1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3
4 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5
6
7 Contact Information:
8 Intel Linux Wireless <ilw@linux.intel.com>
9 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
10
11 Portions of this file are based on the sample_* files provided by Wireless
12 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
13 <jt@hpl.hp.com>
14
15 Portions of this file are based on the Host AP project,
16 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
17 <j@w1.fi>
18 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
19
20 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
21 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
22 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
23
24 ******************************************************************************/
25 /*
26
27 Initial driver on which this is based was developed by Janusz Gorycki,
28 Maciej Urbaniak, and Maciej Sosnowski.
29
30 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
31
32 Theory of Operation
33
34 Tx - Commands and Data
35
36 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
37 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
38 sent to the firmware as well as the length of the data.
39
40 The host writes to the TBD queue at the WRITE index. The WRITE index points
41 to the _next_ packet to be written and is advanced when after the TBD has been
42 filled.
43
44 The firmware pulls from the TBD queue at the READ index. The READ index points
45 to the currently being read entry, and is advanced once the firmware is
46 done with a packet.
47
48 When data is sent to the firmware, the first TBD is used to indicate to the
49 firmware if a Command or Data is being sent. If it is Command, all of the
50 command information is contained within the physical address referred to by the
51 TBD. If it is Data, the first TBD indicates the type of data packet, number
52 of fragments, etc. The next TBD then refers to the actual packet location.
53
54 The Tx flow cycle is as follows:
55
56 1) ipw2100_tx() is called by kernel with SKB to transmit
57 2) Packet is move from the tx_free_list and appended to the transmit pending
58 list (tx_pend_list)
59 3) work is scheduled to move pending packets into the shared circular queue.
60 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
61 to a physical address. That address is entered into a TBD. Two TBDs are
62 filled out. The first indicating a data packet, the second referring to the
63 actual payload data.
64 5) the packet is removed from tx_pend_list and placed on the end of the
65 firmware pending list (fw_pend_list)
66 6) firmware is notified that the WRITE index has
67 7) Once the firmware has processed the TBD, INTA is triggered.
68 8) For each Tx interrupt received from the firmware, the READ index is checked
69 to see which TBDs are done being processed.
70 9) For each TBD that has been processed, the ISR pulls the oldest packet
71 from the fw_pend_list.
72 10)The packet structure contained in the fw_pend_list is then used
73 to unmap the DMA address and to free the SKB originally passed to the driver
74 from the kernel.
75 11)The packet structure is placed onto the tx_free_list
76
77 The above steps are the same for commands, only the msg_free_list/msg_pend_list
78 are used instead of tx_free_list/tx_pend_list
79
80 ...
81
82 Critical Sections / Locking :
83
84 There are two locks utilized. The first is the low level lock (priv->low_lock)
85 that protects the following:
86
87 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
88
89 tx_free_list : Holds pre-allocated Tx buffers.
90 TAIL modified in __ipw2100_tx_process()
91 HEAD modified in ipw2100_tx()
92
93 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
94 TAIL modified ipw2100_tx()
95 HEAD modified by ipw2100_tx_send_data()
96
97 msg_free_list : Holds pre-allocated Msg (Command) buffers
98 TAIL modified in __ipw2100_tx_process()
99 HEAD modified in ipw2100_hw_send_command()
100
101 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
102 TAIL modified in ipw2100_hw_send_command()
103 HEAD modified in ipw2100_tx_send_commands()
104
105 The flow of data on the TX side is as follows:
106
107 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
108 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
109
110 The methods that work on the TBD ring are protected via priv->low_lock.
111
112 - The internal data state of the device itself
113 - Access to the firmware read/write indexes for the BD queues
114 and associated logic
115
116 All external entry functions are locked with the priv->action_lock to ensure
117 that only one external action is invoked at a time.
118
119
120 */
121
122 #include <linux/compiler.h>
123 #include <linux/errno.h>
124 #include <linux/if_arp.h>
125 #include <linux/in6.h>
126 #include <linux/in.h>
127 #include <linux/ip.h>
128 #include <linux/kernel.h>
129 #include <linux/kmod.h>
130 #include <linux/module.h>
131 #include <linux/netdevice.h>
132 #include <linux/ethtool.h>
133 #include <linux/pci.h>
134 #include <linux/dma-mapping.h>
135 #include <linux/proc_fs.h>
136 #include <linux/skbuff.h>
137 #include <linux/uaccess.h>
138 #include <asm/io.h>
139 #include <linux/fs.h>
140 #include <linux/mm.h>
141 #include <linux/slab.h>
142 #include <linux/unistd.h>
143 #include <linux/stringify.h>
144 #include <linux/tcp.h>
145 #include <linux/types.h>
146 #include <linux/time.h>
147 #include <linux/firmware.h>
148 #include <linux/acpi.h>
149 #include <linux/ctype.h>
150 #include <linux/pm_qos.h>
151
152 #include <net/lib80211.h>
153
154 #include "ipw2100.h"
155 #include "ipw.h"
156
157 #define IPW2100_VERSION "git-1.2.2"
158
159 #define DRV_NAME "ipw2100"
160 #define DRV_VERSION IPW2100_VERSION
161 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
162 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
163
164 static struct pm_qos_request ipw2100_pm_qos_req;
165
166 /* Debugging stuff */
167 #ifdef CONFIG_IPW2100_DEBUG
168 #define IPW2100_RX_DEBUG /* Reception debugging */
169 #endif
170
171 MODULE_DESCRIPTION(DRV_DESCRIPTION);
172 MODULE_VERSION(DRV_VERSION);
173 MODULE_AUTHOR(DRV_COPYRIGHT);
174 MODULE_LICENSE("GPL");
175
176 static int debug = 0;
177 static int network_mode = 0;
178 static int channel = 0;
179 static int associate = 0;
180 static int disable = 0;
181 #ifdef CONFIG_PM
182 static struct ipw2100_fw ipw2100_firmware;
183 #endif
184
185 #include <linux/moduleparam.h>
186 module_param(debug, int, 0444);
187 module_param_named(mode, network_mode, int, 0444);
188 module_param(channel, int, 0444);
189 module_param(associate, int, 0444);
190 module_param(disable, int, 0444);
191
192 MODULE_PARM_DESC(debug, "debug level");
193 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
194 MODULE_PARM_DESC(channel, "channel");
195 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
196 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
197
198 static u32 ipw2100_debug_level = IPW_DL_NONE;
199
200 #ifdef CONFIG_IPW2100_DEBUG
201 #define IPW_DEBUG(level, message...) \
202 do { \
203 if (ipw2100_debug_level & (level)) { \
204 printk(KERN_DEBUG "ipw2100: %s ", __func__); \
205 printk(message); \
206 } \
207 } while (0)
208 #else
209 #define IPW_DEBUG(level, message...) do {} while (0)
210 #endif /* CONFIG_IPW2100_DEBUG */
211
212 #ifdef CONFIG_IPW2100_DEBUG
213 static const char *command_types[] = {
214 "undefined",
215 "unused", /* HOST_ATTENTION */
216 "HOST_COMPLETE",
217 "unused", /* SLEEP */
218 "unused", /* HOST_POWER_DOWN */
219 "unused",
220 "SYSTEM_CONFIG",
221 "unused", /* SET_IMR */
222 "SSID",
223 "MANDATORY_BSSID",
224 "AUTHENTICATION_TYPE",
225 "ADAPTER_ADDRESS",
226 "PORT_TYPE",
227 "INTERNATIONAL_MODE",
228 "CHANNEL",
229 "RTS_THRESHOLD",
230 "FRAG_THRESHOLD",
231 "POWER_MODE",
232 "TX_RATES",
233 "BASIC_TX_RATES",
234 "WEP_KEY_INFO",
235 "unused",
236 "unused",
237 "unused",
238 "unused",
239 "WEP_KEY_INDEX",
240 "WEP_FLAGS",
241 "ADD_MULTICAST",
242 "CLEAR_ALL_MULTICAST",
243 "BEACON_INTERVAL",
244 "ATIM_WINDOW",
245 "CLEAR_STATISTICS",
246 "undefined",
247 "undefined",
248 "undefined",
249 "undefined",
250 "TX_POWER_INDEX",
251 "undefined",
252 "undefined",
253 "undefined",
254 "undefined",
255 "undefined",
256 "undefined",
257 "BROADCAST_SCAN",
258 "CARD_DISABLE",
259 "PREFERRED_BSSID",
260 "SET_SCAN_OPTIONS",
261 "SCAN_DWELL_TIME",
262 "SWEEP_TABLE",
263 "AP_OR_STATION_TABLE",
264 "GROUP_ORDINALS",
265 "SHORT_RETRY_LIMIT",
266 "LONG_RETRY_LIMIT",
267 "unused", /* SAVE_CALIBRATION */
268 "unused", /* RESTORE_CALIBRATION */
269 "undefined",
270 "undefined",
271 "undefined",
272 "HOST_PRE_POWER_DOWN",
273 "unused", /* HOST_INTERRUPT_COALESCING */
274 "undefined",
275 "CARD_DISABLE_PHY_OFF",
276 "MSDU_TX_RATES",
277 "undefined",
278 "SET_STATION_STAT_BITS",
279 "CLEAR_STATIONS_STAT_BITS",
280 "LEAP_ROGUE_MODE",
281 "SET_SECURITY_INFORMATION",
282 "DISASSOCIATION_BSSID",
283 "SET_WPA_ASS_IE"
284 };
285 #endif
286
287 static const long ipw2100_frequencies[] = {
288 2412, 2417, 2422, 2427,
289 2432, 2437, 2442, 2447,
290 2452, 2457, 2462, 2467,
291 2472, 2484
292 };
293
294 #define FREQ_COUNT ARRAY_SIZE(ipw2100_frequencies)
295
296 static struct ieee80211_rate ipw2100_bg_rates[] = {
297 { .bitrate = 10 },
298 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
299 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
300 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
301 };
302
303 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
304
305 /* Pre-decl until we get the code solid and then we can clean it up */
306 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
307 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
308 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
309
310 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
311 static void ipw2100_queues_free(struct ipw2100_priv *priv);
312 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
313
314 static int ipw2100_fw_download(struct ipw2100_priv *priv,
315 struct ipw2100_fw *fw);
316 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
317 struct ipw2100_fw *fw);
318 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
319 size_t max);
320 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
321 struct ipw2100_fw *fw);
322 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
323 struct ipw2100_fw *fw);
324 static void ipw2100_wx_event_work(struct work_struct *work);
325 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
326 static const struct iw_handler_def ipw2100_wx_handler_def;
327
read_register(struct net_device * dev,u32 reg,u32 * val)328 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
329 {
330 struct ipw2100_priv *priv = libipw_priv(dev);
331
332 *val = ioread32(priv->ioaddr + reg);
333 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
334 }
335
write_register(struct net_device * dev,u32 reg,u32 val)336 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
337 {
338 struct ipw2100_priv *priv = libipw_priv(dev);
339
340 iowrite32(val, priv->ioaddr + reg);
341 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
342 }
343
read_register_word(struct net_device * dev,u32 reg,u16 * val)344 static inline void read_register_word(struct net_device *dev, u32 reg,
345 u16 * val)
346 {
347 struct ipw2100_priv *priv = libipw_priv(dev);
348
349 *val = ioread16(priv->ioaddr + reg);
350 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
351 }
352
read_register_byte(struct net_device * dev,u32 reg,u8 * val)353 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
354 {
355 struct ipw2100_priv *priv = libipw_priv(dev);
356
357 *val = ioread8(priv->ioaddr + reg);
358 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
359 }
360
write_register_word(struct net_device * dev,u32 reg,u16 val)361 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
362 {
363 struct ipw2100_priv *priv = libipw_priv(dev);
364
365 iowrite16(val, priv->ioaddr + reg);
366 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
367 }
368
write_register_byte(struct net_device * dev,u32 reg,u8 val)369 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
370 {
371 struct ipw2100_priv *priv = libipw_priv(dev);
372
373 iowrite8(val, priv->ioaddr + reg);
374 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
375 }
376
read_nic_dword(struct net_device * dev,u32 addr,u32 * val)377 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
378 {
379 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
380 addr & IPW_REG_INDIRECT_ADDR_MASK);
381 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
382 }
383
write_nic_dword(struct net_device * dev,u32 addr,u32 val)384 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
385 {
386 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
387 addr & IPW_REG_INDIRECT_ADDR_MASK);
388 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
389 }
390
read_nic_word(struct net_device * dev,u32 addr,u16 * val)391 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
392 {
393 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
394 addr & IPW_REG_INDIRECT_ADDR_MASK);
395 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
396 }
397
write_nic_word(struct net_device * dev,u32 addr,u16 val)398 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
399 {
400 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
401 addr & IPW_REG_INDIRECT_ADDR_MASK);
402 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
403 }
404
read_nic_byte(struct net_device * dev,u32 addr,u8 * val)405 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
406 {
407 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
408 addr & IPW_REG_INDIRECT_ADDR_MASK);
409 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
410 }
411
write_nic_byte(struct net_device * dev,u32 addr,u8 val)412 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
413 {
414 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
415 addr & IPW_REG_INDIRECT_ADDR_MASK);
416 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
417 }
418
write_nic_memory(struct net_device * dev,u32 addr,u32 len,const u8 * buf)419 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
420 const u8 * buf)
421 {
422 u32 aligned_addr;
423 u32 aligned_len;
424 u32 dif_len;
425 u32 i;
426
427 /* read first nibble byte by byte */
428 aligned_addr = addr & (~0x3);
429 dif_len = addr - aligned_addr;
430 if (dif_len) {
431 /* Start reading at aligned_addr + dif_len */
432 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
433 aligned_addr);
434 for (i = dif_len; i < 4; i++, buf++)
435 write_register_byte(dev,
436 IPW_REG_INDIRECT_ACCESS_DATA + i,
437 *buf);
438
439 len -= dif_len;
440 aligned_addr += 4;
441 }
442
443 /* read DWs through autoincrement registers */
444 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
445 aligned_len = len & (~0x3);
446 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
447 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
448
449 /* copy the last nibble */
450 dif_len = len - aligned_len;
451 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
452 for (i = 0; i < dif_len; i++, buf++)
453 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
454 *buf);
455 }
456
read_nic_memory(struct net_device * dev,u32 addr,u32 len,u8 * buf)457 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
458 u8 * buf)
459 {
460 u32 aligned_addr;
461 u32 aligned_len;
462 u32 dif_len;
463 u32 i;
464
465 /* read first nibble byte by byte */
466 aligned_addr = addr & (~0x3);
467 dif_len = addr - aligned_addr;
468 if (dif_len) {
469 /* Start reading at aligned_addr + dif_len */
470 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
471 aligned_addr);
472 for (i = dif_len; i < 4; i++, buf++)
473 read_register_byte(dev,
474 IPW_REG_INDIRECT_ACCESS_DATA + i,
475 buf);
476
477 len -= dif_len;
478 aligned_addr += 4;
479 }
480
481 /* read DWs through autoincrement registers */
482 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
483 aligned_len = len & (~0x3);
484 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
485 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
486
487 /* copy the last nibble */
488 dif_len = len - aligned_len;
489 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
490 for (i = 0; i < dif_len; i++, buf++)
491 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
492 }
493
ipw2100_hw_is_adapter_in_system(struct net_device * dev)494 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
495 {
496 u32 dbg;
497
498 read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
499
500 return dbg == IPW_DATA_DOA_DEBUG_VALUE;
501 }
502
ipw2100_get_ordinal(struct ipw2100_priv * priv,u32 ord,void * val,u32 * len)503 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
504 void *val, u32 * len)
505 {
506 struct ipw2100_ordinals *ordinals = &priv->ordinals;
507 u32 addr;
508 u32 field_info;
509 u16 field_len;
510 u16 field_count;
511 u32 total_length;
512
513 if (ordinals->table1_addr == 0) {
514 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
515 "before they have been loaded.\n");
516 return -EINVAL;
517 }
518
519 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
520 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
521 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
522
523 printk(KERN_WARNING DRV_NAME
524 ": ordinal buffer length too small, need %zd\n",
525 IPW_ORD_TAB_1_ENTRY_SIZE);
526
527 return -EINVAL;
528 }
529
530 read_nic_dword(priv->net_dev,
531 ordinals->table1_addr + (ord << 2), &addr);
532 read_nic_dword(priv->net_dev, addr, val);
533
534 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
535
536 return 0;
537 }
538
539 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
540
541 ord -= IPW_START_ORD_TAB_2;
542
543 /* get the address of statistic */
544 read_nic_dword(priv->net_dev,
545 ordinals->table2_addr + (ord << 3), &addr);
546
547 /* get the second DW of statistics ;
548 * two 16-bit words - first is length, second is count */
549 read_nic_dword(priv->net_dev,
550 ordinals->table2_addr + (ord << 3) + sizeof(u32),
551 &field_info);
552
553 /* get each entry length */
554 field_len = *((u16 *) & field_info);
555
556 /* get number of entries */
557 field_count = *(((u16 *) & field_info) + 1);
558
559 /* abort if no enough memory */
560 total_length = field_len * field_count;
561 if (total_length > *len) {
562 *len = total_length;
563 return -EINVAL;
564 }
565
566 *len = total_length;
567 if (!total_length)
568 return 0;
569
570 /* read the ordinal data from the SRAM */
571 read_nic_memory(priv->net_dev, addr, total_length, val);
572
573 return 0;
574 }
575
576 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
577 "in table 2\n", ord);
578
579 return -EINVAL;
580 }
581
ipw2100_set_ordinal(struct ipw2100_priv * priv,u32 ord,u32 * val,u32 * len)582 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
583 u32 * len)
584 {
585 struct ipw2100_ordinals *ordinals = &priv->ordinals;
586 u32 addr;
587
588 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
589 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
590 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
591 IPW_DEBUG_INFO("wrong size\n");
592 return -EINVAL;
593 }
594
595 read_nic_dword(priv->net_dev,
596 ordinals->table1_addr + (ord << 2), &addr);
597
598 write_nic_dword(priv->net_dev, addr, *val);
599
600 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
601
602 return 0;
603 }
604
605 IPW_DEBUG_INFO("wrong table\n");
606 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
607 return -EINVAL;
608
609 return -EINVAL;
610 }
611
snprint_line(char * buf,size_t count,const u8 * data,u32 len,u32 ofs)612 static char *snprint_line(char *buf, size_t count,
613 const u8 * data, u32 len, u32 ofs)
614 {
615 int out, i, j, l;
616 char c;
617
618 out = scnprintf(buf, count, "%08X", ofs);
619
620 for (l = 0, i = 0; i < 2; i++) {
621 out += scnprintf(buf + out, count - out, " ");
622 for (j = 0; j < 8 && l < len; j++, l++)
623 out += scnprintf(buf + out, count - out, "%02X ",
624 data[(i * 8 + j)]);
625 for (; j < 8; j++)
626 out += scnprintf(buf + out, count - out, " ");
627 }
628
629 out += scnprintf(buf + out, count - out, " ");
630 for (l = 0, i = 0; i < 2; i++) {
631 out += scnprintf(buf + out, count - out, " ");
632 for (j = 0; j < 8 && l < len; j++, l++) {
633 c = data[(i * 8 + j)];
634 if (!isascii(c) || !isprint(c))
635 c = '.';
636
637 out += scnprintf(buf + out, count - out, "%c", c);
638 }
639
640 for (; j < 8; j++)
641 out += scnprintf(buf + out, count - out, " ");
642 }
643
644 return buf;
645 }
646
printk_buf(int level,const u8 * data,u32 len)647 static void printk_buf(int level, const u8 * data, u32 len)
648 {
649 char line[81];
650 u32 ofs = 0;
651 if (!(ipw2100_debug_level & level))
652 return;
653
654 while (len) {
655 printk(KERN_DEBUG "%s\n",
656 snprint_line(line, sizeof(line), &data[ofs],
657 min(len, 16U), ofs));
658 ofs += 16;
659 len -= min(len, 16U);
660 }
661 }
662
663 #define MAX_RESET_BACKOFF 10
664
schedule_reset(struct ipw2100_priv * priv)665 static void schedule_reset(struct ipw2100_priv *priv)
666 {
667 time64_t now = ktime_get_boottime_seconds();
668
669 /* If we haven't received a reset request within the backoff period,
670 * then we can reset the backoff interval so this reset occurs
671 * immediately */
672 if (priv->reset_backoff &&
673 (now - priv->last_reset > priv->reset_backoff))
674 priv->reset_backoff = 0;
675
676 priv->last_reset = now;
677
678 if (!(priv->status & STATUS_RESET_PENDING)) {
679 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%llds).\n",
680 priv->net_dev->name, priv->reset_backoff);
681 netif_carrier_off(priv->net_dev);
682 netif_stop_queue(priv->net_dev);
683 priv->status |= STATUS_RESET_PENDING;
684 if (priv->reset_backoff)
685 schedule_delayed_work(&priv->reset_work,
686 priv->reset_backoff * HZ);
687 else
688 schedule_delayed_work(&priv->reset_work, 0);
689
690 if (priv->reset_backoff < MAX_RESET_BACKOFF)
691 priv->reset_backoff++;
692
693 wake_up_interruptible(&priv->wait_command_queue);
694 } else
695 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
696 priv->net_dev->name);
697
698 }
699
700 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
ipw2100_hw_send_command(struct ipw2100_priv * priv,struct host_command * cmd)701 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
702 struct host_command *cmd)
703 {
704 struct list_head *element;
705 struct ipw2100_tx_packet *packet;
706 unsigned long flags;
707 int err = 0;
708
709 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
710 command_types[cmd->host_command], cmd->host_command,
711 cmd->host_command_length);
712 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
713 cmd->host_command_length);
714
715 spin_lock_irqsave(&priv->low_lock, flags);
716
717 if (priv->fatal_error) {
718 IPW_DEBUG_INFO
719 ("Attempt to send command while hardware in fatal error condition.\n");
720 err = -EIO;
721 goto fail_unlock;
722 }
723
724 if (!(priv->status & STATUS_RUNNING)) {
725 IPW_DEBUG_INFO
726 ("Attempt to send command while hardware is not running.\n");
727 err = -EIO;
728 goto fail_unlock;
729 }
730
731 if (priv->status & STATUS_CMD_ACTIVE) {
732 IPW_DEBUG_INFO
733 ("Attempt to send command while another command is pending.\n");
734 err = -EBUSY;
735 goto fail_unlock;
736 }
737
738 if (list_empty(&priv->msg_free_list)) {
739 IPW_DEBUG_INFO("no available msg buffers\n");
740 goto fail_unlock;
741 }
742
743 priv->status |= STATUS_CMD_ACTIVE;
744 priv->messages_sent++;
745
746 element = priv->msg_free_list.next;
747
748 packet = list_entry(element, struct ipw2100_tx_packet, list);
749 packet->jiffy_start = jiffies;
750
751 /* initialize the firmware command packet */
752 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
753 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
754 packet->info.c_struct.cmd->host_command_len_reg =
755 cmd->host_command_length;
756 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
757
758 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
759 cmd->host_command_parameters,
760 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
761
762 list_del(element);
763 DEC_STAT(&priv->msg_free_stat);
764
765 list_add_tail(element, &priv->msg_pend_list);
766 INC_STAT(&priv->msg_pend_stat);
767
768 ipw2100_tx_send_commands(priv);
769 ipw2100_tx_send_data(priv);
770
771 spin_unlock_irqrestore(&priv->low_lock, flags);
772
773 /*
774 * We must wait for this command to complete before another
775 * command can be sent... but if we wait more than 3 seconds
776 * then there is a problem.
777 */
778
779 err =
780 wait_event_interruptible_timeout(priv->wait_command_queue,
781 !(priv->
782 status & STATUS_CMD_ACTIVE),
783 HOST_COMPLETE_TIMEOUT);
784
785 if (err == 0) {
786 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
787 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
788 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
789 priv->status &= ~STATUS_CMD_ACTIVE;
790 schedule_reset(priv);
791 return -EIO;
792 }
793
794 if (priv->fatal_error) {
795 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
796 priv->net_dev->name);
797 return -EIO;
798 }
799
800 /* !!!!! HACK TEST !!!!!
801 * When lots of debug trace statements are enabled, the driver
802 * doesn't seem to have as many firmware restart cycles...
803 *
804 * As a test, we're sticking in a 1/100s delay here */
805 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
806
807 return 0;
808
809 fail_unlock:
810 spin_unlock_irqrestore(&priv->low_lock, flags);
811
812 return err;
813 }
814
815 /*
816 * Verify the values and data access of the hardware
817 * No locks needed or used. No functions called.
818 */
ipw2100_verify(struct ipw2100_priv * priv)819 static int ipw2100_verify(struct ipw2100_priv *priv)
820 {
821 u32 data1, data2;
822 u32 address;
823
824 u32 val1 = 0x76543210;
825 u32 val2 = 0xFEDCBA98;
826
827 /* Domain 0 check - all values should be DOA_DEBUG */
828 for (address = IPW_REG_DOA_DEBUG_AREA_START;
829 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
830 read_register(priv->net_dev, address, &data1);
831 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
832 return -EIO;
833 }
834
835 /* Domain 1 check - use arbitrary read/write compare */
836 for (address = 0; address < 5; address++) {
837 /* The memory area is not used now */
838 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
839 val1);
840 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
841 val2);
842 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
843 &data1);
844 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
845 &data2);
846 if (val1 == data1 && val2 == data2)
847 return 0;
848 }
849
850 return -EIO;
851 }
852
853 /*
854 *
855 * Loop until the CARD_DISABLED bit is the same value as the
856 * supplied parameter
857 *
858 * TODO: See if it would be more efficient to do a wait/wake
859 * cycle and have the completion event trigger the wakeup
860 *
861 */
862 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
ipw2100_wait_for_card_state(struct ipw2100_priv * priv,int state)863 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
864 {
865 int i;
866 u32 card_state;
867 u32 len = sizeof(card_state);
868 int err;
869
870 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
871 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
872 &card_state, &len);
873 if (err) {
874 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
875 "failed.\n");
876 return 0;
877 }
878
879 /* We'll break out if either the HW state says it is
880 * in the state we want, or if HOST_COMPLETE command
881 * finishes */
882 if ((card_state == state) ||
883 ((priv->status & STATUS_ENABLED) ?
884 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
885 if (state == IPW_HW_STATE_ENABLED)
886 priv->status |= STATUS_ENABLED;
887 else
888 priv->status &= ~STATUS_ENABLED;
889
890 return 0;
891 }
892
893 udelay(50);
894 }
895
896 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
897 state ? "DISABLED" : "ENABLED");
898 return -EIO;
899 }
900
901 /*********************************************************************
902 Procedure : sw_reset_and_clock
903 Purpose : Asserts s/w reset, asserts clock initialization
904 and waits for clock stabilization
905 ********************************************************************/
sw_reset_and_clock(struct ipw2100_priv * priv)906 static int sw_reset_and_clock(struct ipw2100_priv *priv)
907 {
908 int i;
909 u32 r;
910
911 // assert s/w reset
912 write_register(priv->net_dev, IPW_REG_RESET_REG,
913 IPW_AUX_HOST_RESET_REG_SW_RESET);
914
915 // wait for clock stabilization
916 for (i = 0; i < 1000; i++) {
917 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
918
919 // check clock ready bit
920 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
921 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
922 break;
923 }
924
925 if (i == 1000)
926 return -EIO; // TODO: better error value
927
928 /* set "initialization complete" bit to move adapter to
929 * D0 state */
930 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
931 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
932
933 /* wait for clock stabilization */
934 for (i = 0; i < 10000; i++) {
935 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
936
937 /* check clock ready bit */
938 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
939 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
940 break;
941 }
942
943 if (i == 10000)
944 return -EIO; /* TODO: better error value */
945
946 /* set D0 standby bit */
947 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
948 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
949 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
950
951 return 0;
952 }
953
954 /*********************************************************************
955 Procedure : ipw2100_download_firmware
956 Purpose : Initiaze adapter after power on.
957 The sequence is:
958 1. assert s/w reset first!
959 2. awake clocks & wait for clock stabilization
960 3. hold ARC (don't ask me why...)
961 4. load Dino ucode and reset/clock init again
962 5. zero-out shared mem
963 6. download f/w
964 *******************************************************************/
ipw2100_download_firmware(struct ipw2100_priv * priv)965 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
966 {
967 u32 address;
968 int err;
969
970 #ifndef CONFIG_PM
971 /* Fetch the firmware and microcode */
972 struct ipw2100_fw ipw2100_firmware;
973 #endif
974
975 if (priv->fatal_error) {
976 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
977 "fatal error %d. Interface must be brought down.\n",
978 priv->net_dev->name, priv->fatal_error);
979 return -EINVAL;
980 }
981 #ifdef CONFIG_PM
982 if (!ipw2100_firmware.version) {
983 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
984 if (err) {
985 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
986 priv->net_dev->name, err);
987 priv->fatal_error = IPW2100_ERR_FW_LOAD;
988 goto fail;
989 }
990 }
991 #else
992 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
993 if (err) {
994 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
995 priv->net_dev->name, err);
996 priv->fatal_error = IPW2100_ERR_FW_LOAD;
997 goto fail;
998 }
999 #endif
1000 priv->firmware_version = ipw2100_firmware.version;
1001
1002 /* s/w reset and clock stabilization */
1003 err = sw_reset_and_clock(priv);
1004 if (err) {
1005 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1006 priv->net_dev->name, err);
1007 goto fail;
1008 }
1009
1010 err = ipw2100_verify(priv);
1011 if (err) {
1012 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1013 priv->net_dev->name, err);
1014 goto fail;
1015 }
1016
1017 /* Hold ARC */
1018 write_nic_dword(priv->net_dev,
1019 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1020
1021 /* allow ARC to run */
1022 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1023
1024 /* load microcode */
1025 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1026 if (err) {
1027 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1028 priv->net_dev->name, err);
1029 goto fail;
1030 }
1031
1032 /* release ARC */
1033 write_nic_dword(priv->net_dev,
1034 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1035
1036 /* s/w reset and clock stabilization (again!!!) */
1037 err = sw_reset_and_clock(priv);
1038 if (err) {
1039 printk(KERN_ERR DRV_NAME
1040 ": %s: sw_reset_and_clock failed: %d\n",
1041 priv->net_dev->name, err);
1042 goto fail;
1043 }
1044
1045 /* load f/w */
1046 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1047 if (err) {
1048 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1049 priv->net_dev->name, err);
1050 goto fail;
1051 }
1052 #ifndef CONFIG_PM
1053 /*
1054 * When the .resume method of the driver is called, the other
1055 * part of the system, i.e. the ide driver could still stay in
1056 * the suspend stage. This prevents us from loading the firmware
1057 * from the disk. --YZ
1058 */
1059
1060 /* free any storage allocated for firmware image */
1061 ipw2100_release_firmware(priv, &ipw2100_firmware);
1062 #endif
1063
1064 /* zero out Domain 1 area indirectly (Si requirement) */
1065 for (address = IPW_HOST_FW_SHARED_AREA0;
1066 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1067 write_nic_dword(priv->net_dev, address, 0);
1068 for (address = IPW_HOST_FW_SHARED_AREA1;
1069 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1070 write_nic_dword(priv->net_dev, address, 0);
1071 for (address = IPW_HOST_FW_SHARED_AREA2;
1072 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1073 write_nic_dword(priv->net_dev, address, 0);
1074 for (address = IPW_HOST_FW_SHARED_AREA3;
1075 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1076 write_nic_dword(priv->net_dev, address, 0);
1077 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1078 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1079 write_nic_dword(priv->net_dev, address, 0);
1080
1081 return 0;
1082
1083 fail:
1084 ipw2100_release_firmware(priv, &ipw2100_firmware);
1085 return err;
1086 }
1087
ipw2100_enable_interrupts(struct ipw2100_priv * priv)1088 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1089 {
1090 if (priv->status & STATUS_INT_ENABLED)
1091 return;
1092 priv->status |= STATUS_INT_ENABLED;
1093 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1094 }
1095
ipw2100_disable_interrupts(struct ipw2100_priv * priv)1096 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1097 {
1098 if (!(priv->status & STATUS_INT_ENABLED))
1099 return;
1100 priv->status &= ~STATUS_INT_ENABLED;
1101 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1102 }
1103
ipw2100_initialize_ordinals(struct ipw2100_priv * priv)1104 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1105 {
1106 struct ipw2100_ordinals *ord = &priv->ordinals;
1107
1108 IPW_DEBUG_INFO("enter\n");
1109
1110 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1111 &ord->table1_addr);
1112
1113 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1114 &ord->table2_addr);
1115
1116 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1117 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1118
1119 ord->table2_size &= 0x0000FFFF;
1120
1121 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1122 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1123 IPW_DEBUG_INFO("exit\n");
1124 }
1125
ipw2100_hw_set_gpio(struct ipw2100_priv * priv)1126 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1127 {
1128 u32 reg = 0;
1129 /*
1130 * Set GPIO 3 writable by FW; GPIO 1 writable
1131 * by driver and enable clock
1132 */
1133 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1134 IPW_BIT_GPIO_LED_OFF);
1135 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1136 }
1137
rf_kill_active(struct ipw2100_priv * priv)1138 static int rf_kill_active(struct ipw2100_priv *priv)
1139 {
1140 #define MAX_RF_KILL_CHECKS 5
1141 #define RF_KILL_CHECK_DELAY 40
1142
1143 unsigned short value = 0;
1144 u32 reg = 0;
1145 int i;
1146
1147 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1148 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1149 priv->status &= ~STATUS_RF_KILL_HW;
1150 return 0;
1151 }
1152
1153 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1154 udelay(RF_KILL_CHECK_DELAY);
1155 read_register(priv->net_dev, IPW_REG_GPIO, ®);
1156 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1157 }
1158
1159 if (value == 0) {
1160 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1161 priv->status |= STATUS_RF_KILL_HW;
1162 } else {
1163 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1164 priv->status &= ~STATUS_RF_KILL_HW;
1165 }
1166
1167 return (value == 0);
1168 }
1169
ipw2100_get_hw_features(struct ipw2100_priv * priv)1170 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1171 {
1172 u32 addr, len;
1173 u32 val;
1174
1175 /*
1176 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1177 */
1178 len = sizeof(addr);
1179 if (ipw2100_get_ordinal
1180 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1181 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1182 __LINE__);
1183 return -EIO;
1184 }
1185
1186 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1187
1188 /*
1189 * EEPROM version is the byte at offset 0xfd in firmware
1190 * We read 4 bytes, then shift out the byte we actually want */
1191 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1192 priv->eeprom_version = (val >> 24) & 0xFF;
1193 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1194
1195 /*
1196 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1197 *
1198 * notice that the EEPROM bit is reverse polarity, i.e.
1199 * bit = 0 signifies HW RF kill switch is supported
1200 * bit = 1 signifies HW RF kill switch is NOT supported
1201 */
1202 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1203 if (!((val >> 24) & 0x01))
1204 priv->hw_features |= HW_FEATURE_RFKILL;
1205
1206 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1207 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1208
1209 return 0;
1210 }
1211
1212 /*
1213 * Start firmware execution after power on and initialization
1214 * The sequence is:
1215 * 1. Release ARC
1216 * 2. Wait for f/w initialization completes;
1217 */
ipw2100_start_adapter(struct ipw2100_priv * priv)1218 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1219 {
1220 int i;
1221 u32 inta, inta_mask, gpio;
1222
1223 IPW_DEBUG_INFO("enter\n");
1224
1225 if (priv->status & STATUS_RUNNING)
1226 return 0;
1227
1228 /*
1229 * Initialize the hw - drive adapter to DO state by setting
1230 * init_done bit. Wait for clk_ready bit and Download
1231 * fw & dino ucode
1232 */
1233 if (ipw2100_download_firmware(priv)) {
1234 printk(KERN_ERR DRV_NAME
1235 ": %s: Failed to power on the adapter.\n",
1236 priv->net_dev->name);
1237 return -EIO;
1238 }
1239
1240 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1241 * in the firmware RBD and TBD ring queue */
1242 ipw2100_queues_initialize(priv);
1243
1244 ipw2100_hw_set_gpio(priv);
1245
1246 /* TODO -- Look at disabling interrupts here to make sure none
1247 * get fired during FW initialization */
1248
1249 /* Release ARC - clear reset bit */
1250 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1251
1252 /* wait for f/w initialization complete */
1253 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1254 i = 5000;
1255 do {
1256 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1257 /* Todo... wait for sync command ... */
1258
1259 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1260
1261 /* check "init done" bit */
1262 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1263 /* reset "init done" bit */
1264 write_register(priv->net_dev, IPW_REG_INTA,
1265 IPW2100_INTA_FW_INIT_DONE);
1266 break;
1267 }
1268
1269 /* check error conditions : we check these after the firmware
1270 * check so that if there is an error, the interrupt handler
1271 * will see it and the adapter will be reset */
1272 if (inta &
1273 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1274 /* clear error conditions */
1275 write_register(priv->net_dev, IPW_REG_INTA,
1276 IPW2100_INTA_FATAL_ERROR |
1277 IPW2100_INTA_PARITY_ERROR);
1278 }
1279 } while (--i);
1280
1281 /* Clear out any pending INTAs since we aren't supposed to have
1282 * interrupts enabled at this point... */
1283 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1284 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1285 inta &= IPW_INTERRUPT_MASK;
1286 /* Clear out any pending interrupts */
1287 if (inta & inta_mask)
1288 write_register(priv->net_dev, IPW_REG_INTA, inta);
1289
1290 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1291 i ? "SUCCESS" : "FAILED");
1292
1293 if (!i) {
1294 printk(KERN_WARNING DRV_NAME
1295 ": %s: Firmware did not initialize.\n",
1296 priv->net_dev->name);
1297 return -EIO;
1298 }
1299
1300 /* allow firmware to write to GPIO1 & GPIO3 */
1301 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1302
1303 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1304
1305 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1306
1307 /* Ready to receive commands */
1308 priv->status |= STATUS_RUNNING;
1309
1310 /* The adapter has been reset; we are not associated */
1311 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1312
1313 IPW_DEBUG_INFO("exit\n");
1314
1315 return 0;
1316 }
1317
ipw2100_reset_fatalerror(struct ipw2100_priv * priv)1318 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1319 {
1320 if (!priv->fatal_error)
1321 return;
1322
1323 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1324 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1325 priv->fatal_error = 0;
1326 }
1327
1328 /* NOTE: Our interrupt is disabled when this method is called */
ipw2100_power_cycle_adapter(struct ipw2100_priv * priv)1329 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1330 {
1331 u32 reg;
1332 int i;
1333
1334 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1335
1336 ipw2100_hw_set_gpio(priv);
1337
1338 /* Step 1. Stop Master Assert */
1339 write_register(priv->net_dev, IPW_REG_RESET_REG,
1340 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1341
1342 /* Step 2. Wait for stop Master Assert
1343 * (not more than 50us, otherwise ret error */
1344 i = 5;
1345 do {
1346 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1347 read_register(priv->net_dev, IPW_REG_RESET_REG, ®);
1348
1349 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1350 break;
1351 } while (--i);
1352
1353 priv->status &= ~STATUS_RESET_PENDING;
1354
1355 if (!i) {
1356 IPW_DEBUG_INFO
1357 ("exit - waited too long for master assert stop\n");
1358 return -EIO;
1359 }
1360
1361 write_register(priv->net_dev, IPW_REG_RESET_REG,
1362 IPW_AUX_HOST_RESET_REG_SW_RESET);
1363
1364 /* Reset any fatal_error conditions */
1365 ipw2100_reset_fatalerror(priv);
1366
1367 /* At this point, the adapter is now stopped and disabled */
1368 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1369 STATUS_ASSOCIATED | STATUS_ENABLED);
1370
1371 return 0;
1372 }
1373
1374 /*
1375 * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1376 *
1377 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1378 *
1379 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1380 * if STATUS_ASSN_LOST is sent.
1381 */
ipw2100_hw_phy_off(struct ipw2100_priv * priv)1382 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1383 {
1384
1385 #define HW_PHY_OFF_LOOP_DELAY (msecs_to_jiffies(50))
1386
1387 struct host_command cmd = {
1388 .host_command = CARD_DISABLE_PHY_OFF,
1389 .host_command_sequence = 0,
1390 .host_command_length = 0,
1391 };
1392 int err, i;
1393 u32 val1, val2;
1394
1395 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1396
1397 /* Turn off the radio */
1398 err = ipw2100_hw_send_command(priv, &cmd);
1399 if (err)
1400 return err;
1401
1402 for (i = 0; i < 2500; i++) {
1403 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1404 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1405
1406 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1407 (val2 & IPW2100_COMMAND_PHY_OFF))
1408 return 0;
1409
1410 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1411 }
1412
1413 return -EIO;
1414 }
1415
ipw2100_enable_adapter(struct ipw2100_priv * priv)1416 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1417 {
1418 struct host_command cmd = {
1419 .host_command = HOST_COMPLETE,
1420 .host_command_sequence = 0,
1421 .host_command_length = 0
1422 };
1423 int err = 0;
1424
1425 IPW_DEBUG_HC("HOST_COMPLETE\n");
1426
1427 if (priv->status & STATUS_ENABLED)
1428 return 0;
1429
1430 mutex_lock(&priv->adapter_mutex);
1431
1432 if (rf_kill_active(priv)) {
1433 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1434 goto fail_up;
1435 }
1436
1437 err = ipw2100_hw_send_command(priv, &cmd);
1438 if (err) {
1439 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1440 goto fail_up;
1441 }
1442
1443 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1444 if (err) {
1445 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1446 priv->net_dev->name);
1447 goto fail_up;
1448 }
1449
1450 if (priv->stop_hang_check) {
1451 priv->stop_hang_check = 0;
1452 schedule_delayed_work(&priv->hang_check, HZ / 2);
1453 }
1454
1455 fail_up:
1456 mutex_unlock(&priv->adapter_mutex);
1457 return err;
1458 }
1459
ipw2100_hw_stop_adapter(struct ipw2100_priv * priv)1460 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1461 {
1462 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1463
1464 struct host_command cmd = {
1465 .host_command = HOST_PRE_POWER_DOWN,
1466 .host_command_sequence = 0,
1467 .host_command_length = 0,
1468 };
1469 int err, i;
1470 u32 reg;
1471
1472 if (!(priv->status & STATUS_RUNNING))
1473 return 0;
1474
1475 priv->status |= STATUS_STOPPING;
1476
1477 /* We can only shut down the card if the firmware is operational. So,
1478 * if we haven't reset since a fatal_error, then we can not send the
1479 * shutdown commands. */
1480 if (!priv->fatal_error) {
1481 /* First, make sure the adapter is enabled so that the PHY_OFF
1482 * command can shut it down */
1483 ipw2100_enable_adapter(priv);
1484
1485 err = ipw2100_hw_phy_off(priv);
1486 if (err)
1487 printk(KERN_WARNING DRV_NAME
1488 ": Error disabling radio %d\n", err);
1489
1490 /*
1491 * If in D0-standby mode going directly to D3 may cause a
1492 * PCI bus violation. Therefore we must change out of the D0
1493 * state.
1494 *
1495 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1496 * hardware from going into standby mode and will transition
1497 * out of D0-standby if it is already in that state.
1498 *
1499 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1500 * driver upon completion. Once received, the driver can
1501 * proceed to the D3 state.
1502 *
1503 * Prepare for power down command to fw. This command would
1504 * take HW out of D0-standby and prepare it for D3 state.
1505 *
1506 * Currently FW does not support event notification for this
1507 * event. Therefore, skip waiting for it. Just wait a fixed
1508 * 100ms
1509 */
1510 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1511
1512 err = ipw2100_hw_send_command(priv, &cmd);
1513 if (err)
1514 printk(KERN_WARNING DRV_NAME ": "
1515 "%s: Power down command failed: Error %d\n",
1516 priv->net_dev->name, err);
1517 else
1518 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1519 }
1520
1521 priv->status &= ~STATUS_ENABLED;
1522
1523 /*
1524 * Set GPIO 3 writable by FW; GPIO 1 writable
1525 * by driver and enable clock
1526 */
1527 ipw2100_hw_set_gpio(priv);
1528
1529 /*
1530 * Power down adapter. Sequence:
1531 * 1. Stop master assert (RESET_REG[9]=1)
1532 * 2. Wait for stop master (RESET_REG[8]==1)
1533 * 3. S/w reset assert (RESET_REG[7] = 1)
1534 */
1535
1536 /* Stop master assert */
1537 write_register(priv->net_dev, IPW_REG_RESET_REG,
1538 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1539
1540 /* wait stop master not more than 50 usec.
1541 * Otherwise return error. */
1542 for (i = 5; i > 0; i--) {
1543 udelay(10);
1544
1545 /* Check master stop bit */
1546 read_register(priv->net_dev, IPW_REG_RESET_REG, ®);
1547
1548 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1549 break;
1550 }
1551
1552 if (i == 0)
1553 printk(KERN_WARNING DRV_NAME
1554 ": %s: Could now power down adapter.\n",
1555 priv->net_dev->name);
1556
1557 /* assert s/w reset */
1558 write_register(priv->net_dev, IPW_REG_RESET_REG,
1559 IPW_AUX_HOST_RESET_REG_SW_RESET);
1560
1561 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1562
1563 return 0;
1564 }
1565
ipw2100_disable_adapter(struct ipw2100_priv * priv)1566 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1567 {
1568 struct host_command cmd = {
1569 .host_command = CARD_DISABLE,
1570 .host_command_sequence = 0,
1571 .host_command_length = 0
1572 };
1573 int err = 0;
1574
1575 IPW_DEBUG_HC("CARD_DISABLE\n");
1576
1577 if (!(priv->status & STATUS_ENABLED))
1578 return 0;
1579
1580 /* Make sure we clear the associated state */
1581 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1582
1583 if (!priv->stop_hang_check) {
1584 priv->stop_hang_check = 1;
1585 cancel_delayed_work(&priv->hang_check);
1586 }
1587
1588 mutex_lock(&priv->adapter_mutex);
1589
1590 err = ipw2100_hw_send_command(priv, &cmd);
1591 if (err) {
1592 printk(KERN_WARNING DRV_NAME
1593 ": exit - failed to send CARD_DISABLE command\n");
1594 goto fail_up;
1595 }
1596
1597 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1598 if (err) {
1599 printk(KERN_WARNING DRV_NAME
1600 ": exit - card failed to change to DISABLED\n");
1601 goto fail_up;
1602 }
1603
1604 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1605
1606 fail_up:
1607 mutex_unlock(&priv->adapter_mutex);
1608 return err;
1609 }
1610
ipw2100_set_scan_options(struct ipw2100_priv * priv)1611 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1612 {
1613 struct host_command cmd = {
1614 .host_command = SET_SCAN_OPTIONS,
1615 .host_command_sequence = 0,
1616 .host_command_length = 8
1617 };
1618 int err;
1619
1620 IPW_DEBUG_INFO("enter\n");
1621
1622 IPW_DEBUG_SCAN("setting scan options\n");
1623
1624 cmd.host_command_parameters[0] = 0;
1625
1626 if (!(priv->config & CFG_ASSOCIATE))
1627 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1628 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1629 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1630 if (priv->config & CFG_PASSIVE_SCAN)
1631 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1632
1633 cmd.host_command_parameters[1] = priv->channel_mask;
1634
1635 err = ipw2100_hw_send_command(priv, &cmd);
1636
1637 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1638 cmd.host_command_parameters[0]);
1639
1640 return err;
1641 }
1642
ipw2100_start_scan(struct ipw2100_priv * priv)1643 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1644 {
1645 struct host_command cmd = {
1646 .host_command = BROADCAST_SCAN,
1647 .host_command_sequence = 0,
1648 .host_command_length = 4
1649 };
1650 int err;
1651
1652 IPW_DEBUG_HC("START_SCAN\n");
1653
1654 cmd.host_command_parameters[0] = 0;
1655
1656 /* No scanning if in monitor mode */
1657 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1658 return 1;
1659
1660 if (priv->status & STATUS_SCANNING) {
1661 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1662 return 0;
1663 }
1664
1665 IPW_DEBUG_INFO("enter\n");
1666
1667 /* Not clearing here; doing so makes iwlist always return nothing...
1668 *
1669 * We should modify the table logic to use aging tables vs. clearing
1670 * the table on each scan start.
1671 */
1672 IPW_DEBUG_SCAN("starting scan\n");
1673
1674 priv->status |= STATUS_SCANNING;
1675 err = ipw2100_hw_send_command(priv, &cmd);
1676 if (err)
1677 priv->status &= ~STATUS_SCANNING;
1678
1679 IPW_DEBUG_INFO("exit\n");
1680
1681 return err;
1682 }
1683
1684 static const struct libipw_geo ipw_geos[] = {
1685 { /* Restricted */
1686 "---",
1687 .bg_channels = 14,
1688 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1689 {2427, 4}, {2432, 5}, {2437, 6},
1690 {2442, 7}, {2447, 8}, {2452, 9},
1691 {2457, 10}, {2462, 11}, {2467, 12},
1692 {2472, 13}, {2484, 14}},
1693 },
1694 };
1695
ipw2100_up(struct ipw2100_priv * priv,int deferred)1696 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1697 {
1698 unsigned long flags;
1699 int err = 0;
1700 u32 lock;
1701 u32 ord_len = sizeof(lock);
1702
1703 /* Age scan list entries found before suspend */
1704 if (priv->suspend_time) {
1705 libipw_networks_age(priv->ieee, priv->suspend_time);
1706 priv->suspend_time = 0;
1707 }
1708
1709 /* Quiet if manually disabled. */
1710 if (priv->status & STATUS_RF_KILL_SW) {
1711 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1712 "switch\n", priv->net_dev->name);
1713 return 0;
1714 }
1715
1716 /* the ipw2100 hardware really doesn't want power management delays
1717 * longer than 175usec
1718 */
1719 cpu_latency_qos_update_request(&ipw2100_pm_qos_req, 175);
1720
1721 /* If the interrupt is enabled, turn it off... */
1722 spin_lock_irqsave(&priv->low_lock, flags);
1723 ipw2100_disable_interrupts(priv);
1724
1725 /* Reset any fatal_error conditions */
1726 ipw2100_reset_fatalerror(priv);
1727 spin_unlock_irqrestore(&priv->low_lock, flags);
1728
1729 if (priv->status & STATUS_POWERED ||
1730 (priv->status & STATUS_RESET_PENDING)) {
1731 /* Power cycle the card ... */
1732 err = ipw2100_power_cycle_adapter(priv);
1733 if (err) {
1734 printk(KERN_WARNING DRV_NAME
1735 ": %s: Could not cycle adapter.\n",
1736 priv->net_dev->name);
1737 goto exit;
1738 }
1739 } else
1740 priv->status |= STATUS_POWERED;
1741
1742 /* Load the firmware, start the clocks, etc. */
1743 err = ipw2100_start_adapter(priv);
1744 if (err) {
1745 printk(KERN_ERR DRV_NAME
1746 ": %s: Failed to start the firmware.\n",
1747 priv->net_dev->name);
1748 goto exit;
1749 }
1750
1751 ipw2100_initialize_ordinals(priv);
1752
1753 /* Determine capabilities of this particular HW configuration */
1754 err = ipw2100_get_hw_features(priv);
1755 if (err) {
1756 printk(KERN_ERR DRV_NAME
1757 ": %s: Failed to determine HW features.\n",
1758 priv->net_dev->name);
1759 goto exit;
1760 }
1761
1762 /* Initialize the geo */
1763 libipw_set_geo(priv->ieee, &ipw_geos[0]);
1764 priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1765
1766 lock = LOCK_NONE;
1767 err = ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len);
1768 if (err) {
1769 printk(KERN_ERR DRV_NAME
1770 ": %s: Failed to clear ordinal lock.\n",
1771 priv->net_dev->name);
1772 goto exit;
1773 }
1774
1775 priv->status &= ~STATUS_SCANNING;
1776
1777 if (rf_kill_active(priv)) {
1778 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1779 priv->net_dev->name);
1780
1781 if (priv->stop_rf_kill) {
1782 priv->stop_rf_kill = 0;
1783 schedule_delayed_work(&priv->rf_kill,
1784 round_jiffies_relative(HZ));
1785 }
1786
1787 deferred = 1;
1788 }
1789
1790 /* Turn on the interrupt so that commands can be processed */
1791 ipw2100_enable_interrupts(priv);
1792
1793 /* Send all of the commands that must be sent prior to
1794 * HOST_COMPLETE */
1795 err = ipw2100_adapter_setup(priv);
1796 if (err) {
1797 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1798 priv->net_dev->name);
1799 goto exit;
1800 }
1801
1802 if (!deferred) {
1803 /* Enable the adapter - sends HOST_COMPLETE */
1804 err = ipw2100_enable_adapter(priv);
1805 if (err) {
1806 printk(KERN_ERR DRV_NAME ": "
1807 "%s: failed in call to enable adapter.\n",
1808 priv->net_dev->name);
1809 ipw2100_hw_stop_adapter(priv);
1810 goto exit;
1811 }
1812
1813 /* Start a scan . . . */
1814 ipw2100_set_scan_options(priv);
1815 ipw2100_start_scan(priv);
1816 }
1817
1818 exit:
1819 return err;
1820 }
1821
ipw2100_down(struct ipw2100_priv * priv)1822 static void ipw2100_down(struct ipw2100_priv *priv)
1823 {
1824 unsigned long flags;
1825 union iwreq_data wrqu = {
1826 .ap_addr = {
1827 .sa_family = ARPHRD_ETHER}
1828 };
1829 int associated = priv->status & STATUS_ASSOCIATED;
1830
1831 /* Kill the RF switch timer */
1832 if (!priv->stop_rf_kill) {
1833 priv->stop_rf_kill = 1;
1834 cancel_delayed_work(&priv->rf_kill);
1835 }
1836
1837 /* Kill the firmware hang check timer */
1838 if (!priv->stop_hang_check) {
1839 priv->stop_hang_check = 1;
1840 cancel_delayed_work(&priv->hang_check);
1841 }
1842
1843 /* Kill any pending resets */
1844 if (priv->status & STATUS_RESET_PENDING)
1845 cancel_delayed_work(&priv->reset_work);
1846
1847 /* Make sure the interrupt is on so that FW commands will be
1848 * processed correctly */
1849 spin_lock_irqsave(&priv->low_lock, flags);
1850 ipw2100_enable_interrupts(priv);
1851 spin_unlock_irqrestore(&priv->low_lock, flags);
1852
1853 if (ipw2100_hw_stop_adapter(priv))
1854 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1855 priv->net_dev->name);
1856
1857 /* Do not disable the interrupt until _after_ we disable
1858 * the adaptor. Otherwise the CARD_DISABLE command will never
1859 * be ack'd by the firmware */
1860 spin_lock_irqsave(&priv->low_lock, flags);
1861 ipw2100_disable_interrupts(priv);
1862 spin_unlock_irqrestore(&priv->low_lock, flags);
1863
1864 cpu_latency_qos_update_request(&ipw2100_pm_qos_req,
1865 PM_QOS_DEFAULT_VALUE);
1866
1867 /* We have to signal any supplicant if we are disassociating */
1868 if (associated)
1869 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1870
1871 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1872 netif_carrier_off(priv->net_dev);
1873 netif_stop_queue(priv->net_dev);
1874 }
1875
ipw2100_wdev_init(struct net_device * dev)1876 static int ipw2100_wdev_init(struct net_device *dev)
1877 {
1878 struct ipw2100_priv *priv = libipw_priv(dev);
1879 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1880 struct wireless_dev *wdev = &priv->ieee->wdev;
1881 int i;
1882
1883 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1884
1885 /* fill-out priv->ieee->bg_band */
1886 if (geo->bg_channels) {
1887 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1888
1889 bg_band->band = NL80211_BAND_2GHZ;
1890 bg_band->n_channels = geo->bg_channels;
1891 bg_band->channels = kcalloc(geo->bg_channels,
1892 sizeof(struct ieee80211_channel),
1893 GFP_KERNEL);
1894 if (!bg_band->channels) {
1895 ipw2100_down(priv);
1896 return -ENOMEM;
1897 }
1898 /* translate geo->bg to bg_band.channels */
1899 for (i = 0; i < geo->bg_channels; i++) {
1900 bg_band->channels[i].band = NL80211_BAND_2GHZ;
1901 bg_band->channels[i].center_freq = geo->bg[i].freq;
1902 bg_band->channels[i].hw_value = geo->bg[i].channel;
1903 bg_band->channels[i].max_power = geo->bg[i].max_power;
1904 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1905 bg_band->channels[i].flags |=
1906 IEEE80211_CHAN_NO_IR;
1907 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1908 bg_band->channels[i].flags |=
1909 IEEE80211_CHAN_NO_IR;
1910 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1911 bg_band->channels[i].flags |=
1912 IEEE80211_CHAN_RADAR;
1913 /* No equivalent for LIBIPW_CH_80211H_RULES,
1914 LIBIPW_CH_UNIFORM_SPREADING, or
1915 LIBIPW_CH_B_ONLY... */
1916 }
1917 /* point at bitrate info */
1918 bg_band->bitrates = ipw2100_bg_rates;
1919 bg_band->n_bitrates = RATE_COUNT;
1920
1921 wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band;
1922 }
1923
1924 wdev->wiphy->cipher_suites = ipw_cipher_suites;
1925 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1926
1927 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1928 if (wiphy_register(wdev->wiphy))
1929 return -EIO;
1930 return 0;
1931 }
1932
ipw2100_reset_adapter(struct work_struct * work)1933 static void ipw2100_reset_adapter(struct work_struct *work)
1934 {
1935 struct ipw2100_priv *priv =
1936 container_of(work, struct ipw2100_priv, reset_work.work);
1937 unsigned long flags;
1938 union iwreq_data wrqu = {
1939 .ap_addr = {
1940 .sa_family = ARPHRD_ETHER}
1941 };
1942 int associated = priv->status & STATUS_ASSOCIATED;
1943
1944 spin_lock_irqsave(&priv->low_lock, flags);
1945 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1946 priv->resets++;
1947 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1948 priv->status |= STATUS_SECURITY_UPDATED;
1949
1950 /* Force a power cycle even if interface hasn't been opened
1951 * yet */
1952 cancel_delayed_work(&priv->reset_work);
1953 priv->status |= STATUS_RESET_PENDING;
1954 spin_unlock_irqrestore(&priv->low_lock, flags);
1955
1956 mutex_lock(&priv->action_mutex);
1957 /* stop timed checks so that they don't interfere with reset */
1958 priv->stop_hang_check = 1;
1959 cancel_delayed_work(&priv->hang_check);
1960
1961 /* We have to signal any supplicant if we are disassociating */
1962 if (associated)
1963 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1964
1965 ipw2100_up(priv, 0);
1966 mutex_unlock(&priv->action_mutex);
1967
1968 }
1969
isr_indicate_associated(struct ipw2100_priv * priv,u32 status)1970 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1971 {
1972
1973 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1974 int ret;
1975 unsigned int len, essid_len;
1976 char essid[IW_ESSID_MAX_SIZE];
1977 u32 txrate;
1978 u32 chan;
1979 char *txratename;
1980 u8 bssid[ETH_ALEN];
1981
1982 /*
1983 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1984 * an actual MAC of the AP. Seems like FW sets this
1985 * address too late. Read it later and expose through
1986 * /proc or schedule a later task to query and update
1987 */
1988
1989 essid_len = IW_ESSID_MAX_SIZE;
1990 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1991 essid, &essid_len);
1992 if (ret) {
1993 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1994 __LINE__);
1995 return;
1996 }
1997
1998 len = sizeof(u32);
1999 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2000 if (ret) {
2001 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2002 __LINE__);
2003 return;
2004 }
2005
2006 len = sizeof(u32);
2007 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2008 if (ret) {
2009 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2010 __LINE__);
2011 return;
2012 }
2013 len = ETH_ALEN;
2014 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid,
2015 &len);
2016 if (ret) {
2017 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2018 __LINE__);
2019 return;
2020 }
2021 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2022
2023 switch (txrate) {
2024 case TX_RATE_1_MBIT:
2025 txratename = "1Mbps";
2026 break;
2027 case TX_RATE_2_MBIT:
2028 txratename = "2Mbsp";
2029 break;
2030 case TX_RATE_5_5_MBIT:
2031 txratename = "5.5Mbps";
2032 break;
2033 case TX_RATE_11_MBIT:
2034 txratename = "11Mbps";
2035 break;
2036 default:
2037 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2038 txratename = "unknown rate";
2039 break;
2040 }
2041
2042 IPW_DEBUG_INFO("%s: Associated with '%*pE' at %s, channel %d (BSSID=%pM)\n",
2043 priv->net_dev->name, essid_len, essid,
2044 txratename, chan, bssid);
2045
2046 /* now we copy read ssid into dev */
2047 if (!(priv->config & CFG_STATIC_ESSID)) {
2048 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2049 memcpy(priv->essid, essid, priv->essid_len);
2050 }
2051 priv->channel = chan;
2052 memcpy(priv->bssid, bssid, ETH_ALEN);
2053
2054 priv->status |= STATUS_ASSOCIATING;
2055 priv->connect_start = ktime_get_boottime_seconds();
2056
2057 schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2058 }
2059
ipw2100_set_essid(struct ipw2100_priv * priv,char * essid,int length,int batch_mode)2060 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2061 int length, int batch_mode)
2062 {
2063 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2064 struct host_command cmd = {
2065 .host_command = SSID,
2066 .host_command_sequence = 0,
2067 .host_command_length = ssid_len
2068 };
2069 int err;
2070
2071 IPW_DEBUG_HC("SSID: '%*pE'\n", ssid_len, essid);
2072
2073 if (ssid_len)
2074 memcpy(cmd.host_command_parameters, essid, ssid_len);
2075
2076 if (!batch_mode) {
2077 err = ipw2100_disable_adapter(priv);
2078 if (err)
2079 return err;
2080 }
2081
2082 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2083 * disable auto association -- so we cheat by setting a bogus SSID */
2084 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2085 int i;
2086 u8 *bogus = (u8 *) cmd.host_command_parameters;
2087 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2088 bogus[i] = 0x18 + i;
2089 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2090 }
2091
2092 /* NOTE: We always send the SSID command even if the provided ESSID is
2093 * the same as what we currently think is set. */
2094
2095 err = ipw2100_hw_send_command(priv, &cmd);
2096 if (!err) {
2097 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2098 memcpy(priv->essid, essid, ssid_len);
2099 priv->essid_len = ssid_len;
2100 }
2101
2102 if (!batch_mode) {
2103 if (ipw2100_enable_adapter(priv))
2104 err = -EIO;
2105 }
2106
2107 return err;
2108 }
2109
isr_indicate_association_lost(struct ipw2100_priv * priv,u32 status)2110 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2111 {
2112 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2113 "disassociated: '%*pE' %pM\n", priv->essid_len, priv->essid,
2114 priv->bssid);
2115
2116 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2117
2118 if (priv->status & STATUS_STOPPING) {
2119 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2120 return;
2121 }
2122
2123 eth_zero_addr(priv->bssid);
2124 eth_zero_addr(priv->ieee->bssid);
2125
2126 netif_carrier_off(priv->net_dev);
2127 netif_stop_queue(priv->net_dev);
2128
2129 if (!(priv->status & STATUS_RUNNING))
2130 return;
2131
2132 if (priv->status & STATUS_SECURITY_UPDATED)
2133 schedule_delayed_work(&priv->security_work, 0);
2134
2135 schedule_delayed_work(&priv->wx_event_work, 0);
2136 }
2137
isr_indicate_rf_kill(struct ipw2100_priv * priv,u32 status)2138 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2139 {
2140 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2141 priv->net_dev->name);
2142
2143 /* RF_KILL is now enabled (else we wouldn't be here) */
2144 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2145 priv->status |= STATUS_RF_KILL_HW;
2146
2147 /* Make sure the RF Kill check timer is running */
2148 priv->stop_rf_kill = 0;
2149 mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ));
2150 }
2151
ipw2100_scan_event(struct work_struct * work)2152 static void ipw2100_scan_event(struct work_struct *work)
2153 {
2154 struct ipw2100_priv *priv = container_of(work, struct ipw2100_priv,
2155 scan_event.work);
2156 union iwreq_data wrqu;
2157
2158 wrqu.data.length = 0;
2159 wrqu.data.flags = 0;
2160 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2161 }
2162
isr_scan_complete(struct ipw2100_priv * priv,u32 status)2163 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2164 {
2165 IPW_DEBUG_SCAN("scan complete\n");
2166 /* Age the scan results... */
2167 priv->ieee->scans++;
2168 priv->status &= ~STATUS_SCANNING;
2169
2170 /* Only userspace-requested scan completion events go out immediately */
2171 if (!priv->user_requested_scan) {
2172 schedule_delayed_work(&priv->scan_event,
2173 round_jiffies_relative(msecs_to_jiffies(4000)));
2174 } else {
2175 priv->user_requested_scan = 0;
2176 mod_delayed_work(system_wq, &priv->scan_event, 0);
2177 }
2178 }
2179
2180 #ifdef CONFIG_IPW2100_DEBUG
2181 #define IPW2100_HANDLER(v, f) { v, f, # v }
2182 struct ipw2100_status_indicator {
2183 int status;
2184 void (*cb) (struct ipw2100_priv * priv, u32 status);
2185 char *name;
2186 };
2187 #else
2188 #define IPW2100_HANDLER(v, f) { v, f }
2189 struct ipw2100_status_indicator {
2190 int status;
2191 void (*cb) (struct ipw2100_priv * priv, u32 status);
2192 };
2193 #endif /* CONFIG_IPW2100_DEBUG */
2194
isr_indicate_scanning(struct ipw2100_priv * priv,u32 status)2195 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2196 {
2197 IPW_DEBUG_SCAN("Scanning...\n");
2198 priv->status |= STATUS_SCANNING;
2199 }
2200
2201 static const struct ipw2100_status_indicator status_handlers[] = {
2202 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2203 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2204 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2205 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2206 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2207 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2208 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2209 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2210 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2211 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2212 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2213 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2214 IPW2100_HANDLER(-1, NULL)
2215 };
2216
isr_status_change(struct ipw2100_priv * priv,int status)2217 static void isr_status_change(struct ipw2100_priv *priv, int status)
2218 {
2219 int i;
2220
2221 if (status == IPW_STATE_SCANNING &&
2222 priv->status & STATUS_ASSOCIATED &&
2223 !(priv->status & STATUS_SCANNING)) {
2224 IPW_DEBUG_INFO("Scan detected while associated, with "
2225 "no scan request. Restarting firmware.\n");
2226
2227 /* Wake up any sleeping jobs */
2228 schedule_reset(priv);
2229 }
2230
2231 for (i = 0; status_handlers[i].status != -1; i++) {
2232 if (status == status_handlers[i].status) {
2233 IPW_DEBUG_NOTIF("Status change: %s\n",
2234 status_handlers[i].name);
2235 if (status_handlers[i].cb)
2236 status_handlers[i].cb(priv, status);
2237 priv->wstats.status = status;
2238 return;
2239 }
2240 }
2241
2242 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2243 }
2244
isr_rx_complete_command(struct ipw2100_priv * priv,struct ipw2100_cmd_header * cmd)2245 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2246 struct ipw2100_cmd_header *cmd)
2247 {
2248 #ifdef CONFIG_IPW2100_DEBUG
2249 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2250 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2251 command_types[cmd->host_command_reg],
2252 cmd->host_command_reg);
2253 }
2254 #endif
2255 if (cmd->host_command_reg == HOST_COMPLETE)
2256 priv->status |= STATUS_ENABLED;
2257
2258 if (cmd->host_command_reg == CARD_DISABLE)
2259 priv->status &= ~STATUS_ENABLED;
2260
2261 priv->status &= ~STATUS_CMD_ACTIVE;
2262
2263 wake_up_interruptible(&priv->wait_command_queue);
2264 }
2265
2266 #ifdef CONFIG_IPW2100_DEBUG
2267 static const char *frame_types[] = {
2268 "COMMAND_STATUS_VAL",
2269 "STATUS_CHANGE_VAL",
2270 "P80211_DATA_VAL",
2271 "P8023_DATA_VAL",
2272 "HOST_NOTIFICATION_VAL"
2273 };
2274 #endif
2275
ipw2100_alloc_skb(struct ipw2100_priv * priv,struct ipw2100_rx_packet * packet)2276 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2277 struct ipw2100_rx_packet *packet)
2278 {
2279 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2280 if (!packet->skb)
2281 return -ENOMEM;
2282
2283 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2284 packet->dma_addr = dma_map_single(&priv->pci_dev->dev,
2285 packet->skb->data,
2286 sizeof(struct ipw2100_rx),
2287 DMA_FROM_DEVICE);
2288 if (dma_mapping_error(&priv->pci_dev->dev, packet->dma_addr)) {
2289 dev_kfree_skb(packet->skb);
2290 return -ENOMEM;
2291 }
2292
2293 return 0;
2294 }
2295
2296 #define SEARCH_ERROR 0xffffffff
2297 #define SEARCH_FAIL 0xfffffffe
2298 #define SEARCH_SUCCESS 0xfffffff0
2299 #define SEARCH_DISCARD 0
2300 #define SEARCH_SNAPSHOT 1
2301
2302 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
ipw2100_snapshot_free(struct ipw2100_priv * priv)2303 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2304 {
2305 int i;
2306 if (!priv->snapshot[0])
2307 return;
2308 for (i = 0; i < 0x30; i++)
2309 kfree(priv->snapshot[i]);
2310 priv->snapshot[0] = NULL;
2311 }
2312
2313 #ifdef IPW2100_DEBUG_C3
ipw2100_snapshot_alloc(struct ipw2100_priv * priv)2314 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2315 {
2316 int i;
2317 if (priv->snapshot[0])
2318 return 1;
2319 for (i = 0; i < 0x30; i++) {
2320 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2321 if (!priv->snapshot[i]) {
2322 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2323 "buffer %d\n", priv->net_dev->name, i);
2324 while (i > 0)
2325 kfree(priv->snapshot[--i]);
2326 priv->snapshot[0] = NULL;
2327 return 0;
2328 }
2329 }
2330
2331 return 1;
2332 }
2333
ipw2100_match_buf(struct ipw2100_priv * priv,u8 * in_buf,size_t len,int mode)2334 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2335 size_t len, int mode)
2336 {
2337 u32 i, j;
2338 u32 tmp;
2339 u8 *s, *d;
2340 u32 ret;
2341
2342 s = in_buf;
2343 if (mode == SEARCH_SNAPSHOT) {
2344 if (!ipw2100_snapshot_alloc(priv))
2345 mode = SEARCH_DISCARD;
2346 }
2347
2348 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2349 read_nic_dword(priv->net_dev, i, &tmp);
2350 if (mode == SEARCH_SNAPSHOT)
2351 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2352 if (ret == SEARCH_FAIL) {
2353 d = (u8 *) & tmp;
2354 for (j = 0; j < 4; j++) {
2355 if (*s != *d) {
2356 s = in_buf;
2357 continue;
2358 }
2359
2360 s++;
2361 d++;
2362
2363 if ((s - in_buf) == len)
2364 ret = (i + j) - len + 1;
2365 }
2366 } else if (mode == SEARCH_DISCARD)
2367 return ret;
2368 }
2369
2370 return ret;
2371 }
2372 #endif
2373
2374 /*
2375 *
2376 * 0) Disconnect the SKB from the firmware (just unmap)
2377 * 1) Pack the ETH header into the SKB
2378 * 2) Pass the SKB to the network stack
2379 *
2380 * When packet is provided by the firmware, it contains the following:
2381 *
2382 * . libipw_hdr
2383 * . libipw_snap_hdr
2384 *
2385 * The size of the constructed ethernet
2386 *
2387 */
2388 #ifdef IPW2100_RX_DEBUG
2389 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2390 #endif
2391
ipw2100_corruption_detected(struct ipw2100_priv * priv,int i)2392 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2393 {
2394 #ifdef IPW2100_DEBUG_C3
2395 struct ipw2100_status *status = &priv->status_queue.drv[i];
2396 u32 match, reg;
2397 int j;
2398 #endif
2399
2400 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2401 i * sizeof(struct ipw2100_status));
2402
2403 #ifdef IPW2100_DEBUG_C3
2404 /* Halt the firmware so we can get a good image */
2405 write_register(priv->net_dev, IPW_REG_RESET_REG,
2406 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2407 j = 5;
2408 do {
2409 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2410 read_register(priv->net_dev, IPW_REG_RESET_REG, ®);
2411
2412 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2413 break;
2414 } while (j--);
2415
2416 match = ipw2100_match_buf(priv, (u8 *) status,
2417 sizeof(struct ipw2100_status),
2418 SEARCH_SNAPSHOT);
2419 if (match < SEARCH_SUCCESS)
2420 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2421 "offset 0x%06X, length %d:\n",
2422 priv->net_dev->name, match,
2423 sizeof(struct ipw2100_status));
2424 else
2425 IPW_DEBUG_INFO("%s: No DMA status match in "
2426 "Firmware.\n", priv->net_dev->name);
2427
2428 printk_buf((u8 *) priv->status_queue.drv,
2429 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2430 #endif
2431
2432 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2433 priv->net_dev->stats.rx_errors++;
2434 schedule_reset(priv);
2435 }
2436
isr_rx(struct ipw2100_priv * priv,int i,struct libipw_rx_stats * stats)2437 static void isr_rx(struct ipw2100_priv *priv, int i,
2438 struct libipw_rx_stats *stats)
2439 {
2440 struct net_device *dev = priv->net_dev;
2441 struct ipw2100_status *status = &priv->status_queue.drv[i];
2442 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2443
2444 IPW_DEBUG_RX("Handler...\n");
2445
2446 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2447 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2448 " Dropping.\n",
2449 dev->name,
2450 status->frame_size, skb_tailroom(packet->skb));
2451 dev->stats.rx_errors++;
2452 return;
2453 }
2454
2455 if (unlikely(!netif_running(dev))) {
2456 dev->stats.rx_errors++;
2457 priv->wstats.discard.misc++;
2458 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2459 return;
2460 }
2461
2462 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2463 !(priv->status & STATUS_ASSOCIATED))) {
2464 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2465 priv->wstats.discard.misc++;
2466 return;
2467 }
2468
2469 dma_unmap_single(&priv->pci_dev->dev, packet->dma_addr,
2470 sizeof(struct ipw2100_rx), DMA_FROM_DEVICE);
2471
2472 skb_put(packet->skb, status->frame_size);
2473
2474 #ifdef IPW2100_RX_DEBUG
2475 /* Make a copy of the frame so we can dump it to the logs if
2476 * libipw_rx fails */
2477 skb_copy_from_linear_data(packet->skb, packet_data,
2478 min_t(u32, status->frame_size,
2479 IPW_RX_NIC_BUFFER_LENGTH));
2480 #endif
2481
2482 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2483 #ifdef IPW2100_RX_DEBUG
2484 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2485 dev->name);
2486 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2487 #endif
2488 dev->stats.rx_errors++;
2489
2490 /* libipw_rx failed, so it didn't free the SKB */
2491 dev_kfree_skb_any(packet->skb);
2492 packet->skb = NULL;
2493 }
2494
2495 /* We need to allocate a new SKB and attach it to the RDB. */
2496 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2497 printk(KERN_WARNING DRV_NAME ": "
2498 "%s: Unable to allocate SKB onto RBD ring - disabling "
2499 "adapter.\n", dev->name);
2500 /* TODO: schedule adapter shutdown */
2501 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2502 }
2503
2504 /* Update the RDB entry */
2505 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2506 }
2507
2508 #ifdef CONFIG_IPW2100_MONITOR
2509
isr_rx_monitor(struct ipw2100_priv * priv,int i,struct libipw_rx_stats * stats)2510 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2511 struct libipw_rx_stats *stats)
2512 {
2513 struct net_device *dev = priv->net_dev;
2514 struct ipw2100_status *status = &priv->status_queue.drv[i];
2515 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2516
2517 /* Magic struct that slots into the radiotap header -- no reason
2518 * to build this manually element by element, we can write it much
2519 * more efficiently than we can parse it. ORDER MATTERS HERE */
2520 struct ipw_rt_hdr {
2521 struct ieee80211_radiotap_header_fixed rt_hdr;
2522 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2523 } *ipw_rt;
2524
2525 IPW_DEBUG_RX("Handler...\n");
2526
2527 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2528 sizeof(struct ipw_rt_hdr))) {
2529 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2530 " Dropping.\n",
2531 dev->name,
2532 status->frame_size,
2533 skb_tailroom(packet->skb));
2534 dev->stats.rx_errors++;
2535 return;
2536 }
2537
2538 if (unlikely(!netif_running(dev))) {
2539 dev->stats.rx_errors++;
2540 priv->wstats.discard.misc++;
2541 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2542 return;
2543 }
2544
2545 if (unlikely(priv->config & CFG_CRC_CHECK &&
2546 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2547 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2548 dev->stats.rx_errors++;
2549 return;
2550 }
2551
2552 dma_unmap_single(&priv->pci_dev->dev, packet->dma_addr,
2553 sizeof(struct ipw2100_rx), DMA_FROM_DEVICE);
2554 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2555 packet->skb->data, status->frame_size);
2556
2557 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2558
2559 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2560 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2561 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2562
2563 ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2564
2565 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2566
2567 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2568
2569 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2570 dev->stats.rx_errors++;
2571
2572 /* libipw_rx failed, so it didn't free the SKB */
2573 dev_kfree_skb_any(packet->skb);
2574 packet->skb = NULL;
2575 }
2576
2577 /* We need to allocate a new SKB and attach it to the RDB. */
2578 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2579 IPW_DEBUG_WARNING(
2580 "%s: Unable to allocate SKB onto RBD ring - disabling "
2581 "adapter.\n", dev->name);
2582 /* TODO: schedule adapter shutdown */
2583 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2584 }
2585
2586 /* Update the RDB entry */
2587 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2588 }
2589
2590 #endif
2591
ipw2100_corruption_check(struct ipw2100_priv * priv,int i)2592 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2593 {
2594 struct ipw2100_status *status = &priv->status_queue.drv[i];
2595 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2596 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2597
2598 switch (frame_type) {
2599 case COMMAND_STATUS_VAL:
2600 return (status->frame_size != sizeof(u->rx_data.command));
2601 case STATUS_CHANGE_VAL:
2602 return (status->frame_size != sizeof(u->rx_data.status));
2603 case HOST_NOTIFICATION_VAL:
2604 return (status->frame_size < sizeof(u->rx_data.notification));
2605 case P80211_DATA_VAL:
2606 case P8023_DATA_VAL:
2607 #ifdef CONFIG_IPW2100_MONITOR
2608 return 0;
2609 #else
2610 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2611 case IEEE80211_FTYPE_MGMT:
2612 case IEEE80211_FTYPE_CTL:
2613 return 0;
2614 case IEEE80211_FTYPE_DATA:
2615 return (status->frame_size >
2616 IPW_MAX_802_11_PAYLOAD_LENGTH);
2617 }
2618 #endif
2619 }
2620
2621 return 1;
2622 }
2623
2624 /*
2625 * ipw2100 interrupts are disabled at this point, and the ISR
2626 * is the only code that calls this method. So, we do not need
2627 * to play with any locks.
2628 *
2629 * RX Queue works as follows:
2630 *
2631 * Read index - firmware places packet in entry identified by the
2632 * Read index and advances Read index. In this manner,
2633 * Read index will always point to the next packet to
2634 * be filled--but not yet valid.
2635 *
2636 * Write index - driver fills this entry with an unused RBD entry.
2637 * This entry has not filled by the firmware yet.
2638 *
2639 * In between the W and R indexes are the RBDs that have been received
2640 * but not yet processed.
2641 *
2642 * The process of handling packets will start at WRITE + 1 and advance
2643 * until it reaches the READ index.
2644 *
2645 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2646 *
2647 */
__ipw2100_rx_process(struct ipw2100_priv * priv)2648 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2649 {
2650 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2651 struct ipw2100_status_queue *sq = &priv->status_queue;
2652 struct ipw2100_rx_packet *packet;
2653 u16 frame_type;
2654 u32 r, w, i, s;
2655 struct ipw2100_rx *u;
2656 struct libipw_rx_stats stats = {
2657 .mac_time = jiffies,
2658 };
2659
2660 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2661 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2662
2663 if (r >= rxq->entries) {
2664 IPW_DEBUG_RX("exit - bad read index\n");
2665 return;
2666 }
2667
2668 i = (rxq->next + 1) % rxq->entries;
2669 s = i;
2670 while (i != r) {
2671 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2672 r, rxq->next, i); */
2673
2674 packet = &priv->rx_buffers[i];
2675
2676 /* Sync the DMA for the RX buffer so CPU is sure to get
2677 * the correct values */
2678 dma_sync_single_for_cpu(&priv->pci_dev->dev, packet->dma_addr,
2679 sizeof(struct ipw2100_rx),
2680 DMA_FROM_DEVICE);
2681
2682 if (unlikely(ipw2100_corruption_check(priv, i))) {
2683 ipw2100_corruption_detected(priv, i);
2684 goto increment;
2685 }
2686
2687 u = packet->rxp;
2688 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2689 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2690 stats.len = sq->drv[i].frame_size;
2691
2692 stats.mask = 0;
2693 if (stats.rssi != 0)
2694 stats.mask |= LIBIPW_STATMASK_RSSI;
2695 stats.freq = LIBIPW_24GHZ_BAND;
2696
2697 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2698 priv->net_dev->name, frame_types[frame_type],
2699 stats.len);
2700
2701 switch (frame_type) {
2702 case COMMAND_STATUS_VAL:
2703 /* Reset Rx watchdog */
2704 isr_rx_complete_command(priv, &u->rx_data.command);
2705 break;
2706
2707 case STATUS_CHANGE_VAL:
2708 isr_status_change(priv, u->rx_data.status);
2709 break;
2710
2711 case P80211_DATA_VAL:
2712 case P8023_DATA_VAL:
2713 #ifdef CONFIG_IPW2100_MONITOR
2714 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2715 isr_rx_monitor(priv, i, &stats);
2716 break;
2717 }
2718 #endif
2719 if (stats.len < sizeof(struct libipw_hdr_3addr))
2720 break;
2721 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2722 case IEEE80211_FTYPE_MGMT:
2723 libipw_rx_mgt(priv->ieee,
2724 &u->rx_data.header, &stats);
2725 break;
2726
2727 case IEEE80211_FTYPE_CTL:
2728 break;
2729
2730 case IEEE80211_FTYPE_DATA:
2731 isr_rx(priv, i, &stats);
2732 break;
2733
2734 }
2735 break;
2736 }
2737
2738 increment:
2739 /* clear status field associated with this RBD */
2740 rxq->drv[i].status.info.field = 0;
2741
2742 i = (i + 1) % rxq->entries;
2743 }
2744
2745 if (i != s) {
2746 /* backtrack one entry, wrapping to end if at 0 */
2747 rxq->next = (i ? i : rxq->entries) - 1;
2748
2749 write_register(priv->net_dev,
2750 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2751 }
2752 }
2753
2754 /*
2755 * __ipw2100_tx_process
2756 *
2757 * This routine will determine whether the next packet on
2758 * the fw_pend_list has been processed by the firmware yet.
2759 *
2760 * If not, then it does nothing and returns.
2761 *
2762 * If so, then it removes the item from the fw_pend_list, frees
2763 * any associated storage, and places the item back on the
2764 * free list of its source (either msg_free_list or tx_free_list)
2765 *
2766 * TX Queue works as follows:
2767 *
2768 * Read index - points to the next TBD that the firmware will
2769 * process. The firmware will read the data, and once
2770 * done processing, it will advance the Read index.
2771 *
2772 * Write index - driver fills this entry with an constructed TBD
2773 * entry. The Write index is not advanced until the
2774 * packet has been configured.
2775 *
2776 * In between the W and R indexes are the TBDs that have NOT been
2777 * processed. Lagging behind the R index are packets that have
2778 * been processed but have not been freed by the driver.
2779 *
2780 * In order to free old storage, an internal index will be maintained
2781 * that points to the next packet to be freed. When all used
2782 * packets have been freed, the oldest index will be the same as the
2783 * firmware's read index.
2784 *
2785 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2786 *
2787 * Because the TBD structure can not contain arbitrary data, the
2788 * driver must keep an internal queue of cached allocations such that
2789 * it can put that data back into the tx_free_list and msg_free_list
2790 * for use by future command and data packets.
2791 *
2792 */
__ipw2100_tx_process(struct ipw2100_priv * priv)2793 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2794 {
2795 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2796 struct ipw2100_bd *tbd;
2797 struct list_head *element;
2798 struct ipw2100_tx_packet *packet;
2799 int descriptors_used;
2800 int e, i;
2801 u32 r, w, frag_num = 0;
2802
2803 if (list_empty(&priv->fw_pend_list))
2804 return 0;
2805
2806 element = priv->fw_pend_list.next;
2807
2808 packet = list_entry(element, struct ipw2100_tx_packet, list);
2809 tbd = &txq->drv[packet->index];
2810
2811 /* Determine how many TBD entries must be finished... */
2812 switch (packet->type) {
2813 case COMMAND:
2814 /* COMMAND uses only one slot; don't advance */
2815 descriptors_used = 1;
2816 e = txq->oldest;
2817 break;
2818
2819 case DATA:
2820 /* DATA uses two slots; advance and loop position. */
2821 descriptors_used = tbd->num_fragments;
2822 frag_num = tbd->num_fragments - 1;
2823 e = txq->oldest + frag_num;
2824 e %= txq->entries;
2825 break;
2826
2827 default:
2828 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2829 priv->net_dev->name);
2830 return 0;
2831 }
2832
2833 /* if the last TBD is not done by NIC yet, then packet is
2834 * not ready to be released.
2835 *
2836 */
2837 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2838 &r);
2839 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2840 &w);
2841 if (w != txq->next)
2842 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2843 priv->net_dev->name);
2844
2845 /*
2846 * txq->next is the index of the last packet written txq->oldest is
2847 * the index of the r is the index of the next packet to be read by
2848 * firmware
2849 */
2850
2851 /*
2852 * Quick graphic to help you visualize the following
2853 * if / else statement
2854 *
2855 * ===>| s---->|===============
2856 * e>|
2857 * | a | b | c | d | e | f | g | h | i | j | k | l
2858 * r---->|
2859 * w
2860 *
2861 * w - updated by driver
2862 * r - updated by firmware
2863 * s - start of oldest BD entry (txq->oldest)
2864 * e - end of oldest BD entry
2865 *
2866 */
2867 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2868 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2869 return 0;
2870 }
2871
2872 list_del(element);
2873 DEC_STAT(&priv->fw_pend_stat);
2874
2875 #ifdef CONFIG_IPW2100_DEBUG
2876 {
2877 i = txq->oldest;
2878 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2879 &txq->drv[i],
2880 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2881 txq->drv[i].host_addr, txq->drv[i].buf_length);
2882
2883 if (packet->type == DATA) {
2884 i = (i + 1) % txq->entries;
2885
2886 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2887 &txq->drv[i],
2888 (u32) (txq->nic + i *
2889 sizeof(struct ipw2100_bd)),
2890 (u32) txq->drv[i].host_addr,
2891 txq->drv[i].buf_length);
2892 }
2893 }
2894 #endif
2895
2896 switch (packet->type) {
2897 case DATA:
2898 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2899 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2900 "Expecting DATA TBD but pulled "
2901 "something else: ids %d=%d.\n",
2902 priv->net_dev->name, txq->oldest, packet->index);
2903
2904 /* DATA packet; we have to unmap and free the SKB */
2905 for (i = 0; i < frag_num; i++) {
2906 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2907
2908 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2909 (packet->index + 1 + i) % txq->entries,
2910 tbd->host_addr, tbd->buf_length);
2911
2912 dma_unmap_single(&priv->pci_dev->dev, tbd->host_addr,
2913 tbd->buf_length, DMA_TO_DEVICE);
2914 }
2915
2916 libipw_txb_free(packet->info.d_struct.txb);
2917 packet->info.d_struct.txb = NULL;
2918
2919 list_add_tail(element, &priv->tx_free_list);
2920 INC_STAT(&priv->tx_free_stat);
2921
2922 /* We have a free slot in the Tx queue, so wake up the
2923 * transmit layer if it is stopped. */
2924 if (priv->status & STATUS_ASSOCIATED)
2925 netif_wake_queue(priv->net_dev);
2926
2927 /* A packet was processed by the hardware, so update the
2928 * watchdog */
2929 netif_trans_update(priv->net_dev);
2930
2931 break;
2932
2933 case COMMAND:
2934 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2935 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2936 "Expecting COMMAND TBD but pulled "
2937 "something else: ids %d=%d.\n",
2938 priv->net_dev->name, txq->oldest, packet->index);
2939
2940 #ifdef CONFIG_IPW2100_DEBUG
2941 if (packet->info.c_struct.cmd->host_command_reg <
2942 ARRAY_SIZE(command_types))
2943 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2944 command_types[packet->info.c_struct.cmd->
2945 host_command_reg],
2946 packet->info.c_struct.cmd->
2947 host_command_reg,
2948 packet->info.c_struct.cmd->cmd_status_reg);
2949 #endif
2950
2951 list_add_tail(element, &priv->msg_free_list);
2952 INC_STAT(&priv->msg_free_stat);
2953 break;
2954 }
2955
2956 /* advance oldest used TBD pointer to start of next entry */
2957 txq->oldest = (e + 1) % txq->entries;
2958 /* increase available TBDs number */
2959 txq->available += descriptors_used;
2960 SET_STAT(&priv->txq_stat, txq->available);
2961
2962 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
2963 jiffies - packet->jiffy_start);
2964
2965 return (!list_empty(&priv->fw_pend_list));
2966 }
2967
__ipw2100_tx_complete(struct ipw2100_priv * priv)2968 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2969 {
2970 int i = 0;
2971
2972 while (__ipw2100_tx_process(priv) && i < 200)
2973 i++;
2974
2975 if (i == 200) {
2976 printk(KERN_WARNING DRV_NAME ": "
2977 "%s: Driver is running slow (%d iters).\n",
2978 priv->net_dev->name, i);
2979 }
2980 }
2981
ipw2100_tx_send_commands(struct ipw2100_priv * priv)2982 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2983 {
2984 struct list_head *element;
2985 struct ipw2100_tx_packet *packet;
2986 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2987 struct ipw2100_bd *tbd;
2988 int next = txq->next;
2989
2990 while (!list_empty(&priv->msg_pend_list)) {
2991 /* if there isn't enough space in TBD queue, then
2992 * don't stuff a new one in.
2993 * NOTE: 3 are needed as a command will take one,
2994 * and there is a minimum of 2 that must be
2995 * maintained between the r and w indexes
2996 */
2997 if (txq->available <= 3) {
2998 IPW_DEBUG_TX("no room in tx_queue\n");
2999 break;
3000 }
3001
3002 element = priv->msg_pend_list.next;
3003 list_del(element);
3004 DEC_STAT(&priv->msg_pend_stat);
3005
3006 packet = list_entry(element, struct ipw2100_tx_packet, list);
3007
3008 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3009 &txq->drv[txq->next],
3010 (u32) (txq->nic + txq->next *
3011 sizeof(struct ipw2100_bd)));
3012
3013 packet->index = txq->next;
3014
3015 tbd = &txq->drv[txq->next];
3016
3017 /* initialize TBD */
3018 tbd->host_addr = packet->info.c_struct.cmd_phys;
3019 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3020 /* not marking number of fragments causes problems
3021 * with f/w debug version */
3022 tbd->num_fragments = 1;
3023 tbd->status.info.field =
3024 IPW_BD_STATUS_TX_FRAME_COMMAND |
3025 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3026
3027 /* update TBD queue counters */
3028 txq->next++;
3029 txq->next %= txq->entries;
3030 txq->available--;
3031 DEC_STAT(&priv->txq_stat);
3032
3033 list_add_tail(element, &priv->fw_pend_list);
3034 INC_STAT(&priv->fw_pend_stat);
3035 }
3036
3037 if (txq->next != next) {
3038 /* kick off the DMA by notifying firmware the
3039 * write index has moved; make sure TBD stores are sync'd */
3040 wmb();
3041 write_register(priv->net_dev,
3042 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3043 txq->next);
3044 }
3045 }
3046
3047 /*
3048 * ipw2100_tx_send_data
3049 *
3050 */
ipw2100_tx_send_data(struct ipw2100_priv * priv)3051 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3052 {
3053 struct list_head *element;
3054 struct ipw2100_tx_packet *packet;
3055 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3056 struct ipw2100_bd *tbd;
3057 int next = txq->next;
3058 int i = 0;
3059 struct ipw2100_data_header *ipw_hdr;
3060 struct libipw_hdr_3addr *hdr;
3061
3062 while (!list_empty(&priv->tx_pend_list)) {
3063 /* if there isn't enough space in TBD queue, then
3064 * don't stuff a new one in.
3065 * NOTE: 4 are needed as a data will take two,
3066 * and there is a minimum of 2 that must be
3067 * maintained between the r and w indexes
3068 */
3069 element = priv->tx_pend_list.next;
3070 packet = list_entry(element, struct ipw2100_tx_packet, list);
3071
3072 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3073 IPW_MAX_BDS)) {
3074 /* TODO: Support merging buffers if more than
3075 * IPW_MAX_BDS are used */
3076 IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded. "
3077 "Increase fragmentation level.\n",
3078 priv->net_dev->name);
3079 }
3080
3081 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3082 IPW_DEBUG_TX("no room in tx_queue\n");
3083 break;
3084 }
3085
3086 list_del(element);
3087 DEC_STAT(&priv->tx_pend_stat);
3088
3089 tbd = &txq->drv[txq->next];
3090
3091 packet->index = txq->next;
3092
3093 ipw_hdr = packet->info.d_struct.data;
3094 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3095 fragments[0]->data;
3096
3097 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3098 /* To DS: Addr1 = BSSID, Addr2 = SA,
3099 Addr3 = DA */
3100 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3101 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3102 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3103 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3104 Addr3 = BSSID */
3105 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3106 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3107 }
3108
3109 ipw_hdr->host_command_reg = SEND;
3110 ipw_hdr->host_command_reg1 = 0;
3111
3112 /* For now we only support host based encryption */
3113 ipw_hdr->needs_encryption = 0;
3114 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3115 if (packet->info.d_struct.txb->nr_frags > 1)
3116 ipw_hdr->fragment_size =
3117 packet->info.d_struct.txb->frag_size -
3118 LIBIPW_3ADDR_LEN;
3119 else
3120 ipw_hdr->fragment_size = 0;
3121
3122 tbd->host_addr = packet->info.d_struct.data_phys;
3123 tbd->buf_length = sizeof(struct ipw2100_data_header);
3124 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3125 tbd->status.info.field =
3126 IPW_BD_STATUS_TX_FRAME_802_3 |
3127 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3128 txq->next++;
3129 txq->next %= txq->entries;
3130
3131 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3132 packet->index, tbd->host_addr, tbd->buf_length);
3133 #ifdef CONFIG_IPW2100_DEBUG
3134 if (packet->info.d_struct.txb->nr_frags > 1)
3135 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3136 packet->info.d_struct.txb->nr_frags);
3137 #endif
3138
3139 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3140 tbd = &txq->drv[txq->next];
3141 if (i == packet->info.d_struct.txb->nr_frags - 1)
3142 tbd->status.info.field =
3143 IPW_BD_STATUS_TX_FRAME_802_3 |
3144 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3145 else
3146 tbd->status.info.field =
3147 IPW_BD_STATUS_TX_FRAME_802_3 |
3148 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3149
3150 tbd->buf_length = packet->info.d_struct.txb->
3151 fragments[i]->len - LIBIPW_3ADDR_LEN;
3152
3153 tbd->host_addr = dma_map_single(&priv->pci_dev->dev,
3154 packet->info.d_struct.
3155 txb->fragments[i]->data +
3156 LIBIPW_3ADDR_LEN,
3157 tbd->buf_length,
3158 DMA_TO_DEVICE);
3159 if (dma_mapping_error(&priv->pci_dev->dev, tbd->host_addr)) {
3160 IPW_DEBUG_TX("dma mapping error\n");
3161 break;
3162 }
3163
3164 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3165 txq->next, tbd->host_addr,
3166 tbd->buf_length);
3167
3168 dma_sync_single_for_device(&priv->pci_dev->dev,
3169 tbd->host_addr,
3170 tbd->buf_length,
3171 DMA_TO_DEVICE);
3172
3173 txq->next++;
3174 txq->next %= txq->entries;
3175 }
3176
3177 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3178 SET_STAT(&priv->txq_stat, txq->available);
3179
3180 list_add_tail(element, &priv->fw_pend_list);
3181 INC_STAT(&priv->fw_pend_stat);
3182 }
3183
3184 if (txq->next != next) {
3185 /* kick off the DMA by notifying firmware the
3186 * write index has moved; make sure TBD stores are sync'd */
3187 write_register(priv->net_dev,
3188 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3189 txq->next);
3190 }
3191 }
3192
ipw2100_irq_tasklet(struct tasklet_struct * t)3193 static void ipw2100_irq_tasklet(struct tasklet_struct *t)
3194 {
3195 struct ipw2100_priv *priv = from_tasklet(priv, t, irq_tasklet);
3196 struct net_device *dev = priv->net_dev;
3197 unsigned long flags;
3198 u32 inta, tmp;
3199
3200 spin_lock_irqsave(&priv->low_lock, flags);
3201 ipw2100_disable_interrupts(priv);
3202
3203 read_register(dev, IPW_REG_INTA, &inta);
3204
3205 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3206 (unsigned long)inta & IPW_INTERRUPT_MASK);
3207
3208 priv->in_isr++;
3209 priv->interrupts++;
3210
3211 /* We do not loop and keep polling for more interrupts as this
3212 * is frowned upon and doesn't play nicely with other potentially
3213 * chained IRQs */
3214 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3215 (unsigned long)inta & IPW_INTERRUPT_MASK);
3216
3217 if (inta & IPW2100_INTA_FATAL_ERROR) {
3218 printk(KERN_WARNING DRV_NAME
3219 ": Fatal interrupt. Scheduling firmware restart.\n");
3220 priv->inta_other++;
3221 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3222
3223 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3224 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3225 priv->net_dev->name, priv->fatal_error);
3226
3227 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3228 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3229 priv->net_dev->name, tmp);
3230
3231 /* Wake up any sleeping jobs */
3232 schedule_reset(priv);
3233 }
3234
3235 if (inta & IPW2100_INTA_PARITY_ERROR) {
3236 printk(KERN_ERR DRV_NAME
3237 ": ***** PARITY ERROR INTERRUPT !!!!\n");
3238 priv->inta_other++;
3239 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3240 }
3241
3242 if (inta & IPW2100_INTA_RX_TRANSFER) {
3243 IPW_DEBUG_ISR("RX interrupt\n");
3244
3245 priv->rx_interrupts++;
3246
3247 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3248
3249 __ipw2100_rx_process(priv);
3250 __ipw2100_tx_complete(priv);
3251 }
3252
3253 if (inta & IPW2100_INTA_TX_TRANSFER) {
3254 IPW_DEBUG_ISR("TX interrupt\n");
3255
3256 priv->tx_interrupts++;
3257
3258 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3259
3260 __ipw2100_tx_complete(priv);
3261 ipw2100_tx_send_commands(priv);
3262 ipw2100_tx_send_data(priv);
3263 }
3264
3265 if (inta & IPW2100_INTA_TX_COMPLETE) {
3266 IPW_DEBUG_ISR("TX complete\n");
3267 priv->inta_other++;
3268 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3269
3270 __ipw2100_tx_complete(priv);
3271 }
3272
3273 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3274 /* ipw2100_handle_event(dev); */
3275 priv->inta_other++;
3276 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3277 }
3278
3279 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3280 IPW_DEBUG_ISR("FW init done interrupt\n");
3281 priv->inta_other++;
3282
3283 read_register(dev, IPW_REG_INTA, &tmp);
3284 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3285 IPW2100_INTA_PARITY_ERROR)) {
3286 write_register(dev, IPW_REG_INTA,
3287 IPW2100_INTA_FATAL_ERROR |
3288 IPW2100_INTA_PARITY_ERROR);
3289 }
3290
3291 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3292 }
3293
3294 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3295 IPW_DEBUG_ISR("Status change interrupt\n");
3296 priv->inta_other++;
3297 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3298 }
3299
3300 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3301 IPW_DEBUG_ISR("slave host mode interrupt\n");
3302 priv->inta_other++;
3303 write_register(dev, IPW_REG_INTA,
3304 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3305 }
3306
3307 priv->in_isr--;
3308 ipw2100_enable_interrupts(priv);
3309
3310 spin_unlock_irqrestore(&priv->low_lock, flags);
3311
3312 IPW_DEBUG_ISR("exit\n");
3313 }
3314
ipw2100_interrupt(int irq,void * data)3315 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3316 {
3317 struct ipw2100_priv *priv = data;
3318 u32 inta, inta_mask;
3319
3320 if (!data)
3321 return IRQ_NONE;
3322
3323 spin_lock(&priv->low_lock);
3324
3325 /* We check to see if we should be ignoring interrupts before
3326 * we touch the hardware. During ucode load if we try and handle
3327 * an interrupt we can cause keyboard problems as well as cause
3328 * the ucode to fail to initialize */
3329 if (!(priv->status & STATUS_INT_ENABLED)) {
3330 /* Shared IRQ */
3331 goto none;
3332 }
3333
3334 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3335 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3336
3337 if (inta == 0xFFFFFFFF) {
3338 /* Hardware disappeared */
3339 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3340 goto none;
3341 }
3342
3343 inta &= IPW_INTERRUPT_MASK;
3344
3345 if (!(inta & inta_mask)) {
3346 /* Shared interrupt */
3347 goto none;
3348 }
3349
3350 /* We disable the hardware interrupt here just to prevent unneeded
3351 * calls to be made. We disable this again within the actual
3352 * work tasklet, so if another part of the code re-enables the
3353 * interrupt, that is fine */
3354 ipw2100_disable_interrupts(priv);
3355
3356 tasklet_schedule(&priv->irq_tasklet);
3357 spin_unlock(&priv->low_lock);
3358
3359 return IRQ_HANDLED;
3360 none:
3361 spin_unlock(&priv->low_lock);
3362 return IRQ_NONE;
3363 }
3364
ipw2100_tx(struct libipw_txb * txb,struct net_device * dev,int pri)3365 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3366 struct net_device *dev, int pri)
3367 {
3368 struct ipw2100_priv *priv = libipw_priv(dev);
3369 struct list_head *element;
3370 struct ipw2100_tx_packet *packet;
3371 unsigned long flags;
3372
3373 spin_lock_irqsave(&priv->low_lock, flags);
3374
3375 if (!(priv->status & STATUS_ASSOCIATED)) {
3376 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3377 priv->net_dev->stats.tx_carrier_errors++;
3378 netif_stop_queue(dev);
3379 goto fail_unlock;
3380 }
3381
3382 if (list_empty(&priv->tx_free_list))
3383 goto fail_unlock;
3384
3385 element = priv->tx_free_list.next;
3386 packet = list_entry(element, struct ipw2100_tx_packet, list);
3387
3388 packet->info.d_struct.txb = txb;
3389
3390 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3391 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3392
3393 packet->jiffy_start = jiffies;
3394
3395 list_del(element);
3396 DEC_STAT(&priv->tx_free_stat);
3397
3398 list_add_tail(element, &priv->tx_pend_list);
3399 INC_STAT(&priv->tx_pend_stat);
3400
3401 ipw2100_tx_send_data(priv);
3402
3403 spin_unlock_irqrestore(&priv->low_lock, flags);
3404 return NETDEV_TX_OK;
3405
3406 fail_unlock:
3407 netif_stop_queue(dev);
3408 spin_unlock_irqrestore(&priv->low_lock, flags);
3409 return NETDEV_TX_BUSY;
3410 }
3411
ipw2100_msg_allocate(struct ipw2100_priv * priv)3412 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3413 {
3414 int i, j, err = -EINVAL;
3415 void *v;
3416 dma_addr_t p;
3417
3418 priv->msg_buffers =
3419 kmalloc_array(IPW_COMMAND_POOL_SIZE,
3420 sizeof(struct ipw2100_tx_packet),
3421 GFP_KERNEL);
3422 if (!priv->msg_buffers)
3423 return -ENOMEM;
3424
3425 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3426 v = dma_alloc_coherent(&priv->pci_dev->dev,
3427 sizeof(struct ipw2100_cmd_header), &p,
3428 GFP_KERNEL);
3429 if (!v) {
3430 printk(KERN_ERR DRV_NAME ": "
3431 "%s: PCI alloc failed for msg "
3432 "buffers.\n", priv->net_dev->name);
3433 err = -ENOMEM;
3434 break;
3435 }
3436
3437 priv->msg_buffers[i].type = COMMAND;
3438 priv->msg_buffers[i].info.c_struct.cmd =
3439 (struct ipw2100_cmd_header *)v;
3440 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3441 }
3442
3443 if (i == IPW_COMMAND_POOL_SIZE)
3444 return 0;
3445
3446 for (j = 0; j < i; j++) {
3447 dma_free_coherent(&priv->pci_dev->dev,
3448 sizeof(struct ipw2100_cmd_header),
3449 priv->msg_buffers[j].info.c_struct.cmd,
3450 priv->msg_buffers[j].info.c_struct.cmd_phys);
3451 }
3452
3453 kfree(priv->msg_buffers);
3454 priv->msg_buffers = NULL;
3455
3456 return err;
3457 }
3458
ipw2100_msg_initialize(struct ipw2100_priv * priv)3459 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3460 {
3461 int i;
3462
3463 INIT_LIST_HEAD(&priv->msg_free_list);
3464 INIT_LIST_HEAD(&priv->msg_pend_list);
3465
3466 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3467 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3468 SET_STAT(&priv->msg_free_stat, i);
3469
3470 return 0;
3471 }
3472
ipw2100_msg_free(struct ipw2100_priv * priv)3473 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3474 {
3475 int i;
3476
3477 if (!priv->msg_buffers)
3478 return;
3479
3480 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3481 dma_free_coherent(&priv->pci_dev->dev,
3482 sizeof(struct ipw2100_cmd_header),
3483 priv->msg_buffers[i].info.c_struct.cmd,
3484 priv->msg_buffers[i].info.c_struct.cmd_phys);
3485 }
3486
3487 kfree(priv->msg_buffers);
3488 priv->msg_buffers = NULL;
3489 }
3490
pci_show(struct device * d,struct device_attribute * attr,char * buf)3491 static ssize_t pci_show(struct device *d, struct device_attribute *attr,
3492 char *buf)
3493 {
3494 struct pci_dev *pci_dev = to_pci_dev(d);
3495 char *out = buf;
3496 int i, j;
3497 u32 val;
3498
3499 for (i = 0; i < 16; i++) {
3500 out += sprintf(out, "[%08X] ", i * 16);
3501 for (j = 0; j < 16; j += 4) {
3502 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3503 out += sprintf(out, "%08X ", val);
3504 }
3505 out += sprintf(out, "\n");
3506 }
3507
3508 return out - buf;
3509 }
3510
3511 static DEVICE_ATTR_RO(pci);
3512
cfg_show(struct device * d,struct device_attribute * attr,char * buf)3513 static ssize_t cfg_show(struct device *d, struct device_attribute *attr,
3514 char *buf)
3515 {
3516 struct ipw2100_priv *p = dev_get_drvdata(d);
3517 return sprintf(buf, "0x%08x\n", (int)p->config);
3518 }
3519
3520 static DEVICE_ATTR_RO(cfg);
3521
status_show(struct device * d,struct device_attribute * attr,char * buf)3522 static ssize_t status_show(struct device *d, struct device_attribute *attr,
3523 char *buf)
3524 {
3525 struct ipw2100_priv *p = dev_get_drvdata(d);
3526 return sprintf(buf, "0x%08x\n", (int)p->status);
3527 }
3528
3529 static DEVICE_ATTR_RO(status);
3530
capability_show(struct device * d,struct device_attribute * attr,char * buf)3531 static ssize_t capability_show(struct device *d, struct device_attribute *attr,
3532 char *buf)
3533 {
3534 struct ipw2100_priv *p = dev_get_drvdata(d);
3535 return sprintf(buf, "0x%08x\n", (int)p->capability);
3536 }
3537
3538 static DEVICE_ATTR_RO(capability);
3539
3540 #define IPW2100_REG(x) { IPW_ ##x, #x }
3541 static const struct {
3542 u32 addr;
3543 const char *name;
3544 } hw_data[] = {
3545 IPW2100_REG(REG_GP_CNTRL),
3546 IPW2100_REG(REG_GPIO),
3547 IPW2100_REG(REG_INTA),
3548 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3549 #define IPW2100_NIC(x, s) { x, #x, s }
3550 static const struct {
3551 u32 addr;
3552 const char *name;
3553 size_t size;
3554 } nic_data[] = {
3555 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3556 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3557 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3558 static const struct {
3559 u8 index;
3560 const char *name;
3561 const char *desc;
3562 } ord_data[] = {
3563 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3564 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3565 "successful Host Tx's (MSDU)"),
3566 IPW2100_ORD(STAT_TX_DIR_DATA,
3567 "successful Directed Tx's (MSDU)"),
3568 IPW2100_ORD(STAT_TX_DIR_DATA1,
3569 "successful Directed Tx's (MSDU) @ 1MB"),
3570 IPW2100_ORD(STAT_TX_DIR_DATA2,
3571 "successful Directed Tx's (MSDU) @ 2MB"),
3572 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3573 "successful Directed Tx's (MSDU) @ 5_5MB"),
3574 IPW2100_ORD(STAT_TX_DIR_DATA11,
3575 "successful Directed Tx's (MSDU) @ 11MB"),
3576 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3577 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3578 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3579 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3580 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3581 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3582 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3583 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3584 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3585 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3586 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3587 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3588 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3589 IPW2100_ORD(STAT_TX_ASSN_RESP,
3590 "successful Association response Tx's"),
3591 IPW2100_ORD(STAT_TX_REASSN,
3592 "successful Reassociation Tx's"),
3593 IPW2100_ORD(STAT_TX_REASSN_RESP,
3594 "successful Reassociation response Tx's"),
3595 IPW2100_ORD(STAT_TX_PROBE,
3596 "probes successfully transmitted"),
3597 IPW2100_ORD(STAT_TX_PROBE_RESP,
3598 "probe responses successfully transmitted"),
3599 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3600 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3601 IPW2100_ORD(STAT_TX_DISASSN,
3602 "successful Disassociation TX"),
3603 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3604 IPW2100_ORD(STAT_TX_DEAUTH,
3605 "successful Deauthentication TX"),
3606 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3607 "Total successful Tx data bytes"),
3608 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3609 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3610 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3611 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3612 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3613 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3614 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3615 "times max tries in a hop failed"),
3616 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3617 "times disassociation failed"),
3618 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3619 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3620 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3621 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3622 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3623 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3624 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3625 "directed packets at 5.5MB"),
3626 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3627 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3628 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3629 "nondirected packets at 1MB"),
3630 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3631 "nondirected packets at 2MB"),
3632 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3633 "nondirected packets at 5.5MB"),
3634 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3635 "nondirected packets at 11MB"),
3636 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3637 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3638 "Rx CTS"),
3639 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3640 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3641 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3642 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3643 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3644 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3645 IPW2100_ORD(STAT_RX_REASSN_RESP,
3646 "Reassociation response Rx's"),
3647 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3648 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3649 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3650 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3651 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3652 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3653 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3654 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3655 "Total rx data bytes received"),
3656 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3657 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3658 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3659 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3660 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3661 IPW2100_ORD(STAT_RX_DUPLICATE1,
3662 "duplicate rx packets at 1MB"),
3663 IPW2100_ORD(STAT_RX_DUPLICATE2,
3664 "duplicate rx packets at 2MB"),
3665 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3666 "duplicate rx packets at 5.5MB"),
3667 IPW2100_ORD(STAT_RX_DUPLICATE11,
3668 "duplicate rx packets at 11MB"),
3669 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3670 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3671 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3672 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3673 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3674 "rx frames with invalid protocol"),
3675 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3676 IPW2100_ORD(STAT_RX_NO_BUFFER,
3677 "rx frames rejected due to no buffer"),
3678 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3679 "rx frames dropped due to missing fragment"),
3680 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3681 "rx frames dropped due to non-sequential fragment"),
3682 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3683 "rx frames dropped due to unmatched 1st frame"),
3684 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3685 "rx frames dropped due to uncompleted frame"),
3686 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3687 "ICV errors during decryption"),
3688 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3689 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3690 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3691 "poll response timeouts"),
3692 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3693 "timeouts waiting for last {broad,multi}cast pkt"),
3694 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3695 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3696 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3697 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3698 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3699 "current calculation of % missed beacons"),
3700 IPW2100_ORD(STAT_PERCENT_RETRIES,
3701 "current calculation of % missed tx retries"),
3702 IPW2100_ORD(ASSOCIATED_AP_PTR,
3703 "0 if not associated, else pointer to AP table entry"),
3704 IPW2100_ORD(AVAILABLE_AP_CNT,
3705 "AP's described in the AP table"),
3706 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3707 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3708 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3709 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3710 "failures due to response fail"),
3711 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3712 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3713 IPW2100_ORD(STAT_ROAM_INHIBIT,
3714 "times roaming was inhibited due to activity"),
3715 IPW2100_ORD(RSSI_AT_ASSN,
3716 "RSSI of associated AP at time of association"),
3717 IPW2100_ORD(STAT_ASSN_CAUSE1,
3718 "reassociation: no probe response or TX on hop"),
3719 IPW2100_ORD(STAT_ASSN_CAUSE2,
3720 "reassociation: poor tx/rx quality"),
3721 IPW2100_ORD(STAT_ASSN_CAUSE3,
3722 "reassociation: tx/rx quality (excessive AP load"),
3723 IPW2100_ORD(STAT_ASSN_CAUSE4,
3724 "reassociation: AP RSSI level"),
3725 IPW2100_ORD(STAT_ASSN_CAUSE5,
3726 "reassociations due to load leveling"),
3727 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3728 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3729 "times authentication response failed"),
3730 IPW2100_ORD(STATION_TABLE_CNT,
3731 "entries in association table"),
3732 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3733 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3734 IPW2100_ORD(COUNTRY_CODE,
3735 "IEEE country code as recv'd from beacon"),
3736 IPW2100_ORD(COUNTRY_CHANNELS,
3737 "channels supported by country"),
3738 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3739 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3740 IPW2100_ORD(ANTENNA_DIVERSITY,
3741 "TRUE if antenna diversity is disabled"),
3742 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3743 IPW2100_ORD(OUR_FREQ,
3744 "current radio freq lower digits - channel ID"),
3745 IPW2100_ORD(RTC_TIME, "current RTC time"),
3746 IPW2100_ORD(PORT_TYPE, "operating mode"),
3747 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3748 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3749 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3750 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3751 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3752 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3753 IPW2100_ORD(CAPABILITIES,
3754 "Management frame capability field"),
3755 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3756 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3757 IPW2100_ORD(RTS_THRESHOLD,
3758 "Min packet length for RTS handshaking"),
3759 IPW2100_ORD(INT_MODE, "International mode"),
3760 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3761 "protocol frag threshold"),
3762 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3763 "EEPROM offset in SRAM"),
3764 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3765 "EEPROM size in SRAM"),
3766 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3767 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3768 "EEPROM IBSS 11b channel set"),
3769 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3770 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3771 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3772 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3773 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3774
registers_show(struct device * d,struct device_attribute * attr,char * buf)3775 static ssize_t registers_show(struct device *d, struct device_attribute *attr,
3776 char *buf)
3777 {
3778 int i;
3779 struct ipw2100_priv *priv = dev_get_drvdata(d);
3780 struct net_device *dev = priv->net_dev;
3781 char *out = buf;
3782 u32 val = 0;
3783
3784 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3785
3786 for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3787 read_register(dev, hw_data[i].addr, &val);
3788 out += sprintf(out, "%30s [%08X] : %08X\n",
3789 hw_data[i].name, hw_data[i].addr, val);
3790 }
3791
3792 return out - buf;
3793 }
3794
3795 static DEVICE_ATTR_RO(registers);
3796
hardware_show(struct device * d,struct device_attribute * attr,char * buf)3797 static ssize_t hardware_show(struct device *d, struct device_attribute *attr,
3798 char *buf)
3799 {
3800 struct ipw2100_priv *priv = dev_get_drvdata(d);
3801 struct net_device *dev = priv->net_dev;
3802 char *out = buf;
3803 int i;
3804
3805 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3806
3807 for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3808 u8 tmp8;
3809 u16 tmp16;
3810 u32 tmp32;
3811
3812 switch (nic_data[i].size) {
3813 case 1:
3814 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3815 out += sprintf(out, "%30s [%08X] : %02X\n",
3816 nic_data[i].name, nic_data[i].addr,
3817 tmp8);
3818 break;
3819 case 2:
3820 read_nic_word(dev, nic_data[i].addr, &tmp16);
3821 out += sprintf(out, "%30s [%08X] : %04X\n",
3822 nic_data[i].name, nic_data[i].addr,
3823 tmp16);
3824 break;
3825 case 4:
3826 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3827 out += sprintf(out, "%30s [%08X] : %08X\n",
3828 nic_data[i].name, nic_data[i].addr,
3829 tmp32);
3830 break;
3831 }
3832 }
3833 return out - buf;
3834 }
3835
3836 static DEVICE_ATTR_RO(hardware);
3837
memory_show(struct device * d,struct device_attribute * attr,char * buf)3838 static ssize_t memory_show(struct device *d, struct device_attribute *attr,
3839 char *buf)
3840 {
3841 struct ipw2100_priv *priv = dev_get_drvdata(d);
3842 struct net_device *dev = priv->net_dev;
3843 static unsigned long loop = 0;
3844 int len = 0;
3845 u32 buffer[4];
3846 int i;
3847 char line[81];
3848
3849 if (loop >= 0x30000)
3850 loop = 0;
3851
3852 /* sysfs provides us PAGE_SIZE buffer */
3853 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3854
3855 if (priv->snapshot[0])
3856 for (i = 0; i < 4; i++)
3857 buffer[i] =
3858 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3859 else
3860 for (i = 0; i < 4; i++)
3861 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3862
3863 if (priv->dump_raw)
3864 len += sprintf(buf + len,
3865 "%c%c%c%c"
3866 "%c%c%c%c"
3867 "%c%c%c%c"
3868 "%c%c%c%c",
3869 ((u8 *) buffer)[0x0],
3870 ((u8 *) buffer)[0x1],
3871 ((u8 *) buffer)[0x2],
3872 ((u8 *) buffer)[0x3],
3873 ((u8 *) buffer)[0x4],
3874 ((u8 *) buffer)[0x5],
3875 ((u8 *) buffer)[0x6],
3876 ((u8 *) buffer)[0x7],
3877 ((u8 *) buffer)[0x8],
3878 ((u8 *) buffer)[0x9],
3879 ((u8 *) buffer)[0xa],
3880 ((u8 *) buffer)[0xb],
3881 ((u8 *) buffer)[0xc],
3882 ((u8 *) buffer)[0xd],
3883 ((u8 *) buffer)[0xe],
3884 ((u8 *) buffer)[0xf]);
3885 else
3886 len += sprintf(buf + len, "%s\n",
3887 snprint_line(line, sizeof(line),
3888 (u8 *) buffer, 16, loop));
3889 loop += 16;
3890 }
3891
3892 return len;
3893 }
3894
memory_store(struct device * d,struct device_attribute * attr,const char * buf,size_t count)3895 static ssize_t memory_store(struct device *d, struct device_attribute *attr,
3896 const char *buf, size_t count)
3897 {
3898 struct ipw2100_priv *priv = dev_get_drvdata(d);
3899 struct net_device *dev = priv->net_dev;
3900 const char *p = buf;
3901
3902 (void)dev; /* kill unused-var warning for debug-only code */
3903
3904 if (count < 1)
3905 return count;
3906
3907 if (p[0] == '1' ||
3908 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3909 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3910 dev->name);
3911 priv->dump_raw = 1;
3912
3913 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3914 tolower(p[1]) == 'f')) {
3915 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3916 dev->name);
3917 priv->dump_raw = 0;
3918
3919 } else if (tolower(p[0]) == 'r') {
3920 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3921 ipw2100_snapshot_free(priv);
3922
3923 } else
3924 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3925 "reset = clear memory snapshot\n", dev->name);
3926
3927 return count;
3928 }
3929
3930 static DEVICE_ATTR_RW(memory);
3931
ordinals_show(struct device * d,struct device_attribute * attr,char * buf)3932 static ssize_t ordinals_show(struct device *d, struct device_attribute *attr,
3933 char *buf)
3934 {
3935 struct ipw2100_priv *priv = dev_get_drvdata(d);
3936 u32 val = 0;
3937 int len = 0;
3938 u32 val_len;
3939 static int loop = 0;
3940
3941 if (priv->status & STATUS_RF_KILL_MASK)
3942 return 0;
3943
3944 if (loop >= ARRAY_SIZE(ord_data))
3945 loop = 0;
3946
3947 /* sysfs provides us PAGE_SIZE buffer */
3948 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3949 val_len = sizeof(u32);
3950
3951 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3952 &val_len))
3953 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
3954 ord_data[loop].index,
3955 ord_data[loop].desc);
3956 else
3957 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3958 ord_data[loop].index, val,
3959 ord_data[loop].desc);
3960 loop++;
3961 }
3962
3963 return len;
3964 }
3965
3966 static DEVICE_ATTR_RO(ordinals);
3967
stats_show(struct device * d,struct device_attribute * attr,char * buf)3968 static ssize_t stats_show(struct device *d, struct device_attribute *attr,
3969 char *buf)
3970 {
3971 struct ipw2100_priv *priv = dev_get_drvdata(d);
3972 char *out = buf;
3973
3974 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3975 priv->interrupts, priv->tx_interrupts,
3976 priv->rx_interrupts, priv->inta_other);
3977 out += sprintf(out, "firmware resets: %d\n", priv->resets);
3978 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3979 #ifdef CONFIG_IPW2100_DEBUG
3980 out += sprintf(out, "packet mismatch image: %s\n",
3981 priv->snapshot[0] ? "YES" : "NO");
3982 #endif
3983
3984 return out - buf;
3985 }
3986
3987 static DEVICE_ATTR_RO(stats);
3988
ipw2100_switch_mode(struct ipw2100_priv * priv,u32 mode)3989 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3990 {
3991 int err;
3992
3993 if (mode == priv->ieee->iw_mode)
3994 return 0;
3995
3996 err = ipw2100_disable_adapter(priv);
3997 if (err) {
3998 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3999 priv->net_dev->name, err);
4000 return err;
4001 }
4002
4003 switch (mode) {
4004 case IW_MODE_INFRA:
4005 priv->net_dev->type = ARPHRD_ETHER;
4006 break;
4007 case IW_MODE_ADHOC:
4008 priv->net_dev->type = ARPHRD_ETHER;
4009 break;
4010 #ifdef CONFIG_IPW2100_MONITOR
4011 case IW_MODE_MONITOR:
4012 priv->last_mode = priv->ieee->iw_mode;
4013 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4014 break;
4015 #endif /* CONFIG_IPW2100_MONITOR */
4016 }
4017
4018 priv->ieee->iw_mode = mode;
4019
4020 #ifdef CONFIG_PM
4021 /* Indicate ipw2100_download_firmware download firmware
4022 * from disk instead of memory. */
4023 ipw2100_firmware.version = 0;
4024 #endif
4025
4026 printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4027 priv->reset_backoff = 0;
4028 schedule_reset(priv);
4029
4030 return 0;
4031 }
4032
internals_show(struct device * d,struct device_attribute * attr,char * buf)4033 static ssize_t internals_show(struct device *d, struct device_attribute *attr,
4034 char *buf)
4035 {
4036 struct ipw2100_priv *priv = dev_get_drvdata(d);
4037 int len = 0;
4038
4039 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4040
4041 if (priv->status & STATUS_ASSOCIATED)
4042 len += sprintf(buf + len, "connected: %llu\n",
4043 ktime_get_boottime_seconds() - priv->connect_start);
4044 else
4045 len += sprintf(buf + len, "not connected\n");
4046
4047 DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4048 DUMP_VAR(status, "08lx");
4049 DUMP_VAR(config, "08lx");
4050 DUMP_VAR(capability, "08lx");
4051
4052 len +=
4053 sprintf(buf + len, "last_rtc: %lu\n",
4054 (unsigned long)priv->last_rtc);
4055
4056 DUMP_VAR(fatal_error, "d");
4057 DUMP_VAR(stop_hang_check, "d");
4058 DUMP_VAR(stop_rf_kill, "d");
4059 DUMP_VAR(messages_sent, "d");
4060
4061 DUMP_VAR(tx_pend_stat.value, "d");
4062 DUMP_VAR(tx_pend_stat.hi, "d");
4063
4064 DUMP_VAR(tx_free_stat.value, "d");
4065 DUMP_VAR(tx_free_stat.lo, "d");
4066
4067 DUMP_VAR(msg_free_stat.value, "d");
4068 DUMP_VAR(msg_free_stat.lo, "d");
4069
4070 DUMP_VAR(msg_pend_stat.value, "d");
4071 DUMP_VAR(msg_pend_stat.hi, "d");
4072
4073 DUMP_VAR(fw_pend_stat.value, "d");
4074 DUMP_VAR(fw_pend_stat.hi, "d");
4075
4076 DUMP_VAR(txq_stat.value, "d");
4077 DUMP_VAR(txq_stat.lo, "d");
4078
4079 DUMP_VAR(ieee->scans, "d");
4080 DUMP_VAR(reset_backoff, "lld");
4081
4082 return len;
4083 }
4084
4085 static DEVICE_ATTR_RO(internals);
4086
bssinfo_show(struct device * d,struct device_attribute * attr,char * buf)4087 static ssize_t bssinfo_show(struct device *d, struct device_attribute *attr,
4088 char *buf)
4089 {
4090 struct ipw2100_priv *priv = dev_get_drvdata(d);
4091 char essid[IW_ESSID_MAX_SIZE + 1];
4092 u8 bssid[ETH_ALEN];
4093 u32 chan = 0;
4094 char *out = buf;
4095 unsigned int length;
4096 int ret;
4097
4098 if (priv->status & STATUS_RF_KILL_MASK)
4099 return 0;
4100
4101 memset(essid, 0, sizeof(essid));
4102 memset(bssid, 0, sizeof(bssid));
4103
4104 length = IW_ESSID_MAX_SIZE;
4105 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4106 if (ret)
4107 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4108 __LINE__);
4109
4110 length = sizeof(bssid);
4111 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4112 bssid, &length);
4113 if (ret)
4114 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4115 __LINE__);
4116
4117 length = sizeof(u32);
4118 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4119 if (ret)
4120 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4121 __LINE__);
4122
4123 out += sprintf(out, "ESSID: %s\n", essid);
4124 out += sprintf(out, "BSSID: %pM\n", bssid);
4125 out += sprintf(out, "Channel: %d\n", chan);
4126
4127 return out - buf;
4128 }
4129
4130 static DEVICE_ATTR_RO(bssinfo);
4131
4132 #ifdef CONFIG_IPW2100_DEBUG
debug_level_show(struct device_driver * d,char * buf)4133 static ssize_t debug_level_show(struct device_driver *d, char *buf)
4134 {
4135 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4136 }
4137
debug_level_store(struct device_driver * d,const char * buf,size_t count)4138 static ssize_t debug_level_store(struct device_driver *d,
4139 const char *buf, size_t count)
4140 {
4141 u32 val;
4142 int ret;
4143
4144 ret = kstrtou32(buf, 0, &val);
4145 if (ret)
4146 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4147 else
4148 ipw2100_debug_level = val;
4149
4150 return strnlen(buf, count);
4151 }
4152 static DRIVER_ATTR_RW(debug_level);
4153 #endif /* CONFIG_IPW2100_DEBUG */
4154
fatal_error_show(struct device * d,struct device_attribute * attr,char * buf)4155 static ssize_t fatal_error_show(struct device *d,
4156 struct device_attribute *attr, char *buf)
4157 {
4158 struct ipw2100_priv *priv = dev_get_drvdata(d);
4159 char *out = buf;
4160 int i;
4161
4162 if (priv->fatal_error)
4163 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4164 else
4165 out += sprintf(out, "0\n");
4166
4167 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4168 if (!priv->fatal_errors[(priv->fatal_index - i) %
4169 IPW2100_ERROR_QUEUE])
4170 continue;
4171
4172 out += sprintf(out, "%d. 0x%08X\n", i,
4173 priv->fatal_errors[(priv->fatal_index - i) %
4174 IPW2100_ERROR_QUEUE]);
4175 }
4176
4177 return out - buf;
4178 }
4179
fatal_error_store(struct device * d,struct device_attribute * attr,const char * buf,size_t count)4180 static ssize_t fatal_error_store(struct device *d,
4181 struct device_attribute *attr, const char *buf,
4182 size_t count)
4183 {
4184 struct ipw2100_priv *priv = dev_get_drvdata(d);
4185 schedule_reset(priv);
4186 return count;
4187 }
4188
4189 static DEVICE_ATTR_RW(fatal_error);
4190
scan_age_show(struct device * d,struct device_attribute * attr,char * buf)4191 static ssize_t scan_age_show(struct device *d, struct device_attribute *attr,
4192 char *buf)
4193 {
4194 struct ipw2100_priv *priv = dev_get_drvdata(d);
4195 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4196 }
4197
scan_age_store(struct device * d,struct device_attribute * attr,const char * buf,size_t count)4198 static ssize_t scan_age_store(struct device *d, struct device_attribute *attr,
4199 const char *buf, size_t count)
4200 {
4201 struct ipw2100_priv *priv = dev_get_drvdata(d);
4202 struct net_device *dev = priv->net_dev;
4203 unsigned long val;
4204 int ret;
4205
4206 (void)dev; /* kill unused-var warning for debug-only code */
4207
4208 IPW_DEBUG_INFO("enter\n");
4209
4210 ret = kstrtoul(buf, 0, &val);
4211 if (ret) {
4212 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4213 } else {
4214 priv->ieee->scan_age = val;
4215 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4216 }
4217
4218 IPW_DEBUG_INFO("exit\n");
4219 return strnlen(buf, count);
4220 }
4221
4222 static DEVICE_ATTR_RW(scan_age);
4223
rf_kill_show(struct device * d,struct device_attribute * attr,char * buf)4224 static ssize_t rf_kill_show(struct device *d, struct device_attribute *attr,
4225 char *buf)
4226 {
4227 /* 0 - RF kill not enabled
4228 1 - SW based RF kill active (sysfs)
4229 2 - HW based RF kill active
4230 3 - Both HW and SW baed RF kill active */
4231 struct ipw2100_priv *priv = dev_get_drvdata(d);
4232 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4233 (rf_kill_active(priv) ? 0x2 : 0x0);
4234 return sprintf(buf, "%i\n", val);
4235 }
4236
ipw_radio_kill_sw(struct ipw2100_priv * priv,int disable_radio)4237 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4238 {
4239 if ((disable_radio ? 1 : 0) ==
4240 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4241 return 0;
4242
4243 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4244 disable_radio ? "OFF" : "ON");
4245
4246 mutex_lock(&priv->action_mutex);
4247
4248 if (disable_radio) {
4249 priv->status |= STATUS_RF_KILL_SW;
4250 ipw2100_down(priv);
4251 } else {
4252 priv->status &= ~STATUS_RF_KILL_SW;
4253 if (rf_kill_active(priv)) {
4254 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4255 "disabled by HW switch\n");
4256 /* Make sure the RF_KILL check timer is running */
4257 priv->stop_rf_kill = 0;
4258 mod_delayed_work(system_wq, &priv->rf_kill,
4259 round_jiffies_relative(HZ));
4260 } else
4261 schedule_reset(priv);
4262 }
4263
4264 mutex_unlock(&priv->action_mutex);
4265 return 1;
4266 }
4267
rf_kill_store(struct device * d,struct device_attribute * attr,const char * buf,size_t count)4268 static ssize_t rf_kill_store(struct device *d, struct device_attribute *attr,
4269 const char *buf, size_t count)
4270 {
4271 struct ipw2100_priv *priv = dev_get_drvdata(d);
4272 ipw_radio_kill_sw(priv, buf[0] == '1');
4273 return count;
4274 }
4275
4276 static DEVICE_ATTR_RW(rf_kill);
4277
4278 static struct attribute *ipw2100_sysfs_entries[] = {
4279 &dev_attr_hardware.attr,
4280 &dev_attr_registers.attr,
4281 &dev_attr_ordinals.attr,
4282 &dev_attr_pci.attr,
4283 &dev_attr_stats.attr,
4284 &dev_attr_internals.attr,
4285 &dev_attr_bssinfo.attr,
4286 &dev_attr_memory.attr,
4287 &dev_attr_scan_age.attr,
4288 &dev_attr_fatal_error.attr,
4289 &dev_attr_rf_kill.attr,
4290 &dev_attr_cfg.attr,
4291 &dev_attr_status.attr,
4292 &dev_attr_capability.attr,
4293 NULL,
4294 };
4295
4296 static const struct attribute_group ipw2100_attribute_group = {
4297 .attrs = ipw2100_sysfs_entries,
4298 };
4299
status_queue_allocate(struct ipw2100_priv * priv,int entries)4300 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4301 {
4302 struct ipw2100_status_queue *q = &priv->status_queue;
4303
4304 IPW_DEBUG_INFO("enter\n");
4305
4306 q->size = entries * sizeof(struct ipw2100_status);
4307 q->drv = dma_alloc_coherent(&priv->pci_dev->dev, q->size, &q->nic,
4308 GFP_KERNEL);
4309 if (!q->drv) {
4310 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4311 return -ENOMEM;
4312 }
4313
4314 IPW_DEBUG_INFO("exit\n");
4315
4316 return 0;
4317 }
4318
status_queue_free(struct ipw2100_priv * priv)4319 static void status_queue_free(struct ipw2100_priv *priv)
4320 {
4321 IPW_DEBUG_INFO("enter\n");
4322
4323 if (priv->status_queue.drv) {
4324 dma_free_coherent(&priv->pci_dev->dev,
4325 priv->status_queue.size,
4326 priv->status_queue.drv,
4327 priv->status_queue.nic);
4328 priv->status_queue.drv = NULL;
4329 }
4330
4331 IPW_DEBUG_INFO("exit\n");
4332 }
4333
bd_queue_allocate(struct ipw2100_priv * priv,struct ipw2100_bd_queue * q,int entries)4334 static int bd_queue_allocate(struct ipw2100_priv *priv,
4335 struct ipw2100_bd_queue *q, int entries)
4336 {
4337 IPW_DEBUG_INFO("enter\n");
4338
4339 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4340
4341 q->entries = entries;
4342 q->size = entries * sizeof(struct ipw2100_bd);
4343 q->drv = dma_alloc_coherent(&priv->pci_dev->dev, q->size, &q->nic,
4344 GFP_KERNEL);
4345 if (!q->drv) {
4346 IPW_DEBUG_INFO
4347 ("can't allocate shared memory for buffer descriptors\n");
4348 return -ENOMEM;
4349 }
4350
4351 IPW_DEBUG_INFO("exit\n");
4352
4353 return 0;
4354 }
4355
bd_queue_free(struct ipw2100_priv * priv,struct ipw2100_bd_queue * q)4356 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4357 {
4358 IPW_DEBUG_INFO("enter\n");
4359
4360 if (!q)
4361 return;
4362
4363 if (q->drv) {
4364 dma_free_coherent(&priv->pci_dev->dev, q->size, q->drv,
4365 q->nic);
4366 q->drv = NULL;
4367 }
4368
4369 IPW_DEBUG_INFO("exit\n");
4370 }
4371
bd_queue_initialize(struct ipw2100_priv * priv,struct ipw2100_bd_queue * q,u32 base,u32 size,u32 r,u32 w)4372 static void bd_queue_initialize(struct ipw2100_priv *priv,
4373 struct ipw2100_bd_queue *q, u32 base, u32 size,
4374 u32 r, u32 w)
4375 {
4376 IPW_DEBUG_INFO("enter\n");
4377
4378 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4379 (u32) q->nic);
4380
4381 write_register(priv->net_dev, base, q->nic);
4382 write_register(priv->net_dev, size, q->entries);
4383 write_register(priv->net_dev, r, q->oldest);
4384 write_register(priv->net_dev, w, q->next);
4385
4386 IPW_DEBUG_INFO("exit\n");
4387 }
4388
ipw2100_kill_works(struct ipw2100_priv * priv)4389 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4390 {
4391 priv->stop_rf_kill = 1;
4392 priv->stop_hang_check = 1;
4393 cancel_delayed_work_sync(&priv->reset_work);
4394 cancel_delayed_work_sync(&priv->security_work);
4395 cancel_delayed_work_sync(&priv->wx_event_work);
4396 cancel_delayed_work_sync(&priv->hang_check);
4397 cancel_delayed_work_sync(&priv->rf_kill);
4398 cancel_delayed_work_sync(&priv->scan_event);
4399 }
4400
ipw2100_tx_allocate(struct ipw2100_priv * priv)4401 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4402 {
4403 int i, j, err;
4404 void *v;
4405 dma_addr_t p;
4406
4407 IPW_DEBUG_INFO("enter\n");
4408
4409 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4410 if (err) {
4411 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4412 priv->net_dev->name);
4413 return err;
4414 }
4415
4416 priv->tx_buffers = kmalloc_array(TX_PENDED_QUEUE_LENGTH,
4417 sizeof(struct ipw2100_tx_packet),
4418 GFP_KERNEL);
4419 if (!priv->tx_buffers) {
4420 bd_queue_free(priv, &priv->tx_queue);
4421 return -ENOMEM;
4422 }
4423
4424 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4425 v = dma_alloc_coherent(&priv->pci_dev->dev,
4426 sizeof(struct ipw2100_data_header), &p,
4427 GFP_KERNEL);
4428 if (!v) {
4429 printk(KERN_ERR DRV_NAME
4430 ": %s: PCI alloc failed for tx " "buffers.\n",
4431 priv->net_dev->name);
4432 err = -ENOMEM;
4433 break;
4434 }
4435
4436 priv->tx_buffers[i].type = DATA;
4437 priv->tx_buffers[i].info.d_struct.data =
4438 (struct ipw2100_data_header *)v;
4439 priv->tx_buffers[i].info.d_struct.data_phys = p;
4440 priv->tx_buffers[i].info.d_struct.txb = NULL;
4441 }
4442
4443 if (i == TX_PENDED_QUEUE_LENGTH)
4444 return 0;
4445
4446 for (j = 0; j < i; j++) {
4447 dma_free_coherent(&priv->pci_dev->dev,
4448 sizeof(struct ipw2100_data_header),
4449 priv->tx_buffers[j].info.d_struct.data,
4450 priv->tx_buffers[j].info.d_struct.data_phys);
4451 }
4452
4453 kfree(priv->tx_buffers);
4454 priv->tx_buffers = NULL;
4455
4456 return err;
4457 }
4458
ipw2100_tx_initialize(struct ipw2100_priv * priv)4459 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4460 {
4461 int i;
4462
4463 IPW_DEBUG_INFO("enter\n");
4464
4465 /*
4466 * reinitialize packet info lists
4467 */
4468 INIT_LIST_HEAD(&priv->fw_pend_list);
4469 INIT_STAT(&priv->fw_pend_stat);
4470
4471 /*
4472 * reinitialize lists
4473 */
4474 INIT_LIST_HEAD(&priv->tx_pend_list);
4475 INIT_LIST_HEAD(&priv->tx_free_list);
4476 INIT_STAT(&priv->tx_pend_stat);
4477 INIT_STAT(&priv->tx_free_stat);
4478
4479 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4480 /* We simply drop any SKBs that have been queued for
4481 * transmit */
4482 if (priv->tx_buffers[i].info.d_struct.txb) {
4483 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4484 txb);
4485 priv->tx_buffers[i].info.d_struct.txb = NULL;
4486 }
4487
4488 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4489 }
4490
4491 SET_STAT(&priv->tx_free_stat, i);
4492
4493 priv->tx_queue.oldest = 0;
4494 priv->tx_queue.available = priv->tx_queue.entries;
4495 priv->tx_queue.next = 0;
4496 INIT_STAT(&priv->txq_stat);
4497 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4498
4499 bd_queue_initialize(priv, &priv->tx_queue,
4500 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4501 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4502 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4503 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4504
4505 IPW_DEBUG_INFO("exit\n");
4506
4507 }
4508
ipw2100_tx_free(struct ipw2100_priv * priv)4509 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4510 {
4511 int i;
4512
4513 IPW_DEBUG_INFO("enter\n");
4514
4515 bd_queue_free(priv, &priv->tx_queue);
4516
4517 if (!priv->tx_buffers)
4518 return;
4519
4520 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4521 if (priv->tx_buffers[i].info.d_struct.txb) {
4522 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4523 txb);
4524 priv->tx_buffers[i].info.d_struct.txb = NULL;
4525 }
4526 if (priv->tx_buffers[i].info.d_struct.data)
4527 dma_free_coherent(&priv->pci_dev->dev,
4528 sizeof(struct ipw2100_data_header),
4529 priv->tx_buffers[i].info.d_struct.data,
4530 priv->tx_buffers[i].info.d_struct.data_phys);
4531 }
4532
4533 kfree(priv->tx_buffers);
4534 priv->tx_buffers = NULL;
4535
4536 IPW_DEBUG_INFO("exit\n");
4537 }
4538
ipw2100_rx_allocate(struct ipw2100_priv * priv)4539 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4540 {
4541 int i, j, err = -EINVAL;
4542
4543 IPW_DEBUG_INFO("enter\n");
4544
4545 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4546 if (err) {
4547 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4548 return err;
4549 }
4550
4551 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4552 if (err) {
4553 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4554 bd_queue_free(priv, &priv->rx_queue);
4555 return err;
4556 }
4557
4558 /*
4559 * allocate packets
4560 */
4561 priv->rx_buffers = kmalloc_array(RX_QUEUE_LENGTH,
4562 sizeof(struct ipw2100_rx_packet),
4563 GFP_KERNEL);
4564 if (!priv->rx_buffers) {
4565 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4566
4567 bd_queue_free(priv, &priv->rx_queue);
4568
4569 status_queue_free(priv);
4570
4571 return -ENOMEM;
4572 }
4573
4574 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4575 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4576
4577 err = ipw2100_alloc_skb(priv, packet);
4578 if (unlikely(err)) {
4579 err = -ENOMEM;
4580 break;
4581 }
4582
4583 /* The BD holds the cache aligned address */
4584 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4585 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4586 priv->status_queue.drv[i].status_fields = 0;
4587 }
4588
4589 if (i == RX_QUEUE_LENGTH)
4590 return 0;
4591
4592 for (j = 0; j < i; j++) {
4593 dma_unmap_single(&priv->pci_dev->dev,
4594 priv->rx_buffers[j].dma_addr,
4595 sizeof(struct ipw2100_rx_packet),
4596 DMA_FROM_DEVICE);
4597 dev_kfree_skb(priv->rx_buffers[j].skb);
4598 }
4599
4600 kfree(priv->rx_buffers);
4601 priv->rx_buffers = NULL;
4602
4603 bd_queue_free(priv, &priv->rx_queue);
4604
4605 status_queue_free(priv);
4606
4607 return err;
4608 }
4609
ipw2100_rx_initialize(struct ipw2100_priv * priv)4610 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4611 {
4612 IPW_DEBUG_INFO("enter\n");
4613
4614 priv->rx_queue.oldest = 0;
4615 priv->rx_queue.available = priv->rx_queue.entries - 1;
4616 priv->rx_queue.next = priv->rx_queue.entries - 1;
4617
4618 INIT_STAT(&priv->rxq_stat);
4619 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4620
4621 bd_queue_initialize(priv, &priv->rx_queue,
4622 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4623 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4624 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4625 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4626
4627 /* set up the status queue */
4628 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4629 priv->status_queue.nic);
4630
4631 IPW_DEBUG_INFO("exit\n");
4632 }
4633
ipw2100_rx_free(struct ipw2100_priv * priv)4634 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4635 {
4636 int i;
4637
4638 IPW_DEBUG_INFO("enter\n");
4639
4640 bd_queue_free(priv, &priv->rx_queue);
4641 status_queue_free(priv);
4642
4643 if (!priv->rx_buffers)
4644 return;
4645
4646 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4647 if (priv->rx_buffers[i].rxp) {
4648 dma_unmap_single(&priv->pci_dev->dev,
4649 priv->rx_buffers[i].dma_addr,
4650 sizeof(struct ipw2100_rx),
4651 DMA_FROM_DEVICE);
4652 dev_kfree_skb(priv->rx_buffers[i].skb);
4653 }
4654 }
4655
4656 kfree(priv->rx_buffers);
4657 priv->rx_buffers = NULL;
4658
4659 IPW_DEBUG_INFO("exit\n");
4660 }
4661
ipw2100_read_mac_address(struct ipw2100_priv * priv)4662 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4663 {
4664 u32 length = ETH_ALEN;
4665 u8 addr[ETH_ALEN];
4666
4667 int err;
4668
4669 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4670 if (err) {
4671 IPW_DEBUG_INFO("MAC address read failed\n");
4672 return -EIO;
4673 }
4674
4675 eth_hw_addr_set(priv->net_dev, addr);
4676 IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4677
4678 return 0;
4679 }
4680
4681 /********************************************************************
4682 *
4683 * Firmware Commands
4684 *
4685 ********************************************************************/
4686
ipw2100_set_mac_address(struct ipw2100_priv * priv,int batch_mode)4687 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4688 {
4689 struct host_command cmd = {
4690 .host_command = ADAPTER_ADDRESS,
4691 .host_command_sequence = 0,
4692 .host_command_length = ETH_ALEN
4693 };
4694 int err;
4695
4696 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4697
4698 IPW_DEBUG_INFO("enter\n");
4699
4700 if (priv->config & CFG_CUSTOM_MAC) {
4701 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4702 eth_hw_addr_set(priv->net_dev, priv->mac_addr);
4703 } else
4704 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4705 ETH_ALEN);
4706
4707 err = ipw2100_hw_send_command(priv, &cmd);
4708
4709 IPW_DEBUG_INFO("exit\n");
4710 return err;
4711 }
4712
ipw2100_set_port_type(struct ipw2100_priv * priv,u32 port_type,int batch_mode)4713 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4714 int batch_mode)
4715 {
4716 struct host_command cmd = {
4717 .host_command = PORT_TYPE,
4718 .host_command_sequence = 0,
4719 .host_command_length = sizeof(u32)
4720 };
4721 int err;
4722
4723 switch (port_type) {
4724 case IW_MODE_INFRA:
4725 cmd.host_command_parameters[0] = IPW_BSS;
4726 break;
4727 case IW_MODE_ADHOC:
4728 cmd.host_command_parameters[0] = IPW_IBSS;
4729 break;
4730 }
4731
4732 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4733 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4734
4735 if (!batch_mode) {
4736 err = ipw2100_disable_adapter(priv);
4737 if (err) {
4738 printk(KERN_ERR DRV_NAME
4739 ": %s: Could not disable adapter %d\n",
4740 priv->net_dev->name, err);
4741 return err;
4742 }
4743 }
4744
4745 /* send cmd to firmware */
4746 err = ipw2100_hw_send_command(priv, &cmd);
4747
4748 if (!batch_mode)
4749 ipw2100_enable_adapter(priv);
4750
4751 return err;
4752 }
4753
ipw2100_set_channel(struct ipw2100_priv * priv,u32 channel,int batch_mode)4754 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4755 int batch_mode)
4756 {
4757 struct host_command cmd = {
4758 .host_command = CHANNEL,
4759 .host_command_sequence = 0,
4760 .host_command_length = sizeof(u32)
4761 };
4762 int err;
4763
4764 cmd.host_command_parameters[0] = channel;
4765
4766 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4767
4768 /* If BSS then we don't support channel selection */
4769 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4770 return 0;
4771
4772 if ((channel != 0) &&
4773 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4774 return -EINVAL;
4775
4776 if (!batch_mode) {
4777 err = ipw2100_disable_adapter(priv);
4778 if (err)
4779 return err;
4780 }
4781
4782 err = ipw2100_hw_send_command(priv, &cmd);
4783 if (err) {
4784 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4785 return err;
4786 }
4787
4788 if (channel)
4789 priv->config |= CFG_STATIC_CHANNEL;
4790 else
4791 priv->config &= ~CFG_STATIC_CHANNEL;
4792
4793 priv->channel = channel;
4794
4795 if (!batch_mode) {
4796 err = ipw2100_enable_adapter(priv);
4797 if (err)
4798 return err;
4799 }
4800
4801 return 0;
4802 }
4803
ipw2100_system_config(struct ipw2100_priv * priv,int batch_mode)4804 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4805 {
4806 struct host_command cmd = {
4807 .host_command = SYSTEM_CONFIG,
4808 .host_command_sequence = 0,
4809 .host_command_length = 12,
4810 };
4811 u32 ibss_mask, len = sizeof(u32);
4812 int err;
4813
4814 /* Set system configuration */
4815
4816 if (!batch_mode) {
4817 err = ipw2100_disable_adapter(priv);
4818 if (err)
4819 return err;
4820 }
4821
4822 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4823 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4824
4825 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4826 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4827
4828 if (!(priv->config & CFG_LONG_PREAMBLE))
4829 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4830
4831 err = ipw2100_get_ordinal(priv,
4832 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4833 &ibss_mask, &len);
4834 if (err)
4835 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4836
4837 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4838 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4839
4840 /* 11b only */
4841 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4842
4843 err = ipw2100_hw_send_command(priv, &cmd);
4844 if (err)
4845 return err;
4846
4847 /* If IPv6 is configured in the kernel then we don't want to filter out all
4848 * of the multicast packets as IPv6 needs some. */
4849 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4850 cmd.host_command = ADD_MULTICAST;
4851 cmd.host_command_sequence = 0;
4852 cmd.host_command_length = 0;
4853
4854 ipw2100_hw_send_command(priv, &cmd);
4855 #endif
4856 if (!batch_mode) {
4857 err = ipw2100_enable_adapter(priv);
4858 if (err)
4859 return err;
4860 }
4861
4862 return 0;
4863 }
4864
ipw2100_set_tx_rates(struct ipw2100_priv * priv,u32 rate,int batch_mode)4865 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4866 int batch_mode)
4867 {
4868 struct host_command cmd = {
4869 .host_command = BASIC_TX_RATES,
4870 .host_command_sequence = 0,
4871 .host_command_length = 4
4872 };
4873 int err;
4874
4875 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4876
4877 if (!batch_mode) {
4878 err = ipw2100_disable_adapter(priv);
4879 if (err)
4880 return err;
4881 }
4882
4883 /* Set BASIC TX Rate first */
4884 ipw2100_hw_send_command(priv, &cmd);
4885
4886 /* Set TX Rate */
4887 cmd.host_command = TX_RATES;
4888 ipw2100_hw_send_command(priv, &cmd);
4889
4890 /* Set MSDU TX Rate */
4891 cmd.host_command = MSDU_TX_RATES;
4892 ipw2100_hw_send_command(priv, &cmd);
4893
4894 if (!batch_mode) {
4895 err = ipw2100_enable_adapter(priv);
4896 if (err)
4897 return err;
4898 }
4899
4900 priv->tx_rates = rate;
4901
4902 return 0;
4903 }
4904
ipw2100_set_power_mode(struct ipw2100_priv * priv,int power_level)4905 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4906 {
4907 struct host_command cmd = {
4908 .host_command = POWER_MODE,
4909 .host_command_sequence = 0,
4910 .host_command_length = 4
4911 };
4912 int err;
4913
4914 cmd.host_command_parameters[0] = power_level;
4915
4916 err = ipw2100_hw_send_command(priv, &cmd);
4917 if (err)
4918 return err;
4919
4920 if (power_level == IPW_POWER_MODE_CAM)
4921 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4922 else
4923 priv->power_mode = IPW_POWER_ENABLED | power_level;
4924
4925 #ifdef IPW2100_TX_POWER
4926 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4927 /* Set beacon interval */
4928 cmd.host_command = TX_POWER_INDEX;
4929 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4930
4931 err = ipw2100_hw_send_command(priv, &cmd);
4932 if (err)
4933 return err;
4934 }
4935 #endif
4936
4937 return 0;
4938 }
4939
ipw2100_set_rts_threshold(struct ipw2100_priv * priv,u32 threshold)4940 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4941 {
4942 struct host_command cmd = {
4943 .host_command = RTS_THRESHOLD,
4944 .host_command_sequence = 0,
4945 .host_command_length = 4
4946 };
4947 int err;
4948
4949 if (threshold & RTS_DISABLED)
4950 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4951 else
4952 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4953
4954 err = ipw2100_hw_send_command(priv, &cmd);
4955 if (err)
4956 return err;
4957
4958 priv->rts_threshold = threshold;
4959
4960 return 0;
4961 }
4962
4963 #if 0
4964 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4965 u32 threshold, int batch_mode)
4966 {
4967 struct host_command cmd = {
4968 .host_command = FRAG_THRESHOLD,
4969 .host_command_sequence = 0,
4970 .host_command_length = 4,
4971 .host_command_parameters[0] = 0,
4972 };
4973 int err;
4974
4975 if (!batch_mode) {
4976 err = ipw2100_disable_adapter(priv);
4977 if (err)
4978 return err;
4979 }
4980
4981 if (threshold == 0)
4982 threshold = DEFAULT_FRAG_THRESHOLD;
4983 else {
4984 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4985 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4986 }
4987
4988 cmd.host_command_parameters[0] = threshold;
4989
4990 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4991
4992 err = ipw2100_hw_send_command(priv, &cmd);
4993
4994 if (!batch_mode)
4995 ipw2100_enable_adapter(priv);
4996
4997 if (!err)
4998 priv->frag_threshold = threshold;
4999
5000 return err;
5001 }
5002 #endif
5003
ipw2100_set_short_retry(struct ipw2100_priv * priv,u32 retry)5004 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5005 {
5006 struct host_command cmd = {
5007 .host_command = SHORT_RETRY_LIMIT,
5008 .host_command_sequence = 0,
5009 .host_command_length = 4
5010 };
5011 int err;
5012
5013 cmd.host_command_parameters[0] = retry;
5014
5015 err = ipw2100_hw_send_command(priv, &cmd);
5016 if (err)
5017 return err;
5018
5019 priv->short_retry_limit = retry;
5020
5021 return 0;
5022 }
5023
ipw2100_set_long_retry(struct ipw2100_priv * priv,u32 retry)5024 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5025 {
5026 struct host_command cmd = {
5027 .host_command = LONG_RETRY_LIMIT,
5028 .host_command_sequence = 0,
5029 .host_command_length = 4
5030 };
5031 int err;
5032
5033 cmd.host_command_parameters[0] = retry;
5034
5035 err = ipw2100_hw_send_command(priv, &cmd);
5036 if (err)
5037 return err;
5038
5039 priv->long_retry_limit = retry;
5040
5041 return 0;
5042 }
5043
ipw2100_set_mandatory_bssid(struct ipw2100_priv * priv,u8 * bssid,int batch_mode)5044 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5045 int batch_mode)
5046 {
5047 struct host_command cmd = {
5048 .host_command = MANDATORY_BSSID,
5049 .host_command_sequence = 0,
5050 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5051 };
5052 int err;
5053
5054 #ifdef CONFIG_IPW2100_DEBUG
5055 if (bssid != NULL)
5056 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5057 else
5058 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5059 #endif
5060 /* if BSSID is empty then we disable mandatory bssid mode */
5061 if (bssid != NULL)
5062 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5063
5064 if (!batch_mode) {
5065 err = ipw2100_disable_adapter(priv);
5066 if (err)
5067 return err;
5068 }
5069
5070 err = ipw2100_hw_send_command(priv, &cmd);
5071
5072 if (!batch_mode)
5073 ipw2100_enable_adapter(priv);
5074
5075 return err;
5076 }
5077
ipw2100_disassociate_bssid(struct ipw2100_priv * priv)5078 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5079 {
5080 struct host_command cmd = {
5081 .host_command = DISASSOCIATION_BSSID,
5082 .host_command_sequence = 0,
5083 .host_command_length = ETH_ALEN
5084 };
5085 int err;
5086
5087 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5088
5089 /* The Firmware currently ignores the BSSID and just disassociates from
5090 * the currently associated AP -- but in the off chance that a future
5091 * firmware does use the BSSID provided here, we go ahead and try and
5092 * set it to the currently associated AP's BSSID */
5093 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5094
5095 err = ipw2100_hw_send_command(priv, &cmd);
5096
5097 return err;
5098 }
5099
5100 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5101 struct ipw2100_wpa_assoc_frame *, int)
5102 __attribute__ ((unused));
5103
ipw2100_set_wpa_ie(struct ipw2100_priv * priv,struct ipw2100_wpa_assoc_frame * wpa_frame,int batch_mode)5104 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5105 struct ipw2100_wpa_assoc_frame *wpa_frame,
5106 int batch_mode)
5107 {
5108 struct host_command cmd = {
5109 .host_command = SET_WPA_IE,
5110 .host_command_sequence = 0,
5111 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5112 };
5113 int err;
5114
5115 IPW_DEBUG_HC("SET_WPA_IE\n");
5116
5117 if (!batch_mode) {
5118 err = ipw2100_disable_adapter(priv);
5119 if (err)
5120 return err;
5121 }
5122
5123 memcpy(cmd.host_command_parameters, wpa_frame,
5124 sizeof(struct ipw2100_wpa_assoc_frame));
5125
5126 err = ipw2100_hw_send_command(priv, &cmd);
5127
5128 if (!batch_mode) {
5129 if (ipw2100_enable_adapter(priv))
5130 err = -EIO;
5131 }
5132
5133 return err;
5134 }
5135
5136 struct security_info_params {
5137 u32 allowed_ciphers;
5138 u16 version;
5139 u8 auth_mode;
5140 u8 replay_counters_number;
5141 u8 unicast_using_group;
5142 } __packed;
5143
ipw2100_set_security_information(struct ipw2100_priv * priv,int auth_mode,int security_level,int unicast_using_group,int batch_mode)5144 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5145 int auth_mode,
5146 int security_level,
5147 int unicast_using_group,
5148 int batch_mode)
5149 {
5150 struct host_command cmd = {
5151 .host_command = SET_SECURITY_INFORMATION,
5152 .host_command_sequence = 0,
5153 .host_command_length = sizeof(struct security_info_params)
5154 };
5155 struct security_info_params *security =
5156 (struct security_info_params *)&cmd.host_command_parameters;
5157 int err;
5158 memset(security, 0, sizeof(*security));
5159
5160 /* If shared key AP authentication is turned on, then we need to
5161 * configure the firmware to try and use it.
5162 *
5163 * Actual data encryption/decryption is handled by the host. */
5164 security->auth_mode = auth_mode;
5165 security->unicast_using_group = unicast_using_group;
5166
5167 switch (security_level) {
5168 default:
5169 case SEC_LEVEL_0:
5170 security->allowed_ciphers = IPW_NONE_CIPHER;
5171 break;
5172 case SEC_LEVEL_1:
5173 security->allowed_ciphers = IPW_WEP40_CIPHER |
5174 IPW_WEP104_CIPHER;
5175 break;
5176 case SEC_LEVEL_2:
5177 security->allowed_ciphers = IPW_WEP40_CIPHER |
5178 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5179 break;
5180 case SEC_LEVEL_2_CKIP:
5181 security->allowed_ciphers = IPW_WEP40_CIPHER |
5182 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5183 break;
5184 case SEC_LEVEL_3:
5185 security->allowed_ciphers = IPW_WEP40_CIPHER |
5186 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5187 break;
5188 }
5189
5190 IPW_DEBUG_HC
5191 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5192 security->auth_mode, security->allowed_ciphers, security_level);
5193
5194 security->replay_counters_number = 0;
5195
5196 if (!batch_mode) {
5197 err = ipw2100_disable_adapter(priv);
5198 if (err)
5199 return err;
5200 }
5201
5202 err = ipw2100_hw_send_command(priv, &cmd);
5203
5204 if (!batch_mode)
5205 ipw2100_enable_adapter(priv);
5206
5207 return err;
5208 }
5209
ipw2100_set_tx_power(struct ipw2100_priv * priv,u32 tx_power)5210 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5211 {
5212 struct host_command cmd = {
5213 .host_command = TX_POWER_INDEX,
5214 .host_command_sequence = 0,
5215 .host_command_length = 4
5216 };
5217 int err = 0;
5218 u32 tmp = tx_power;
5219
5220 if (tx_power != IPW_TX_POWER_DEFAULT)
5221 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5222 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5223
5224 cmd.host_command_parameters[0] = tmp;
5225
5226 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5227 err = ipw2100_hw_send_command(priv, &cmd);
5228 if (!err)
5229 priv->tx_power = tx_power;
5230
5231 return 0;
5232 }
5233
ipw2100_set_ibss_beacon_interval(struct ipw2100_priv * priv,u32 interval,int batch_mode)5234 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5235 u32 interval, int batch_mode)
5236 {
5237 struct host_command cmd = {
5238 .host_command = BEACON_INTERVAL,
5239 .host_command_sequence = 0,
5240 .host_command_length = 4
5241 };
5242 int err;
5243
5244 cmd.host_command_parameters[0] = interval;
5245
5246 IPW_DEBUG_INFO("enter\n");
5247
5248 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5249 if (!batch_mode) {
5250 err = ipw2100_disable_adapter(priv);
5251 if (err)
5252 return err;
5253 }
5254
5255 ipw2100_hw_send_command(priv, &cmd);
5256
5257 if (!batch_mode) {
5258 err = ipw2100_enable_adapter(priv);
5259 if (err)
5260 return err;
5261 }
5262 }
5263
5264 IPW_DEBUG_INFO("exit\n");
5265
5266 return 0;
5267 }
5268
ipw2100_queues_initialize(struct ipw2100_priv * priv)5269 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5270 {
5271 ipw2100_tx_initialize(priv);
5272 ipw2100_rx_initialize(priv);
5273 ipw2100_msg_initialize(priv);
5274 }
5275
ipw2100_queues_free(struct ipw2100_priv * priv)5276 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5277 {
5278 ipw2100_tx_free(priv);
5279 ipw2100_rx_free(priv);
5280 ipw2100_msg_free(priv);
5281 }
5282
ipw2100_queues_allocate(struct ipw2100_priv * priv)5283 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5284 {
5285 if (ipw2100_tx_allocate(priv) ||
5286 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5287 goto fail;
5288
5289 return 0;
5290
5291 fail:
5292 ipw2100_tx_free(priv);
5293 ipw2100_rx_free(priv);
5294 ipw2100_msg_free(priv);
5295 return -ENOMEM;
5296 }
5297
5298 #define IPW_PRIVACY_CAPABLE 0x0008
5299
ipw2100_set_wep_flags(struct ipw2100_priv * priv,u32 flags,int batch_mode)5300 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5301 int batch_mode)
5302 {
5303 struct host_command cmd = {
5304 .host_command = WEP_FLAGS,
5305 .host_command_sequence = 0,
5306 .host_command_length = 4
5307 };
5308 int err;
5309
5310 cmd.host_command_parameters[0] = flags;
5311
5312 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5313
5314 if (!batch_mode) {
5315 err = ipw2100_disable_adapter(priv);
5316 if (err) {
5317 printk(KERN_ERR DRV_NAME
5318 ": %s: Could not disable adapter %d\n",
5319 priv->net_dev->name, err);
5320 return err;
5321 }
5322 }
5323
5324 /* send cmd to firmware */
5325 err = ipw2100_hw_send_command(priv, &cmd);
5326
5327 if (!batch_mode)
5328 ipw2100_enable_adapter(priv);
5329
5330 return err;
5331 }
5332
5333 struct ipw2100_wep_key {
5334 u8 idx;
5335 u8 len;
5336 u8 key[13];
5337 };
5338
5339 /* Macros to ease up priting WEP keys */
5340 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5341 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5342 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5343 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5344
5345 /**
5346 * ipw2100_set_key() - Set a the wep key
5347 *
5348 * @priv: struct to work on
5349 * @idx: index of the key we want to set
5350 * @key: ptr to the key data to set
5351 * @len: length of the buffer at @key
5352 * @batch_mode: FIXME perform the operation in batch mode, not
5353 * disabling the device.
5354 *
5355 * @returns 0 if OK, < 0 errno code on error.
5356 *
5357 * Fill out a command structure with the new wep key, length an
5358 * index and send it down the wire.
5359 */
ipw2100_set_key(struct ipw2100_priv * priv,int idx,char * key,int len,int batch_mode)5360 static int ipw2100_set_key(struct ipw2100_priv *priv,
5361 int idx, char *key, int len, int batch_mode)
5362 {
5363 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5364 struct host_command cmd = {
5365 .host_command = WEP_KEY_INFO,
5366 .host_command_sequence = 0,
5367 .host_command_length = sizeof(struct ipw2100_wep_key),
5368 };
5369 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5370 int err;
5371
5372 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5373 idx, keylen, len);
5374
5375 /* NOTE: We don't check cached values in case the firmware was reset
5376 * or some other problem is occurring. If the user is setting the key,
5377 * then we push the change */
5378
5379 wep_key->idx = idx;
5380 wep_key->len = keylen;
5381
5382 if (keylen) {
5383 memcpy(wep_key->key, key, len);
5384 memset(wep_key->key + len, 0, keylen - len);
5385 }
5386
5387 /* Will be optimized out on debug not being configured in */
5388 if (keylen == 0)
5389 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5390 priv->net_dev->name, wep_key->idx);
5391 else if (keylen == 5)
5392 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5393 priv->net_dev->name, wep_key->idx, wep_key->len,
5394 WEP_STR_64(wep_key->key));
5395 else
5396 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5397 "\n",
5398 priv->net_dev->name, wep_key->idx, wep_key->len,
5399 WEP_STR_128(wep_key->key));
5400
5401 if (!batch_mode) {
5402 err = ipw2100_disable_adapter(priv);
5403 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5404 if (err) {
5405 printk(KERN_ERR DRV_NAME
5406 ": %s: Could not disable adapter %d\n",
5407 priv->net_dev->name, err);
5408 return err;
5409 }
5410 }
5411
5412 /* send cmd to firmware */
5413 err = ipw2100_hw_send_command(priv, &cmd);
5414
5415 if (!batch_mode) {
5416 int err2 = ipw2100_enable_adapter(priv);
5417 if (err == 0)
5418 err = err2;
5419 }
5420 return err;
5421 }
5422
ipw2100_set_key_index(struct ipw2100_priv * priv,int idx,int batch_mode)5423 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5424 int idx, int batch_mode)
5425 {
5426 struct host_command cmd = {
5427 .host_command = WEP_KEY_INDEX,
5428 .host_command_sequence = 0,
5429 .host_command_length = 4,
5430 .host_command_parameters = {idx},
5431 };
5432 int err;
5433
5434 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5435
5436 if (idx < 0 || idx > 3)
5437 return -EINVAL;
5438
5439 if (!batch_mode) {
5440 err = ipw2100_disable_adapter(priv);
5441 if (err) {
5442 printk(KERN_ERR DRV_NAME
5443 ": %s: Could not disable adapter %d\n",
5444 priv->net_dev->name, err);
5445 return err;
5446 }
5447 }
5448
5449 /* send cmd to firmware */
5450 err = ipw2100_hw_send_command(priv, &cmd);
5451
5452 if (!batch_mode)
5453 ipw2100_enable_adapter(priv);
5454
5455 return err;
5456 }
5457
ipw2100_configure_security(struct ipw2100_priv * priv,int batch_mode)5458 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5459 {
5460 int i, err, auth_mode, sec_level, use_group;
5461
5462 if (!(priv->status & STATUS_RUNNING))
5463 return 0;
5464
5465 if (!batch_mode) {
5466 err = ipw2100_disable_adapter(priv);
5467 if (err)
5468 return err;
5469 }
5470
5471 if (!priv->ieee->sec.enabled) {
5472 err =
5473 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5474 SEC_LEVEL_0, 0, 1);
5475 } else {
5476 auth_mode = IPW_AUTH_OPEN;
5477 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5478 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5479 auth_mode = IPW_AUTH_SHARED;
5480 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5481 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5482 }
5483
5484 sec_level = SEC_LEVEL_0;
5485 if (priv->ieee->sec.flags & SEC_LEVEL)
5486 sec_level = priv->ieee->sec.level;
5487
5488 use_group = 0;
5489 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5490 use_group = priv->ieee->sec.unicast_uses_group;
5491
5492 err =
5493 ipw2100_set_security_information(priv, auth_mode, sec_level,
5494 use_group, 1);
5495 }
5496
5497 if (err)
5498 goto exit;
5499
5500 if (priv->ieee->sec.enabled) {
5501 for (i = 0; i < 4; i++) {
5502 if (!(priv->ieee->sec.flags & (1 << i))) {
5503 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5504 priv->ieee->sec.key_sizes[i] = 0;
5505 } else {
5506 err = ipw2100_set_key(priv, i,
5507 priv->ieee->sec.keys[i],
5508 priv->ieee->sec.
5509 key_sizes[i], 1);
5510 if (err)
5511 goto exit;
5512 }
5513 }
5514
5515 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5516 }
5517
5518 /* Always enable privacy so the Host can filter WEP packets if
5519 * encrypted data is sent up */
5520 err =
5521 ipw2100_set_wep_flags(priv,
5522 priv->ieee->sec.
5523 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5524 if (err)
5525 goto exit;
5526
5527 priv->status &= ~STATUS_SECURITY_UPDATED;
5528
5529 exit:
5530 if (!batch_mode)
5531 ipw2100_enable_adapter(priv);
5532
5533 return err;
5534 }
5535
ipw2100_security_work(struct work_struct * work)5536 static void ipw2100_security_work(struct work_struct *work)
5537 {
5538 struct ipw2100_priv *priv =
5539 container_of(work, struct ipw2100_priv, security_work.work);
5540
5541 /* If we happen to have reconnected before we get a chance to
5542 * process this, then update the security settings--which causes
5543 * a disassociation to occur */
5544 if (!(priv->status & STATUS_ASSOCIATED) &&
5545 priv->status & STATUS_SECURITY_UPDATED)
5546 ipw2100_configure_security(priv, 0);
5547 }
5548
shim__set_security(struct net_device * dev,struct libipw_security * sec)5549 static void shim__set_security(struct net_device *dev,
5550 struct libipw_security *sec)
5551 {
5552 struct ipw2100_priv *priv = libipw_priv(dev);
5553 int i;
5554
5555 mutex_lock(&priv->action_mutex);
5556 if (!(priv->status & STATUS_INITIALIZED))
5557 goto done;
5558
5559 for (i = 0; i < 4; i++) {
5560 if (sec->flags & (1 << i)) {
5561 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5562 if (sec->key_sizes[i] == 0)
5563 priv->ieee->sec.flags &= ~(1 << i);
5564 else
5565 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5566 sec->key_sizes[i]);
5567 if (sec->level == SEC_LEVEL_1) {
5568 priv->ieee->sec.flags |= (1 << i);
5569 priv->status |= STATUS_SECURITY_UPDATED;
5570 } else
5571 priv->ieee->sec.flags &= ~(1 << i);
5572 }
5573 }
5574
5575 if ((sec->flags & SEC_ACTIVE_KEY) &&
5576 priv->ieee->sec.active_key != sec->active_key) {
5577 priv->ieee->sec.active_key = sec->active_key;
5578 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5579 priv->status |= STATUS_SECURITY_UPDATED;
5580 }
5581
5582 if ((sec->flags & SEC_AUTH_MODE) &&
5583 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5584 priv->ieee->sec.auth_mode = sec->auth_mode;
5585 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5586 priv->status |= STATUS_SECURITY_UPDATED;
5587 }
5588
5589 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5590 priv->ieee->sec.flags |= SEC_ENABLED;
5591 priv->ieee->sec.enabled = sec->enabled;
5592 priv->status |= STATUS_SECURITY_UPDATED;
5593 }
5594
5595 if (sec->flags & SEC_ENCRYPT)
5596 priv->ieee->sec.encrypt = sec->encrypt;
5597
5598 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5599 priv->ieee->sec.level = sec->level;
5600 priv->ieee->sec.flags |= SEC_LEVEL;
5601 priv->status |= STATUS_SECURITY_UPDATED;
5602 }
5603
5604 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5605 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5606 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5607 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5608 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5609 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5610 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5611 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5612 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5613 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5614
5615 /* As a temporary work around to enable WPA until we figure out why
5616 * wpa_supplicant toggles the security capability of the driver, which
5617 * forces a disassociation with force_update...
5618 *
5619 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5620 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5621 ipw2100_configure_security(priv, 0);
5622 done:
5623 mutex_unlock(&priv->action_mutex);
5624 }
5625
ipw2100_adapter_setup(struct ipw2100_priv * priv)5626 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5627 {
5628 int err;
5629 int batch_mode = 1;
5630 u8 *bssid;
5631
5632 IPW_DEBUG_INFO("enter\n");
5633
5634 err = ipw2100_disable_adapter(priv);
5635 if (err)
5636 return err;
5637 #ifdef CONFIG_IPW2100_MONITOR
5638 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5639 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5640 if (err)
5641 return err;
5642
5643 IPW_DEBUG_INFO("exit\n");
5644
5645 return 0;
5646 }
5647 #endif /* CONFIG_IPW2100_MONITOR */
5648
5649 err = ipw2100_read_mac_address(priv);
5650 if (err)
5651 return -EIO;
5652
5653 err = ipw2100_set_mac_address(priv, batch_mode);
5654 if (err)
5655 return err;
5656
5657 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5658 if (err)
5659 return err;
5660
5661 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5662 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5663 if (err)
5664 return err;
5665 }
5666
5667 err = ipw2100_system_config(priv, batch_mode);
5668 if (err)
5669 return err;
5670
5671 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5672 if (err)
5673 return err;
5674
5675 /* Default to power mode OFF */
5676 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5677 if (err)
5678 return err;
5679
5680 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5681 if (err)
5682 return err;
5683
5684 if (priv->config & CFG_STATIC_BSSID)
5685 bssid = priv->bssid;
5686 else
5687 bssid = NULL;
5688 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5689 if (err)
5690 return err;
5691
5692 if (priv->config & CFG_STATIC_ESSID)
5693 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5694 batch_mode);
5695 else
5696 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5697 if (err)
5698 return err;
5699
5700 err = ipw2100_configure_security(priv, batch_mode);
5701 if (err)
5702 return err;
5703
5704 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5705 err =
5706 ipw2100_set_ibss_beacon_interval(priv,
5707 priv->beacon_interval,
5708 batch_mode);
5709 if (err)
5710 return err;
5711
5712 err = ipw2100_set_tx_power(priv, priv->tx_power);
5713 if (err)
5714 return err;
5715 }
5716
5717 /*
5718 err = ipw2100_set_fragmentation_threshold(
5719 priv, priv->frag_threshold, batch_mode);
5720 if (err)
5721 return err;
5722 */
5723
5724 IPW_DEBUG_INFO("exit\n");
5725
5726 return 0;
5727 }
5728
5729 /*************************************************************************
5730 *
5731 * EXTERNALLY CALLED METHODS
5732 *
5733 *************************************************************************/
5734
5735 /* This method is called by the network layer -- not to be confused with
5736 * ipw2100_set_mac_address() declared above called by this driver (and this
5737 * method as well) to talk to the firmware */
ipw2100_set_address(struct net_device * dev,void * p)5738 static int ipw2100_set_address(struct net_device *dev, void *p)
5739 {
5740 struct ipw2100_priv *priv = libipw_priv(dev);
5741 struct sockaddr *addr = p;
5742 int err = 0;
5743
5744 if (!is_valid_ether_addr(addr->sa_data))
5745 return -EADDRNOTAVAIL;
5746
5747 mutex_lock(&priv->action_mutex);
5748
5749 priv->config |= CFG_CUSTOM_MAC;
5750 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5751
5752 err = ipw2100_set_mac_address(priv, 0);
5753 if (err)
5754 goto done;
5755
5756 priv->reset_backoff = 0;
5757 mutex_unlock(&priv->action_mutex);
5758 ipw2100_reset_adapter(&priv->reset_work.work);
5759 return 0;
5760
5761 done:
5762 mutex_unlock(&priv->action_mutex);
5763 return err;
5764 }
5765
ipw2100_open(struct net_device * dev)5766 static int ipw2100_open(struct net_device *dev)
5767 {
5768 struct ipw2100_priv *priv = libipw_priv(dev);
5769 unsigned long flags;
5770 IPW_DEBUG_INFO("dev->open\n");
5771
5772 spin_lock_irqsave(&priv->low_lock, flags);
5773 if (priv->status & STATUS_ASSOCIATED) {
5774 netif_carrier_on(dev);
5775 netif_start_queue(dev);
5776 }
5777 spin_unlock_irqrestore(&priv->low_lock, flags);
5778
5779 return 0;
5780 }
5781
ipw2100_close(struct net_device * dev)5782 static int ipw2100_close(struct net_device *dev)
5783 {
5784 struct ipw2100_priv *priv = libipw_priv(dev);
5785 unsigned long flags;
5786 struct list_head *element;
5787 struct ipw2100_tx_packet *packet;
5788
5789 IPW_DEBUG_INFO("enter\n");
5790
5791 spin_lock_irqsave(&priv->low_lock, flags);
5792
5793 if (priv->status & STATUS_ASSOCIATED)
5794 netif_carrier_off(dev);
5795 netif_stop_queue(dev);
5796
5797 /* Flush the TX queue ... */
5798 while (!list_empty(&priv->tx_pend_list)) {
5799 element = priv->tx_pend_list.next;
5800 packet = list_entry(element, struct ipw2100_tx_packet, list);
5801
5802 list_del(element);
5803 DEC_STAT(&priv->tx_pend_stat);
5804
5805 libipw_txb_free(packet->info.d_struct.txb);
5806 packet->info.d_struct.txb = NULL;
5807
5808 list_add_tail(element, &priv->tx_free_list);
5809 INC_STAT(&priv->tx_free_stat);
5810 }
5811 spin_unlock_irqrestore(&priv->low_lock, flags);
5812
5813 IPW_DEBUG_INFO("exit\n");
5814
5815 return 0;
5816 }
5817
5818 /*
5819 * TODO: Fix this function... its just wrong
5820 */
ipw2100_tx_timeout(struct net_device * dev,unsigned int txqueue)5821 static void ipw2100_tx_timeout(struct net_device *dev, unsigned int txqueue)
5822 {
5823 struct ipw2100_priv *priv = libipw_priv(dev);
5824
5825 dev->stats.tx_errors++;
5826
5827 #ifdef CONFIG_IPW2100_MONITOR
5828 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5829 return;
5830 #endif
5831
5832 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5833 dev->name);
5834 schedule_reset(priv);
5835 }
5836
ipw2100_wpa_enable(struct ipw2100_priv * priv,int value)5837 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5838 {
5839 /* This is called when wpa_supplicant loads and closes the driver
5840 * interface. */
5841 priv->ieee->wpa_enabled = value;
5842 return 0;
5843 }
5844
ipw2100_wpa_set_auth_algs(struct ipw2100_priv * priv,int value)5845 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5846 {
5847
5848 struct libipw_device *ieee = priv->ieee;
5849 struct libipw_security sec = {
5850 .flags = SEC_AUTH_MODE,
5851 };
5852 int ret = 0;
5853
5854 if (value & IW_AUTH_ALG_SHARED_KEY) {
5855 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5856 ieee->open_wep = 0;
5857 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5858 sec.auth_mode = WLAN_AUTH_OPEN;
5859 ieee->open_wep = 1;
5860 } else if (value & IW_AUTH_ALG_LEAP) {
5861 sec.auth_mode = WLAN_AUTH_LEAP;
5862 ieee->open_wep = 1;
5863 } else
5864 return -EINVAL;
5865
5866 if (ieee->set_security)
5867 ieee->set_security(ieee->dev, &sec);
5868 else
5869 ret = -EOPNOTSUPP;
5870
5871 return ret;
5872 }
5873
ipw2100_wpa_assoc_frame(struct ipw2100_priv * priv,char * wpa_ie,int wpa_ie_len)5874 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5875 char *wpa_ie, int wpa_ie_len)
5876 {
5877
5878 struct ipw2100_wpa_assoc_frame frame;
5879
5880 frame.fixed_ie_mask = 0;
5881
5882 /* copy WPA IE */
5883 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5884 frame.var_ie_len = wpa_ie_len;
5885
5886 /* make sure WPA is enabled */
5887 ipw2100_wpa_enable(priv, 1);
5888 ipw2100_set_wpa_ie(priv, &frame, 0);
5889 }
5890
ipw_ethtool_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)5891 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5892 struct ethtool_drvinfo *info)
5893 {
5894 struct ipw2100_priv *priv = libipw_priv(dev);
5895 char fw_ver[64];
5896
5897 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
5898 strscpy(info->version, DRV_VERSION, sizeof(info->version));
5899
5900 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5901
5902 strscpy(info->fw_version, fw_ver, sizeof(info->fw_version));
5903 strscpy(info->bus_info, pci_name(priv->pci_dev),
5904 sizeof(info->bus_info));
5905 }
5906
ipw2100_ethtool_get_link(struct net_device * dev)5907 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5908 {
5909 struct ipw2100_priv *priv = libipw_priv(dev);
5910 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5911 }
5912
5913 static const struct ethtool_ops ipw2100_ethtool_ops = {
5914 .get_link = ipw2100_ethtool_get_link,
5915 .get_drvinfo = ipw_ethtool_get_drvinfo,
5916 };
5917
ipw2100_hang_check(struct work_struct * work)5918 static void ipw2100_hang_check(struct work_struct *work)
5919 {
5920 struct ipw2100_priv *priv =
5921 container_of(work, struct ipw2100_priv, hang_check.work);
5922 unsigned long flags;
5923 u32 rtc = 0xa5a5a5a5;
5924 u32 len = sizeof(rtc);
5925 int restart = 0;
5926
5927 spin_lock_irqsave(&priv->low_lock, flags);
5928
5929 if (priv->fatal_error != 0) {
5930 /* If fatal_error is set then we need to restart */
5931 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5932 priv->net_dev->name);
5933
5934 restart = 1;
5935 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5936 (rtc == priv->last_rtc)) {
5937 /* Check if firmware is hung */
5938 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5939 priv->net_dev->name);
5940
5941 restart = 1;
5942 }
5943
5944 if (restart) {
5945 /* Kill timer */
5946 priv->stop_hang_check = 1;
5947 priv->hangs++;
5948
5949 /* Restart the NIC */
5950 schedule_reset(priv);
5951 }
5952
5953 priv->last_rtc = rtc;
5954
5955 if (!priv->stop_hang_check)
5956 schedule_delayed_work(&priv->hang_check, HZ / 2);
5957
5958 spin_unlock_irqrestore(&priv->low_lock, flags);
5959 }
5960
ipw2100_rf_kill(struct work_struct * work)5961 static void ipw2100_rf_kill(struct work_struct *work)
5962 {
5963 struct ipw2100_priv *priv =
5964 container_of(work, struct ipw2100_priv, rf_kill.work);
5965 unsigned long flags;
5966
5967 spin_lock_irqsave(&priv->low_lock, flags);
5968
5969 if (rf_kill_active(priv)) {
5970 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5971 if (!priv->stop_rf_kill)
5972 schedule_delayed_work(&priv->rf_kill,
5973 round_jiffies_relative(HZ));
5974 goto exit_unlock;
5975 }
5976
5977 /* RF Kill is now disabled, so bring the device back up */
5978
5979 if (!(priv->status & STATUS_RF_KILL_MASK)) {
5980 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5981 "device\n");
5982 schedule_reset(priv);
5983 } else
5984 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
5985 "enabled\n");
5986
5987 exit_unlock:
5988 spin_unlock_irqrestore(&priv->low_lock, flags);
5989 }
5990
5991 static void ipw2100_irq_tasklet(struct tasklet_struct *t);
5992
5993 static const struct net_device_ops ipw2100_netdev_ops = {
5994 .ndo_open = ipw2100_open,
5995 .ndo_stop = ipw2100_close,
5996 .ndo_start_xmit = libipw_xmit,
5997 .ndo_tx_timeout = ipw2100_tx_timeout,
5998 .ndo_set_mac_address = ipw2100_set_address,
5999 .ndo_validate_addr = eth_validate_addr,
6000 };
6001
6002 /* Look into using netdev destructor to shutdown libipw? */
6003
ipw2100_alloc_device(struct pci_dev * pci_dev,void __iomem * ioaddr)6004 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6005 void __iomem * ioaddr)
6006 {
6007 struct ipw2100_priv *priv;
6008 struct net_device *dev;
6009
6010 dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6011 if (!dev)
6012 return NULL;
6013 priv = libipw_priv(dev);
6014 priv->ieee = netdev_priv(dev);
6015 priv->pci_dev = pci_dev;
6016 priv->net_dev = dev;
6017 priv->ioaddr = ioaddr;
6018
6019 priv->ieee->hard_start_xmit = ipw2100_tx;
6020 priv->ieee->set_security = shim__set_security;
6021
6022 priv->ieee->perfect_rssi = -20;
6023 priv->ieee->worst_rssi = -85;
6024
6025 dev->netdev_ops = &ipw2100_netdev_ops;
6026 dev->ethtool_ops = &ipw2100_ethtool_ops;
6027 dev->wireless_handlers = &ipw2100_wx_handler_def;
6028 priv->wireless_data.libipw = priv->ieee;
6029 dev->wireless_data = &priv->wireless_data;
6030 dev->watchdog_timeo = 3 * HZ;
6031 dev->irq = 0;
6032 dev->min_mtu = 68;
6033 dev->max_mtu = LIBIPW_DATA_LEN;
6034
6035 /* NOTE: We don't use the wireless_handlers hook
6036 * in dev as the system will start throwing WX requests
6037 * to us before we're actually initialized and it just
6038 * ends up causing problems. So, we just handle
6039 * the WX extensions through the ipw2100_ioctl interface */
6040
6041 /* memset() puts everything to 0, so we only have explicitly set
6042 * those values that need to be something else */
6043
6044 /* If power management is turned on, default to AUTO mode */
6045 priv->power_mode = IPW_POWER_AUTO;
6046
6047 #ifdef CONFIG_IPW2100_MONITOR
6048 priv->config |= CFG_CRC_CHECK;
6049 #endif
6050 priv->ieee->wpa_enabled = 0;
6051 priv->ieee->drop_unencrypted = 0;
6052 priv->ieee->privacy_invoked = 0;
6053 priv->ieee->ieee802_1x = 1;
6054
6055 /* Set module parameters */
6056 switch (network_mode) {
6057 case 1:
6058 priv->ieee->iw_mode = IW_MODE_ADHOC;
6059 break;
6060 #ifdef CONFIG_IPW2100_MONITOR
6061 case 2:
6062 priv->ieee->iw_mode = IW_MODE_MONITOR;
6063 break;
6064 #endif
6065 default:
6066 case 0:
6067 priv->ieee->iw_mode = IW_MODE_INFRA;
6068 break;
6069 }
6070
6071 if (disable == 1)
6072 priv->status |= STATUS_RF_KILL_SW;
6073
6074 if (channel != 0 &&
6075 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6076 priv->config |= CFG_STATIC_CHANNEL;
6077 priv->channel = channel;
6078 }
6079
6080 if (associate)
6081 priv->config |= CFG_ASSOCIATE;
6082
6083 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6084 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6085 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6086 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6087 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6088 priv->tx_power = IPW_TX_POWER_DEFAULT;
6089 priv->tx_rates = DEFAULT_TX_RATES;
6090
6091 strcpy(priv->nick, "ipw2100");
6092
6093 spin_lock_init(&priv->low_lock);
6094 mutex_init(&priv->action_mutex);
6095 mutex_init(&priv->adapter_mutex);
6096
6097 init_waitqueue_head(&priv->wait_command_queue);
6098
6099 netif_carrier_off(dev);
6100
6101 INIT_LIST_HEAD(&priv->msg_free_list);
6102 INIT_LIST_HEAD(&priv->msg_pend_list);
6103 INIT_STAT(&priv->msg_free_stat);
6104 INIT_STAT(&priv->msg_pend_stat);
6105
6106 INIT_LIST_HEAD(&priv->tx_free_list);
6107 INIT_LIST_HEAD(&priv->tx_pend_list);
6108 INIT_STAT(&priv->tx_free_stat);
6109 INIT_STAT(&priv->tx_pend_stat);
6110
6111 INIT_LIST_HEAD(&priv->fw_pend_list);
6112 INIT_STAT(&priv->fw_pend_stat);
6113
6114 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6115 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6116 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6117 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6118 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6119 INIT_DELAYED_WORK(&priv->scan_event, ipw2100_scan_event);
6120
6121 tasklet_setup(&priv->irq_tasklet, ipw2100_irq_tasklet);
6122
6123 /* NOTE: We do not start the deferred work for status checks yet */
6124 priv->stop_rf_kill = 1;
6125 priv->stop_hang_check = 1;
6126
6127 return dev;
6128 }
6129
ipw2100_pci_init_one(struct pci_dev * pci_dev,const struct pci_device_id * ent)6130 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6131 const struct pci_device_id *ent)
6132 {
6133 void __iomem *ioaddr;
6134 struct net_device *dev = NULL;
6135 struct ipw2100_priv *priv = NULL;
6136 int err = 0;
6137 int registered = 0;
6138 u32 val;
6139
6140 IPW_DEBUG_INFO("enter\n");
6141
6142 if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6143 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6144 err = -ENODEV;
6145 goto out;
6146 }
6147
6148 ioaddr = pci_iomap(pci_dev, 0, 0);
6149 if (!ioaddr) {
6150 printk(KERN_WARNING DRV_NAME
6151 "Error calling ioremap.\n");
6152 err = -EIO;
6153 goto fail;
6154 }
6155
6156 /* allocate and initialize our net_device */
6157 dev = ipw2100_alloc_device(pci_dev, ioaddr);
6158 if (!dev) {
6159 printk(KERN_WARNING DRV_NAME
6160 "Error calling ipw2100_alloc_device.\n");
6161 err = -ENOMEM;
6162 goto fail;
6163 }
6164
6165 /* set up PCI mappings for device */
6166 err = pci_enable_device(pci_dev);
6167 if (err) {
6168 printk(KERN_WARNING DRV_NAME
6169 "Error calling pci_enable_device.\n");
6170 return err;
6171 }
6172
6173 priv = libipw_priv(dev);
6174
6175 pci_set_master(pci_dev);
6176 pci_set_drvdata(pci_dev, priv);
6177
6178 err = dma_set_mask(&pci_dev->dev, DMA_BIT_MASK(32));
6179 if (err) {
6180 printk(KERN_WARNING DRV_NAME
6181 "Error calling pci_set_dma_mask.\n");
6182 pci_disable_device(pci_dev);
6183 return err;
6184 }
6185
6186 err = pci_request_regions(pci_dev, DRV_NAME);
6187 if (err) {
6188 printk(KERN_WARNING DRV_NAME
6189 "Error calling pci_request_regions.\n");
6190 pci_disable_device(pci_dev);
6191 return err;
6192 }
6193
6194 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6195 * PCI Tx retries from interfering with C3 CPU state */
6196 pci_read_config_dword(pci_dev, 0x40, &val);
6197 if ((val & 0x0000ff00) != 0)
6198 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6199
6200 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6201 printk(KERN_WARNING DRV_NAME
6202 "Device not found via register read.\n");
6203 err = -ENODEV;
6204 goto fail;
6205 }
6206
6207 SET_NETDEV_DEV(dev, &pci_dev->dev);
6208
6209 /* Force interrupts to be shut off on the device */
6210 priv->status |= STATUS_INT_ENABLED;
6211 ipw2100_disable_interrupts(priv);
6212
6213 /* Allocate and initialize the Tx/Rx queues and lists */
6214 if (ipw2100_queues_allocate(priv)) {
6215 printk(KERN_WARNING DRV_NAME
6216 "Error calling ipw2100_queues_allocate.\n");
6217 err = -ENOMEM;
6218 goto fail;
6219 }
6220 ipw2100_queues_initialize(priv);
6221
6222 err = request_irq(pci_dev->irq,
6223 ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6224 if (err) {
6225 printk(KERN_WARNING DRV_NAME
6226 "Error calling request_irq: %d.\n", pci_dev->irq);
6227 goto fail;
6228 }
6229 dev->irq = pci_dev->irq;
6230
6231 IPW_DEBUG_INFO("Attempting to register device...\n");
6232
6233 printk(KERN_INFO DRV_NAME
6234 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6235
6236 err = ipw2100_up(priv, 1);
6237 if (err)
6238 goto fail;
6239
6240 err = ipw2100_wdev_init(dev);
6241 if (err)
6242 goto fail;
6243 registered = 1;
6244
6245 /* Bring up the interface. Pre 0.46, after we registered the
6246 * network device we would call ipw2100_up. This introduced a race
6247 * condition with newer hotplug configurations (network was coming
6248 * up and making calls before the device was initialized).
6249 */
6250 err = register_netdev(dev);
6251 if (err) {
6252 printk(KERN_WARNING DRV_NAME
6253 "Error calling register_netdev.\n");
6254 goto fail;
6255 }
6256 registered = 2;
6257
6258 mutex_lock(&priv->action_mutex);
6259
6260 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6261
6262 /* perform this after register_netdev so that dev->name is set */
6263 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6264 if (err)
6265 goto fail_unlock;
6266
6267 /* If the RF Kill switch is disabled, go ahead and complete the
6268 * startup sequence */
6269 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6270 /* Enable the adapter - sends HOST_COMPLETE */
6271 if (ipw2100_enable_adapter(priv)) {
6272 printk(KERN_WARNING DRV_NAME
6273 ": %s: failed in call to enable adapter.\n",
6274 priv->net_dev->name);
6275 ipw2100_hw_stop_adapter(priv);
6276 err = -EIO;
6277 goto fail_unlock;
6278 }
6279
6280 /* Start a scan . . . */
6281 ipw2100_set_scan_options(priv);
6282 ipw2100_start_scan(priv);
6283 }
6284
6285 IPW_DEBUG_INFO("exit\n");
6286
6287 priv->status |= STATUS_INITIALIZED;
6288
6289 mutex_unlock(&priv->action_mutex);
6290 out:
6291 return err;
6292
6293 fail_unlock:
6294 mutex_unlock(&priv->action_mutex);
6295 fail:
6296 if (dev) {
6297 if (registered >= 2)
6298 unregister_netdev(dev);
6299
6300 if (registered) {
6301 wiphy_unregister(priv->ieee->wdev.wiphy);
6302 kfree(priv->ieee->bg_band.channels);
6303 }
6304
6305 ipw2100_hw_stop_adapter(priv);
6306
6307 ipw2100_disable_interrupts(priv);
6308
6309 if (dev->irq)
6310 free_irq(dev->irq, priv);
6311
6312 ipw2100_kill_works(priv);
6313
6314 /* These are safe to call even if they weren't allocated */
6315 ipw2100_queues_free(priv);
6316 sysfs_remove_group(&pci_dev->dev.kobj,
6317 &ipw2100_attribute_group);
6318
6319 free_libipw(dev, 0);
6320 }
6321
6322 pci_iounmap(pci_dev, ioaddr);
6323
6324 pci_release_regions(pci_dev);
6325 pci_disable_device(pci_dev);
6326 goto out;
6327 }
6328
ipw2100_pci_remove_one(struct pci_dev * pci_dev)6329 static void ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6330 {
6331 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6332 struct net_device *dev = priv->net_dev;
6333
6334 mutex_lock(&priv->action_mutex);
6335
6336 priv->status &= ~STATUS_INITIALIZED;
6337
6338 sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6339
6340 #ifdef CONFIG_PM
6341 if (ipw2100_firmware.version)
6342 ipw2100_release_firmware(priv, &ipw2100_firmware);
6343 #endif
6344 /* Take down the hardware */
6345 ipw2100_down(priv);
6346
6347 /* Release the mutex so that the network subsystem can
6348 * complete any needed calls into the driver... */
6349 mutex_unlock(&priv->action_mutex);
6350
6351 /* Unregister the device first - this results in close()
6352 * being called if the device is open. If we free storage
6353 * first, then close() will crash.
6354 * FIXME: remove the comment above. */
6355 unregister_netdev(dev);
6356
6357 ipw2100_kill_works(priv);
6358
6359 ipw2100_queues_free(priv);
6360
6361 /* Free potential debugging firmware snapshot */
6362 ipw2100_snapshot_free(priv);
6363
6364 free_irq(dev->irq, priv);
6365
6366 pci_iounmap(pci_dev, priv->ioaddr);
6367
6368 /* wiphy_unregister needs to be here, before free_libipw */
6369 wiphy_unregister(priv->ieee->wdev.wiphy);
6370 kfree(priv->ieee->bg_band.channels);
6371 free_libipw(dev, 0);
6372
6373 pci_release_regions(pci_dev);
6374 pci_disable_device(pci_dev);
6375
6376 IPW_DEBUG_INFO("exit\n");
6377 }
6378
ipw2100_suspend(struct device * dev_d)6379 static int __maybe_unused ipw2100_suspend(struct device *dev_d)
6380 {
6381 struct ipw2100_priv *priv = dev_get_drvdata(dev_d);
6382 struct net_device *dev = priv->net_dev;
6383
6384 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6385
6386 mutex_lock(&priv->action_mutex);
6387 if (priv->status & STATUS_INITIALIZED) {
6388 /* Take down the device; powers it off, etc. */
6389 ipw2100_down(priv);
6390 }
6391
6392 /* Remove the PRESENT state of the device */
6393 netif_device_detach(dev);
6394
6395 priv->suspend_at = ktime_get_boottime_seconds();
6396
6397 mutex_unlock(&priv->action_mutex);
6398
6399 return 0;
6400 }
6401
ipw2100_resume(struct device * dev_d)6402 static int __maybe_unused ipw2100_resume(struct device *dev_d)
6403 {
6404 struct pci_dev *pci_dev = to_pci_dev(dev_d);
6405 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6406 struct net_device *dev = priv->net_dev;
6407 u32 val;
6408
6409 if (IPW2100_PM_DISABLED)
6410 return 0;
6411
6412 mutex_lock(&priv->action_mutex);
6413
6414 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6415
6416 /*
6417 * Suspend/Resume resets the PCI configuration space, so we have to
6418 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6419 * from interfering with C3 CPU state. pci_restore_state won't help
6420 * here since it only restores the first 64 bytes pci config header.
6421 */
6422 pci_read_config_dword(pci_dev, 0x40, &val);
6423 if ((val & 0x0000ff00) != 0)
6424 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6425
6426 /* Set the device back into the PRESENT state; this will also wake
6427 * the queue of needed */
6428 netif_device_attach(dev);
6429
6430 priv->suspend_time = ktime_get_boottime_seconds() - priv->suspend_at;
6431
6432 /* Bring the device back up */
6433 if (!(priv->status & STATUS_RF_KILL_SW))
6434 ipw2100_up(priv, 0);
6435
6436 mutex_unlock(&priv->action_mutex);
6437
6438 return 0;
6439 }
6440
ipw2100_shutdown(struct pci_dev * pci_dev)6441 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6442 {
6443 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6444
6445 /* Take down the device; powers it off, etc. */
6446 ipw2100_down(priv);
6447
6448 pci_disable_device(pci_dev);
6449 }
6450
6451 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6452
6453 static const struct pci_device_id ipw2100_pci_id_table[] = {
6454 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6455 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6456 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6457 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6458 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6459 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6460 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6461 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6462 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6463 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6464 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6465 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6466 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6467
6468 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6469 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6470 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6471 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6472 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6473
6474 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6475 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6476 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6477 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6478 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6479 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6480 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6481
6482 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6483
6484 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6485 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6486 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6487 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6488 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6489 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6490 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6491
6492 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6493 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6494 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6495 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6496 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6497 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6498
6499 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6500 {0,},
6501 };
6502
6503 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6504
6505 static SIMPLE_DEV_PM_OPS(ipw2100_pm_ops, ipw2100_suspend, ipw2100_resume);
6506
6507 static struct pci_driver ipw2100_pci_driver = {
6508 .name = DRV_NAME,
6509 .id_table = ipw2100_pci_id_table,
6510 .probe = ipw2100_pci_init_one,
6511 .remove = ipw2100_pci_remove_one,
6512 .driver.pm = &ipw2100_pm_ops,
6513 .shutdown = ipw2100_shutdown,
6514 };
6515
6516 /*
6517 * Initialize the ipw2100 driver/module
6518 *
6519 * @returns 0 if ok, < 0 errno node con error.
6520 *
6521 * Note: we cannot init the /proc stuff until the PCI driver is there,
6522 * or we risk an unlikely race condition on someone accessing
6523 * uninitialized data in the PCI dev struct through /proc.
6524 */
ipw2100_init(void)6525 static int __init ipw2100_init(void)
6526 {
6527 int ret;
6528
6529 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6530 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6531
6532 cpu_latency_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
6533
6534 ret = pci_register_driver(&ipw2100_pci_driver);
6535 if (ret)
6536 goto out;
6537
6538 #ifdef CONFIG_IPW2100_DEBUG
6539 ipw2100_debug_level = debug;
6540 ret = driver_create_file(&ipw2100_pci_driver.driver,
6541 &driver_attr_debug_level);
6542 #endif
6543
6544 out:
6545 return ret;
6546 }
6547
6548 /*
6549 * Cleanup ipw2100 driver registration
6550 */
ipw2100_exit(void)6551 static void __exit ipw2100_exit(void)
6552 {
6553 /* FIXME: IPG: check that we have no instances of the devices open */
6554 #ifdef CONFIG_IPW2100_DEBUG
6555 driver_remove_file(&ipw2100_pci_driver.driver,
6556 &driver_attr_debug_level);
6557 #endif
6558 pci_unregister_driver(&ipw2100_pci_driver);
6559 cpu_latency_qos_remove_request(&ipw2100_pm_qos_req);
6560 }
6561
6562 module_init(ipw2100_init);
6563 module_exit(ipw2100_exit);
6564
ipw2100_wx_get_name(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6565 static int ipw2100_wx_get_name(struct net_device *dev,
6566 struct iw_request_info *info,
6567 union iwreq_data *wrqu, char *extra)
6568 {
6569 /*
6570 * This can be called at any time. No action lock required
6571 */
6572
6573 struct ipw2100_priv *priv = libipw_priv(dev);
6574 if (!(priv->status & STATUS_ASSOCIATED))
6575 strcpy(wrqu->name, "unassociated");
6576 else
6577 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6578
6579 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6580 return 0;
6581 }
6582
ipw2100_wx_set_freq(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6583 static int ipw2100_wx_set_freq(struct net_device *dev,
6584 struct iw_request_info *info,
6585 union iwreq_data *wrqu, char *extra)
6586 {
6587 struct ipw2100_priv *priv = libipw_priv(dev);
6588 struct iw_freq *fwrq = &wrqu->freq;
6589 int err = 0;
6590
6591 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6592 return -EOPNOTSUPP;
6593
6594 mutex_lock(&priv->action_mutex);
6595 if (!(priv->status & STATUS_INITIALIZED)) {
6596 err = -EIO;
6597 goto done;
6598 }
6599
6600 /* if setting by freq convert to channel */
6601 if (fwrq->e == 1) {
6602 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6603 int f = fwrq->m / 100000;
6604 int c = 0;
6605
6606 while ((c < REG_MAX_CHANNEL) &&
6607 (f != ipw2100_frequencies[c]))
6608 c++;
6609
6610 /* hack to fall through */
6611 fwrq->e = 0;
6612 fwrq->m = c + 1;
6613 }
6614 }
6615
6616 if (fwrq->e > 0 || fwrq->m > 1000) {
6617 err = -EOPNOTSUPP;
6618 goto done;
6619 } else { /* Set the channel */
6620 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6621 err = ipw2100_set_channel(priv, fwrq->m, 0);
6622 }
6623
6624 done:
6625 mutex_unlock(&priv->action_mutex);
6626 return err;
6627 }
6628
ipw2100_wx_get_freq(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6629 static int ipw2100_wx_get_freq(struct net_device *dev,
6630 struct iw_request_info *info,
6631 union iwreq_data *wrqu, char *extra)
6632 {
6633 /*
6634 * This can be called at any time. No action lock required
6635 */
6636
6637 struct ipw2100_priv *priv = libipw_priv(dev);
6638
6639 wrqu->freq.e = 0;
6640
6641 /* If we are associated, trying to associate, or have a statically
6642 * configured CHANNEL then return that; otherwise return ANY */
6643 if (priv->config & CFG_STATIC_CHANNEL ||
6644 priv->status & STATUS_ASSOCIATED)
6645 wrqu->freq.m = priv->channel;
6646 else
6647 wrqu->freq.m = 0;
6648
6649 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6650 return 0;
6651
6652 }
6653
ipw2100_wx_set_mode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6654 static int ipw2100_wx_set_mode(struct net_device *dev,
6655 struct iw_request_info *info,
6656 union iwreq_data *wrqu, char *extra)
6657 {
6658 struct ipw2100_priv *priv = libipw_priv(dev);
6659 int err = 0;
6660
6661 IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6662
6663 if (wrqu->mode == priv->ieee->iw_mode)
6664 return 0;
6665
6666 mutex_lock(&priv->action_mutex);
6667 if (!(priv->status & STATUS_INITIALIZED)) {
6668 err = -EIO;
6669 goto done;
6670 }
6671
6672 switch (wrqu->mode) {
6673 #ifdef CONFIG_IPW2100_MONITOR
6674 case IW_MODE_MONITOR:
6675 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6676 break;
6677 #endif /* CONFIG_IPW2100_MONITOR */
6678 case IW_MODE_ADHOC:
6679 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6680 break;
6681 case IW_MODE_INFRA:
6682 case IW_MODE_AUTO:
6683 default:
6684 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6685 break;
6686 }
6687
6688 done:
6689 mutex_unlock(&priv->action_mutex);
6690 return err;
6691 }
6692
ipw2100_wx_get_mode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6693 static int ipw2100_wx_get_mode(struct net_device *dev,
6694 struct iw_request_info *info,
6695 union iwreq_data *wrqu, char *extra)
6696 {
6697 /*
6698 * This can be called at any time. No action lock required
6699 */
6700
6701 struct ipw2100_priv *priv = libipw_priv(dev);
6702
6703 wrqu->mode = priv->ieee->iw_mode;
6704 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6705
6706 return 0;
6707 }
6708
6709 #define POWER_MODES 5
6710
6711 /* Values are in microsecond */
6712 static const s32 timeout_duration[POWER_MODES] = {
6713 350000,
6714 250000,
6715 75000,
6716 37000,
6717 25000,
6718 };
6719
6720 static const s32 period_duration[POWER_MODES] = {
6721 400000,
6722 700000,
6723 1000000,
6724 1000000,
6725 1000000
6726 };
6727
ipw2100_wx_get_range(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6728 static int ipw2100_wx_get_range(struct net_device *dev,
6729 struct iw_request_info *info,
6730 union iwreq_data *wrqu, char *extra)
6731 {
6732 /*
6733 * This can be called at any time. No action lock required
6734 */
6735
6736 struct ipw2100_priv *priv = libipw_priv(dev);
6737 struct iw_range *range = (struct iw_range *)extra;
6738 u16 val;
6739 int i, level;
6740
6741 wrqu->data.length = sizeof(*range);
6742 memset(range, 0, sizeof(*range));
6743
6744 /* Let's try to keep this struct in the same order as in
6745 * linux/include/wireless.h
6746 */
6747
6748 /* TODO: See what values we can set, and remove the ones we can't
6749 * set, or fill them with some default data.
6750 */
6751
6752 /* ~5 Mb/s real (802.11b) */
6753 range->throughput = 5 * 1000 * 1000;
6754
6755 // range->sensitivity; /* signal level threshold range */
6756
6757 range->max_qual.qual = 100;
6758 /* TODO: Find real max RSSI and stick here */
6759 range->max_qual.level = 0;
6760 range->max_qual.noise = 0;
6761 range->max_qual.updated = 7; /* Updated all three */
6762
6763 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6764 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6765 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6766 range->avg_qual.noise = 0;
6767 range->avg_qual.updated = 7; /* Updated all three */
6768
6769 range->num_bitrates = RATE_COUNT;
6770
6771 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6772 range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6773 }
6774
6775 range->min_rts = MIN_RTS_THRESHOLD;
6776 range->max_rts = MAX_RTS_THRESHOLD;
6777 range->min_frag = MIN_FRAG_THRESHOLD;
6778 range->max_frag = MAX_FRAG_THRESHOLD;
6779
6780 range->min_pmp = period_duration[0]; /* Minimal PM period */
6781 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6782 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6783 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6784
6785 /* How to decode max/min PM period */
6786 range->pmp_flags = IW_POWER_PERIOD;
6787 /* How to decode max/min PM period */
6788 range->pmt_flags = IW_POWER_TIMEOUT;
6789 /* What PM options are supported */
6790 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6791
6792 range->encoding_size[0] = 5;
6793 range->encoding_size[1] = 13; /* Different token sizes */
6794 range->num_encoding_sizes = 2; /* Number of entry in the list */
6795 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6796 // range->encoding_login_index; /* token index for login token */
6797
6798 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6799 range->txpower_capa = IW_TXPOW_DBM;
6800 range->num_txpower = IW_MAX_TXPOWER;
6801 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6802 i < IW_MAX_TXPOWER;
6803 i++, level -=
6804 ((IPW_TX_POWER_MAX_DBM -
6805 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6806 range->txpower[i] = level / 16;
6807 } else {
6808 range->txpower_capa = 0;
6809 range->num_txpower = 0;
6810 }
6811
6812 /* Set the Wireless Extension versions */
6813 range->we_version_compiled = WIRELESS_EXT;
6814 range->we_version_source = 18;
6815
6816 // range->retry_capa; /* What retry options are supported */
6817 // range->retry_flags; /* How to decode max/min retry limit */
6818 // range->r_time_flags; /* How to decode max/min retry life */
6819 // range->min_retry; /* Minimal number of retries */
6820 // range->max_retry; /* Maximal number of retries */
6821 // range->min_r_time; /* Minimal retry lifetime */
6822 // range->max_r_time; /* Maximal retry lifetime */
6823
6824 range->num_channels = FREQ_COUNT;
6825
6826 val = 0;
6827 for (i = 0; i < FREQ_COUNT; i++) {
6828 // TODO: Include only legal frequencies for some countries
6829 // if (local->channel_mask & (1 << i)) {
6830 range->freq[val].i = i + 1;
6831 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6832 range->freq[val].e = 1;
6833 val++;
6834 // }
6835 if (val == IW_MAX_FREQUENCIES)
6836 break;
6837 }
6838 range->num_frequency = val;
6839
6840 /* Event capability (kernel + driver) */
6841 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6842 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6843 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6844
6845 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6846 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6847
6848 IPW_DEBUG_WX("GET Range\n");
6849
6850 return 0;
6851 }
6852
ipw2100_wx_set_wap(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6853 static int ipw2100_wx_set_wap(struct net_device *dev,
6854 struct iw_request_info *info,
6855 union iwreq_data *wrqu, char *extra)
6856 {
6857 struct ipw2100_priv *priv = libipw_priv(dev);
6858 int err = 0;
6859
6860 // sanity checks
6861 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6862 return -EINVAL;
6863
6864 mutex_lock(&priv->action_mutex);
6865 if (!(priv->status & STATUS_INITIALIZED)) {
6866 err = -EIO;
6867 goto done;
6868 }
6869
6870 if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
6871 is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
6872 /* we disable mandatory BSSID association */
6873 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6874 priv->config &= ~CFG_STATIC_BSSID;
6875 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6876 goto done;
6877 }
6878
6879 priv->config |= CFG_STATIC_BSSID;
6880 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6881
6882 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6883
6884 IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6885
6886 done:
6887 mutex_unlock(&priv->action_mutex);
6888 return err;
6889 }
6890
ipw2100_wx_get_wap(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6891 static int ipw2100_wx_get_wap(struct net_device *dev,
6892 struct iw_request_info *info,
6893 union iwreq_data *wrqu, char *extra)
6894 {
6895 /*
6896 * This can be called at any time. No action lock required
6897 */
6898
6899 struct ipw2100_priv *priv = libipw_priv(dev);
6900
6901 /* If we are associated, trying to associate, or have a statically
6902 * configured BSSID then return that; otherwise return ANY */
6903 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6904 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6905 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6906 } else
6907 eth_zero_addr(wrqu->ap_addr.sa_data);
6908
6909 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
6910 return 0;
6911 }
6912
ipw2100_wx_set_essid(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6913 static int ipw2100_wx_set_essid(struct net_device *dev,
6914 struct iw_request_info *info,
6915 union iwreq_data *wrqu, char *extra)
6916 {
6917 struct ipw2100_priv *priv = libipw_priv(dev);
6918 char *essid = ""; /* ANY */
6919 int length = 0;
6920 int err = 0;
6921
6922 mutex_lock(&priv->action_mutex);
6923 if (!(priv->status & STATUS_INITIALIZED)) {
6924 err = -EIO;
6925 goto done;
6926 }
6927
6928 if (wrqu->essid.flags && wrqu->essid.length) {
6929 length = wrqu->essid.length;
6930 essid = extra;
6931 }
6932
6933 if (length == 0) {
6934 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6935 priv->config &= ~CFG_STATIC_ESSID;
6936 err = ipw2100_set_essid(priv, NULL, 0, 0);
6937 goto done;
6938 }
6939
6940 length = min(length, IW_ESSID_MAX_SIZE);
6941
6942 priv->config |= CFG_STATIC_ESSID;
6943
6944 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6945 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6946 err = 0;
6947 goto done;
6948 }
6949
6950 IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, essid, length);
6951
6952 priv->essid_len = length;
6953 memcpy(priv->essid, essid, priv->essid_len);
6954
6955 err = ipw2100_set_essid(priv, essid, length, 0);
6956
6957 done:
6958 mutex_unlock(&priv->action_mutex);
6959 return err;
6960 }
6961
ipw2100_wx_get_essid(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6962 static int ipw2100_wx_get_essid(struct net_device *dev,
6963 struct iw_request_info *info,
6964 union iwreq_data *wrqu, char *extra)
6965 {
6966 /*
6967 * This can be called at any time. No action lock required
6968 */
6969
6970 struct ipw2100_priv *priv = libipw_priv(dev);
6971
6972 /* If we are associated, trying to associate, or have a statically
6973 * configured ESSID then return that; otherwise return ANY */
6974 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
6975 IPW_DEBUG_WX("Getting essid: '%*pE'\n",
6976 priv->essid_len, priv->essid);
6977 memcpy(extra, priv->essid, priv->essid_len);
6978 wrqu->essid.length = priv->essid_len;
6979 wrqu->essid.flags = 1; /* active */
6980 } else {
6981 IPW_DEBUG_WX("Getting essid: ANY\n");
6982 wrqu->essid.length = 0;
6983 wrqu->essid.flags = 0; /* active */
6984 }
6985
6986 return 0;
6987 }
6988
ipw2100_wx_set_nick(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6989 static int ipw2100_wx_set_nick(struct net_device *dev,
6990 struct iw_request_info *info,
6991 union iwreq_data *wrqu, char *extra)
6992 {
6993 /*
6994 * This can be called at any time. No action lock required
6995 */
6996
6997 struct ipw2100_priv *priv = libipw_priv(dev);
6998
6999 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7000 return -E2BIG;
7001
7002 wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
7003 memset(priv->nick, 0, sizeof(priv->nick));
7004 memcpy(priv->nick, extra, wrqu->data.length);
7005
7006 IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7007
7008 return 0;
7009 }
7010
ipw2100_wx_get_nick(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7011 static int ipw2100_wx_get_nick(struct net_device *dev,
7012 struct iw_request_info *info,
7013 union iwreq_data *wrqu, char *extra)
7014 {
7015 /*
7016 * This can be called at any time. No action lock required
7017 */
7018
7019 struct ipw2100_priv *priv = libipw_priv(dev);
7020
7021 wrqu->data.length = strlen(priv->nick);
7022 memcpy(extra, priv->nick, wrqu->data.length);
7023 wrqu->data.flags = 1; /* active */
7024
7025 IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7026
7027 return 0;
7028 }
7029
ipw2100_wx_set_rate(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7030 static int ipw2100_wx_set_rate(struct net_device *dev,
7031 struct iw_request_info *info,
7032 union iwreq_data *wrqu, char *extra)
7033 {
7034 struct ipw2100_priv *priv = libipw_priv(dev);
7035 u32 target_rate = wrqu->bitrate.value;
7036 u32 rate;
7037 int err = 0;
7038
7039 mutex_lock(&priv->action_mutex);
7040 if (!(priv->status & STATUS_INITIALIZED)) {
7041 err = -EIO;
7042 goto done;
7043 }
7044
7045 rate = 0;
7046
7047 if (target_rate == 1000000 ||
7048 (!wrqu->bitrate.fixed && target_rate > 1000000))
7049 rate |= TX_RATE_1_MBIT;
7050 if (target_rate == 2000000 ||
7051 (!wrqu->bitrate.fixed && target_rate > 2000000))
7052 rate |= TX_RATE_2_MBIT;
7053 if (target_rate == 5500000 ||
7054 (!wrqu->bitrate.fixed && target_rate > 5500000))
7055 rate |= TX_RATE_5_5_MBIT;
7056 if (target_rate == 11000000 ||
7057 (!wrqu->bitrate.fixed && target_rate > 11000000))
7058 rate |= TX_RATE_11_MBIT;
7059 if (rate == 0)
7060 rate = DEFAULT_TX_RATES;
7061
7062 err = ipw2100_set_tx_rates(priv, rate, 0);
7063
7064 IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7065 done:
7066 mutex_unlock(&priv->action_mutex);
7067 return err;
7068 }
7069
ipw2100_wx_get_rate(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7070 static int ipw2100_wx_get_rate(struct net_device *dev,
7071 struct iw_request_info *info,
7072 union iwreq_data *wrqu, char *extra)
7073 {
7074 struct ipw2100_priv *priv = libipw_priv(dev);
7075 int val;
7076 unsigned int len = sizeof(val);
7077 int err = 0;
7078
7079 if (!(priv->status & STATUS_ENABLED) ||
7080 priv->status & STATUS_RF_KILL_MASK ||
7081 !(priv->status & STATUS_ASSOCIATED)) {
7082 wrqu->bitrate.value = 0;
7083 return 0;
7084 }
7085
7086 mutex_lock(&priv->action_mutex);
7087 if (!(priv->status & STATUS_INITIALIZED)) {
7088 err = -EIO;
7089 goto done;
7090 }
7091
7092 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7093 if (err) {
7094 IPW_DEBUG_WX("failed querying ordinals.\n");
7095 goto done;
7096 }
7097
7098 switch (val & TX_RATE_MASK) {
7099 case TX_RATE_1_MBIT:
7100 wrqu->bitrate.value = 1000000;
7101 break;
7102 case TX_RATE_2_MBIT:
7103 wrqu->bitrate.value = 2000000;
7104 break;
7105 case TX_RATE_5_5_MBIT:
7106 wrqu->bitrate.value = 5500000;
7107 break;
7108 case TX_RATE_11_MBIT:
7109 wrqu->bitrate.value = 11000000;
7110 break;
7111 default:
7112 wrqu->bitrate.value = 0;
7113 }
7114
7115 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7116
7117 done:
7118 mutex_unlock(&priv->action_mutex);
7119 return err;
7120 }
7121
ipw2100_wx_set_rts(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7122 static int ipw2100_wx_set_rts(struct net_device *dev,
7123 struct iw_request_info *info,
7124 union iwreq_data *wrqu, char *extra)
7125 {
7126 struct ipw2100_priv *priv = libipw_priv(dev);
7127 int value, err;
7128
7129 /* Auto RTS not yet supported */
7130 if (wrqu->rts.fixed == 0)
7131 return -EINVAL;
7132
7133 mutex_lock(&priv->action_mutex);
7134 if (!(priv->status & STATUS_INITIALIZED)) {
7135 err = -EIO;
7136 goto done;
7137 }
7138
7139 if (wrqu->rts.disabled)
7140 value = priv->rts_threshold | RTS_DISABLED;
7141 else {
7142 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7143 err = -EINVAL;
7144 goto done;
7145 }
7146 value = wrqu->rts.value;
7147 }
7148
7149 err = ipw2100_set_rts_threshold(priv, value);
7150
7151 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7152 done:
7153 mutex_unlock(&priv->action_mutex);
7154 return err;
7155 }
7156
ipw2100_wx_get_rts(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7157 static int ipw2100_wx_get_rts(struct net_device *dev,
7158 struct iw_request_info *info,
7159 union iwreq_data *wrqu, char *extra)
7160 {
7161 /*
7162 * This can be called at any time. No action lock required
7163 */
7164
7165 struct ipw2100_priv *priv = libipw_priv(dev);
7166
7167 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7168 wrqu->rts.fixed = 1; /* no auto select */
7169
7170 /* If RTS is set to the default value, then it is disabled */
7171 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7172
7173 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7174
7175 return 0;
7176 }
7177
ipw2100_wx_set_txpow(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7178 static int ipw2100_wx_set_txpow(struct net_device *dev,
7179 struct iw_request_info *info,
7180 union iwreq_data *wrqu, char *extra)
7181 {
7182 struct ipw2100_priv *priv = libipw_priv(dev);
7183 int err = 0, value;
7184
7185 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7186 return -EINPROGRESS;
7187
7188 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7189 return 0;
7190
7191 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7192 return -EINVAL;
7193
7194 if (wrqu->txpower.fixed == 0)
7195 value = IPW_TX_POWER_DEFAULT;
7196 else {
7197 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7198 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7199 return -EINVAL;
7200
7201 value = wrqu->txpower.value;
7202 }
7203
7204 mutex_lock(&priv->action_mutex);
7205 if (!(priv->status & STATUS_INITIALIZED)) {
7206 err = -EIO;
7207 goto done;
7208 }
7209
7210 err = ipw2100_set_tx_power(priv, value);
7211
7212 IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7213
7214 done:
7215 mutex_unlock(&priv->action_mutex);
7216 return err;
7217 }
7218
ipw2100_wx_get_txpow(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7219 static int ipw2100_wx_get_txpow(struct net_device *dev,
7220 struct iw_request_info *info,
7221 union iwreq_data *wrqu, char *extra)
7222 {
7223 /*
7224 * This can be called at any time. No action lock required
7225 */
7226
7227 struct ipw2100_priv *priv = libipw_priv(dev);
7228
7229 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7230
7231 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7232 wrqu->txpower.fixed = 0;
7233 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7234 } else {
7235 wrqu->txpower.fixed = 1;
7236 wrqu->txpower.value = priv->tx_power;
7237 }
7238
7239 wrqu->txpower.flags = IW_TXPOW_DBM;
7240
7241 IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7242
7243 return 0;
7244 }
7245
ipw2100_wx_set_frag(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7246 static int ipw2100_wx_set_frag(struct net_device *dev,
7247 struct iw_request_info *info,
7248 union iwreq_data *wrqu, char *extra)
7249 {
7250 /*
7251 * This can be called at any time. No action lock required
7252 */
7253
7254 struct ipw2100_priv *priv = libipw_priv(dev);
7255
7256 if (!wrqu->frag.fixed)
7257 return -EINVAL;
7258
7259 if (wrqu->frag.disabled) {
7260 priv->frag_threshold |= FRAG_DISABLED;
7261 priv->ieee->fts = DEFAULT_FTS;
7262 } else {
7263 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7264 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7265 return -EINVAL;
7266
7267 priv->ieee->fts = wrqu->frag.value & ~0x1;
7268 priv->frag_threshold = priv->ieee->fts;
7269 }
7270
7271 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7272
7273 return 0;
7274 }
7275
ipw2100_wx_get_frag(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7276 static int ipw2100_wx_get_frag(struct net_device *dev,
7277 struct iw_request_info *info,
7278 union iwreq_data *wrqu, char *extra)
7279 {
7280 /*
7281 * This can be called at any time. No action lock required
7282 */
7283
7284 struct ipw2100_priv *priv = libipw_priv(dev);
7285 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7286 wrqu->frag.fixed = 0; /* no auto select */
7287 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7288
7289 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7290
7291 return 0;
7292 }
7293
ipw2100_wx_set_retry(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7294 static int ipw2100_wx_set_retry(struct net_device *dev,
7295 struct iw_request_info *info,
7296 union iwreq_data *wrqu, char *extra)
7297 {
7298 struct ipw2100_priv *priv = libipw_priv(dev);
7299 int err = 0;
7300
7301 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7302 return -EINVAL;
7303
7304 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7305 return 0;
7306
7307 mutex_lock(&priv->action_mutex);
7308 if (!(priv->status & STATUS_INITIALIZED)) {
7309 err = -EIO;
7310 goto done;
7311 }
7312
7313 if (wrqu->retry.flags & IW_RETRY_SHORT) {
7314 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7315 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7316 wrqu->retry.value);
7317 goto done;
7318 }
7319
7320 if (wrqu->retry.flags & IW_RETRY_LONG) {
7321 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7322 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7323 wrqu->retry.value);
7324 goto done;
7325 }
7326
7327 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7328 if (!err)
7329 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7330
7331 IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7332
7333 done:
7334 mutex_unlock(&priv->action_mutex);
7335 return err;
7336 }
7337
ipw2100_wx_get_retry(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7338 static int ipw2100_wx_get_retry(struct net_device *dev,
7339 struct iw_request_info *info,
7340 union iwreq_data *wrqu, char *extra)
7341 {
7342 /*
7343 * This can be called at any time. No action lock required
7344 */
7345
7346 struct ipw2100_priv *priv = libipw_priv(dev);
7347
7348 wrqu->retry.disabled = 0; /* can't be disabled */
7349
7350 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7351 return -EINVAL;
7352
7353 if (wrqu->retry.flags & IW_RETRY_LONG) {
7354 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7355 wrqu->retry.value = priv->long_retry_limit;
7356 } else {
7357 wrqu->retry.flags =
7358 (priv->short_retry_limit !=
7359 priv->long_retry_limit) ?
7360 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7361
7362 wrqu->retry.value = priv->short_retry_limit;
7363 }
7364
7365 IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7366
7367 return 0;
7368 }
7369
ipw2100_wx_set_scan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7370 static int ipw2100_wx_set_scan(struct net_device *dev,
7371 struct iw_request_info *info,
7372 union iwreq_data *wrqu, char *extra)
7373 {
7374 struct ipw2100_priv *priv = libipw_priv(dev);
7375 int err = 0;
7376
7377 mutex_lock(&priv->action_mutex);
7378 if (!(priv->status & STATUS_INITIALIZED)) {
7379 err = -EIO;
7380 goto done;
7381 }
7382
7383 IPW_DEBUG_WX("Initiating scan...\n");
7384
7385 priv->user_requested_scan = 1;
7386 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7387 IPW_DEBUG_WX("Start scan failed.\n");
7388
7389 /* TODO: Mark a scan as pending so when hardware initialized
7390 * a scan starts */
7391 }
7392
7393 done:
7394 mutex_unlock(&priv->action_mutex);
7395 return err;
7396 }
7397
ipw2100_wx_get_scan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7398 static int ipw2100_wx_get_scan(struct net_device *dev,
7399 struct iw_request_info *info,
7400 union iwreq_data *wrqu, char *extra)
7401 {
7402 /*
7403 * This can be called at any time. No action lock required
7404 */
7405
7406 struct ipw2100_priv *priv = libipw_priv(dev);
7407 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7408 }
7409
7410 /*
7411 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7412 */
ipw2100_wx_set_encode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * key)7413 static int ipw2100_wx_set_encode(struct net_device *dev,
7414 struct iw_request_info *info,
7415 union iwreq_data *wrqu, char *key)
7416 {
7417 /*
7418 * No check of STATUS_INITIALIZED required
7419 */
7420
7421 struct ipw2100_priv *priv = libipw_priv(dev);
7422 return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7423 }
7424
ipw2100_wx_get_encode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * key)7425 static int ipw2100_wx_get_encode(struct net_device *dev,
7426 struct iw_request_info *info,
7427 union iwreq_data *wrqu, char *key)
7428 {
7429 /*
7430 * This can be called at any time. No action lock required
7431 */
7432
7433 struct ipw2100_priv *priv = libipw_priv(dev);
7434 return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7435 }
7436
ipw2100_wx_set_power(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7437 static int ipw2100_wx_set_power(struct net_device *dev,
7438 struct iw_request_info *info,
7439 union iwreq_data *wrqu, char *extra)
7440 {
7441 struct ipw2100_priv *priv = libipw_priv(dev);
7442 int err = 0;
7443
7444 mutex_lock(&priv->action_mutex);
7445 if (!(priv->status & STATUS_INITIALIZED)) {
7446 err = -EIO;
7447 goto done;
7448 }
7449
7450 if (wrqu->power.disabled) {
7451 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7452 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7453 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7454 goto done;
7455 }
7456
7457 switch (wrqu->power.flags & IW_POWER_MODE) {
7458 case IW_POWER_ON: /* If not specified */
7459 case IW_POWER_MODE: /* If set all mask */
7460 case IW_POWER_ALL_R: /* If explicitly state all */
7461 break;
7462 default: /* Otherwise we don't support it */
7463 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7464 wrqu->power.flags);
7465 err = -EOPNOTSUPP;
7466 goto done;
7467 }
7468
7469 /* If the user hasn't specified a power management mode yet, default
7470 * to BATTERY */
7471 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7472 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7473
7474 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7475
7476 done:
7477 mutex_unlock(&priv->action_mutex);
7478 return err;
7479
7480 }
7481
ipw2100_wx_get_power(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7482 static int ipw2100_wx_get_power(struct net_device *dev,
7483 struct iw_request_info *info,
7484 union iwreq_data *wrqu, char *extra)
7485 {
7486 /*
7487 * This can be called at any time. No action lock required
7488 */
7489
7490 struct ipw2100_priv *priv = libipw_priv(dev);
7491
7492 if (!(priv->power_mode & IPW_POWER_ENABLED))
7493 wrqu->power.disabled = 1;
7494 else {
7495 wrqu->power.disabled = 0;
7496 wrqu->power.flags = 0;
7497 }
7498
7499 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7500
7501 return 0;
7502 }
7503
7504 /*
7505 * WE-18 WPA support
7506 */
7507
7508 /* SIOCSIWGENIE */
ipw2100_wx_set_genie(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7509 static int ipw2100_wx_set_genie(struct net_device *dev,
7510 struct iw_request_info *info,
7511 union iwreq_data *wrqu, char *extra)
7512 {
7513
7514 struct ipw2100_priv *priv = libipw_priv(dev);
7515 struct libipw_device *ieee = priv->ieee;
7516 u8 *buf;
7517
7518 if (!ieee->wpa_enabled)
7519 return -EOPNOTSUPP;
7520
7521 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7522 (wrqu->data.length && extra == NULL))
7523 return -EINVAL;
7524
7525 if (wrqu->data.length) {
7526 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7527 if (buf == NULL)
7528 return -ENOMEM;
7529
7530 kfree(ieee->wpa_ie);
7531 ieee->wpa_ie = buf;
7532 ieee->wpa_ie_len = wrqu->data.length;
7533 } else {
7534 kfree(ieee->wpa_ie);
7535 ieee->wpa_ie = NULL;
7536 ieee->wpa_ie_len = 0;
7537 }
7538
7539 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7540
7541 return 0;
7542 }
7543
7544 /* SIOCGIWGENIE */
ipw2100_wx_get_genie(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7545 static int ipw2100_wx_get_genie(struct net_device *dev,
7546 struct iw_request_info *info,
7547 union iwreq_data *wrqu, char *extra)
7548 {
7549 struct ipw2100_priv *priv = libipw_priv(dev);
7550 struct libipw_device *ieee = priv->ieee;
7551
7552 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7553 wrqu->data.length = 0;
7554 return 0;
7555 }
7556
7557 if (wrqu->data.length < ieee->wpa_ie_len)
7558 return -E2BIG;
7559
7560 wrqu->data.length = ieee->wpa_ie_len;
7561 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7562
7563 return 0;
7564 }
7565
7566 /* SIOCSIWAUTH */
ipw2100_wx_set_auth(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7567 static int ipw2100_wx_set_auth(struct net_device *dev,
7568 struct iw_request_info *info,
7569 union iwreq_data *wrqu, char *extra)
7570 {
7571 struct ipw2100_priv *priv = libipw_priv(dev);
7572 struct libipw_device *ieee = priv->ieee;
7573 struct iw_param *param = &wrqu->param;
7574 struct lib80211_crypt_data *crypt;
7575 unsigned long flags;
7576 int ret = 0;
7577
7578 switch (param->flags & IW_AUTH_INDEX) {
7579 case IW_AUTH_WPA_VERSION:
7580 case IW_AUTH_CIPHER_PAIRWISE:
7581 case IW_AUTH_CIPHER_GROUP:
7582 case IW_AUTH_KEY_MGMT:
7583 /*
7584 * ipw2200 does not use these parameters
7585 */
7586 break;
7587
7588 case IW_AUTH_TKIP_COUNTERMEASURES:
7589 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7590 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7591 break;
7592
7593 flags = crypt->ops->get_flags(crypt->priv);
7594
7595 if (param->value)
7596 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7597 else
7598 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7599
7600 crypt->ops->set_flags(flags, crypt->priv);
7601
7602 break;
7603
7604 case IW_AUTH_DROP_UNENCRYPTED:{
7605 /* HACK:
7606 *
7607 * wpa_supplicant calls set_wpa_enabled when the driver
7608 * is loaded and unloaded, regardless of if WPA is being
7609 * used. No other calls are made which can be used to
7610 * determine if encryption will be used or not prior to
7611 * association being expected. If encryption is not being
7612 * used, drop_unencrypted is set to false, else true -- we
7613 * can use this to determine if the CAP_PRIVACY_ON bit should
7614 * be set.
7615 */
7616 struct libipw_security sec = {
7617 .flags = SEC_ENABLED,
7618 .enabled = param->value,
7619 };
7620 priv->ieee->drop_unencrypted = param->value;
7621 /* We only change SEC_LEVEL for open mode. Others
7622 * are set by ipw_wpa_set_encryption.
7623 */
7624 if (!param->value) {
7625 sec.flags |= SEC_LEVEL;
7626 sec.level = SEC_LEVEL_0;
7627 } else {
7628 sec.flags |= SEC_LEVEL;
7629 sec.level = SEC_LEVEL_1;
7630 }
7631 if (priv->ieee->set_security)
7632 priv->ieee->set_security(priv->ieee->dev, &sec);
7633 break;
7634 }
7635
7636 case IW_AUTH_80211_AUTH_ALG:
7637 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7638 break;
7639
7640 case IW_AUTH_WPA_ENABLED:
7641 ret = ipw2100_wpa_enable(priv, param->value);
7642 break;
7643
7644 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7645 ieee->ieee802_1x = param->value;
7646 break;
7647
7648 //case IW_AUTH_ROAMING_CONTROL:
7649 case IW_AUTH_PRIVACY_INVOKED:
7650 ieee->privacy_invoked = param->value;
7651 break;
7652
7653 default:
7654 return -EOPNOTSUPP;
7655 }
7656 return ret;
7657 }
7658
7659 /* SIOCGIWAUTH */
ipw2100_wx_get_auth(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7660 static int ipw2100_wx_get_auth(struct net_device *dev,
7661 struct iw_request_info *info,
7662 union iwreq_data *wrqu, char *extra)
7663 {
7664 struct ipw2100_priv *priv = libipw_priv(dev);
7665 struct libipw_device *ieee = priv->ieee;
7666 struct lib80211_crypt_data *crypt;
7667 struct iw_param *param = &wrqu->param;
7668
7669 switch (param->flags & IW_AUTH_INDEX) {
7670 case IW_AUTH_WPA_VERSION:
7671 case IW_AUTH_CIPHER_PAIRWISE:
7672 case IW_AUTH_CIPHER_GROUP:
7673 case IW_AUTH_KEY_MGMT:
7674 /*
7675 * wpa_supplicant will control these internally
7676 */
7677 break;
7678
7679 case IW_AUTH_TKIP_COUNTERMEASURES:
7680 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7681 if (!crypt || !crypt->ops->get_flags) {
7682 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7683 "crypt not set!\n");
7684 break;
7685 }
7686
7687 param->value = (crypt->ops->get_flags(crypt->priv) &
7688 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7689
7690 break;
7691
7692 case IW_AUTH_DROP_UNENCRYPTED:
7693 param->value = ieee->drop_unencrypted;
7694 break;
7695
7696 case IW_AUTH_80211_AUTH_ALG:
7697 param->value = priv->ieee->sec.auth_mode;
7698 break;
7699
7700 case IW_AUTH_WPA_ENABLED:
7701 param->value = ieee->wpa_enabled;
7702 break;
7703
7704 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7705 param->value = ieee->ieee802_1x;
7706 break;
7707
7708 case IW_AUTH_ROAMING_CONTROL:
7709 case IW_AUTH_PRIVACY_INVOKED:
7710 param->value = ieee->privacy_invoked;
7711 break;
7712
7713 default:
7714 return -EOPNOTSUPP;
7715 }
7716 return 0;
7717 }
7718
7719 /* SIOCSIWENCODEEXT */
ipw2100_wx_set_encodeext(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7720 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7721 struct iw_request_info *info,
7722 union iwreq_data *wrqu, char *extra)
7723 {
7724 struct ipw2100_priv *priv = libipw_priv(dev);
7725 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7726 }
7727
7728 /* SIOCGIWENCODEEXT */
ipw2100_wx_get_encodeext(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7729 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7730 struct iw_request_info *info,
7731 union iwreq_data *wrqu, char *extra)
7732 {
7733 struct ipw2100_priv *priv = libipw_priv(dev);
7734 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7735 }
7736
7737 /* SIOCSIWMLME */
ipw2100_wx_set_mlme(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7738 static int ipw2100_wx_set_mlme(struct net_device *dev,
7739 struct iw_request_info *info,
7740 union iwreq_data *wrqu, char *extra)
7741 {
7742 struct ipw2100_priv *priv = libipw_priv(dev);
7743 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7744
7745 switch (mlme->cmd) {
7746 case IW_MLME_DEAUTH:
7747 // silently ignore
7748 break;
7749
7750 case IW_MLME_DISASSOC:
7751 ipw2100_disassociate_bssid(priv);
7752 break;
7753
7754 default:
7755 return -EOPNOTSUPP;
7756 }
7757 return 0;
7758 }
7759
7760 /*
7761 *
7762 * IWPRIV handlers
7763 *
7764 */
7765 #ifdef CONFIG_IPW2100_MONITOR
ipw2100_wx_set_promisc(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7766 static int ipw2100_wx_set_promisc(struct net_device *dev,
7767 struct iw_request_info *info,
7768 union iwreq_data *wrqu, char *extra)
7769 {
7770 struct ipw2100_priv *priv = libipw_priv(dev);
7771 int *parms = (int *)extra;
7772 int enable = (parms[0] > 0);
7773 int err = 0;
7774
7775 mutex_lock(&priv->action_mutex);
7776 if (!(priv->status & STATUS_INITIALIZED)) {
7777 err = -EIO;
7778 goto done;
7779 }
7780
7781 if (enable) {
7782 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7783 err = ipw2100_set_channel(priv, parms[1], 0);
7784 goto done;
7785 }
7786 priv->channel = parms[1];
7787 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7788 } else {
7789 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7790 err = ipw2100_switch_mode(priv, priv->last_mode);
7791 }
7792 done:
7793 mutex_unlock(&priv->action_mutex);
7794 return err;
7795 }
7796
ipw2100_wx_reset(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7797 static int ipw2100_wx_reset(struct net_device *dev,
7798 struct iw_request_info *info,
7799 union iwreq_data *wrqu, char *extra)
7800 {
7801 struct ipw2100_priv *priv = libipw_priv(dev);
7802 if (priv->status & STATUS_INITIALIZED)
7803 schedule_reset(priv);
7804 return 0;
7805 }
7806
7807 #endif
7808
ipw2100_wx_set_powermode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7809 static int ipw2100_wx_set_powermode(struct net_device *dev,
7810 struct iw_request_info *info,
7811 union iwreq_data *wrqu, char *extra)
7812 {
7813 struct ipw2100_priv *priv = libipw_priv(dev);
7814 int err = 0, mode = *(int *)extra;
7815
7816 mutex_lock(&priv->action_mutex);
7817 if (!(priv->status & STATUS_INITIALIZED)) {
7818 err = -EIO;
7819 goto done;
7820 }
7821
7822 if ((mode < 0) || (mode > POWER_MODES))
7823 mode = IPW_POWER_AUTO;
7824
7825 if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7826 err = ipw2100_set_power_mode(priv, mode);
7827 done:
7828 mutex_unlock(&priv->action_mutex);
7829 return err;
7830 }
7831
7832 #define MAX_POWER_STRING 80
ipw2100_wx_get_powermode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7833 static int ipw2100_wx_get_powermode(struct net_device *dev,
7834 struct iw_request_info *info,
7835 union iwreq_data *wrqu, char *extra)
7836 {
7837 /*
7838 * This can be called at any time. No action lock required
7839 */
7840
7841 struct ipw2100_priv *priv = libipw_priv(dev);
7842 int level = IPW_POWER_LEVEL(priv->power_mode);
7843 s32 timeout, period;
7844
7845 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7846 snprintf(extra, MAX_POWER_STRING,
7847 "Power save level: %d (Off)", level);
7848 } else {
7849 switch (level) {
7850 case IPW_POWER_MODE_CAM:
7851 snprintf(extra, MAX_POWER_STRING,
7852 "Power save level: %d (None)", level);
7853 break;
7854 case IPW_POWER_AUTO:
7855 snprintf(extra, MAX_POWER_STRING,
7856 "Power save level: %d (Auto)", level);
7857 break;
7858 default:
7859 timeout = timeout_duration[level - 1] / 1000;
7860 period = period_duration[level - 1] / 1000;
7861 snprintf(extra, MAX_POWER_STRING,
7862 "Power save level: %d "
7863 "(Timeout %dms, Period %dms)",
7864 level, timeout, period);
7865 }
7866 }
7867
7868 wrqu->data.length = strlen(extra) + 1;
7869
7870 return 0;
7871 }
7872
ipw2100_wx_set_preamble(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7873 static int ipw2100_wx_set_preamble(struct net_device *dev,
7874 struct iw_request_info *info,
7875 union iwreq_data *wrqu, char *extra)
7876 {
7877 struct ipw2100_priv *priv = libipw_priv(dev);
7878 int err, mode = *(int *)extra;
7879
7880 mutex_lock(&priv->action_mutex);
7881 if (!(priv->status & STATUS_INITIALIZED)) {
7882 err = -EIO;
7883 goto done;
7884 }
7885
7886 if (mode == 1)
7887 priv->config |= CFG_LONG_PREAMBLE;
7888 else if (mode == 0)
7889 priv->config &= ~CFG_LONG_PREAMBLE;
7890 else {
7891 err = -EINVAL;
7892 goto done;
7893 }
7894
7895 err = ipw2100_system_config(priv, 0);
7896
7897 done:
7898 mutex_unlock(&priv->action_mutex);
7899 return err;
7900 }
7901
ipw2100_wx_get_preamble(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7902 static int ipw2100_wx_get_preamble(struct net_device *dev,
7903 struct iw_request_info *info,
7904 union iwreq_data *wrqu, char *extra)
7905 {
7906 /*
7907 * This can be called at any time. No action lock required
7908 */
7909
7910 struct ipw2100_priv *priv = libipw_priv(dev);
7911
7912 if (priv->config & CFG_LONG_PREAMBLE)
7913 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7914 else
7915 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7916
7917 return 0;
7918 }
7919
7920 #ifdef CONFIG_IPW2100_MONITOR
ipw2100_wx_set_crc_check(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7921 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7922 struct iw_request_info *info,
7923 union iwreq_data *wrqu, char *extra)
7924 {
7925 struct ipw2100_priv *priv = libipw_priv(dev);
7926 int err, mode = *(int *)extra;
7927
7928 mutex_lock(&priv->action_mutex);
7929 if (!(priv->status & STATUS_INITIALIZED)) {
7930 err = -EIO;
7931 goto done;
7932 }
7933
7934 if (mode == 1)
7935 priv->config |= CFG_CRC_CHECK;
7936 else if (mode == 0)
7937 priv->config &= ~CFG_CRC_CHECK;
7938 else {
7939 err = -EINVAL;
7940 goto done;
7941 }
7942 err = 0;
7943
7944 done:
7945 mutex_unlock(&priv->action_mutex);
7946 return err;
7947 }
7948
ipw2100_wx_get_crc_check(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7949 static int ipw2100_wx_get_crc_check(struct net_device *dev,
7950 struct iw_request_info *info,
7951 union iwreq_data *wrqu, char *extra)
7952 {
7953 /*
7954 * This can be called at any time. No action lock required
7955 */
7956
7957 struct ipw2100_priv *priv = libipw_priv(dev);
7958
7959 if (priv->config & CFG_CRC_CHECK)
7960 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
7961 else
7962 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
7963
7964 return 0;
7965 }
7966 #endif /* CONFIG_IPW2100_MONITOR */
7967
7968 static iw_handler ipw2100_wx_handlers[] = {
7969 IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
7970 IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
7971 IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
7972 IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
7973 IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
7974 IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
7975 IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
7976 IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
7977 IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
7978 IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
7979 IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
7980 IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
7981 IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
7982 IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
7983 IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
7984 IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
7985 IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
7986 IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
7987 IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
7988 IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
7989 IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
7990 IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
7991 IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
7992 IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
7993 IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
7994 IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
7995 IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
7996 IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
7997 IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
7998 IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
7999 IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8000 IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8001 IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8002 IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8003 IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8004 };
8005
8006 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8007 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8008 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8009 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8010 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8011 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8012 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8013 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8014
8015 static const struct iw_priv_args ipw2100_private_args[] = {
8016
8017 #ifdef CONFIG_IPW2100_MONITOR
8018 {
8019 IPW2100_PRIV_SET_MONITOR,
8020 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8021 {
8022 IPW2100_PRIV_RESET,
8023 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8024 #endif /* CONFIG_IPW2100_MONITOR */
8025
8026 {
8027 IPW2100_PRIV_SET_POWER,
8028 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8029 {
8030 IPW2100_PRIV_GET_POWER,
8031 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8032 "get_power"},
8033 {
8034 IPW2100_PRIV_SET_LONGPREAMBLE,
8035 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8036 {
8037 IPW2100_PRIV_GET_LONGPREAMBLE,
8038 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8039 #ifdef CONFIG_IPW2100_MONITOR
8040 {
8041 IPW2100_PRIV_SET_CRC_CHECK,
8042 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8043 {
8044 IPW2100_PRIV_GET_CRC_CHECK,
8045 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8046 #endif /* CONFIG_IPW2100_MONITOR */
8047 };
8048
8049 static iw_handler ipw2100_private_handler[] = {
8050 #ifdef CONFIG_IPW2100_MONITOR
8051 ipw2100_wx_set_promisc,
8052 ipw2100_wx_reset,
8053 #else /* CONFIG_IPW2100_MONITOR */
8054 NULL,
8055 NULL,
8056 #endif /* CONFIG_IPW2100_MONITOR */
8057 ipw2100_wx_set_powermode,
8058 ipw2100_wx_get_powermode,
8059 ipw2100_wx_set_preamble,
8060 ipw2100_wx_get_preamble,
8061 #ifdef CONFIG_IPW2100_MONITOR
8062 ipw2100_wx_set_crc_check,
8063 ipw2100_wx_get_crc_check,
8064 #else /* CONFIG_IPW2100_MONITOR */
8065 NULL,
8066 NULL,
8067 #endif /* CONFIG_IPW2100_MONITOR */
8068 };
8069
8070 /*
8071 * Get wireless statistics.
8072 * Called by /proc/net/wireless
8073 * Also called by SIOCGIWSTATS
8074 */
ipw2100_wx_wireless_stats(struct net_device * dev)8075 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8076 {
8077 enum {
8078 POOR = 30,
8079 FAIR = 60,
8080 GOOD = 80,
8081 VERY_GOOD = 90,
8082 EXCELLENT = 95,
8083 PERFECT = 100
8084 };
8085 int rssi_qual;
8086 int tx_qual;
8087 int beacon_qual;
8088 int quality;
8089
8090 struct ipw2100_priv *priv = libipw_priv(dev);
8091 struct iw_statistics *wstats;
8092 u32 rssi, tx_retries, missed_beacons, tx_failures;
8093 u32 ord_len = sizeof(u32);
8094
8095 if (!priv)
8096 return (struct iw_statistics *)NULL;
8097
8098 wstats = &priv->wstats;
8099
8100 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8101 * ipw2100_wx_wireless_stats seems to be called before fw is
8102 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8103 * and associated; if not associcated, the values are all meaningless
8104 * anyway, so set them all to NULL and INVALID */
8105 if (!(priv->status & STATUS_ASSOCIATED)) {
8106 wstats->miss.beacon = 0;
8107 wstats->discard.retries = 0;
8108 wstats->qual.qual = 0;
8109 wstats->qual.level = 0;
8110 wstats->qual.noise = 0;
8111 wstats->qual.updated = 7;
8112 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8113 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8114 return wstats;
8115 }
8116
8117 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8118 &missed_beacons, &ord_len))
8119 goto fail_get_ordinal;
8120
8121 /* If we don't have a connection the quality and level is 0 */
8122 if (!(priv->status & STATUS_ASSOCIATED)) {
8123 wstats->qual.qual = 0;
8124 wstats->qual.level = 0;
8125 } else {
8126 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8127 &rssi, &ord_len))
8128 goto fail_get_ordinal;
8129 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8130 if (rssi < 10)
8131 rssi_qual = rssi * POOR / 10;
8132 else if (rssi < 15)
8133 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8134 else if (rssi < 20)
8135 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8136 else if (rssi < 30)
8137 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8138 10 + GOOD;
8139 else
8140 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8141 10 + VERY_GOOD;
8142
8143 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8144 &tx_retries, &ord_len))
8145 goto fail_get_ordinal;
8146
8147 if (tx_retries > 75)
8148 tx_qual = (90 - tx_retries) * POOR / 15;
8149 else if (tx_retries > 70)
8150 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8151 else if (tx_retries > 65)
8152 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8153 else if (tx_retries > 50)
8154 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8155 15 + GOOD;
8156 else
8157 tx_qual = (50 - tx_retries) *
8158 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8159
8160 if (missed_beacons > 50)
8161 beacon_qual = (60 - missed_beacons) * POOR / 10;
8162 else if (missed_beacons > 40)
8163 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8164 10 + POOR;
8165 else if (missed_beacons > 32)
8166 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8167 18 + FAIR;
8168 else if (missed_beacons > 20)
8169 beacon_qual = (32 - missed_beacons) *
8170 (VERY_GOOD - GOOD) / 20 + GOOD;
8171 else
8172 beacon_qual = (20 - missed_beacons) *
8173 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8174
8175 quality = min(tx_qual, rssi_qual);
8176 quality = min(beacon_qual, quality);
8177
8178 #ifdef CONFIG_IPW2100_DEBUG
8179 if (beacon_qual == quality)
8180 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8181 else if (tx_qual == quality)
8182 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8183 else if (quality != 100)
8184 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8185 else
8186 IPW_DEBUG_WX("Quality not clamped.\n");
8187 #endif
8188
8189 wstats->qual.qual = quality;
8190 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8191 }
8192
8193 wstats->qual.noise = 0;
8194 wstats->qual.updated = 7;
8195 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8196
8197 /* FIXME: this is percent and not a # */
8198 wstats->miss.beacon = missed_beacons;
8199
8200 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8201 &tx_failures, &ord_len))
8202 goto fail_get_ordinal;
8203 wstats->discard.retries = tx_failures;
8204
8205 return wstats;
8206
8207 fail_get_ordinal:
8208 IPW_DEBUG_WX("failed querying ordinals.\n");
8209
8210 return (struct iw_statistics *)NULL;
8211 }
8212
8213 static const struct iw_handler_def ipw2100_wx_handler_def = {
8214 .standard = ipw2100_wx_handlers,
8215 .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8216 .num_private = ARRAY_SIZE(ipw2100_private_handler),
8217 .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8218 .private = (iw_handler *) ipw2100_private_handler,
8219 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8220 .get_wireless_stats = ipw2100_wx_wireless_stats,
8221 };
8222
ipw2100_wx_event_work(struct work_struct * work)8223 static void ipw2100_wx_event_work(struct work_struct *work)
8224 {
8225 struct ipw2100_priv *priv =
8226 container_of(work, struct ipw2100_priv, wx_event_work.work);
8227 union iwreq_data wrqu;
8228 unsigned int len = ETH_ALEN;
8229
8230 if (priv->status & STATUS_STOPPING)
8231 return;
8232
8233 mutex_lock(&priv->action_mutex);
8234
8235 IPW_DEBUG_WX("enter\n");
8236
8237 mutex_unlock(&priv->action_mutex);
8238
8239 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8240
8241 /* Fetch BSSID from the hardware */
8242 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8243 priv->status & STATUS_RF_KILL_MASK ||
8244 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8245 &priv->bssid, &len)) {
8246 eth_zero_addr(wrqu.ap_addr.sa_data);
8247 } else {
8248 /* We now have the BSSID, so can finish setting to the full
8249 * associated state */
8250 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8251 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8252 priv->status &= ~STATUS_ASSOCIATING;
8253 priv->status |= STATUS_ASSOCIATED;
8254 netif_carrier_on(priv->net_dev);
8255 netif_wake_queue(priv->net_dev);
8256 }
8257
8258 if (!(priv->status & STATUS_ASSOCIATED)) {
8259 IPW_DEBUG_WX("Configuring ESSID\n");
8260 mutex_lock(&priv->action_mutex);
8261 /* This is a disassociation event, so kick the firmware to
8262 * look for another AP */
8263 if (priv->config & CFG_STATIC_ESSID)
8264 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8265 0);
8266 else
8267 ipw2100_set_essid(priv, NULL, 0, 0);
8268 mutex_unlock(&priv->action_mutex);
8269 }
8270
8271 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8272 }
8273
8274 #define IPW2100_FW_MAJOR_VERSION 1
8275 #define IPW2100_FW_MINOR_VERSION 3
8276
8277 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8278 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8279
8280 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8281 IPW2100_FW_MAJOR_VERSION)
8282
8283 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8284 "." __stringify(IPW2100_FW_MINOR_VERSION)
8285
8286 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8287
8288 /*
8289
8290 BINARY FIRMWARE HEADER FORMAT
8291
8292 offset length desc
8293 0 2 version
8294 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8295 4 4 fw_len
8296 8 4 uc_len
8297 C fw_len firmware data
8298 12 + fw_len uc_len microcode data
8299
8300 */
8301
8302 struct ipw2100_fw_header {
8303 short version;
8304 short mode;
8305 unsigned int fw_size;
8306 unsigned int uc_size;
8307 } __packed;
8308
ipw2100_mod_firmware_load(struct ipw2100_fw * fw)8309 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8310 {
8311 struct ipw2100_fw_header *h =
8312 (struct ipw2100_fw_header *)fw->fw_entry->data;
8313
8314 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8315 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8316 "(detected version id of %u). "
8317 "See Documentation/networking/device_drivers/wifi/intel/ipw2100.rst\n",
8318 h->version);
8319 return 1;
8320 }
8321
8322 fw->version = h->version;
8323 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8324 fw->fw.size = h->fw_size;
8325 fw->uc.data = fw->fw.data + h->fw_size;
8326 fw->uc.size = h->uc_size;
8327
8328 return 0;
8329 }
8330
ipw2100_get_firmware(struct ipw2100_priv * priv,struct ipw2100_fw * fw)8331 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8332 struct ipw2100_fw *fw)
8333 {
8334 char *fw_name;
8335 int rc;
8336
8337 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8338 priv->net_dev->name);
8339
8340 switch (priv->ieee->iw_mode) {
8341 case IW_MODE_ADHOC:
8342 fw_name = IPW2100_FW_NAME("-i");
8343 break;
8344 #ifdef CONFIG_IPW2100_MONITOR
8345 case IW_MODE_MONITOR:
8346 fw_name = IPW2100_FW_NAME("-p");
8347 break;
8348 #endif
8349 case IW_MODE_INFRA:
8350 default:
8351 fw_name = IPW2100_FW_NAME("");
8352 break;
8353 }
8354
8355 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8356
8357 if (rc < 0) {
8358 printk(KERN_ERR DRV_NAME ": "
8359 "%s: Firmware '%s' not available or load failed.\n",
8360 priv->net_dev->name, fw_name);
8361 return rc;
8362 }
8363 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8364 fw->fw_entry->size);
8365
8366 ipw2100_mod_firmware_load(fw);
8367
8368 return 0;
8369 }
8370
8371 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8372 #ifdef CONFIG_IPW2100_MONITOR
8373 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8374 #endif
8375 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8376
ipw2100_release_firmware(struct ipw2100_priv * priv,struct ipw2100_fw * fw)8377 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8378 struct ipw2100_fw *fw)
8379 {
8380 fw->version = 0;
8381 release_firmware(fw->fw_entry);
8382 fw->fw_entry = NULL;
8383 }
8384
ipw2100_get_fwversion(struct ipw2100_priv * priv,char * buf,size_t max)8385 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8386 size_t max)
8387 {
8388 char ver[MAX_FW_VERSION_LEN];
8389 u32 len = MAX_FW_VERSION_LEN;
8390 u32 tmp;
8391 int i;
8392 /* firmware version is an ascii string (max len of 14) */
8393 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8394 return -EIO;
8395 tmp = max;
8396 if (len >= max)
8397 len = max - 1;
8398 for (i = 0; i < len; i++)
8399 buf[i] = ver[i];
8400 buf[i] = '\0';
8401 return tmp;
8402 }
8403
8404 /*
8405 * On exit, the firmware will have been freed from the fw list
8406 */
ipw2100_fw_download(struct ipw2100_priv * priv,struct ipw2100_fw * fw)8407 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8408 {
8409 /* firmware is constructed of N contiguous entries, each entry is
8410 * structured as:
8411 *
8412 * offset sie desc
8413 * 0 4 address to write to
8414 * 4 2 length of data run
8415 * 6 length data
8416 */
8417 unsigned int addr;
8418 unsigned short len;
8419
8420 const unsigned char *firmware_data = fw->fw.data;
8421 unsigned int firmware_data_left = fw->fw.size;
8422
8423 while (firmware_data_left > 0) {
8424 addr = *(u32 *) (firmware_data);
8425 firmware_data += 4;
8426 firmware_data_left -= 4;
8427
8428 len = *(u16 *) (firmware_data);
8429 firmware_data += 2;
8430 firmware_data_left -= 2;
8431
8432 if (len > 32) {
8433 printk(KERN_ERR DRV_NAME ": "
8434 "Invalid firmware run-length of %d bytes\n",
8435 len);
8436 return -EINVAL;
8437 }
8438
8439 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8440 firmware_data += len;
8441 firmware_data_left -= len;
8442 }
8443
8444 return 0;
8445 }
8446
8447 struct symbol_alive_response {
8448 u8 cmd_id;
8449 u8 seq_num;
8450 u8 ucode_rev;
8451 u8 eeprom_valid;
8452 u16 valid_flags;
8453 u8 IEEE_addr[6];
8454 u16 flags;
8455 u16 pcb_rev;
8456 u16 clock_settle_time; // 1us LSB
8457 u16 powerup_settle_time; // 1us LSB
8458 u16 hop_settle_time; // 1us LSB
8459 u8 date[3]; // month, day, year
8460 u8 time[2]; // hours, minutes
8461 u8 ucode_valid;
8462 };
8463
ipw2100_ucode_download(struct ipw2100_priv * priv,struct ipw2100_fw * fw)8464 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8465 struct ipw2100_fw *fw)
8466 {
8467 struct net_device *dev = priv->net_dev;
8468 const unsigned char *microcode_data = fw->uc.data;
8469 unsigned int microcode_data_left = fw->uc.size;
8470 void __iomem *reg = priv->ioaddr;
8471
8472 struct symbol_alive_response response;
8473 int i, j;
8474 u8 data;
8475
8476 /* Symbol control */
8477 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8478 readl(reg);
8479 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8480 readl(reg);
8481
8482 /* HW config */
8483 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8484 readl(reg);
8485 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8486 readl(reg);
8487
8488 /* EN_CS_ACCESS bit to reset control store pointer */
8489 write_nic_byte(dev, 0x210000, 0x40);
8490 readl(reg);
8491 write_nic_byte(dev, 0x210000, 0x0);
8492 readl(reg);
8493 write_nic_byte(dev, 0x210000, 0x40);
8494 readl(reg);
8495
8496 /* copy microcode from buffer into Symbol */
8497
8498 while (microcode_data_left > 0) {
8499 write_nic_byte(dev, 0x210010, *microcode_data++);
8500 write_nic_byte(dev, 0x210010, *microcode_data++);
8501 microcode_data_left -= 2;
8502 }
8503
8504 /* EN_CS_ACCESS bit to reset the control store pointer */
8505 write_nic_byte(dev, 0x210000, 0x0);
8506 readl(reg);
8507
8508 /* Enable System (Reg 0)
8509 * first enable causes garbage in RX FIFO */
8510 write_nic_byte(dev, 0x210000, 0x0);
8511 readl(reg);
8512 write_nic_byte(dev, 0x210000, 0x80);
8513 readl(reg);
8514
8515 /* Reset External Baseband Reg */
8516 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8517 readl(reg);
8518 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8519 readl(reg);
8520
8521 /* HW Config (Reg 5) */
8522 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8523 readl(reg);
8524 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8525 readl(reg);
8526
8527 /* Enable System (Reg 0)
8528 * second enable should be OK */
8529 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8530 readl(reg);
8531 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8532
8533 /* check Symbol is enabled - upped this from 5 as it wasn't always
8534 * catching the update */
8535 for (i = 0; i < 10; i++) {
8536 udelay(10);
8537
8538 /* check Dino is enabled bit */
8539 read_nic_byte(dev, 0x210000, &data);
8540 if (data & 0x1)
8541 break;
8542 }
8543
8544 if (i == 10) {
8545 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8546 dev->name);
8547 return -EIO;
8548 }
8549
8550 /* Get Symbol alive response */
8551 for (i = 0; i < 30; i++) {
8552 /* Read alive response structure */
8553 for (j = 0;
8554 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8555 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8556
8557 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8558 break;
8559 udelay(10);
8560 }
8561
8562 if (i == 30) {
8563 printk(KERN_ERR DRV_NAME
8564 ": %s: No response from Symbol - hw not alive\n",
8565 dev->name);
8566 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8567 return -EIO;
8568 }
8569
8570 return 0;
8571 }
8572