH_QUEUE_LENGTH);
2266
2267 for (hash_i = 0; hash_i < ARRAY_SIZE(algs_sha1_md5_sha256);
2268 hash_i++) {
2269 struct ahash_alg *alg;
2270
2271 alg = &algs_sha1_md5_sha256[hash_i];
2272 err = crypto_register_ahash(alg);
2273 if (err) {
2274 dev_err(dev, "can't register '%s': %d\n",
2275 alg->halg.base.cra_driver_name, err);
2276 goto err_hash;
2277 }
2278 }
2279 }
2280
2281 dev_info(dev, "s5p-sss driver registered\n");
2282
2283 return 0;
2284
2285 err_hash:
2286 for (j = hash_i - 1; j >= 0; j--)
2287 crypto_unregister_ahash(&algs_sha1_md5_sha256[j]);
2288
2289 tasklet_kill(&pdata->hash_tasklet);
2290 res->end -= 0x300;
2291
2292 err_algs:
2293 if (i < ARRAY_SIZE(algs))
2294 dev_err(dev, "can't register '%s': %d\n", algs[i].base.cra_name,
2295 err);
2296
2297 for (j = 0; j < i; j++)
2298 crypto_unregister_skcipher(&algs[j]);
2299
2300 tasklet_kill(&pdata->tasklet);
2301
2302 err_irq:
2303 clk_disable_unprepare(pdata->pclk);
2304
2305 err_clk:
2306 clk_disable_unprepare(pdata->clk);
2307 s5p_dev = NULL;
2308
2309 return err;
2310 }
2311
s5p_aes_remove(struct platform_device * pdev)2312 static void s5p_aes_remove(struct platform_device *pdev)
2313 {
2314 struct s5p_aes_dev *pdata = platform_get_drvdata(pdev);
2315 int i;
2316
2317 for (i = 0; i < ARRAY_SIZE(algs); i++)
2318 crypto_unregister_skcipher(&algs[i]);
2319
2320 tasklet_kill(&pdata->tasklet);
2321 if (pdata->use_hash) {
2322 for (i = ARRAY_SIZE(algs_sha1_md5_sha256) - 1; i >= 0; i--)
2323 crypto_unregister_ahash(&algs_sha1_md5_sha256[i]);
2324
2325 pdata->res->end -= 0x300;
2326 tasklet_kill(&pdata->hash_tasklet);
2327 pdata->use_hash = false;
2328 }
2329
2330 clk_disable_unprepare(pdata->pclk);
2331
2332 clk_disable_unprepare(pdata->clk);
2333 s5p_dev = NULL;
2334 }
2335
2336 static struct platform_driver s5p_aes_crypto = {
2337 .probe = s5p_aes_probe,
2338 .remove_new = s5p_aes_remove,
2339 .driver = {
2340 .name = "s5p-secss",
2341 .of_match_table = s5p_sss_dt_match,
2342 },
2343 };
2344
2345 module_platform_driver(s5p_aes_crypto);
2346
2347 MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
2348 MODULE_LICENSE("GPL v2");
2349 MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>");
2350 MODULE_AUTHOR("Kamil Konieczny <k.konieczny@partner.samsung.com>");
2351