1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * HID driver for Sony DualSense(TM) controller.
4 *
5 * Copyright (c) 2020-2022 Sony Interactive Entertainment
6 */
7
8 #include <linux/bits.h>
9 #include <linux/crc32.h>
10 #include <linux/device.h>
11 #include <linux/hid.h>
12 #include <linux/idr.h>
13 #include <linux/input/mt.h>
14 #include <linux/leds.h>
15 #include <linux/led-class-multicolor.h>
16 #include <linux/module.h>
17
18 #include <linux/unaligned.h>
19
20 #include "hid-ids.h"
21
22 /* List of connected playstation devices. */
23 static DEFINE_MUTEX(ps_devices_lock);
24 static LIST_HEAD(ps_devices_list);
25
26 static DEFINE_IDA(ps_player_id_allocator);
27
28 #define HID_PLAYSTATION_VERSION_PATCH 0x8000
29
30 enum PS_TYPE {
31 PS_TYPE_PS4_DUALSHOCK4,
32 PS_TYPE_PS5_DUALSENSE,
33 };
34
35 /* Base class for playstation devices. */
36 struct ps_device {
37 struct list_head list;
38 struct hid_device *hdev;
39 spinlock_t lock;
40
41 uint32_t player_id;
42
43 struct power_supply_desc battery_desc;
44 struct power_supply *battery;
45 uint8_t battery_capacity;
46 int battery_status;
47
48 const char *input_dev_name; /* Name of primary input device. */
49 uint8_t mac_address[6]; /* Note: stored in little endian order. */
50 uint32_t hw_version;
51 uint32_t fw_version;
52
53 int (*parse_report)(struct ps_device *dev, struct hid_report *report, u8 *data, int size);
54 void (*remove)(struct ps_device *dev);
55 };
56
57 /* Calibration data for playstation motion sensors. */
58 struct ps_calibration_data {
59 int abs_code;
60 short bias;
61 int sens_numer;
62 int sens_denom;
63 };
64
65 struct ps_led_info {
66 const char *name;
67 const char *color;
68 int max_brightness;
69 enum led_brightness (*brightness_get)(struct led_classdev *cdev);
70 int (*brightness_set)(struct led_classdev *cdev, enum led_brightness);
71 int (*blink_set)(struct led_classdev *led, unsigned long *on, unsigned long *off);
72 };
73
74 /* Seed values for DualShock4 / DualSense CRC32 for different report types. */
75 #define PS_INPUT_CRC32_SEED 0xA1
76 #define PS_OUTPUT_CRC32_SEED 0xA2
77 #define PS_FEATURE_CRC32_SEED 0xA3
78
79 #define DS_INPUT_REPORT_USB 0x01
80 #define DS_INPUT_REPORT_USB_SIZE 64
81 #define DS_INPUT_REPORT_BT 0x31
82 #define DS_INPUT_REPORT_BT_SIZE 78
83 #define DS_OUTPUT_REPORT_USB 0x02
84 #define DS_OUTPUT_REPORT_USB_SIZE 63
85 #define DS_OUTPUT_REPORT_BT 0x31
86 #define DS_OUTPUT_REPORT_BT_SIZE 78
87
88 #define DS_FEATURE_REPORT_CALIBRATION 0x05
89 #define DS_FEATURE_REPORT_CALIBRATION_SIZE 41
90 #define DS_FEATURE_REPORT_PAIRING_INFO 0x09
91 #define DS_FEATURE_REPORT_PAIRING_INFO_SIZE 20
92 #define DS_FEATURE_REPORT_FIRMWARE_INFO 0x20
93 #define DS_FEATURE_REPORT_FIRMWARE_INFO_SIZE 64
94
95 /* Button masks for DualSense input report. */
96 #define DS_BUTTONS0_HAT_SWITCH GENMASK(3, 0)
97 #define DS_BUTTONS0_SQUARE BIT(4)
98 #define DS_BUTTONS0_CROSS BIT(5)
99 #define DS_BUTTONS0_CIRCLE BIT(6)
100 #define DS_BUTTONS0_TRIANGLE BIT(7)
101 #define DS_BUTTONS1_L1 BIT(0)
102 #define DS_BUTTONS1_R1 BIT(1)
103 #define DS_BUTTONS1_L2 BIT(2)
104 #define DS_BUTTONS1_R2 BIT(3)
105 #define DS_BUTTONS1_CREATE BIT(4)
106 #define DS_BUTTONS1_OPTIONS BIT(5)
107 #define DS_BUTTONS1_L3 BIT(6)
108 #define DS_BUTTONS1_R3 BIT(7)
109 #define DS_BUTTONS2_PS_HOME BIT(0)
110 #define DS_BUTTONS2_TOUCHPAD BIT(1)
111 #define DS_BUTTONS2_MIC_MUTE BIT(2)
112
113 /* Status field of DualSense input report. */
114 #define DS_STATUS_BATTERY_CAPACITY GENMASK(3, 0)
115 #define DS_STATUS_CHARGING GENMASK(7, 4)
116 #define DS_STATUS_CHARGING_SHIFT 4
117
118 /* Feature version from DualSense Firmware Info report. */
119 #define DS_FEATURE_VERSION(major, minor) ((major & 0xff) << 8 | (minor & 0xff))
120
121 /*
122 * Status of a DualSense touch point contact.
123 * Contact IDs, with highest bit set are 'inactive'
124 * and any associated data is then invalid.
125 */
126 #define DS_TOUCH_POINT_INACTIVE BIT(7)
127
128 /* Magic value required in tag field of Bluetooth output report. */
129 #define DS_OUTPUT_TAG 0x10
130 /* Flags for DualSense output report. */
131 #define DS_OUTPUT_VALID_FLAG0_COMPATIBLE_VIBRATION BIT(0)
132 #define DS_OUTPUT_VALID_FLAG0_HAPTICS_SELECT BIT(1)
133 #define DS_OUTPUT_VALID_FLAG1_MIC_MUTE_LED_CONTROL_ENABLE BIT(0)
134 #define DS_OUTPUT_VALID_FLAG1_POWER_SAVE_CONTROL_ENABLE BIT(1)
135 #define DS_OUTPUT_VALID_FLAG1_LIGHTBAR_CONTROL_ENABLE BIT(2)
136 #define DS_OUTPUT_VALID_FLAG1_RELEASE_LEDS BIT(3)
137 #define DS_OUTPUT_VALID_FLAG1_PLAYER_INDICATOR_CONTROL_ENABLE BIT(4)
138 #define DS_OUTPUT_VALID_FLAG2_LIGHTBAR_SETUP_CONTROL_ENABLE BIT(1)
139 #define DS_OUTPUT_VALID_FLAG2_COMPATIBLE_VIBRATION2 BIT(2)
140 #define DS_OUTPUT_POWER_SAVE_CONTROL_MIC_MUTE BIT(4)
141 #define DS_OUTPUT_LIGHTBAR_SETUP_LIGHT_OUT BIT(1)
142
143 /* DualSense hardware limits */
144 #define DS_ACC_RES_PER_G 8192
145 #define DS_ACC_RANGE (4*DS_ACC_RES_PER_G)
146 #define DS_GYRO_RES_PER_DEG_S 1024
147 #define DS_GYRO_RANGE (2048*DS_GYRO_RES_PER_DEG_S)
148 #define DS_TOUCHPAD_WIDTH 1920
149 #define DS_TOUCHPAD_HEIGHT 1080
150
151 struct dualsense {
152 struct ps_device base;
153 struct input_dev *gamepad;
154 struct input_dev *sensors;
155 struct input_dev *touchpad;
156
157 /* Update version is used as a feature/capability version. */
158 uint16_t update_version;
159
160 /* Calibration data for accelerometer and gyroscope. */
161 struct ps_calibration_data accel_calib_data[3];
162 struct ps_calibration_data gyro_calib_data[3];
163
164 /* Timestamp for sensor data */
165 bool sensor_timestamp_initialized;
166 uint32_t prev_sensor_timestamp;
167 uint32_t sensor_timestamp_us;
168
169 /* Compatible rumble state */
170 bool use_vibration_v2;
171 bool update_rumble;
172 uint8_t motor_left;
173 uint8_t motor_right;
174
175 /* RGB lightbar */
176 struct led_classdev_mc lightbar;
177 bool update_lightbar;
178 uint8_t lightbar_red;
179 uint8_t lightbar_green;
180 uint8_t lightbar_blue;
181
182 /* Microphone */
183 bool update_mic_mute;
184 bool mic_muted;
185 bool last_btn_mic_state;
186
187 /* Player leds */
188 bool update_player_leds;
189 uint8_t player_leds_state;
190 struct led_classdev player_leds[5];
191
192 struct work_struct output_worker;
193 bool output_worker_initialized;
194 void *output_report_dmabuf;
195 uint8_t output_seq; /* Sequence number for output report. */
196 };
197
198 struct dualsense_touch_point {
199 uint8_t contact;
200 uint8_t x_lo;
201 uint8_t x_hi:4, y_lo:4;
202 uint8_t y_hi;
203 } __packed;
204 static_assert(sizeof(struct dualsense_touch_point) == 4);
205
206 /* Main DualSense input report excluding any BT/USB specific headers. */
207 struct dualsense_input_report {
208 uint8_t x, y;
209 uint8_t rx, ry;
210 uint8_t z, rz;
211 uint8_t seq_number;
212 uint8_t buttons[4];
213 uint8_t reserved[4];
214
215 /* Motion sensors */
216 __le16 gyro[3]; /* x, y, z */
217 __le16 accel[3]; /* x, y, z */
218 __le32 sensor_timestamp;
219 uint8_t reserved2;
220
221 /* Touchpad */
222 struct dualsense_touch_point points[2];
223
224 uint8_t reserved3[12];
225 uint8_t status;
226 uint8_t reserved4[10];
227 } __packed;
228 /* Common input report size shared equals the size of the USB report minus 1 byte for ReportID. */
229 static_assert(sizeof(struct dualsense_input_report) == DS_INPUT_REPORT_USB_SIZE - 1);
230
231 /* Common data between DualSense BT/USB main output report. */
232 struct dualsense_output_report_common {
233 uint8_t valid_flag0;
234 uint8_t valid_flag1;
235
236 /* For DualShock 4 compatibility mode. */
237 uint8_t motor_right;
238 uint8_t motor_left;
239
240 /* Audio controls */
241 uint8_t reserved[4];
242 uint8_t mute_button_led;
243
244 uint8_t power_save_control;
245 uint8_t reserved2[28];
246
247 /* LEDs and lightbar */
248 uint8_t valid_flag2;
249 uint8_t reserved3[2];
250 uint8_t lightbar_setup;
251 uint8_t led_brightness;
252 uint8_t player_leds;
253 uint8_t lightbar_red;
254 uint8_t lightbar_green;
255 uint8_t lightbar_blue;
256 } __packed;
257 static_assert(sizeof(struct dualsense_output_report_common) == 47);
258
259 struct dualsense_output_report_bt {
260 uint8_t report_id; /* 0x31 */
261 uint8_t seq_tag;
262 uint8_t tag;
263 struct dualsense_output_report_common common;
264 uint8_t reserved[24];
265 __le32 crc32;
266 } __packed;
267 static_assert(sizeof(struct dualsense_output_report_bt) == DS_OUTPUT_REPORT_BT_SIZE);
268
269 struct dualsense_output_report_usb {
270 uint8_t report_id; /* 0x02 */
271 struct dualsense_output_report_common common;
272 uint8_t reserved[15];
273 } __packed;
274 static_assert(sizeof(struct dualsense_output_report_usb) == DS_OUTPUT_REPORT_USB_SIZE);
275
276 /*
277 * The DualSense has a main output report used to control most features. It is
278 * largely the same between Bluetooth and USB except for different headers and CRC.
279 * This structure hide the differences between the two to simplify sending output reports.
280 */
281 struct dualsense_output_report {
282 uint8_t *data; /* Start of data */
283 uint8_t len; /* Size of output report */
284
285 /* Points to Bluetooth data payload in case for a Bluetooth report else NULL. */
286 struct dualsense_output_report_bt *bt;
287 /* Points to USB data payload in case for a USB report else NULL. */
288 struct dualsense_output_report_usb *usb;
289 /* Points to common section of report, so past any headers. */
290 struct dualsense_output_report_common *common;
291 };
292
293 #define DS4_INPUT_REPORT_USB 0x01
294 #define DS4_INPUT_REPORT_USB_SIZE 64
295 #define DS4_INPUT_REPORT_BT_MINIMAL 0x01
296 #define DS4_INPUT_REPORT_BT_MINIMAL_SIZE 10
297 #define DS4_INPUT_REPORT_BT 0x11
298 #define DS4_INPUT_REPORT_BT_SIZE 78
299 #define DS4_OUTPUT_REPORT_USB 0x05
300 #define DS4_OUTPUT_REPORT_USB_SIZE 32
301 #define DS4_OUTPUT_REPORT_BT 0x11
302 #define DS4_OUTPUT_REPORT_BT_SIZE 78
303
304 #define DS4_FEATURE_REPORT_CALIBRATION 0x02
305 #define DS4_FEATURE_REPORT_CALIBRATION_SIZE 37
306 #define DS4_FEATURE_REPORT_CALIBRATION_BT 0x05
307 #define DS4_FEATURE_REPORT_CALIBRATION_BT_SIZE 41
308 #define DS4_FEATURE_REPORT_FIRMWARE_INFO 0xa3
309 #define DS4_FEATURE_REPORT_FIRMWARE_INFO_SIZE 49
310 #define DS4_FEATURE_REPORT_PAIRING_INFO 0x12
311 #define DS4_FEATURE_REPORT_PAIRING_INFO_SIZE 16
312
313 /*
314 * Status of a DualShock4 touch point contact.
315 * Contact IDs, with highest bit set are 'inactive'
316 * and any associated data is then invalid.
317 */
318 #define DS4_TOUCH_POINT_INACTIVE BIT(7)
319
320 /* Status field of DualShock4 input report. */
321 #define DS4_STATUS0_BATTERY_CAPACITY GENMASK(3, 0)
322 #define DS4_STATUS0_CABLE_STATE BIT(4)
323 /* Battery status within batery_status field. */
324 #define DS4_BATTERY_STATUS_FULL 11
325 /* Status1 bit2 contains dongle connection state:
326 * 0 = connectd
327 * 1 = disconnected
328 */
329 #define DS4_STATUS1_DONGLE_STATE BIT(2)
330
331 /* The lower 6 bits of hw_control of the Bluetooth main output report
332 * control the interval at which Dualshock 4 reports data:
333 * 0x00 - 1ms
334 * 0x01 - 1ms
335 * 0x02 - 2ms
336 * 0x3E - 62ms
337 * 0x3F - disabled
338 */
339 #define DS4_OUTPUT_HWCTL_BT_POLL_MASK 0x3F
340 /* Default to 4ms poll interval, which is same as USB (not adjustable). */
341 #define DS4_BT_DEFAULT_POLL_INTERVAL_MS 4
342 #define DS4_OUTPUT_HWCTL_CRC32 0x40
343 #define DS4_OUTPUT_HWCTL_HID 0x80
344
345 /* Flags for DualShock4 output report. */
346 #define DS4_OUTPUT_VALID_FLAG0_MOTOR 0x01
347 #define DS4_OUTPUT_VALID_FLAG0_LED 0x02
348 #define DS4_OUTPUT_VALID_FLAG0_LED_BLINK 0x04
349
350 /* DualShock4 hardware limits */
351 #define DS4_ACC_RES_PER_G 8192
352 #define DS4_ACC_RANGE (4*DS_ACC_RES_PER_G)
353 #define DS4_GYRO_RES_PER_DEG_S 1024
354 #define DS4_GYRO_RANGE (2048*DS_GYRO_RES_PER_DEG_S)
355 #define DS4_LIGHTBAR_MAX_BLINK 255 /* 255 centiseconds */
356 #define DS4_TOUCHPAD_WIDTH 1920
357 #define DS4_TOUCHPAD_HEIGHT 942
358
359 enum dualshock4_dongle_state {
360 DONGLE_DISCONNECTED,
361 DONGLE_CALIBRATING,
362 DONGLE_CONNECTED,
363 DONGLE_DISABLED
364 };
365
366 struct dualshock4 {
367 struct ps_device base;
368 struct input_dev *gamepad;
369 struct input_dev *sensors;
370 struct input_dev *touchpad;
371
372 /* Calibration data for accelerometer and gyroscope. */
373 struct ps_calibration_data accel_calib_data[3];
374 struct ps_calibration_data gyro_calib_data[3];
375
376 /* Only used on dongle to track state transitions. */
377 enum dualshock4_dongle_state dongle_state;
378 /* Used during calibration. */
379 struct work_struct dongle_hotplug_worker;
380
381 /* Timestamp for sensor data */
382 bool sensor_timestamp_initialized;
383 uint32_t prev_sensor_timestamp;
384 uint32_t sensor_timestamp_us;
385
386 /* Bluetooth poll interval */
387 bool update_bt_poll_interval;
388 uint8_t bt_poll_interval;
389
390 bool update_rumble;
391 uint8_t motor_left;
392 uint8_t motor_right;
393
394 /* Lightbar leds */
395 bool update_lightbar;
396 bool update_lightbar_blink;
397 bool lightbar_enabled; /* For use by global LED control. */
398 uint8_t lightbar_red;
399 uint8_t lightbar_green;
400 uint8_t lightbar_blue;
401 uint8_t lightbar_blink_on; /* In increments of 10ms. */
402 uint8_t lightbar_blink_off; /* In increments of 10ms. */
403 struct led_classdev lightbar_leds[4];
404
405 struct work_struct output_worker;
406 bool output_worker_initialized;
407 void *output_report_dmabuf;
408 };
409
410 struct dualshock4_touch_point {
411 uint8_t contact;
412 uint8_t x_lo;
413 uint8_t x_hi:4, y_lo:4;
414 uint8_t y_hi;
415 } __packed;
416 static_assert(sizeof(struct dualshock4_touch_point) == 4);
417
418 struct dualshock4_touch_report {
419 uint8_t timestamp;
420 struct dualshock4_touch_point points[2];
421 } __packed;
422 static_assert(sizeof(struct dualshock4_touch_report) == 9);
423
424 /* Main DualShock4 input report excluding any BT/USB specific headers. */
425 struct dualshock4_input_report_common {
426 uint8_t x, y;
427 uint8_t rx, ry;
428 uint8_t buttons[3];
429 uint8_t z, rz;
430
431 /* Motion sensors */
432 __le16 sensor_timestamp;
433 uint8_t sensor_temperature;
434 __le16 gyro[3]; /* x, y, z */
435 __le16 accel[3]; /* x, y, z */
436 uint8_t reserved2[5];
437
438 uint8_t status[2];
439 uint8_t reserved3;
440 } __packed;
441 static_assert(sizeof(struct dualshock4_input_report_common) == 32);
442
443 struct dualshock4_input_report_usb {
444 uint8_t report_id; /* 0x01 */
445 struct dualshock4_input_report_common common;
446 uint8_t num_touch_reports;
447 struct dualshock4_touch_report touch_reports[3];
448 uint8_t reserved[3];
449 } __packed;
450 static_assert(sizeof(struct dualshock4_input_report_usb) == DS4_INPUT_REPORT_USB_SIZE);
451
452 struct dualshock4_input_report_bt {
453 uint8_t report_id; /* 0x11 */
454 uint8_t reserved[2];
455 struct dualshock4_input_report_common common;
456 uint8_t num_touch_reports;
457 struct dualshock4_touch_report touch_reports[4]; /* BT has 4 compared to 3 for USB */
458 uint8_t reserved2[2];
459 __le32 crc32;
460 } __packed;
461 static_assert(sizeof(struct dualshock4_input_report_bt) == DS4_INPUT_REPORT_BT_SIZE);
462
463 /* Common data between Bluetooth and USB DualShock4 output reports. */
464 struct dualshock4_output_report_common {
465 uint8_t valid_flag0;
466 uint8_t valid_flag1;
467
468 uint8_t reserved;
469
470 uint8_t motor_right;
471 uint8_t motor_left;
472
473 uint8_t lightbar_red;
474 uint8_t lightbar_green;
475 uint8_t lightbar_blue;
476 uint8_t lightbar_blink_on;
477 uint8_t lightbar_blink_off;
478 } __packed;
479
480 struct dualshock4_output_report_usb {
481 uint8_t report_id; /* 0x5 */
482 struct dualshock4_output_report_common common;
483 uint8_t reserved[21];
484 } __packed;
485 static_assert(sizeof(struct dualshock4_output_report_usb) == DS4_OUTPUT_REPORT_USB_SIZE);
486
487 struct dualshock4_output_report_bt {
488 uint8_t report_id; /* 0x11 */
489 uint8_t hw_control;
490 uint8_t audio_control;
491 struct dualshock4_output_report_common common;
492 uint8_t reserved[61];
493 __le32 crc32;
494 } __packed;
495 static_assert(sizeof(struct dualshock4_output_report_bt) == DS4_OUTPUT_REPORT_BT_SIZE);
496
497 /*
498 * The DualShock4 has a main output report used to control most features. It is
499 * largely the same between Bluetooth and USB except for different headers and CRC.
500 * This structure hide the differences between the two to simplify sending output reports.
501 */
502 struct dualshock4_output_report {
503 uint8_t *data; /* Start of data */
504 uint8_t len; /* Size of output report */
505
506 /* Points to Bluetooth data payload in case for a Bluetooth report else NULL. */
507 struct dualshock4_output_report_bt *bt;
508 /* Points to USB data payload in case for a USB report else NULL. */
509 struct dualshock4_output_report_usb *usb;
510 /* Points to common section of report, so past any headers. */
511 struct dualshock4_output_report_common *common;
512 };
513
514 /*
515 * Common gamepad buttons across DualShock 3 / 4 and DualSense.
516 * Note: for device with a touchpad, touchpad button is not included
517 * as it will be part of the touchpad device.
518 */
519 static const int ps_gamepad_buttons[] = {
520 BTN_WEST, /* Square */
521 BTN_NORTH, /* Triangle */
522 BTN_EAST, /* Circle */
523 BTN_SOUTH, /* Cross */
524 BTN_TL, /* L1 */
525 BTN_TR, /* R1 */
526 BTN_TL2, /* L2 */
527 BTN_TR2, /* R2 */
528 BTN_SELECT, /* Create (PS5) / Share (PS4) */
529 BTN_START, /* Option */
530 BTN_THUMBL, /* L3 */
531 BTN_THUMBR, /* R3 */
532 BTN_MODE, /* PS Home */
533 };
534
535 static const struct {int x; int y; } ps_gamepad_hat_mapping[] = {
536 {0, -1}, {1, -1}, {1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1, 0}, {-1, -1},
537 {0, 0},
538 };
539
540 static int dualshock4_get_calibration_data(struct dualshock4 *ds4);
541 static inline void dualsense_schedule_work(struct dualsense *ds);
542 static inline void dualshock4_schedule_work(struct dualshock4 *ds4);
543 static void dualsense_set_lightbar(struct dualsense *ds, uint8_t red, uint8_t green, uint8_t blue);
544 static void dualshock4_set_default_lightbar_colors(struct dualshock4 *ds4);
545
546 /*
547 * Add a new ps_device to ps_devices if it doesn't exist.
548 * Return error on duplicate device, which can happen if the same
549 * device is connected using both Bluetooth and USB.
550 */
ps_devices_list_add(struct ps_device * dev)551 static int ps_devices_list_add(struct ps_device *dev)
552 {
553 struct ps_device *entry;
554
555 mutex_lock(&ps_devices_lock);
556 list_for_each_entry(entry, &ps_devices_list, list) {
557 if (!memcmp(entry->mac_address, dev->mac_address, sizeof(dev->mac_address))) {
558 hid_err(dev->hdev, "Duplicate device found for MAC address %pMR.\n",
559 dev->mac_address);
560 mutex_unlock(&ps_devices_lock);
561 return -EEXIST;
562 }
563 }
564
565 list_add_tail(&dev->list, &ps_devices_list);
566 mutex_unlock(&ps_devices_lock);
567 return 0;
568 }
569
ps_devices_list_remove(struct ps_device * dev)570 static int ps_devices_list_remove(struct ps_device *dev)
571 {
572 mutex_lock(&ps_devices_lock);
573 list_del(&dev->list);
574 mutex_unlock(&ps_devices_lock);
575 return 0;
576 }
577
ps_device_set_player_id(struct ps_device * dev)578 static int ps_device_set_player_id(struct ps_device *dev)
579 {
580 int ret = ida_alloc(&ps_player_id_allocator, GFP_KERNEL);
581
582 if (ret < 0)
583 return ret;
584
585 dev->player_id = ret;
586 return 0;
587 }
588
ps_device_release_player_id(struct ps_device * dev)589 static void ps_device_release_player_id(struct ps_device *dev)
590 {
591 ida_free(&ps_player_id_allocator, dev->player_id);
592
593 dev->player_id = U32_MAX;
594 }
595
ps_allocate_input_dev(struct hid_device * hdev,const char * name_suffix)596 static struct input_dev *ps_allocate_input_dev(struct hid_device *hdev, const char *name_suffix)
597 {
598 struct input_dev *input_dev;
599
600 input_dev = devm_input_allocate_device(&hdev->dev);
601 if (!input_dev)
602 return ERR_PTR(-ENOMEM);
603
604 input_dev->id.bustype = hdev->bus;
605 input_dev->id.vendor = hdev->vendor;
606 input_dev->id.product = hdev->product;
607 input_dev->id.version = hdev->version;
608 input_dev->uniq = hdev->uniq;
609
610 if (name_suffix) {
611 input_dev->name = devm_kasprintf(&hdev->dev, GFP_KERNEL, "%s %s", hdev->name,
612 name_suffix);
613 if (!input_dev->name)
614 return ERR_PTR(-ENOMEM);
615 } else {
616 input_dev->name = hdev->name;
617 }
618
619 input_set_drvdata(input_dev, hdev);
620
621 return input_dev;
622 }
623
624 static enum power_supply_property ps_power_supply_props[] = {
625 POWER_SUPPLY_PROP_STATUS,
626 POWER_SUPPLY_PROP_PRESENT,
627 POWER_SUPPLY_PROP_CAPACITY,
628 POWER_SUPPLY_PROP_SCOPE,
629 };
630
ps_battery_get_property(struct power_supply * psy,enum power_supply_property psp,union power_supply_propval * val)631 static int ps_battery_get_property(struct power_supply *psy,
632 enum power_supply_property psp,
633 union power_supply_propval *val)
634 {
635 struct ps_device *dev = power_supply_get_drvdata(psy);
636 uint8_t battery_capacity;
637 int battery_status;
638 unsigned long flags;
639 int ret = 0;
640
641 spin_lock_irqsave(&dev->lock, flags);
642 battery_capacity = dev->battery_capacity;
643 battery_status = dev->battery_status;
644 spin_unlock_irqrestore(&dev->lock, flags);
645
646 switch (psp) {
647 case POWER_SUPPLY_PROP_STATUS:
648 val->intval = battery_status;
649 break;
650 case POWER_SUPPLY_PROP_PRESENT:
651 val->intval = 1;
652 break;
653 case POWER_SUPPLY_PROP_CAPACITY:
654 val->intval = battery_capacity;
655 break;
656 case POWER_SUPPLY_PROP_SCOPE:
657 val->intval = POWER_SUPPLY_SCOPE_DEVICE;
658 break;
659 default:
660 ret = -EINVAL;
661 break;
662 }
663
664 return ret;
665 }
666
ps_device_register_battery(struct ps_device * dev)667 static int ps_device_register_battery(struct ps_device *dev)
668 {
669 struct power_supply *battery;
670 struct power_supply_config battery_cfg = { .drv_data = dev };
671 int ret;
672
673 dev->battery_desc.type = POWER_SUPPLY_TYPE_BATTERY;
674 dev->battery_desc.properties = ps_power_supply_props;
675 dev->battery_desc.num_properties = ARRAY_SIZE(ps_power_supply_props);
676 dev->battery_desc.get_property = ps_battery_get_property;
677 dev->battery_desc.name = devm_kasprintf(&dev->hdev->dev, GFP_KERNEL,
678 "ps-controller-battery-%pMR", dev->mac_address);
679 if (!dev->battery_desc.name)
680 return -ENOMEM;
681
682 battery = devm_power_supply_register(&dev->hdev->dev, &dev->battery_desc, &battery_cfg);
683 if (IS_ERR(battery)) {
684 ret = PTR_ERR(battery);
685 hid_err(dev->hdev, "Unable to register battery device: %d\n", ret);
686 return ret;
687 }
688 dev->battery = battery;
689
690 ret = power_supply_powers(dev->battery, &dev->hdev->dev);
691 if (ret) {
692 hid_err(dev->hdev, "Unable to activate battery device: %d\n", ret);
693 return ret;
694 }
695
696 return 0;
697 }
698
699 /* Compute crc32 of HID data and compare against expected CRC. */
ps_check_crc32(uint8_t seed,uint8_t * data,size_t len,uint32_t report_crc)700 static bool ps_check_crc32(uint8_t seed, uint8_t *data, size_t len, uint32_t report_crc)
701 {
702 uint32_t crc;
703
704 crc = crc32_le(0xFFFFFFFF, &seed, 1);
705 crc = ~crc32_le(crc, data, len);
706
707 return crc == report_crc;
708 }
709
ps_gamepad_create(struct hid_device * hdev,int (* play_effect)(struct input_dev *,void *,struct ff_effect *))710 static struct input_dev *ps_gamepad_create(struct hid_device *hdev,
711 int (*play_effect)(struct input_dev *, void *, struct ff_effect *))
712 {
713 struct input_dev *gamepad;
714 unsigned int i;
715 int ret;
716
717 gamepad = ps_allocate_input_dev(hdev, NULL);
718 if (IS_ERR(gamepad))
719 return ERR_CAST(gamepad);
720
721 input_set_abs_params(gamepad, ABS_X, 0, 255, 0, 0);
722 input_set_abs_params(gamepad, ABS_Y, 0, 255, 0, 0);
723 input_set_abs_params(gamepad, ABS_Z, 0, 255, 0, 0);
724 input_set_abs_params(gamepad, ABS_RX, 0, 255, 0, 0);
725 input_set_abs_params(gamepad, ABS_RY, 0, 255, 0, 0);
726 input_set_abs_params(gamepad, ABS_RZ, 0, 255, 0, 0);
727
728 input_set_abs_params(gamepad, ABS_HAT0X, -1, 1, 0, 0);
729 input_set_abs_params(gamepad, ABS_HAT0Y, -1, 1, 0, 0);
730
731 for (i = 0; i < ARRAY_SIZE(ps_gamepad_buttons); i++)
732 input_set_capability(gamepad, EV_KEY, ps_gamepad_buttons[i]);
733
734 #if IS_ENABLED(CONFIG_PLAYSTATION_FF)
735 if (play_effect) {
736 input_set_capability(gamepad, EV_FF, FF_RUMBLE);
737 input_ff_create_memless(gamepad, NULL, play_effect);
738 }
739 #endif
740
741 ret = input_register_device(gamepad);
742 if (ret)
743 return ERR_PTR(ret);
744
745 return gamepad;
746 }
747
ps_get_report(struct hid_device * hdev,uint8_t report_id,uint8_t * buf,size_t size,bool check_crc)748 static int ps_get_report(struct hid_device *hdev, uint8_t report_id, uint8_t *buf, size_t size,
749 bool check_crc)
750 {
751 int ret;
752
753 ret = hid_hw_raw_request(hdev, report_id, buf, size, HID_FEATURE_REPORT,
754 HID_REQ_GET_REPORT);
755 if (ret < 0) {
756 hid_err(hdev, "Failed to retrieve feature with reportID %d: %d\n", report_id, ret);
757 return ret;
758 }
759
760 if (ret != size) {
761 hid_err(hdev, "Invalid byte count transferred, expected %zu got %d\n", size, ret);
762 return -EINVAL;
763 }
764
765 if (buf[0] != report_id) {
766 hid_err(hdev, "Invalid reportID received, expected %d got %d\n", report_id, buf[0]);
767 return -EINVAL;
768 }
769
770 if (hdev->bus == BUS_BLUETOOTH && check_crc) {
771 /* Last 4 bytes contains crc32. */
772 uint8_t crc_offset = size - 4;
773 uint32_t report_crc = get_unaligned_le32(&buf[crc_offset]);
774
775 if (!ps_check_crc32(PS_FEATURE_CRC32_SEED, buf, crc_offset, report_crc)) {
776 hid_err(hdev, "CRC check failed for reportID=%d\n", report_id);
777 return -EILSEQ;
778 }
779 }
780
781 return 0;
782 }
783
ps_led_register(struct ps_device * ps_dev,struct led_classdev * led,const struct ps_led_info * led_info)784 static int ps_led_register(struct ps_device *ps_dev, struct led_classdev *led,
785 const struct ps_led_info *led_info)
786 {
787 int ret;
788
789 if (led_info->name) {
790 led->name = devm_kasprintf(&ps_dev->hdev->dev, GFP_KERNEL,
791 "%s:%s:%s", ps_dev->input_dev_name, led_info->color, led_info->name);
792 } else {
793 /* Backwards compatible mode for hid-sony, but not compliant with LED class spec. */
794 led->name = devm_kasprintf(&ps_dev->hdev->dev, GFP_KERNEL,
795 "%s:%s", ps_dev->input_dev_name, led_info->color);
796 }
797
798 if (!led->name)
799 return -ENOMEM;
800
801 led->brightness = 0;
802 led->max_brightness = led_info->max_brightness;
803 led->flags = LED_CORE_SUSPENDRESUME;
804 led->brightness_get = led_info->brightness_get;
805 led->brightness_set_blocking = led_info->brightness_set;
806 led->blink_set = led_info->blink_set;
807
808 ret = devm_led_classdev_register(&ps_dev->hdev->dev, led);
809 if (ret) {
810 hid_err(ps_dev->hdev, "Failed to register LED %s: %d\n", led_info->name, ret);
811 return ret;
812 }
813
814 return 0;
815 }
816
817 /* Register a DualSense/DualShock4 RGB lightbar represented by a multicolor LED. */
ps_lightbar_register(struct ps_device * ps_dev,struct led_classdev_mc * lightbar_mc_dev,int (* brightness_set)(struct led_classdev *,enum led_brightness))818 static int ps_lightbar_register(struct ps_device *ps_dev, struct led_classdev_mc *lightbar_mc_dev,
819 int (*brightness_set)(struct led_classdev *, enum led_brightness))
820 {
821 struct hid_device *hdev = ps_dev->hdev;
822 struct mc_subled *mc_led_info;
823 struct led_classdev *led_cdev;
824 int ret;
825
826 mc_led_info = devm_kmalloc_array(&hdev->dev, 3, sizeof(*mc_led_info),
827 GFP_KERNEL | __GFP_ZERO);
828 if (!mc_led_info)
829 return -ENOMEM;
830
831 mc_led_info[0].color_index = LED_COLOR_ID_RED;
832 mc_led_info[1].color_index = LED_COLOR_ID_GREEN;
833 mc_led_info[2].color_index = LED_COLOR_ID_BLUE;
834
835 lightbar_mc_dev->subled_info = mc_led_info;
836 lightbar_mc_dev->num_colors = 3;
837
838 led_cdev = &lightbar_mc_dev->led_cdev;
839 led_cdev->name = devm_kasprintf(&hdev->dev, GFP_KERNEL, "%s:rgb:indicator",
840 ps_dev->input_dev_name);
841 if (!led_cdev->name)
842 return -ENOMEM;
843 led_cdev->brightness = 255;
844 led_cdev->max_brightness = 255;
845 led_cdev->brightness_set_blocking = brightness_set;
846
847 ret = devm_led_classdev_multicolor_register(&hdev->dev, lightbar_mc_dev);
848 if (ret < 0) {
849 hid_err(hdev, "Cannot register multicolor LED device\n");
850 return ret;
851 }
852
853 return 0;
854 }
855
ps_sensors_create(struct hid_device * hdev,int accel_range,int accel_res,int gyro_range,int gyro_res)856 static struct input_dev *ps_sensors_create(struct hid_device *hdev, int accel_range, int accel_res,
857 int gyro_range, int gyro_res)
858 {
859 struct input_dev *sensors;
860 int ret;
861
862 sensors = ps_allocate_input_dev(hdev, "Motion Sensors");
863 if (IS_ERR(sensors))
864 return ERR_CAST(sensors);
865
866 __set_bit(INPUT_PROP_ACCELEROMETER, sensors->propbit);
867 __set_bit(EV_MSC, sensors->evbit);
868 __set_bit(MSC_TIMESTAMP, sensors->mscbit);
869
870 /* Accelerometer */
871 input_set_abs_params(sensors, ABS_X, -accel_range, accel_range, 16, 0);
872 input_set_abs_params(sensors, ABS_Y, -accel_range, accel_range, 16, 0);
873 input_set_abs_params(sensors, ABS_Z, -accel_range, accel_range, 16, 0);
874 input_abs_set_res(sensors, ABS_X, accel_res);
875 input_abs_set_res(sensors, ABS_Y, accel_res);
876 input_abs_set_res(sensors, ABS_Z, accel_res);
877
878 /* Gyroscope */
879 input_set_abs_params(sensors, ABS_RX, -gyro_range, gyro_range, 16, 0);
880 input_set_abs_params(sensors, ABS_RY, -gyro_range, gyro_range, 16, 0);
881 input_set_abs_params(sensors, ABS_RZ, -gyro_range, gyro_range, 16, 0);
882 input_abs_set_res(sensors, ABS_RX, gyro_res);
883 input_abs_set_res(sensors, ABS_RY, gyro_res);
884 input_abs_set_res(sensors, ABS_RZ, gyro_res);
885
886 ret = input_register_device(sensors);
887 if (ret)
888 return ERR_PTR(ret);
889
890 return sensors;
891 }
892
ps_touchpad_create(struct hid_device * hdev,int width,int height,unsigned int num_contacts)893 static struct input_dev *ps_touchpad_create(struct hid_device *hdev, int width, int height,
894 unsigned int num_contacts)
895 {
896 struct input_dev *touchpad;
897 int ret;
898
899 touchpad = ps_allocate_input_dev(hdev, "Touchpad");
900 if (IS_ERR(touchpad))
901 return ERR_CAST(touchpad);
902
903 /* Map button underneath touchpad to BTN_LEFT. */
904 input_set_capability(touchpad, EV_KEY, BTN_LEFT);
905 __set_bit(INPUT_PROP_BUTTONPAD, touchpad->propbit);
906
907 input_set_abs_params(touchpad, ABS_MT_POSITION_X, 0, width - 1, 0, 0);
908 input_set_abs_params(touchpad, ABS_MT_POSITION_Y, 0, height - 1, 0, 0);
909
910 ret = input_mt_init_slots(touchpad, num_contacts, INPUT_MT_POINTER);
911 if (ret)
912 return ERR_PTR(ret);
913
914 ret = input_register_device(touchpad);
915 if (ret)
916 return ERR_PTR(ret);
917
918 return touchpad;
919 }
920
firmware_version_show(struct device * dev,struct device_attribute * attr,char * buf)921 static ssize_t firmware_version_show(struct device *dev,
922 struct device_attribute
923 *attr, char *buf)
924 {
925 struct hid_device *hdev = to_hid_device(dev);
926 struct ps_device *ps_dev = hid_get_drvdata(hdev);
927
928 return sysfs_emit(buf, "0x%08x\n", ps_dev->fw_version);
929 }
930
931 static DEVICE_ATTR_RO(firmware_version);
932
hardware_version_show(struct device * dev,struct device_attribute * attr,char * buf)933 static ssize_t hardware_version_show(struct device *dev,
934 struct device_attribute
935 *attr, char *buf)
936 {
937 struct hid_device *hdev = to_hid_device(dev);
938 struct ps_device *ps_dev = hid_get_drvdata(hdev);
939
940 return sysfs_emit(buf, "0x%08x\n", ps_dev->hw_version);
941 }
942
943 static DEVICE_ATTR_RO(hardware_version);
944
945 static struct attribute *ps_device_attrs[] = {
946 &dev_attr_firmware_version.attr,
947 &dev_attr_hardware_version.attr,
948 NULL
949 };
950 ATTRIBUTE_GROUPS(ps_device);
951
dualsense_get_calibration_data(struct dualsense * ds)952 static int dualsense_get_calibration_data(struct dualsense *ds)
953 {
954 struct hid_device *hdev = ds->base.hdev;
955 short gyro_pitch_bias, gyro_pitch_plus, gyro_pitch_minus;
956 short gyro_yaw_bias, gyro_yaw_plus, gyro_yaw_minus;
957 short gyro_roll_bias, gyro_roll_plus, gyro_roll_minus;
958 short gyro_speed_plus, gyro_speed_minus;
959 short acc_x_plus, acc_x_minus;
960 short acc_y_plus, acc_y_minus;
961 short acc_z_plus, acc_z_minus;
962 int speed_2x;
963 int range_2g;
964 int ret = 0;
965 int i;
966 uint8_t *buf;
967
968 buf = kzalloc(DS_FEATURE_REPORT_CALIBRATION_SIZE, GFP_KERNEL);
969 if (!buf)
970 return -ENOMEM;
971
972 ret = ps_get_report(ds->base.hdev, DS_FEATURE_REPORT_CALIBRATION, buf,
973 DS_FEATURE_REPORT_CALIBRATION_SIZE, true);
974 if (ret) {
975 hid_err(ds->base.hdev, "Failed to retrieve DualSense calibration info: %d\n", ret);
976 goto err_free;
977 }
978
979 gyro_pitch_bias = get_unaligned_le16(&buf[1]);
980 gyro_yaw_bias = get_unaligned_le16(&buf[3]);
981 gyro_roll_bias = get_unaligned_le16(&buf[5]);
982 gyro_pitch_plus = get_unaligned_le16(&buf[7]);
983 gyro_pitch_minus = get_unaligned_le16(&buf[9]);
984 gyro_yaw_plus = get_unaligned_le16(&buf[11]);
985 gyro_yaw_minus = get_unaligned_le16(&buf[13]);
986 gyro_roll_plus = get_unaligned_le16(&buf[15]);
987 gyro_roll_minus = get_unaligned_le16(&buf[17]);
988 gyro_speed_plus = get_unaligned_le16(&buf[19]);
989 gyro_speed_minus = get_unaligned_le16(&buf[21]);
990 acc_x_plus = get_unaligned_le16(&buf[23]);
991 acc_x_minus = get_unaligned_le16(&buf[25]);
992 acc_y_plus = get_unaligned_le16(&buf[27]);
993 acc_y_minus = get_unaligned_le16(&buf[29]);
994 acc_z_plus = get_unaligned_le16(&buf[31]);
995 acc_z_minus = get_unaligned_le16(&buf[33]);
996
997 /*
998 * Set gyroscope calibration and normalization parameters.
999 * Data values will be normalized to 1/DS_GYRO_RES_PER_DEG_S degree/s.
1000 */
1001 speed_2x = (gyro_speed_plus + gyro_speed_minus);
1002 ds->gyro_calib_data[0].abs_code = ABS_RX;
1003 ds->gyro_calib_data[0].bias = 0;
1004 ds->gyro_calib_data[0].sens_numer = speed_2x*DS_GYRO_RES_PER_DEG_S;
1005 ds->gyro_calib_data[0].sens_denom = abs(gyro_pitch_plus - gyro_pitch_bias) +
1006 abs(gyro_pitch_minus - gyro_pitch_bias);
1007
1008 ds->gyro_calib_data[1].abs_code = ABS_RY;
1009 ds->gyro_calib_data[1].bias = 0;
1010 ds->gyro_calib_data[1].sens_numer = speed_2x*DS_GYRO_RES_PER_DEG_S;
1011 ds->gyro_calib_data[1].sens_denom = abs(gyro_yaw_plus - gyro_yaw_bias) +
1012 abs(gyro_yaw_minus - gyro_yaw_bias);
1013
1014 ds->gyro_calib_data[2].abs_code = ABS_RZ;
1015 ds->gyro_calib_data[2].bias = 0;
1016 ds->gyro_calib_data[2].sens_numer = speed_2x*DS_GYRO_RES_PER_DEG_S;
1017 ds->gyro_calib_data[2].sens_denom = abs(gyro_roll_plus - gyro_roll_bias) +
1018 abs(gyro_roll_minus - gyro_roll_bias);
1019
1020 /*
1021 * Sanity check gyro calibration data. This is needed to prevent crashes
1022 * during report handling of virtual, clone or broken devices not implementing
1023 * calibration data properly.
1024 */
1025 for (i = 0; i < ARRAY_SIZE(ds->gyro_calib_data); i++) {
1026 if (ds->gyro_calib_data[i].sens_denom == 0) {
1027 hid_warn(hdev, "Invalid gyro calibration data for axis (%d), disabling calibration.",
1028 ds->gyro_calib_data[i].abs_code);
1029 ds->gyro_calib_data[i].bias = 0;
1030 ds->gyro_calib_data[i].sens_numer = DS_GYRO_RANGE;
1031 ds->gyro_calib_data[i].sens_denom = S16_MAX;
1032 }
1033 }
1034
1035 /*
1036 * Set accelerometer calibration and normalization parameters.
1037 * Data values will be normalized to 1/DS_ACC_RES_PER_G g.
1038 */
1039 range_2g = acc_x_plus - acc_x_minus;
1040 ds->accel_calib_data[0].abs_code = ABS_X;
1041 ds->accel_calib_data[0].bias = acc_x_plus - range_2g / 2;
1042 ds->accel_calib_data[0].sens_numer = 2*DS_ACC_RES_PER_G;
1043 ds->accel_calib_data[0].sens_denom = range_2g;
1044
1045 range_2g = acc_y_plus - acc_y_minus;
1046 ds->accel_calib_data[1].abs_code = ABS_Y;
1047 ds->accel_calib_data[1].bias = acc_y_plus - range_2g / 2;
1048 ds->accel_calib_data[1].sens_numer = 2*DS_ACC_RES_PER_G;
1049 ds->accel_calib_data[1].sens_denom = range_2g;
1050
1051 range_2g = acc_z_plus - acc_z_minus;
1052 ds->accel_calib_data[2].abs_code = ABS_Z;
1053 ds->accel_calib_data[2].bias = acc_z_plus - range_2g / 2;
1054 ds->accel_calib_data[2].sens_numer = 2*DS_ACC_RES_PER_G;
1055 ds->accel_calib_data[2].sens_denom = range_2g;
1056
1057 /*
1058 * Sanity check accelerometer calibration data. This is needed to prevent crashes
1059 * during report handling of virtual, clone or broken devices not implementing calibration
1060 * data properly.
1061 */
1062 for (i = 0; i < ARRAY_SIZE(ds->accel_calib_data); i++) {
1063 if (ds->accel_calib_data[i].sens_denom == 0) {
1064 hid_warn(hdev, "Invalid accelerometer calibration data for axis (%d), disabling calibration.",
1065 ds->accel_calib_data[i].abs_code);
1066 ds->accel_calib_data[i].bias = 0;
1067 ds->accel_calib_data[i].sens_numer = DS_ACC_RANGE;
1068 ds->accel_calib_data[i].sens_denom = S16_MAX;
1069 }
1070 }
1071
1072 err_free:
1073 kfree(buf);
1074 return ret;
1075 }
1076
1077
dualsense_get_firmware_info(struct dualsense * ds)1078 static int dualsense_get_firmware_info(struct dualsense *ds)
1079 {
1080 uint8_t *buf;
1081 int ret;
1082
1083 buf = kzalloc(DS_FEATURE_REPORT_FIRMWARE_INFO_SIZE, GFP_KERNEL);
1084 if (!buf)
1085 return -ENOMEM;
1086
1087 ret = ps_get_report(ds->base.hdev, DS_FEATURE_REPORT_FIRMWARE_INFO, buf,
1088 DS_FEATURE_REPORT_FIRMWARE_INFO_SIZE, true);
1089 if (ret) {
1090 hid_err(ds->base.hdev, "Failed to retrieve DualSense firmware info: %d\n", ret);
1091 goto err_free;
1092 }
1093
1094 ds->base.hw_version = get_unaligned_le32(&buf[24]);
1095 ds->base.fw_version = get_unaligned_le32(&buf[28]);
1096
1097 /* Update version is some kind of feature version. It is distinct from
1098 * the firmware version as there can be many different variations of a
1099 * controller over time with the same physical shell, but with different
1100 * PCBs and other internal changes. The update version (internal name) is
1101 * used as a means to detect what features are available and change behavior.
1102 * Note: the version is different between DualSense and DualSense Edge.
1103 */
1104 ds->update_version = get_unaligned_le16(&buf[44]);
1105
1106 err_free:
1107 kfree(buf);
1108 return ret;
1109 }
1110
dualsense_get_mac_address(struct dualsense * ds)1111 static int dualsense_get_mac_address(struct dualsense *ds)
1112 {
1113 uint8_t *buf;
1114 int ret = 0;
1115
1116 buf = kzalloc(DS_FEATURE_REPORT_PAIRING_INFO_SIZE, GFP_KERNEL);
1117 if (!buf)
1118 return -ENOMEM;
1119
1120 ret = ps_get_report(ds->base.hdev, DS_FEATURE_REPORT_PAIRING_INFO, buf,
1121 DS_FEATURE_REPORT_PAIRING_INFO_SIZE, true);
1122 if (ret) {
1123 hid_err(ds->base.hdev, "Failed to retrieve DualSense pairing info: %d\n", ret);
1124 goto err_free;
1125 }
1126
1127 memcpy(ds->base.mac_address, &buf[1], sizeof(ds->base.mac_address));
1128
1129 err_free:
1130 kfree(buf);
1131 return ret;
1132 }
1133
dualsense_lightbar_set_brightness(struct led_classdev * cdev,enum led_brightness brightness)1134 static int dualsense_lightbar_set_brightness(struct led_classdev *cdev,
1135 enum led_brightness brightness)
1136 {
1137 struct led_classdev_mc *mc_cdev = lcdev_to_mccdev(cdev);
1138 struct dualsense *ds = container_of(mc_cdev, struct dualsense, lightbar);
1139 uint8_t red, green, blue;
1140
1141 led_mc_calc_color_components(mc_cdev, brightness);
1142 red = mc_cdev->subled_info[0].brightness;
1143 green = mc_cdev->subled_info[1].brightness;
1144 blue = mc_cdev->subled_info[2].brightness;
1145
1146 dualsense_set_lightbar(ds, red, green, blue);
1147 return 0;
1148 }
1149
dualsense_player_led_get_brightness(struct led_classdev * led)1150 static enum led_brightness dualsense_player_led_get_brightness(struct led_classdev *led)
1151 {
1152 struct hid_device *hdev = to_hid_device(led->dev->parent);
1153 struct dualsense *ds = hid_get_drvdata(hdev);
1154
1155 return !!(ds->player_leds_state & BIT(led - ds->player_leds));
1156 }
1157
dualsense_player_led_set_brightness(struct led_classdev * led,enum led_brightness value)1158 static int dualsense_player_led_set_brightness(struct led_classdev *led, enum led_brightness value)
1159 {
1160 struct hid_device *hdev = to_hid_device(led->dev->parent);
1161 struct dualsense *ds = hid_get_drvdata(hdev);
1162 unsigned long flags;
1163 unsigned int led_index;
1164
1165 spin_lock_irqsave(&ds->base.lock, flags);
1166
1167 led_index = led - ds->player_leds;
1168 if (value == LED_OFF)
1169 ds->player_leds_state &= ~BIT(led_index);
1170 else
1171 ds->player_leds_state |= BIT(led_index);
1172
1173 ds->update_player_leds = true;
1174 spin_unlock_irqrestore(&ds->base.lock, flags);
1175
1176 dualsense_schedule_work(ds);
1177
1178 return 0;
1179 }
1180
dualsense_init_output_report(struct dualsense * ds,struct dualsense_output_report * rp,void * buf)1181 static void dualsense_init_output_report(struct dualsense *ds, struct dualsense_output_report *rp,
1182 void *buf)
1183 {
1184 struct hid_device *hdev = ds->base.hdev;
1185
1186 if (hdev->bus == BUS_BLUETOOTH) {
1187 struct dualsense_output_report_bt *bt = buf;
1188
1189 memset(bt, 0, sizeof(*bt));
1190 bt->report_id = DS_OUTPUT_REPORT_BT;
1191 bt->tag = DS_OUTPUT_TAG; /* Tag must be set. Exact meaning is unclear. */
1192
1193 /*
1194 * Highest 4-bit is a sequence number, which needs to be increased
1195 * every report. Lowest 4-bit is tag and can be zero for now.
1196 */
1197 bt->seq_tag = (ds->output_seq << 4) | 0x0;
1198 if (++ds->output_seq == 16)
1199 ds->output_seq = 0;
1200
1201 rp->data = buf;
1202 rp->len = sizeof(*bt);
1203 rp->bt = bt;
1204 rp->usb = NULL;
1205 rp->common = &bt->common;
1206 } else { /* USB */
1207 struct dualsense_output_report_usb *usb = buf;
1208
1209 memset(usb, 0, sizeof(*usb));
1210 usb->report_id = DS_OUTPUT_REPORT_USB;
1211
1212 rp->data = buf;
1213 rp->len = sizeof(*usb);
1214 rp->bt = NULL;
1215 rp->usb = usb;
1216 rp->common = &usb->common;
1217 }
1218 }
1219
dualsense_schedule_work(struct dualsense * ds)1220 static inline void dualsense_schedule_work(struct dualsense *ds)
1221 {
1222 unsigned long flags;
1223
1224 spin_lock_irqsave(&ds->base.lock, flags);
1225 if (ds->output_worker_initialized)
1226 schedule_work(&ds->output_worker);
1227 spin_unlock_irqrestore(&ds->base.lock, flags);
1228 }
1229
1230 /*
1231 * Helper function to send DualSense output reports. Applies a CRC at the end of a report
1232 * for Bluetooth reports.
1233 */
dualsense_send_output_report(struct dualsense * ds,struct dualsense_output_report * report)1234 static void dualsense_send_output_report(struct dualsense *ds,
1235 struct dualsense_output_report *report)
1236 {
1237 struct hid_device *hdev = ds->base.hdev;
1238
1239 /* Bluetooth packets need to be signed with a CRC in the last 4 bytes. */
1240 if (report->bt) {
1241 uint32_t crc;
1242 uint8_t seed = PS_OUTPUT_CRC32_SEED;
1243
1244 crc = crc32_le(0xFFFFFFFF, &seed, 1);
1245 crc = ~crc32_le(crc, report->data, report->len - 4);
1246
1247 report->bt->crc32 = cpu_to_le32(crc);
1248 }
1249
1250 hid_hw_output_report(hdev, report->data, report->len);
1251 }
1252
dualsense_output_worker(struct work_struct * work)1253 static void dualsense_output_worker(struct work_struct *work)
1254 {
1255 struct dualsense *ds = container_of(work, struct dualsense, output_worker);
1256 struct dualsense_output_report report;
1257 struct dualsense_output_report_common *common;
1258 unsigned long flags;
1259
1260 dualsense_init_output_report(ds, &report, ds->output_report_dmabuf);
1261 common = report.common;
1262
1263 spin_lock_irqsave(&ds->base.lock, flags);
1264
1265 if (ds->update_rumble) {
1266 /* Select classic rumble style haptics and enable it. */
1267 common->valid_flag0 |= DS_OUTPUT_VALID_FLAG0_HAPTICS_SELECT;
1268 if (ds->use_vibration_v2)
1269 common->valid_flag2 |= DS_OUTPUT_VALID_FLAG2_COMPATIBLE_VIBRATION2;
1270 else
1271 common->valid_flag0 |= DS_OUTPUT_VALID_FLAG0_COMPATIBLE_VIBRATION;
1272 common->motor_left = ds->motor_left;
1273 common->motor_right = ds->motor_right;
1274 ds->update_rumble = false;
1275 }
1276
1277 if (ds->update_lightbar) {
1278 common->valid_flag1 |= DS_OUTPUT_VALID_FLAG1_LIGHTBAR_CONTROL_ENABLE;
1279 common->lightbar_red = ds->lightbar_red;
1280 common->lightbar_green = ds->lightbar_green;
1281 common->lightbar_blue = ds->lightbar_blue;
1282
1283 ds->update_lightbar = false;
1284 }
1285
1286 if (ds->update_player_leds) {
1287 common->valid_flag1 |= DS_OUTPUT_VALID_FLAG1_PLAYER_INDICATOR_CONTROL_ENABLE;
1288 common->player_leds = ds->player_leds_state;
1289
1290 ds->update_player_leds = false;
1291 }
1292
1293 if (ds->update_mic_mute) {
1294 common->valid_flag1 |= DS_OUTPUT_VALID_FLAG1_MIC_MUTE_LED_CONTROL_ENABLE;
1295 common->mute_button_led = ds->mic_muted;
1296
1297 if (ds->mic_muted) {
1298 /* Disable microphone */
1299 common->valid_flag1 |= DS_OUTPUT_VALID_FLAG1_POWER_SAVE_CONTROL_ENABLE;
1300 common->power_save_control |= DS_OUTPUT_POWER_SAVE_CONTROL_MIC_MUTE;
1301 } else {
1302 /* Enable microphone */
1303 common->valid_flag1 |= DS_OUTPUT_VALID_FLAG1_POWER_SAVE_CONTROL_ENABLE;
1304 common->power_save_control &= ~DS_OUTPUT_POWER_SAVE_CONTROL_MIC_MUTE;
1305 }
1306
1307 ds->update_mic_mute = false;
1308 }
1309
1310 spin_unlock_irqrestore(&ds->base.lock, flags);
1311
1312 dualsense_send_output_report(ds, &report);
1313 }
1314
dualsense_parse_report(struct ps_device * ps_dev,struct hid_report * report,u8 * data,int size)1315 static int dualsense_parse_report(struct ps_device *ps_dev, struct hid_report *report,
1316 u8 *data, int size)
1317 {
1318 struct hid_device *hdev = ps_dev->hdev;
1319 struct dualsense *ds = container_of(ps_dev, struct dualsense, base);
1320 struct dualsense_input_report *ds_report;
1321 uint8_t battery_data, battery_capacity, charging_status, value;
1322 int battery_status;
1323 uint32_t sensor_timestamp;
1324 bool btn_mic_state;
1325 unsigned long flags;
1326 int i;
1327
1328 /*
1329 * DualSense in USB uses the full HID report for reportID 1, but
1330 * Bluetooth uses a minimal HID report for reportID 1 and reports
1331 * the full report using reportID 49.
1332 */
1333 if (hdev->bus == BUS_USB && report->id == DS_INPUT_REPORT_USB &&
1334 size == DS_INPUT_REPORT_USB_SIZE) {
1335 ds_report = (struct dualsense_input_report *)&data[1];
1336 } else if (hdev->bus == BUS_BLUETOOTH && report->id == DS_INPUT_REPORT_BT &&
1337 size == DS_INPUT_REPORT_BT_SIZE) {
1338 /* Last 4 bytes of input report contain crc32 */
1339 uint32_t report_crc = get_unaligned_le32(&data[size - 4]);
1340
1341 if (!ps_check_crc32(PS_INPUT_CRC32_SEED, data, size - 4, report_crc)) {
1342 hid_err(hdev, "DualSense input CRC's check failed\n");
1343 return -EILSEQ;
1344 }
1345
1346 ds_report = (struct dualsense_input_report *)&data[2];
1347 } else {
1348 hid_err(hdev, "Unhandled reportID=%d\n", report->id);
1349 return -1;
1350 }
1351
1352 input_report_abs(ds->gamepad, ABS_X, ds_report->x);
1353 input_report_abs(ds->gamepad, ABS_Y, ds_report->y);
1354 input_report_abs(ds->gamepad, ABS_RX, ds_report->rx);
1355 input_report_abs(ds->gamepad, ABS_RY, ds_report->ry);
1356 input_report_abs(ds->gamepad, ABS_Z, ds_report->z);
1357 input_report_abs(ds->gamepad, ABS_RZ, ds_report->rz);
1358
1359 value = ds_report->buttons[0] & DS_BUTTONS0_HAT_SWITCH;
1360 if (value >= ARRAY_SIZE(ps_gamepad_hat_mapping))
1361 value = 8; /* center */
1362 input_report_abs(ds->gamepad, ABS_HAT0X, ps_gamepad_hat_mapping[value].x);
1363 input_report_abs(ds->gamepad, ABS_HAT0Y, ps_gamepad_hat_mapping[value].y);
1364
1365 input_report_key(ds->gamepad, BTN_WEST, ds_report->buttons[0] & DS_BUTTONS0_SQUARE);
1366 input_report_key(ds->gamepad, BTN_SOUTH, ds_report->buttons[0] & DS_BUTTONS0_CROSS);
1367 input_report_key(ds->gamepad, BTN_EAST, ds_report->buttons[0] & DS_BUTTONS0_CIRCLE);
1368 input_report_key(ds->gamepad, BTN_NORTH, ds_report->buttons[0] & DS_BUTTONS0_TRIANGLE);
1369 input_report_key(ds->gamepad, BTN_TL, ds_report->buttons[1] & DS_BUTTONS1_L1);
1370 input_report_key(ds->gamepad, BTN_TR, ds_report->buttons[1] & DS_BUTTONS1_R1);
1371 input_report_key(ds->gamepad, BTN_TL2, ds_report->buttons[1] & DS_BUTTONS1_L2);
1372 input_report_key(ds->gamepad, BTN_TR2, ds_report->buttons[1] & DS_BUTTONS1_R2);
1373 input_report_key(ds->gamepad, BTN_SELECT, ds_report->buttons[1] & DS_BUTTONS1_CREATE);
1374 input_report_key(ds->gamepad, BTN_START, ds_report->buttons[1] & DS_BUTTONS1_OPTIONS);
1375 input_report_key(ds->gamepad, BTN_THUMBL, ds_report->buttons[1] & DS_BUTTONS1_L3);
1376 input_report_key(ds->gamepad, BTN_THUMBR, ds_report->buttons[1] & DS_BUTTONS1_R3);
1377 input_report_key(ds->gamepad, BTN_MODE, ds_report->buttons[2] & DS_BUTTONS2_PS_HOME);
1378 input_sync(ds->gamepad);
1379
1380 /*
1381 * The DualSense has an internal microphone, which can be muted through a mute button
1382 * on the device. The driver is expected to read the button state and program the device
1383 * to mute/unmute audio at the hardware level.
1384 */
1385 btn_mic_state = !!(ds_report->buttons[2] & DS_BUTTONS2_MIC_MUTE);
1386 if (btn_mic_state && !ds->last_btn_mic_state) {
1387 spin_lock_irqsave(&ps_dev->lock, flags);
1388 ds->update_mic_mute = true;
1389 ds->mic_muted = !ds->mic_muted; /* toggle */
1390 spin_unlock_irqrestore(&ps_dev->lock, flags);
1391
1392 /* Schedule updating of microphone state at hardware level. */
1393 dualsense_schedule_work(ds);
1394 }
1395 ds->last_btn_mic_state = btn_mic_state;
1396
1397 /* Parse and calibrate gyroscope data. */
1398 for (i = 0; i < ARRAY_SIZE(ds_report->gyro); i++) {
1399 int raw_data = (short)le16_to_cpu(ds_report->gyro[i]);
1400 int calib_data = mult_frac(ds->gyro_calib_data[i].sens_numer,
1401 raw_data, ds->gyro_calib_data[i].sens_denom);
1402
1403 input_report_abs(ds->sensors, ds->gyro_calib_data[i].abs_code, calib_data);
1404 }
1405
1406 /* Parse and calibrate accelerometer data. */
1407 for (i = 0; i < ARRAY_SIZE(ds_report->accel); i++) {
1408 int raw_data = (short)le16_to_cpu(ds_report->accel[i]);
1409 int calib_data = mult_frac(ds->accel_calib_data[i].sens_numer,
1410 raw_data - ds->accel_calib_data[i].bias,
1411 ds->accel_calib_data[i].sens_denom);
1412
1413 input_report_abs(ds->sensors, ds->accel_calib_data[i].abs_code, calib_data);
1414 }
1415
1416 /* Convert timestamp (in 0.33us unit) to timestamp_us */
1417 sensor_timestamp = le32_to_cpu(ds_report->sensor_timestamp);
1418 if (!ds->sensor_timestamp_initialized) {
1419 ds->sensor_timestamp_us = DIV_ROUND_CLOSEST(sensor_timestamp, 3);
1420 ds->sensor_timestamp_initialized = true;
1421 } else {
1422 uint32_t delta;
1423
1424 if (ds->prev_sensor_timestamp > sensor_timestamp)
1425 delta = (U32_MAX - ds->prev_sensor_timestamp + sensor_timestamp + 1);
1426 else
1427 delta = sensor_timestamp - ds->prev_sensor_timestamp;
1428 ds->sensor_timestamp_us += DIV_ROUND_CLOSEST(delta, 3);
1429 }
1430 ds->prev_sensor_timestamp = sensor_timestamp;
1431 input_event(ds->sensors, EV_MSC, MSC_TIMESTAMP, ds->sensor_timestamp_us);
1432 input_sync(ds->sensors);
1433
1434 for (i = 0; i < ARRAY_SIZE(ds_report->points); i++) {
1435 struct dualsense_touch_point *point = &ds_report->points[i];
1436 bool active = (point->contact & DS_TOUCH_POINT_INACTIVE) ? false : true;
1437
1438 input_mt_slot(ds->touchpad, i);
1439 input_mt_report_slot_state(ds->touchpad, MT_TOOL_FINGER, active);
1440
1441 if (active) {
1442 int x = (point->x_hi << 8) | point->x_lo;
1443 int y = (point->y_hi << 4) | point->y_lo;
1444
1445 input_report_abs(ds->touchpad, ABS_MT_POSITION_X, x);
1446 input_report_abs(ds->touchpad, ABS_MT_POSITION_Y, y);
1447 }
1448 }
1449 input_mt_sync_frame(ds->touchpad);
1450 input_report_key(ds->touchpad, BTN_LEFT, ds_report->buttons[2] & DS_BUTTONS2_TOUCHPAD);
1451 input_sync(ds->touchpad);
1452
1453 battery_data = ds_report->status & DS_STATUS_BATTERY_CAPACITY;
1454 charging_status = (ds_report->status & DS_STATUS_CHARGING) >> DS_STATUS_CHARGING_SHIFT;
1455
1456 switch (charging_status) {
1457 case 0x0:
1458 /*
1459 * Each unit of battery data corresponds to 10%
1460 * 0 = 0-9%, 1 = 10-19%, .. and 10 = 100%
1461 */
1462 battery_capacity = min(battery_data * 10 + 5, 100);
1463 battery_status = POWER_SUPPLY_STATUS_DISCHARGING;
1464 break;
1465 case 0x1:
1466 battery_capacity = min(battery_data * 10 + 5, 100);
1467 battery_status = POWER_SUPPLY_STATUS_CHARGING;
1468 break;
1469 case 0x2:
1470 battery_capacity = 100;
1471 battery_status = POWER_SUPPLY_STATUS_FULL;
1472 break;
1473 case 0xa: /* voltage or temperature out of range */
1474 case 0xb: /* temperature error */
1475 battery_capacity = 0;
1476 battery_status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1477 break;
1478 case 0xf: /* charging error */
1479 default:
1480 battery_capacity = 0;
1481 battery_status = POWER_SUPPLY_STATUS_UNKNOWN;
1482 }
1483
1484 spin_lock_irqsave(&ps_dev->lock, flags);
1485 ps_dev->battery_capacity = battery_capacity;
1486 ps_dev->battery_status = battery_status;
1487 spin_unlock_irqrestore(&ps_dev->lock, flags);
1488
1489 return 0;
1490 }
1491
dualsense_play_effect(struct input_dev * dev,void * data,struct ff_effect * effect)1492 static int dualsense_play_effect(struct input_dev *dev, void *data, struct ff_effect *effect)
1493 {
1494 struct hid_device *hdev = input_get_drvdata(dev);
1495 struct dualsense *ds = hid_get_drvdata(hdev);
1496 unsigned long flags;
1497
1498 if (effect->type != FF_RUMBLE)
1499 return 0;
1500
1501 spin_lock_irqsave(&ds->base.lock, flags);
1502 ds->update_rumble = true;
1503 ds->motor_left = effect->u.rumble.strong_magnitude / 256;
1504 ds->motor_right = effect->u.rumble.weak_magnitude / 256;
1505 spin_unlock_irqrestore(&ds->base.lock, flags);
1506
1507 dualsense_schedule_work(ds);
1508 return 0;
1509 }
1510
dualsense_remove(struct ps_device * ps_dev)1511 static void dualsense_remove(struct ps_device *ps_dev)
1512 {
1513 struct dualsense *ds = container_of(ps_dev, struct dualsense, base);
1514 unsigned long flags;
1515
1516 spin_lock_irqsave(&ds->base.lock, flags);
1517 ds->output_worker_initialized = false;
1518 spin_unlock_irqrestore(&ds->base.lock, flags);
1519
1520 cancel_work_sync(&ds->output_worker);
1521 }
1522
dualsense_reset_leds(struct dualsense * ds)1523 static int dualsense_reset_leds(struct dualsense *ds)
1524 {
1525 struct dualsense_output_report report;
1526 uint8_t *buf;
1527
1528 buf = kzalloc(sizeof(struct dualsense_output_report_bt), GFP_KERNEL);
1529 if (!buf)
1530 return -ENOMEM;
1531
1532 dualsense_init_output_report(ds, &report, buf);
1533 /*
1534 * On Bluetooth the DualSense outputs an animation on the lightbar
1535 * during startup and maintains a color afterwards. We need to explicitly
1536 * reconfigure the lightbar before we can do any programming later on.
1537 * In USB the lightbar is not on by default, but redoing the setup there
1538 * doesn't hurt.
1539 */
1540 report.common->valid_flag2 = DS_OUTPUT_VALID_FLAG2_LIGHTBAR_SETUP_CONTROL_ENABLE;
1541 report.common->lightbar_setup = DS_OUTPUT_LIGHTBAR_SETUP_LIGHT_OUT; /* Fade light out. */
1542 dualsense_send_output_report(ds, &report);
1543
1544 kfree(buf);
1545 return 0;
1546 }
1547
dualsense_set_lightbar(struct dualsense * ds,uint8_t red,uint8_t green,uint8_t blue)1548 static void dualsense_set_lightbar(struct dualsense *ds, uint8_t red, uint8_t green, uint8_t blue)
1549 {
1550 unsigned long flags;
1551
1552 spin_lock_irqsave(&ds->base.lock, flags);
1553 ds->update_lightbar = true;
1554 ds->lightbar_red = red;
1555 ds->lightbar_green = green;
1556 ds->lightbar_blue = blue;
1557 spin_unlock_irqrestore(&ds->base.lock, flags);
1558
1559 dualsense_schedule_work(ds);
1560 }
1561
dualsense_set_player_leds(struct dualsense * ds)1562 static void dualsense_set_player_leds(struct dualsense *ds)
1563 {
1564 /*
1565 * The DualSense controller has a row of 5 LEDs used for player ids.
1566 * Behavior on the PlayStation 5 console is to center the player id
1567 * across the LEDs, so e.g. player 1 would be "--x--" with x being 'on'.
1568 * Follow a similar mapping here.
1569 */
1570 static const int player_ids[5] = {
1571 BIT(2),
1572 BIT(3) | BIT(1),
1573 BIT(4) | BIT(2) | BIT(0),
1574 BIT(4) | BIT(3) | BIT(1) | BIT(0),
1575 BIT(4) | BIT(3) | BIT(2) | BIT(1) | BIT(0)
1576 };
1577
1578 uint8_t player_id = ds->base.player_id % ARRAY_SIZE(player_ids);
1579
1580 ds->update_player_leds = true;
1581 ds->player_leds_state = player_ids[player_id];
1582 dualsense_schedule_work(ds);
1583 }
1584
dualsense_create(struct hid_device * hdev)1585 static struct ps_device *dualsense_create(struct hid_device *hdev)
1586 {
1587 struct dualsense *ds;
1588 struct ps_device *ps_dev;
1589 uint8_t max_output_report_size;
1590 int i, ret;
1591
1592 static const struct ps_led_info player_leds_info[] = {
1593 { LED_FUNCTION_PLAYER1, "white", 1, dualsense_player_led_get_brightness,
1594 dualsense_player_led_set_brightness },
1595 { LED_FUNCTION_PLAYER2, "white", 1, dualsense_player_led_get_brightness,
1596 dualsense_player_led_set_brightness },
1597 { LED_FUNCTION_PLAYER3, "white", 1, dualsense_player_led_get_brightness,
1598 dualsense_player_led_set_brightness },
1599 { LED_FUNCTION_PLAYER4, "white", 1, dualsense_player_led_get_brightness,
1600 dualsense_player_led_set_brightness },
1601 { LED_FUNCTION_PLAYER5, "white", 1, dualsense_player_led_get_brightness,
1602 dualsense_player_led_set_brightness }
1603 };
1604
1605 ds = devm_kzalloc(&hdev->dev, sizeof(*ds), GFP_KERNEL);
1606 if (!ds)
1607 return ERR_PTR(-ENOMEM);
1608
1609 /*
1610 * Patch version to allow userspace to distinguish between
1611 * hid-generic vs hid-playstation axis and button mapping.
1612 */
1613 hdev->version |= HID_PLAYSTATION_VERSION_PATCH;
1614
1615 ps_dev = &ds->base;
1616 ps_dev->hdev = hdev;
1617 spin_lock_init(&ps_dev->lock);
1618 ps_dev->battery_capacity = 100; /* initial value until parse_report. */
1619 ps_dev->battery_status = POWER_SUPPLY_STATUS_UNKNOWN;
1620 ps_dev->parse_report = dualsense_parse_report;
1621 ps_dev->remove = dualsense_remove;
1622 INIT_WORK(&ds->output_worker, dualsense_output_worker);
1623 ds->output_worker_initialized = true;
1624 hid_set_drvdata(hdev, ds);
1625
1626 max_output_report_size = sizeof(struct dualsense_output_report_bt);
1627 ds->output_report_dmabuf = devm_kzalloc(&hdev->dev, max_output_report_size, GFP_KERNEL);
1628 if (!ds->output_report_dmabuf)
1629 return ERR_PTR(-ENOMEM);
1630
1631 ret = dualsense_get_mac_address(ds);
1632 if (ret) {
1633 hid_err(hdev, "Failed to get MAC address from DualSense\n");
1634 return ERR_PTR(ret);
1635 }
1636 snprintf(hdev->uniq, sizeof(hdev->uniq), "%pMR", ds->base.mac_address);
1637
1638 ret = dualsense_get_firmware_info(ds);
1639 if (ret) {
1640 hid_err(hdev, "Failed to get firmware info from DualSense\n");
1641 return ERR_PTR(ret);
1642 }
1643
1644 /* Original DualSense firmware simulated classic controller rumble through
1645 * its new haptics hardware. It felt different from classic rumble users
1646 * were used to. Since then new firmwares were introduced to change behavior
1647 * and make this new 'v2' behavior default on PlayStation and other platforms.
1648 * The original DualSense requires a new enough firmware as bundled with PS5
1649 * software released in 2021. DualSense edge supports it out of the box.
1650 * Both devices also support the old mode, but it is not really used.
1651 */
1652 if (hdev->product == USB_DEVICE_ID_SONY_PS5_CONTROLLER) {
1653 /* Feature version 2.21 introduced new vibration method. */
1654 ds->use_vibration_v2 = ds->update_version >= DS_FEATURE_VERSION(2, 21);
1655 } else if (hdev->product == USB_DEVICE_ID_SONY_PS5_CONTROLLER_2) {
1656 ds->use_vibration_v2 = true;
1657 }
1658
1659 ret = ps_devices_list_add(ps_dev);
1660 if (ret)
1661 return ERR_PTR(ret);
1662
1663 ret = dualsense_get_calibration_data(ds);
1664 if (ret) {
1665 hid_err(hdev, "Failed to get calibration data from DualSense\n");
1666 goto err;
1667 }
1668
1669 ds->gamepad = ps_gamepad_create(hdev, dualsense_play_effect);
1670 if (IS_ERR(ds->gamepad)) {
1671 ret = PTR_ERR(ds->gamepad);
1672 goto err;
1673 }
1674 /* Use gamepad input device name as primary device name for e.g. LEDs */
1675 ps_dev->input_dev_name = dev_name(&ds->gamepad->dev);
1676
1677 ds->sensors = ps_sensors_create(hdev, DS_ACC_RANGE, DS_ACC_RES_PER_G,
1678 DS_GYRO_RANGE, DS_GYRO_RES_PER_DEG_S);
1679 if (IS_ERR(ds->sensors)) {
1680 ret = PTR_ERR(ds->sensors);
1681 goto err;
1682 }
1683
1684 ds->touchpad = ps_touchpad_create(hdev, DS_TOUCHPAD_WIDTH, DS_TOUCHPAD_HEIGHT, 2);
1685 if (IS_ERR(ds->touchpad)) {
1686 ret = PTR_ERR(ds->touchpad);
1687 goto err;
1688 }
1689
1690 ret = ps_device_register_battery(ps_dev);
1691 if (ret)
1692 goto err;
1693
1694 /*
1695 * The hardware may have control over the LEDs (e.g. in Bluetooth on startup).
1696 * Reset the LEDs (lightbar, mute, player leds), so we can control them
1697 * from software.
1698 */
1699 ret = dualsense_reset_leds(ds);
1700 if (ret)
1701 goto err;
1702
1703 ret = ps_lightbar_register(ps_dev, &ds->lightbar, dualsense_lightbar_set_brightness);
1704 if (ret)
1705 goto err;
1706
1707 /* Set default lightbar color. */
1708 dualsense_set_lightbar(ds, 0, 0, 128); /* blue */
1709
1710 for (i = 0; i < ARRAY_SIZE(player_leds_info); i++) {
1711 const struct ps_led_info *led_info = &player_leds_info[i];
1712
1713 ret = ps_led_register(ps_dev, &ds->player_leds[i], led_info);
1714 if (ret < 0)
1715 goto err;
1716 }
1717
1718 ret = ps_device_set_player_id(ps_dev);
1719 if (ret) {
1720 hid_err(hdev, "Failed to assign player id for DualSense: %d\n", ret);
1721 goto err;
1722 }
1723
1724 /* Set player LEDs to our player id. */
1725 dualsense_set_player_leds(ds);
1726
1727 /*
1728 * Reporting hardware and firmware is important as there are frequent updates, which
1729 * can change behavior.
1730 */
1731 hid_info(hdev, "Registered DualSense controller hw_version=0x%08x fw_version=0x%08x\n",
1732 ds->base.hw_version, ds->base.fw_version);
1733
1734 return &ds->base;
1735
1736 err:
1737 ps_devices_list_remove(ps_dev);
1738 return ERR_PTR(ret);
1739 }
1740
dualshock4_dongle_calibration_work(struct work_struct * work)1741 static void dualshock4_dongle_calibration_work(struct work_struct *work)
1742 {
1743 struct dualshock4 *ds4 = container_of(work, struct dualshock4, dongle_hotplug_worker);
1744 unsigned long flags;
1745 enum dualshock4_dongle_state dongle_state;
1746 int ret;
1747
1748 ret = dualshock4_get_calibration_data(ds4);
1749 if (ret < 0) {
1750 /* This call is very unlikely to fail for the dongle. When it
1751 * fails we are probably in a very bad state, so mark the
1752 * dongle as disabled. We will re-enable the dongle if a new
1753 * DS4 hotplug is detect from sony_raw_event as any issues
1754 * are likely resolved then (the dongle is quite stupid).
1755 */
1756 hid_err(ds4->base.hdev, "DualShock 4 USB dongle: calibration failed, disabling device\n");
1757 dongle_state = DONGLE_DISABLED;
1758 } else {
1759 hid_info(ds4->base.hdev, "DualShock 4 USB dongle: calibration completed\n");
1760 dongle_state = DONGLE_CONNECTED;
1761 }
1762
1763 spin_lock_irqsave(&ds4->base.lock, flags);
1764 ds4->dongle_state = dongle_state;
1765 spin_unlock_irqrestore(&ds4->base.lock, flags);
1766 }
1767
dualshock4_get_calibration_data(struct dualshock4 * ds4)1768 static int dualshock4_get_calibration_data(struct dualshock4 *ds4)
1769 {
1770 struct hid_device *hdev = ds4->base.hdev;
1771 short gyro_pitch_bias, gyro_pitch_plus, gyro_pitch_minus;
1772 short gyro_yaw_bias, gyro_yaw_plus, gyro_yaw_minus;
1773 short gyro_roll_bias, gyro_roll_plus, gyro_roll_minus;
1774 short gyro_speed_plus, gyro_speed_minus;
1775 short acc_x_plus, acc_x_minus;
1776 short acc_y_plus, acc_y_minus;
1777 short acc_z_plus, acc_z_minus;
1778 int speed_2x;
1779 int range_2g;
1780 int ret = 0;
1781 int i;
1782 uint8_t *buf;
1783
1784 if (ds4->base.hdev->bus == BUS_USB) {
1785 int retries;
1786
1787 buf = kzalloc(DS4_FEATURE_REPORT_CALIBRATION_SIZE, GFP_KERNEL);
1788 if (!buf) {
1789 ret = -ENOMEM;
1790 goto transfer_failed;
1791 }
1792
1793 /* We should normally receive the feature report data we asked
1794 * for, but hidraw applications such as Steam can issue feature
1795 * reports as well. In particular for Dongle reconnects, Steam
1796 * and this function are competing resulting in often receiving
1797 * data for a different HID report, so retry a few times.
1798 */
1799 for (retries = 0; retries < 3; retries++) {
1800 ret = ps_get_report(hdev, DS4_FEATURE_REPORT_CALIBRATION, buf,
1801 DS4_FEATURE_REPORT_CALIBRATION_SIZE, true);
1802 if (ret) {
1803 if (retries < 2) {
1804 hid_warn(hdev, "Retrying DualShock 4 get calibration report (0x02) request\n");
1805 continue;
1806 }
1807
1808 hid_warn(hdev, "Failed to retrieve DualShock4 calibration info: %d\n", ret);
1809 ret = -EILSEQ;
1810 goto transfer_failed;
1811 } else {
1812 break;
1813 }
1814 }
1815 } else { /* Bluetooth */
1816 buf = kzalloc(DS4_FEATURE_REPORT_CALIBRATION_BT_SIZE, GFP_KERNEL);
1817 if (!buf) {
1818 ret = -ENOMEM;
1819 goto transfer_failed;
1820 }
1821
1822 ret = ps_get_report(hdev, DS4_FEATURE_REPORT_CALIBRATION_BT, buf,
1823 DS4_FEATURE_REPORT_CALIBRATION_BT_SIZE, true);
1824
1825 if (ret) {
1826 hid_warn(hdev, "Failed to retrieve DualShock4 calibration info: %d\n", ret);
1827 goto transfer_failed;
1828 }
1829 }
1830
1831 /* Transfer succeeded - parse the calibration data received. */
1832 gyro_pitch_bias = get_unaligned_le16(&buf[1]);
1833 gyro_yaw_bias = get_unaligned_le16(&buf[3]);
1834 gyro_roll_bias = get_unaligned_le16(&buf[5]);
1835 if (ds4->base.hdev->bus == BUS_USB) {
1836 gyro_pitch_plus = get_unaligned_le16(&buf[7]);
1837 gyro_pitch_minus = get_unaligned_le16(&buf[9]);
1838 gyro_yaw_plus = get_unaligned_le16(&buf[11]);
1839 gyro_yaw_minus = get_unaligned_le16(&buf[13]);
1840 gyro_roll_plus = get_unaligned_le16(&buf[15]);
1841 gyro_roll_minus = get_unaligned_le16(&buf[17]);
1842 } else {
1843 /* BT + Dongle */
1844 gyro_pitch_plus = get_unaligned_le16(&buf[7]);
1845 gyro_yaw_plus = get_unaligned_le16(&buf[9]);
1846 gyro_roll_plus = get_unaligned_le16(&buf[11]);
1847 gyro_pitch_minus = get_unaligned_le16(&buf[13]);
1848 gyro_yaw_minus = get_unaligned_le16(&buf[15]);
1849 gyro_roll_minus = get_unaligned_le16(&buf[17]);
1850 }
1851 gyro_speed_plus = get_unaligned_le16(&buf[19]);
1852 gyro_speed_minus = get_unaligned_le16(&buf[21]);
1853 acc_x_plus = get_unaligned_le16(&buf[23]);
1854 acc_x_minus = get_unaligned_le16(&buf[25]);
1855 acc_y_plus = get_unaligned_le16(&buf[27]);
1856 acc_y_minus = get_unaligned_le16(&buf[29]);
1857 acc_z_plus = get_unaligned_le16(&buf[31]);
1858 acc_z_minus = get_unaligned_le16(&buf[33]);
1859
1860 /* Done parsing the buffer, so let's free it. */
1861 kfree(buf);
1862
1863 /*
1864 * Set gyroscope calibration and normalization parameters.
1865 * Data values will be normalized to 1/DS4_GYRO_RES_PER_DEG_S degree/s.
1866 */
1867 speed_2x = (gyro_speed_plus + gyro_speed_minus);
1868 ds4->gyro_calib_data[0].abs_code = ABS_RX;
1869 ds4->gyro_calib_data[0].bias = 0;
1870 ds4->gyro_calib_data[0].sens_numer = speed_2x*DS4_GYRO_RES_PER_DEG_S;
1871 ds4->gyro_calib_data[0].sens_denom = abs(gyro_pitch_plus - gyro_pitch_bias) +
1872 abs(gyro_pitch_minus - gyro_pitch_bias);
1873
1874 ds4->gyro_calib_data[1].abs_code = ABS_RY;
1875 ds4->gyro_calib_data[1].bias = 0;
1876 ds4->gyro_calib_data[1].sens_numer = speed_2x*DS4_GYRO_RES_PER_DEG_S;
1877 ds4->gyro_calib_data[1].sens_denom = abs(gyro_yaw_plus - gyro_yaw_bias) +
1878 abs(gyro_yaw_minus - gyro_yaw_bias);
1879
1880 ds4->gyro_calib_data[2].abs_code = ABS_RZ;
1881 ds4->gyro_calib_data[2].bias = 0;
1882 ds4->gyro_calib_data[2].sens_numer = speed_2x*DS4_GYRO_RES_PER_DEG_S;
1883 ds4->gyro_calib_data[2].sens_denom = abs(gyro_roll_plus - gyro_roll_bias) +
1884 abs(gyro_roll_minus - gyro_roll_bias);
1885
1886 /*
1887 * Set accelerometer calibration and normalization parameters.
1888 * Data values will be normalized to 1/DS4_ACC_RES_PER_G g.
1889 */
1890 range_2g = acc_x_plus - acc_x_minus;
1891 ds4->accel_calib_data[0].abs_code = ABS_X;
1892 ds4->accel_calib_data[0].bias = acc_x_plus - range_2g / 2;
1893 ds4->accel_calib_data[0].sens_numer = 2*DS4_ACC_RES_PER_G;
1894 ds4->accel_calib_data[0].sens_denom = range_2g;
1895
1896 range_2g = acc_y_plus - acc_y_minus;
1897 ds4->accel_calib_data[1].abs_code = ABS_Y;
1898 ds4->accel_calib_data[1].bias = acc_y_plus - range_2g / 2;
1899 ds4->accel_calib_data[1].sens_numer = 2*DS4_ACC_RES_PER_G;
1900 ds4->accel_calib_data[1].sens_denom = range_2g;
1901
1902 range_2g = acc_z_plus - acc_z_minus;
1903 ds4->accel_calib_data[2].abs_code = ABS_Z;
1904 ds4->accel_calib_data[2].bias = acc_z_plus - range_2g / 2;
1905 ds4->accel_calib_data[2].sens_numer = 2*DS4_ACC_RES_PER_G;
1906 ds4->accel_calib_data[2].sens_denom = range_2g;
1907
1908 transfer_failed:
1909 /*
1910 * Sanity check gyro calibration data. This is needed to prevent crashes
1911 * during report handling of virtual, clone or broken devices not implementing
1912 * calibration data properly.
1913 */
1914 for (i = 0; i < ARRAY_SIZE(ds4->gyro_calib_data); i++) {
1915 if (ds4->gyro_calib_data[i].sens_denom == 0) {
1916 ds4->gyro_calib_data[i].abs_code = ABS_RX + i;
1917 hid_warn(hdev, "Invalid gyro calibration data for axis (%d), disabling calibration.",
1918 ds4->gyro_calib_data[i].abs_code);
1919 ds4->gyro_calib_data[i].bias = 0;
1920 ds4->gyro_calib_data[i].sens_numer = DS4_GYRO_RANGE;
1921 ds4->gyro_calib_data[i].sens_denom = S16_MAX;
1922 }
1923 }
1924
1925 /*
1926 * Sanity check accelerometer calibration data. This is needed to prevent crashes
1927 * during report handling of virtual, clone or broken devices not implementing calibration
1928 * data properly.
1929 */
1930 for (i = 0; i < ARRAY_SIZE(ds4->accel_calib_data); i++) {
1931 if (ds4->accel_calib_data[i].sens_denom == 0) {
1932 ds4->accel_calib_data[i].abs_code = ABS_X + i;
1933 hid_warn(hdev, "Invalid accelerometer calibration data for axis (%d), disabling calibration.",
1934 ds4->accel_calib_data[i].abs_code);
1935 ds4->accel_calib_data[i].bias = 0;
1936 ds4->accel_calib_data[i].sens_numer = DS4_ACC_RANGE;
1937 ds4->accel_calib_data[i].sens_denom = S16_MAX;
1938 }
1939 }
1940
1941 return ret;
1942 }
1943
dualshock4_get_firmware_info(struct dualshock4 * ds4)1944 static int dualshock4_get_firmware_info(struct dualshock4 *ds4)
1945 {
1946 uint8_t *buf;
1947 int ret;
1948
1949 buf = kzalloc(DS4_FEATURE_REPORT_FIRMWARE_INFO_SIZE, GFP_KERNEL);
1950 if (!buf)
1951 return -ENOMEM;
1952
1953 /* Note USB and BT support the same feature report, but this report
1954 * lacks CRC support, so must be disabled in ps_get_report.
1955 */
1956 ret = ps_get_report(ds4->base.hdev, DS4_FEATURE_REPORT_FIRMWARE_INFO, buf,
1957 DS4_FEATURE_REPORT_FIRMWARE_INFO_SIZE, false);
1958 if (ret) {
1959 hid_err(ds4->base.hdev, "Failed to retrieve DualShock4 firmware info: %d\n", ret);
1960 goto err_free;
1961 }
1962
1963 ds4->base.hw_version = get_unaligned_le16(&buf[35]);
1964 ds4->base.fw_version = get_unaligned_le16(&buf[41]);
1965
1966 err_free:
1967 kfree(buf);
1968 return ret;
1969 }
1970
dualshock4_get_mac_address(struct dualshock4 * ds4)1971 static int dualshock4_get_mac_address(struct dualshock4 *ds4)
1972 {
1973 struct hid_device *hdev = ds4->base.hdev;
1974 uint8_t *buf;
1975 int ret = 0;
1976
1977 if (hdev->bus == BUS_USB) {
1978 buf = kzalloc(DS4_FEATURE_REPORT_PAIRING_INFO_SIZE, GFP_KERNEL);
1979 if (!buf)
1980 return -ENOMEM;
1981
1982 ret = ps_get_report(hdev, DS4_FEATURE_REPORT_PAIRING_INFO, buf,
1983 DS4_FEATURE_REPORT_PAIRING_INFO_SIZE, false);
1984 if (ret) {
1985 hid_err(hdev, "Failed to retrieve DualShock4 pairing info: %d\n", ret);
1986 goto err_free;
1987 }
1988
1989 memcpy(ds4->base.mac_address, &buf[1], sizeof(ds4->base.mac_address));
1990 } else {
1991 /* Rely on HIDP for Bluetooth */
1992 if (strlen(hdev->uniq) != 17)
1993 return -EINVAL;
1994
1995 ret = sscanf(hdev->uniq, "%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx",
1996 &ds4->base.mac_address[5], &ds4->base.mac_address[4],
1997 &ds4->base.mac_address[3], &ds4->base.mac_address[2],
1998 &ds4->base.mac_address[1], &ds4->base.mac_address[0]);
1999
2000 if (ret != sizeof(ds4->base.mac_address))
2001 return -EINVAL;
2002
2003 return 0;
2004 }
2005
2006 err_free:
2007 kfree(buf);
2008 return ret;
2009 }
2010
dualshock4_led_get_brightness(struct led_classdev * led)2011 static enum led_brightness dualshock4_led_get_brightness(struct led_classdev *led)
2012 {
2013 struct hid_device *hdev = to_hid_device(led->dev->parent);
2014 struct dualshock4 *ds4 = hid_get_drvdata(hdev);
2015 unsigned int led_index;
2016
2017 led_index = led - ds4->lightbar_leds;
2018 switch (led_index) {
2019 case 0:
2020 return ds4->lightbar_red;
2021 case 1:
2022 return ds4->lightbar_green;
2023 case 2:
2024 return ds4->lightbar_blue;
2025 case 3:
2026 return ds4->lightbar_enabled;
2027 }
2028
2029 return -1;
2030 }
2031
dualshock4_led_set_blink(struct led_classdev * led,unsigned long * delay_on,unsigned long * delay_off)2032 static int dualshock4_led_set_blink(struct led_classdev *led, unsigned long *delay_on,
2033 unsigned long *delay_off)
2034 {
2035 struct hid_device *hdev = to_hid_device(led->dev->parent);
2036 struct dualshock4 *ds4 = hid_get_drvdata(hdev);
2037 unsigned long flags;
2038
2039 spin_lock_irqsave(&ds4->base.lock, flags);
2040
2041 if (!*delay_on && !*delay_off) {
2042 /* Default to 1 Hz (50 centiseconds on, 50 centiseconds off). */
2043 ds4->lightbar_blink_on = 50;
2044 ds4->lightbar_blink_off = 50;
2045 } else {
2046 /* Blink delays in centiseconds. */
2047 ds4->lightbar_blink_on = min_t(unsigned long, *delay_on/10, DS4_LIGHTBAR_MAX_BLINK);
2048 ds4->lightbar_blink_off = min_t(unsigned long, *delay_off/10, DS4_LIGHTBAR_MAX_BLINK);
2049 }
2050
2051 ds4->update_lightbar_blink = true;
2052
2053 spin_unlock_irqrestore(&ds4->base.lock, flags);
2054
2055 dualshock4_schedule_work(ds4);
2056
2057 /* Report scaled values back to LED subsystem */
2058 *delay_on = ds4->lightbar_blink_on * 10;
2059 *delay_off = ds4->lightbar_blink_off * 10;
2060
2061 return 0;
2062 }
2063
dualshock4_led_set_brightness(struct led_classdev * led,enum led_brightness value)2064 static int dualshock4_led_set_brightness(struct led_classdev *led, enum led_brightness value)
2065 {
2066 struct hid_device *hdev = to_hid_device(led->dev->parent);
2067 struct dualshock4 *ds4 = hid_get_drvdata(hdev);
2068 unsigned long flags;
2069 unsigned int led_index;
2070
2071 spin_lock_irqsave(&ds4->base.lock, flags);
2072
2073 led_index = led - ds4->lightbar_leds;
2074 switch (led_index) {
2075 case 0:
2076 ds4->lightbar_red = value;
2077 break;
2078 case 1:
2079 ds4->lightbar_green = value;
2080 break;
2081 case 2:
2082 ds4->lightbar_blue = value;
2083 break;
2084 case 3:
2085 ds4->lightbar_enabled = !!value;
2086
2087 /* brightness = 0 also cancels blinking in Linux. */
2088 if (!ds4->lightbar_enabled) {
2089 ds4->lightbar_blink_off = 0;
2090 ds4->lightbar_blink_on = 0;
2091 ds4->update_lightbar_blink = true;
2092 }
2093 }
2094
2095 ds4->update_lightbar = true;
2096
2097 spin_unlock_irqrestore(&ds4->base.lock, flags);
2098
2099 dualshock4_schedule_work(ds4);
2100
2101 return 0;
2102 }
2103
dualshock4_init_output_report(struct dualshock4 * ds4,struct dualshock4_output_report * rp,void * buf)2104 static void dualshock4_init_output_report(struct dualshock4 *ds4,
2105 struct dualshock4_output_report *rp, void *buf)
2106 {
2107 struct hid_device *hdev = ds4->base.hdev;
2108
2109 if (hdev->bus == BUS_BLUETOOTH) {
2110 struct dualshock4_output_report_bt *bt = buf;
2111
2112 memset(bt, 0, sizeof(*bt));
2113 bt->report_id = DS4_OUTPUT_REPORT_BT;
2114
2115 rp->data = buf;
2116 rp->len = sizeof(*bt);
2117 rp->bt = bt;
2118 rp->usb = NULL;
2119 rp->common = &bt->common;
2120 } else { /* USB */
2121 struct dualshock4_output_report_usb *usb = buf;
2122
2123 memset(usb, 0, sizeof(*usb));
2124 usb->report_id = DS4_OUTPUT_REPORT_USB;
2125
2126 rp->data = buf;
2127 rp->len = sizeof(*usb);
2128 rp->bt = NULL;
2129 rp->usb = usb;
2130 rp->common = &usb->common;
2131 }
2132 }
2133
dualshock4_output_worker(struct work_struct * work)2134 static void dualshock4_output_worker(struct work_struct *work)
2135 {
2136 struct dualshock4 *ds4 = container_of(work, struct dualshock4, output_worker);
2137 struct dualshock4_output_report report;
2138 struct dualshock4_output_report_common *common;
2139 unsigned long flags;
2140
2141 dualshock4_init_output_report(ds4, &report, ds4->output_report_dmabuf);
2142 common = report.common;
2143
2144 spin_lock_irqsave(&ds4->base.lock, flags);
2145
2146 /*
2147 * Some 3rd party gamepads expect updates to rumble and lightbar
2148 * together, and setting one may cancel the other.
2149 *
2150 * Let's maximise compatibility by always sending rumble and lightbar
2151 * updates together, even when only one has been scheduled, resulting
2152 * in:
2153 *
2154 * ds4->valid_flag0 >= 0x03
2155 *
2156 * Hopefully this will maximise compatibility with third-party pads.
2157 *
2158 * Any further update bits, such as 0x04 for lightbar blinking, will
2159 * be or'd on top of this like before.
2160 */
2161 if (ds4->update_rumble || ds4->update_lightbar) {
2162 ds4->update_rumble = true; /* 0x01 */
2163 ds4->update_lightbar = true; /* 0x02 */
2164 }
2165
2166 if (ds4->update_rumble) {
2167 /* Select classic rumble style haptics and enable it. */
2168 common->valid_flag0 |= DS4_OUTPUT_VALID_FLAG0_MOTOR;
2169 common->motor_left = ds4->motor_left;
2170 common->motor_right = ds4->motor_right;
2171 ds4->update_rumble = false;
2172 }
2173
2174 if (ds4->update_lightbar) {
2175 common->valid_flag0 |= DS4_OUTPUT_VALID_FLAG0_LED;
2176 /* Comptabile behavior with hid-sony, which used a dummy global LED to
2177 * allow enabling/disabling the lightbar. The global LED maps to
2178 * lightbar_enabled.
2179 */
2180 common->lightbar_red = ds4->lightbar_enabled ? ds4->lightbar_red : 0;
2181 common->lightbar_green = ds4->lightbar_enabled ? ds4->lightbar_green : 0;
2182 common->lightbar_blue = ds4->lightbar_enabled ? ds4->lightbar_blue : 0;
2183 ds4->update_lightbar = false;
2184 }
2185
2186 if (ds4->update_lightbar_blink) {
2187 common->valid_flag0 |= DS4_OUTPUT_VALID_FLAG0_LED_BLINK;
2188 common->lightbar_blink_on = ds4->lightbar_blink_on;
2189 common->lightbar_blink_off = ds4->lightbar_blink_off;
2190 ds4->update_lightbar_blink = false;
2191 }
2192
2193 spin_unlock_irqrestore(&ds4->base.lock, flags);
2194
2195 /* Bluetooth packets need additional flags as well as a CRC in the last 4 bytes. */
2196 if (report.bt) {
2197 uint32_t crc;
2198 uint8_t seed = PS_OUTPUT_CRC32_SEED;
2199
2200 /* Hardware control flags need to set to let the device know
2201 * there is HID data as well as CRC.
2202 */
2203 report.bt->hw_control = DS4_OUTPUT_HWCTL_HID | DS4_OUTPUT_HWCTL_CRC32;
2204
2205 if (ds4->update_bt_poll_interval) {
2206 report.bt->hw_control |= ds4->bt_poll_interval;
2207 ds4->update_bt_poll_interval = false;
2208 }
2209
2210 crc = crc32_le(0xFFFFFFFF, &seed, 1);
2211 crc = ~crc32_le(crc, report.data, report.len - 4);
2212
2213 report.bt->crc32 = cpu_to_le32(crc);
2214 }
2215
2216 hid_hw_output_report(ds4->base.hdev, report.data, report.len);
2217 }
2218
dualshock4_parse_report(struct ps_device * ps_dev,struct hid_report * report,u8 * data,int size)2219 static int dualshock4_parse_report(struct ps_device *ps_dev, struct hid_report *report,
2220 u8 *data, int size)
2221 {
2222 struct hid_device *hdev = ps_dev->hdev;
2223 struct dualshock4 *ds4 = container_of(ps_dev, struct dualshock4, base);
2224 struct dualshock4_input_report_common *ds4_report;
2225 struct dualshock4_touch_report *touch_reports;
2226 uint8_t battery_capacity, num_touch_reports, value;
2227 int battery_status, i, j;
2228 uint16_t sensor_timestamp;
2229 unsigned long flags;
2230 bool is_minimal = false;
2231
2232 /*
2233 * DualShock4 in USB uses the full HID report for reportID 1, but
2234 * Bluetooth uses a minimal HID report for reportID 1 and reports
2235 * the full report using reportID 17.
2236 */
2237 if (hdev->bus == BUS_USB && report->id == DS4_INPUT_REPORT_USB &&
2238 size == DS4_INPUT_REPORT_USB_SIZE) {
2239 struct dualshock4_input_report_usb *usb = (struct dualshock4_input_report_usb *)data;
2240
2241 ds4_report = &usb->common;
2242 num_touch_reports = usb->num_touch_reports;
2243 touch_reports = usb->touch_reports;
2244 } else if (hdev->bus == BUS_BLUETOOTH && report->id == DS4_INPUT_REPORT_BT &&
2245 size == DS4_INPUT_REPORT_BT_SIZE) {
2246 struct dualshock4_input_report_bt *bt = (struct dualshock4_input_report_bt *)data;
2247 uint32_t report_crc = get_unaligned_le32(&bt->crc32);
2248
2249 /* Last 4 bytes of input report contains CRC. */
2250 if (!ps_check_crc32(PS_INPUT_CRC32_SEED, data, size - 4, report_crc)) {
2251 hid_err(hdev, "DualShock4 input CRC's check failed\n");
2252 return -EILSEQ;
2253 }
2254
2255 ds4_report = &bt->common;
2256 num_touch_reports = bt->num_touch_reports;
2257 touch_reports = bt->touch_reports;
2258 } else if (hdev->bus == BUS_BLUETOOTH &&
2259 report->id == DS4_INPUT_REPORT_BT_MINIMAL &&
2260 size == DS4_INPUT_REPORT_BT_MINIMAL_SIZE) {
2261 /* Some third-party pads never switch to the full 0x11 report.
2262 * The short 0x01 report is 10 bytes long:
2263 * u8 report_id == 0x01
2264 * u8 first_bytes_of_full_report[9]
2265 * So let's reuse the full report parser, and stop it after
2266 * parsing the buttons.
2267 */
2268 ds4_report = (struct dualshock4_input_report_common *)&data[1];
2269 is_minimal = true;
2270 } else {
2271 hid_err(hdev, "Unhandled reportID=%d\n", report->id);
2272 return -1;
2273 }
2274
2275 input_report_abs(ds4->gamepad, ABS_X, ds4_report->x);
2276 input_report_abs(ds4->gamepad, ABS_Y, ds4_report->y);
2277 input_report_abs(ds4->gamepad, ABS_RX, ds4_report->rx);
2278 input_report_abs(ds4->gamepad, ABS_RY, ds4_report->ry);
2279 input_report_abs(ds4->gamepad, ABS_Z, ds4_report->z);
2280 input_report_abs(ds4->gamepad, ABS_RZ, ds4_report->rz);
2281
2282 value = ds4_report->buttons[0] & DS_BUTTONS0_HAT_SWITCH;
2283 if (value >= ARRAY_SIZE(ps_gamepad_hat_mapping))
2284 value = 8; /* center */
2285 input_report_abs(ds4->gamepad, ABS_HAT0X, ps_gamepad_hat_mapping[value].x);
2286 input_report_abs(ds4->gamepad, ABS_HAT0Y, ps_gamepad_hat_mapping[value].y);
2287
2288 input_report_key(ds4->gamepad, BTN_WEST, ds4_report->buttons[0] & DS_BUTTONS0_SQUARE);
2289 input_report_key(ds4->gamepad, BTN_SOUTH, ds4_report->buttons[0] & DS_BUTTONS0_CROSS);
2290 input_report_key(ds4->gamepad, BTN_EAST, ds4_report->buttons[0] & DS_BUTTONS0_CIRCLE);
2291 input_report_key(ds4->gamepad, BTN_NORTH, ds4_report->buttons[0] & DS_BUTTONS0_TRIANGLE);
2292 input_report_key(ds4->gamepad, BTN_TL, ds4_report->buttons[1] & DS_BUTTONS1_L1);
2293 input_report_key(ds4->gamepad, BTN_TR, ds4_report->buttons[1] & DS_BUTTONS1_R1);
2294 input_report_key(ds4->gamepad, BTN_TL2, ds4_report->buttons[1] & DS_BUTTONS1_L2);
2295 input_report_key(ds4->gamepad, BTN_TR2, ds4_report->buttons[1] & DS_BUTTONS1_R2);
2296 input_report_key(ds4->gamepad, BTN_SELECT, ds4_report->buttons[1] & DS_BUTTONS1_CREATE);
2297 input_report_key(ds4->gamepad, BTN_START, ds4_report->buttons[1] & DS_BUTTONS1_OPTIONS);
2298 input_report_key(ds4->gamepad, BTN_THUMBL, ds4_report->buttons[1] & DS_BUTTONS1_L3);
2299 input_report_key(ds4->gamepad, BTN_THUMBR, ds4_report->buttons[1] & DS_BUTTONS1_R3);
2300 input_report_key(ds4->gamepad, BTN_MODE, ds4_report->buttons[2] & DS_BUTTONS2_PS_HOME);
2301 input_sync(ds4->gamepad);
2302
2303 if (is_minimal)
2304 return 0;
2305
2306 /* Parse and calibrate gyroscope data. */
2307 for (i = 0; i < ARRAY_SIZE(ds4_report->gyro); i++) {
2308 int raw_data = (short)le16_to_cpu(ds4_report->gyro[i]);
2309 int calib_data = mult_frac(ds4->gyro_calib_data[i].sens_numer,
2310 raw_data, ds4->gyro_calib_data[i].sens_denom);
2311
2312 input_report_abs(ds4->sensors, ds4->gyro_calib_data[i].abs_code, calib_data);
2313 }
2314
2315 /* Parse and calibrate accelerometer data. */
2316 for (i = 0; i < ARRAY_SIZE(ds4_report->accel); i++) {
2317 int raw_data = (short)le16_to_cpu(ds4_report->accel[i]);
2318 int calib_data = mult_frac(ds4->accel_calib_data[i].sens_numer,
2319 raw_data - ds4->accel_calib_data[i].bias,
2320 ds4->accel_calib_data[i].sens_denom);
2321
2322 input_report_abs(ds4->sensors, ds4->accel_calib_data[i].abs_code, calib_data);
2323 }
2324
2325 /* Convert timestamp (in 5.33us unit) to timestamp_us */
2326 sensor_timestamp = le16_to_cpu(ds4_report->sensor_timestamp);
2327 if (!ds4->sensor_timestamp_initialized) {
2328 ds4->sensor_timestamp_us = DIV_ROUND_CLOSEST(sensor_timestamp*16, 3);
2329 ds4->sensor_timestamp_initialized = true;
2330 } else {
2331 uint16_t delta;
2332
2333 if (ds4->prev_sensor_timestamp > sensor_timestamp)
2334 delta = (U16_MAX - ds4->prev_sensor_timestamp + sensor_timestamp + 1);
2335 else
2336 delta = sensor_timestamp - ds4->prev_sensor_timestamp;
2337 ds4->sensor_timestamp_us += DIV_ROUND_CLOSEST(delta*16, 3);
2338 }
2339 ds4->prev_sensor_timestamp = sensor_timestamp;
2340 input_event(ds4->sensors, EV_MSC, MSC_TIMESTAMP, ds4->sensor_timestamp_us);
2341 input_sync(ds4->sensors);
2342
2343 for (i = 0; i < num_touch_reports; i++) {
2344 struct dualshock4_touch_report *touch_report = &touch_reports[i];
2345
2346 for (j = 0; j < ARRAY_SIZE(touch_report->points); j++) {
2347 struct dualshock4_touch_point *point = &touch_report->points[j];
2348 bool active = (point->contact & DS4_TOUCH_POINT_INACTIVE) ? false : true;
2349
2350 input_mt_slot(ds4->touchpad, j);
2351 input_mt_report_slot_state(ds4->touchpad, MT_TOOL_FINGER, active);
2352
2353 if (active) {
2354 int x = (point->x_hi << 8) | point->x_lo;
2355 int y = (point->y_hi << 4) | point->y_lo;
2356
2357 input_report_abs(ds4->touchpad, ABS_MT_POSITION_X, x);
2358 input_report_abs(ds4->touchpad, ABS_MT_POSITION_Y, y);
2359 }
2360 }
2361 input_mt_sync_frame(ds4->touchpad);
2362 input_sync(ds4->touchpad);
2363 }
2364 input_report_key(ds4->touchpad, BTN_LEFT, ds4_report->buttons[2] & DS_BUTTONS2_TOUCHPAD);
2365
2366 /*
2367 * Interpretation of the battery_capacity data depends on the cable state.
2368 * When no cable is connected (bit4 is 0):
2369 * - 0:10: percentage in units of 10%.
2370 * When a cable is plugged in:
2371 * - 0-10: percentage in units of 10%.
2372 * - 11: battery is full
2373 * - 14: not charging due to Voltage or temperature error
2374 * - 15: charge error
2375 */
2376 if (ds4_report->status[0] & DS4_STATUS0_CABLE_STATE) {
2377 uint8_t battery_data = ds4_report->status[0] & DS4_STATUS0_BATTERY_CAPACITY;
2378
2379 if (battery_data < 10) {
2380 /* Take the mid-point for each battery capacity value,
2381 * because on the hardware side 0 = 0-9%, 1=10-19%, etc.
2382 * This matches official platform behavior, which does
2383 * the same.
2384 */
2385 battery_capacity = battery_data * 10 + 5;
2386 battery_status = POWER_SUPPLY_STATUS_CHARGING;
2387 } else if (battery_data == 10) {
2388 battery_capacity = 100;
2389 battery_status = POWER_SUPPLY_STATUS_CHARGING;
2390 } else if (battery_data == DS4_BATTERY_STATUS_FULL) {
2391 battery_capacity = 100;
2392 battery_status = POWER_SUPPLY_STATUS_FULL;
2393 } else { /* 14, 15 and undefined values */
2394 battery_capacity = 0;
2395 battery_status = POWER_SUPPLY_STATUS_UNKNOWN;
2396 }
2397 } else {
2398 uint8_t battery_data = ds4_report->status[0] & DS4_STATUS0_BATTERY_CAPACITY;
2399
2400 if (battery_data < 10)
2401 battery_capacity = battery_data * 10 + 5;
2402 else /* 10 */
2403 battery_capacity = 100;
2404
2405 battery_status = POWER_SUPPLY_STATUS_DISCHARGING;
2406 }
2407
2408 spin_lock_irqsave(&ps_dev->lock, flags);
2409 ps_dev->battery_capacity = battery_capacity;
2410 ps_dev->battery_status = battery_status;
2411 spin_unlock_irqrestore(&ps_dev->lock, flags);
2412
2413 return 0;
2414 }
2415
dualshock4_dongle_parse_report(struct ps_device * ps_dev,struct hid_report * report,u8 * data,int size)2416 static int dualshock4_dongle_parse_report(struct ps_device *ps_dev, struct hid_report *report,
2417 u8 *data, int size)
2418 {
2419 struct dualshock4 *ds4 = container_of(ps_dev, struct dualshock4, base);
2420 bool connected = false;
2421
2422 /* The dongle reports data using the main USB report (0x1) no matter whether a controller
2423 * is connected with mostly zeros. The report does contain dongle status, which we use to
2424 * determine if a controller is connected and if so we forward to the regular DualShock4
2425 * parsing code.
2426 */
2427 if (data[0] == DS4_INPUT_REPORT_USB && size == DS4_INPUT_REPORT_USB_SIZE) {
2428 struct dualshock4_input_report_common *ds4_report = (struct dualshock4_input_report_common *)&data[1];
2429 unsigned long flags;
2430
2431 connected = ds4_report->status[1] & DS4_STATUS1_DONGLE_STATE ? false : true;
2432
2433 if (ds4->dongle_state == DONGLE_DISCONNECTED && connected) {
2434 hid_info(ps_dev->hdev, "DualShock 4 USB dongle: controller connected\n");
2435
2436 dualshock4_set_default_lightbar_colors(ds4);
2437
2438 spin_lock_irqsave(&ps_dev->lock, flags);
2439 ds4->dongle_state = DONGLE_CALIBRATING;
2440 spin_unlock_irqrestore(&ps_dev->lock, flags);
2441
2442 schedule_work(&ds4->dongle_hotplug_worker);
2443
2444 /* Don't process the report since we don't have
2445 * calibration data, but let hidraw have it anyway.
2446 */
2447 return 0;
2448 } else if ((ds4->dongle_state == DONGLE_CONNECTED ||
2449 ds4->dongle_state == DONGLE_DISABLED) && !connected) {
2450 hid_info(ps_dev->hdev, "DualShock 4 USB dongle: controller disconnected\n");
2451
2452 spin_lock_irqsave(&ps_dev->lock, flags);
2453 ds4->dongle_state = DONGLE_DISCONNECTED;
2454 spin_unlock_irqrestore(&ps_dev->lock, flags);
2455
2456 /* Return 0, so hidraw can get the report. */
2457 return 0;
2458 } else if (ds4->dongle_state == DONGLE_CALIBRATING ||
2459 ds4->dongle_state == DONGLE_DISABLED ||
2460 ds4->dongle_state == DONGLE_DISCONNECTED) {
2461 /* Return 0, so hidraw can get the report. */
2462 return 0;
2463 }
2464 }
2465
2466 if (connected)
2467 return dualshock4_parse_report(ps_dev, report, data, size);
2468
2469 return 0;
2470 }
2471
dualshock4_play_effect(struct input_dev * dev,void * data,struct ff_effect * effect)2472 static int dualshock4_play_effect(struct input_dev *dev, void *data, struct ff_effect *effect)
2473 {
2474 struct hid_device *hdev = input_get_drvdata(dev);
2475 struct dualshock4 *ds4 = hid_get_drvdata(hdev);
2476 unsigned long flags;
2477
2478 if (effect->type != FF_RUMBLE)
2479 return 0;
2480
2481 spin_lock_irqsave(&ds4->base.lock, flags);
2482 ds4->update_rumble = true;
2483 ds4->motor_left = effect->u.rumble.strong_magnitude / 256;
2484 ds4->motor_right = effect->u.rumble.weak_magnitude / 256;
2485 spin_unlock_irqrestore(&ds4->base.lock, flags);
2486
2487 dualshock4_schedule_work(ds4);
2488 return 0;
2489 }
2490
dualshock4_remove(struct ps_device * ps_dev)2491 static void dualshock4_remove(struct ps_device *ps_dev)
2492 {
2493 struct dualshock4 *ds4 = container_of(ps_dev, struct dualshock4, base);
2494 unsigned long flags;
2495
2496 spin_lock_irqsave(&ds4->base.lock, flags);
2497 ds4->output_worker_initialized = false;
2498 spin_unlock_irqrestore(&ds4->base.lock, flags);
2499
2500 cancel_work_sync(&ds4->output_worker);
2501
2502 if (ps_dev->hdev->product == USB_DEVICE_ID_SONY_PS4_CONTROLLER_DONGLE)
2503 cancel_work_sync(&ds4->dongle_hotplug_worker);
2504 }
2505
dualshock4_schedule_work(struct dualshock4 * ds4)2506 static inline void dualshock4_schedule_work(struct dualshock4 *ds4)
2507 {
2508 unsigned long flags;
2509
2510 spin_lock_irqsave(&ds4->base.lock, flags);
2511 if (ds4->output_worker_initialized)
2512 schedule_work(&ds4->output_worker);
2513 spin_unlock_irqrestore(&ds4->base.lock, flags);
2514 }
2515
dualshock4_set_bt_poll_interval(struct dualshock4 * ds4,uint8_t interval)2516 static void dualshock4_set_bt_poll_interval(struct dualshock4 *ds4, uint8_t interval)
2517 {
2518 ds4->bt_poll_interval = interval;
2519 ds4->update_bt_poll_interval = true;
2520 dualshock4_schedule_work(ds4);
2521 }
2522
2523 /* Set default lightbar color based on player. */
dualshock4_set_default_lightbar_colors(struct dualshock4 * ds4)2524 static void dualshock4_set_default_lightbar_colors(struct dualshock4 *ds4)
2525 {
2526 /* Use same player colors as PlayStation 4.
2527 * Array of colors is in RGB.
2528 */
2529 static const int player_colors[4][3] = {
2530 { 0x00, 0x00, 0x40 }, /* Blue */
2531 { 0x40, 0x00, 0x00 }, /* Red */
2532 { 0x00, 0x40, 0x00 }, /* Green */
2533 { 0x20, 0x00, 0x20 } /* Pink */
2534 };
2535
2536 uint8_t player_id = ds4->base.player_id % ARRAY_SIZE(player_colors);
2537
2538 ds4->lightbar_enabled = true;
2539 ds4->lightbar_red = player_colors[player_id][0];
2540 ds4->lightbar_green = player_colors[player_id][1];
2541 ds4->lightbar_blue = player_colors[player_id][2];
2542
2543 ds4->update_lightbar = true;
2544 dualshock4_schedule_work(ds4);
2545 }
2546
dualshock4_create(struct hid_device * hdev)2547 static struct ps_device *dualshock4_create(struct hid_device *hdev)
2548 {
2549 struct dualshock4 *ds4;
2550 struct ps_device *ps_dev;
2551 uint8_t max_output_report_size;
2552 int i, ret;
2553
2554 /* The DualShock4 has an RGB lightbar, which the original hid-sony driver
2555 * exposed as a set of 4 LEDs for the 3 color channels and a global control.
2556 * Ideally this should have used the multi-color LED class, which didn't exist
2557 * yet. In addition the driver used a naming scheme not compliant with the LED
2558 * naming spec by using "<mac_address>:<color>", which contained many colons.
2559 * We use a more compliant by using "<device_name>:<color>" name now. Ideally
2560 * would have been "<device_name>:<color>:indicator", but that would break
2561 * existing applications (e.g. Android). Nothing matches against MAC address.
2562 */
2563 static const struct ps_led_info lightbar_leds_info[] = {
2564 { NULL, "red", 255, dualshock4_led_get_brightness, dualshock4_led_set_brightness },
2565 { NULL, "green", 255, dualshock4_led_get_brightness, dualshock4_led_set_brightness },
2566 { NULL, "blue", 255, dualshock4_led_get_brightness, dualshock4_led_set_brightness },
2567 { NULL, "global", 1, dualshock4_led_get_brightness, dualshock4_led_set_brightness,
2568 dualshock4_led_set_blink },
2569 };
2570
2571 ds4 = devm_kzalloc(&hdev->dev, sizeof(*ds4), GFP_KERNEL);
2572 if (!ds4)
2573 return ERR_PTR(-ENOMEM);
2574
2575 /*
2576 * Patch version to allow userspace to distinguish between
2577 * hid-generic vs hid-playstation axis and button mapping.
2578 */
2579 hdev->version |= HID_PLAYSTATION_VERSION_PATCH;
2580
2581 ps_dev = &ds4->base;
2582 ps_dev->hdev = hdev;
2583 spin_lock_init(&ps_dev->lock);
2584 ps_dev->battery_capacity = 100; /* initial value until parse_report. */
2585 ps_dev->battery_status = POWER_SUPPLY_STATUS_UNKNOWN;
2586 ps_dev->parse_report = dualshock4_parse_report;
2587 ps_dev->remove = dualshock4_remove;
2588 INIT_WORK(&ds4->output_worker, dualshock4_output_worker);
2589 ds4->output_worker_initialized = true;
2590 hid_set_drvdata(hdev, ds4);
2591
2592 max_output_report_size = sizeof(struct dualshock4_output_report_bt);
2593 ds4->output_report_dmabuf = devm_kzalloc(&hdev->dev, max_output_report_size, GFP_KERNEL);
2594 if (!ds4->output_report_dmabuf)
2595 return ERR_PTR(-ENOMEM);
2596
2597 if (hdev->product == USB_DEVICE_ID_SONY_PS4_CONTROLLER_DONGLE) {
2598 ds4->dongle_state = DONGLE_DISCONNECTED;
2599 INIT_WORK(&ds4->dongle_hotplug_worker, dualshock4_dongle_calibration_work);
2600
2601 /* Override parse report for dongle specific hotplug handling. */
2602 ps_dev->parse_report = dualshock4_dongle_parse_report;
2603 }
2604
2605 ret = dualshock4_get_mac_address(ds4);
2606 if (ret) {
2607 hid_err(hdev, "Failed to get MAC address from DualShock4\n");
2608 return ERR_PTR(ret);
2609 }
2610 snprintf(hdev->uniq, sizeof(hdev->uniq), "%pMR", ds4->base.mac_address);
2611
2612 ret = dualshock4_get_firmware_info(ds4);
2613 if (ret) {
2614 hid_warn(hdev, "Failed to get firmware info from DualShock4\n");
2615 hid_warn(hdev, "HW/FW version data in sysfs will be invalid.\n");
2616 }
2617
2618 ret = ps_devices_list_add(ps_dev);
2619 if (ret)
2620 return ERR_PTR(ret);
2621
2622 ret = dualshock4_get_calibration_data(ds4);
2623 if (ret) {
2624 hid_warn(hdev, "Failed to get calibration data from DualShock4\n");
2625 hid_warn(hdev, "Gyroscope and accelerometer will be inaccurate.\n");
2626 }
2627
2628 ds4->gamepad = ps_gamepad_create(hdev, dualshock4_play_effect);
2629 if (IS_ERR(ds4->gamepad)) {
2630 ret = PTR_ERR(ds4->gamepad);
2631 goto err;
2632 }
2633
2634 /* Use gamepad input device name as primary device name for e.g. LEDs */
2635 ps_dev->input_dev_name = dev_name(&ds4->gamepad->dev);
2636
2637 ds4->sensors = ps_sensors_create(hdev, DS4_ACC_RANGE, DS4_ACC_RES_PER_G,
2638 DS4_GYRO_RANGE, DS4_GYRO_RES_PER_DEG_S);
2639 if (IS_ERR(ds4->sensors)) {
2640 ret = PTR_ERR(ds4->sensors);
2641 goto err;
2642 }
2643
2644 ds4->touchpad = ps_touchpad_create(hdev, DS4_TOUCHPAD_WIDTH, DS4_TOUCHPAD_HEIGHT, 2);
2645 if (IS_ERR(ds4->touchpad)) {
2646 ret = PTR_ERR(ds4->touchpad);
2647 goto err;
2648 }
2649
2650 ret = ps_device_register_battery(ps_dev);
2651 if (ret)
2652 goto err;
2653
2654 for (i = 0; i < ARRAY_SIZE(lightbar_leds_info); i++) {
2655 const struct ps_led_info *led_info = &lightbar_leds_info[i];
2656
2657 ret = ps_led_register(ps_dev, &ds4->lightbar_leds[i], led_info);
2658 if (ret < 0)
2659 goto err;
2660 }
2661
2662 dualshock4_set_bt_poll_interval(ds4, DS4_BT_DEFAULT_POLL_INTERVAL_MS);
2663
2664 ret = ps_device_set_player_id(ps_dev);
2665 if (ret) {
2666 hid_err(hdev, "Failed to assign player id for DualShock4: %d\n", ret);
2667 goto err;
2668 }
2669
2670 dualshock4_set_default_lightbar_colors(ds4);
2671
2672 /*
2673 * Reporting hardware and firmware is important as there are frequent updates, which
2674 * can change behavior.
2675 */
2676 hid_info(hdev, "Registered DualShock4 controller hw_version=0x%08x fw_version=0x%08x\n",
2677 ds4->base.hw_version, ds4->base.fw_version);
2678 return &ds4->base;
2679
2680 err:
2681 ps_devices_list_remove(ps_dev);
2682 return ERR_PTR(ret);
2683 }
2684
ps_raw_event(struct hid_device * hdev,struct hid_report * report,u8 * data,int size)2685 static int ps_raw_event(struct hid_device *hdev, struct hid_report *report,
2686 u8 *data, int size)
2687 {
2688 struct ps_device *dev = hid_get_drvdata(hdev);
2689
2690 if (dev && dev->parse_report)
2691 return dev->parse_report(dev, report, data, size);
2692
2693 return 0;
2694 }
2695
ps_probe(struct hid_device * hdev,const struct hid_device_id * id)2696 static int ps_probe(struct hid_device *hdev, const struct hid_device_id *id)
2697 {
2698 struct ps_device *dev;
2699 int ret;
2700
2701 ret = hid_parse(hdev);
2702 if (ret) {
2703 hid_err(hdev, "Parse failed\n");
2704 return ret;
2705 }
2706
2707 ret = hid_hw_start(hdev, HID_CONNECT_HIDRAW);
2708 if (ret) {
2709 hid_err(hdev, "Failed to start HID device\n");
2710 return ret;
2711 }
2712
2713 ret = hid_hw_open(hdev);
2714 if (ret) {
2715 hid_err(hdev, "Failed to open HID device\n");
2716 goto err_stop;
2717 }
2718
2719 if (id->driver_data == PS_TYPE_PS4_DUALSHOCK4) {
2720 dev = dualshock4_create(hdev);
2721 if (IS_ERR(dev)) {
2722 hid_err(hdev, "Failed to create dualshock4.\n");
2723 ret = PTR_ERR(dev);
2724 goto err_close;
2725 }
2726 } else if (id->driver_data == PS_TYPE_PS5_DUALSENSE) {
2727 dev = dualsense_create(hdev);
2728 if (IS_ERR(dev)) {
2729 hid_err(hdev, "Failed to create dualsense.\n");
2730 ret = PTR_ERR(dev);
2731 goto err_close;
2732 }
2733 }
2734
2735 return ret;
2736
2737 err_close:
2738 hid_hw_close(hdev);
2739 err_stop:
2740 hid_hw_stop(hdev);
2741 return ret;
2742 }
2743
ps_remove(struct hid_device * hdev)2744 static void ps_remove(struct hid_device *hdev)
2745 {
2746 struct ps_device *dev = hid_get_drvdata(hdev);
2747
2748 ps_devices_list_remove(dev);
2749 ps_device_release_player_id(dev);
2750
2751 if (dev->remove)
2752 dev->remove(dev);
2753
2754 hid_hw_close(hdev);
2755 hid_hw_stop(hdev);
2756 }
2757
2758 static const struct hid_device_id ps_devices[] = {
2759 /* Sony DualShock 4 controllers for PS4 */
2760 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER),
2761 .driver_data = PS_TYPE_PS4_DUALSHOCK4 },
2762 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER),
2763 .driver_data = PS_TYPE_PS4_DUALSHOCK4 },
2764 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER_2),
2765 .driver_data = PS_TYPE_PS4_DUALSHOCK4 },
2766 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER_2),
2767 .driver_data = PS_TYPE_PS4_DUALSHOCK4 },
2768 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER_DONGLE),
2769 .driver_data = PS_TYPE_PS4_DUALSHOCK4 },
2770
2771 /* Sony DualSense controllers for PS5 */
2772 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS5_CONTROLLER),
2773 .driver_data = PS_TYPE_PS5_DUALSENSE },
2774 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS5_CONTROLLER),
2775 .driver_data = PS_TYPE_PS5_DUALSENSE },
2776 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS5_CONTROLLER_2),
2777 .driver_data = PS_TYPE_PS5_DUALSENSE },
2778 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS5_CONTROLLER_2),
2779 .driver_data = PS_TYPE_PS5_DUALSENSE },
2780 { }
2781 };
2782 MODULE_DEVICE_TABLE(hid, ps_devices);
2783
2784 static struct hid_driver ps_driver = {
2785 .name = "playstation",
2786 .id_table = ps_devices,
2787 .probe = ps_probe,
2788 .remove = ps_remove,
2789 .raw_event = ps_raw_event,
2790 .driver = {
2791 .dev_groups = ps_device_groups,
2792 },
2793 };
2794
ps_init(void)2795 static int __init ps_init(void)
2796 {
2797 return hid_register_driver(&ps_driver);
2798 }
2799
ps_exit(void)2800 static void __exit ps_exit(void)
2801 {
2802 hid_unregister_driver(&ps_driver);
2803 ida_destroy(&ps_player_id_allocator);
2804 }
2805
2806 module_init(ps_init);
2807 module_exit(ps_exit);
2808
2809 MODULE_AUTHOR("Sony Interactive Entertainment");
2810 MODULE_DESCRIPTION("HID Driver for PlayStation peripherals.");
2811 MODULE_LICENSE("GPL");
2812