xref: /linux/drivers/gpu/drm/bridge/ti-sn65dsi83.c (revision 2c1ed907520c50326b8f604907a8478b27881a2e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * TI SN65DSI83,84,85 driver
4  *
5  * Currently supported:
6  * - SN65DSI83
7  *   = 1x Single-link DSI ~ 1x Single-link LVDS
8  *   - Supported
9  *   - Single-link LVDS mode tested
10  * - SN65DSI84
11  *   = 1x Single-link DSI ~ 2x Single-link or 1x Dual-link LVDS
12  *   - Supported
13  *   - Dual-link LVDS mode tested
14  *   - 2x Single-link LVDS mode unsupported
15  *     (should be easy to add by someone who has the HW)
16  * - SN65DSI85
17  *   = 2x Single-link or 1x Dual-link DSI ~ 2x Single-link or 1x Dual-link LVDS
18  *   - Unsupported
19  *     (should be easy to add by someone who has the HW)
20  *
21  * Copyright (C) 2021 Marek Vasut <marex@denx.de>
22  *
23  * Based on previous work of:
24  * Valentin Raevsky <valentin@compulab.co.il>
25  * Philippe Schenker <philippe.schenker@toradex.com>
26  */
27 
28 #include <linux/bits.h>
29 #include <linux/clk.h>
30 #include <linux/gpio/consumer.h>
31 #include <linux/i2c.h>
32 #include <linux/media-bus-format.h>
33 #include <linux/module.h>
34 #include <linux/of.h>
35 #include <linux/of_graph.h>
36 #include <linux/regmap.h>
37 #include <linux/regulator/consumer.h>
38 
39 #include <drm/drm_atomic_helper.h>
40 #include <drm/drm_bridge.h>
41 #include <drm/drm_mipi_dsi.h>
42 #include <drm/drm_of.h>
43 #include <drm/drm_panel.h>
44 #include <drm/drm_print.h>
45 #include <drm/drm_probe_helper.h>
46 
47 /* ID registers */
48 #define REG_ID(n)				(0x00 + (n))
49 /* Reset and clock registers */
50 #define REG_RC_RESET				0x09
51 #define  REG_RC_RESET_SOFT_RESET		BIT(0)
52 #define REG_RC_LVDS_PLL				0x0a
53 #define  REG_RC_LVDS_PLL_PLL_EN_STAT		BIT(7)
54 #define  REG_RC_LVDS_PLL_LVDS_CLK_RANGE(n)	(((n) & 0x7) << 1)
55 #define  REG_RC_LVDS_PLL_HS_CLK_SRC_DPHY	BIT(0)
56 #define REG_RC_DSI_CLK				0x0b
57 #define  REG_RC_DSI_CLK_DSI_CLK_DIVIDER(n)	(((n) & 0x1f) << 3)
58 #define  REG_RC_DSI_CLK_REFCLK_MULTIPLIER(n)	((n) & 0x3)
59 #define REG_RC_PLL_EN				0x0d
60 #define  REG_RC_PLL_EN_PLL_EN			BIT(0)
61 /* DSI registers */
62 #define REG_DSI_LANE				0x10
63 #define  REG_DSI_LANE_LEFT_RIGHT_PIXELS		BIT(7)	/* DSI85-only */
64 #define  REG_DSI_LANE_DSI_CHANNEL_MODE_DUAL	0	/* DSI85-only */
65 #define  REG_DSI_LANE_DSI_CHANNEL_MODE_2SINGLE	BIT(6)	/* DSI85-only */
66 #define  REG_DSI_LANE_DSI_CHANNEL_MODE_SINGLE	BIT(5)
67 #define  REG_DSI_LANE_CHA_DSI_LANES(n)		(((n) & 0x3) << 3)
68 #define  REG_DSI_LANE_CHB_DSI_LANES(n)		(((n) & 0x3) << 1)
69 #define  REG_DSI_LANE_SOT_ERR_TOL_DIS		BIT(0)
70 #define REG_DSI_EQ				0x11
71 #define  REG_DSI_EQ_CHA_DSI_DATA_EQ(n)		(((n) & 0x3) << 6)
72 #define  REG_DSI_EQ_CHA_DSI_CLK_EQ(n)		(((n) & 0x3) << 2)
73 #define REG_DSI_CLK				0x12
74 #define  REG_DSI_CLK_CHA_DSI_CLK_RANGE(n)	((n) & 0xff)
75 /* LVDS registers */
76 #define REG_LVDS_FMT				0x18
77 #define  REG_LVDS_FMT_DE_NEG_POLARITY		BIT(7)
78 #define  REG_LVDS_FMT_HS_NEG_POLARITY		BIT(6)
79 #define  REG_LVDS_FMT_VS_NEG_POLARITY		BIT(5)
80 #define  REG_LVDS_FMT_LVDS_LINK_CFG		BIT(4)	/* 0:AB 1:A-only */
81 #define  REG_LVDS_FMT_CHA_24BPP_MODE		BIT(3)
82 #define  REG_LVDS_FMT_CHB_24BPP_MODE		BIT(2)
83 #define  REG_LVDS_FMT_CHA_24BPP_FORMAT1		BIT(1)
84 #define  REG_LVDS_FMT_CHB_24BPP_FORMAT1		BIT(0)
85 #define REG_LVDS_VCOM				0x19
86 #define  REG_LVDS_VCOM_CHA_LVDS_VOCM		BIT(6)
87 #define  REG_LVDS_VCOM_CHB_LVDS_VOCM		BIT(4)
88 #define  REG_LVDS_VCOM_CHA_LVDS_VOD_SWING(n)	(((n) & 0x3) << 2)
89 #define  REG_LVDS_VCOM_CHB_LVDS_VOD_SWING(n)	((n) & 0x3)
90 #define REG_LVDS_LANE				0x1a
91 #define  REG_LVDS_LANE_EVEN_ODD_SWAP		BIT(6)
92 #define  REG_LVDS_LANE_CHA_REVERSE_LVDS		BIT(5)
93 #define  REG_LVDS_LANE_CHB_REVERSE_LVDS		BIT(4)
94 #define  REG_LVDS_LANE_CHA_LVDS_TERM		BIT(1)
95 #define  REG_LVDS_LANE_CHB_LVDS_TERM		BIT(0)
96 #define REG_LVDS_CM				0x1b
97 #define  REG_LVDS_CM_CHA_LVDS_CM_ADJUST(n)	(((n) & 0x3) << 4)
98 #define  REG_LVDS_CM_CHB_LVDS_CM_ADJUST(n)	((n) & 0x3)
99 /* Video registers */
100 #define REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW	0x20
101 #define REG_VID_CHA_ACTIVE_LINE_LENGTH_HIGH	0x21
102 #define REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW	0x24
103 #define REG_VID_CHA_VERTICAL_DISPLAY_SIZE_HIGH	0x25
104 #define REG_VID_CHA_SYNC_DELAY_LOW		0x28
105 #define REG_VID_CHA_SYNC_DELAY_HIGH		0x29
106 #define REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW	0x2c
107 #define REG_VID_CHA_HSYNC_PULSE_WIDTH_HIGH	0x2d
108 #define REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW	0x30
109 #define REG_VID_CHA_VSYNC_PULSE_WIDTH_HIGH	0x31
110 #define REG_VID_CHA_HORIZONTAL_BACK_PORCH	0x34
111 #define REG_VID_CHA_VERTICAL_BACK_PORCH		0x36
112 #define REG_VID_CHA_HORIZONTAL_FRONT_PORCH	0x38
113 #define REG_VID_CHA_VERTICAL_FRONT_PORCH	0x3a
114 #define REG_VID_CHA_TEST_PATTERN		0x3c
115 /* IRQ registers */
116 #define REG_IRQ_GLOBAL				0xe0
117 #define  REG_IRQ_GLOBAL_IRQ_EN			BIT(0)
118 #define REG_IRQ_EN				0xe1
119 #define  REG_IRQ_EN_CHA_SYNCH_ERR_EN		BIT(7)
120 #define  REG_IRQ_EN_CHA_CRC_ERR_EN		BIT(6)
121 #define  REG_IRQ_EN_CHA_UNC_ECC_ERR_EN		BIT(5)
122 #define  REG_IRQ_EN_CHA_COR_ECC_ERR_EN		BIT(4)
123 #define  REG_IRQ_EN_CHA_LLP_ERR_EN		BIT(3)
124 #define  REG_IRQ_EN_CHA_SOT_BIT_ERR_EN		BIT(2)
125 #define  REG_IRQ_EN_CHA_PLL_UNLOCK_EN		BIT(0)
126 #define REG_IRQ_STAT				0xe5
127 #define  REG_IRQ_STAT_CHA_SYNCH_ERR		BIT(7)
128 #define  REG_IRQ_STAT_CHA_CRC_ERR		BIT(6)
129 #define  REG_IRQ_STAT_CHA_UNC_ECC_ERR		BIT(5)
130 #define  REG_IRQ_STAT_CHA_COR_ECC_ERR		BIT(4)
131 #define  REG_IRQ_STAT_CHA_LLP_ERR		BIT(3)
132 #define  REG_IRQ_STAT_CHA_SOT_BIT_ERR		BIT(2)
133 #define  REG_IRQ_STAT_CHA_PLL_UNLOCK		BIT(0)
134 
135 enum sn65dsi83_channel {
136 	CHANNEL_A,
137 	CHANNEL_B
138 };
139 
140 enum sn65dsi83_lvds_term {
141 	OHM_100,
142 	OHM_200
143 };
144 
145 enum sn65dsi83_model {
146 	MODEL_SN65DSI83,
147 	MODEL_SN65DSI84,
148 };
149 
150 struct sn65dsi83 {
151 	struct drm_bridge		bridge;
152 	struct device			*dev;
153 	struct regmap			*regmap;
154 	struct mipi_dsi_device		*dsi;
155 	struct drm_bridge		*panel_bridge;
156 	struct gpio_desc		*enable_gpio;
157 	struct regulator		*vcc;
158 	bool				lvds_dual_link;
159 	bool				lvds_dual_link_even_odd_swap;
160 	int				lvds_vod_swing_conf[2];
161 	int				lvds_term_conf[2];
162 };
163 
164 static const struct regmap_range sn65dsi83_readable_ranges[] = {
165 	regmap_reg_range(REG_ID(0), REG_ID(8)),
166 	regmap_reg_range(REG_RC_LVDS_PLL, REG_RC_DSI_CLK),
167 	regmap_reg_range(REG_RC_PLL_EN, REG_RC_PLL_EN),
168 	regmap_reg_range(REG_DSI_LANE, REG_DSI_CLK),
169 	regmap_reg_range(REG_LVDS_FMT, REG_LVDS_CM),
170 	regmap_reg_range(REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW,
171 			 REG_VID_CHA_ACTIVE_LINE_LENGTH_HIGH),
172 	regmap_reg_range(REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW,
173 			 REG_VID_CHA_VERTICAL_DISPLAY_SIZE_HIGH),
174 	regmap_reg_range(REG_VID_CHA_SYNC_DELAY_LOW,
175 			 REG_VID_CHA_SYNC_DELAY_HIGH),
176 	regmap_reg_range(REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW,
177 			 REG_VID_CHA_HSYNC_PULSE_WIDTH_HIGH),
178 	regmap_reg_range(REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW,
179 			 REG_VID_CHA_VSYNC_PULSE_WIDTH_HIGH),
180 	regmap_reg_range(REG_VID_CHA_HORIZONTAL_BACK_PORCH,
181 			 REG_VID_CHA_HORIZONTAL_BACK_PORCH),
182 	regmap_reg_range(REG_VID_CHA_VERTICAL_BACK_PORCH,
183 			 REG_VID_CHA_VERTICAL_BACK_PORCH),
184 	regmap_reg_range(REG_VID_CHA_HORIZONTAL_FRONT_PORCH,
185 			 REG_VID_CHA_HORIZONTAL_FRONT_PORCH),
186 	regmap_reg_range(REG_VID_CHA_VERTICAL_FRONT_PORCH,
187 			 REG_VID_CHA_VERTICAL_FRONT_PORCH),
188 	regmap_reg_range(REG_VID_CHA_TEST_PATTERN, REG_VID_CHA_TEST_PATTERN),
189 	regmap_reg_range(REG_IRQ_GLOBAL, REG_IRQ_EN),
190 	regmap_reg_range(REG_IRQ_STAT, REG_IRQ_STAT),
191 };
192 
193 static const struct regmap_access_table sn65dsi83_readable_table = {
194 	.yes_ranges = sn65dsi83_readable_ranges,
195 	.n_yes_ranges = ARRAY_SIZE(sn65dsi83_readable_ranges),
196 };
197 
198 static const struct regmap_range sn65dsi83_writeable_ranges[] = {
199 	regmap_reg_range(REG_RC_RESET, REG_RC_DSI_CLK),
200 	regmap_reg_range(REG_RC_PLL_EN, REG_RC_PLL_EN),
201 	regmap_reg_range(REG_DSI_LANE, REG_DSI_CLK),
202 	regmap_reg_range(REG_LVDS_FMT, REG_LVDS_CM),
203 	regmap_reg_range(REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW,
204 			 REG_VID_CHA_ACTIVE_LINE_LENGTH_HIGH),
205 	regmap_reg_range(REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW,
206 			 REG_VID_CHA_VERTICAL_DISPLAY_SIZE_HIGH),
207 	regmap_reg_range(REG_VID_CHA_SYNC_DELAY_LOW,
208 			 REG_VID_CHA_SYNC_DELAY_HIGH),
209 	regmap_reg_range(REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW,
210 			 REG_VID_CHA_HSYNC_PULSE_WIDTH_HIGH),
211 	regmap_reg_range(REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW,
212 			 REG_VID_CHA_VSYNC_PULSE_WIDTH_HIGH),
213 	regmap_reg_range(REG_VID_CHA_HORIZONTAL_BACK_PORCH,
214 			 REG_VID_CHA_HORIZONTAL_BACK_PORCH),
215 	regmap_reg_range(REG_VID_CHA_VERTICAL_BACK_PORCH,
216 			 REG_VID_CHA_VERTICAL_BACK_PORCH),
217 	regmap_reg_range(REG_VID_CHA_HORIZONTAL_FRONT_PORCH,
218 			 REG_VID_CHA_HORIZONTAL_FRONT_PORCH),
219 	regmap_reg_range(REG_VID_CHA_VERTICAL_FRONT_PORCH,
220 			 REG_VID_CHA_VERTICAL_FRONT_PORCH),
221 	regmap_reg_range(REG_VID_CHA_TEST_PATTERN, REG_VID_CHA_TEST_PATTERN),
222 	regmap_reg_range(REG_IRQ_GLOBAL, REG_IRQ_EN),
223 	regmap_reg_range(REG_IRQ_STAT, REG_IRQ_STAT),
224 };
225 
226 static const struct regmap_access_table sn65dsi83_writeable_table = {
227 	.yes_ranges = sn65dsi83_writeable_ranges,
228 	.n_yes_ranges = ARRAY_SIZE(sn65dsi83_writeable_ranges),
229 };
230 
231 static const struct regmap_range sn65dsi83_volatile_ranges[] = {
232 	regmap_reg_range(REG_RC_RESET, REG_RC_RESET),
233 	regmap_reg_range(REG_RC_LVDS_PLL, REG_RC_LVDS_PLL),
234 	regmap_reg_range(REG_IRQ_STAT, REG_IRQ_STAT),
235 };
236 
237 static const struct regmap_access_table sn65dsi83_volatile_table = {
238 	.yes_ranges = sn65dsi83_volatile_ranges,
239 	.n_yes_ranges = ARRAY_SIZE(sn65dsi83_volatile_ranges),
240 };
241 
242 static const struct regmap_config sn65dsi83_regmap_config = {
243 	.reg_bits = 8,
244 	.val_bits = 8,
245 	.rd_table = &sn65dsi83_readable_table,
246 	.wr_table = &sn65dsi83_writeable_table,
247 	.volatile_table = &sn65dsi83_volatile_table,
248 	.cache_type = REGCACHE_MAPLE,
249 	.max_register = REG_IRQ_STAT,
250 };
251 
252 static const int lvds_vod_swing_data_table[2][4][2] = {
253 	{	/* 100 Ohm */
254 		{ 180000, 313000 },
255 		{ 215000, 372000 },
256 		{ 250000, 430000 },
257 		{ 290000, 488000 },
258 	},
259 	{	/* 200 Ohm */
260 		{ 150000, 261000 },
261 		{ 200000, 346000 },
262 		{ 250000, 428000 },
263 		{ 300000, 511000 },
264 	},
265 };
266 
267 static const int lvds_vod_swing_clock_table[2][4][2] = {
268 	{	/* 100 Ohm */
269 		{ 140000, 244000 },
270 		{ 168000, 290000 },
271 		{ 195000, 335000 },
272 		{ 226000, 381000 },
273 	},
274 	{	/* 200 Ohm */
275 		{ 117000, 204000 },
276 		{ 156000, 270000 },
277 		{ 195000, 334000 },
278 		{ 234000, 399000 },
279 	},
280 };
281 
bridge_to_sn65dsi83(struct drm_bridge * bridge)282 static struct sn65dsi83 *bridge_to_sn65dsi83(struct drm_bridge *bridge)
283 {
284 	return container_of(bridge, struct sn65dsi83, bridge);
285 }
286 
sn65dsi83_attach(struct drm_bridge * bridge,enum drm_bridge_attach_flags flags)287 static int sn65dsi83_attach(struct drm_bridge *bridge,
288 			    enum drm_bridge_attach_flags flags)
289 {
290 	struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge);
291 
292 	return drm_bridge_attach(bridge->encoder, ctx->panel_bridge,
293 				 &ctx->bridge, flags);
294 }
295 
sn65dsi83_detach(struct drm_bridge * bridge)296 static void sn65dsi83_detach(struct drm_bridge *bridge)
297 {
298 	struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge);
299 
300 	if (!ctx->dsi)
301 		return;
302 
303 	ctx->dsi = NULL;
304 }
305 
sn65dsi83_get_lvds_range(struct sn65dsi83 * ctx,const struct drm_display_mode * mode)306 static u8 sn65dsi83_get_lvds_range(struct sn65dsi83 *ctx,
307 				   const struct drm_display_mode *mode)
308 {
309 	/*
310 	 * The encoding of the LVDS_CLK_RANGE is as follows:
311 	 * 000 - 25 MHz <= LVDS_CLK < 37.5 MHz
312 	 * 001 - 37.5 MHz <= LVDS_CLK < 62.5 MHz
313 	 * 010 - 62.5 MHz <= LVDS_CLK < 87.5 MHz
314 	 * 011 - 87.5 MHz <= LVDS_CLK < 112.5 MHz
315 	 * 100 - 112.5 MHz <= LVDS_CLK < 137.5 MHz
316 	 * 101 - 137.5 MHz <= LVDS_CLK <= 154 MHz
317 	 * which is a range of 12.5MHz..162.5MHz in 50MHz steps, except that
318 	 * the ends of the ranges are clamped to the supported range. Since
319 	 * sn65dsi83_mode_valid() already filters the valid modes and limits
320 	 * the clock to 25..154 MHz, the range calculation can be simplified
321 	 * as follows:
322 	 */
323 	int mode_clock = mode->clock;
324 
325 	if (ctx->lvds_dual_link)
326 		mode_clock /= 2;
327 
328 	return (mode_clock - 12500) / 25000;
329 }
330 
sn65dsi83_get_dsi_range(struct sn65dsi83 * ctx,const struct drm_display_mode * mode)331 static u8 sn65dsi83_get_dsi_range(struct sn65dsi83 *ctx,
332 				  const struct drm_display_mode *mode)
333 {
334 	/*
335 	 * The encoding of the CHA_DSI_CLK_RANGE is as follows:
336 	 * 0x00 through 0x07 - Reserved
337 	 * 0x08 - 40 <= DSI_CLK < 45 MHz
338 	 * 0x09 - 45 <= DSI_CLK < 50 MHz
339 	 * ...
340 	 * 0x63 - 495 <= DSI_CLK < 500 MHz
341 	 * 0x64 - 500 MHz
342 	 * 0x65 through 0xFF - Reserved
343 	 * which is DSI clock in 5 MHz steps, clamped to 40..500 MHz.
344 	 * The DSI clock are calculated as:
345 	 *  DSI_CLK = mode clock * bpp / dsi_data_lanes / 2
346 	 * the 2 is there because the bus is DDR.
347 	 */
348 	return DIV_ROUND_UP(clamp((unsigned int)mode->clock *
349 			    mipi_dsi_pixel_format_to_bpp(ctx->dsi->format) /
350 			    ctx->dsi->lanes / 2, 40000U, 500000U), 5000U);
351 }
352 
sn65dsi83_get_dsi_div(struct sn65dsi83 * ctx)353 static u8 sn65dsi83_get_dsi_div(struct sn65dsi83 *ctx)
354 {
355 	/* The divider is (DSI_CLK / LVDS_CLK) - 1, which really is: */
356 	unsigned int dsi_div = mipi_dsi_pixel_format_to_bpp(ctx->dsi->format);
357 
358 	dsi_div /= ctx->dsi->lanes;
359 
360 	if (!ctx->lvds_dual_link)
361 		dsi_div /= 2;
362 
363 	return dsi_div - 1;
364 }
365 
sn65dsi83_atomic_pre_enable(struct drm_bridge * bridge,struct drm_bridge_state * old_bridge_state)366 static void sn65dsi83_atomic_pre_enable(struct drm_bridge *bridge,
367 					struct drm_bridge_state *old_bridge_state)
368 {
369 	struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge);
370 	struct drm_atomic_state *state = old_bridge_state->base.state;
371 	const struct drm_bridge_state *bridge_state;
372 	const struct drm_crtc_state *crtc_state;
373 	const struct drm_display_mode *mode;
374 	struct drm_connector *connector;
375 	struct drm_crtc *crtc;
376 	bool lvds_format_24bpp;
377 	bool lvds_format_jeida;
378 	unsigned int pval;
379 	__le16 le16val;
380 	u16 val;
381 	int ret;
382 
383 	ret = regulator_enable(ctx->vcc);
384 	if (ret) {
385 		dev_err(ctx->dev, "Failed to enable vcc: %d\n", ret);
386 		return;
387 	}
388 
389 	/* Deassert reset */
390 	gpiod_set_value_cansleep(ctx->enable_gpio, 1);
391 	usleep_range(10000, 11000);
392 
393 	/* Get the LVDS format from the bridge state. */
394 	bridge_state = drm_atomic_get_new_bridge_state(state, bridge);
395 
396 	switch (bridge_state->output_bus_cfg.format) {
397 	case MEDIA_BUS_FMT_RGB666_1X7X3_SPWG:
398 		lvds_format_24bpp = false;
399 		lvds_format_jeida = true;
400 		break;
401 	case MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA:
402 		lvds_format_24bpp = true;
403 		lvds_format_jeida = true;
404 		break;
405 	case MEDIA_BUS_FMT_RGB888_1X7X4_SPWG:
406 		lvds_format_24bpp = true;
407 		lvds_format_jeida = false;
408 		break;
409 	default:
410 		/*
411 		 * Some bridges still don't set the correct
412 		 * LVDS bus pixel format, use SPWG24 default
413 		 * format until those are fixed.
414 		 */
415 		lvds_format_24bpp = true;
416 		lvds_format_jeida = false;
417 		dev_warn(ctx->dev,
418 			 "Unsupported LVDS bus format 0x%04x, please check output bridge driver. Falling back to SPWG24.\n",
419 			 bridge_state->output_bus_cfg.format);
420 		break;
421 	}
422 
423 	/*
424 	 * Retrieve the CRTC adjusted mode. This requires a little dance to go
425 	 * from the bridge to the encoder, to the connector and to the CRTC.
426 	 */
427 	connector = drm_atomic_get_new_connector_for_encoder(state,
428 							     bridge->encoder);
429 	crtc = drm_atomic_get_new_connector_state(state, connector)->crtc;
430 	crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
431 	mode = &crtc_state->adjusted_mode;
432 
433 	/* Clear reset, disable PLL */
434 	regmap_write(ctx->regmap, REG_RC_RESET, 0x00);
435 	regmap_write(ctx->regmap, REG_RC_PLL_EN, 0x00);
436 
437 	/* Reference clock derived from DSI link clock. */
438 	regmap_write(ctx->regmap, REG_RC_LVDS_PLL,
439 		     REG_RC_LVDS_PLL_LVDS_CLK_RANGE(sn65dsi83_get_lvds_range(ctx, mode)) |
440 		     REG_RC_LVDS_PLL_HS_CLK_SRC_DPHY);
441 	regmap_write(ctx->regmap, REG_DSI_CLK,
442 		     REG_DSI_CLK_CHA_DSI_CLK_RANGE(sn65dsi83_get_dsi_range(ctx, mode)));
443 	regmap_write(ctx->regmap, REG_RC_DSI_CLK,
444 		     REG_RC_DSI_CLK_DSI_CLK_DIVIDER(sn65dsi83_get_dsi_div(ctx)));
445 
446 	/* Set number of DSI lanes and LVDS link config. */
447 	regmap_write(ctx->regmap, REG_DSI_LANE,
448 		     REG_DSI_LANE_DSI_CHANNEL_MODE_SINGLE |
449 		     REG_DSI_LANE_CHA_DSI_LANES(~(ctx->dsi->lanes - 1)) |
450 		     /* CHB is DSI85-only, set to default on DSI83/DSI84 */
451 		     REG_DSI_LANE_CHB_DSI_LANES(3));
452 	/* No equalization. */
453 	regmap_write(ctx->regmap, REG_DSI_EQ, 0x00);
454 
455 	/* Set up sync signal polarity. */
456 	val = (mode->flags & DRM_MODE_FLAG_NHSYNC ?
457 	       REG_LVDS_FMT_HS_NEG_POLARITY : 0) |
458 	      (mode->flags & DRM_MODE_FLAG_NVSYNC ?
459 	       REG_LVDS_FMT_VS_NEG_POLARITY : 0);
460 
461 	/* Set up bits-per-pixel, 18bpp or 24bpp. */
462 	if (lvds_format_24bpp) {
463 		val |= REG_LVDS_FMT_CHA_24BPP_MODE;
464 		if (ctx->lvds_dual_link)
465 			val |= REG_LVDS_FMT_CHB_24BPP_MODE;
466 	}
467 
468 	/* Set up LVDS format, JEIDA/Format 1 or SPWG/Format 2 */
469 	if (lvds_format_jeida) {
470 		val |= REG_LVDS_FMT_CHA_24BPP_FORMAT1;
471 		if (ctx->lvds_dual_link)
472 			val |= REG_LVDS_FMT_CHB_24BPP_FORMAT1;
473 	}
474 
475 	/* Set up LVDS output config (DSI84,DSI85) */
476 	if (!ctx->lvds_dual_link)
477 		val |= REG_LVDS_FMT_LVDS_LINK_CFG;
478 
479 	regmap_write(ctx->regmap, REG_LVDS_FMT, val);
480 	regmap_write(ctx->regmap, REG_LVDS_VCOM,
481 			REG_LVDS_VCOM_CHA_LVDS_VOD_SWING(ctx->lvds_vod_swing_conf[CHANNEL_A]) |
482 			REG_LVDS_VCOM_CHB_LVDS_VOD_SWING(ctx->lvds_vod_swing_conf[CHANNEL_B]));
483 	regmap_write(ctx->regmap, REG_LVDS_LANE,
484 		     (ctx->lvds_dual_link_even_odd_swap ?
485 		      REG_LVDS_LANE_EVEN_ODD_SWAP : 0) |
486 		     (ctx->lvds_term_conf[CHANNEL_A] ?
487 			  REG_LVDS_LANE_CHA_LVDS_TERM : 0) |
488 		     (ctx->lvds_term_conf[CHANNEL_B] ?
489 			  REG_LVDS_LANE_CHB_LVDS_TERM : 0));
490 	regmap_write(ctx->regmap, REG_LVDS_CM, 0x00);
491 
492 	le16val = cpu_to_le16(mode->hdisplay);
493 	regmap_bulk_write(ctx->regmap, REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW,
494 			  &le16val, 2);
495 	le16val = cpu_to_le16(mode->vdisplay);
496 	regmap_bulk_write(ctx->regmap, REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW,
497 			  &le16val, 2);
498 	/* 32 + 1 pixel clock to ensure proper operation */
499 	le16val = cpu_to_le16(32 + 1);
500 	regmap_bulk_write(ctx->regmap, REG_VID_CHA_SYNC_DELAY_LOW, &le16val, 2);
501 	le16val = cpu_to_le16(mode->hsync_end - mode->hsync_start);
502 	regmap_bulk_write(ctx->regmap, REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW,
503 			  &le16val, 2);
504 	le16val = cpu_to_le16(mode->vsync_end - mode->vsync_start);
505 	regmap_bulk_write(ctx->regmap, REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW,
506 			  &le16val, 2);
507 	regmap_write(ctx->regmap, REG_VID_CHA_HORIZONTAL_BACK_PORCH,
508 		     mode->htotal - mode->hsync_end);
509 	regmap_write(ctx->regmap, REG_VID_CHA_VERTICAL_BACK_PORCH,
510 		     mode->vtotal - mode->vsync_end);
511 	regmap_write(ctx->regmap, REG_VID_CHA_HORIZONTAL_FRONT_PORCH,
512 		     mode->hsync_start - mode->hdisplay);
513 	regmap_write(ctx->regmap, REG_VID_CHA_VERTICAL_FRONT_PORCH,
514 		     mode->vsync_start - mode->vdisplay);
515 	regmap_write(ctx->regmap, REG_VID_CHA_TEST_PATTERN, 0x00);
516 
517 	/* Enable PLL */
518 	regmap_write(ctx->regmap, REG_RC_PLL_EN, REG_RC_PLL_EN_PLL_EN);
519 	usleep_range(3000, 4000);
520 	ret = regmap_read_poll_timeout(ctx->regmap, REG_RC_LVDS_PLL, pval,
521 				       pval & REG_RC_LVDS_PLL_PLL_EN_STAT,
522 				       1000, 100000);
523 	if (ret) {
524 		dev_err(ctx->dev, "failed to lock PLL, ret=%i\n", ret);
525 		/* On failure, disable PLL again and exit. */
526 		regmap_write(ctx->regmap, REG_RC_PLL_EN, 0x00);
527 		return;
528 	}
529 
530 	/* Trigger reset after CSR register update. */
531 	regmap_write(ctx->regmap, REG_RC_RESET, REG_RC_RESET_SOFT_RESET);
532 
533 	/* Wait for 10ms after soft reset as specified in datasheet */
534 	usleep_range(10000, 12000);
535 }
536 
sn65dsi83_atomic_enable(struct drm_bridge * bridge,struct drm_bridge_state * old_bridge_state)537 static void sn65dsi83_atomic_enable(struct drm_bridge *bridge,
538 				    struct drm_bridge_state *old_bridge_state)
539 {
540 	struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge);
541 	unsigned int pval;
542 
543 	/* Clear all errors that got asserted during initialization. */
544 	regmap_read(ctx->regmap, REG_IRQ_STAT, &pval);
545 	regmap_write(ctx->regmap, REG_IRQ_STAT, pval);
546 
547 	/* Wait for 1ms and check for errors in status register */
548 	usleep_range(1000, 1100);
549 	regmap_read(ctx->regmap, REG_IRQ_STAT, &pval);
550 	if (pval)
551 		dev_err(ctx->dev, "Unexpected link status 0x%02x\n", pval);
552 }
553 
sn65dsi83_atomic_disable(struct drm_bridge * bridge,struct drm_bridge_state * old_bridge_state)554 static void sn65dsi83_atomic_disable(struct drm_bridge *bridge,
555 				     struct drm_bridge_state *old_bridge_state)
556 {
557 	struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge);
558 	int ret;
559 
560 	/* Put the chip in reset, pull EN line low, and assure 10ms reset low timing. */
561 	gpiod_set_value_cansleep(ctx->enable_gpio, 0);
562 	usleep_range(10000, 11000);
563 
564 	ret = regulator_disable(ctx->vcc);
565 	if (ret)
566 		dev_err(ctx->dev, "Failed to disable vcc: %d\n", ret);
567 
568 	regcache_mark_dirty(ctx->regmap);
569 }
570 
571 static enum drm_mode_status
sn65dsi83_mode_valid(struct drm_bridge * bridge,const struct drm_display_info * info,const struct drm_display_mode * mode)572 sn65dsi83_mode_valid(struct drm_bridge *bridge,
573 		     const struct drm_display_info *info,
574 		     const struct drm_display_mode *mode)
575 {
576 	/* LVDS output clock range 25..154 MHz */
577 	if (mode->clock < 25000)
578 		return MODE_CLOCK_LOW;
579 	if (mode->clock > 154000)
580 		return MODE_CLOCK_HIGH;
581 
582 	return MODE_OK;
583 }
584 
585 #define MAX_INPUT_SEL_FORMATS	1
586 
587 static u32 *
sn65dsi83_atomic_get_input_bus_fmts(struct drm_bridge * bridge,struct drm_bridge_state * bridge_state,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state,u32 output_fmt,unsigned int * num_input_fmts)588 sn65dsi83_atomic_get_input_bus_fmts(struct drm_bridge *bridge,
589 				    struct drm_bridge_state *bridge_state,
590 				    struct drm_crtc_state *crtc_state,
591 				    struct drm_connector_state *conn_state,
592 				    u32 output_fmt,
593 				    unsigned int *num_input_fmts)
594 {
595 	u32 *input_fmts;
596 
597 	*num_input_fmts = 0;
598 
599 	input_fmts = kcalloc(MAX_INPUT_SEL_FORMATS, sizeof(*input_fmts),
600 			     GFP_KERNEL);
601 	if (!input_fmts)
602 		return NULL;
603 
604 	/* This is the DSI-end bus format */
605 	input_fmts[0] = MEDIA_BUS_FMT_RGB888_1X24;
606 	*num_input_fmts = 1;
607 
608 	return input_fmts;
609 }
610 
611 static const struct drm_bridge_funcs sn65dsi83_funcs = {
612 	.attach			= sn65dsi83_attach,
613 	.detach			= sn65dsi83_detach,
614 	.atomic_enable		= sn65dsi83_atomic_enable,
615 	.atomic_pre_enable	= sn65dsi83_atomic_pre_enable,
616 	.atomic_disable		= sn65dsi83_atomic_disable,
617 	.mode_valid		= sn65dsi83_mode_valid,
618 
619 	.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
620 	.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
621 	.atomic_reset = drm_atomic_helper_bridge_reset,
622 	.atomic_get_input_bus_fmts = sn65dsi83_atomic_get_input_bus_fmts,
623 };
624 
sn65dsi83_select_lvds_vod_swing(struct device * dev,u32 lvds_vod_swing_data[2],u32 lvds_vod_swing_clk[2],u8 lvds_term)625 static int sn65dsi83_select_lvds_vod_swing(struct device *dev,
626 	u32 lvds_vod_swing_data[2], u32 lvds_vod_swing_clk[2], u8 lvds_term)
627 {
628 	int i;
629 
630 	for (i = 0; i <= 3; i++) {
631 		if (lvds_vod_swing_data_table[lvds_term][i][0]  >= lvds_vod_swing_data[0] &&
632 		    lvds_vod_swing_data_table[lvds_term][i][1]  <= lvds_vod_swing_data[1] &&
633 		    lvds_vod_swing_clock_table[lvds_term][i][0] >= lvds_vod_swing_clk[0] &&
634 		    lvds_vod_swing_clock_table[lvds_term][i][1] <= lvds_vod_swing_clk[1])
635 			return i;
636 	}
637 
638 	dev_err(dev, "failed to find appropriate LVDS_VOD_SWING configuration\n");
639 	return -EINVAL;
640 }
641 
sn65dsi83_parse_lvds_endpoint(struct sn65dsi83 * ctx,int channel)642 static int sn65dsi83_parse_lvds_endpoint(struct sn65dsi83 *ctx, int channel)
643 {
644 	struct device *dev = ctx->dev;
645 	struct device_node *endpoint;
646 	int endpoint_reg;
647 	/* Set so the property can be freely selected if not defined */
648 	u32 lvds_vod_swing_data[2] = { 0, 1000000 };
649 	u32 lvds_vod_swing_clk[2] = { 0, 1000000 };
650 	/* Set default near end terminataion to 200 Ohm */
651 	u32 lvds_term = 200;
652 	int lvds_vod_swing_conf;
653 	int ret = 0;
654 	int ret_data;
655 	int ret_clock;
656 
657 	if (channel == CHANNEL_A)
658 		endpoint_reg = 2;
659 	else
660 		endpoint_reg = 3;
661 
662 	endpoint = of_graph_get_endpoint_by_regs(dev->of_node, endpoint_reg, -1);
663 
664 	of_property_read_u32(endpoint, "ti,lvds-termination-ohms", &lvds_term);
665 	if (lvds_term == 100)
666 		ctx->lvds_term_conf[channel] = OHM_100;
667 	else if (lvds_term == 200)
668 		ctx->lvds_term_conf[channel] = OHM_200;
669 	else {
670 		ret = -EINVAL;
671 		goto exit;
672 	}
673 
674 	ret_data = of_property_read_u32_array(endpoint, "ti,lvds-vod-swing-data-microvolt",
675 					lvds_vod_swing_data, ARRAY_SIZE(lvds_vod_swing_data));
676 	if (ret_data != 0 && ret_data != -EINVAL) {
677 		ret = ret_data;
678 		goto exit;
679 	}
680 
681 	ret_clock = of_property_read_u32_array(endpoint, "ti,lvds-vod-swing-clock-microvolt",
682 					lvds_vod_swing_clk, ARRAY_SIZE(lvds_vod_swing_clk));
683 	if (ret_clock != 0 && ret_clock != -EINVAL) {
684 		ret = ret_clock;
685 		goto exit;
686 	}
687 
688 	/* Use default value if both properties are NOT defined. */
689 	if (ret_data == -EINVAL && ret_clock == -EINVAL)
690 		lvds_vod_swing_conf = 0x1;
691 
692 	/* Use lookup table if any of the two properties is defined. */
693 	if (!ret_data || !ret_clock) {
694 		lvds_vod_swing_conf = sn65dsi83_select_lvds_vod_swing(dev, lvds_vod_swing_data,
695 						lvds_vod_swing_clk, ctx->lvds_term_conf[channel]);
696 		if (lvds_vod_swing_conf < 0) {
697 			ret = lvds_vod_swing_conf;
698 			goto exit;
699 		}
700 	}
701 
702 	ctx->lvds_vod_swing_conf[channel] = lvds_vod_swing_conf;
703 	ret = 0;
704 exit:
705 	of_node_put(endpoint);
706 	return ret;
707 }
708 
sn65dsi83_parse_dt(struct sn65dsi83 * ctx,enum sn65dsi83_model model)709 static int sn65dsi83_parse_dt(struct sn65dsi83 *ctx, enum sn65dsi83_model model)
710 {
711 	struct drm_bridge *panel_bridge;
712 	struct device *dev = ctx->dev;
713 	int ret;
714 
715 	ret = sn65dsi83_parse_lvds_endpoint(ctx, CHANNEL_A);
716 	if (ret < 0)
717 		return ret;
718 
719 	ret = sn65dsi83_parse_lvds_endpoint(ctx, CHANNEL_B);
720 	if (ret < 0)
721 		return ret;
722 
723 	ctx->lvds_dual_link = false;
724 	ctx->lvds_dual_link_even_odd_swap = false;
725 	if (model != MODEL_SN65DSI83) {
726 		struct device_node *port2, *port3;
727 		int dual_link;
728 
729 		port2 = of_graph_get_port_by_id(dev->of_node, 2);
730 		port3 = of_graph_get_port_by_id(dev->of_node, 3);
731 		dual_link = drm_of_lvds_get_dual_link_pixel_order(port2, port3);
732 		of_node_put(port2);
733 		of_node_put(port3);
734 
735 		if (dual_link == DRM_LVDS_DUAL_LINK_ODD_EVEN_PIXELS) {
736 			ctx->lvds_dual_link = true;
737 			/* Odd pixels to LVDS Channel A, even pixels to B */
738 			ctx->lvds_dual_link_even_odd_swap = false;
739 		} else if (dual_link == DRM_LVDS_DUAL_LINK_EVEN_ODD_PIXELS) {
740 			ctx->lvds_dual_link = true;
741 			/* Even pixels to LVDS Channel A, odd pixels to B */
742 			ctx->lvds_dual_link_even_odd_swap = true;
743 		}
744 	}
745 
746 	panel_bridge = devm_drm_of_get_bridge(dev, dev->of_node, 2, 0);
747 	if (IS_ERR(panel_bridge))
748 		return dev_err_probe(dev, PTR_ERR(panel_bridge), "Failed to get panel bridge\n");
749 
750 	ctx->panel_bridge = panel_bridge;
751 
752 	ctx->vcc = devm_regulator_get(dev, "vcc");
753 	if (IS_ERR(ctx->vcc))
754 		return dev_err_probe(dev, PTR_ERR(ctx->vcc),
755 				     "Failed to get supply 'vcc'\n");
756 
757 	return 0;
758 }
759 
sn65dsi83_host_attach(struct sn65dsi83 * ctx)760 static int sn65dsi83_host_attach(struct sn65dsi83 *ctx)
761 {
762 	struct device *dev = ctx->dev;
763 	struct device_node *host_node;
764 	struct device_node *endpoint;
765 	struct mipi_dsi_device *dsi;
766 	struct mipi_dsi_host *host;
767 	const struct mipi_dsi_device_info info = {
768 		.type = "sn65dsi83",
769 		.channel = 0,
770 		.node = NULL,
771 	};
772 	int dsi_lanes, ret;
773 
774 	endpoint = of_graph_get_endpoint_by_regs(dev->of_node, 0, -1);
775 	dsi_lanes = drm_of_get_data_lanes_count(endpoint, 1, 4);
776 	host_node = of_graph_get_remote_port_parent(endpoint);
777 	host = of_find_mipi_dsi_host_by_node(host_node);
778 	of_node_put(host_node);
779 	of_node_put(endpoint);
780 
781 	if (!host)
782 		return -EPROBE_DEFER;
783 
784 	if (dsi_lanes < 0)
785 		return dsi_lanes;
786 
787 	dsi = devm_mipi_dsi_device_register_full(dev, host, &info);
788 	if (IS_ERR(dsi))
789 		return dev_err_probe(dev, PTR_ERR(dsi),
790 				     "failed to create dsi device\n");
791 
792 	ctx->dsi = dsi;
793 
794 	dsi->lanes = dsi_lanes;
795 	dsi->format = MIPI_DSI_FMT_RGB888;
796 	dsi->mode_flags = MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_VIDEO_BURST |
797 			  MIPI_DSI_MODE_VIDEO_NO_HFP | MIPI_DSI_MODE_VIDEO_NO_HBP |
798 			  MIPI_DSI_MODE_VIDEO_NO_HSA | MIPI_DSI_MODE_NO_EOT_PACKET;
799 
800 	ret = devm_mipi_dsi_attach(dev, dsi);
801 	if (ret < 0) {
802 		dev_err(dev, "failed to attach dsi to host: %d\n", ret);
803 		return ret;
804 	}
805 
806 	return 0;
807 }
808 
sn65dsi83_probe(struct i2c_client * client)809 static int sn65dsi83_probe(struct i2c_client *client)
810 {
811 	const struct i2c_device_id *id = i2c_client_get_device_id(client);
812 	struct device *dev = &client->dev;
813 	enum sn65dsi83_model model;
814 	struct sn65dsi83 *ctx;
815 	int ret;
816 
817 	ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL);
818 	if (!ctx)
819 		return -ENOMEM;
820 
821 	ctx->dev = dev;
822 
823 	if (dev->of_node) {
824 		model = (enum sn65dsi83_model)(uintptr_t)
825 			of_device_get_match_data(dev);
826 	} else {
827 		model = id->driver_data;
828 	}
829 
830 	/* Put the chip in reset, pull EN line low, and assure 10ms reset low timing. */
831 	ctx->enable_gpio = devm_gpiod_get_optional(ctx->dev, "enable",
832 						   GPIOD_OUT_LOW);
833 	if (IS_ERR(ctx->enable_gpio))
834 		return dev_err_probe(dev, PTR_ERR(ctx->enable_gpio), "failed to get enable GPIO\n");
835 
836 	usleep_range(10000, 11000);
837 
838 	ret = sn65dsi83_parse_dt(ctx, model);
839 	if (ret)
840 		return ret;
841 
842 	ctx->regmap = devm_regmap_init_i2c(client, &sn65dsi83_regmap_config);
843 	if (IS_ERR(ctx->regmap))
844 		return dev_err_probe(dev, PTR_ERR(ctx->regmap), "failed to get regmap\n");
845 
846 	dev_set_drvdata(dev, ctx);
847 	i2c_set_clientdata(client, ctx);
848 
849 	ctx->bridge.funcs = &sn65dsi83_funcs;
850 	ctx->bridge.of_node = dev->of_node;
851 	ctx->bridge.pre_enable_prev_first = true;
852 	drm_bridge_add(&ctx->bridge);
853 
854 	ret = sn65dsi83_host_attach(ctx);
855 	if (ret) {
856 		dev_err_probe(dev, ret, "failed to attach DSI host\n");
857 		goto err_remove_bridge;
858 	}
859 
860 	return 0;
861 
862 err_remove_bridge:
863 	drm_bridge_remove(&ctx->bridge);
864 	return ret;
865 }
866 
sn65dsi83_remove(struct i2c_client * client)867 static void sn65dsi83_remove(struct i2c_client *client)
868 {
869 	struct sn65dsi83 *ctx = i2c_get_clientdata(client);
870 
871 	drm_bridge_remove(&ctx->bridge);
872 }
873 
874 static const struct i2c_device_id sn65dsi83_id[] = {
875 	{ "ti,sn65dsi83", MODEL_SN65DSI83 },
876 	{ "ti,sn65dsi84", MODEL_SN65DSI84 },
877 	{},
878 };
879 MODULE_DEVICE_TABLE(i2c, sn65dsi83_id);
880 
881 static const struct of_device_id sn65dsi83_match_table[] = {
882 	{ .compatible = "ti,sn65dsi83", .data = (void *)MODEL_SN65DSI83 },
883 	{ .compatible = "ti,sn65dsi84", .data = (void *)MODEL_SN65DSI84 },
884 	{},
885 };
886 MODULE_DEVICE_TABLE(of, sn65dsi83_match_table);
887 
888 static struct i2c_driver sn65dsi83_driver = {
889 	.probe = sn65dsi83_probe,
890 	.remove = sn65dsi83_remove,
891 	.id_table = sn65dsi83_id,
892 	.driver = {
893 		.name = "sn65dsi83",
894 		.of_match_table = sn65dsi83_match_table,
895 	},
896 };
897 module_i2c_driver(sn65dsi83_driver);
898 
899 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
900 MODULE_DESCRIPTION("TI SN65DSI83 DSI to LVDS bridge driver");
901 MODULE_LICENSE("GPL v2");
902