xref: /linux/drivers/net/phy/mxl-gpy.c (revision 8faabc041a001140564f718dabe37753e88b37fa)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Copyright (C) 2021 Maxlinear Corporation
3  * Copyright (C) 2020 Intel Corporation
4  *
5  * Drivers for Maxlinear Ethernet GPY
6  *
7  */
8 
9 #include <linux/module.h>
10 #include <linux/bitfield.h>
11 #include <linux/hwmon.h>
12 #include <linux/mutex.h>
13 #include <linux/phy.h>
14 #include <linux/polynomial.h>
15 #include <linux/property.h>
16 #include <linux/netdevice.h>
17 
18 /* PHY ID */
19 #define PHY_ID_GPYx15B_MASK	0xFFFFFFFC
20 #define PHY_ID_GPY21xB_MASK	0xFFFFFFF9
21 #define PHY_ID_GPY2xx		0x67C9DC00
22 #define PHY_ID_GPY115B		0x67C9DF00
23 #define PHY_ID_GPY115C		0x67C9DF10
24 #define PHY_ID_GPY211B		0x67C9DE08
25 #define PHY_ID_GPY211C		0x67C9DE10
26 #define PHY_ID_GPY212B		0x67C9DE09
27 #define PHY_ID_GPY212C		0x67C9DE20
28 #define PHY_ID_GPY215B		0x67C9DF04
29 #define PHY_ID_GPY215C		0x67C9DF20
30 #define PHY_ID_GPY241B		0x67C9DE40
31 #define PHY_ID_GPY241BM		0x67C9DE80
32 #define PHY_ID_GPY245B		0x67C9DEC0
33 
34 #define PHY_CTL1		0x13
35 #define PHY_CTL1_MDICD		BIT(3)
36 #define PHY_CTL1_MDIAB		BIT(2)
37 #define PHY_CTL1_AMDIX		BIT(0)
38 #define PHY_MIISTAT		0x18	/* MII state */
39 #define PHY_IMASK		0x19	/* interrupt mask */
40 #define PHY_ISTAT		0x1A	/* interrupt status */
41 #define PHY_LED			0x1B	/* LEDs */
42 #define PHY_FWV			0x1E	/* firmware version */
43 
44 #define PHY_MIISTAT_SPD_MASK	GENMASK(2, 0)
45 #define PHY_MIISTAT_DPX		BIT(3)
46 #define PHY_MIISTAT_LS		BIT(10)
47 
48 #define PHY_MIISTAT_SPD_10	0
49 #define PHY_MIISTAT_SPD_100	1
50 #define PHY_MIISTAT_SPD_1000	2
51 #define PHY_MIISTAT_SPD_2500	4
52 
53 #define PHY_IMASK_WOL		BIT(15)	/* Wake-on-LAN */
54 #define PHY_IMASK_ANC		BIT(10)	/* Auto-Neg complete */
55 #define PHY_IMASK_ADSC		BIT(5)	/* Link auto-downspeed detect */
56 #define PHY_IMASK_DXMC		BIT(2)	/* Duplex mode change */
57 #define PHY_IMASK_LSPC		BIT(1)	/* Link speed change */
58 #define PHY_IMASK_LSTC		BIT(0)	/* Link state change */
59 #define PHY_IMASK_MASK		(PHY_IMASK_LSTC | \
60 				 PHY_IMASK_LSPC | \
61 				 PHY_IMASK_DXMC | \
62 				 PHY_IMASK_ADSC | \
63 				 PHY_IMASK_ANC)
64 
65 #define GPY_MAX_LEDS		4
66 #define PHY_LED_POLARITY(idx)	BIT(12 + (idx))
67 #define PHY_LED_HWCONTROL(idx)	BIT(8 + (idx))
68 #define PHY_LED_ON(idx)		BIT(idx)
69 
70 #define PHY_FWV_REL_MASK	BIT(15)
71 #define PHY_FWV_MAJOR_MASK	GENMASK(11, 8)
72 #define PHY_FWV_MINOR_MASK	GENMASK(7, 0)
73 
74 #define PHY_PMA_MGBT_POLARITY	0x82
75 #define PHY_MDI_MDI_X_MASK	GENMASK(1, 0)
76 #define PHY_MDI_MDI_X_NORMAL	0x3
77 #define PHY_MDI_MDI_X_AB	0x2
78 #define PHY_MDI_MDI_X_CD	0x1
79 #define PHY_MDI_MDI_X_CROSS	0x0
80 
81 /* LED */
82 #define VSPEC1_LED(idx)		(1 + (idx))
83 #define VSPEC1_LED_BLINKS	GENMASK(15, 12)
84 #define VSPEC1_LED_PULSE	GENMASK(11, 8)
85 #define VSPEC1_LED_CON		GENMASK(7, 4)
86 #define VSPEC1_LED_BLINKF	GENMASK(3, 0)
87 
88 #define VSPEC1_LED_LINK10	BIT(0)
89 #define VSPEC1_LED_LINK100	BIT(1)
90 #define VSPEC1_LED_LINK1000	BIT(2)
91 #define VSPEC1_LED_LINK2500	BIT(3)
92 
93 #define VSPEC1_LED_TXACT	BIT(0)
94 #define VSPEC1_LED_RXACT	BIT(1)
95 #define VSPEC1_LED_COL		BIT(2)
96 #define VSPEC1_LED_NO_CON	BIT(3)
97 
98 /* SGMII */
99 #define VSPEC1_SGMII_CTRL	0x08
100 #define VSPEC1_SGMII_CTRL_ANEN	BIT(12)		/* Aneg enable */
101 #define VSPEC1_SGMII_CTRL_ANRS	BIT(9)		/* Restart Aneg */
102 #define VSPEC1_SGMII_ANEN_ANRS	(VSPEC1_SGMII_CTRL_ANEN | \
103 				 VSPEC1_SGMII_CTRL_ANRS)
104 
105 /* Temperature sensor */
106 #define VSPEC1_TEMP_STA	0x0E
107 #define VSPEC1_TEMP_STA_DATA	GENMASK(9, 0)
108 
109 /* Mailbox */
110 #define VSPEC1_MBOX_DATA	0x5
111 #define VSPEC1_MBOX_ADDRLO	0x6
112 #define VSPEC1_MBOX_CMD		0x7
113 #define VSPEC1_MBOX_CMD_ADDRHI	GENMASK(7, 0)
114 #define VSPEC1_MBOX_CMD_RD	(0 << 8)
115 #define VSPEC1_MBOX_CMD_READY	BIT(15)
116 
117 /* WoL */
118 #define VPSPEC2_WOL_CTL		0x0E06
119 #define VPSPEC2_WOL_AD01	0x0E08
120 #define VPSPEC2_WOL_AD23	0x0E09
121 #define VPSPEC2_WOL_AD45	0x0E0A
122 #define WOL_EN			BIT(0)
123 
124 /* Internal registers, access via mbox */
125 #define REG_GPIO0_OUT		0xd3ce00
126 
127 struct gpy_priv {
128 	/* serialize mailbox acesses */
129 	struct mutex mbox_lock;
130 
131 	u8 fw_major;
132 	u8 fw_minor;
133 	u32 wolopts;
134 
135 	/* It takes 3 seconds to fully switch out of loopback mode before
136 	 * it can safely re-enter loopback mode. Record the time when
137 	 * loopback is disabled. Check and wait if necessary before loopback
138 	 * is enabled.
139 	 */
140 	u64 lb_dis_to;
141 };
142 
143 static const struct {
144 	int major;
145 	int minor;
146 } ver_need_sgmii_reaneg[] = {
147 	{7, 0x6D},
148 	{8, 0x6D},
149 	{9, 0x73},
150 };
151 
152 #if IS_ENABLED(CONFIG_HWMON)
153 /* The original translation formulae of the temperature (in degrees of Celsius)
154  * are as follows:
155  *
156  *   T = -2.5761e-11*(N^4) + 9.7332e-8*(N^3) + -1.9165e-4*(N^2) +
157  *       3.0762e-1*(N^1) + -5.2156e1
158  *
159  * where [-52.156, 137.961]C and N = [0, 1023].
160  *
161  * They must be accordingly altered to be suitable for the integer arithmetics.
162  * The technique is called 'factor redistribution', which just makes sure the
163  * multiplications and divisions are made so to have a result of the operations
164  * within the integer numbers limit. In addition we need to translate the
165  * formulae to accept millidegrees of Celsius. Here what it looks like after
166  * the alterations:
167  *
168  *   T = -25761e-12*(N^4) + 97332e-9*(N^3) + -191650e-6*(N^2) +
169  *       307620e-3*(N^1) + -52156
170  *
171  * where T = [-52156, 137961]mC and N = [0, 1023].
172  */
173 static const struct polynomial poly_N_to_temp = {
174 	.terms = {
175 		{4,  -25761, 1000, 1},
176 		{3,   97332, 1000, 1},
177 		{2, -191650, 1000, 1},
178 		{1,  307620, 1000, 1},
179 		{0,  -52156,    1, 1}
180 	}
181 };
182 
gpy_hwmon_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * value)183 static int gpy_hwmon_read(struct device *dev,
184 			  enum hwmon_sensor_types type,
185 			  u32 attr, int channel, long *value)
186 {
187 	struct phy_device *phydev = dev_get_drvdata(dev);
188 	int ret;
189 
190 	ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_TEMP_STA);
191 	if (ret < 0)
192 		return ret;
193 	if (!ret)
194 		return -ENODATA;
195 
196 	*value = polynomial_calc(&poly_N_to_temp,
197 				 FIELD_GET(VSPEC1_TEMP_STA_DATA, ret));
198 
199 	return 0;
200 }
201 
gpy_hwmon_is_visible(const void * data,enum hwmon_sensor_types type,u32 attr,int channel)202 static umode_t gpy_hwmon_is_visible(const void *data,
203 				    enum hwmon_sensor_types type,
204 				    u32 attr, int channel)
205 {
206 	return 0444;
207 }
208 
209 static const struct hwmon_channel_info * const gpy_hwmon_info[] = {
210 	HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT),
211 	NULL
212 };
213 
214 static const struct hwmon_ops gpy_hwmon_hwmon_ops = {
215 	.is_visible	= gpy_hwmon_is_visible,
216 	.read		= gpy_hwmon_read,
217 };
218 
219 static const struct hwmon_chip_info gpy_hwmon_chip_info = {
220 	.ops		= &gpy_hwmon_hwmon_ops,
221 	.info		= gpy_hwmon_info,
222 };
223 
gpy_hwmon_register(struct phy_device * phydev)224 static int gpy_hwmon_register(struct phy_device *phydev)
225 {
226 	struct device *dev = &phydev->mdio.dev;
227 	struct device *hwmon_dev;
228 	char *hwmon_name;
229 
230 	hwmon_name = devm_hwmon_sanitize_name(dev, dev_name(dev));
231 	if (IS_ERR(hwmon_name))
232 		return PTR_ERR(hwmon_name);
233 
234 	hwmon_dev = devm_hwmon_device_register_with_info(dev, hwmon_name,
235 							 phydev,
236 							 &gpy_hwmon_chip_info,
237 							 NULL);
238 
239 	return PTR_ERR_OR_ZERO(hwmon_dev);
240 }
241 #else
gpy_hwmon_register(struct phy_device * phydev)242 static int gpy_hwmon_register(struct phy_device *phydev)
243 {
244 	return 0;
245 }
246 #endif
247 
gpy_ack_interrupt(struct phy_device * phydev)248 static int gpy_ack_interrupt(struct phy_device *phydev)
249 {
250 	int ret;
251 
252 	/* Clear all pending interrupts */
253 	ret = phy_read(phydev, PHY_ISTAT);
254 	return ret < 0 ? ret : 0;
255 }
256 
gpy_mbox_read(struct phy_device * phydev,u32 addr)257 static int gpy_mbox_read(struct phy_device *phydev, u32 addr)
258 {
259 	struct gpy_priv *priv = phydev->priv;
260 	int val, ret;
261 	u16 cmd;
262 
263 	mutex_lock(&priv->mbox_lock);
264 
265 	ret = phy_write_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_MBOX_ADDRLO,
266 			    addr);
267 	if (ret)
268 		goto out;
269 
270 	cmd = VSPEC1_MBOX_CMD_RD;
271 	cmd |= FIELD_PREP(VSPEC1_MBOX_CMD_ADDRHI, addr >> 16);
272 
273 	ret = phy_write_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_MBOX_CMD, cmd);
274 	if (ret)
275 		goto out;
276 
277 	/* The mbox read is used in the interrupt workaround. It was observed
278 	 * that a read might take up to 2.5ms. This is also the time for which
279 	 * the interrupt line is stuck low. To be on the safe side, poll the
280 	 * ready bit for 10ms.
281 	 */
282 	ret = phy_read_mmd_poll_timeout(phydev, MDIO_MMD_VEND1,
283 					VSPEC1_MBOX_CMD, val,
284 					(val & VSPEC1_MBOX_CMD_READY),
285 					500, 10000, false);
286 	if (ret)
287 		goto out;
288 
289 	ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_MBOX_DATA);
290 
291 out:
292 	mutex_unlock(&priv->mbox_lock);
293 	return ret;
294 }
295 
gpy_config_init(struct phy_device * phydev)296 static int gpy_config_init(struct phy_device *phydev)
297 {
298 	/* Nothing to configure. Configuration Requirement Placeholder */
299 	return 0;
300 }
301 
gpy21x_config_init(struct phy_device * phydev)302 static int gpy21x_config_init(struct phy_device *phydev)
303 {
304 	__set_bit(PHY_INTERFACE_MODE_2500BASEX, phydev->possible_interfaces);
305 	__set_bit(PHY_INTERFACE_MODE_SGMII, phydev->possible_interfaces);
306 
307 	return gpy_config_init(phydev);
308 }
309 
gpy_probe(struct phy_device * phydev)310 static int gpy_probe(struct phy_device *phydev)
311 {
312 	struct device *dev = &phydev->mdio.dev;
313 	struct gpy_priv *priv;
314 	int fw_version;
315 	int ret;
316 
317 	if (!phydev->is_c45) {
318 		ret = phy_get_c45_ids(phydev);
319 		if (ret < 0)
320 			return ret;
321 	}
322 
323 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
324 	if (!priv)
325 		return -ENOMEM;
326 	phydev->priv = priv;
327 	mutex_init(&priv->mbox_lock);
328 
329 	if (!device_property_present(dev, "maxlinear,use-broken-interrupts"))
330 		phydev->dev_flags |= PHY_F_NO_IRQ;
331 
332 	fw_version = phy_read(phydev, PHY_FWV);
333 	if (fw_version < 0)
334 		return fw_version;
335 	priv->fw_major = FIELD_GET(PHY_FWV_MAJOR_MASK, fw_version);
336 	priv->fw_minor = FIELD_GET(PHY_FWV_MINOR_MASK, fw_version);
337 
338 	ret = gpy_hwmon_register(phydev);
339 	if (ret)
340 		return ret;
341 
342 	/* Show GPY PHY FW version in dmesg */
343 	phydev_info(phydev, "Firmware Version: %d.%d (0x%04X%s)\n",
344 		    priv->fw_major, priv->fw_minor, fw_version,
345 		    fw_version & PHY_FWV_REL_MASK ? "" : " test version");
346 
347 	return 0;
348 }
349 
gpy_sgmii_need_reaneg(struct phy_device * phydev)350 static bool gpy_sgmii_need_reaneg(struct phy_device *phydev)
351 {
352 	struct gpy_priv *priv = phydev->priv;
353 	size_t i;
354 
355 	for (i = 0; i < ARRAY_SIZE(ver_need_sgmii_reaneg); i++) {
356 		if (priv->fw_major != ver_need_sgmii_reaneg[i].major)
357 			continue;
358 		if (priv->fw_minor < ver_need_sgmii_reaneg[i].minor)
359 			return true;
360 		break;
361 	}
362 
363 	return false;
364 }
365 
gpy_2500basex_chk(struct phy_device * phydev)366 static bool gpy_2500basex_chk(struct phy_device *phydev)
367 {
368 	int ret;
369 
370 	ret = phy_read(phydev, PHY_MIISTAT);
371 	if (ret < 0) {
372 		phydev_err(phydev, "Error: MDIO register access failed: %d\n",
373 			   ret);
374 		return false;
375 	}
376 
377 	if (!(ret & PHY_MIISTAT_LS) ||
378 	    FIELD_GET(PHY_MIISTAT_SPD_MASK, ret) != PHY_MIISTAT_SPD_2500)
379 		return false;
380 
381 	phydev->speed = SPEED_2500;
382 	phydev->interface = PHY_INTERFACE_MODE_2500BASEX;
383 	phy_modify_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_SGMII_CTRL,
384 		       VSPEC1_SGMII_CTRL_ANEN, 0);
385 	return true;
386 }
387 
gpy_sgmii_aneg_en(struct phy_device * phydev)388 static bool gpy_sgmii_aneg_en(struct phy_device *phydev)
389 {
390 	int ret;
391 
392 	ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_SGMII_CTRL);
393 	if (ret < 0) {
394 		phydev_err(phydev, "Error: MMD register access failed: %d\n",
395 			   ret);
396 		return true;
397 	}
398 
399 	return (ret & VSPEC1_SGMII_CTRL_ANEN) ? true : false;
400 }
401 
gpy_config_mdix(struct phy_device * phydev,u8 ctrl)402 static int gpy_config_mdix(struct phy_device *phydev, u8 ctrl)
403 {
404 	int ret;
405 	u16 val;
406 
407 	switch (ctrl) {
408 	case ETH_TP_MDI_AUTO:
409 		val = PHY_CTL1_AMDIX;
410 		break;
411 	case ETH_TP_MDI_X:
412 		val = (PHY_CTL1_MDIAB | PHY_CTL1_MDICD);
413 		break;
414 	case ETH_TP_MDI:
415 		val = 0;
416 		break;
417 	default:
418 		return 0;
419 	}
420 
421 	ret =  phy_modify(phydev, PHY_CTL1, PHY_CTL1_AMDIX | PHY_CTL1_MDIAB |
422 			  PHY_CTL1_MDICD, val);
423 	if (ret < 0)
424 		return ret;
425 
426 	return genphy_c45_restart_aneg(phydev);
427 }
428 
gpy_config_aneg(struct phy_device * phydev)429 static int gpy_config_aneg(struct phy_device *phydev)
430 {
431 	bool changed = false;
432 	u32 adv;
433 	int ret;
434 
435 	if (phydev->autoneg == AUTONEG_DISABLE) {
436 		/* Configure half duplex with genphy_setup_forced,
437 		 * because genphy_c45_pma_setup_forced does not support.
438 		 */
439 		return phydev->duplex != DUPLEX_FULL
440 			? genphy_setup_forced(phydev)
441 			: genphy_c45_pma_setup_forced(phydev);
442 	}
443 
444 	ret = gpy_config_mdix(phydev,  phydev->mdix_ctrl);
445 	if (ret < 0)
446 		return ret;
447 
448 	ret = genphy_c45_an_config_aneg(phydev);
449 	if (ret < 0)
450 		return ret;
451 	if (ret > 0)
452 		changed = true;
453 
454 	adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising);
455 	ret = phy_modify_changed(phydev, MII_CTRL1000,
456 				 ADVERTISE_1000FULL | ADVERTISE_1000HALF,
457 				 adv);
458 	if (ret < 0)
459 		return ret;
460 	if (ret > 0)
461 		changed = true;
462 
463 	ret = genphy_c45_check_and_restart_aneg(phydev, changed);
464 	if (ret < 0)
465 		return ret;
466 
467 	if (phydev->interface == PHY_INTERFACE_MODE_USXGMII ||
468 	    phydev->interface == PHY_INTERFACE_MODE_INTERNAL)
469 		return 0;
470 
471 	/* No need to trigger re-ANEG if link speed is 2.5G or SGMII ANEG is
472 	 * disabled.
473 	 */
474 	if (!gpy_sgmii_need_reaneg(phydev) || gpy_2500basex_chk(phydev) ||
475 	    !gpy_sgmii_aneg_en(phydev))
476 		return 0;
477 
478 	/* There is a design constraint in GPY2xx device where SGMII AN is
479 	 * only triggered when there is change of speed. If, PHY link
480 	 * partner`s speed is still same even after PHY TPI is down and up
481 	 * again, SGMII AN is not triggered and hence no new in-band message
482 	 * from GPY to MAC side SGMII.
483 	 * This could cause an issue during power up, when PHY is up prior to
484 	 * MAC. At this condition, once MAC side SGMII is up, MAC side SGMII
485 	 * wouldn`t receive new in-band message from GPY with correct link
486 	 * status, speed and duplex info.
487 	 *
488 	 * 1) If PHY is already up and TPI link status is still down (such as
489 	 *    hard reboot), TPI link status is polled for 4 seconds before
490 	 *    retriggerring SGMII AN.
491 	 * 2) If PHY is already up and TPI link status is also up (such as soft
492 	 *    reboot), polling of TPI link status is not needed and SGMII AN is
493 	 *    immediately retriggered.
494 	 * 3) Other conditions such as PHY is down, speed change etc, skip
495 	 *    retriggering SGMII AN. Note: in case of speed change, GPY FW will
496 	 *    initiate SGMII AN.
497 	 */
498 
499 	if (phydev->state != PHY_UP)
500 		return 0;
501 
502 	ret = phy_read_poll_timeout(phydev, MII_BMSR, ret, ret & BMSR_LSTATUS,
503 				    20000, 4000000, false);
504 	if (ret == -ETIMEDOUT)
505 		return 0;
506 	else if (ret < 0)
507 		return ret;
508 
509 	/* Trigger SGMII AN. */
510 	return phy_modify_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_SGMII_CTRL,
511 			      VSPEC1_SGMII_CTRL_ANRS, VSPEC1_SGMII_CTRL_ANRS);
512 }
513 
gpy_update_mdix(struct phy_device * phydev)514 static int gpy_update_mdix(struct phy_device *phydev)
515 {
516 	int ret;
517 
518 	ret = phy_read(phydev, PHY_CTL1);
519 	if (ret < 0)
520 		return ret;
521 
522 	if (ret & PHY_CTL1_AMDIX)
523 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
524 	else
525 		if (ret & PHY_CTL1_MDICD || ret & PHY_CTL1_MDIAB)
526 			phydev->mdix_ctrl = ETH_TP_MDI_X;
527 		else
528 			phydev->mdix_ctrl = ETH_TP_MDI;
529 
530 	ret = phy_read_mmd(phydev, MDIO_MMD_PMAPMD, PHY_PMA_MGBT_POLARITY);
531 	if (ret < 0)
532 		return ret;
533 
534 	if ((ret & PHY_MDI_MDI_X_MASK) < PHY_MDI_MDI_X_NORMAL)
535 		phydev->mdix = ETH_TP_MDI_X;
536 	else
537 		phydev->mdix = ETH_TP_MDI;
538 
539 	return 0;
540 }
541 
gpy_update_interface(struct phy_device * phydev)542 static int gpy_update_interface(struct phy_device *phydev)
543 {
544 	int ret;
545 
546 	/* Interface mode is fixed for USXGMII and integrated PHY */
547 	if (phydev->interface == PHY_INTERFACE_MODE_USXGMII ||
548 	    phydev->interface == PHY_INTERFACE_MODE_INTERNAL)
549 		return -EINVAL;
550 
551 	/* Automatically switch SERDES interface between SGMII and 2500-BaseX
552 	 * according to speed. Disable ANEG in 2500-BaseX mode.
553 	 */
554 	switch (phydev->speed) {
555 	case SPEED_2500:
556 		phydev->interface = PHY_INTERFACE_MODE_2500BASEX;
557 		ret = phy_modify_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_SGMII_CTRL,
558 				     VSPEC1_SGMII_CTRL_ANEN, 0);
559 		if (ret < 0) {
560 			phydev_err(phydev,
561 				   "Error: Disable of SGMII ANEG failed: %d\n",
562 				   ret);
563 			return ret;
564 		}
565 		break;
566 	case SPEED_1000:
567 	case SPEED_100:
568 	case SPEED_10:
569 		phydev->interface = PHY_INTERFACE_MODE_SGMII;
570 		if (gpy_sgmii_aneg_en(phydev))
571 			break;
572 		/* Enable and restart SGMII ANEG for 10/100/1000Mbps link speed
573 		 * if ANEG is disabled (in 2500-BaseX mode).
574 		 */
575 		ret = phy_modify_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_SGMII_CTRL,
576 				     VSPEC1_SGMII_ANEN_ANRS,
577 				     VSPEC1_SGMII_ANEN_ANRS);
578 		if (ret < 0) {
579 			phydev_err(phydev,
580 				   "Error: Enable of SGMII ANEG failed: %d\n",
581 				   ret);
582 			return ret;
583 		}
584 		break;
585 	}
586 
587 	if (phydev->speed == SPEED_2500 || phydev->speed == SPEED_1000) {
588 		ret = genphy_read_master_slave(phydev);
589 		if (ret < 0)
590 			return ret;
591 	}
592 
593 	return gpy_update_mdix(phydev);
594 }
595 
gpy_read_status(struct phy_device * phydev)596 static int gpy_read_status(struct phy_device *phydev)
597 {
598 	int ret;
599 
600 	ret = genphy_update_link(phydev);
601 	if (ret)
602 		return ret;
603 
604 	phydev->speed = SPEED_UNKNOWN;
605 	phydev->duplex = DUPLEX_UNKNOWN;
606 	phydev->pause = 0;
607 	phydev->asym_pause = 0;
608 
609 	if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
610 		ret = genphy_c45_read_lpa(phydev);
611 		if (ret < 0)
612 			return ret;
613 
614 		/* Read the link partner's 1G advertisement */
615 		ret = phy_read(phydev, MII_STAT1000);
616 		if (ret < 0)
617 			return ret;
618 		mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, ret);
619 	} else if (phydev->autoneg == AUTONEG_DISABLE) {
620 		linkmode_zero(phydev->lp_advertising);
621 	}
622 
623 	ret = phy_read(phydev, PHY_MIISTAT);
624 	if (ret < 0)
625 		return ret;
626 
627 	phydev->link = (ret & PHY_MIISTAT_LS) ? 1 : 0;
628 	phydev->duplex = (ret & PHY_MIISTAT_DPX) ? DUPLEX_FULL : DUPLEX_HALF;
629 	switch (FIELD_GET(PHY_MIISTAT_SPD_MASK, ret)) {
630 	case PHY_MIISTAT_SPD_10:
631 		phydev->speed = SPEED_10;
632 		break;
633 	case PHY_MIISTAT_SPD_100:
634 		phydev->speed = SPEED_100;
635 		break;
636 	case PHY_MIISTAT_SPD_1000:
637 		phydev->speed = SPEED_1000;
638 		break;
639 	case PHY_MIISTAT_SPD_2500:
640 		phydev->speed = SPEED_2500;
641 		break;
642 	}
643 
644 	if (phydev->link) {
645 		ret = gpy_update_interface(phydev);
646 		if (ret < 0)
647 			return ret;
648 	}
649 
650 	return 0;
651 }
652 
gpy_config_intr(struct phy_device * phydev)653 static int gpy_config_intr(struct phy_device *phydev)
654 {
655 	struct gpy_priv *priv = phydev->priv;
656 	u16 mask = 0;
657 	int ret;
658 
659 	ret = gpy_ack_interrupt(phydev);
660 	if (ret)
661 		return ret;
662 
663 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED)
664 		mask = PHY_IMASK_MASK;
665 
666 	if (priv->wolopts & WAKE_MAGIC)
667 		mask |= PHY_IMASK_WOL;
668 
669 	if (priv->wolopts & WAKE_PHY)
670 		mask |= PHY_IMASK_LSTC;
671 
672 	return phy_write(phydev, PHY_IMASK, mask);
673 }
674 
gpy_handle_interrupt(struct phy_device * phydev)675 static irqreturn_t gpy_handle_interrupt(struct phy_device *phydev)
676 {
677 	int reg;
678 
679 	reg = phy_read(phydev, PHY_ISTAT);
680 	if (reg < 0) {
681 		phy_error(phydev);
682 		return IRQ_NONE;
683 	}
684 
685 	if (!(reg & PHY_IMASK_MASK))
686 		return IRQ_NONE;
687 
688 	/* The PHY might leave the interrupt line asserted even after PHY_ISTAT
689 	 * is read. To avoid interrupt storms, delay the interrupt handling as
690 	 * long as the PHY drives the interrupt line. An internal bus read will
691 	 * stall as long as the interrupt line is asserted, thus just read a
692 	 * random register here.
693 	 * Because we cannot access the internal bus at all while the interrupt
694 	 * is driven by the PHY, there is no way to make the interrupt line
695 	 * unstuck (e.g. by changing the pinmux to GPIO input) during that time
696 	 * frame. Therefore, polling is the best we can do and won't do any more
697 	 * harm.
698 	 * It was observed that this bug happens on link state and link speed
699 	 * changes independent of the firmware version.
700 	 */
701 	if (reg & (PHY_IMASK_LSTC | PHY_IMASK_LSPC)) {
702 		reg = gpy_mbox_read(phydev, REG_GPIO0_OUT);
703 		if (reg < 0) {
704 			phy_error(phydev);
705 			return IRQ_NONE;
706 		}
707 	}
708 
709 	phy_trigger_machine(phydev);
710 
711 	return IRQ_HANDLED;
712 }
713 
gpy_set_wol(struct phy_device * phydev,struct ethtool_wolinfo * wol)714 static int gpy_set_wol(struct phy_device *phydev,
715 		       struct ethtool_wolinfo *wol)
716 {
717 	struct net_device *attach_dev = phydev->attached_dev;
718 	struct gpy_priv *priv = phydev->priv;
719 	int ret;
720 
721 	if (wol->wolopts & WAKE_MAGIC) {
722 		/* MAC address - Byte0:Byte1:Byte2:Byte3:Byte4:Byte5
723 		 * VPSPEC2_WOL_AD45 = Byte0:Byte1
724 		 * VPSPEC2_WOL_AD23 = Byte2:Byte3
725 		 * VPSPEC2_WOL_AD01 = Byte4:Byte5
726 		 */
727 		ret = phy_set_bits_mmd(phydev, MDIO_MMD_VEND2,
728 				       VPSPEC2_WOL_AD45,
729 				       ((attach_dev->dev_addr[0] << 8) |
730 				       attach_dev->dev_addr[1]));
731 		if (ret < 0)
732 			return ret;
733 
734 		ret = phy_set_bits_mmd(phydev, MDIO_MMD_VEND2,
735 				       VPSPEC2_WOL_AD23,
736 				       ((attach_dev->dev_addr[2] << 8) |
737 				       attach_dev->dev_addr[3]));
738 		if (ret < 0)
739 			return ret;
740 
741 		ret = phy_set_bits_mmd(phydev, MDIO_MMD_VEND2,
742 				       VPSPEC2_WOL_AD01,
743 				       ((attach_dev->dev_addr[4] << 8) |
744 				       attach_dev->dev_addr[5]));
745 		if (ret < 0)
746 			return ret;
747 
748 		/* Enable the WOL interrupt */
749 		ret = phy_write(phydev, PHY_IMASK, PHY_IMASK_WOL);
750 		if (ret < 0)
751 			return ret;
752 
753 		/* Enable magic packet matching */
754 		ret = phy_set_bits_mmd(phydev, MDIO_MMD_VEND2,
755 				       VPSPEC2_WOL_CTL,
756 				       WOL_EN);
757 		if (ret < 0)
758 			return ret;
759 
760 		/* Clear the interrupt status register.
761 		 * Only WoL is enabled so clear all.
762 		 */
763 		ret = phy_read(phydev, PHY_ISTAT);
764 		if (ret < 0)
765 			return ret;
766 
767 		priv->wolopts |= WAKE_MAGIC;
768 	} else {
769 		/* Disable magic packet matching */
770 		ret = phy_clear_bits_mmd(phydev, MDIO_MMD_VEND2,
771 					 VPSPEC2_WOL_CTL,
772 					 WOL_EN);
773 		if (ret < 0)
774 			return ret;
775 
776 		/* Disable the WOL interrupt */
777 		ret = phy_clear_bits(phydev, PHY_IMASK, PHY_IMASK_WOL);
778 		if (ret < 0)
779 			return ret;
780 
781 		priv->wolopts &= ~WAKE_MAGIC;
782 	}
783 
784 	if (wol->wolopts & WAKE_PHY) {
785 		/* Enable the link state change interrupt */
786 		ret = phy_set_bits(phydev, PHY_IMASK, PHY_IMASK_LSTC);
787 		if (ret < 0)
788 			return ret;
789 
790 		/* Clear the interrupt status register */
791 		ret = phy_read(phydev, PHY_ISTAT);
792 		if (ret < 0)
793 			return ret;
794 
795 		if (ret & (PHY_IMASK_MASK & ~PHY_IMASK_LSTC))
796 			phy_trigger_machine(phydev);
797 
798 		priv->wolopts |= WAKE_PHY;
799 		return 0;
800 	}
801 
802 	priv->wolopts &= ~WAKE_PHY;
803 	/* Disable the link state change interrupt */
804 	return phy_clear_bits(phydev, PHY_IMASK, PHY_IMASK_LSTC);
805 }
806 
gpy_get_wol(struct phy_device * phydev,struct ethtool_wolinfo * wol)807 static void gpy_get_wol(struct phy_device *phydev,
808 			struct ethtool_wolinfo *wol)
809 {
810 	struct gpy_priv *priv = phydev->priv;
811 
812 	wol->supported = WAKE_MAGIC | WAKE_PHY;
813 	wol->wolopts = priv->wolopts;
814 }
815 
gpy_loopback(struct phy_device * phydev,bool enable)816 static int gpy_loopback(struct phy_device *phydev, bool enable)
817 {
818 	struct gpy_priv *priv = phydev->priv;
819 	u16 set = 0;
820 	int ret;
821 
822 	if (enable) {
823 		u64 now = get_jiffies_64();
824 
825 		/* wait until 3 seconds from last disable */
826 		if (time_before64(now, priv->lb_dis_to))
827 			msleep(jiffies64_to_msecs(priv->lb_dis_to - now));
828 
829 		set = BMCR_LOOPBACK;
830 	}
831 
832 	ret = phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, set);
833 	if (ret <= 0)
834 		return ret;
835 
836 	if (enable) {
837 		/* It takes some time for PHY device to switch into
838 		 * loopback mode.
839 		 */
840 		msleep(100);
841 	} else {
842 		priv->lb_dis_to = get_jiffies_64() + HZ * 3;
843 	}
844 
845 	return 0;
846 }
847 
gpy115_loopback(struct phy_device * phydev,bool enable)848 static int gpy115_loopback(struct phy_device *phydev, bool enable)
849 {
850 	struct gpy_priv *priv = phydev->priv;
851 
852 	if (enable)
853 		return gpy_loopback(phydev, enable);
854 
855 	if (priv->fw_minor > 0x76)
856 		return gpy_loopback(phydev, 0);
857 
858 	return genphy_soft_reset(phydev);
859 }
860 
gpy_led_brightness_set(struct phy_device * phydev,u8 index,enum led_brightness value)861 static int gpy_led_brightness_set(struct phy_device *phydev,
862 				  u8 index, enum led_brightness value)
863 {
864 	int ret;
865 
866 	if (index >= GPY_MAX_LEDS)
867 		return -EINVAL;
868 
869 	/* clear HWCONTROL and set manual LED state */
870 	ret = phy_modify(phydev, PHY_LED,
871 			 ((value == LED_OFF) ? PHY_LED_HWCONTROL(index) : 0) |
872 			 PHY_LED_ON(index),
873 			 (value == LED_OFF) ? 0 : PHY_LED_ON(index));
874 	if (ret)
875 		return ret;
876 
877 	/* ToDo: set PWM brightness */
878 
879 	/* clear HW LED setup */
880 	if (value == LED_OFF)
881 		return phy_write_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_LED(index), 0);
882 	else
883 		return 0;
884 }
885 
886 static const unsigned long supported_triggers = (BIT(TRIGGER_NETDEV_LINK) |
887 						 BIT(TRIGGER_NETDEV_LINK_10) |
888 						 BIT(TRIGGER_NETDEV_LINK_100) |
889 						 BIT(TRIGGER_NETDEV_LINK_1000) |
890 						 BIT(TRIGGER_NETDEV_LINK_2500) |
891 						 BIT(TRIGGER_NETDEV_RX) |
892 						 BIT(TRIGGER_NETDEV_TX));
893 
gpy_led_hw_is_supported(struct phy_device * phydev,u8 index,unsigned long rules)894 static int gpy_led_hw_is_supported(struct phy_device *phydev, u8 index,
895 				   unsigned long rules)
896 {
897 	if (index >= GPY_MAX_LEDS)
898 		return -EINVAL;
899 
900 	/* All combinations of the supported triggers are allowed */
901 	if (rules & ~supported_triggers)
902 		return -EOPNOTSUPP;
903 
904 	return 0;
905 }
906 
gpy_led_hw_control_get(struct phy_device * phydev,u8 index,unsigned long * rules)907 static int gpy_led_hw_control_get(struct phy_device *phydev, u8 index,
908 				  unsigned long *rules)
909 {
910 	int val;
911 
912 	if (index >= GPY_MAX_LEDS)
913 		return -EINVAL;
914 
915 	val = phy_read_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_LED(index));
916 	if (val < 0)
917 		return val;
918 
919 	if (FIELD_GET(VSPEC1_LED_CON, val) & VSPEC1_LED_LINK10)
920 		*rules |= BIT(TRIGGER_NETDEV_LINK_10);
921 
922 	if (FIELD_GET(VSPEC1_LED_CON, val) & VSPEC1_LED_LINK100)
923 		*rules |= BIT(TRIGGER_NETDEV_LINK_100);
924 
925 	if (FIELD_GET(VSPEC1_LED_CON, val) & VSPEC1_LED_LINK1000)
926 		*rules |= BIT(TRIGGER_NETDEV_LINK_1000);
927 
928 	if (FIELD_GET(VSPEC1_LED_CON, val) & VSPEC1_LED_LINK2500)
929 		*rules |= BIT(TRIGGER_NETDEV_LINK_2500);
930 
931 	if (FIELD_GET(VSPEC1_LED_CON, val) == (VSPEC1_LED_LINK10 |
932 					       VSPEC1_LED_LINK100 |
933 					       VSPEC1_LED_LINK1000 |
934 					       VSPEC1_LED_LINK2500))
935 		*rules |= BIT(TRIGGER_NETDEV_LINK);
936 
937 	if (FIELD_GET(VSPEC1_LED_PULSE, val) & VSPEC1_LED_TXACT)
938 		*rules |= BIT(TRIGGER_NETDEV_TX);
939 
940 	if (FIELD_GET(VSPEC1_LED_PULSE, val) & VSPEC1_LED_RXACT)
941 		*rules |= BIT(TRIGGER_NETDEV_RX);
942 
943 	return 0;
944 }
945 
gpy_led_hw_control_set(struct phy_device * phydev,u8 index,unsigned long rules)946 static int gpy_led_hw_control_set(struct phy_device *phydev, u8 index,
947 				  unsigned long rules)
948 {
949 	u16 val = 0;
950 	int ret;
951 
952 	if (index >= GPY_MAX_LEDS)
953 		return -EINVAL;
954 
955 	if (rules & BIT(TRIGGER_NETDEV_LINK) ||
956 	    rules & BIT(TRIGGER_NETDEV_LINK_10))
957 		val |= FIELD_PREP(VSPEC1_LED_CON, VSPEC1_LED_LINK10);
958 
959 	if (rules & BIT(TRIGGER_NETDEV_LINK) ||
960 	    rules & BIT(TRIGGER_NETDEV_LINK_100))
961 		val |= FIELD_PREP(VSPEC1_LED_CON, VSPEC1_LED_LINK100);
962 
963 	if (rules & BIT(TRIGGER_NETDEV_LINK) ||
964 	    rules & BIT(TRIGGER_NETDEV_LINK_1000))
965 		val |= FIELD_PREP(VSPEC1_LED_CON, VSPEC1_LED_LINK1000);
966 
967 	if (rules & BIT(TRIGGER_NETDEV_LINK) ||
968 	    rules & BIT(TRIGGER_NETDEV_LINK_2500))
969 		val |= FIELD_PREP(VSPEC1_LED_CON, VSPEC1_LED_LINK2500);
970 
971 	if (rules & BIT(TRIGGER_NETDEV_TX))
972 		val |= FIELD_PREP(VSPEC1_LED_PULSE, VSPEC1_LED_TXACT);
973 
974 	if (rules & BIT(TRIGGER_NETDEV_RX))
975 		val |= FIELD_PREP(VSPEC1_LED_PULSE, VSPEC1_LED_RXACT);
976 
977 	/* allow RX/TX pulse without link indication */
978 	if ((rules & BIT(TRIGGER_NETDEV_TX) || rules & BIT(TRIGGER_NETDEV_RX)) &&
979 	    !(val & VSPEC1_LED_CON))
980 		val |= FIELD_PREP(VSPEC1_LED_PULSE, VSPEC1_LED_NO_CON) | VSPEC1_LED_CON;
981 
982 	ret = phy_write_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_LED(index), val);
983 	if (ret)
984 		return ret;
985 
986 	return phy_set_bits(phydev, PHY_LED, PHY_LED_HWCONTROL(index));
987 }
988 
gpy_led_polarity_set(struct phy_device * phydev,int index,unsigned long modes)989 static int gpy_led_polarity_set(struct phy_device *phydev, int index,
990 				unsigned long modes)
991 {
992 	bool force_active_low = false, force_active_high = false;
993 	u32 mode;
994 
995 	if (index >= GPY_MAX_LEDS)
996 		return -EINVAL;
997 
998 	for_each_set_bit(mode, &modes, __PHY_LED_MODES_NUM) {
999 		switch (mode) {
1000 		case PHY_LED_ACTIVE_LOW:
1001 			force_active_low = true;
1002 			break;
1003 		case PHY_LED_ACTIVE_HIGH:
1004 			force_active_high = true;
1005 			break;
1006 		default:
1007 			return -EINVAL;
1008 		}
1009 	}
1010 
1011 	if (force_active_low)
1012 		return phy_set_bits(phydev, PHY_LED, PHY_LED_POLARITY(index));
1013 
1014 	if (force_active_high)
1015 		return phy_clear_bits(phydev, PHY_LED, PHY_LED_POLARITY(index));
1016 
1017 	return -EINVAL;
1018 }
1019 
1020 static struct phy_driver gpy_drivers[] = {
1021 	{
1022 		PHY_ID_MATCH_MODEL(PHY_ID_GPY2xx),
1023 		.name		= "Maxlinear Ethernet GPY2xx",
1024 		.get_features	= genphy_c45_pma_read_abilities,
1025 		.config_init	= gpy_config_init,
1026 		.probe		= gpy_probe,
1027 		.suspend	= genphy_suspend,
1028 		.resume		= genphy_resume,
1029 		.config_aneg	= gpy_config_aneg,
1030 		.aneg_done	= genphy_c45_aneg_done,
1031 		.read_status	= gpy_read_status,
1032 		.config_intr	= gpy_config_intr,
1033 		.handle_interrupt = gpy_handle_interrupt,
1034 		.set_wol	= gpy_set_wol,
1035 		.get_wol	= gpy_get_wol,
1036 		.set_loopback	= gpy_loopback,
1037 		.led_brightness_set = gpy_led_brightness_set,
1038 		.led_hw_is_supported = gpy_led_hw_is_supported,
1039 		.led_hw_control_get = gpy_led_hw_control_get,
1040 		.led_hw_control_set = gpy_led_hw_control_set,
1041 		.led_polarity_set = gpy_led_polarity_set,
1042 	},
1043 	{
1044 		.phy_id		= PHY_ID_GPY115B,
1045 		.phy_id_mask	= PHY_ID_GPYx15B_MASK,
1046 		.name		= "Maxlinear Ethernet GPY115B",
1047 		.get_features	= genphy_c45_pma_read_abilities,
1048 		.config_init	= gpy_config_init,
1049 		.probe		= gpy_probe,
1050 		.suspend	= genphy_suspend,
1051 		.resume		= genphy_resume,
1052 		.config_aneg	= gpy_config_aneg,
1053 		.aneg_done	= genphy_c45_aneg_done,
1054 		.read_status	= gpy_read_status,
1055 		.config_intr	= gpy_config_intr,
1056 		.handle_interrupt = gpy_handle_interrupt,
1057 		.set_wol	= gpy_set_wol,
1058 		.get_wol	= gpy_get_wol,
1059 		.set_loopback	= gpy115_loopback,
1060 		.led_brightness_set = gpy_led_brightness_set,
1061 		.led_hw_is_supported = gpy_led_hw_is_supported,
1062 		.led_hw_control_get = gpy_led_hw_control_get,
1063 		.led_hw_control_set = gpy_led_hw_control_set,
1064 		.led_polarity_set = gpy_led_polarity_set,
1065 	},
1066 	{
1067 		PHY_ID_MATCH_MODEL(PHY_ID_GPY115C),
1068 		.name		= "Maxlinear Ethernet GPY115C",
1069 		.get_features	= genphy_c45_pma_read_abilities,
1070 		.config_init	= gpy_config_init,
1071 		.probe		= gpy_probe,
1072 		.suspend	= genphy_suspend,
1073 		.resume		= genphy_resume,
1074 		.config_aneg	= gpy_config_aneg,
1075 		.aneg_done	= genphy_c45_aneg_done,
1076 		.read_status	= gpy_read_status,
1077 		.config_intr	= gpy_config_intr,
1078 		.handle_interrupt = gpy_handle_interrupt,
1079 		.set_wol	= gpy_set_wol,
1080 		.get_wol	= gpy_get_wol,
1081 		.set_loopback	= gpy115_loopback,
1082 		.led_brightness_set = gpy_led_brightness_set,
1083 		.led_hw_is_supported = gpy_led_hw_is_supported,
1084 		.led_hw_control_get = gpy_led_hw_control_get,
1085 		.led_hw_control_set = gpy_led_hw_control_set,
1086 		.led_polarity_set = gpy_led_polarity_set,
1087 	},
1088 	{
1089 		.phy_id		= PHY_ID_GPY211B,
1090 		.phy_id_mask	= PHY_ID_GPY21xB_MASK,
1091 		.name		= "Maxlinear Ethernet GPY211B",
1092 		.get_features	= genphy_c45_pma_read_abilities,
1093 		.config_init	= gpy21x_config_init,
1094 		.probe		= gpy_probe,
1095 		.suspend	= genphy_suspend,
1096 		.resume		= genphy_resume,
1097 		.config_aneg	= gpy_config_aneg,
1098 		.aneg_done	= genphy_c45_aneg_done,
1099 		.read_status	= gpy_read_status,
1100 		.config_intr	= gpy_config_intr,
1101 		.handle_interrupt = gpy_handle_interrupt,
1102 		.set_wol	= gpy_set_wol,
1103 		.get_wol	= gpy_get_wol,
1104 		.set_loopback	= gpy_loopback,
1105 		.led_brightness_set = gpy_led_brightness_set,
1106 		.led_hw_is_supported = gpy_led_hw_is_supported,
1107 		.led_hw_control_get = gpy_led_hw_control_get,
1108 		.led_hw_control_set = gpy_led_hw_control_set,
1109 		.led_polarity_set = gpy_led_polarity_set,
1110 	},
1111 	{
1112 		PHY_ID_MATCH_MODEL(PHY_ID_GPY211C),
1113 		.name		= "Maxlinear Ethernet GPY211C",
1114 		.get_features	= genphy_c45_pma_read_abilities,
1115 		.config_init	= gpy21x_config_init,
1116 		.probe		= gpy_probe,
1117 		.suspend	= genphy_suspend,
1118 		.resume		= genphy_resume,
1119 		.config_aneg	= gpy_config_aneg,
1120 		.aneg_done	= genphy_c45_aneg_done,
1121 		.read_status	= gpy_read_status,
1122 		.config_intr	= gpy_config_intr,
1123 		.handle_interrupt = gpy_handle_interrupt,
1124 		.set_wol	= gpy_set_wol,
1125 		.get_wol	= gpy_get_wol,
1126 		.set_loopback	= gpy_loopback,
1127 		.led_brightness_set = gpy_led_brightness_set,
1128 		.led_hw_is_supported = gpy_led_hw_is_supported,
1129 		.led_hw_control_get = gpy_led_hw_control_get,
1130 		.led_hw_control_set = gpy_led_hw_control_set,
1131 		.led_polarity_set = gpy_led_polarity_set,
1132 	},
1133 	{
1134 		.phy_id		= PHY_ID_GPY212B,
1135 		.phy_id_mask	= PHY_ID_GPY21xB_MASK,
1136 		.name		= "Maxlinear Ethernet GPY212B",
1137 		.get_features	= genphy_c45_pma_read_abilities,
1138 		.config_init	= gpy21x_config_init,
1139 		.probe		= gpy_probe,
1140 		.suspend	= genphy_suspend,
1141 		.resume		= genphy_resume,
1142 		.config_aneg	= gpy_config_aneg,
1143 		.aneg_done	= genphy_c45_aneg_done,
1144 		.read_status	= gpy_read_status,
1145 		.config_intr	= gpy_config_intr,
1146 		.handle_interrupt = gpy_handle_interrupt,
1147 		.set_wol	= gpy_set_wol,
1148 		.get_wol	= gpy_get_wol,
1149 		.set_loopback	= gpy_loopback,
1150 		.led_brightness_set = gpy_led_brightness_set,
1151 		.led_hw_is_supported = gpy_led_hw_is_supported,
1152 		.led_hw_control_get = gpy_led_hw_control_get,
1153 		.led_hw_control_set = gpy_led_hw_control_set,
1154 		.led_polarity_set = gpy_led_polarity_set,
1155 	},
1156 	{
1157 		PHY_ID_MATCH_MODEL(PHY_ID_GPY212C),
1158 		.name		= "Maxlinear Ethernet GPY212C",
1159 		.get_features	= genphy_c45_pma_read_abilities,
1160 		.config_init	= gpy21x_config_init,
1161 		.probe		= gpy_probe,
1162 		.suspend	= genphy_suspend,
1163 		.resume		= genphy_resume,
1164 		.config_aneg	= gpy_config_aneg,
1165 		.aneg_done	= genphy_c45_aneg_done,
1166 		.read_status	= gpy_read_status,
1167 		.config_intr	= gpy_config_intr,
1168 		.handle_interrupt = gpy_handle_interrupt,
1169 		.set_wol	= gpy_set_wol,
1170 		.get_wol	= gpy_get_wol,
1171 		.set_loopback	= gpy_loopback,
1172 		.led_brightness_set = gpy_led_brightness_set,
1173 		.led_hw_is_supported = gpy_led_hw_is_supported,
1174 		.led_hw_control_get = gpy_led_hw_control_get,
1175 		.led_hw_control_set = gpy_led_hw_control_set,
1176 		.led_polarity_set = gpy_led_polarity_set,
1177 	},
1178 	{
1179 		.phy_id		= PHY_ID_GPY215B,
1180 		.phy_id_mask	= PHY_ID_GPYx15B_MASK,
1181 		.name		= "Maxlinear Ethernet GPY215B",
1182 		.get_features	= genphy_c45_pma_read_abilities,
1183 		.config_init	= gpy21x_config_init,
1184 		.probe		= gpy_probe,
1185 		.suspend	= genphy_suspend,
1186 		.resume		= genphy_resume,
1187 		.config_aneg	= gpy_config_aneg,
1188 		.aneg_done	= genphy_c45_aneg_done,
1189 		.read_status	= gpy_read_status,
1190 		.config_intr	= gpy_config_intr,
1191 		.handle_interrupt = gpy_handle_interrupt,
1192 		.set_wol	= gpy_set_wol,
1193 		.get_wol	= gpy_get_wol,
1194 		.set_loopback	= gpy_loopback,
1195 		.led_brightness_set = gpy_led_brightness_set,
1196 		.led_hw_is_supported = gpy_led_hw_is_supported,
1197 		.led_hw_control_get = gpy_led_hw_control_get,
1198 		.led_hw_control_set = gpy_led_hw_control_set,
1199 		.led_polarity_set = gpy_led_polarity_set,
1200 	},
1201 	{
1202 		PHY_ID_MATCH_MODEL(PHY_ID_GPY215C),
1203 		.name		= "Maxlinear Ethernet GPY215C",
1204 		.get_features	= genphy_c45_pma_read_abilities,
1205 		.config_init	= gpy21x_config_init,
1206 		.probe		= gpy_probe,
1207 		.suspend	= genphy_suspend,
1208 		.resume		= genphy_resume,
1209 		.config_aneg	= gpy_config_aneg,
1210 		.aneg_done	= genphy_c45_aneg_done,
1211 		.read_status	= gpy_read_status,
1212 		.config_intr	= gpy_config_intr,
1213 		.handle_interrupt = gpy_handle_interrupt,
1214 		.set_wol	= gpy_set_wol,
1215 		.get_wol	= gpy_get_wol,
1216 		.set_loopback	= gpy_loopback,
1217 		.led_brightness_set = gpy_led_brightness_set,
1218 		.led_hw_is_supported = gpy_led_hw_is_supported,
1219 		.led_hw_control_get = gpy_led_hw_control_get,
1220 		.led_hw_control_set = gpy_led_hw_control_set,
1221 		.led_polarity_set = gpy_led_polarity_set,
1222 	},
1223 	{
1224 		PHY_ID_MATCH_MODEL(PHY_ID_GPY241B),
1225 		.name		= "Maxlinear Ethernet GPY241B",
1226 		.get_features	= genphy_c45_pma_read_abilities,
1227 		.config_init	= gpy_config_init,
1228 		.probe		= gpy_probe,
1229 		.suspend	= genphy_suspend,
1230 		.resume		= genphy_resume,
1231 		.config_aneg	= gpy_config_aneg,
1232 		.aneg_done	= genphy_c45_aneg_done,
1233 		.read_status	= gpy_read_status,
1234 		.config_intr	= gpy_config_intr,
1235 		.handle_interrupt = gpy_handle_interrupt,
1236 		.set_wol	= gpy_set_wol,
1237 		.get_wol	= gpy_get_wol,
1238 		.set_loopback	= gpy_loopback,
1239 	},
1240 	{
1241 		PHY_ID_MATCH_MODEL(PHY_ID_GPY241BM),
1242 		.name		= "Maxlinear Ethernet GPY241BM",
1243 		.get_features	= genphy_c45_pma_read_abilities,
1244 		.config_init	= gpy_config_init,
1245 		.probe		= gpy_probe,
1246 		.suspend	= genphy_suspend,
1247 		.resume		= genphy_resume,
1248 		.config_aneg	= gpy_config_aneg,
1249 		.aneg_done	= genphy_c45_aneg_done,
1250 		.read_status	= gpy_read_status,
1251 		.config_intr	= gpy_config_intr,
1252 		.handle_interrupt = gpy_handle_interrupt,
1253 		.set_wol	= gpy_set_wol,
1254 		.get_wol	= gpy_get_wol,
1255 		.set_loopback	= gpy_loopback,
1256 	},
1257 	{
1258 		PHY_ID_MATCH_MODEL(PHY_ID_GPY245B),
1259 		.name		= "Maxlinear Ethernet GPY245B",
1260 		.get_features	= genphy_c45_pma_read_abilities,
1261 		.config_init	= gpy_config_init,
1262 		.probe		= gpy_probe,
1263 		.suspend	= genphy_suspend,
1264 		.resume		= genphy_resume,
1265 		.config_aneg	= gpy_config_aneg,
1266 		.aneg_done	= genphy_c45_aneg_done,
1267 		.read_status	= gpy_read_status,
1268 		.config_intr	= gpy_config_intr,
1269 		.handle_interrupt = gpy_handle_interrupt,
1270 		.set_wol	= gpy_set_wol,
1271 		.get_wol	= gpy_get_wol,
1272 		.set_loopback	= gpy_loopback,
1273 	},
1274 };
1275 module_phy_driver(gpy_drivers);
1276 
1277 static struct mdio_device_id __maybe_unused gpy_tbl[] = {
1278 	{PHY_ID_MATCH_MODEL(PHY_ID_GPY2xx)},
1279 	{PHY_ID_GPY115B, PHY_ID_GPYx15B_MASK},
1280 	{PHY_ID_MATCH_MODEL(PHY_ID_GPY115C)},
1281 	{PHY_ID_GPY211B, PHY_ID_GPY21xB_MASK},
1282 	{PHY_ID_MATCH_MODEL(PHY_ID_GPY211C)},
1283 	{PHY_ID_GPY212B, PHY_ID_GPY21xB_MASK},
1284 	{PHY_ID_MATCH_MODEL(PHY_ID_GPY212C)},
1285 	{PHY_ID_GPY215B, PHY_ID_GPYx15B_MASK},
1286 	{PHY_ID_MATCH_MODEL(PHY_ID_GPY215C)},
1287 	{PHY_ID_MATCH_MODEL(PHY_ID_GPY241B)},
1288 	{PHY_ID_MATCH_MODEL(PHY_ID_GPY241BM)},
1289 	{PHY_ID_MATCH_MODEL(PHY_ID_GPY245B)},
1290 	{ }
1291 };
1292 MODULE_DEVICE_TABLE(mdio, gpy_tbl);
1293 
1294 MODULE_DESCRIPTION("Maxlinear Ethernet GPY Driver");
1295 MODULE_AUTHOR("Xu Liang");
1296 MODULE_LICENSE("GPL");
1297