xref: /linux/kernel/rcu/srcutree.c (revision 3a39d672e7f48b8d6b91a09afa4b55352773b4b5)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Sleepable Read-Copy Update mechanism for mutual exclusion.
4  *
5  * Copyright (C) IBM Corporation, 2006
6  * Copyright (C) Fujitsu, 2012
7  *
8  * Authors: Paul McKenney <paulmck@linux.ibm.com>
9  *	   Lai Jiangshan <laijs@cn.fujitsu.com>
10  *
11  * For detailed explanation of Read-Copy Update mechanism see -
12  *		Documentation/RCU/ *.txt
13  *
14  */
15 
16 #define pr_fmt(fmt) "rcu: " fmt
17 
18 #include <linux/export.h>
19 #include <linux/mutex.h>
20 #include <linux/percpu.h>
21 #include <linux/preempt.h>
22 #include <linux/rcupdate_wait.h>
23 #include <linux/sched.h>
24 #include <linux/smp.h>
25 #include <linux/delay.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/srcu.h>
29 
30 #include "rcu.h"
31 #include "rcu_segcblist.h"
32 
33 /* Holdoff in nanoseconds for auto-expediting. */
34 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000)
35 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF;
36 module_param(exp_holdoff, ulong, 0444);
37 
38 /* Overflow-check frequency.  N bits roughly says every 2**N grace periods. */
39 static ulong counter_wrap_check = (ULONG_MAX >> 2);
40 module_param(counter_wrap_check, ulong, 0444);
41 
42 /*
43  * Control conversion to SRCU_SIZE_BIG:
44  *    0: Don't convert at all.
45  *    1: Convert at init_srcu_struct() time.
46  *    2: Convert when rcutorture invokes srcu_torture_stats_print().
47  *    3: Decide at boot time based on system shape (default).
48  * 0x1x: Convert when excessive contention encountered.
49  */
50 #define SRCU_SIZING_NONE	0
51 #define SRCU_SIZING_INIT	1
52 #define SRCU_SIZING_TORTURE	2
53 #define SRCU_SIZING_AUTO	3
54 #define SRCU_SIZING_CONTEND	0x10
55 #define SRCU_SIZING_IS(x) ((convert_to_big & ~SRCU_SIZING_CONTEND) == x)
56 #define SRCU_SIZING_IS_NONE() (SRCU_SIZING_IS(SRCU_SIZING_NONE))
57 #define SRCU_SIZING_IS_INIT() (SRCU_SIZING_IS(SRCU_SIZING_INIT))
58 #define SRCU_SIZING_IS_TORTURE() (SRCU_SIZING_IS(SRCU_SIZING_TORTURE))
59 #define SRCU_SIZING_IS_CONTEND() (convert_to_big & SRCU_SIZING_CONTEND)
60 static int convert_to_big = SRCU_SIZING_AUTO;
61 module_param(convert_to_big, int, 0444);
62 
63 /* Number of CPUs to trigger init_srcu_struct()-time transition to big. */
64 static int big_cpu_lim __read_mostly = 128;
65 module_param(big_cpu_lim, int, 0444);
66 
67 /* Contention events per jiffy to initiate transition to big. */
68 static int small_contention_lim __read_mostly = 100;
69 module_param(small_contention_lim, int, 0444);
70 
71 /* Early-boot callback-management, so early that no lock is required! */
72 static LIST_HEAD(srcu_boot_list);
73 static bool __read_mostly srcu_init_done;
74 
75 static void srcu_invoke_callbacks(struct work_struct *work);
76 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay);
77 static void process_srcu(struct work_struct *work);
78 static void srcu_delay_timer(struct timer_list *t);
79 
80 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */
81 #define spin_lock_rcu_node(p)							\
82 do {										\
83 	spin_lock(&ACCESS_PRIVATE(p, lock));					\
84 	smp_mb__after_unlock_lock();						\
85 } while (0)
86 
87 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock))
88 
89 #define spin_lock_irq_rcu_node(p)						\
90 do {										\
91 	spin_lock_irq(&ACCESS_PRIVATE(p, lock));				\
92 	smp_mb__after_unlock_lock();						\
93 } while (0)
94 
95 #define spin_unlock_irq_rcu_node(p)						\
96 	spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
97 
98 #define spin_lock_irqsave_rcu_node(p, flags)					\
99 do {										\
100 	spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);			\
101 	smp_mb__after_unlock_lock();						\
102 } while (0)
103 
104 #define spin_trylock_irqsave_rcu_node(p, flags)					\
105 ({										\
106 	bool ___locked = spin_trylock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \
107 										\
108 	if (___locked)								\
109 		smp_mb__after_unlock_lock();					\
110 	___locked;								\
111 })
112 
113 #define spin_unlock_irqrestore_rcu_node(p, flags)				\
114 	spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)			\
115 
116 /*
117  * Initialize SRCU per-CPU data.  Note that statically allocated
118  * srcu_struct structures might already have srcu_read_lock() and
119  * srcu_read_unlock() running against them.  So if the is_static parameter
120  * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[].
121  */
init_srcu_struct_data(struct srcu_struct * ssp)122 static void init_srcu_struct_data(struct srcu_struct *ssp)
123 {
124 	int cpu;
125 	struct srcu_data *sdp;
126 
127 	/*
128 	 * Initialize the per-CPU srcu_data array, which feeds into the
129 	 * leaves of the srcu_node tree.
130 	 */
131 	WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) !=
132 		     ARRAY_SIZE(sdp->srcu_unlock_count));
133 	for_each_possible_cpu(cpu) {
134 		sdp = per_cpu_ptr(ssp->sda, cpu);
135 		spin_lock_init(&ACCESS_PRIVATE(sdp, lock));
136 		rcu_segcblist_init(&sdp->srcu_cblist);
137 		sdp->srcu_cblist_invoking = false;
138 		sdp->srcu_gp_seq_needed = ssp->srcu_sup->srcu_gp_seq;
139 		sdp->srcu_gp_seq_needed_exp = ssp->srcu_sup->srcu_gp_seq;
140 		sdp->srcu_barrier_head.next = &sdp->srcu_barrier_head;
141 		sdp->mynode = NULL;
142 		sdp->cpu = cpu;
143 		INIT_WORK(&sdp->work, srcu_invoke_callbacks);
144 		timer_setup(&sdp->delay_work, srcu_delay_timer, 0);
145 		sdp->ssp = ssp;
146 	}
147 }
148 
149 /* Invalid seq state, used during snp node initialization */
150 #define SRCU_SNP_INIT_SEQ		0x2
151 
152 /*
153  * Check whether sequence number corresponding to snp node,
154  * is invalid.
155  */
srcu_invl_snp_seq(unsigned long s)156 static inline bool srcu_invl_snp_seq(unsigned long s)
157 {
158 	return s == SRCU_SNP_INIT_SEQ;
159 }
160 
161 /*
162  * Allocated and initialize SRCU combining tree.  Returns @true if
163  * allocation succeeded and @false otherwise.
164  */
init_srcu_struct_nodes(struct srcu_struct * ssp,gfp_t gfp_flags)165 static bool init_srcu_struct_nodes(struct srcu_struct *ssp, gfp_t gfp_flags)
166 {
167 	int cpu;
168 	int i;
169 	int level = 0;
170 	int levelspread[RCU_NUM_LVLS];
171 	struct srcu_data *sdp;
172 	struct srcu_node *snp;
173 	struct srcu_node *snp_first;
174 
175 	/* Initialize geometry if it has not already been initialized. */
176 	rcu_init_geometry();
177 	ssp->srcu_sup->node = kcalloc(rcu_num_nodes, sizeof(*ssp->srcu_sup->node), gfp_flags);
178 	if (!ssp->srcu_sup->node)
179 		return false;
180 
181 	/* Work out the overall tree geometry. */
182 	ssp->srcu_sup->level[0] = &ssp->srcu_sup->node[0];
183 	for (i = 1; i < rcu_num_lvls; i++)
184 		ssp->srcu_sup->level[i] = ssp->srcu_sup->level[i - 1] + num_rcu_lvl[i - 1];
185 	rcu_init_levelspread(levelspread, num_rcu_lvl);
186 
187 	/* Each pass through this loop initializes one srcu_node structure. */
188 	srcu_for_each_node_breadth_first(ssp, snp) {
189 		spin_lock_init(&ACCESS_PRIVATE(snp, lock));
190 		WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) !=
191 			     ARRAY_SIZE(snp->srcu_data_have_cbs));
192 		for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
193 			snp->srcu_have_cbs[i] = SRCU_SNP_INIT_SEQ;
194 			snp->srcu_data_have_cbs[i] = 0;
195 		}
196 		snp->srcu_gp_seq_needed_exp = SRCU_SNP_INIT_SEQ;
197 		snp->grplo = -1;
198 		snp->grphi = -1;
199 		if (snp == &ssp->srcu_sup->node[0]) {
200 			/* Root node, special case. */
201 			snp->srcu_parent = NULL;
202 			continue;
203 		}
204 
205 		/* Non-root node. */
206 		if (snp == ssp->srcu_sup->level[level + 1])
207 			level++;
208 		snp->srcu_parent = ssp->srcu_sup->level[level - 1] +
209 				   (snp - ssp->srcu_sup->level[level]) /
210 				   levelspread[level - 1];
211 	}
212 
213 	/*
214 	 * Initialize the per-CPU srcu_data array, which feeds into the
215 	 * leaves of the srcu_node tree.
216 	 */
217 	level = rcu_num_lvls - 1;
218 	snp_first = ssp->srcu_sup->level[level];
219 	for_each_possible_cpu(cpu) {
220 		sdp = per_cpu_ptr(ssp->sda, cpu);
221 		sdp->mynode = &snp_first[cpu / levelspread[level]];
222 		for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) {
223 			if (snp->grplo < 0)
224 				snp->grplo = cpu;
225 			snp->grphi = cpu;
226 		}
227 		sdp->grpmask = 1UL << (cpu - sdp->mynode->grplo);
228 	}
229 	smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_WAIT_BARRIER);
230 	return true;
231 }
232 
233 /*
234  * Initialize non-compile-time initialized fields, including the
235  * associated srcu_node and srcu_data structures.  The is_static parameter
236  * tells us that ->sda has already been wired up to srcu_data.
237  */
init_srcu_struct_fields(struct srcu_struct * ssp,bool is_static)238 static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static)
239 {
240 	if (!is_static)
241 		ssp->srcu_sup = kzalloc(sizeof(*ssp->srcu_sup), GFP_KERNEL);
242 	if (!ssp->srcu_sup)
243 		return -ENOMEM;
244 	if (!is_static)
245 		spin_lock_init(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
246 	ssp->srcu_sup->srcu_size_state = SRCU_SIZE_SMALL;
247 	ssp->srcu_sup->node = NULL;
248 	mutex_init(&ssp->srcu_sup->srcu_cb_mutex);
249 	mutex_init(&ssp->srcu_sup->srcu_gp_mutex);
250 	ssp->srcu_idx = 0;
251 	ssp->srcu_sup->srcu_gp_seq = SRCU_GP_SEQ_INITIAL_VAL;
252 	ssp->srcu_sup->srcu_barrier_seq = 0;
253 	mutex_init(&ssp->srcu_sup->srcu_barrier_mutex);
254 	atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 0);
255 	INIT_DELAYED_WORK(&ssp->srcu_sup->work, process_srcu);
256 	ssp->srcu_sup->sda_is_static = is_static;
257 	if (!is_static)
258 		ssp->sda = alloc_percpu(struct srcu_data);
259 	if (!ssp->sda)
260 		goto err_free_sup;
261 	init_srcu_struct_data(ssp);
262 	ssp->srcu_sup->srcu_gp_seq_needed_exp = SRCU_GP_SEQ_INITIAL_VAL;
263 	ssp->srcu_sup->srcu_last_gp_end = ktime_get_mono_fast_ns();
264 	if (READ_ONCE(ssp->srcu_sup->srcu_size_state) == SRCU_SIZE_SMALL && SRCU_SIZING_IS_INIT()) {
265 		if (!init_srcu_struct_nodes(ssp, GFP_ATOMIC))
266 			goto err_free_sda;
267 		WRITE_ONCE(ssp->srcu_sup->srcu_size_state, SRCU_SIZE_BIG);
268 	}
269 	ssp->srcu_sup->srcu_ssp = ssp;
270 	smp_store_release(&ssp->srcu_sup->srcu_gp_seq_needed,
271 			SRCU_GP_SEQ_INITIAL_VAL); /* Init done. */
272 	return 0;
273 
274 err_free_sda:
275 	if (!is_static) {
276 		free_percpu(ssp->sda);
277 		ssp->sda = NULL;
278 	}
279 err_free_sup:
280 	if (!is_static) {
281 		kfree(ssp->srcu_sup);
282 		ssp->srcu_sup = NULL;
283 	}
284 	return -ENOMEM;
285 }
286 
287 #ifdef CONFIG_DEBUG_LOCK_ALLOC
288 
__init_srcu_struct(struct srcu_struct * ssp,const char * name,struct lock_class_key * key)289 int __init_srcu_struct(struct srcu_struct *ssp, const char *name,
290 		       struct lock_class_key *key)
291 {
292 	/* Don't re-initialize a lock while it is held. */
293 	debug_check_no_locks_freed((void *)ssp, sizeof(*ssp));
294 	lockdep_init_map(&ssp->dep_map, name, key, 0);
295 	return init_srcu_struct_fields(ssp, false);
296 }
297 EXPORT_SYMBOL_GPL(__init_srcu_struct);
298 
299 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
300 
301 /**
302  * init_srcu_struct - initialize a sleep-RCU structure
303  * @ssp: structure to initialize.
304  *
305  * Must invoke this on a given srcu_struct before passing that srcu_struct
306  * to any other function.  Each srcu_struct represents a separate domain
307  * of SRCU protection.
308  */
init_srcu_struct(struct srcu_struct * ssp)309 int init_srcu_struct(struct srcu_struct *ssp)
310 {
311 	return init_srcu_struct_fields(ssp, false);
312 }
313 EXPORT_SYMBOL_GPL(init_srcu_struct);
314 
315 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
316 
317 /*
318  * Initiate a transition to SRCU_SIZE_BIG with lock held.
319  */
__srcu_transition_to_big(struct srcu_struct * ssp)320 static void __srcu_transition_to_big(struct srcu_struct *ssp)
321 {
322 	lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
323 	smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_ALLOC);
324 }
325 
326 /*
327  * Initiate an idempotent transition to SRCU_SIZE_BIG.
328  */
srcu_transition_to_big(struct srcu_struct * ssp)329 static void srcu_transition_to_big(struct srcu_struct *ssp)
330 {
331 	unsigned long flags;
332 
333 	/* Double-checked locking on ->srcu_size-state. */
334 	if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL)
335 		return;
336 	spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags);
337 	if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL) {
338 		spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
339 		return;
340 	}
341 	__srcu_transition_to_big(ssp);
342 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
343 }
344 
345 /*
346  * Check to see if the just-encountered contention event justifies
347  * a transition to SRCU_SIZE_BIG.
348  */
spin_lock_irqsave_check_contention(struct srcu_struct * ssp)349 static void spin_lock_irqsave_check_contention(struct srcu_struct *ssp)
350 {
351 	unsigned long j;
352 
353 	if (!SRCU_SIZING_IS_CONTEND() || ssp->srcu_sup->srcu_size_state)
354 		return;
355 	j = jiffies;
356 	if (ssp->srcu_sup->srcu_size_jiffies != j) {
357 		ssp->srcu_sup->srcu_size_jiffies = j;
358 		ssp->srcu_sup->srcu_n_lock_retries = 0;
359 	}
360 	if (++ssp->srcu_sup->srcu_n_lock_retries <= small_contention_lim)
361 		return;
362 	__srcu_transition_to_big(ssp);
363 }
364 
365 /*
366  * Acquire the specified srcu_data structure's ->lock, but check for
367  * excessive contention, which results in initiation of a transition
368  * to SRCU_SIZE_BIG.  But only if the srcutree.convert_to_big module
369  * parameter permits this.
370  */
spin_lock_irqsave_sdp_contention(struct srcu_data * sdp,unsigned long * flags)371 static void spin_lock_irqsave_sdp_contention(struct srcu_data *sdp, unsigned long *flags)
372 {
373 	struct srcu_struct *ssp = sdp->ssp;
374 
375 	if (spin_trylock_irqsave_rcu_node(sdp, *flags))
376 		return;
377 	spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags);
378 	spin_lock_irqsave_check_contention(ssp);
379 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, *flags);
380 	spin_lock_irqsave_rcu_node(sdp, *flags);
381 }
382 
383 /*
384  * Acquire the specified srcu_struct structure's ->lock, but check for
385  * excessive contention, which results in initiation of a transition
386  * to SRCU_SIZE_BIG.  But only if the srcutree.convert_to_big module
387  * parameter permits this.
388  */
spin_lock_irqsave_ssp_contention(struct srcu_struct * ssp,unsigned long * flags)389 static void spin_lock_irqsave_ssp_contention(struct srcu_struct *ssp, unsigned long *flags)
390 {
391 	if (spin_trylock_irqsave_rcu_node(ssp->srcu_sup, *flags))
392 		return;
393 	spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags);
394 	spin_lock_irqsave_check_contention(ssp);
395 }
396 
397 /*
398  * First-use initialization of statically allocated srcu_struct
399  * structure.  Wiring up the combining tree is more than can be
400  * done with compile-time initialization, so this check is added
401  * to each update-side SRCU primitive.  Use ssp->lock, which -is-
402  * compile-time initialized, to resolve races involving multiple
403  * CPUs trying to garner first-use privileges.
404  */
check_init_srcu_struct(struct srcu_struct * ssp)405 static void check_init_srcu_struct(struct srcu_struct *ssp)
406 {
407 	unsigned long flags;
408 
409 	/* The smp_load_acquire() pairs with the smp_store_release(). */
410 	if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed))) /*^^^*/
411 		return; /* Already initialized. */
412 	spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags);
413 	if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq_needed)) {
414 		spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
415 		return;
416 	}
417 	init_srcu_struct_fields(ssp, true);
418 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
419 }
420 
421 /*
422  * Returns approximate total of the readers' ->srcu_lock_count[] values
423  * for the rank of per-CPU counters specified by idx.
424  */
srcu_readers_lock_idx(struct srcu_struct * ssp,int idx)425 static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx)
426 {
427 	int cpu;
428 	unsigned long sum = 0;
429 
430 	for_each_possible_cpu(cpu) {
431 		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
432 
433 		sum += atomic_long_read(&cpuc->srcu_lock_count[idx]);
434 	}
435 	return sum;
436 }
437 
438 /*
439  * Returns approximate total of the readers' ->srcu_unlock_count[] values
440  * for the rank of per-CPU counters specified by idx.
441  */
srcu_readers_unlock_idx(struct srcu_struct * ssp,int idx)442 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx)
443 {
444 	int cpu;
445 	unsigned long mask = 0;
446 	unsigned long sum = 0;
447 
448 	for_each_possible_cpu(cpu) {
449 		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
450 
451 		sum += atomic_long_read(&cpuc->srcu_unlock_count[idx]);
452 		if (IS_ENABLED(CONFIG_PROVE_RCU))
453 			mask = mask | READ_ONCE(cpuc->srcu_nmi_safety);
454 	}
455 	WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask >> 1)),
456 		  "Mixed NMI-safe readers for srcu_struct at %ps.\n", ssp);
457 	return sum;
458 }
459 
460 /*
461  * Return true if the number of pre-existing readers is determined to
462  * be zero.
463  */
srcu_readers_active_idx_check(struct srcu_struct * ssp,int idx)464 static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx)
465 {
466 	unsigned long unlocks;
467 
468 	unlocks = srcu_readers_unlock_idx(ssp, idx);
469 
470 	/*
471 	 * Make sure that a lock is always counted if the corresponding
472 	 * unlock is counted. Needs to be a smp_mb() as the read side may
473 	 * contain a read from a variable that is written to before the
474 	 * synchronize_srcu() in the write side. In this case smp_mb()s
475 	 * A and B act like the store buffering pattern.
476 	 *
477 	 * This smp_mb() also pairs with smp_mb() C to prevent accesses
478 	 * after the synchronize_srcu() from being executed before the
479 	 * grace period ends.
480 	 */
481 	smp_mb(); /* A */
482 
483 	/*
484 	 * If the locks are the same as the unlocks, then there must have
485 	 * been no readers on this index at some point in this function.
486 	 * But there might be more readers, as a task might have read
487 	 * the current ->srcu_idx but not yet have incremented its CPU's
488 	 * ->srcu_lock_count[idx] counter.  In fact, it is possible
489 	 * that most of the tasks have been preempted between fetching
490 	 * ->srcu_idx and incrementing ->srcu_lock_count[idx].  And there
491 	 * could be almost (ULONG_MAX / sizeof(struct task_struct)) tasks
492 	 * in a system whose address space was fully populated with memory.
493 	 * Call this quantity Nt.
494 	 *
495 	 * So suppose that the updater is preempted at this point in the
496 	 * code for a long time.  That now-preempted updater has already
497 	 * flipped ->srcu_idx (possibly during the preceding grace period),
498 	 * done an smp_mb() (again, possibly during the preceding grace
499 	 * period), and summed up the ->srcu_unlock_count[idx] counters.
500 	 * How many times can a given one of the aforementioned Nt tasks
501 	 * increment the old ->srcu_idx value's ->srcu_lock_count[idx]
502 	 * counter, in the absence of nesting?
503 	 *
504 	 * It can clearly do so once, given that it has already fetched
505 	 * the old value of ->srcu_idx and is just about to use that value
506 	 * to index its increment of ->srcu_lock_count[idx].  But as soon as
507 	 * it leaves that SRCU read-side critical section, it will increment
508 	 * ->srcu_unlock_count[idx], which must follow the updater's above
509 	 * read from that same value.  Thus, as soon the reading task does
510 	 * an smp_mb() and a later fetch from ->srcu_idx, that task will be
511 	 * guaranteed to get the new index.  Except that the increment of
512 	 * ->srcu_unlock_count[idx] in __srcu_read_unlock() is after the
513 	 * smp_mb(), and the fetch from ->srcu_idx in __srcu_read_lock()
514 	 * is before the smp_mb().  Thus, that task might not see the new
515 	 * value of ->srcu_idx until the -second- __srcu_read_lock(),
516 	 * which in turn means that this task might well increment
517 	 * ->srcu_lock_count[idx] for the old value of ->srcu_idx twice,
518 	 * not just once.
519 	 *
520 	 * However, it is important to note that a given smp_mb() takes
521 	 * effect not just for the task executing it, but also for any
522 	 * later task running on that same CPU.
523 	 *
524 	 * That is, there can be almost Nt + Nc further increments of
525 	 * ->srcu_lock_count[idx] for the old index, where Nc is the number
526 	 * of CPUs.  But this is OK because the size of the task_struct
527 	 * structure limits the value of Nt and current systems limit Nc
528 	 * to a few thousand.
529 	 *
530 	 * OK, but what about nesting?  This does impose a limit on
531 	 * nesting of half of the size of the task_struct structure
532 	 * (measured in bytes), which should be sufficient.  A late 2022
533 	 * TREE01 rcutorture run reported this size to be no less than
534 	 * 9408 bytes, allowing up to 4704 levels of nesting, which is
535 	 * comfortably beyond excessive.  Especially on 64-bit systems,
536 	 * which are unlikely to be configured with an address space fully
537 	 * populated with memory, at least not anytime soon.
538 	 */
539 	return srcu_readers_lock_idx(ssp, idx) == unlocks;
540 }
541 
542 /**
543  * srcu_readers_active - returns true if there are readers. and false
544  *                       otherwise
545  * @ssp: which srcu_struct to count active readers (holding srcu_read_lock).
546  *
547  * Note that this is not an atomic primitive, and can therefore suffer
548  * severe errors when invoked on an active srcu_struct.  That said, it
549  * can be useful as an error check at cleanup time.
550  */
srcu_readers_active(struct srcu_struct * ssp)551 static bool srcu_readers_active(struct srcu_struct *ssp)
552 {
553 	int cpu;
554 	unsigned long sum = 0;
555 
556 	for_each_possible_cpu(cpu) {
557 		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
558 
559 		sum += atomic_long_read(&cpuc->srcu_lock_count[0]);
560 		sum += atomic_long_read(&cpuc->srcu_lock_count[1]);
561 		sum -= atomic_long_read(&cpuc->srcu_unlock_count[0]);
562 		sum -= atomic_long_read(&cpuc->srcu_unlock_count[1]);
563 	}
564 	return sum;
565 }
566 
567 /*
568  * We use an adaptive strategy for synchronize_srcu() and especially for
569  * synchronize_srcu_expedited().  We spin for a fixed time period
570  * (defined below, boot time configurable) to allow SRCU readers to exit
571  * their read-side critical sections.  If there are still some readers
572  * after one jiffy, we repeatedly block for one jiffy time periods.
573  * The blocking time is increased as the grace-period age increases,
574  * with max blocking time capped at 10 jiffies.
575  */
576 #define SRCU_DEFAULT_RETRY_CHECK_DELAY		5
577 
578 static ulong srcu_retry_check_delay = SRCU_DEFAULT_RETRY_CHECK_DELAY;
579 module_param(srcu_retry_check_delay, ulong, 0444);
580 
581 #define SRCU_INTERVAL		1		// Base delay if no expedited GPs pending.
582 #define SRCU_MAX_INTERVAL	10		// Maximum incremental delay from slow readers.
583 
584 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_LO	3UL	// Lowmark on default per-GP-phase
585 							// no-delay instances.
586 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_HI	1000UL	// Highmark on default per-GP-phase
587 							// no-delay instances.
588 
589 #define SRCU_UL_CLAMP_LO(val, low)	((val) > (low) ? (val) : (low))
590 #define SRCU_UL_CLAMP_HI(val, high)	((val) < (high) ? (val) : (high))
591 #define SRCU_UL_CLAMP(val, low, high)	SRCU_UL_CLAMP_HI(SRCU_UL_CLAMP_LO((val), (low)), (high))
592 // per-GP-phase no-delay instances adjusted to allow non-sleeping poll upto
593 // one jiffies time duration. Mult by 2 is done to factor in the srcu_get_delay()
594 // called from process_srcu().
595 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED	\
596 	(2UL * USEC_PER_SEC / HZ / SRCU_DEFAULT_RETRY_CHECK_DELAY)
597 
598 // Maximum per-GP-phase consecutive no-delay instances.
599 #define SRCU_DEFAULT_MAX_NODELAY_PHASE	\
600 	SRCU_UL_CLAMP(SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED,	\
601 		      SRCU_DEFAULT_MAX_NODELAY_PHASE_LO,	\
602 		      SRCU_DEFAULT_MAX_NODELAY_PHASE_HI)
603 
604 static ulong srcu_max_nodelay_phase = SRCU_DEFAULT_MAX_NODELAY_PHASE;
605 module_param(srcu_max_nodelay_phase, ulong, 0444);
606 
607 // Maximum consecutive no-delay instances.
608 #define SRCU_DEFAULT_MAX_NODELAY	(SRCU_DEFAULT_MAX_NODELAY_PHASE > 100 ?	\
609 					 SRCU_DEFAULT_MAX_NODELAY_PHASE : 100)
610 
611 static ulong srcu_max_nodelay = SRCU_DEFAULT_MAX_NODELAY;
612 module_param(srcu_max_nodelay, ulong, 0444);
613 
614 /*
615  * Return grace-period delay, zero if there are expedited grace
616  * periods pending, SRCU_INTERVAL otherwise.
617  */
srcu_get_delay(struct srcu_struct * ssp)618 static unsigned long srcu_get_delay(struct srcu_struct *ssp)
619 {
620 	unsigned long gpstart;
621 	unsigned long j;
622 	unsigned long jbase = SRCU_INTERVAL;
623 	struct srcu_usage *sup = ssp->srcu_sup;
624 
625 	if (ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp)))
626 		jbase = 0;
627 	if (rcu_seq_state(READ_ONCE(sup->srcu_gp_seq))) {
628 		j = jiffies - 1;
629 		gpstart = READ_ONCE(sup->srcu_gp_start);
630 		if (time_after(j, gpstart))
631 			jbase += j - gpstart;
632 		if (!jbase) {
633 			ASSERT_EXCLUSIVE_WRITER(sup->srcu_n_exp_nodelay);
634 			WRITE_ONCE(sup->srcu_n_exp_nodelay, READ_ONCE(sup->srcu_n_exp_nodelay) + 1);
635 			if (READ_ONCE(sup->srcu_n_exp_nodelay) > srcu_max_nodelay_phase)
636 				jbase = 1;
637 		}
638 	}
639 	return jbase > SRCU_MAX_INTERVAL ? SRCU_MAX_INTERVAL : jbase;
640 }
641 
642 /**
643  * cleanup_srcu_struct - deconstruct a sleep-RCU structure
644  * @ssp: structure to clean up.
645  *
646  * Must invoke this after you are finished using a given srcu_struct that
647  * was initialized via init_srcu_struct(), else you leak memory.
648  */
cleanup_srcu_struct(struct srcu_struct * ssp)649 void cleanup_srcu_struct(struct srcu_struct *ssp)
650 {
651 	int cpu;
652 	struct srcu_usage *sup = ssp->srcu_sup;
653 
654 	if (WARN_ON(!srcu_get_delay(ssp)))
655 		return; /* Just leak it! */
656 	if (WARN_ON(srcu_readers_active(ssp)))
657 		return; /* Just leak it! */
658 	flush_delayed_work(&sup->work);
659 	for_each_possible_cpu(cpu) {
660 		struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
661 
662 		del_timer_sync(&sdp->delay_work);
663 		flush_work(&sdp->work);
664 		if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist)))
665 			return; /* Forgot srcu_barrier(), so just leak it! */
666 	}
667 	if (WARN_ON(rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)) != SRCU_STATE_IDLE) ||
668 	    WARN_ON(rcu_seq_current(&sup->srcu_gp_seq) != sup->srcu_gp_seq_needed) ||
669 	    WARN_ON(srcu_readers_active(ssp))) {
670 		pr_info("%s: Active srcu_struct %p read state: %d gp state: %lu/%lu\n",
671 			__func__, ssp, rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)),
672 			rcu_seq_current(&sup->srcu_gp_seq), sup->srcu_gp_seq_needed);
673 		return; // Caller forgot to stop doing call_srcu()?
674 			// Or caller invoked start_poll_synchronize_srcu()
675 			// and then cleanup_srcu_struct() before that grace
676 			// period ended?
677 	}
678 	kfree(sup->node);
679 	sup->node = NULL;
680 	sup->srcu_size_state = SRCU_SIZE_SMALL;
681 	if (!sup->sda_is_static) {
682 		free_percpu(ssp->sda);
683 		ssp->sda = NULL;
684 		kfree(sup);
685 		ssp->srcu_sup = NULL;
686 	}
687 }
688 EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
689 
690 #ifdef CONFIG_PROVE_RCU
691 /*
692  * Check for consistent NMI safety.
693  */
srcu_check_nmi_safety(struct srcu_struct * ssp,bool nmi_safe)694 void srcu_check_nmi_safety(struct srcu_struct *ssp, bool nmi_safe)
695 {
696 	int nmi_safe_mask = 1 << nmi_safe;
697 	int old_nmi_safe_mask;
698 	struct srcu_data *sdp;
699 
700 	/* NMI-unsafe use in NMI is a bad sign */
701 	WARN_ON_ONCE(!nmi_safe && in_nmi());
702 	sdp = raw_cpu_ptr(ssp->sda);
703 	old_nmi_safe_mask = READ_ONCE(sdp->srcu_nmi_safety);
704 	if (!old_nmi_safe_mask) {
705 		WRITE_ONCE(sdp->srcu_nmi_safety, nmi_safe_mask);
706 		return;
707 	}
708 	WARN_ONCE(old_nmi_safe_mask != nmi_safe_mask, "CPU %d old state %d new state %d\n", sdp->cpu, old_nmi_safe_mask, nmi_safe_mask);
709 }
710 EXPORT_SYMBOL_GPL(srcu_check_nmi_safety);
711 #endif /* CONFIG_PROVE_RCU */
712 
713 /*
714  * Counts the new reader in the appropriate per-CPU element of the
715  * srcu_struct.
716  * Returns an index that must be passed to the matching srcu_read_unlock().
717  */
__srcu_read_lock(struct srcu_struct * ssp)718 int __srcu_read_lock(struct srcu_struct *ssp)
719 {
720 	int idx;
721 
722 	idx = READ_ONCE(ssp->srcu_idx) & 0x1;
723 	this_cpu_inc(ssp->sda->srcu_lock_count[idx].counter);
724 	smp_mb(); /* B */  /* Avoid leaking the critical section. */
725 	return idx;
726 }
727 EXPORT_SYMBOL_GPL(__srcu_read_lock);
728 
729 /*
730  * Removes the count for the old reader from the appropriate per-CPU
731  * element of the srcu_struct.  Note that this may well be a different
732  * CPU than that which was incremented by the corresponding srcu_read_lock().
733  */
__srcu_read_unlock(struct srcu_struct * ssp,int idx)734 void __srcu_read_unlock(struct srcu_struct *ssp, int idx)
735 {
736 	smp_mb(); /* C */  /* Avoid leaking the critical section. */
737 	this_cpu_inc(ssp->sda->srcu_unlock_count[idx].counter);
738 }
739 EXPORT_SYMBOL_GPL(__srcu_read_unlock);
740 
741 #ifdef CONFIG_NEED_SRCU_NMI_SAFE
742 
743 /*
744  * Counts the new reader in the appropriate per-CPU element of the
745  * srcu_struct, but in an NMI-safe manner using RMW atomics.
746  * Returns an index that must be passed to the matching srcu_read_unlock().
747  */
__srcu_read_lock_nmisafe(struct srcu_struct * ssp)748 int __srcu_read_lock_nmisafe(struct srcu_struct *ssp)
749 {
750 	int idx;
751 	struct srcu_data *sdp = raw_cpu_ptr(ssp->sda);
752 
753 	idx = READ_ONCE(ssp->srcu_idx) & 0x1;
754 	atomic_long_inc(&sdp->srcu_lock_count[idx]);
755 	smp_mb__after_atomic(); /* B */  /* Avoid leaking the critical section. */
756 	return idx;
757 }
758 EXPORT_SYMBOL_GPL(__srcu_read_lock_nmisafe);
759 
760 /*
761  * Removes the count for the old reader from the appropriate per-CPU
762  * element of the srcu_struct.  Note that this may well be a different
763  * CPU than that which was incremented by the corresponding srcu_read_lock().
764  */
__srcu_read_unlock_nmisafe(struct srcu_struct * ssp,int idx)765 void __srcu_read_unlock_nmisafe(struct srcu_struct *ssp, int idx)
766 {
767 	struct srcu_data *sdp = raw_cpu_ptr(ssp->sda);
768 
769 	smp_mb__before_atomic(); /* C */  /* Avoid leaking the critical section. */
770 	atomic_long_inc(&sdp->srcu_unlock_count[idx]);
771 }
772 EXPORT_SYMBOL_GPL(__srcu_read_unlock_nmisafe);
773 
774 #endif // CONFIG_NEED_SRCU_NMI_SAFE
775 
776 /*
777  * Start an SRCU grace period.
778  */
srcu_gp_start(struct srcu_struct * ssp)779 static void srcu_gp_start(struct srcu_struct *ssp)
780 {
781 	int state;
782 
783 	lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
784 	WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed));
785 	WRITE_ONCE(ssp->srcu_sup->srcu_gp_start, jiffies);
786 	WRITE_ONCE(ssp->srcu_sup->srcu_n_exp_nodelay, 0);
787 	smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
788 	rcu_seq_start(&ssp->srcu_sup->srcu_gp_seq);
789 	state = rcu_seq_state(ssp->srcu_sup->srcu_gp_seq);
790 	WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
791 }
792 
793 
srcu_delay_timer(struct timer_list * t)794 static void srcu_delay_timer(struct timer_list *t)
795 {
796 	struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work);
797 
798 	queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
799 }
800 
srcu_queue_delayed_work_on(struct srcu_data * sdp,unsigned long delay)801 static void srcu_queue_delayed_work_on(struct srcu_data *sdp,
802 				       unsigned long delay)
803 {
804 	if (!delay) {
805 		queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
806 		return;
807 	}
808 
809 	timer_reduce(&sdp->delay_work, jiffies + delay);
810 }
811 
812 /*
813  * Schedule callback invocation for the specified srcu_data structure,
814  * if possible, on the corresponding CPU.
815  */
srcu_schedule_cbs_sdp(struct srcu_data * sdp,unsigned long delay)816 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay)
817 {
818 	srcu_queue_delayed_work_on(sdp, delay);
819 }
820 
821 /*
822  * Schedule callback invocation for all srcu_data structures associated
823  * with the specified srcu_node structure that have callbacks for the
824  * just-completed grace period, the one corresponding to idx.  If possible,
825  * schedule this invocation on the corresponding CPUs.
826  */
srcu_schedule_cbs_snp(struct srcu_struct * ssp,struct srcu_node * snp,unsigned long mask,unsigned long delay)827 static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp,
828 				  unsigned long mask, unsigned long delay)
829 {
830 	int cpu;
831 
832 	for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
833 		if (!(mask & (1UL << (cpu - snp->grplo))))
834 			continue;
835 		srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay);
836 	}
837 }
838 
839 /*
840  * Note the end of an SRCU grace period.  Initiates callback invocation
841  * and starts a new grace period if needed.
842  *
843  * The ->srcu_cb_mutex acquisition does not protect any data, but
844  * instead prevents more than one grace period from starting while we
845  * are initiating callback invocation.  This allows the ->srcu_have_cbs[]
846  * array to have a finite number of elements.
847  */
srcu_gp_end(struct srcu_struct * ssp)848 static void srcu_gp_end(struct srcu_struct *ssp)
849 {
850 	unsigned long cbdelay = 1;
851 	bool cbs;
852 	bool last_lvl;
853 	int cpu;
854 	unsigned long gpseq;
855 	int idx;
856 	unsigned long mask;
857 	struct srcu_data *sdp;
858 	unsigned long sgsne;
859 	struct srcu_node *snp;
860 	int ss_state;
861 	struct srcu_usage *sup = ssp->srcu_sup;
862 
863 	/* Prevent more than one additional grace period. */
864 	mutex_lock(&sup->srcu_cb_mutex);
865 
866 	/* End the current grace period. */
867 	spin_lock_irq_rcu_node(sup);
868 	idx = rcu_seq_state(sup->srcu_gp_seq);
869 	WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
870 	if (ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp)))
871 		cbdelay = 0;
872 
873 	WRITE_ONCE(sup->srcu_last_gp_end, ktime_get_mono_fast_ns());
874 	rcu_seq_end(&sup->srcu_gp_seq);
875 	gpseq = rcu_seq_current(&sup->srcu_gp_seq);
876 	if (ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, gpseq))
877 		WRITE_ONCE(sup->srcu_gp_seq_needed_exp, gpseq);
878 	spin_unlock_irq_rcu_node(sup);
879 	mutex_unlock(&sup->srcu_gp_mutex);
880 	/* A new grace period can start at this point.  But only one. */
881 
882 	/* Initiate callback invocation as needed. */
883 	ss_state = smp_load_acquire(&sup->srcu_size_state);
884 	if (ss_state < SRCU_SIZE_WAIT_BARRIER) {
885 		srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, get_boot_cpu_id()),
886 					cbdelay);
887 	} else {
888 		idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs);
889 		srcu_for_each_node_breadth_first(ssp, snp) {
890 			spin_lock_irq_rcu_node(snp);
891 			cbs = false;
892 			last_lvl = snp >= sup->level[rcu_num_lvls - 1];
893 			if (last_lvl)
894 				cbs = ss_state < SRCU_SIZE_BIG || snp->srcu_have_cbs[idx] == gpseq;
895 			snp->srcu_have_cbs[idx] = gpseq;
896 			rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1);
897 			sgsne = snp->srcu_gp_seq_needed_exp;
898 			if (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, gpseq))
899 				WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq);
900 			if (ss_state < SRCU_SIZE_BIG)
901 				mask = ~0;
902 			else
903 				mask = snp->srcu_data_have_cbs[idx];
904 			snp->srcu_data_have_cbs[idx] = 0;
905 			spin_unlock_irq_rcu_node(snp);
906 			if (cbs)
907 				srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay);
908 		}
909 	}
910 
911 	/* Occasionally prevent srcu_data counter wrap. */
912 	if (!(gpseq & counter_wrap_check))
913 		for_each_possible_cpu(cpu) {
914 			sdp = per_cpu_ptr(ssp->sda, cpu);
915 			spin_lock_irq_rcu_node(sdp);
916 			if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed + 100))
917 				sdp->srcu_gp_seq_needed = gpseq;
918 			if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed_exp + 100))
919 				sdp->srcu_gp_seq_needed_exp = gpseq;
920 			spin_unlock_irq_rcu_node(sdp);
921 		}
922 
923 	/* Callback initiation done, allow grace periods after next. */
924 	mutex_unlock(&sup->srcu_cb_mutex);
925 
926 	/* Start a new grace period if needed. */
927 	spin_lock_irq_rcu_node(sup);
928 	gpseq = rcu_seq_current(&sup->srcu_gp_seq);
929 	if (!rcu_seq_state(gpseq) &&
930 	    ULONG_CMP_LT(gpseq, sup->srcu_gp_seq_needed)) {
931 		srcu_gp_start(ssp);
932 		spin_unlock_irq_rcu_node(sup);
933 		srcu_reschedule(ssp, 0);
934 	} else {
935 		spin_unlock_irq_rcu_node(sup);
936 	}
937 
938 	/* Transition to big if needed. */
939 	if (ss_state != SRCU_SIZE_SMALL && ss_state != SRCU_SIZE_BIG) {
940 		if (ss_state == SRCU_SIZE_ALLOC)
941 			init_srcu_struct_nodes(ssp, GFP_KERNEL);
942 		else
943 			smp_store_release(&sup->srcu_size_state, ss_state + 1);
944 	}
945 }
946 
947 /*
948  * Funnel-locking scheme to scalably mediate many concurrent expedited
949  * grace-period requests.  This function is invoked for the first known
950  * expedited request for a grace period that has already been requested,
951  * but without expediting.  To start a completely new grace period,
952  * whether expedited or not, use srcu_funnel_gp_start() instead.
953  */
srcu_funnel_exp_start(struct srcu_struct * ssp,struct srcu_node * snp,unsigned long s)954 static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp,
955 				  unsigned long s)
956 {
957 	unsigned long flags;
958 	unsigned long sgsne;
959 
960 	if (snp)
961 		for (; snp != NULL; snp = snp->srcu_parent) {
962 			sgsne = READ_ONCE(snp->srcu_gp_seq_needed_exp);
963 			if (WARN_ON_ONCE(rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, s)) ||
964 			    (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)))
965 				return;
966 			spin_lock_irqsave_rcu_node(snp, flags);
967 			sgsne = snp->srcu_gp_seq_needed_exp;
968 			if (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)) {
969 				spin_unlock_irqrestore_rcu_node(snp, flags);
970 				return;
971 			}
972 			WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
973 			spin_unlock_irqrestore_rcu_node(snp, flags);
974 		}
975 	spin_lock_irqsave_ssp_contention(ssp, &flags);
976 	if (ULONG_CMP_LT(ssp->srcu_sup->srcu_gp_seq_needed_exp, s))
977 		WRITE_ONCE(ssp->srcu_sup->srcu_gp_seq_needed_exp, s);
978 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
979 }
980 
981 /*
982  * Funnel-locking scheme to scalably mediate many concurrent grace-period
983  * requests.  The winner has to do the work of actually starting grace
984  * period s.  Losers must either ensure that their desired grace-period
985  * number is recorded on at least their leaf srcu_node structure, or they
986  * must take steps to invoke their own callbacks.
987  *
988  * Note that this function also does the work of srcu_funnel_exp_start(),
989  * in some cases by directly invoking it.
990  *
991  * The srcu read lock should be hold around this function. And s is a seq snap
992  * after holding that lock.
993  */
srcu_funnel_gp_start(struct srcu_struct * ssp,struct srcu_data * sdp,unsigned long s,bool do_norm)994 static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp,
995 				 unsigned long s, bool do_norm)
996 {
997 	unsigned long flags;
998 	int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs);
999 	unsigned long sgsne;
1000 	struct srcu_node *snp;
1001 	struct srcu_node *snp_leaf;
1002 	unsigned long snp_seq;
1003 	struct srcu_usage *sup = ssp->srcu_sup;
1004 
1005 	/* Ensure that snp node tree is fully initialized before traversing it */
1006 	if (smp_load_acquire(&sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
1007 		snp_leaf = NULL;
1008 	else
1009 		snp_leaf = sdp->mynode;
1010 
1011 	if (snp_leaf)
1012 		/* Each pass through the loop does one level of the srcu_node tree. */
1013 		for (snp = snp_leaf; snp != NULL; snp = snp->srcu_parent) {
1014 			if (WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) && snp != snp_leaf)
1015 				return; /* GP already done and CBs recorded. */
1016 			spin_lock_irqsave_rcu_node(snp, flags);
1017 			snp_seq = snp->srcu_have_cbs[idx];
1018 			if (!srcu_invl_snp_seq(snp_seq) && ULONG_CMP_GE(snp_seq, s)) {
1019 				if (snp == snp_leaf && snp_seq == s)
1020 					snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
1021 				spin_unlock_irqrestore_rcu_node(snp, flags);
1022 				if (snp == snp_leaf && snp_seq != s) {
1023 					srcu_schedule_cbs_sdp(sdp, do_norm ? SRCU_INTERVAL : 0);
1024 					return;
1025 				}
1026 				if (!do_norm)
1027 					srcu_funnel_exp_start(ssp, snp, s);
1028 				return;
1029 			}
1030 			snp->srcu_have_cbs[idx] = s;
1031 			if (snp == snp_leaf)
1032 				snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
1033 			sgsne = snp->srcu_gp_seq_needed_exp;
1034 			if (!do_norm && (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, s)))
1035 				WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
1036 			spin_unlock_irqrestore_rcu_node(snp, flags);
1037 		}
1038 
1039 	/* Top of tree, must ensure the grace period will be started. */
1040 	spin_lock_irqsave_ssp_contention(ssp, &flags);
1041 	if (ULONG_CMP_LT(sup->srcu_gp_seq_needed, s)) {
1042 		/*
1043 		 * Record need for grace period s.  Pair with load
1044 		 * acquire setting up for initialization.
1045 		 */
1046 		smp_store_release(&sup->srcu_gp_seq_needed, s); /*^^^*/
1047 	}
1048 	if (!do_norm && ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, s))
1049 		WRITE_ONCE(sup->srcu_gp_seq_needed_exp, s);
1050 
1051 	/* If grace period not already in progress, start it. */
1052 	if (!WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) &&
1053 	    rcu_seq_state(sup->srcu_gp_seq) == SRCU_STATE_IDLE) {
1054 		WARN_ON_ONCE(ULONG_CMP_GE(sup->srcu_gp_seq, sup->srcu_gp_seq_needed));
1055 		srcu_gp_start(ssp);
1056 
1057 		// And how can that list_add() in the "else" clause
1058 		// possibly be safe for concurrent execution?  Well,
1059 		// it isn't.  And it does not have to be.  After all, it
1060 		// can only be executed during early boot when there is only
1061 		// the one boot CPU running with interrupts still disabled.
1062 		if (likely(srcu_init_done))
1063 			queue_delayed_work(rcu_gp_wq, &sup->work,
1064 					   !!srcu_get_delay(ssp));
1065 		else if (list_empty(&sup->work.work.entry))
1066 			list_add(&sup->work.work.entry, &srcu_boot_list);
1067 	}
1068 	spin_unlock_irqrestore_rcu_node(sup, flags);
1069 }
1070 
1071 /*
1072  * Wait until all readers counted by array index idx complete, but
1073  * loop an additional time if there is an expedited grace period pending.
1074  * The caller must ensure that ->srcu_idx is not changed while checking.
1075  */
try_check_zero(struct srcu_struct * ssp,int idx,int trycount)1076 static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount)
1077 {
1078 	unsigned long curdelay;
1079 
1080 	curdelay = !srcu_get_delay(ssp);
1081 
1082 	for (;;) {
1083 		if (srcu_readers_active_idx_check(ssp, idx))
1084 			return true;
1085 		if ((--trycount + curdelay) <= 0)
1086 			return false;
1087 		udelay(srcu_retry_check_delay);
1088 	}
1089 }
1090 
1091 /*
1092  * Increment the ->srcu_idx counter so that future SRCU readers will
1093  * use the other rank of the ->srcu_(un)lock_count[] arrays.  This allows
1094  * us to wait for pre-existing readers in a starvation-free manner.
1095  */
srcu_flip(struct srcu_struct * ssp)1096 static void srcu_flip(struct srcu_struct *ssp)
1097 {
1098 	/*
1099 	 * Because the flip of ->srcu_idx is executed only if the
1100 	 * preceding call to srcu_readers_active_idx_check() found that
1101 	 * the ->srcu_unlock_count[] and ->srcu_lock_count[] sums matched
1102 	 * and because that summing uses atomic_long_read(), there is
1103 	 * ordering due to a control dependency between that summing and
1104 	 * the WRITE_ONCE() in this call to srcu_flip().  This ordering
1105 	 * ensures that if this updater saw a given reader's increment from
1106 	 * __srcu_read_lock(), that reader was using a value of ->srcu_idx
1107 	 * from before the previous call to srcu_flip(), which should be
1108 	 * quite rare.  This ordering thus helps forward progress because
1109 	 * the grace period could otherwise be delayed by additional
1110 	 * calls to __srcu_read_lock() using that old (soon to be new)
1111 	 * value of ->srcu_idx.
1112 	 *
1113 	 * This sum-equality check and ordering also ensures that if
1114 	 * a given call to __srcu_read_lock() uses the new value of
1115 	 * ->srcu_idx, this updater's earlier scans cannot have seen
1116 	 * that reader's increments, which is all to the good, because
1117 	 * this grace period need not wait on that reader.  After all,
1118 	 * if those earlier scans had seen that reader, there would have
1119 	 * been a sum mismatch and this code would not be reached.
1120 	 *
1121 	 * This means that the following smp_mb() is redundant, but
1122 	 * it stays until either (1) Compilers learn about this sort of
1123 	 * control dependency or (2) Some production workload running on
1124 	 * a production system is unduly delayed by this slowpath smp_mb().
1125 	 */
1126 	smp_mb(); /* E */  /* Pairs with B and C. */
1127 
1128 	WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1); // Flip the counter.
1129 
1130 	/*
1131 	 * Ensure that if the updater misses an __srcu_read_unlock()
1132 	 * increment, that task's __srcu_read_lock() following its next
1133 	 * __srcu_read_lock() or __srcu_read_unlock() will see the above
1134 	 * counter update.  Note that both this memory barrier and the
1135 	 * one in srcu_readers_active_idx_check() provide the guarantee
1136 	 * for __srcu_read_lock().
1137 	 */
1138 	smp_mb(); /* D */  /* Pairs with C. */
1139 }
1140 
1141 /*
1142  * If SRCU is likely idle, return true, otherwise return false.
1143  *
1144  * Note that it is OK for several current from-idle requests for a new
1145  * grace period from idle to specify expediting because they will all end
1146  * up requesting the same grace period anyhow.  So no loss.
1147  *
1148  * Note also that if any CPU (including the current one) is still invoking
1149  * callbacks, this function will nevertheless say "idle".  This is not
1150  * ideal, but the overhead of checking all CPUs' callback lists is even
1151  * less ideal, especially on large systems.  Furthermore, the wakeup
1152  * can happen before the callback is fully removed, so we have no choice
1153  * but to accept this type of error.
1154  *
1155  * This function is also subject to counter-wrap errors, but let's face
1156  * it, if this function was preempted for enough time for the counters
1157  * to wrap, it really doesn't matter whether or not we expedite the grace
1158  * period.  The extra overhead of a needlessly expedited grace period is
1159  * negligible when amortized over that time period, and the extra latency
1160  * of a needlessly non-expedited grace period is similarly negligible.
1161  */
srcu_might_be_idle(struct srcu_struct * ssp)1162 static bool srcu_might_be_idle(struct srcu_struct *ssp)
1163 {
1164 	unsigned long curseq;
1165 	unsigned long flags;
1166 	struct srcu_data *sdp;
1167 	unsigned long t;
1168 	unsigned long tlast;
1169 
1170 	check_init_srcu_struct(ssp);
1171 	/* If the local srcu_data structure has callbacks, not idle.  */
1172 	sdp = raw_cpu_ptr(ssp->sda);
1173 	spin_lock_irqsave_rcu_node(sdp, flags);
1174 	if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) {
1175 		spin_unlock_irqrestore_rcu_node(sdp, flags);
1176 		return false; /* Callbacks already present, so not idle. */
1177 	}
1178 	spin_unlock_irqrestore_rcu_node(sdp, flags);
1179 
1180 	/*
1181 	 * No local callbacks, so probabilistically probe global state.
1182 	 * Exact information would require acquiring locks, which would
1183 	 * kill scalability, hence the probabilistic nature of the probe.
1184 	 */
1185 
1186 	/* First, see if enough time has passed since the last GP. */
1187 	t = ktime_get_mono_fast_ns();
1188 	tlast = READ_ONCE(ssp->srcu_sup->srcu_last_gp_end);
1189 	if (exp_holdoff == 0 ||
1190 	    time_in_range_open(t, tlast, tlast + exp_holdoff))
1191 		return false; /* Too soon after last GP. */
1192 
1193 	/* Next, check for probable idleness. */
1194 	curseq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq);
1195 	smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
1196 	if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_sup->srcu_gp_seq_needed)))
1197 		return false; /* Grace period in progress, so not idle. */
1198 	smp_mb(); /* Order ->srcu_gp_seq with prior access. */
1199 	if (curseq != rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq))
1200 		return false; /* GP # changed, so not idle. */
1201 	return true; /* With reasonable probability, idle! */
1202 }
1203 
1204 /*
1205  * SRCU callback function to leak a callback.
1206  */
srcu_leak_callback(struct rcu_head * rhp)1207 static void srcu_leak_callback(struct rcu_head *rhp)
1208 {
1209 }
1210 
1211 /*
1212  * Start an SRCU grace period, and also queue the callback if non-NULL.
1213  */
srcu_gp_start_if_needed(struct srcu_struct * ssp,struct rcu_head * rhp,bool do_norm)1214 static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp,
1215 					     struct rcu_head *rhp, bool do_norm)
1216 {
1217 	unsigned long flags;
1218 	int idx;
1219 	bool needexp = false;
1220 	bool needgp = false;
1221 	unsigned long s;
1222 	struct srcu_data *sdp;
1223 	struct srcu_node *sdp_mynode;
1224 	int ss_state;
1225 
1226 	check_init_srcu_struct(ssp);
1227 	/*
1228 	 * While starting a new grace period, make sure we are in an
1229 	 * SRCU read-side critical section so that the grace-period
1230 	 * sequence number cannot wrap around in the meantime.
1231 	 */
1232 	idx = __srcu_read_lock_nmisafe(ssp);
1233 	ss_state = smp_load_acquire(&ssp->srcu_sup->srcu_size_state);
1234 	if (ss_state < SRCU_SIZE_WAIT_CALL)
1235 		sdp = per_cpu_ptr(ssp->sda, get_boot_cpu_id());
1236 	else
1237 		sdp = raw_cpu_ptr(ssp->sda);
1238 	spin_lock_irqsave_sdp_contention(sdp, &flags);
1239 	if (rhp)
1240 		rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp);
1241 	/*
1242 	 * It's crucial to capture the snapshot 's' for acceleration before
1243 	 * reading the current gp_seq that is used for advancing. This is
1244 	 * essential because if the acceleration snapshot is taken after a
1245 	 * failed advancement attempt, there's a risk that a grace period may
1246 	 * conclude and a new one may start in the interim. If the snapshot is
1247 	 * captured after this sequence of events, the acceleration snapshot 's'
1248 	 * could be excessively advanced, leading to acceleration failure.
1249 	 * In such a scenario, an 'acceleration leak' can occur, where new
1250 	 * callbacks become indefinitely stuck in the RCU_NEXT_TAIL segment.
1251 	 * Also note that encountering advancing failures is a normal
1252 	 * occurrence when the grace period for RCU_WAIT_TAIL is in progress.
1253 	 *
1254 	 * To see this, consider the following events which occur if
1255 	 * rcu_seq_snap() were to be called after advance:
1256 	 *
1257 	 *  1) The RCU_WAIT_TAIL segment has callbacks (gp_num = X + 4) and the
1258 	 *     RCU_NEXT_READY_TAIL also has callbacks (gp_num = X + 8).
1259 	 *
1260 	 *  2) The grace period for RCU_WAIT_TAIL is seen as started but not
1261 	 *     completed so rcu_seq_current() returns X + SRCU_STATE_SCAN1.
1262 	 *
1263 	 *  3) This value is passed to rcu_segcblist_advance() which can't move
1264 	 *     any segment forward and fails.
1265 	 *
1266 	 *  4) srcu_gp_start_if_needed() still proceeds with callback acceleration.
1267 	 *     But then the call to rcu_seq_snap() observes the grace period for the
1268 	 *     RCU_WAIT_TAIL segment as completed and the subsequent one for the
1269 	 *     RCU_NEXT_READY_TAIL segment as started (ie: X + 4 + SRCU_STATE_SCAN1)
1270 	 *     so it returns a snapshot of the next grace period, which is X + 12.
1271 	 *
1272 	 *  5) The value of X + 12 is passed to rcu_segcblist_accelerate() but the
1273 	 *     freshly enqueued callback in RCU_NEXT_TAIL can't move to
1274 	 *     RCU_NEXT_READY_TAIL which already has callbacks for a previous grace
1275 	 *     period (gp_num = X + 8). So acceleration fails.
1276 	 */
1277 	s = rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq);
1278 	if (rhp) {
1279 		rcu_segcblist_advance(&sdp->srcu_cblist,
1280 				      rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq));
1281 		/*
1282 		 * Acceleration can never fail because the base current gp_seq
1283 		 * used for acceleration is <= the value of gp_seq used for
1284 		 * advancing. This means that RCU_NEXT_TAIL segment will
1285 		 * always be able to be emptied by the acceleration into the
1286 		 * RCU_NEXT_READY_TAIL or RCU_WAIT_TAIL segments.
1287 		 */
1288 		WARN_ON_ONCE(!rcu_segcblist_accelerate(&sdp->srcu_cblist, s));
1289 	}
1290 	if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) {
1291 		sdp->srcu_gp_seq_needed = s;
1292 		needgp = true;
1293 	}
1294 	if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) {
1295 		sdp->srcu_gp_seq_needed_exp = s;
1296 		needexp = true;
1297 	}
1298 	spin_unlock_irqrestore_rcu_node(sdp, flags);
1299 
1300 	/* Ensure that snp node tree is fully initialized before traversing it */
1301 	if (ss_state < SRCU_SIZE_WAIT_BARRIER)
1302 		sdp_mynode = NULL;
1303 	else
1304 		sdp_mynode = sdp->mynode;
1305 
1306 	if (needgp)
1307 		srcu_funnel_gp_start(ssp, sdp, s, do_norm);
1308 	else if (needexp)
1309 		srcu_funnel_exp_start(ssp, sdp_mynode, s);
1310 	__srcu_read_unlock_nmisafe(ssp, idx);
1311 	return s;
1312 }
1313 
1314 /*
1315  * Enqueue an SRCU callback on the srcu_data structure associated with
1316  * the current CPU and the specified srcu_struct structure, initiating
1317  * grace-period processing if it is not already running.
1318  *
1319  * Note that all CPUs must agree that the grace period extended beyond
1320  * all pre-existing SRCU read-side critical section.  On systems with
1321  * more than one CPU, this means that when "func()" is invoked, each CPU
1322  * is guaranteed to have executed a full memory barrier since the end of
1323  * its last corresponding SRCU read-side critical section whose beginning
1324  * preceded the call to call_srcu().  It also means that each CPU executing
1325  * an SRCU read-side critical section that continues beyond the start of
1326  * "func()" must have executed a memory barrier after the call_srcu()
1327  * but before the beginning of that SRCU read-side critical section.
1328  * Note that these guarantees include CPUs that are offline, idle, or
1329  * executing in user mode, as well as CPUs that are executing in the kernel.
1330  *
1331  * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the
1332  * resulting SRCU callback function "func()", then both CPU A and CPU
1333  * B are guaranteed to execute a full memory barrier during the time
1334  * interval between the call to call_srcu() and the invocation of "func()".
1335  * This guarantee applies even if CPU A and CPU B are the same CPU (but
1336  * again only if the system has more than one CPU).
1337  *
1338  * Of course, these guarantees apply only for invocations of call_srcu(),
1339  * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
1340  * srcu_struct structure.
1341  */
__call_srcu(struct srcu_struct * ssp,struct rcu_head * rhp,rcu_callback_t func,bool do_norm)1342 static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
1343 			rcu_callback_t func, bool do_norm)
1344 {
1345 	if (debug_rcu_head_queue(rhp)) {
1346 		/* Probable double call_srcu(), so leak the callback. */
1347 		WRITE_ONCE(rhp->func, srcu_leak_callback);
1348 		WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n");
1349 		return;
1350 	}
1351 	rhp->func = func;
1352 	(void)srcu_gp_start_if_needed(ssp, rhp, do_norm);
1353 }
1354 
1355 /**
1356  * call_srcu() - Queue a callback for invocation after an SRCU grace period
1357  * @ssp: srcu_struct in queue the callback
1358  * @rhp: structure to be used for queueing the SRCU callback.
1359  * @func: function to be invoked after the SRCU grace period
1360  *
1361  * The callback function will be invoked some time after a full SRCU
1362  * grace period elapses, in other words after all pre-existing SRCU
1363  * read-side critical sections have completed.  However, the callback
1364  * function might well execute concurrently with other SRCU read-side
1365  * critical sections that started after call_srcu() was invoked.  SRCU
1366  * read-side critical sections are delimited by srcu_read_lock() and
1367  * srcu_read_unlock(), and may be nested.
1368  *
1369  * The callback will be invoked from process context, but must nevertheless
1370  * be fast and must not block.
1371  */
call_srcu(struct srcu_struct * ssp,struct rcu_head * rhp,rcu_callback_t func)1372 void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
1373 	       rcu_callback_t func)
1374 {
1375 	__call_srcu(ssp, rhp, func, true);
1376 }
1377 EXPORT_SYMBOL_GPL(call_srcu);
1378 
1379 /*
1380  * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
1381  */
__synchronize_srcu(struct srcu_struct * ssp,bool do_norm)1382 static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm)
1383 {
1384 	struct rcu_synchronize rcu;
1385 
1386 	srcu_lock_sync(&ssp->dep_map);
1387 
1388 	RCU_LOCKDEP_WARN(lockdep_is_held(ssp) ||
1389 			 lock_is_held(&rcu_bh_lock_map) ||
1390 			 lock_is_held(&rcu_lock_map) ||
1391 			 lock_is_held(&rcu_sched_lock_map),
1392 			 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
1393 
1394 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
1395 		return;
1396 	might_sleep();
1397 	check_init_srcu_struct(ssp);
1398 	init_completion(&rcu.completion);
1399 	init_rcu_head_on_stack(&rcu.head);
1400 	__call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm);
1401 	wait_for_completion(&rcu.completion);
1402 	destroy_rcu_head_on_stack(&rcu.head);
1403 
1404 	/*
1405 	 * Make sure that later code is ordered after the SRCU grace
1406 	 * period.  This pairs with the spin_lock_irq_rcu_node()
1407 	 * in srcu_invoke_callbacks().  Unlike Tree RCU, this is needed
1408 	 * because the current CPU might have been totally uninvolved with
1409 	 * (and thus unordered against) that grace period.
1410 	 */
1411 	smp_mb();
1412 }
1413 
1414 /**
1415  * synchronize_srcu_expedited - Brute-force SRCU grace period
1416  * @ssp: srcu_struct with which to synchronize.
1417  *
1418  * Wait for an SRCU grace period to elapse, but be more aggressive about
1419  * spinning rather than blocking when waiting.
1420  *
1421  * Note that synchronize_srcu_expedited() has the same deadlock and
1422  * memory-ordering properties as does synchronize_srcu().
1423  */
synchronize_srcu_expedited(struct srcu_struct * ssp)1424 void synchronize_srcu_expedited(struct srcu_struct *ssp)
1425 {
1426 	__synchronize_srcu(ssp, rcu_gp_is_normal());
1427 }
1428 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
1429 
1430 /**
1431  * synchronize_srcu - wait for prior SRCU read-side critical-section completion
1432  * @ssp: srcu_struct with which to synchronize.
1433  *
1434  * Wait for the count to drain to zero of both indexes. To avoid the
1435  * possible starvation of synchronize_srcu(), it waits for the count of
1436  * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first,
1437  * and then flip the srcu_idx and wait for the count of the other index.
1438  *
1439  * Can block; must be called from process context.
1440  *
1441  * Note that it is illegal to call synchronize_srcu() from the corresponding
1442  * SRCU read-side critical section; doing so will result in deadlock.
1443  * However, it is perfectly legal to call synchronize_srcu() on one
1444  * srcu_struct from some other srcu_struct's read-side critical section,
1445  * as long as the resulting graph of srcu_structs is acyclic.
1446  *
1447  * There are memory-ordering constraints implied by synchronize_srcu().
1448  * On systems with more than one CPU, when synchronize_srcu() returns,
1449  * each CPU is guaranteed to have executed a full memory barrier since
1450  * the end of its last corresponding SRCU read-side critical section
1451  * whose beginning preceded the call to synchronize_srcu().  In addition,
1452  * each CPU having an SRCU read-side critical section that extends beyond
1453  * the return from synchronize_srcu() is guaranteed to have executed a
1454  * full memory barrier after the beginning of synchronize_srcu() and before
1455  * the beginning of that SRCU read-side critical section.  Note that these
1456  * guarantees include CPUs that are offline, idle, or executing in user mode,
1457  * as well as CPUs that are executing in the kernel.
1458  *
1459  * Furthermore, if CPU A invoked synchronize_srcu(), which returned
1460  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
1461  * to have executed a full memory barrier during the execution of
1462  * synchronize_srcu().  This guarantee applies even if CPU A and CPU B
1463  * are the same CPU, but again only if the system has more than one CPU.
1464  *
1465  * Of course, these memory-ordering guarantees apply only when
1466  * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
1467  * passed the same srcu_struct structure.
1468  *
1469  * Implementation of these memory-ordering guarantees is similar to
1470  * that of synchronize_rcu().
1471  *
1472  * If SRCU is likely idle, expedite the first request.  This semantic
1473  * was provided by Classic SRCU, and is relied upon by its users, so TREE
1474  * SRCU must also provide it.  Note that detecting idleness is heuristic
1475  * and subject to both false positives and negatives.
1476  */
synchronize_srcu(struct srcu_struct * ssp)1477 void synchronize_srcu(struct srcu_struct *ssp)
1478 {
1479 	if (srcu_might_be_idle(ssp) || rcu_gp_is_expedited())
1480 		synchronize_srcu_expedited(ssp);
1481 	else
1482 		__synchronize_srcu(ssp, true);
1483 }
1484 EXPORT_SYMBOL_GPL(synchronize_srcu);
1485 
1486 /**
1487  * get_state_synchronize_srcu - Provide an end-of-grace-period cookie
1488  * @ssp: srcu_struct to provide cookie for.
1489  *
1490  * This function returns a cookie that can be passed to
1491  * poll_state_synchronize_srcu(), which will return true if a full grace
1492  * period has elapsed in the meantime.  It is the caller's responsibility
1493  * to make sure that grace period happens, for example, by invoking
1494  * call_srcu() after return from get_state_synchronize_srcu().
1495  */
get_state_synchronize_srcu(struct srcu_struct * ssp)1496 unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp)
1497 {
1498 	// Any prior manipulation of SRCU-protected data must happen
1499 	// before the load from ->srcu_gp_seq.
1500 	smp_mb();
1501 	return rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq);
1502 }
1503 EXPORT_SYMBOL_GPL(get_state_synchronize_srcu);
1504 
1505 /**
1506  * start_poll_synchronize_srcu - Provide cookie and start grace period
1507  * @ssp: srcu_struct to provide cookie for.
1508  *
1509  * This function returns a cookie that can be passed to
1510  * poll_state_synchronize_srcu(), which will return true if a full grace
1511  * period has elapsed in the meantime.  Unlike get_state_synchronize_srcu(),
1512  * this function also ensures that any needed SRCU grace period will be
1513  * started.  This convenience does come at a cost in terms of CPU overhead.
1514  */
start_poll_synchronize_srcu(struct srcu_struct * ssp)1515 unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp)
1516 {
1517 	return srcu_gp_start_if_needed(ssp, NULL, true);
1518 }
1519 EXPORT_SYMBOL_GPL(start_poll_synchronize_srcu);
1520 
1521 /**
1522  * poll_state_synchronize_srcu - Has cookie's grace period ended?
1523  * @ssp: srcu_struct to provide cookie for.
1524  * @cookie: Return value from get_state_synchronize_srcu() or start_poll_synchronize_srcu().
1525  *
1526  * This function takes the cookie that was returned from either
1527  * get_state_synchronize_srcu() or start_poll_synchronize_srcu(), and
1528  * returns @true if an SRCU grace period elapsed since the time that the
1529  * cookie was created.
1530  *
1531  * Because cookies are finite in size, wrapping/overflow is possible.
1532  * This is more pronounced on 32-bit systems where cookies are 32 bits,
1533  * where in theory wrapping could happen in about 14 hours assuming
1534  * 25-microsecond expedited SRCU grace periods.  However, a more likely
1535  * overflow lower bound is on the order of 24 days in the case of
1536  * one-millisecond SRCU grace periods.  Of course, wrapping in a 64-bit
1537  * system requires geologic timespans, as in more than seven million years
1538  * even for expedited SRCU grace periods.
1539  *
1540  * Wrapping/overflow is much more of an issue for CONFIG_SMP=n systems
1541  * that also have CONFIG_PREEMPTION=n, which selects Tiny SRCU.  This uses
1542  * a 16-bit cookie, which rcutorture routinely wraps in a matter of a
1543  * few minutes.  If this proves to be a problem, this counter will be
1544  * expanded to the same size as for Tree SRCU.
1545  */
poll_state_synchronize_srcu(struct srcu_struct * ssp,unsigned long cookie)1546 bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie)
1547 {
1548 	if (cookie != SRCU_GET_STATE_COMPLETED &&
1549 	    !rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, cookie))
1550 		return false;
1551 	// Ensure that the end of the SRCU grace period happens before
1552 	// any subsequent code that the caller might execute.
1553 	smp_mb(); // ^^^
1554 	return true;
1555 }
1556 EXPORT_SYMBOL_GPL(poll_state_synchronize_srcu);
1557 
1558 /*
1559  * Callback function for srcu_barrier() use.
1560  */
srcu_barrier_cb(struct rcu_head * rhp)1561 static void srcu_barrier_cb(struct rcu_head *rhp)
1562 {
1563 	struct srcu_data *sdp;
1564 	struct srcu_struct *ssp;
1565 
1566 	rhp->next = rhp; // Mark the callback as having been invoked.
1567 	sdp = container_of(rhp, struct srcu_data, srcu_barrier_head);
1568 	ssp = sdp->ssp;
1569 	if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt))
1570 		complete(&ssp->srcu_sup->srcu_barrier_completion);
1571 }
1572 
1573 /*
1574  * Enqueue an srcu_barrier() callback on the specified srcu_data
1575  * structure's ->cblist.  but only if that ->cblist already has at least one
1576  * callback enqueued.  Note that if a CPU already has callbacks enqueue,
1577  * it must have already registered the need for a future grace period,
1578  * so all we need do is enqueue a callback that will use the same grace
1579  * period as the last callback already in the queue.
1580  */
srcu_barrier_one_cpu(struct srcu_struct * ssp,struct srcu_data * sdp)1581 static void srcu_barrier_one_cpu(struct srcu_struct *ssp, struct srcu_data *sdp)
1582 {
1583 	spin_lock_irq_rcu_node(sdp);
1584 	atomic_inc(&ssp->srcu_sup->srcu_barrier_cpu_cnt);
1585 	sdp->srcu_barrier_head.func = srcu_barrier_cb;
1586 	debug_rcu_head_queue(&sdp->srcu_barrier_head);
1587 	if (!rcu_segcblist_entrain(&sdp->srcu_cblist,
1588 				   &sdp->srcu_barrier_head)) {
1589 		debug_rcu_head_unqueue(&sdp->srcu_barrier_head);
1590 		atomic_dec(&ssp->srcu_sup->srcu_barrier_cpu_cnt);
1591 	}
1592 	spin_unlock_irq_rcu_node(sdp);
1593 }
1594 
1595 /**
1596  * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
1597  * @ssp: srcu_struct on which to wait for in-flight callbacks.
1598  */
srcu_barrier(struct srcu_struct * ssp)1599 void srcu_barrier(struct srcu_struct *ssp)
1600 {
1601 	int cpu;
1602 	int idx;
1603 	unsigned long s = rcu_seq_snap(&ssp->srcu_sup->srcu_barrier_seq);
1604 
1605 	check_init_srcu_struct(ssp);
1606 	mutex_lock(&ssp->srcu_sup->srcu_barrier_mutex);
1607 	if (rcu_seq_done(&ssp->srcu_sup->srcu_barrier_seq, s)) {
1608 		smp_mb(); /* Force ordering following return. */
1609 		mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex);
1610 		return; /* Someone else did our work for us. */
1611 	}
1612 	rcu_seq_start(&ssp->srcu_sup->srcu_barrier_seq);
1613 	init_completion(&ssp->srcu_sup->srcu_barrier_completion);
1614 
1615 	/* Initial count prevents reaching zero until all CBs are posted. */
1616 	atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 1);
1617 
1618 	idx = __srcu_read_lock_nmisafe(ssp);
1619 	if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
1620 		srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda,	get_boot_cpu_id()));
1621 	else
1622 		for_each_possible_cpu(cpu)
1623 			srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, cpu));
1624 	__srcu_read_unlock_nmisafe(ssp, idx);
1625 
1626 	/* Remove the initial count, at which point reaching zero can happen. */
1627 	if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt))
1628 		complete(&ssp->srcu_sup->srcu_barrier_completion);
1629 	wait_for_completion(&ssp->srcu_sup->srcu_barrier_completion);
1630 
1631 	rcu_seq_end(&ssp->srcu_sup->srcu_barrier_seq);
1632 	mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex);
1633 }
1634 EXPORT_SYMBOL_GPL(srcu_barrier);
1635 
1636 /**
1637  * srcu_batches_completed - return batches completed.
1638  * @ssp: srcu_struct on which to report batch completion.
1639  *
1640  * Report the number of batches, correlated with, but not necessarily
1641  * precisely the same as, the number of grace periods that have elapsed.
1642  */
srcu_batches_completed(struct srcu_struct * ssp)1643 unsigned long srcu_batches_completed(struct srcu_struct *ssp)
1644 {
1645 	return READ_ONCE(ssp->srcu_idx);
1646 }
1647 EXPORT_SYMBOL_GPL(srcu_batches_completed);
1648 
1649 /*
1650  * Core SRCU state machine.  Push state bits of ->srcu_gp_seq
1651  * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
1652  * completed in that state.
1653  */
srcu_advance_state(struct srcu_struct * ssp)1654 static void srcu_advance_state(struct srcu_struct *ssp)
1655 {
1656 	int idx;
1657 
1658 	mutex_lock(&ssp->srcu_sup->srcu_gp_mutex);
1659 
1660 	/*
1661 	 * Because readers might be delayed for an extended period after
1662 	 * fetching ->srcu_idx for their index, at any point in time there
1663 	 * might well be readers using both idx=0 and idx=1.  We therefore
1664 	 * need to wait for readers to clear from both index values before
1665 	 * invoking a callback.
1666 	 *
1667 	 * The load-acquire ensures that we see the accesses performed
1668 	 * by the prior grace period.
1669 	 */
1670 	idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq)); /* ^^^ */
1671 	if (idx == SRCU_STATE_IDLE) {
1672 		spin_lock_irq_rcu_node(ssp->srcu_sup);
1673 		if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) {
1674 			WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq));
1675 			spin_unlock_irq_rcu_node(ssp->srcu_sup);
1676 			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1677 			return;
1678 		}
1679 		idx = rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq));
1680 		if (idx == SRCU_STATE_IDLE)
1681 			srcu_gp_start(ssp);
1682 		spin_unlock_irq_rcu_node(ssp->srcu_sup);
1683 		if (idx != SRCU_STATE_IDLE) {
1684 			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1685 			return; /* Someone else started the grace period. */
1686 		}
1687 	}
1688 
1689 	if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
1690 		idx = 1 ^ (ssp->srcu_idx & 1);
1691 		if (!try_check_zero(ssp, idx, 1)) {
1692 			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1693 			return; /* readers present, retry later. */
1694 		}
1695 		srcu_flip(ssp);
1696 		spin_lock_irq_rcu_node(ssp->srcu_sup);
1697 		rcu_seq_set_state(&ssp->srcu_sup->srcu_gp_seq, SRCU_STATE_SCAN2);
1698 		ssp->srcu_sup->srcu_n_exp_nodelay = 0;
1699 		spin_unlock_irq_rcu_node(ssp->srcu_sup);
1700 	}
1701 
1702 	if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN2) {
1703 
1704 		/*
1705 		 * SRCU read-side critical sections are normally short,
1706 		 * so check at least twice in quick succession after a flip.
1707 		 */
1708 		idx = 1 ^ (ssp->srcu_idx & 1);
1709 		if (!try_check_zero(ssp, idx, 2)) {
1710 			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1711 			return; /* readers present, retry later. */
1712 		}
1713 		ssp->srcu_sup->srcu_n_exp_nodelay = 0;
1714 		srcu_gp_end(ssp);  /* Releases ->srcu_gp_mutex. */
1715 	}
1716 }
1717 
1718 /*
1719  * Invoke a limited number of SRCU callbacks that have passed through
1720  * their grace period.  If there are more to do, SRCU will reschedule
1721  * the workqueue.  Note that needed memory barriers have been executed
1722  * in this task's context by srcu_readers_active_idx_check().
1723  */
srcu_invoke_callbacks(struct work_struct * work)1724 static void srcu_invoke_callbacks(struct work_struct *work)
1725 {
1726 	long len;
1727 	bool more;
1728 	struct rcu_cblist ready_cbs;
1729 	struct rcu_head *rhp;
1730 	struct srcu_data *sdp;
1731 	struct srcu_struct *ssp;
1732 
1733 	sdp = container_of(work, struct srcu_data, work);
1734 
1735 	ssp = sdp->ssp;
1736 	rcu_cblist_init(&ready_cbs);
1737 	spin_lock_irq_rcu_node(sdp);
1738 	WARN_ON_ONCE(!rcu_segcblist_segempty(&sdp->srcu_cblist, RCU_NEXT_TAIL));
1739 	rcu_segcblist_advance(&sdp->srcu_cblist,
1740 			      rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq));
1741 	/*
1742 	 * Although this function is theoretically re-entrant, concurrent
1743 	 * callbacks invocation is disallowed to avoid executing an SRCU barrier
1744 	 * too early.
1745 	 */
1746 	if (sdp->srcu_cblist_invoking ||
1747 	    !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) {
1748 		spin_unlock_irq_rcu_node(sdp);
1749 		return;  /* Someone else on the job or nothing to do. */
1750 	}
1751 
1752 	/* We are on the job!  Extract and invoke ready callbacks. */
1753 	sdp->srcu_cblist_invoking = true;
1754 	rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs);
1755 	len = ready_cbs.len;
1756 	spin_unlock_irq_rcu_node(sdp);
1757 	rhp = rcu_cblist_dequeue(&ready_cbs);
1758 	for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
1759 		debug_rcu_head_unqueue(rhp);
1760 		debug_rcu_head_callback(rhp);
1761 		local_bh_disable();
1762 		rhp->func(rhp);
1763 		local_bh_enable();
1764 	}
1765 	WARN_ON_ONCE(ready_cbs.len);
1766 
1767 	/*
1768 	 * Update counts, accelerate new callbacks, and if needed,
1769 	 * schedule another round of callback invocation.
1770 	 */
1771 	spin_lock_irq_rcu_node(sdp);
1772 	rcu_segcblist_add_len(&sdp->srcu_cblist, -len);
1773 	sdp->srcu_cblist_invoking = false;
1774 	more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist);
1775 	spin_unlock_irq_rcu_node(sdp);
1776 	/* An SRCU barrier or callbacks from previous nesting work pending */
1777 	if (more)
1778 		srcu_schedule_cbs_sdp(sdp, 0);
1779 }
1780 
1781 /*
1782  * Finished one round of SRCU grace period.  Start another if there are
1783  * more SRCU callbacks queued, otherwise put SRCU into not-running state.
1784  */
srcu_reschedule(struct srcu_struct * ssp,unsigned long delay)1785 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay)
1786 {
1787 	bool pushgp = true;
1788 
1789 	spin_lock_irq_rcu_node(ssp->srcu_sup);
1790 	if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) {
1791 		if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq))) {
1792 			/* All requests fulfilled, time to go idle. */
1793 			pushgp = false;
1794 		}
1795 	} else if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq)) {
1796 		/* Outstanding request and no GP.  Start one. */
1797 		srcu_gp_start(ssp);
1798 	}
1799 	spin_unlock_irq_rcu_node(ssp->srcu_sup);
1800 
1801 	if (pushgp)
1802 		queue_delayed_work(rcu_gp_wq, &ssp->srcu_sup->work, delay);
1803 }
1804 
1805 /*
1806  * This is the work-queue function that handles SRCU grace periods.
1807  */
process_srcu(struct work_struct * work)1808 static void process_srcu(struct work_struct *work)
1809 {
1810 	unsigned long curdelay;
1811 	unsigned long j;
1812 	struct srcu_struct *ssp;
1813 	struct srcu_usage *sup;
1814 
1815 	sup = container_of(work, struct srcu_usage, work.work);
1816 	ssp = sup->srcu_ssp;
1817 
1818 	srcu_advance_state(ssp);
1819 	curdelay = srcu_get_delay(ssp);
1820 	if (curdelay) {
1821 		WRITE_ONCE(sup->reschedule_count, 0);
1822 	} else {
1823 		j = jiffies;
1824 		if (READ_ONCE(sup->reschedule_jiffies) == j) {
1825 			ASSERT_EXCLUSIVE_WRITER(sup->reschedule_count);
1826 			WRITE_ONCE(sup->reschedule_count, READ_ONCE(sup->reschedule_count) + 1);
1827 			if (READ_ONCE(sup->reschedule_count) > srcu_max_nodelay)
1828 				curdelay = 1;
1829 		} else {
1830 			WRITE_ONCE(sup->reschedule_count, 1);
1831 			WRITE_ONCE(sup->reschedule_jiffies, j);
1832 		}
1833 	}
1834 	srcu_reschedule(ssp, curdelay);
1835 }
1836 
srcutorture_get_gp_data(struct srcu_struct * ssp,int * flags,unsigned long * gp_seq)1837 void srcutorture_get_gp_data(struct srcu_struct *ssp, int *flags,
1838 			     unsigned long *gp_seq)
1839 {
1840 	*flags = 0;
1841 	*gp_seq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq);
1842 }
1843 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data);
1844 
1845 static const char * const srcu_size_state_name[] = {
1846 	"SRCU_SIZE_SMALL",
1847 	"SRCU_SIZE_ALLOC",
1848 	"SRCU_SIZE_WAIT_BARRIER",
1849 	"SRCU_SIZE_WAIT_CALL",
1850 	"SRCU_SIZE_WAIT_CBS1",
1851 	"SRCU_SIZE_WAIT_CBS2",
1852 	"SRCU_SIZE_WAIT_CBS3",
1853 	"SRCU_SIZE_WAIT_CBS4",
1854 	"SRCU_SIZE_BIG",
1855 	"SRCU_SIZE_???",
1856 };
1857 
srcu_torture_stats_print(struct srcu_struct * ssp,char * tt,char * tf)1858 void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf)
1859 {
1860 	int cpu;
1861 	int idx;
1862 	unsigned long s0 = 0, s1 = 0;
1863 	int ss_state = READ_ONCE(ssp->srcu_sup->srcu_size_state);
1864 	int ss_state_idx = ss_state;
1865 
1866 	idx = ssp->srcu_idx & 0x1;
1867 	if (ss_state < 0 || ss_state >= ARRAY_SIZE(srcu_size_state_name))
1868 		ss_state_idx = ARRAY_SIZE(srcu_size_state_name) - 1;
1869 	pr_alert("%s%s Tree SRCU g%ld state %d (%s)",
1870 		 tt, tf, rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq), ss_state,
1871 		 srcu_size_state_name[ss_state_idx]);
1872 	if (!ssp->sda) {
1873 		// Called after cleanup_srcu_struct(), perhaps.
1874 		pr_cont(" No per-CPU srcu_data structures (->sda == NULL).\n");
1875 	} else {
1876 		pr_cont(" per-CPU(idx=%d):", idx);
1877 		for_each_possible_cpu(cpu) {
1878 			unsigned long l0, l1;
1879 			unsigned long u0, u1;
1880 			long c0, c1;
1881 			struct srcu_data *sdp;
1882 
1883 			sdp = per_cpu_ptr(ssp->sda, cpu);
1884 			u0 = data_race(atomic_long_read(&sdp->srcu_unlock_count[!idx]));
1885 			u1 = data_race(atomic_long_read(&sdp->srcu_unlock_count[idx]));
1886 
1887 			/*
1888 			 * Make sure that a lock is always counted if the corresponding
1889 			 * unlock is counted.
1890 			 */
1891 			smp_rmb();
1892 
1893 			l0 = data_race(atomic_long_read(&sdp->srcu_lock_count[!idx]));
1894 			l1 = data_race(atomic_long_read(&sdp->srcu_lock_count[idx]));
1895 
1896 			c0 = l0 - u0;
1897 			c1 = l1 - u1;
1898 			pr_cont(" %d(%ld,%ld %c)",
1899 				cpu, c0, c1,
1900 				"C."[rcu_segcblist_empty(&sdp->srcu_cblist)]);
1901 			s0 += c0;
1902 			s1 += c1;
1903 		}
1904 		pr_cont(" T(%ld,%ld)\n", s0, s1);
1905 	}
1906 	if (SRCU_SIZING_IS_TORTURE())
1907 		srcu_transition_to_big(ssp);
1908 }
1909 EXPORT_SYMBOL_GPL(srcu_torture_stats_print);
1910 
srcu_bootup_announce(void)1911 static int __init srcu_bootup_announce(void)
1912 {
1913 	pr_info("Hierarchical SRCU implementation.\n");
1914 	if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF)
1915 		pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff);
1916 	if (srcu_retry_check_delay != SRCU_DEFAULT_RETRY_CHECK_DELAY)
1917 		pr_info("\tNon-default retry check delay of %lu us.\n", srcu_retry_check_delay);
1918 	if (srcu_max_nodelay != SRCU_DEFAULT_MAX_NODELAY)
1919 		pr_info("\tNon-default max no-delay of %lu.\n", srcu_max_nodelay);
1920 	pr_info("\tMax phase no-delay instances is %lu.\n", srcu_max_nodelay_phase);
1921 	return 0;
1922 }
1923 early_initcall(srcu_bootup_announce);
1924 
srcu_init(void)1925 void __init srcu_init(void)
1926 {
1927 	struct srcu_usage *sup;
1928 
1929 	/* Decide on srcu_struct-size strategy. */
1930 	if (SRCU_SIZING_IS(SRCU_SIZING_AUTO)) {
1931 		if (nr_cpu_ids >= big_cpu_lim) {
1932 			convert_to_big = SRCU_SIZING_INIT; // Don't bother waiting for contention.
1933 			pr_info("%s: Setting srcu_struct sizes to big.\n", __func__);
1934 		} else {
1935 			convert_to_big = SRCU_SIZING_NONE | SRCU_SIZING_CONTEND;
1936 			pr_info("%s: Setting srcu_struct sizes based on contention.\n", __func__);
1937 		}
1938 	}
1939 
1940 	/*
1941 	 * Once that is set, call_srcu() can follow the normal path and
1942 	 * queue delayed work. This must follow RCU workqueues creation
1943 	 * and timers initialization.
1944 	 */
1945 	srcu_init_done = true;
1946 	while (!list_empty(&srcu_boot_list)) {
1947 		sup = list_first_entry(&srcu_boot_list, struct srcu_usage,
1948 				      work.work.entry);
1949 		list_del_init(&sup->work.work.entry);
1950 		if (SRCU_SIZING_IS(SRCU_SIZING_INIT) &&
1951 		    sup->srcu_size_state == SRCU_SIZE_SMALL)
1952 			sup->srcu_size_state = SRCU_SIZE_ALLOC;
1953 		queue_work(rcu_gp_wq, &sup->work.work);
1954 	}
1955 }
1956 
1957 #ifdef CONFIG_MODULES
1958 
1959 /* Initialize any global-scope srcu_struct structures used by this module. */
srcu_module_coming(struct module * mod)1960 static int srcu_module_coming(struct module *mod)
1961 {
1962 	int i;
1963 	struct srcu_struct *ssp;
1964 	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
1965 
1966 	for (i = 0; i < mod->num_srcu_structs; i++) {
1967 		ssp = *(sspp++);
1968 		ssp->sda = alloc_percpu(struct srcu_data);
1969 		if (WARN_ON_ONCE(!ssp->sda))
1970 			return -ENOMEM;
1971 	}
1972 	return 0;
1973 }
1974 
1975 /* Clean up any global-scope srcu_struct structures used by this module. */
srcu_module_going(struct module * mod)1976 static void srcu_module_going(struct module *mod)
1977 {
1978 	int i;
1979 	struct srcu_struct *ssp;
1980 	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
1981 
1982 	for (i = 0; i < mod->num_srcu_structs; i++) {
1983 		ssp = *(sspp++);
1984 		if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed)) &&
1985 		    !WARN_ON_ONCE(!ssp->srcu_sup->sda_is_static))
1986 			cleanup_srcu_struct(ssp);
1987 		if (!WARN_ON(srcu_readers_active(ssp)))
1988 			free_percpu(ssp->sda);
1989 	}
1990 }
1991 
1992 /* Handle one module, either coming or going. */
srcu_module_notify(struct notifier_block * self,unsigned long val,void * data)1993 static int srcu_module_notify(struct notifier_block *self,
1994 			      unsigned long val, void *data)
1995 {
1996 	struct module *mod = data;
1997 	int ret = 0;
1998 
1999 	switch (val) {
2000 	case MODULE_STATE_COMING:
2001 		ret = srcu_module_coming(mod);
2002 		break;
2003 	case MODULE_STATE_GOING:
2004 		srcu_module_going(mod);
2005 		break;
2006 	default:
2007 		break;
2008 	}
2009 	return ret;
2010 }
2011 
2012 static struct notifier_block srcu_module_nb = {
2013 	.notifier_call = srcu_module_notify,
2014 	.priority = 0,
2015 };
2016 
init_srcu_module_notifier(void)2017 static __init int init_srcu_module_notifier(void)
2018 {
2019 	int ret;
2020 
2021 	ret = register_module_notifier(&srcu_module_nb);
2022 	if (ret)
2023 		pr_warn("Failed to register srcu module notifier\n");
2024 	return ret;
2025 }
2026 late_initcall(init_srcu_module_notifier);
2027 
2028 #endif /* #ifdef CONFIG_MODULES */
2029