1 // SPDX-License-Identifier: GPL-2.0+
2 /* Renesas R-Car CAN FD device driver
3 *
4 * Copyright (C) 2015 Renesas Electronics Corp.
5 */
6
7 /* The R-Car CAN FD controller can operate in either one of the below two modes
8 * - CAN FD only mode
9 * - Classical CAN (CAN 2.0) only mode
10 *
11 * This driver puts the controller in CAN FD only mode by default. In this
12 * mode, the controller acts as a CAN FD node that can also interoperate with
13 * CAN 2.0 nodes.
14 *
15 * To switch the controller to Classical CAN (CAN 2.0) only mode, add
16 * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is
17 * also required to switch modes.
18 *
19 * Note: The h/w manual register naming convention is clumsy and not acceptable
20 * to use as it is in the driver. However, those names are added as comments
21 * wherever it is modified to a readable name.
22 */
23
24 #include <linux/bitmap.h>
25 #include <linux/bitops.h>
26 #include <linux/can/dev.h>
27 #include <linux/clk.h>
28 #include <linux/errno.h>
29 #include <linux/ethtool.h>
30 #include <linux/interrupt.h>
31 #include <linux/iopoll.h>
32 #include <linux/kernel.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/netdevice.h>
36 #include <linux/of.h>
37 #include <linux/phy/phy.h>
38 #include <linux/platform_device.h>
39 #include <linux/reset.h>
40 #include <linux/types.h>
41
42 #define RCANFD_DRV_NAME "rcar_canfd"
43
44 /* Global register bits */
45
46 /* RSCFDnCFDGRMCFG */
47 #define RCANFD_GRMCFG_RCMC BIT(0)
48
49 /* RSCFDnCFDGCFG / RSCFDnGCFG */
50 #define RCANFD_GCFG_EEFE BIT(6)
51 #define RCANFD_GCFG_CMPOC BIT(5) /* CAN FD only */
52 #define RCANFD_GCFG_DCS BIT(4)
53 #define RCANFD_GCFG_DCE BIT(1)
54 #define RCANFD_GCFG_TPRI BIT(0)
55
56 /* RSCFDnCFDGCTR / RSCFDnGCTR */
57 #define RCANFD_GCTR_TSRST BIT(16)
58 #define RCANFD_GCTR_CFMPOFIE BIT(11) /* CAN FD only */
59 #define RCANFD_GCTR_THLEIE BIT(10)
60 #define RCANFD_GCTR_MEIE BIT(9)
61 #define RCANFD_GCTR_DEIE BIT(8)
62 #define RCANFD_GCTR_GSLPR BIT(2)
63 #define RCANFD_GCTR_GMDC_MASK (0x3)
64 #define RCANFD_GCTR_GMDC_GOPM (0x0)
65 #define RCANFD_GCTR_GMDC_GRESET (0x1)
66 #define RCANFD_GCTR_GMDC_GTEST (0x2)
67
68 /* RSCFDnCFDGSTS / RSCFDnGSTS */
69 #define RCANFD_GSTS_GRAMINIT BIT(3)
70 #define RCANFD_GSTS_GSLPSTS BIT(2)
71 #define RCANFD_GSTS_GHLTSTS BIT(1)
72 #define RCANFD_GSTS_GRSTSTS BIT(0)
73 /* Non-operational status */
74 #define RCANFD_GSTS_GNOPM (BIT(0) | BIT(1) | BIT(2) | BIT(3))
75
76 /* RSCFDnCFDGERFL / RSCFDnGERFL */
77 #define RCANFD_GERFL_EEF0_7 GENMASK(23, 16)
78 #define RCANFD_GERFL_EEF(ch) BIT(16 + (ch))
79 #define RCANFD_GERFL_CMPOF BIT(3) /* CAN FD only */
80 #define RCANFD_GERFL_THLES BIT(2)
81 #define RCANFD_GERFL_MES BIT(1)
82 #define RCANFD_GERFL_DEF BIT(0)
83
84 #define RCANFD_GERFL_ERR(gpriv, x) \
85 ((x) & (reg_gen4(gpriv, RCANFD_GERFL_EEF0_7, \
86 RCANFD_GERFL_EEF(0) | RCANFD_GERFL_EEF(1)) | \
87 RCANFD_GERFL_MES | \
88 ((gpriv)->fdmode ? RCANFD_GERFL_CMPOF : 0)))
89
90 /* AFL Rx rules registers */
91
92 /* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */
93 #define RCANFD_GAFLCFG_SETRNC(gpriv, n, x) \
94 (((x) & reg_gen4(gpriv, 0x1ff, 0xff)) << \
95 (reg_gen4(gpriv, 16, 24) - ((n) & 1) * reg_gen4(gpriv, 16, 8)))
96
97 #define RCANFD_GAFLCFG_GETRNC(gpriv, n, x) \
98 (((x) >> (reg_gen4(gpriv, 16, 24) - ((n) & 1) * reg_gen4(gpriv, 16, 8))) & \
99 reg_gen4(gpriv, 0x1ff, 0xff))
100
101 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
102 #define RCANFD_GAFLECTR_AFLDAE BIT(8)
103 #define RCANFD_GAFLECTR_AFLPN(gpriv, x) ((x) & reg_gen4(gpriv, 0x7f, 0x1f))
104
105 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
106 #define RCANFD_GAFLID_GAFLLB BIT(29)
107
108 /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */
109 #define RCANFD_GAFLP1_GAFLFDP(x) (1 << (x))
110
111 /* Channel register bits */
112
113 /* RSCFDnCmCFG - Classical CAN only */
114 #define RCANFD_CFG_SJW(x) (((x) & 0x3) << 24)
115 #define RCANFD_CFG_TSEG2(x) (((x) & 0x7) << 20)
116 #define RCANFD_CFG_TSEG1(x) (((x) & 0xf) << 16)
117 #define RCANFD_CFG_BRP(x) (((x) & 0x3ff) << 0)
118
119 /* RSCFDnCFDCmNCFG - CAN FD only */
120 #define RCANFD_NCFG_NTSEG2(gpriv, x) \
121 (((x) & reg_gen4(gpriv, 0x7f, 0x1f)) << reg_gen4(gpriv, 25, 24))
122
123 #define RCANFD_NCFG_NTSEG1(gpriv, x) \
124 (((x) & reg_gen4(gpriv, 0xff, 0x7f)) << reg_gen4(gpriv, 17, 16))
125
126 #define RCANFD_NCFG_NSJW(gpriv, x) \
127 (((x) & reg_gen4(gpriv, 0x7f, 0x1f)) << reg_gen4(gpriv, 10, 11))
128
129 #define RCANFD_NCFG_NBRP(x) (((x) & 0x3ff) << 0)
130
131 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
132 #define RCANFD_CCTR_CTME BIT(24)
133 #define RCANFD_CCTR_ERRD BIT(23)
134 #define RCANFD_CCTR_BOM_MASK (0x3 << 21)
135 #define RCANFD_CCTR_BOM_ISO (0x0 << 21)
136 #define RCANFD_CCTR_BOM_BENTRY (0x1 << 21)
137 #define RCANFD_CCTR_BOM_BEND (0x2 << 21)
138 #define RCANFD_CCTR_TDCVFIE BIT(19)
139 #define RCANFD_CCTR_SOCOIE BIT(18)
140 #define RCANFD_CCTR_EOCOIE BIT(17)
141 #define RCANFD_CCTR_TAIE BIT(16)
142 #define RCANFD_CCTR_ALIE BIT(15)
143 #define RCANFD_CCTR_BLIE BIT(14)
144 #define RCANFD_CCTR_OLIE BIT(13)
145 #define RCANFD_CCTR_BORIE BIT(12)
146 #define RCANFD_CCTR_BOEIE BIT(11)
147 #define RCANFD_CCTR_EPIE BIT(10)
148 #define RCANFD_CCTR_EWIE BIT(9)
149 #define RCANFD_CCTR_BEIE BIT(8)
150 #define RCANFD_CCTR_CSLPR BIT(2)
151 #define RCANFD_CCTR_CHMDC_MASK (0x3)
152 #define RCANFD_CCTR_CHDMC_COPM (0x0)
153 #define RCANFD_CCTR_CHDMC_CRESET (0x1)
154 #define RCANFD_CCTR_CHDMC_CHLT (0x2)
155
156 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
157 #define RCANFD_CSTS_COMSTS BIT(7)
158 #define RCANFD_CSTS_RECSTS BIT(6)
159 #define RCANFD_CSTS_TRMSTS BIT(5)
160 #define RCANFD_CSTS_BOSTS BIT(4)
161 #define RCANFD_CSTS_EPSTS BIT(3)
162 #define RCANFD_CSTS_SLPSTS BIT(2)
163 #define RCANFD_CSTS_HLTSTS BIT(1)
164 #define RCANFD_CSTS_CRSTSTS BIT(0)
165
166 #define RCANFD_CSTS_TECCNT(x) (((x) >> 24) & 0xff)
167 #define RCANFD_CSTS_RECCNT(x) (((x) >> 16) & 0xff)
168
169 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
170 #define RCANFD_CERFL_ADERR BIT(14)
171 #define RCANFD_CERFL_B0ERR BIT(13)
172 #define RCANFD_CERFL_B1ERR BIT(12)
173 #define RCANFD_CERFL_CERR BIT(11)
174 #define RCANFD_CERFL_AERR BIT(10)
175 #define RCANFD_CERFL_FERR BIT(9)
176 #define RCANFD_CERFL_SERR BIT(8)
177 #define RCANFD_CERFL_ALF BIT(7)
178 #define RCANFD_CERFL_BLF BIT(6)
179 #define RCANFD_CERFL_OVLF BIT(5)
180 #define RCANFD_CERFL_BORF BIT(4)
181 #define RCANFD_CERFL_BOEF BIT(3)
182 #define RCANFD_CERFL_EPF BIT(2)
183 #define RCANFD_CERFL_EWF BIT(1)
184 #define RCANFD_CERFL_BEF BIT(0)
185
186 #define RCANFD_CERFL_ERR(x) ((x) & (0x7fff)) /* above bits 14:0 */
187
188 /* RSCFDnCFDCmDCFG */
189 #define RCANFD_DCFG_DSJW(gpriv, x) (((x) & reg_gen4(gpriv, 0xf, 0x7)) << 24)
190
191 #define RCANFD_DCFG_DTSEG2(gpriv, x) \
192 (((x) & reg_gen4(gpriv, 0x0f, 0x7)) << reg_gen4(gpriv, 16, 20))
193
194 #define RCANFD_DCFG_DTSEG1(gpriv, x) \
195 (((x) & reg_gen4(gpriv, 0x1f, 0xf)) << reg_gen4(gpriv, 8, 16))
196
197 #define RCANFD_DCFG_DBRP(x) (((x) & 0xff) << 0)
198
199 /* RSCFDnCFDCmFDCFG */
200 #define RCANFD_GEN4_FDCFG_CLOE BIT(30)
201 #define RCANFD_GEN4_FDCFG_FDOE BIT(28)
202 #define RCANFD_FDCFG_TDCE BIT(9)
203 #define RCANFD_FDCFG_TDCOC BIT(8)
204 #define RCANFD_FDCFG_TDCO(x) (((x) & 0x7f) >> 16)
205
206 /* RSCFDnCFDRFCCx */
207 #define RCANFD_RFCC_RFIM BIT(12)
208 #define RCANFD_RFCC_RFDC(x) (((x) & 0x7) << 8)
209 #define RCANFD_RFCC_RFPLS(x) (((x) & 0x7) << 4)
210 #define RCANFD_RFCC_RFIE BIT(1)
211 #define RCANFD_RFCC_RFE BIT(0)
212
213 /* RSCFDnCFDRFSTSx */
214 #define RCANFD_RFSTS_RFIF BIT(3)
215 #define RCANFD_RFSTS_RFMLT BIT(2)
216 #define RCANFD_RFSTS_RFFLL BIT(1)
217 #define RCANFD_RFSTS_RFEMP BIT(0)
218
219 /* RSCFDnCFDRFIDx */
220 #define RCANFD_RFID_RFIDE BIT(31)
221 #define RCANFD_RFID_RFRTR BIT(30)
222
223 /* RSCFDnCFDRFPTRx */
224 #define RCANFD_RFPTR_RFDLC(x) (((x) >> 28) & 0xf)
225 #define RCANFD_RFPTR_RFPTR(x) (((x) >> 16) & 0xfff)
226 #define RCANFD_RFPTR_RFTS(x) (((x) >> 0) & 0xffff)
227
228 /* RSCFDnCFDRFFDSTSx */
229 #define RCANFD_RFFDSTS_RFFDF BIT(2)
230 #define RCANFD_RFFDSTS_RFBRS BIT(1)
231 #define RCANFD_RFFDSTS_RFESI BIT(0)
232
233 /* Common FIFO bits */
234
235 /* RSCFDnCFDCFCCk */
236 #define RCANFD_CFCC_CFTML(gpriv, x) \
237 (((x) & reg_gen4(gpriv, 0x1f, 0xf)) << reg_gen4(gpriv, 16, 20))
238 #define RCANFD_CFCC_CFM(gpriv, x) (((x) & 0x3) << reg_gen4(gpriv, 8, 16))
239 #define RCANFD_CFCC_CFIM BIT(12)
240 #define RCANFD_CFCC_CFDC(gpriv, x) (((x) & 0x7) << reg_gen4(gpriv, 21, 8))
241 #define RCANFD_CFCC_CFPLS(x) (((x) & 0x7) << 4)
242 #define RCANFD_CFCC_CFTXIE BIT(2)
243 #define RCANFD_CFCC_CFE BIT(0)
244
245 /* RSCFDnCFDCFSTSk */
246 #define RCANFD_CFSTS_CFMC(x) (((x) >> 8) & 0xff)
247 #define RCANFD_CFSTS_CFTXIF BIT(4)
248 #define RCANFD_CFSTS_CFMLT BIT(2)
249 #define RCANFD_CFSTS_CFFLL BIT(1)
250 #define RCANFD_CFSTS_CFEMP BIT(0)
251
252 /* RSCFDnCFDCFIDk */
253 #define RCANFD_CFID_CFIDE BIT(31)
254 #define RCANFD_CFID_CFRTR BIT(30)
255 #define RCANFD_CFID_CFID_MASK(x) ((x) & 0x1fffffff)
256
257 /* RSCFDnCFDCFPTRk */
258 #define RCANFD_CFPTR_CFDLC(x) (((x) & 0xf) << 28)
259 #define RCANFD_CFPTR_CFPTR(x) (((x) & 0xfff) << 16)
260 #define RCANFD_CFPTR_CFTS(x) (((x) & 0xff) << 0)
261
262 /* RSCFDnCFDCFFDCSTSk */
263 #define RCANFD_CFFDCSTS_CFFDF BIT(2)
264 #define RCANFD_CFFDCSTS_CFBRS BIT(1)
265 #define RCANFD_CFFDCSTS_CFESI BIT(0)
266
267 /* This controller supports either Classical CAN only mode or CAN FD only mode.
268 * These modes are supported in two separate set of register maps & names.
269 * However, some of the register offsets are common for both modes. Those
270 * offsets are listed below as Common registers.
271 *
272 * The CAN FD only mode specific registers & Classical CAN only mode specific
273 * registers are listed separately. Their register names starts with
274 * RCANFD_F_xxx & RCANFD_C_xxx respectively.
275 */
276
277 /* Common registers */
278
279 /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */
280 #define RCANFD_CCFG(m) (0x0000 + (0x10 * (m)))
281 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
282 #define RCANFD_CCTR(m) (0x0004 + (0x10 * (m)))
283 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
284 #define RCANFD_CSTS(m) (0x0008 + (0x10 * (m)))
285 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
286 #define RCANFD_CERFL(m) (0x000C + (0x10 * (m)))
287
288 /* RSCFDnCFDGCFG / RSCFDnGCFG */
289 #define RCANFD_GCFG (0x0084)
290 /* RSCFDnCFDGCTR / RSCFDnGCTR */
291 #define RCANFD_GCTR (0x0088)
292 /* RSCFDnCFDGCTS / RSCFDnGCTS */
293 #define RCANFD_GSTS (0x008c)
294 /* RSCFDnCFDGERFL / RSCFDnGERFL */
295 #define RCANFD_GERFL (0x0090)
296 /* RSCFDnCFDGTSC / RSCFDnGTSC */
297 #define RCANFD_GTSC (0x0094)
298 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
299 #define RCANFD_GAFLECTR (0x0098)
300 /* RSCFDnCFDGAFLCFG / RSCFDnGAFLCFG */
301 #define RCANFD_GAFLCFG(ch) (0x009c + (0x04 * ((ch) / 2)))
302 /* RSCFDnCFDRMNB / RSCFDnRMNB */
303 #define RCANFD_RMNB (0x00a4)
304 /* RSCFDnCFDRMND / RSCFDnRMND */
305 #define RCANFD_RMND(y) (0x00a8 + (0x04 * (y)))
306
307 /* RSCFDnCFDRFCCx / RSCFDnRFCCx */
308 #define RCANFD_RFCC(gpriv, x) (reg_gen4(gpriv, 0x00c0, 0x00b8) + (0x04 * (x)))
309 /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */
310 #define RCANFD_RFSTS(gpriv, x) (RCANFD_RFCC(gpriv, x) + 0x20)
311 /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */
312 #define RCANFD_RFPCTR(gpriv, x) (RCANFD_RFCC(gpriv, x) + 0x40)
313
314 /* Common FIFO Control registers */
315
316 /* RSCFDnCFDCFCCx / RSCFDnCFCCx */
317 #define RCANFD_CFCC(gpriv, ch, idx) \
318 (reg_gen4(gpriv, 0x0120, 0x0118) + (0x0c * (ch)) + (0x04 * (idx)))
319 /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */
320 #define RCANFD_CFSTS(gpriv, ch, idx) \
321 (reg_gen4(gpriv, 0x01e0, 0x0178) + (0x0c * (ch)) + (0x04 * (idx)))
322 /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */
323 #define RCANFD_CFPCTR(gpriv, ch, idx) \
324 (reg_gen4(gpriv, 0x0240, 0x01d8) + (0x0c * (ch)) + (0x04 * (idx)))
325
326 /* RSCFDnCFDFESTS / RSCFDnFESTS */
327 #define RCANFD_FESTS (0x0238)
328 /* RSCFDnCFDFFSTS / RSCFDnFFSTS */
329 #define RCANFD_FFSTS (0x023c)
330 /* RSCFDnCFDFMSTS / RSCFDnFMSTS */
331 #define RCANFD_FMSTS (0x0240)
332 /* RSCFDnCFDRFISTS / RSCFDnRFISTS */
333 #define RCANFD_RFISTS (0x0244)
334 /* RSCFDnCFDCFRISTS / RSCFDnCFRISTS */
335 #define RCANFD_CFRISTS (0x0248)
336 /* RSCFDnCFDCFTISTS / RSCFDnCFTISTS */
337 #define RCANFD_CFTISTS (0x024c)
338
339 /* RSCFDnCFDTMCp / RSCFDnTMCp */
340 #define RCANFD_TMC(p) (0x0250 + (0x01 * (p)))
341 /* RSCFDnCFDTMSTSp / RSCFDnTMSTSp */
342 #define RCANFD_TMSTS(p) (0x02d0 + (0x01 * (p)))
343
344 /* RSCFDnCFDTMTRSTSp / RSCFDnTMTRSTSp */
345 #define RCANFD_TMTRSTS(y) (0x0350 + (0x04 * (y)))
346 /* RSCFDnCFDTMTARSTSp / RSCFDnTMTARSTSp */
347 #define RCANFD_TMTARSTS(y) (0x0360 + (0x04 * (y)))
348 /* RSCFDnCFDTMTCSTSp / RSCFDnTMTCSTSp */
349 #define RCANFD_TMTCSTS(y) (0x0370 + (0x04 * (y)))
350 /* RSCFDnCFDTMTASTSp / RSCFDnTMTASTSp */
351 #define RCANFD_TMTASTS(y) (0x0380 + (0x04 * (y)))
352 /* RSCFDnCFDTMIECy / RSCFDnTMIECy */
353 #define RCANFD_TMIEC(y) (0x0390 + (0x04 * (y)))
354
355 /* RSCFDnCFDTXQCCm / RSCFDnTXQCCm */
356 #define RCANFD_TXQCC(m) (0x03a0 + (0x04 * (m)))
357 /* RSCFDnCFDTXQSTSm / RSCFDnTXQSTSm */
358 #define RCANFD_TXQSTS(m) (0x03c0 + (0x04 * (m)))
359 /* RSCFDnCFDTXQPCTRm / RSCFDnTXQPCTRm */
360 #define RCANFD_TXQPCTR(m) (0x03e0 + (0x04 * (m)))
361
362 /* RSCFDnCFDTHLCCm / RSCFDnTHLCCm */
363 #define RCANFD_THLCC(m) (0x0400 + (0x04 * (m)))
364 /* RSCFDnCFDTHLSTSm / RSCFDnTHLSTSm */
365 #define RCANFD_THLSTS(m) (0x0420 + (0x04 * (m)))
366 /* RSCFDnCFDTHLPCTRm / RSCFDnTHLPCTRm */
367 #define RCANFD_THLPCTR(m) (0x0440 + (0x04 * (m)))
368
369 /* RSCFDnCFDGTINTSTS0 / RSCFDnGTINTSTS0 */
370 #define RCANFD_GTINTSTS0 (0x0460)
371 /* RSCFDnCFDGTINTSTS1 / RSCFDnGTINTSTS1 */
372 #define RCANFD_GTINTSTS1 (0x0464)
373 /* RSCFDnCFDGTSTCFG / RSCFDnGTSTCFG */
374 #define RCANFD_GTSTCFG (0x0468)
375 /* RSCFDnCFDGTSTCTR / RSCFDnGTSTCTR */
376 #define RCANFD_GTSTCTR (0x046c)
377 /* RSCFDnCFDGLOCKK / RSCFDnGLOCKK */
378 #define RCANFD_GLOCKK (0x047c)
379 /* RSCFDnCFDGRMCFG */
380 #define RCANFD_GRMCFG (0x04fc)
381
382 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
383 #define RCANFD_GAFLID(offset, j) ((offset) + (0x10 * (j)))
384 /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */
385 #define RCANFD_GAFLM(offset, j) ((offset) + 0x04 + (0x10 * (j)))
386 /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */
387 #define RCANFD_GAFLP0(offset, j) ((offset) + 0x08 + (0x10 * (j)))
388 /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */
389 #define RCANFD_GAFLP1(offset, j) ((offset) + 0x0c + (0x10 * (j)))
390
391 /* Classical CAN only mode register map */
392
393 /* RSCFDnGAFLXXXj offset */
394 #define RCANFD_C_GAFL_OFFSET (0x0500)
395
396 /* RSCFDnRMXXXq -> RCANFD_C_RMXXX(q) */
397 #define RCANFD_C_RMID(q) (0x0600 + (0x10 * (q)))
398 #define RCANFD_C_RMPTR(q) (0x0604 + (0x10 * (q)))
399 #define RCANFD_C_RMDF0(q) (0x0608 + (0x10 * (q)))
400 #define RCANFD_C_RMDF1(q) (0x060c + (0x10 * (q)))
401
402 /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */
403 #define RCANFD_C_RFOFFSET (0x0e00)
404 #define RCANFD_C_RFID(x) (RCANFD_C_RFOFFSET + (0x10 * (x)))
405 #define RCANFD_C_RFPTR(x) (RCANFD_C_RFOFFSET + 0x04 + (0x10 * (x)))
406 #define RCANFD_C_RFDF(x, df) \
407 (RCANFD_C_RFOFFSET + 0x08 + (0x10 * (x)) + (0x04 * (df)))
408
409 /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */
410 #define RCANFD_C_CFOFFSET (0x0e80)
411
412 #define RCANFD_C_CFID(ch, idx) \
413 (RCANFD_C_CFOFFSET + (0x30 * (ch)) + (0x10 * (idx)))
414
415 #define RCANFD_C_CFPTR(ch, idx) \
416 (RCANFD_C_CFOFFSET + 0x04 + (0x30 * (ch)) + (0x10 * (idx)))
417
418 #define RCANFD_C_CFDF(ch, idx, df) \
419 (RCANFD_C_CFOFFSET + 0x08 + (0x30 * (ch)) + (0x10 * (idx)) + (0x04 * (df)))
420
421 /* RSCFDnTMXXp -> RCANFD_C_TMXX(p) */
422 #define RCANFD_C_TMID(p) (0x1000 + (0x10 * (p)))
423 #define RCANFD_C_TMPTR(p) (0x1004 + (0x10 * (p)))
424 #define RCANFD_C_TMDF0(p) (0x1008 + (0x10 * (p)))
425 #define RCANFD_C_TMDF1(p) (0x100c + (0x10 * (p)))
426
427 /* RSCFDnTHLACCm */
428 #define RCANFD_C_THLACC(m) (0x1800 + (0x04 * (m)))
429 /* RSCFDnRPGACCr */
430 #define RCANFD_C_RPGACC(r) (0x1900 + (0x04 * (r)))
431
432 /* R-Car Gen4 Classical and CAN FD mode specific register map */
433 #define RCANFD_GEN4_FDCFG(m) (0x1404 + (0x20 * (m)))
434
435 #define RCANFD_GEN4_GAFL_OFFSET (0x1800)
436
437 /* CAN FD mode specific register map */
438
439 /* RSCFDnCFDCmXXX -> RCANFD_F_XXX(m) */
440 #define RCANFD_F_DCFG(gpriv, m) (reg_gen4(gpriv, 0x1400, 0x0500) + (0x20 * (m)))
441 #define RCANFD_F_CFDCFG(m) (0x0504 + (0x20 * (m)))
442 #define RCANFD_F_CFDCTR(m) (0x0508 + (0x20 * (m)))
443 #define RCANFD_F_CFDSTS(m) (0x050c + (0x20 * (m)))
444 #define RCANFD_F_CFDCRC(m) (0x0510 + (0x20 * (m)))
445
446 /* RSCFDnCFDGAFLXXXj offset */
447 #define RCANFD_F_GAFL_OFFSET (0x1000)
448
449 /* RSCFDnCFDRMXXXq -> RCANFD_F_RMXXX(q) */
450 #define RCANFD_F_RMID(q) (0x2000 + (0x20 * (q)))
451 #define RCANFD_F_RMPTR(q) (0x2004 + (0x20 * (q)))
452 #define RCANFD_F_RMFDSTS(q) (0x2008 + (0x20 * (q)))
453 #define RCANFD_F_RMDF(q, b) (0x200c + (0x04 * (b)) + (0x20 * (q)))
454
455 /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */
456 #define RCANFD_F_RFOFFSET(gpriv) reg_gen4(gpriv, 0x6000, 0x3000)
457 #define RCANFD_F_RFID(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + (0x80 * (x)))
458 #define RCANFD_F_RFPTR(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + 0x04 + (0x80 * (x)))
459 #define RCANFD_F_RFFDSTS(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + 0x08 + (0x80 * (x)))
460 #define RCANFD_F_RFDF(gpriv, x, df) \
461 (RCANFD_F_RFOFFSET(gpriv) + 0x0c + (0x80 * (x)) + (0x04 * (df)))
462
463 /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */
464 #define RCANFD_F_CFOFFSET(gpriv) reg_gen4(gpriv, 0x6400, 0x3400)
465
466 #define RCANFD_F_CFID(gpriv, ch, idx) \
467 (RCANFD_F_CFOFFSET(gpriv) + (0x180 * (ch)) + (0x80 * (idx)))
468
469 #define RCANFD_F_CFPTR(gpriv, ch, idx) \
470 (RCANFD_F_CFOFFSET(gpriv) + 0x04 + (0x180 * (ch)) + (0x80 * (idx)))
471
472 #define RCANFD_F_CFFDCSTS(gpriv, ch, idx) \
473 (RCANFD_F_CFOFFSET(gpriv) + 0x08 + (0x180 * (ch)) + (0x80 * (idx)))
474
475 #define RCANFD_F_CFDF(gpriv, ch, idx, df) \
476 (RCANFD_F_CFOFFSET(gpriv) + 0x0c + (0x180 * (ch)) + (0x80 * (idx)) + \
477 (0x04 * (df)))
478
479 /* RSCFDnCFDTMXXp -> RCANFD_F_TMXX(p) */
480 #define RCANFD_F_TMID(p) (0x4000 + (0x20 * (p)))
481 #define RCANFD_F_TMPTR(p) (0x4004 + (0x20 * (p)))
482 #define RCANFD_F_TMFDCTR(p) (0x4008 + (0x20 * (p)))
483 #define RCANFD_F_TMDF(p, b) (0x400c + (0x20 * (p)) + (0x04 * (b)))
484
485 /* RSCFDnCFDTHLACCm */
486 #define RCANFD_F_THLACC(m) (0x6000 + (0x04 * (m)))
487 /* RSCFDnCFDRPGACCr */
488 #define RCANFD_F_RPGACC(r) (0x6400 + (0x04 * (r)))
489
490 /* Constants */
491 #define RCANFD_FIFO_DEPTH 8 /* Tx FIFO depth */
492 #define RCANFD_NAPI_WEIGHT 8 /* Rx poll quota */
493
494 #define RCANFD_NUM_CHANNELS 8 /* Eight channels max */
495 #define RCANFD_CHANNELS_MASK BIT((RCANFD_NUM_CHANNELS) - 1)
496
497 #define RCANFD_GAFL_PAGENUM(entry) ((entry) / 16)
498 #define RCANFD_CHANNEL_NUMRULES 1 /* only one rule per channel */
499
500 /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs
501 * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel
502 * number is added to RFFIFO index.
503 */
504 #define RCANFD_RFFIFO_IDX 0
505
506 /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common
507 * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx.
508 */
509 #define RCANFD_CFFIFO_IDX 0
510
511 struct rcar_canfd_global;
512
513 struct rcar_canfd_hw_info {
514 u8 max_channels;
515 u8 postdiv;
516 /* hardware features */
517 unsigned shared_global_irqs:1; /* Has shared global irqs */
518 unsigned multi_channel_irqs:1; /* Has multiple channel irqs */
519 };
520
521 /* Channel priv data */
522 struct rcar_canfd_channel {
523 struct can_priv can; /* Must be the first member */
524 struct net_device *ndev;
525 struct rcar_canfd_global *gpriv; /* Controller reference */
526 void __iomem *base; /* Register base address */
527 struct phy *transceiver; /* Optional transceiver */
528 struct napi_struct napi;
529 u32 tx_head; /* Incremented on xmit */
530 u32 tx_tail; /* Incremented on xmit done */
531 u32 channel; /* Channel number */
532 spinlock_t tx_lock; /* To protect tx path */
533 };
534
535 /* Global priv data */
536 struct rcar_canfd_global {
537 struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS];
538 void __iomem *base; /* Register base address */
539 struct platform_device *pdev; /* Respective platform device */
540 struct clk *clkp; /* Peripheral clock */
541 struct clk *can_clk; /* fCAN clock */
542 unsigned long channels_mask; /* Enabled channels mask */
543 bool extclk; /* CANFD or Ext clock */
544 bool fdmode; /* CAN FD or Classical CAN only mode */
545 struct reset_control *rstc1;
546 struct reset_control *rstc2;
547 const struct rcar_canfd_hw_info *info;
548 };
549
550 /* CAN FD mode nominal rate constants */
551 static const struct can_bittiming_const rcar_canfd_nom_bittiming_const = {
552 .name = RCANFD_DRV_NAME,
553 .tseg1_min = 2,
554 .tseg1_max = 128,
555 .tseg2_min = 2,
556 .tseg2_max = 32,
557 .sjw_max = 32,
558 .brp_min = 1,
559 .brp_max = 1024,
560 .brp_inc = 1,
561 };
562
563 /* CAN FD mode data rate constants */
564 static const struct can_bittiming_const rcar_canfd_data_bittiming_const = {
565 .name = RCANFD_DRV_NAME,
566 .tseg1_min = 2,
567 .tseg1_max = 16,
568 .tseg2_min = 2,
569 .tseg2_max = 8,
570 .sjw_max = 8,
571 .brp_min = 1,
572 .brp_max = 256,
573 .brp_inc = 1,
574 };
575
576 /* Classical CAN mode bitrate constants */
577 static const struct can_bittiming_const rcar_canfd_bittiming_const = {
578 .name = RCANFD_DRV_NAME,
579 .tseg1_min = 4,
580 .tseg1_max = 16,
581 .tseg2_min = 2,
582 .tseg2_max = 8,
583 .sjw_max = 4,
584 .brp_min = 1,
585 .brp_max = 1024,
586 .brp_inc = 1,
587 };
588
589 static const struct rcar_canfd_hw_info rcar_gen3_hw_info = {
590 .max_channels = 2,
591 .postdiv = 2,
592 .shared_global_irqs = 1,
593 };
594
595 static const struct rcar_canfd_hw_info rcar_gen4_hw_info = {
596 .max_channels = 8,
597 .postdiv = 2,
598 .shared_global_irqs = 1,
599 };
600
601 static const struct rcar_canfd_hw_info rzg2l_hw_info = {
602 .max_channels = 2,
603 .postdiv = 1,
604 .multi_channel_irqs = 1,
605 };
606
607 /* Helper functions */
is_gen4(struct rcar_canfd_global * gpriv)608 static inline bool is_gen4(struct rcar_canfd_global *gpriv)
609 {
610 return gpriv->info == &rcar_gen4_hw_info;
611 }
612
reg_gen4(struct rcar_canfd_global * gpriv,u32 gen4,u32 not_gen4)613 static inline u32 reg_gen4(struct rcar_canfd_global *gpriv,
614 u32 gen4, u32 not_gen4)
615 {
616 return is_gen4(gpriv) ? gen4 : not_gen4;
617 }
618
rcar_canfd_update(u32 mask,u32 val,u32 __iomem * reg)619 static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg)
620 {
621 u32 data = readl(reg);
622
623 data &= ~mask;
624 data |= (val & mask);
625 writel(data, reg);
626 }
627
rcar_canfd_read(void __iomem * base,u32 offset)628 static inline u32 rcar_canfd_read(void __iomem *base, u32 offset)
629 {
630 return readl(base + offset);
631 }
632
rcar_canfd_write(void __iomem * base,u32 offset,u32 val)633 static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val)
634 {
635 writel(val, base + offset);
636 }
637
rcar_canfd_set_bit(void __iomem * base,u32 reg,u32 val)638 static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val)
639 {
640 rcar_canfd_update(val, val, base + reg);
641 }
642
rcar_canfd_clear_bit(void __iomem * base,u32 reg,u32 val)643 static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val)
644 {
645 rcar_canfd_update(val, 0, base + reg);
646 }
647
rcar_canfd_update_bit(void __iomem * base,u32 reg,u32 mask,u32 val)648 static void rcar_canfd_update_bit(void __iomem *base, u32 reg,
649 u32 mask, u32 val)
650 {
651 rcar_canfd_update(mask, val, base + reg);
652 }
653
rcar_canfd_get_data(struct rcar_canfd_channel * priv,struct canfd_frame * cf,u32 off)654 static void rcar_canfd_get_data(struct rcar_canfd_channel *priv,
655 struct canfd_frame *cf, u32 off)
656 {
657 u32 i, lwords;
658
659 lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
660 for (i = 0; i < lwords; i++)
661 *((u32 *)cf->data + i) =
662 rcar_canfd_read(priv->base, off + i * sizeof(u32));
663 }
664
rcar_canfd_put_data(struct rcar_canfd_channel * priv,struct canfd_frame * cf,u32 off)665 static void rcar_canfd_put_data(struct rcar_canfd_channel *priv,
666 struct canfd_frame *cf, u32 off)
667 {
668 u32 i, lwords;
669
670 lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
671 for (i = 0; i < lwords; i++)
672 rcar_canfd_write(priv->base, off + i * sizeof(u32),
673 *((u32 *)cf->data + i));
674 }
675
rcar_canfd_tx_failure_cleanup(struct net_device * ndev)676 static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev)
677 {
678 u32 i;
679
680 for (i = 0; i < RCANFD_FIFO_DEPTH; i++)
681 can_free_echo_skb(ndev, i, NULL);
682 }
683
rcar_canfd_set_mode(struct rcar_canfd_global * gpriv)684 static void rcar_canfd_set_mode(struct rcar_canfd_global *gpriv)
685 {
686 if (is_gen4(gpriv)) {
687 u32 ch, val = gpriv->fdmode ? RCANFD_GEN4_FDCFG_FDOE
688 : RCANFD_GEN4_FDCFG_CLOE;
689
690 for_each_set_bit(ch, &gpriv->channels_mask,
691 gpriv->info->max_channels)
692 rcar_canfd_set_bit(gpriv->base, RCANFD_GEN4_FDCFG(ch),
693 val);
694 } else {
695 if (gpriv->fdmode)
696 rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG,
697 RCANFD_GRMCFG_RCMC);
698 else
699 rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG,
700 RCANFD_GRMCFG_RCMC);
701 }
702 }
703
rcar_canfd_reset_controller(struct rcar_canfd_global * gpriv)704 static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv)
705 {
706 u32 sts, ch;
707 int err;
708
709 /* Check RAMINIT flag as CAN RAM initialization takes place
710 * after the MCU reset
711 */
712 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
713 !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000);
714 if (err) {
715 dev_dbg(&gpriv->pdev->dev, "global raminit failed\n");
716 return err;
717 }
718
719 /* Transition to Global Reset mode */
720 rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
721 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR,
722 RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET);
723
724 /* Ensure Global reset mode */
725 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
726 (sts & RCANFD_GSTS_GRSTSTS), 2, 500000);
727 if (err) {
728 dev_dbg(&gpriv->pdev->dev, "global reset failed\n");
729 return err;
730 }
731
732 /* Reset Global error flags */
733 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0);
734
735 /* Set the controller into appropriate mode */
736 rcar_canfd_set_mode(gpriv);
737
738 /* Transition all Channels to reset mode */
739 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
740 rcar_canfd_clear_bit(gpriv->base,
741 RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR);
742
743 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
744 RCANFD_CCTR_CHMDC_MASK,
745 RCANFD_CCTR_CHDMC_CRESET);
746
747 /* Ensure Channel reset mode */
748 err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts,
749 (sts & RCANFD_CSTS_CRSTSTS),
750 2, 500000);
751 if (err) {
752 dev_dbg(&gpriv->pdev->dev,
753 "channel %u reset failed\n", ch);
754 return err;
755 }
756 }
757 return 0;
758 }
759
rcar_canfd_configure_controller(struct rcar_canfd_global * gpriv)760 static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv)
761 {
762 u32 cfg, ch;
763
764 /* Global configuration settings */
765
766 /* ECC Error flag Enable */
767 cfg = RCANFD_GCFG_EEFE;
768
769 if (gpriv->fdmode)
770 /* Truncate payload to configured message size RFPLS */
771 cfg |= RCANFD_GCFG_CMPOC;
772
773 /* Set External Clock if selected */
774 if (gpriv->extclk)
775 cfg |= RCANFD_GCFG_DCS;
776
777 rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg);
778
779 /* Channel configuration settings */
780 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
781 rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch),
782 RCANFD_CCTR_ERRD);
783 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
784 RCANFD_CCTR_BOM_MASK,
785 RCANFD_CCTR_BOM_BENTRY);
786 }
787 }
788
rcar_canfd_configure_afl_rules(struct rcar_canfd_global * gpriv,u32 ch)789 static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv,
790 u32 ch)
791 {
792 u32 cfg;
793 int offset, start, page, num_rules = RCANFD_CHANNEL_NUMRULES;
794 u32 ridx = ch + RCANFD_RFFIFO_IDX;
795
796 if (ch == 0) {
797 start = 0; /* Channel 0 always starts from 0th rule */
798 } else {
799 /* Get number of Channel 0 rules and adjust */
800 cfg = rcar_canfd_read(gpriv->base, RCANFD_GAFLCFG(ch));
801 start = RCANFD_GAFLCFG_GETRNC(gpriv, 0, cfg);
802 }
803
804 /* Enable write access to entry */
805 page = RCANFD_GAFL_PAGENUM(start);
806 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR,
807 (RCANFD_GAFLECTR_AFLPN(gpriv, page) |
808 RCANFD_GAFLECTR_AFLDAE));
809
810 /* Write number of rules for channel */
811 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG(ch),
812 RCANFD_GAFLCFG_SETRNC(gpriv, ch, num_rules));
813 if (is_gen4(gpriv))
814 offset = RCANFD_GEN4_GAFL_OFFSET;
815 else if (gpriv->fdmode)
816 offset = RCANFD_F_GAFL_OFFSET;
817 else
818 offset = RCANFD_C_GAFL_OFFSET;
819
820 /* Accept all IDs */
821 rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, start), 0);
822 /* IDE or RTR is not considered for matching */
823 rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, start), 0);
824 /* Any data length accepted */
825 rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, start), 0);
826 /* Place the msg in corresponding Rx FIFO entry */
827 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLP1(offset, start),
828 RCANFD_GAFLP1_GAFLFDP(ridx));
829
830 /* Disable write access to page */
831 rcar_canfd_clear_bit(gpriv->base,
832 RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE);
833 }
834
rcar_canfd_configure_rx(struct rcar_canfd_global * gpriv,u32 ch)835 static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch)
836 {
837 /* Rx FIFO is used for reception */
838 u32 cfg;
839 u16 rfdc, rfpls;
840
841 /* Select Rx FIFO based on channel */
842 u32 ridx = ch + RCANFD_RFFIFO_IDX;
843
844 rfdc = 2; /* b010 - 8 messages Rx FIFO depth */
845 if (gpriv->fdmode)
846 rfpls = 7; /* b111 - Max 64 bytes payload */
847 else
848 rfpls = 0; /* b000 - Max 8 bytes payload */
849
850 cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) |
851 RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE);
852 rcar_canfd_write(gpriv->base, RCANFD_RFCC(gpriv, ridx), cfg);
853 }
854
rcar_canfd_configure_tx(struct rcar_canfd_global * gpriv,u32 ch)855 static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch)
856 {
857 /* Tx/Rx(Common) FIFO configured in Tx mode is
858 * used for transmission
859 *
860 * Each channel has 3 Common FIFO dedicated to them.
861 * Use the 1st (index 0) out of 3
862 */
863 u32 cfg;
864 u16 cftml, cfm, cfdc, cfpls;
865
866 cftml = 0; /* 0th buffer */
867 cfm = 1; /* b01 - Transmit mode */
868 cfdc = 2; /* b010 - 8 messages Tx FIFO depth */
869 if (gpriv->fdmode)
870 cfpls = 7; /* b111 - Max 64 bytes payload */
871 else
872 cfpls = 0; /* b000 - Max 8 bytes payload */
873
874 cfg = (RCANFD_CFCC_CFTML(gpriv, cftml) | RCANFD_CFCC_CFM(gpriv, cfm) |
875 RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(gpriv, cfdc) |
876 RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE);
877 rcar_canfd_write(gpriv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), cfg);
878
879 if (gpriv->fdmode)
880 /* Clear FD mode specific control/status register */
881 rcar_canfd_write(gpriv->base,
882 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 0);
883 }
884
rcar_canfd_enable_global_interrupts(struct rcar_canfd_global * gpriv)885 static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv)
886 {
887 u32 ctr;
888
889 /* Clear any stray error interrupt flags */
890 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
891
892 /* Global interrupts setup */
893 ctr = RCANFD_GCTR_MEIE;
894 if (gpriv->fdmode)
895 ctr |= RCANFD_GCTR_CFMPOFIE;
896
897 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr);
898 }
899
rcar_canfd_disable_global_interrupts(struct rcar_canfd_global * gpriv)900 static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global
901 *gpriv)
902 {
903 /* Disable all interrupts */
904 rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0);
905
906 /* Clear any stray error interrupt flags */
907 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
908 }
909
rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel * priv)910 static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel
911 *priv)
912 {
913 u32 ctr, ch = priv->channel;
914
915 /* Clear any stray error flags */
916 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
917
918 /* Channel interrupts setup */
919 ctr = (RCANFD_CCTR_TAIE |
920 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
921 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
922 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
923 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
924 rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr);
925 }
926
rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel * priv)927 static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel
928 *priv)
929 {
930 u32 ctr, ch = priv->channel;
931
932 ctr = (RCANFD_CCTR_TAIE |
933 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
934 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
935 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
936 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
937 rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr);
938
939 /* Clear any stray error flags */
940 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
941 }
942
rcar_canfd_global_error(struct net_device * ndev)943 static void rcar_canfd_global_error(struct net_device *ndev)
944 {
945 struct rcar_canfd_channel *priv = netdev_priv(ndev);
946 struct rcar_canfd_global *gpriv = priv->gpriv;
947 struct net_device_stats *stats = &ndev->stats;
948 u32 ch = priv->channel;
949 u32 gerfl, sts;
950 u32 ridx = ch + RCANFD_RFFIFO_IDX;
951
952 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
953 if (gerfl & RCANFD_GERFL_EEF(ch)) {
954 netdev_dbg(ndev, "Ch%u: ECC Error flag\n", ch);
955 stats->tx_dropped++;
956 }
957 if (gerfl & RCANFD_GERFL_MES) {
958 sts = rcar_canfd_read(priv->base,
959 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
960 if (sts & RCANFD_CFSTS_CFMLT) {
961 netdev_dbg(ndev, "Tx Message Lost flag\n");
962 stats->tx_dropped++;
963 rcar_canfd_write(priv->base,
964 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
965 sts & ~RCANFD_CFSTS_CFMLT);
966 }
967
968 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
969 if (sts & RCANFD_RFSTS_RFMLT) {
970 netdev_dbg(ndev, "Rx Message Lost flag\n");
971 stats->rx_dropped++;
972 rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
973 sts & ~RCANFD_RFSTS_RFMLT);
974 }
975 }
976 if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) {
977 /* Message Lost flag will be set for respective channel
978 * when this condition happens with counters and flags
979 * already updated.
980 */
981 netdev_dbg(ndev, "global payload overflow interrupt\n");
982 }
983
984 /* Clear all global error interrupts. Only affected channels bits
985 * get cleared
986 */
987 rcar_canfd_write(priv->base, RCANFD_GERFL, 0);
988 }
989
rcar_canfd_error(struct net_device * ndev,u32 cerfl,u16 txerr,u16 rxerr)990 static void rcar_canfd_error(struct net_device *ndev, u32 cerfl,
991 u16 txerr, u16 rxerr)
992 {
993 struct rcar_canfd_channel *priv = netdev_priv(ndev);
994 struct net_device_stats *stats = &ndev->stats;
995 struct can_frame *cf;
996 struct sk_buff *skb;
997 u32 ch = priv->channel;
998
999 netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr);
1000
1001 /* Propagate the error condition to the CAN stack */
1002 skb = alloc_can_err_skb(ndev, &cf);
1003 if (!skb) {
1004 stats->rx_dropped++;
1005 return;
1006 }
1007
1008 /* Channel error interrupts */
1009 if (cerfl & RCANFD_CERFL_BEF) {
1010 netdev_dbg(ndev, "Bus error\n");
1011 cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
1012 cf->data[2] = CAN_ERR_PROT_UNSPEC;
1013 priv->can.can_stats.bus_error++;
1014 }
1015 if (cerfl & RCANFD_CERFL_ADERR) {
1016 netdev_dbg(ndev, "ACK Delimiter Error\n");
1017 stats->tx_errors++;
1018 cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL;
1019 }
1020 if (cerfl & RCANFD_CERFL_B0ERR) {
1021 netdev_dbg(ndev, "Bit Error (dominant)\n");
1022 stats->tx_errors++;
1023 cf->data[2] |= CAN_ERR_PROT_BIT0;
1024 }
1025 if (cerfl & RCANFD_CERFL_B1ERR) {
1026 netdev_dbg(ndev, "Bit Error (recessive)\n");
1027 stats->tx_errors++;
1028 cf->data[2] |= CAN_ERR_PROT_BIT1;
1029 }
1030 if (cerfl & RCANFD_CERFL_CERR) {
1031 netdev_dbg(ndev, "CRC Error\n");
1032 stats->rx_errors++;
1033 cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
1034 }
1035 if (cerfl & RCANFD_CERFL_AERR) {
1036 netdev_dbg(ndev, "ACK Error\n");
1037 stats->tx_errors++;
1038 cf->can_id |= CAN_ERR_ACK;
1039 cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
1040 }
1041 if (cerfl & RCANFD_CERFL_FERR) {
1042 netdev_dbg(ndev, "Form Error\n");
1043 stats->rx_errors++;
1044 cf->data[2] |= CAN_ERR_PROT_FORM;
1045 }
1046 if (cerfl & RCANFD_CERFL_SERR) {
1047 netdev_dbg(ndev, "Stuff Error\n");
1048 stats->rx_errors++;
1049 cf->data[2] |= CAN_ERR_PROT_STUFF;
1050 }
1051 if (cerfl & RCANFD_CERFL_ALF) {
1052 netdev_dbg(ndev, "Arbitration lost Error\n");
1053 priv->can.can_stats.arbitration_lost++;
1054 cf->can_id |= CAN_ERR_LOSTARB;
1055 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
1056 }
1057 if (cerfl & RCANFD_CERFL_BLF) {
1058 netdev_dbg(ndev, "Bus Lock Error\n");
1059 stats->rx_errors++;
1060 cf->can_id |= CAN_ERR_BUSERROR;
1061 }
1062 if (cerfl & RCANFD_CERFL_EWF) {
1063 netdev_dbg(ndev, "Error warning interrupt\n");
1064 priv->can.state = CAN_STATE_ERROR_WARNING;
1065 priv->can.can_stats.error_warning++;
1066 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
1067 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING :
1068 CAN_ERR_CRTL_RX_WARNING;
1069 cf->data[6] = txerr;
1070 cf->data[7] = rxerr;
1071 }
1072 if (cerfl & RCANFD_CERFL_EPF) {
1073 netdev_dbg(ndev, "Error passive interrupt\n");
1074 priv->can.state = CAN_STATE_ERROR_PASSIVE;
1075 priv->can.can_stats.error_passive++;
1076 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
1077 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE :
1078 CAN_ERR_CRTL_RX_PASSIVE;
1079 cf->data[6] = txerr;
1080 cf->data[7] = rxerr;
1081 }
1082 if (cerfl & RCANFD_CERFL_BOEF) {
1083 netdev_dbg(ndev, "Bus-off entry interrupt\n");
1084 rcar_canfd_tx_failure_cleanup(ndev);
1085 priv->can.state = CAN_STATE_BUS_OFF;
1086 priv->can.can_stats.bus_off++;
1087 can_bus_off(ndev);
1088 cf->can_id |= CAN_ERR_BUSOFF;
1089 }
1090 if (cerfl & RCANFD_CERFL_OVLF) {
1091 netdev_dbg(ndev,
1092 "Overload Frame Transmission error interrupt\n");
1093 stats->tx_errors++;
1094 cf->can_id |= CAN_ERR_PROT;
1095 cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
1096 }
1097
1098 /* Clear channel error interrupts that are handled */
1099 rcar_canfd_write(priv->base, RCANFD_CERFL(ch),
1100 RCANFD_CERFL_ERR(~cerfl));
1101 netif_rx(skb);
1102 }
1103
rcar_canfd_tx_done(struct net_device * ndev)1104 static void rcar_canfd_tx_done(struct net_device *ndev)
1105 {
1106 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1107 struct rcar_canfd_global *gpriv = priv->gpriv;
1108 struct net_device_stats *stats = &ndev->stats;
1109 u32 sts;
1110 unsigned long flags;
1111 u32 ch = priv->channel;
1112
1113 do {
1114 u8 unsent, sent;
1115
1116 sent = priv->tx_tail % RCANFD_FIFO_DEPTH;
1117 stats->tx_packets++;
1118 stats->tx_bytes += can_get_echo_skb(ndev, sent, NULL);
1119
1120 spin_lock_irqsave(&priv->tx_lock, flags);
1121 priv->tx_tail++;
1122 sts = rcar_canfd_read(priv->base,
1123 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1124 unsent = RCANFD_CFSTS_CFMC(sts);
1125
1126 /* Wake producer only when there is room */
1127 if (unsent != RCANFD_FIFO_DEPTH)
1128 netif_wake_queue(ndev);
1129
1130 if (priv->tx_head - priv->tx_tail <= unsent) {
1131 spin_unlock_irqrestore(&priv->tx_lock, flags);
1132 break;
1133 }
1134 spin_unlock_irqrestore(&priv->tx_lock, flags);
1135
1136 } while (1);
1137
1138 /* Clear interrupt */
1139 rcar_canfd_write(priv->base, RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
1140 sts & ~RCANFD_CFSTS_CFTXIF);
1141 }
1142
rcar_canfd_handle_global_err(struct rcar_canfd_global * gpriv,u32 ch)1143 static void rcar_canfd_handle_global_err(struct rcar_canfd_global *gpriv, u32 ch)
1144 {
1145 struct rcar_canfd_channel *priv = gpriv->ch[ch];
1146 struct net_device *ndev = priv->ndev;
1147 u32 gerfl;
1148
1149 /* Handle global error interrupts */
1150 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
1151 if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl)))
1152 rcar_canfd_global_error(ndev);
1153 }
1154
rcar_canfd_global_err_interrupt(int irq,void * dev_id)1155 static irqreturn_t rcar_canfd_global_err_interrupt(int irq, void *dev_id)
1156 {
1157 struct rcar_canfd_global *gpriv = dev_id;
1158 u32 ch;
1159
1160 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels)
1161 rcar_canfd_handle_global_err(gpriv, ch);
1162
1163 return IRQ_HANDLED;
1164 }
1165
rcar_canfd_handle_global_receive(struct rcar_canfd_global * gpriv,u32 ch)1166 static void rcar_canfd_handle_global_receive(struct rcar_canfd_global *gpriv, u32 ch)
1167 {
1168 struct rcar_canfd_channel *priv = gpriv->ch[ch];
1169 u32 ridx = ch + RCANFD_RFFIFO_IDX;
1170 u32 sts, cc;
1171
1172 /* Handle Rx interrupts */
1173 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1174 cc = rcar_canfd_read(priv->base, RCANFD_RFCC(gpriv, ridx));
1175 if (likely(sts & RCANFD_RFSTS_RFIF &&
1176 cc & RCANFD_RFCC_RFIE)) {
1177 if (napi_schedule_prep(&priv->napi)) {
1178 /* Disable Rx FIFO interrupts */
1179 rcar_canfd_clear_bit(priv->base,
1180 RCANFD_RFCC(gpriv, ridx),
1181 RCANFD_RFCC_RFIE);
1182 __napi_schedule(&priv->napi);
1183 }
1184 }
1185 }
1186
rcar_canfd_global_receive_fifo_interrupt(int irq,void * dev_id)1187 static irqreturn_t rcar_canfd_global_receive_fifo_interrupt(int irq, void *dev_id)
1188 {
1189 struct rcar_canfd_global *gpriv = dev_id;
1190 u32 ch;
1191
1192 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels)
1193 rcar_canfd_handle_global_receive(gpriv, ch);
1194
1195 return IRQ_HANDLED;
1196 }
1197
rcar_canfd_global_interrupt(int irq,void * dev_id)1198 static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id)
1199 {
1200 struct rcar_canfd_global *gpriv = dev_id;
1201 u32 ch;
1202
1203 /* Global error interrupts still indicate a condition specific
1204 * to a channel. RxFIFO interrupt is a global interrupt.
1205 */
1206 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
1207 rcar_canfd_handle_global_err(gpriv, ch);
1208 rcar_canfd_handle_global_receive(gpriv, ch);
1209 }
1210 return IRQ_HANDLED;
1211 }
1212
rcar_canfd_state_change(struct net_device * ndev,u16 txerr,u16 rxerr)1213 static void rcar_canfd_state_change(struct net_device *ndev,
1214 u16 txerr, u16 rxerr)
1215 {
1216 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1217 struct net_device_stats *stats = &ndev->stats;
1218 enum can_state rx_state, tx_state, state = priv->can.state;
1219 struct can_frame *cf;
1220 struct sk_buff *skb;
1221
1222 /* Handle transition from error to normal states */
1223 if (txerr < 96 && rxerr < 96)
1224 state = CAN_STATE_ERROR_ACTIVE;
1225 else if (txerr < 128 && rxerr < 128)
1226 state = CAN_STATE_ERROR_WARNING;
1227
1228 if (state != priv->can.state) {
1229 netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n",
1230 state, priv->can.state, txerr, rxerr);
1231 skb = alloc_can_err_skb(ndev, &cf);
1232 if (!skb) {
1233 stats->rx_dropped++;
1234 return;
1235 }
1236 tx_state = txerr >= rxerr ? state : 0;
1237 rx_state = txerr <= rxerr ? state : 0;
1238
1239 can_change_state(ndev, cf, tx_state, rx_state);
1240 netif_rx(skb);
1241 }
1242 }
1243
rcar_canfd_handle_channel_tx(struct rcar_canfd_global * gpriv,u32 ch)1244 static void rcar_canfd_handle_channel_tx(struct rcar_canfd_global *gpriv, u32 ch)
1245 {
1246 struct rcar_canfd_channel *priv = gpriv->ch[ch];
1247 struct net_device *ndev = priv->ndev;
1248 u32 sts;
1249
1250 /* Handle Tx interrupts */
1251 sts = rcar_canfd_read(priv->base,
1252 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1253 if (likely(sts & RCANFD_CFSTS_CFTXIF))
1254 rcar_canfd_tx_done(ndev);
1255 }
1256
rcar_canfd_channel_tx_interrupt(int irq,void * dev_id)1257 static irqreturn_t rcar_canfd_channel_tx_interrupt(int irq, void *dev_id)
1258 {
1259 struct rcar_canfd_channel *priv = dev_id;
1260
1261 rcar_canfd_handle_channel_tx(priv->gpriv, priv->channel);
1262
1263 return IRQ_HANDLED;
1264 }
1265
rcar_canfd_handle_channel_err(struct rcar_canfd_global * gpriv,u32 ch)1266 static void rcar_canfd_handle_channel_err(struct rcar_canfd_global *gpriv, u32 ch)
1267 {
1268 struct rcar_canfd_channel *priv = gpriv->ch[ch];
1269 struct net_device *ndev = priv->ndev;
1270 u16 txerr, rxerr;
1271 u32 sts, cerfl;
1272
1273 /* Handle channel error interrupts */
1274 cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch));
1275 sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1276 txerr = RCANFD_CSTS_TECCNT(sts);
1277 rxerr = RCANFD_CSTS_RECCNT(sts);
1278 if (unlikely(RCANFD_CERFL_ERR(cerfl)))
1279 rcar_canfd_error(ndev, cerfl, txerr, rxerr);
1280
1281 /* Handle state change to lower states */
1282 if (unlikely(priv->can.state != CAN_STATE_ERROR_ACTIVE &&
1283 priv->can.state != CAN_STATE_BUS_OFF))
1284 rcar_canfd_state_change(ndev, txerr, rxerr);
1285 }
1286
rcar_canfd_channel_err_interrupt(int irq,void * dev_id)1287 static irqreturn_t rcar_canfd_channel_err_interrupt(int irq, void *dev_id)
1288 {
1289 struct rcar_canfd_channel *priv = dev_id;
1290
1291 rcar_canfd_handle_channel_err(priv->gpriv, priv->channel);
1292
1293 return IRQ_HANDLED;
1294 }
1295
rcar_canfd_channel_interrupt(int irq,void * dev_id)1296 static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id)
1297 {
1298 struct rcar_canfd_global *gpriv = dev_id;
1299 u32 ch;
1300
1301 /* Common FIFO is a per channel resource */
1302 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
1303 rcar_canfd_handle_channel_err(gpriv, ch);
1304 rcar_canfd_handle_channel_tx(gpriv, ch);
1305 }
1306
1307 return IRQ_HANDLED;
1308 }
1309
rcar_canfd_set_bittiming(struct net_device * dev)1310 static void rcar_canfd_set_bittiming(struct net_device *dev)
1311 {
1312 struct rcar_canfd_channel *priv = netdev_priv(dev);
1313 struct rcar_canfd_global *gpriv = priv->gpriv;
1314 const struct can_bittiming *bt = &priv->can.bittiming;
1315 const struct can_bittiming *dbt = &priv->can.data_bittiming;
1316 u16 brp, sjw, tseg1, tseg2;
1317 u32 cfg;
1318 u32 ch = priv->channel;
1319
1320 /* Nominal bit timing settings */
1321 brp = bt->brp - 1;
1322 sjw = bt->sjw - 1;
1323 tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1324 tseg2 = bt->phase_seg2 - 1;
1325
1326 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1327 /* CAN FD only mode */
1328 cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) | RCANFD_NCFG_NBRP(brp) |
1329 RCANFD_NCFG_NSJW(gpriv, sjw) | RCANFD_NCFG_NTSEG2(gpriv, tseg2));
1330
1331 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1332 netdev_dbg(priv->ndev, "nrate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1333 brp, sjw, tseg1, tseg2);
1334
1335 /* Data bit timing settings */
1336 brp = dbt->brp - 1;
1337 sjw = dbt->sjw - 1;
1338 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1339 tseg2 = dbt->phase_seg2 - 1;
1340
1341 cfg = (RCANFD_DCFG_DTSEG1(gpriv, tseg1) | RCANFD_DCFG_DBRP(brp) |
1342 RCANFD_DCFG_DSJW(gpriv, sjw) | RCANFD_DCFG_DTSEG2(gpriv, tseg2));
1343
1344 rcar_canfd_write(priv->base, RCANFD_F_DCFG(gpriv, ch), cfg);
1345 netdev_dbg(priv->ndev, "drate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1346 brp, sjw, tseg1, tseg2);
1347 } else {
1348 /* Classical CAN only mode */
1349 if (is_gen4(gpriv)) {
1350 cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) |
1351 RCANFD_NCFG_NBRP(brp) |
1352 RCANFD_NCFG_NSJW(gpriv, sjw) |
1353 RCANFD_NCFG_NTSEG2(gpriv, tseg2));
1354 } else {
1355 cfg = (RCANFD_CFG_TSEG1(tseg1) |
1356 RCANFD_CFG_BRP(brp) |
1357 RCANFD_CFG_SJW(sjw) |
1358 RCANFD_CFG_TSEG2(tseg2));
1359 }
1360
1361 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1362 netdev_dbg(priv->ndev,
1363 "rate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1364 brp, sjw, tseg1, tseg2);
1365 }
1366 }
1367
rcar_canfd_start(struct net_device * ndev)1368 static int rcar_canfd_start(struct net_device *ndev)
1369 {
1370 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1371 struct rcar_canfd_global *gpriv = priv->gpriv;
1372 int err = -EOPNOTSUPP;
1373 u32 sts, ch = priv->channel;
1374 u32 ridx = ch + RCANFD_RFFIFO_IDX;
1375
1376 rcar_canfd_set_bittiming(ndev);
1377
1378 rcar_canfd_enable_channel_interrupts(priv);
1379
1380 /* Set channel to Operational mode */
1381 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1382 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM);
1383
1384 /* Verify channel mode change */
1385 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1386 (sts & RCANFD_CSTS_COMSTS), 2, 500000);
1387 if (err) {
1388 netdev_err(ndev, "channel %u communication state failed\n", ch);
1389 goto fail_mode_change;
1390 }
1391
1392 /* Enable Common & Rx FIFO */
1393 rcar_canfd_set_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
1394 RCANFD_CFCC_CFE);
1395 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
1396
1397 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1398 return 0;
1399
1400 fail_mode_change:
1401 rcar_canfd_disable_channel_interrupts(priv);
1402 return err;
1403 }
1404
rcar_canfd_open(struct net_device * ndev)1405 static int rcar_canfd_open(struct net_device *ndev)
1406 {
1407 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1408 struct rcar_canfd_global *gpriv = priv->gpriv;
1409 int err;
1410
1411 err = phy_power_on(priv->transceiver);
1412 if (err) {
1413 netdev_err(ndev, "failed to power on PHY: %pe\n", ERR_PTR(err));
1414 return err;
1415 }
1416
1417 /* Peripheral clock is already enabled in probe */
1418 err = clk_prepare_enable(gpriv->can_clk);
1419 if (err) {
1420 netdev_err(ndev, "failed to enable CAN clock: %pe\n", ERR_PTR(err));
1421 goto out_phy;
1422 }
1423
1424 err = open_candev(ndev);
1425 if (err) {
1426 netdev_err(ndev, "open_candev() failed: %pe\n", ERR_PTR(err));
1427 goto out_can_clock;
1428 }
1429
1430 napi_enable(&priv->napi);
1431 err = rcar_canfd_start(ndev);
1432 if (err)
1433 goto out_close;
1434 netif_start_queue(ndev);
1435 return 0;
1436 out_close:
1437 napi_disable(&priv->napi);
1438 close_candev(ndev);
1439 out_can_clock:
1440 clk_disable_unprepare(gpriv->can_clk);
1441 out_phy:
1442 phy_power_off(priv->transceiver);
1443 return err;
1444 }
1445
rcar_canfd_stop(struct net_device * ndev)1446 static void rcar_canfd_stop(struct net_device *ndev)
1447 {
1448 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1449 struct rcar_canfd_global *gpriv = priv->gpriv;
1450 int err;
1451 u32 sts, ch = priv->channel;
1452 u32 ridx = ch + RCANFD_RFFIFO_IDX;
1453
1454 /* Transition to channel reset mode */
1455 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1456 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET);
1457
1458 /* Check Channel reset mode */
1459 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1460 (sts & RCANFD_CSTS_CRSTSTS), 2, 500000);
1461 if (err)
1462 netdev_err(ndev, "channel %u reset failed\n", ch);
1463
1464 rcar_canfd_disable_channel_interrupts(priv);
1465
1466 /* Disable Common & Rx FIFO */
1467 rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
1468 RCANFD_CFCC_CFE);
1469 rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
1470
1471 /* Set the state as STOPPED */
1472 priv->can.state = CAN_STATE_STOPPED;
1473 }
1474
rcar_canfd_close(struct net_device * ndev)1475 static int rcar_canfd_close(struct net_device *ndev)
1476 {
1477 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1478 struct rcar_canfd_global *gpriv = priv->gpriv;
1479
1480 netif_stop_queue(ndev);
1481 rcar_canfd_stop(ndev);
1482 napi_disable(&priv->napi);
1483 clk_disable_unprepare(gpriv->can_clk);
1484 close_candev(ndev);
1485 phy_power_off(priv->transceiver);
1486 return 0;
1487 }
1488
rcar_canfd_start_xmit(struct sk_buff * skb,struct net_device * ndev)1489 static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb,
1490 struct net_device *ndev)
1491 {
1492 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1493 struct rcar_canfd_global *gpriv = priv->gpriv;
1494 struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1495 u32 sts = 0, id, dlc;
1496 unsigned long flags;
1497 u32 ch = priv->channel;
1498
1499 if (can_dev_dropped_skb(ndev, skb))
1500 return NETDEV_TX_OK;
1501
1502 if (cf->can_id & CAN_EFF_FLAG) {
1503 id = cf->can_id & CAN_EFF_MASK;
1504 id |= RCANFD_CFID_CFIDE;
1505 } else {
1506 id = cf->can_id & CAN_SFF_MASK;
1507 }
1508
1509 if (cf->can_id & CAN_RTR_FLAG)
1510 id |= RCANFD_CFID_CFRTR;
1511
1512 dlc = RCANFD_CFPTR_CFDLC(can_fd_len2dlc(cf->len));
1513
1514 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_gen4(gpriv)) {
1515 rcar_canfd_write(priv->base,
1516 RCANFD_F_CFID(gpriv, ch, RCANFD_CFFIFO_IDX), id);
1517 rcar_canfd_write(priv->base,
1518 RCANFD_F_CFPTR(gpriv, ch, RCANFD_CFFIFO_IDX), dlc);
1519
1520 if (can_is_canfd_skb(skb)) {
1521 /* CAN FD frame format */
1522 sts |= RCANFD_CFFDCSTS_CFFDF;
1523 if (cf->flags & CANFD_BRS)
1524 sts |= RCANFD_CFFDCSTS_CFBRS;
1525
1526 if (priv->can.state == CAN_STATE_ERROR_PASSIVE)
1527 sts |= RCANFD_CFFDCSTS_CFESI;
1528 }
1529
1530 rcar_canfd_write(priv->base,
1531 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), sts);
1532
1533 rcar_canfd_put_data(priv, cf,
1534 RCANFD_F_CFDF(gpriv, ch, RCANFD_CFFIFO_IDX, 0));
1535 } else {
1536 rcar_canfd_write(priv->base,
1537 RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id);
1538 rcar_canfd_write(priv->base,
1539 RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc);
1540 rcar_canfd_put_data(priv, cf,
1541 RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0));
1542 }
1543
1544 can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH, 0);
1545
1546 spin_lock_irqsave(&priv->tx_lock, flags);
1547 priv->tx_head++;
1548
1549 /* Stop the queue if we've filled all FIFO entries */
1550 if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH)
1551 netif_stop_queue(ndev);
1552
1553 /* Start Tx: Write 0xff to CFPC to increment the CPU-side
1554 * pointer for the Common FIFO
1555 */
1556 rcar_canfd_write(priv->base,
1557 RCANFD_CFPCTR(gpriv, ch, RCANFD_CFFIFO_IDX), 0xff);
1558
1559 spin_unlock_irqrestore(&priv->tx_lock, flags);
1560 return NETDEV_TX_OK;
1561 }
1562
rcar_canfd_rx_pkt(struct rcar_canfd_channel * priv)1563 static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv)
1564 {
1565 struct net_device_stats *stats = &priv->ndev->stats;
1566 struct rcar_canfd_global *gpriv = priv->gpriv;
1567 struct canfd_frame *cf;
1568 struct sk_buff *skb;
1569 u32 sts = 0, id, dlc;
1570 u32 ch = priv->channel;
1571 u32 ridx = ch + RCANFD_RFFIFO_IDX;
1572
1573 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_gen4(gpriv)) {
1574 id = rcar_canfd_read(priv->base, RCANFD_F_RFID(gpriv, ridx));
1575 dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(gpriv, ridx));
1576
1577 sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(gpriv, ridx));
1578
1579 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) &&
1580 sts & RCANFD_RFFDSTS_RFFDF)
1581 skb = alloc_canfd_skb(priv->ndev, &cf);
1582 else
1583 skb = alloc_can_skb(priv->ndev,
1584 (struct can_frame **)&cf);
1585 } else {
1586 id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx));
1587 dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx));
1588 skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cf);
1589 }
1590
1591 if (!skb) {
1592 stats->rx_dropped++;
1593 return;
1594 }
1595
1596 if (id & RCANFD_RFID_RFIDE)
1597 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
1598 else
1599 cf->can_id = id & CAN_SFF_MASK;
1600
1601 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1602 if (sts & RCANFD_RFFDSTS_RFFDF)
1603 cf->len = can_fd_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1604 else
1605 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1606
1607 if (sts & RCANFD_RFFDSTS_RFESI) {
1608 cf->flags |= CANFD_ESI;
1609 netdev_dbg(priv->ndev, "ESI Error\n");
1610 }
1611
1612 if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) {
1613 cf->can_id |= CAN_RTR_FLAG;
1614 } else {
1615 if (sts & RCANFD_RFFDSTS_RFBRS)
1616 cf->flags |= CANFD_BRS;
1617
1618 rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
1619 }
1620 } else {
1621 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1622 if (id & RCANFD_RFID_RFRTR)
1623 cf->can_id |= CAN_RTR_FLAG;
1624 else if (is_gen4(gpriv))
1625 rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
1626 else
1627 rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0));
1628 }
1629
1630 /* Write 0xff to RFPC to increment the CPU-side
1631 * pointer of the Rx FIFO
1632 */
1633 rcar_canfd_write(priv->base, RCANFD_RFPCTR(gpriv, ridx), 0xff);
1634
1635 if (!(cf->can_id & CAN_RTR_FLAG))
1636 stats->rx_bytes += cf->len;
1637 stats->rx_packets++;
1638 netif_receive_skb(skb);
1639 }
1640
rcar_canfd_rx_poll(struct napi_struct * napi,int quota)1641 static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota)
1642 {
1643 struct rcar_canfd_channel *priv =
1644 container_of(napi, struct rcar_canfd_channel, napi);
1645 struct rcar_canfd_global *gpriv = priv->gpriv;
1646 int num_pkts;
1647 u32 sts;
1648 u32 ch = priv->channel;
1649 u32 ridx = ch + RCANFD_RFFIFO_IDX;
1650
1651 for (num_pkts = 0; num_pkts < quota; num_pkts++) {
1652 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1653 /* Check FIFO empty condition */
1654 if (sts & RCANFD_RFSTS_RFEMP)
1655 break;
1656
1657 rcar_canfd_rx_pkt(priv);
1658
1659 /* Clear interrupt bit */
1660 if (sts & RCANFD_RFSTS_RFIF)
1661 rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
1662 sts & ~RCANFD_RFSTS_RFIF);
1663 }
1664
1665 /* All packets processed */
1666 if (num_pkts < quota) {
1667 if (napi_complete_done(napi, num_pkts)) {
1668 /* Enable Rx FIFO interrupts */
1669 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx),
1670 RCANFD_RFCC_RFIE);
1671 }
1672 }
1673 return num_pkts;
1674 }
1675
rcar_canfd_do_set_mode(struct net_device * ndev,enum can_mode mode)1676 static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode)
1677 {
1678 int err;
1679
1680 switch (mode) {
1681 case CAN_MODE_START:
1682 err = rcar_canfd_start(ndev);
1683 if (err)
1684 return err;
1685 netif_wake_queue(ndev);
1686 return 0;
1687 default:
1688 return -EOPNOTSUPP;
1689 }
1690 }
1691
rcar_canfd_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)1692 static int rcar_canfd_get_berr_counter(const struct net_device *dev,
1693 struct can_berr_counter *bec)
1694 {
1695 struct rcar_canfd_channel *priv = netdev_priv(dev);
1696 u32 val, ch = priv->channel;
1697
1698 /* Peripheral clock is already enabled in probe */
1699 val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1700 bec->txerr = RCANFD_CSTS_TECCNT(val);
1701 bec->rxerr = RCANFD_CSTS_RECCNT(val);
1702 return 0;
1703 }
1704
1705 static const struct net_device_ops rcar_canfd_netdev_ops = {
1706 .ndo_open = rcar_canfd_open,
1707 .ndo_stop = rcar_canfd_close,
1708 .ndo_start_xmit = rcar_canfd_start_xmit,
1709 .ndo_change_mtu = can_change_mtu,
1710 };
1711
1712 static const struct ethtool_ops rcar_canfd_ethtool_ops = {
1713 .get_ts_info = ethtool_op_get_ts_info,
1714 };
1715
rcar_canfd_channel_probe(struct rcar_canfd_global * gpriv,u32 ch,u32 fcan_freq,struct phy * transceiver)1716 static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch,
1717 u32 fcan_freq, struct phy *transceiver)
1718 {
1719 const struct rcar_canfd_hw_info *info = gpriv->info;
1720 struct platform_device *pdev = gpriv->pdev;
1721 struct device *dev = &pdev->dev;
1722 struct rcar_canfd_channel *priv;
1723 struct net_device *ndev;
1724 int err = -ENODEV;
1725
1726 ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH);
1727 if (!ndev)
1728 return -ENOMEM;
1729
1730 priv = netdev_priv(ndev);
1731
1732 ndev->netdev_ops = &rcar_canfd_netdev_ops;
1733 ndev->ethtool_ops = &rcar_canfd_ethtool_ops;
1734 ndev->flags |= IFF_ECHO;
1735 priv->ndev = ndev;
1736 priv->base = gpriv->base;
1737 priv->transceiver = transceiver;
1738 priv->channel = ch;
1739 priv->gpriv = gpriv;
1740 if (transceiver)
1741 priv->can.bitrate_max = transceiver->attrs.max_link_rate;
1742 priv->can.clock.freq = fcan_freq;
1743 dev_info(dev, "can_clk rate is %u\n", priv->can.clock.freq);
1744
1745 if (info->multi_channel_irqs) {
1746 char *irq_name;
1747 int err_irq;
1748 int tx_irq;
1749
1750 err_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_err" : "ch1_err");
1751 if (err_irq < 0) {
1752 err = err_irq;
1753 goto fail;
1754 }
1755
1756 tx_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_trx" : "ch1_trx");
1757 if (tx_irq < 0) {
1758 err = tx_irq;
1759 goto fail;
1760 }
1761
1762 irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_err",
1763 ch);
1764 if (!irq_name) {
1765 err = -ENOMEM;
1766 goto fail;
1767 }
1768 err = devm_request_irq(dev, err_irq,
1769 rcar_canfd_channel_err_interrupt, 0,
1770 irq_name, priv);
1771 if (err) {
1772 dev_err(dev, "devm_request_irq CH Err %d failed: %pe\n",
1773 err_irq, ERR_PTR(err));
1774 goto fail;
1775 }
1776 irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_trx",
1777 ch);
1778 if (!irq_name) {
1779 err = -ENOMEM;
1780 goto fail;
1781 }
1782 err = devm_request_irq(dev, tx_irq,
1783 rcar_canfd_channel_tx_interrupt, 0,
1784 irq_name, priv);
1785 if (err) {
1786 dev_err(dev, "devm_request_irq Tx %d failed: %pe\n",
1787 tx_irq, ERR_PTR(err));
1788 goto fail;
1789 }
1790 }
1791
1792 if (gpriv->fdmode) {
1793 priv->can.bittiming_const = &rcar_canfd_nom_bittiming_const;
1794 priv->can.data_bittiming_const =
1795 &rcar_canfd_data_bittiming_const;
1796
1797 /* Controller starts in CAN FD only mode */
1798 err = can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD);
1799 if (err)
1800 goto fail;
1801 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1802 } else {
1803 /* Controller starts in Classical CAN only mode */
1804 priv->can.bittiming_const = &rcar_canfd_bittiming_const;
1805 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1806 }
1807
1808 priv->can.do_set_mode = rcar_canfd_do_set_mode;
1809 priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter;
1810 SET_NETDEV_DEV(ndev, dev);
1811
1812 netif_napi_add_weight(ndev, &priv->napi, rcar_canfd_rx_poll,
1813 RCANFD_NAPI_WEIGHT);
1814 spin_lock_init(&priv->tx_lock);
1815 gpriv->ch[priv->channel] = priv;
1816 err = register_candev(ndev);
1817 if (err) {
1818 dev_err(dev, "register_candev() failed: %pe\n", ERR_PTR(err));
1819 goto fail_candev;
1820 }
1821 dev_info(dev, "device registered (channel %u)\n", priv->channel);
1822 return 0;
1823
1824 fail_candev:
1825 netif_napi_del(&priv->napi);
1826 fail:
1827 free_candev(ndev);
1828 return err;
1829 }
1830
rcar_canfd_channel_remove(struct rcar_canfd_global * gpriv,u32 ch)1831 static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch)
1832 {
1833 struct rcar_canfd_channel *priv = gpriv->ch[ch];
1834
1835 if (priv) {
1836 unregister_candev(priv->ndev);
1837 netif_napi_del(&priv->napi);
1838 free_candev(priv->ndev);
1839 }
1840 }
1841
rcar_canfd_probe(struct platform_device * pdev)1842 static int rcar_canfd_probe(struct platform_device *pdev)
1843 {
1844 struct phy *transceivers[RCANFD_NUM_CHANNELS] = { NULL, };
1845 const struct rcar_canfd_hw_info *info;
1846 struct device *dev = &pdev->dev;
1847 void __iomem *addr;
1848 u32 sts, ch, fcan_freq;
1849 struct rcar_canfd_global *gpriv;
1850 struct device_node *of_child;
1851 unsigned long channels_mask = 0;
1852 int err, ch_irq, g_irq;
1853 int g_err_irq, g_recc_irq;
1854 bool fdmode = true; /* CAN FD only mode - default */
1855 char name[9] = "channelX";
1856 int i;
1857
1858 info = of_device_get_match_data(dev);
1859
1860 if (of_property_read_bool(dev->of_node, "renesas,no-can-fd"))
1861 fdmode = false; /* Classical CAN only mode */
1862
1863 for (i = 0; i < info->max_channels; ++i) {
1864 name[7] = '0' + i;
1865 of_child = of_get_child_by_name(dev->of_node, name);
1866 if (of_child && of_device_is_available(of_child)) {
1867 channels_mask |= BIT(i);
1868 transceivers[i] = devm_of_phy_optional_get(dev,
1869 of_child, NULL);
1870 }
1871 of_node_put(of_child);
1872 if (IS_ERR(transceivers[i]))
1873 return PTR_ERR(transceivers[i]);
1874 }
1875
1876 if (info->shared_global_irqs) {
1877 ch_irq = platform_get_irq_byname_optional(pdev, "ch_int");
1878 if (ch_irq < 0) {
1879 /* For backward compatibility get irq by index */
1880 ch_irq = platform_get_irq(pdev, 0);
1881 if (ch_irq < 0)
1882 return ch_irq;
1883 }
1884
1885 g_irq = platform_get_irq_byname_optional(pdev, "g_int");
1886 if (g_irq < 0) {
1887 /* For backward compatibility get irq by index */
1888 g_irq = platform_get_irq(pdev, 1);
1889 if (g_irq < 0)
1890 return g_irq;
1891 }
1892 } else {
1893 g_err_irq = platform_get_irq_byname(pdev, "g_err");
1894 if (g_err_irq < 0)
1895 return g_err_irq;
1896
1897 g_recc_irq = platform_get_irq_byname(pdev, "g_recc");
1898 if (g_recc_irq < 0)
1899 return g_recc_irq;
1900 }
1901
1902 /* Global controller context */
1903 gpriv = devm_kzalloc(dev, sizeof(*gpriv), GFP_KERNEL);
1904 if (!gpriv)
1905 return -ENOMEM;
1906
1907 gpriv->pdev = pdev;
1908 gpriv->channels_mask = channels_mask;
1909 gpriv->fdmode = fdmode;
1910 gpriv->info = info;
1911
1912 gpriv->rstc1 = devm_reset_control_get_optional_exclusive(dev, "rstp_n");
1913 if (IS_ERR(gpriv->rstc1))
1914 return dev_err_probe(dev, PTR_ERR(gpriv->rstc1),
1915 "failed to get rstp_n\n");
1916
1917 gpriv->rstc2 = devm_reset_control_get_optional_exclusive(dev, "rstc_n");
1918 if (IS_ERR(gpriv->rstc2))
1919 return dev_err_probe(dev, PTR_ERR(gpriv->rstc2),
1920 "failed to get rstc_n\n");
1921
1922 /* Peripheral clock */
1923 gpriv->clkp = devm_clk_get(dev, "fck");
1924 if (IS_ERR(gpriv->clkp))
1925 return dev_err_probe(dev, PTR_ERR(gpriv->clkp),
1926 "cannot get peripheral clock\n");
1927
1928 /* fCAN clock: Pick External clock. If not available fallback to
1929 * CANFD clock
1930 */
1931 gpriv->can_clk = devm_clk_get(dev, "can_clk");
1932 if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) {
1933 gpriv->can_clk = devm_clk_get(dev, "canfd");
1934 if (IS_ERR(gpriv->can_clk))
1935 return dev_err_probe(dev, PTR_ERR(gpriv->can_clk),
1936 "cannot get canfd clock\n");
1937
1938 /* CANFD clock may be further divided within the IP */
1939 fcan_freq = clk_get_rate(gpriv->can_clk) / info->postdiv;
1940 } else {
1941 fcan_freq = clk_get_rate(gpriv->can_clk);
1942 gpriv->extclk = true;
1943 }
1944
1945 addr = devm_platform_ioremap_resource(pdev, 0);
1946 if (IS_ERR(addr)) {
1947 err = PTR_ERR(addr);
1948 goto fail_dev;
1949 }
1950 gpriv->base = addr;
1951
1952 /* Request IRQ that's common for both channels */
1953 if (info->shared_global_irqs) {
1954 err = devm_request_irq(dev, ch_irq,
1955 rcar_canfd_channel_interrupt, 0,
1956 "canfd.ch_int", gpriv);
1957 if (err) {
1958 dev_err(dev, "devm_request_irq %d failed: %pe\n",
1959 ch_irq, ERR_PTR(err));
1960 goto fail_dev;
1961 }
1962
1963 err = devm_request_irq(dev, g_irq, rcar_canfd_global_interrupt,
1964 0, "canfd.g_int", gpriv);
1965 if (err) {
1966 dev_err(dev, "devm_request_irq %d failed: %pe\n",
1967 g_irq, ERR_PTR(err));
1968 goto fail_dev;
1969 }
1970 } else {
1971 err = devm_request_irq(dev, g_recc_irq,
1972 rcar_canfd_global_receive_fifo_interrupt, 0,
1973 "canfd.g_recc", gpriv);
1974
1975 if (err) {
1976 dev_err(dev, "devm_request_irq %d failed: %pe\n",
1977 g_recc_irq, ERR_PTR(err));
1978 goto fail_dev;
1979 }
1980
1981 err = devm_request_irq(dev, g_err_irq,
1982 rcar_canfd_global_err_interrupt, 0,
1983 "canfd.g_err", gpriv);
1984 if (err) {
1985 dev_err(dev, "devm_request_irq %d failed: %pe\n",
1986 g_err_irq, ERR_PTR(err));
1987 goto fail_dev;
1988 }
1989 }
1990
1991 err = reset_control_reset(gpriv->rstc1);
1992 if (err)
1993 goto fail_dev;
1994 err = reset_control_reset(gpriv->rstc2);
1995 if (err) {
1996 reset_control_assert(gpriv->rstc1);
1997 goto fail_dev;
1998 }
1999
2000 /* Enable peripheral clock for register access */
2001 err = clk_prepare_enable(gpriv->clkp);
2002 if (err) {
2003 dev_err(dev, "failed to enable peripheral clock: %pe\n",
2004 ERR_PTR(err));
2005 goto fail_reset;
2006 }
2007
2008 err = rcar_canfd_reset_controller(gpriv);
2009 if (err) {
2010 dev_err(dev, "reset controller failed: %pe\n", ERR_PTR(err));
2011 goto fail_clk;
2012 }
2013
2014 /* Controller in Global reset & Channel reset mode */
2015 rcar_canfd_configure_controller(gpriv);
2016
2017 /* Configure per channel attributes */
2018 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) {
2019 /* Configure Channel's Rx fifo */
2020 rcar_canfd_configure_rx(gpriv, ch);
2021
2022 /* Configure Channel's Tx (Common) fifo */
2023 rcar_canfd_configure_tx(gpriv, ch);
2024
2025 /* Configure receive rules */
2026 rcar_canfd_configure_afl_rules(gpriv, ch);
2027 }
2028
2029 /* Configure common interrupts */
2030 rcar_canfd_enable_global_interrupts(gpriv);
2031
2032 /* Start Global operation mode */
2033 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK,
2034 RCANFD_GCTR_GMDC_GOPM);
2035
2036 /* Verify mode change */
2037 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
2038 !(sts & RCANFD_GSTS_GNOPM), 2, 500000);
2039 if (err) {
2040 dev_err(dev, "global operational mode failed\n");
2041 goto fail_mode;
2042 }
2043
2044 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) {
2045 err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq,
2046 transceivers[ch]);
2047 if (err)
2048 goto fail_channel;
2049 }
2050
2051 platform_set_drvdata(pdev, gpriv);
2052 dev_info(dev, "global operational state (%s clk, %s mode)\n",
2053 gpriv->extclk ? "ext" : "canfd",
2054 gpriv->fdmode ? "fd" : "classical");
2055 return 0;
2056
2057 fail_channel:
2058 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels)
2059 rcar_canfd_channel_remove(gpriv, ch);
2060 fail_mode:
2061 rcar_canfd_disable_global_interrupts(gpriv);
2062 fail_clk:
2063 clk_disable_unprepare(gpriv->clkp);
2064 fail_reset:
2065 reset_control_assert(gpriv->rstc1);
2066 reset_control_assert(gpriv->rstc2);
2067 fail_dev:
2068 return err;
2069 }
2070
rcar_canfd_remove(struct platform_device * pdev)2071 static void rcar_canfd_remove(struct platform_device *pdev)
2072 {
2073 struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev);
2074 u32 ch;
2075
2076 rcar_canfd_reset_controller(gpriv);
2077 rcar_canfd_disable_global_interrupts(gpriv);
2078
2079 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
2080 rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]);
2081 rcar_canfd_channel_remove(gpriv, ch);
2082 }
2083
2084 /* Enter global sleep mode */
2085 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
2086 clk_disable_unprepare(gpriv->clkp);
2087 reset_control_assert(gpriv->rstc1);
2088 reset_control_assert(gpriv->rstc2);
2089 }
2090
rcar_canfd_suspend(struct device * dev)2091 static int __maybe_unused rcar_canfd_suspend(struct device *dev)
2092 {
2093 return 0;
2094 }
2095
rcar_canfd_resume(struct device * dev)2096 static int __maybe_unused rcar_canfd_resume(struct device *dev)
2097 {
2098 return 0;
2099 }
2100
2101 static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend,
2102 rcar_canfd_resume);
2103
2104 static const __maybe_unused struct of_device_id rcar_canfd_of_table[] = {
2105 { .compatible = "renesas,r8a779a0-canfd", .data = &rcar_gen4_hw_info },
2106 { .compatible = "renesas,rcar-gen3-canfd", .data = &rcar_gen3_hw_info },
2107 { .compatible = "renesas,rcar-gen4-canfd", .data = &rcar_gen4_hw_info },
2108 { .compatible = "renesas,rzg2l-canfd", .data = &rzg2l_hw_info },
2109 { }
2110 };
2111
2112 MODULE_DEVICE_TABLE(of, rcar_canfd_of_table);
2113
2114 static struct platform_driver rcar_canfd_driver = {
2115 .driver = {
2116 .name = RCANFD_DRV_NAME,
2117 .of_match_table = of_match_ptr(rcar_canfd_of_table),
2118 .pm = &rcar_canfd_pm_ops,
2119 },
2120 .probe = rcar_canfd_probe,
2121 .remove = rcar_canfd_remove,
2122 };
2123
2124 module_platform_driver(rcar_canfd_driver);
2125
2126 MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>");
2127 MODULE_LICENSE("GPL");
2128 MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC");
2129 MODULE_ALIAS("platform:" RCANFD_DRV_NAME);
2130