xref: /linux/fs/f2fs/f2fs.h (revision a1ff5a7d78a036d6c2178ee5acd6ba4946243800)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/part_stat.h>
27 #include <linux/rw_hint.h>
28 #include <crypto/hash.h>
29 
30 #include <linux/fscrypt.h>
31 #include <linux/fsverity.h>
32 
33 struct pagevec;
34 
35 #ifdef CONFIG_F2FS_CHECK_FS
36 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
37 #else
38 #define f2fs_bug_on(sbi, condition)					\
39 	do {								\
40 		if (WARN_ON(condition))					\
41 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
42 	} while (0)
43 #endif
44 
45 enum {
46 	FAULT_KMALLOC,
47 	FAULT_KVMALLOC,
48 	FAULT_PAGE_ALLOC,
49 	FAULT_PAGE_GET,
50 	FAULT_ALLOC_BIO,	/* it's obsolete due to bio_alloc() will never fail */
51 	FAULT_ALLOC_NID,
52 	FAULT_ORPHAN,
53 	FAULT_BLOCK,
54 	FAULT_DIR_DEPTH,
55 	FAULT_EVICT_INODE,
56 	FAULT_TRUNCATE,
57 	FAULT_READ_IO,
58 	FAULT_CHECKPOINT,
59 	FAULT_DISCARD,
60 	FAULT_WRITE_IO,
61 	FAULT_SLAB_ALLOC,
62 	FAULT_DQUOT_INIT,
63 	FAULT_LOCK_OP,
64 	FAULT_BLKADDR_VALIDITY,
65 	FAULT_BLKADDR_CONSISTENCE,
66 	FAULT_NO_SEGMENT,
67 	FAULT_MAX,
68 };
69 
70 #ifdef CONFIG_F2FS_FAULT_INJECTION
71 #define F2FS_ALL_FAULT_TYPE		(GENMASK(FAULT_MAX - 1, 0))
72 
73 struct f2fs_fault_info {
74 	atomic_t inject_ops;
75 	int inject_rate;
76 	unsigned int inject_type;
77 };
78 
79 extern const char *f2fs_fault_name[FAULT_MAX];
80 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type))
81 
82 /* maximum retry count for injected failure */
83 #define DEFAULT_FAILURE_RETRY_COUNT		8
84 #else
85 #define DEFAULT_FAILURE_RETRY_COUNT		1
86 #endif
87 
88 /*
89  * For mount options
90  */
91 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000001
92 #define F2FS_MOUNT_DISCARD		0x00000002
93 #define F2FS_MOUNT_NOHEAP		0x00000004
94 #define F2FS_MOUNT_XATTR_USER		0x00000008
95 #define F2FS_MOUNT_POSIX_ACL		0x00000010
96 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000020
97 #define F2FS_MOUNT_INLINE_XATTR		0x00000040
98 #define F2FS_MOUNT_INLINE_DATA		0x00000080
99 #define F2FS_MOUNT_INLINE_DENTRY	0x00000100
100 #define F2FS_MOUNT_FLUSH_MERGE		0x00000200
101 #define F2FS_MOUNT_NOBARRIER		0x00000400
102 #define F2FS_MOUNT_FASTBOOT		0x00000800
103 #define F2FS_MOUNT_READ_EXTENT_CACHE	0x00001000
104 #define F2FS_MOUNT_DATA_FLUSH		0x00002000
105 #define F2FS_MOUNT_FAULT_INJECTION	0x00004000
106 #define F2FS_MOUNT_USRQUOTA		0x00008000
107 #define F2FS_MOUNT_GRPQUOTA		0x00010000
108 #define F2FS_MOUNT_PRJQUOTA		0x00020000
109 #define F2FS_MOUNT_QUOTA		0x00040000
110 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00080000
111 #define F2FS_MOUNT_RESERVE_ROOT		0x00100000
112 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x00200000
113 #define F2FS_MOUNT_NORECOVERY		0x00400000
114 #define F2FS_MOUNT_ATGC			0x00800000
115 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x01000000
116 #define	F2FS_MOUNT_GC_MERGE		0x02000000
117 #define F2FS_MOUNT_COMPRESS_CACHE	0x04000000
118 #define F2FS_MOUNT_AGE_EXTENT_CACHE	0x08000000
119 
120 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
121 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
122 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
123 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
124 
125 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
126 		typecheck(unsigned long long, b) &&			\
127 		((long long)((a) - (b)) > 0))
128 
129 typedef u32 block_t;	/*
130 			 * should not change u32, since it is the on-disk block
131 			 * address format, __le32.
132 			 */
133 typedef u32 nid_t;
134 
135 #define COMPRESS_EXT_NUM		16
136 
137 /*
138  * An implementation of an rwsem that is explicitly unfair to readers. This
139  * prevents priority inversion when a low-priority reader acquires the read lock
140  * while sleeping on the write lock but the write lock is needed by
141  * higher-priority clients.
142  */
143 
144 struct f2fs_rwsem {
145         struct rw_semaphore internal_rwsem;
146 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
147         wait_queue_head_t read_waiters;
148 #endif
149 };
150 
151 struct f2fs_mount_info {
152 	unsigned int opt;
153 	block_t root_reserved_blocks;	/* root reserved blocks */
154 	kuid_t s_resuid;		/* reserved blocks for uid */
155 	kgid_t s_resgid;		/* reserved blocks for gid */
156 	int active_logs;		/* # of active logs */
157 	int inline_xattr_size;		/* inline xattr size */
158 #ifdef CONFIG_F2FS_FAULT_INJECTION
159 	struct f2fs_fault_info fault_info;	/* For fault injection */
160 #endif
161 #ifdef CONFIG_QUOTA
162 	/* Names of quota files with journalled quota */
163 	char *s_qf_names[MAXQUOTAS];
164 	int s_jquota_fmt;			/* Format of quota to use */
165 #endif
166 	/* For which write hints are passed down to block layer */
167 	int alloc_mode;			/* segment allocation policy */
168 	int fsync_mode;			/* fsync policy */
169 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
170 	int bggc_mode;			/* bggc mode: off, on or sync */
171 	int memory_mode;		/* memory mode */
172 	int errors;			/* errors parameter */
173 	int discard_unit;		/*
174 					 * discard command's offset/size should
175 					 * be aligned to this unit: block,
176 					 * segment or section
177 					 */
178 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
179 	block_t unusable_cap_perc;	/* percentage for cap */
180 	block_t unusable_cap;		/* Amount of space allowed to be
181 					 * unusable when disabling checkpoint
182 					 */
183 
184 	/* For compression */
185 	unsigned char compress_algorithm;	/* algorithm type */
186 	unsigned char compress_log_size;	/* cluster log size */
187 	unsigned char compress_level;		/* compress level */
188 	bool compress_chksum;			/* compressed data chksum */
189 	unsigned char compress_ext_cnt;		/* extension count */
190 	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
191 	int compress_mode;			/* compression mode */
192 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
193 	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
194 };
195 
196 #define F2FS_FEATURE_ENCRYPT			0x00000001
197 #define F2FS_FEATURE_BLKZONED			0x00000002
198 #define F2FS_FEATURE_ATOMIC_WRITE		0x00000004
199 #define F2FS_FEATURE_EXTRA_ATTR			0x00000008
200 #define F2FS_FEATURE_PRJQUOTA			0x00000010
201 #define F2FS_FEATURE_INODE_CHKSUM		0x00000020
202 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x00000040
203 #define F2FS_FEATURE_QUOTA_INO			0x00000080
204 #define F2FS_FEATURE_INODE_CRTIME		0x00000100
205 #define F2FS_FEATURE_LOST_FOUND			0x00000200
206 #define F2FS_FEATURE_VERITY			0x00000400
207 #define F2FS_FEATURE_SB_CHKSUM			0x00000800
208 #define F2FS_FEATURE_CASEFOLD			0x00001000
209 #define F2FS_FEATURE_COMPRESSION		0x00002000
210 #define F2FS_FEATURE_RO				0x00004000
211 
212 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
213 	((raw_super->feature & cpu_to_le32(mask)) != 0)
214 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
215 
216 /*
217  * Default values for user and/or group using reserved blocks
218  */
219 #define	F2FS_DEF_RESUID		0
220 #define	F2FS_DEF_RESGID		0
221 
222 /*
223  * For checkpoint manager
224  */
225 enum {
226 	NAT_BITMAP,
227 	SIT_BITMAP
228 };
229 
230 #define	CP_UMOUNT	0x00000001
231 #define	CP_FASTBOOT	0x00000002
232 #define	CP_SYNC		0x00000004
233 #define	CP_RECOVERY	0x00000008
234 #define	CP_DISCARD	0x00000010
235 #define CP_TRIMMED	0x00000020
236 #define CP_PAUSE	0x00000040
237 #define CP_RESIZE 	0x00000080
238 
239 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
240 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
241 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
242 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
243 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
244 #define DEF_CP_INTERVAL			60	/* 60 secs */
245 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
246 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
247 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
248 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
249 
250 struct cp_control {
251 	int reason;
252 	__u64 trim_start;
253 	__u64 trim_end;
254 	__u64 trim_minlen;
255 };
256 
257 /*
258  * indicate meta/data type
259  */
260 enum {
261 	META_CP,
262 	META_NAT,
263 	META_SIT,
264 	META_SSA,
265 	META_MAX,
266 	META_POR,
267 	DATA_GENERIC,		/* check range only */
268 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
269 	DATA_GENERIC_ENHANCE_READ,	/*
270 					 * strong check on range and segment
271 					 * bitmap but no warning due to race
272 					 * condition of read on truncated area
273 					 * by extent_cache
274 					 */
275 	DATA_GENERIC_ENHANCE_UPDATE,	/*
276 					 * strong check on range and segment
277 					 * bitmap for update case
278 					 */
279 	META_GENERIC,
280 };
281 
282 /* for the list of ino */
283 enum {
284 	ORPHAN_INO,		/* for orphan ino list */
285 	APPEND_INO,		/* for append ino list */
286 	UPDATE_INO,		/* for update ino list */
287 	TRANS_DIR_INO,		/* for transactions dir ino list */
288 	FLUSH_INO,		/* for multiple device flushing */
289 	MAX_INO_ENTRY,		/* max. list */
290 };
291 
292 struct ino_entry {
293 	struct list_head list;		/* list head */
294 	nid_t ino;			/* inode number */
295 	unsigned int dirty_device;	/* dirty device bitmap */
296 };
297 
298 /* for the list of inodes to be GCed */
299 struct inode_entry {
300 	struct list_head list;	/* list head */
301 	struct inode *inode;	/* vfs inode pointer */
302 };
303 
304 struct fsync_node_entry {
305 	struct list_head list;	/* list head */
306 	struct page *page;	/* warm node page pointer */
307 	unsigned int seq_id;	/* sequence id */
308 };
309 
310 struct ckpt_req {
311 	struct completion wait;		/* completion for checkpoint done */
312 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
313 	int ret;			/* return code of checkpoint */
314 	ktime_t queue_time;		/* request queued time */
315 };
316 
317 struct ckpt_req_control {
318 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
319 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
320 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
321 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
322 	atomic_t total_ckpt;		/* # of total ckpts */
323 	atomic_t queued_ckpt;		/* # of queued ckpts */
324 	struct llist_head issue_list;	/* list for command issue */
325 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
326 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
327 	unsigned int peak_time;		/* peak wait time in msec until now */
328 };
329 
330 /* for the bitmap indicate blocks to be discarded */
331 struct discard_entry {
332 	struct list_head list;	/* list head */
333 	block_t start_blkaddr;	/* start blockaddr of current segment */
334 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
335 };
336 
337 /* minimum discard granularity, unit: block count */
338 #define MIN_DISCARD_GRANULARITY		1
339 /* default discard granularity of inner discard thread, unit: block count */
340 #define DEFAULT_DISCARD_GRANULARITY		16
341 /* default maximum discard granularity of ordered discard, unit: block count */
342 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY	16
343 
344 /* max discard pend list number */
345 #define MAX_PLIST_NUM		512
346 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
347 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
348 
349 enum {
350 	D_PREP,			/* initial */
351 	D_PARTIAL,		/* partially submitted */
352 	D_SUBMIT,		/* all submitted */
353 	D_DONE,			/* finished */
354 };
355 
356 struct discard_info {
357 	block_t lstart;			/* logical start address */
358 	block_t len;			/* length */
359 	block_t start;			/* actual start address in dev */
360 };
361 
362 struct discard_cmd {
363 	struct rb_node rb_node;		/* rb node located in rb-tree */
364 	struct discard_info di;		/* discard info */
365 	struct list_head list;		/* command list */
366 	struct completion wait;		/* compleation */
367 	struct block_device *bdev;	/* bdev */
368 	unsigned short ref;		/* reference count */
369 	unsigned char state;		/* state */
370 	unsigned char queued;		/* queued discard */
371 	int error;			/* bio error */
372 	spinlock_t lock;		/* for state/bio_ref updating */
373 	unsigned short bio_ref;		/* bio reference count */
374 };
375 
376 enum {
377 	DPOLICY_BG,
378 	DPOLICY_FORCE,
379 	DPOLICY_FSTRIM,
380 	DPOLICY_UMOUNT,
381 	MAX_DPOLICY,
382 };
383 
384 enum {
385 	DPOLICY_IO_AWARE_DISABLE,	/* force to not be aware of IO */
386 	DPOLICY_IO_AWARE_ENABLE,	/* force to be aware of IO */
387 	DPOLICY_IO_AWARE_MAX,
388 };
389 
390 struct discard_policy {
391 	int type;			/* type of discard */
392 	unsigned int min_interval;	/* used for candidates exist */
393 	unsigned int mid_interval;	/* used for device busy */
394 	unsigned int max_interval;	/* used for candidates not exist */
395 	unsigned int max_requests;	/* # of discards issued per round */
396 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
397 	bool io_aware;			/* issue discard in idle time */
398 	bool sync;			/* submit discard with REQ_SYNC flag */
399 	bool ordered;			/* issue discard by lba order */
400 	bool timeout;			/* discard timeout for put_super */
401 	unsigned int granularity;	/* discard granularity */
402 };
403 
404 struct discard_cmd_control {
405 	struct task_struct *f2fs_issue_discard;	/* discard thread */
406 	struct list_head entry_list;		/* 4KB discard entry list */
407 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
408 	struct list_head wait_list;		/* store on-flushing entries */
409 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
410 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
411 	struct mutex cmd_lock;
412 	unsigned int nr_discards;		/* # of discards in the list */
413 	unsigned int max_discards;		/* max. discards to be issued */
414 	unsigned int max_discard_request;	/* max. discard request per round */
415 	unsigned int min_discard_issue_time;	/* min. interval between discard issue */
416 	unsigned int mid_discard_issue_time;	/* mid. interval between discard issue */
417 	unsigned int max_discard_issue_time;	/* max. interval between discard issue */
418 	unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */
419 	unsigned int discard_urgent_util;	/* utilization which issue discard proactively */
420 	unsigned int discard_granularity;	/* discard granularity */
421 	unsigned int max_ordered_discard;	/* maximum discard granularity issued by lba order */
422 	unsigned int discard_io_aware;		/* io_aware policy */
423 	unsigned int undiscard_blks;		/* # of undiscard blocks */
424 	unsigned int next_pos;			/* next discard position */
425 	atomic_t issued_discard;		/* # of issued discard */
426 	atomic_t queued_discard;		/* # of queued discard */
427 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
428 	struct rb_root_cached root;		/* root of discard rb-tree */
429 	bool rbtree_check;			/* config for consistence check */
430 	bool discard_wake;			/* to wake up discard thread */
431 };
432 
433 /* for the list of fsync inodes, used only during recovery */
434 struct fsync_inode_entry {
435 	struct list_head list;	/* list head */
436 	struct inode *inode;	/* vfs inode pointer */
437 	block_t blkaddr;	/* block address locating the last fsync */
438 	block_t last_dentry;	/* block address locating the last dentry */
439 };
440 
441 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
442 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
443 
444 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
445 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
446 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
447 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
448 
449 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
450 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
451 
update_nats_in_cursum(struct f2fs_journal * journal,int i)452 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
453 {
454 	int before = nats_in_cursum(journal);
455 
456 	journal->n_nats = cpu_to_le16(before + i);
457 	return before;
458 }
459 
update_sits_in_cursum(struct f2fs_journal * journal,int i)460 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
461 {
462 	int before = sits_in_cursum(journal);
463 
464 	journal->n_sits = cpu_to_le16(before + i);
465 	return before;
466 }
467 
__has_cursum_space(struct f2fs_journal * journal,int size,int type)468 static inline bool __has_cursum_space(struct f2fs_journal *journal,
469 							int size, int type)
470 {
471 	if (type == NAT_JOURNAL)
472 		return size <= MAX_NAT_JENTRIES(journal);
473 	return size <= MAX_SIT_JENTRIES(journal);
474 }
475 
476 /* for inline stuff */
477 #define DEF_INLINE_RESERVED_SIZE	1
478 static inline int get_extra_isize(struct inode *inode);
479 static inline int get_inline_xattr_addrs(struct inode *inode);
480 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
481 				(CUR_ADDRS_PER_INODE(inode) -		\
482 				get_inline_xattr_addrs(inode) -	\
483 				DEF_INLINE_RESERVED_SIZE))
484 
485 /* for inline dir */
486 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
487 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
488 				BITS_PER_BYTE + 1))
489 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
490 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
491 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
492 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
493 				NR_INLINE_DENTRY(inode) + \
494 				INLINE_DENTRY_BITMAP_SIZE(inode)))
495 
496 /*
497  * For INODE and NODE manager
498  */
499 /* for directory operations */
500 
501 struct f2fs_filename {
502 	/*
503 	 * The filename the user specified.  This is NULL for some
504 	 * filesystem-internal operations, e.g. converting an inline directory
505 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
506 	 */
507 	const struct qstr *usr_fname;
508 
509 	/*
510 	 * The on-disk filename.  For encrypted directories, this is encrypted.
511 	 * This may be NULL for lookups in an encrypted dir without the key.
512 	 */
513 	struct fscrypt_str disk_name;
514 
515 	/* The dirhash of this filename */
516 	f2fs_hash_t hash;
517 
518 #ifdef CONFIG_FS_ENCRYPTION
519 	/*
520 	 * For lookups in encrypted directories: either the buffer backing
521 	 * disk_name, or a buffer that holds the decoded no-key name.
522 	 */
523 	struct fscrypt_str crypto_buf;
524 #endif
525 #if IS_ENABLED(CONFIG_UNICODE)
526 	/*
527 	 * For casefolded directories: the casefolded name, but it's left NULL
528 	 * if the original name is not valid Unicode, if the original name is
529 	 * "." or "..", if the directory is both casefolded and encrypted and
530 	 * its encryption key is unavailable, or if the filesystem is doing an
531 	 * internal operation where usr_fname is also NULL.  In all these cases
532 	 * we fall back to treating the name as an opaque byte sequence.
533 	 */
534 	struct qstr cf_name;
535 #endif
536 };
537 
538 struct f2fs_dentry_ptr {
539 	struct inode *inode;
540 	void *bitmap;
541 	struct f2fs_dir_entry *dentry;
542 	__u8 (*filename)[F2FS_SLOT_LEN];
543 	int max;
544 	int nr_bitmap;
545 };
546 
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)547 static inline void make_dentry_ptr_block(struct inode *inode,
548 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
549 {
550 	d->inode = inode;
551 	d->max = NR_DENTRY_IN_BLOCK;
552 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
553 	d->bitmap = t->dentry_bitmap;
554 	d->dentry = t->dentry;
555 	d->filename = t->filename;
556 }
557 
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)558 static inline void make_dentry_ptr_inline(struct inode *inode,
559 					struct f2fs_dentry_ptr *d, void *t)
560 {
561 	int entry_cnt = NR_INLINE_DENTRY(inode);
562 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
563 	int reserved_size = INLINE_RESERVED_SIZE(inode);
564 
565 	d->inode = inode;
566 	d->max = entry_cnt;
567 	d->nr_bitmap = bitmap_size;
568 	d->bitmap = t;
569 	d->dentry = t + bitmap_size + reserved_size;
570 	d->filename = t + bitmap_size + reserved_size +
571 					SIZE_OF_DIR_ENTRY * entry_cnt;
572 }
573 
574 /*
575  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
576  * as its node offset to distinguish from index node blocks.
577  * But some bits are used to mark the node block.
578  */
579 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
580 				>> OFFSET_BIT_SHIFT)
581 enum {
582 	ALLOC_NODE,			/* allocate a new node page if needed */
583 	LOOKUP_NODE,			/* look up a node without readahead */
584 	LOOKUP_NODE_RA,			/*
585 					 * look up a node with readahead called
586 					 * by get_data_block.
587 					 */
588 };
589 
590 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO or flush count */
591 
592 /* congestion wait timeout value, default: 20ms */
593 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
594 
595 /* maximum retry quota flush count */
596 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
597 
598 /* maximum retry of EIO'ed page */
599 #define MAX_RETRY_PAGE_EIO			100
600 
601 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
602 
603 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
604 
605 /* dirty segments threshold for triggering CP */
606 #define DEFAULT_DIRTY_THRESHOLD		4
607 
608 #define RECOVERY_MAX_RA_BLOCKS		BIO_MAX_VECS
609 #define RECOVERY_MIN_RA_BLOCKS		1
610 
611 #define F2FS_ONSTACK_PAGES	16	/* nr of onstack pages */
612 
613 /* for in-memory extent cache entry */
614 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
615 
616 /* number of extent info in extent cache we try to shrink */
617 #define READ_EXTENT_CACHE_SHRINK_NUMBER	128
618 
619 /* number of age extent info in extent cache we try to shrink */
620 #define AGE_EXTENT_CACHE_SHRINK_NUMBER	128
621 #define LAST_AGE_WEIGHT			30
622 #define SAME_AGE_REGION			1024
623 
624 /*
625  * Define data block with age less than 1GB as hot data
626  * define data block with age less than 10GB but more than 1GB as warm data
627  */
628 #define DEF_HOT_DATA_AGE_THRESHOLD	262144
629 #define DEF_WARM_DATA_AGE_THRESHOLD	2621440
630 
631 /* extent cache type */
632 enum extent_type {
633 	EX_READ,
634 	EX_BLOCK_AGE,
635 	NR_EXTENT_CACHES,
636 };
637 
638 struct extent_info {
639 	unsigned int fofs;		/* start offset in a file */
640 	unsigned int len;		/* length of the extent */
641 	union {
642 		/* read extent_cache */
643 		struct {
644 			/* start block address of the extent */
645 			block_t blk;
646 #ifdef CONFIG_F2FS_FS_COMPRESSION
647 			/* physical extent length of compressed blocks */
648 			unsigned int c_len;
649 #endif
650 		};
651 		/* block age extent_cache */
652 		struct {
653 			/* block age of the extent */
654 			unsigned long long age;
655 			/* last total blocks allocated */
656 			unsigned long long last_blocks;
657 		};
658 	};
659 };
660 
661 struct extent_node {
662 	struct rb_node rb_node;		/* rb node located in rb-tree */
663 	struct extent_info ei;		/* extent info */
664 	struct list_head list;		/* node in global extent list of sbi */
665 	struct extent_tree *et;		/* extent tree pointer */
666 };
667 
668 struct extent_tree {
669 	nid_t ino;			/* inode number */
670 	enum extent_type type;		/* keep the extent tree type */
671 	struct rb_root_cached root;	/* root of extent info rb-tree */
672 	struct extent_node *cached_en;	/* recently accessed extent node */
673 	struct list_head list;		/* to be used by sbi->zombie_list */
674 	rwlock_t lock;			/* protect extent info rb-tree */
675 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
676 	bool largest_updated;		/* largest extent updated */
677 	struct extent_info largest;	/* largest cached extent for EX_READ */
678 };
679 
680 struct extent_tree_info {
681 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
682 	struct mutex extent_tree_lock;	/* locking extent radix tree */
683 	struct list_head extent_list;		/* lru list for shrinker */
684 	spinlock_t extent_lock;			/* locking extent lru list */
685 	atomic_t total_ext_tree;		/* extent tree count */
686 	struct list_head zombie_list;		/* extent zombie tree list */
687 	atomic_t total_zombie_tree;		/* extent zombie tree count */
688 	atomic_t total_ext_node;		/* extent info count */
689 };
690 
691 /*
692  * State of block returned by f2fs_map_blocks.
693  */
694 #define F2FS_MAP_NEW		(1U << 0)
695 #define F2FS_MAP_MAPPED		(1U << 1)
696 #define F2FS_MAP_DELALLOC	(1U << 2)
697 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
698 				F2FS_MAP_DELALLOC)
699 
700 struct f2fs_map_blocks {
701 	struct block_device *m_bdev;	/* for multi-device dio */
702 	block_t m_pblk;
703 	block_t m_lblk;
704 	unsigned int m_len;
705 	unsigned int m_flags;
706 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
707 	pgoff_t *m_next_extent;		/* point to next possible extent */
708 	int m_seg_type;
709 	bool m_may_create;		/* indicate it is from write path */
710 	bool m_multidev_dio;		/* indicate it allows multi-device dio */
711 };
712 
713 /* for flag in get_data_block */
714 enum {
715 	F2FS_GET_BLOCK_DEFAULT,
716 	F2FS_GET_BLOCK_FIEMAP,
717 	F2FS_GET_BLOCK_BMAP,
718 	F2FS_GET_BLOCK_DIO,
719 	F2FS_GET_BLOCK_PRE_DIO,
720 	F2FS_GET_BLOCK_PRE_AIO,
721 	F2FS_GET_BLOCK_PRECACHE,
722 };
723 
724 /*
725  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
726  */
727 #define FADVISE_COLD_BIT	0x01
728 #define FADVISE_LOST_PINO_BIT	0x02
729 #define FADVISE_ENCRYPT_BIT	0x04
730 #define FADVISE_ENC_NAME_BIT	0x08
731 #define FADVISE_KEEP_SIZE_BIT	0x10
732 #define FADVISE_HOT_BIT		0x20
733 #define FADVISE_VERITY_BIT	0x40
734 #define FADVISE_TRUNC_BIT	0x80
735 
736 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
737 
738 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
739 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
740 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
741 
742 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
743 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
744 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
745 
746 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
747 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
748 
749 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
750 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
751 
752 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
753 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
754 
755 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
756 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
757 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
758 
759 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
760 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
761 
762 #define file_should_truncate(inode)	is_file(inode, FADVISE_TRUNC_BIT)
763 #define file_need_truncate(inode)	set_file(inode, FADVISE_TRUNC_BIT)
764 #define file_dont_truncate(inode)	clear_file(inode, FADVISE_TRUNC_BIT)
765 
766 #define DEF_DIR_LEVEL		0
767 
768 /* used for f2fs_inode_info->flags */
769 enum {
770 	FI_NEW_INODE,		/* indicate newly allocated inode */
771 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
772 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
773 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
774 	FI_INC_LINK,		/* need to increment i_nlink */
775 	FI_ACL_MODE,		/* indicate acl mode */
776 	FI_NO_ALLOC,		/* should not allocate any blocks */
777 	FI_FREE_NID,		/* free allocated nide */
778 	FI_NO_EXTENT,		/* not to use the extent cache */
779 	FI_INLINE_XATTR,	/* used for inline xattr */
780 	FI_INLINE_DATA,		/* used for inline data*/
781 	FI_INLINE_DENTRY,	/* used for inline dentry */
782 	FI_APPEND_WRITE,	/* inode has appended data */
783 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
784 	FI_NEED_IPU,		/* used for ipu per file */
785 	FI_ATOMIC_FILE,		/* indicate atomic file */
786 	FI_DATA_EXIST,		/* indicate data exists */
787 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
788 	FI_SKIP_WRITES,		/* should skip data page writeback */
789 	FI_OPU_WRITE,		/* used for opu per file */
790 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
791 	FI_PREALLOCATED_ALL,	/* all blocks for write were preallocated */
792 	FI_HOT_DATA,		/* indicate file is hot */
793 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
794 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
795 	FI_PIN_FILE,		/* indicate file should not be gced */
796 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
797 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
798 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
799 	FI_MMAP_FILE,		/* indicate file was mmapped */
800 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
801 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
802 	FI_ALIGNED_WRITE,	/* enable aligned write */
803 	FI_COW_FILE,		/* indicate COW file */
804 	FI_ATOMIC_COMMITTED,	/* indicate atomic commit completed except disk sync */
805 	FI_ATOMIC_REPLACE,	/* indicate atomic replace */
806 	FI_OPENED_FILE,		/* indicate file has been opened */
807 	FI_MAX,			/* max flag, never be used */
808 };
809 
810 struct f2fs_inode_info {
811 	struct inode vfs_inode;		/* serve a vfs inode */
812 	unsigned long i_flags;		/* keep an inode flags for ioctl */
813 	unsigned char i_advise;		/* use to give file attribute hints */
814 	unsigned char i_dir_level;	/* use for dentry level for large dir */
815 	union {
816 		unsigned int i_current_depth;	/* only for directory depth */
817 		unsigned short i_gc_failures;	/* for gc failure statistic */
818 	};
819 	unsigned int i_pino;		/* parent inode number */
820 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
821 
822 	/* Use below internally in f2fs*/
823 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
824 	struct f2fs_rwsem i_sem;	/* protect fi info */
825 	atomic_t dirty_pages;		/* # of dirty pages */
826 	f2fs_hash_t chash;		/* hash value of given file name */
827 	unsigned int clevel;		/* maximum level of given file name */
828 	struct task_struct *task;	/* lookup and create consistency */
829 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
830 	struct task_struct *wb_task;	/* indicate inode is in context of writeback */
831 	nid_t i_xattr_nid;		/* node id that contains xattrs */
832 	loff_t	last_disk_size;		/* lastly written file size */
833 	spinlock_t i_size_lock;		/* protect last_disk_size */
834 
835 #ifdef CONFIG_QUOTA
836 	struct dquot __rcu *i_dquot[MAXQUOTAS];
837 
838 	/* quota space reservation, managed internally by quota code */
839 	qsize_t i_reserved_quota;
840 #endif
841 	struct list_head dirty_list;	/* dirty list for dirs and files */
842 	struct list_head gdirty_list;	/* linked in global dirty list */
843 	struct task_struct *atomic_write_task;	/* store atomic write task */
844 	struct extent_tree *extent_tree[NR_EXTENT_CACHES];
845 					/* cached extent_tree entry */
846 	union {
847 		struct inode *cow_inode;	/* copy-on-write inode for atomic write */
848 		struct inode *atomic_inode;
849 					/* point to atomic_inode, available only for cow_inode */
850 	};
851 
852 	/* avoid racing between foreground op and gc */
853 	struct f2fs_rwsem i_gc_rwsem[2];
854 	struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
855 
856 	int i_extra_isize;		/* size of extra space located in i_addr */
857 	kprojid_t i_projid;		/* id for project quota */
858 	int i_inline_xattr_size;	/* inline xattr size */
859 	struct timespec64 i_crtime;	/* inode creation time */
860 	struct timespec64 i_disk_time[3];/* inode disk times */
861 
862 	/* for file compress */
863 	atomic_t i_compr_blocks;		/* # of compressed blocks */
864 	unsigned char i_compress_algorithm;	/* algorithm type */
865 	unsigned char i_log_cluster_size;	/* log of cluster size */
866 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
867 	unsigned char i_compress_flag;		/* compress flag */
868 	unsigned int i_cluster_size;		/* cluster size */
869 
870 	unsigned int atomic_write_cnt;
871 	loff_t original_i_size;		/* original i_size before atomic write */
872 };
873 
get_read_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)874 static inline void get_read_extent_info(struct extent_info *ext,
875 					struct f2fs_extent *i_ext)
876 {
877 	ext->fofs = le32_to_cpu(i_ext->fofs);
878 	ext->blk = le32_to_cpu(i_ext->blk);
879 	ext->len = le32_to_cpu(i_ext->len);
880 }
881 
set_raw_read_extent(struct extent_info * ext,struct f2fs_extent * i_ext)882 static inline void set_raw_read_extent(struct extent_info *ext,
883 					struct f2fs_extent *i_ext)
884 {
885 	i_ext->fofs = cpu_to_le32(ext->fofs);
886 	i_ext->blk = cpu_to_le32(ext->blk);
887 	i_ext->len = cpu_to_le32(ext->len);
888 }
889 
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)890 static inline bool __is_discard_mergeable(struct discard_info *back,
891 			struct discard_info *front, unsigned int max_len)
892 {
893 	return (back->lstart + back->len == front->lstart) &&
894 		(back->len + front->len <= max_len);
895 }
896 
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)897 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
898 			struct discard_info *back, unsigned int max_len)
899 {
900 	return __is_discard_mergeable(back, cur, max_len);
901 }
902 
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)903 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
904 			struct discard_info *front, unsigned int max_len)
905 {
906 	return __is_discard_mergeable(cur, front, max_len);
907 }
908 
909 /*
910  * For free nid management
911  */
912 enum nid_state {
913 	FREE_NID,		/* newly added to free nid list */
914 	PREALLOC_NID,		/* it is preallocated */
915 	MAX_NID_STATE,
916 };
917 
918 enum nat_state {
919 	TOTAL_NAT,
920 	DIRTY_NAT,
921 	RECLAIMABLE_NAT,
922 	MAX_NAT_STATE,
923 };
924 
925 struct f2fs_nm_info {
926 	block_t nat_blkaddr;		/* base disk address of NAT */
927 	nid_t max_nid;			/* maximum possible node ids */
928 	nid_t available_nids;		/* # of available node ids */
929 	nid_t next_scan_nid;		/* the next nid to be scanned */
930 	nid_t max_rf_node_blocks;	/* max # of nodes for recovery */
931 	unsigned int ram_thresh;	/* control the memory footprint */
932 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
933 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
934 
935 	/* NAT cache management */
936 	struct radix_tree_root nat_root;/* root of the nat entry cache */
937 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
938 	struct f2fs_rwsem nat_tree_lock;	/* protect nat entry tree */
939 	struct list_head nat_entries;	/* cached nat entry list (clean) */
940 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
941 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
942 	unsigned int nat_blocks;	/* # of nat blocks */
943 
944 	/* free node ids management */
945 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
946 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
947 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
948 	spinlock_t nid_list_lock;	/* protect nid lists ops */
949 	struct mutex build_lock;	/* lock for build free nids */
950 	unsigned char **free_nid_bitmap;
951 	unsigned char *nat_block_bitmap;
952 	unsigned short *free_nid_count;	/* free nid count of NAT block */
953 
954 	/* for checkpoint */
955 	char *nat_bitmap;		/* NAT bitmap pointer */
956 
957 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
958 	unsigned char *nat_bits;	/* NAT bits blocks */
959 	unsigned char *full_nat_bits;	/* full NAT pages */
960 	unsigned char *empty_nat_bits;	/* empty NAT pages */
961 #ifdef CONFIG_F2FS_CHECK_FS
962 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
963 #endif
964 	int bitmap_size;		/* bitmap size */
965 };
966 
967 /*
968  * this structure is used as one of function parameters.
969  * all the information are dedicated to a given direct node block determined
970  * by the data offset in a file.
971  */
972 struct dnode_of_data {
973 	struct inode *inode;		/* vfs inode pointer */
974 	struct page *inode_page;	/* its inode page, NULL is possible */
975 	struct page *node_page;		/* cached direct node page */
976 	nid_t nid;			/* node id of the direct node block */
977 	unsigned int ofs_in_node;	/* data offset in the node page */
978 	bool inode_page_locked;		/* inode page is locked or not */
979 	bool node_changed;		/* is node block changed */
980 	char cur_level;			/* level of hole node page */
981 	char max_level;			/* level of current page located */
982 	block_t	data_blkaddr;		/* block address of the node block */
983 };
984 
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)985 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
986 		struct page *ipage, struct page *npage, nid_t nid)
987 {
988 	memset(dn, 0, sizeof(*dn));
989 	dn->inode = inode;
990 	dn->inode_page = ipage;
991 	dn->node_page = npage;
992 	dn->nid = nid;
993 }
994 
995 /*
996  * For SIT manager
997  *
998  * By default, there are 6 active log areas across the whole main area.
999  * When considering hot and cold data separation to reduce cleaning overhead,
1000  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
1001  * respectively.
1002  * In the current design, you should not change the numbers intentionally.
1003  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
1004  * logs individually according to the underlying devices. (default: 6)
1005  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
1006  * data and 8 for node logs.
1007  */
1008 #define	NR_CURSEG_DATA_TYPE	(3)
1009 #define NR_CURSEG_NODE_TYPE	(3)
1010 #define NR_CURSEG_INMEM_TYPE	(2)
1011 #define NR_CURSEG_RO_TYPE	(2)
1012 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1013 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1014 
1015 enum {
1016 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
1017 	CURSEG_WARM_DATA,	/* data blocks */
1018 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
1019 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
1020 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
1021 	CURSEG_COLD_NODE,	/* indirect node blocks */
1022 	NR_PERSISTENT_LOG,	/* number of persistent log */
1023 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1024 				/* pinned file that needs consecutive block address */
1025 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
1026 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
1027 };
1028 
1029 struct flush_cmd {
1030 	struct completion wait;
1031 	struct llist_node llnode;
1032 	nid_t ino;
1033 	int ret;
1034 };
1035 
1036 struct flush_cmd_control {
1037 	struct task_struct *f2fs_issue_flush;	/* flush thread */
1038 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1039 	atomic_t issued_flush;			/* # of issued flushes */
1040 	atomic_t queued_flush;			/* # of queued flushes */
1041 	struct llist_head issue_list;		/* list for command issue */
1042 	struct llist_node *dispatch_list;	/* list for command dispatch */
1043 };
1044 
1045 struct f2fs_sm_info {
1046 	struct sit_info *sit_info;		/* whole segment information */
1047 	struct free_segmap_info *free_info;	/* free segment information */
1048 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1049 	struct curseg_info *curseg_array;	/* active segment information */
1050 
1051 	struct f2fs_rwsem curseg_lock;	/* for preventing curseg change */
1052 
1053 	block_t seg0_blkaddr;		/* block address of 0'th segment */
1054 	block_t main_blkaddr;		/* start block address of main area */
1055 	block_t ssa_blkaddr;		/* start block address of SSA area */
1056 
1057 	unsigned int segment_count;	/* total # of segments */
1058 	unsigned int main_segments;	/* # of segments in main area */
1059 	unsigned int reserved_segments;	/* # of reserved segments */
1060 	unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1061 	unsigned int ovp_segments;	/* # of overprovision segments */
1062 
1063 	/* a threshold to reclaim prefree segments */
1064 	unsigned int rec_prefree_segments;
1065 
1066 	struct list_head sit_entry_set;	/* sit entry set list */
1067 
1068 	unsigned int ipu_policy;	/* in-place-update policy */
1069 	unsigned int min_ipu_util;	/* in-place-update threshold */
1070 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1071 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1072 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1073 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1074 
1075 	/* for flush command control */
1076 	struct flush_cmd_control *fcc_info;
1077 
1078 	/* for discard command control */
1079 	struct discard_cmd_control *dcc_info;
1080 };
1081 
1082 /*
1083  * For superblock
1084  */
1085 /*
1086  * COUNT_TYPE for monitoring
1087  *
1088  * f2fs monitors the number of several block types such as on-writeback,
1089  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1090  */
1091 #define WB_DATA_TYPE(p, f)			\
1092 	(f || f2fs_is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1093 enum count_type {
1094 	F2FS_DIRTY_DENTS,
1095 	F2FS_DIRTY_DATA,
1096 	F2FS_DIRTY_QDATA,
1097 	F2FS_DIRTY_NODES,
1098 	F2FS_DIRTY_META,
1099 	F2FS_DIRTY_IMETA,
1100 	F2FS_WB_CP_DATA,
1101 	F2FS_WB_DATA,
1102 	F2FS_RD_DATA,
1103 	F2FS_RD_NODE,
1104 	F2FS_RD_META,
1105 	F2FS_DIO_WRITE,
1106 	F2FS_DIO_READ,
1107 	NR_COUNT_TYPE,
1108 };
1109 
1110 /*
1111  * The below are the page types of bios used in submit_bio().
1112  * The available types are:
1113  * DATA			User data pages. It operates as async mode.
1114  * NODE			Node pages. It operates as async mode.
1115  * META			FS metadata pages such as SIT, NAT, CP.
1116  * NR_PAGE_TYPE		The number of page types.
1117  * META_FLUSH		Make sure the previous pages are written
1118  *			with waiting the bio's completion
1119  * ...			Only can be used with META.
1120  */
1121 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1122 #define PAGE_TYPE_ON_MAIN(type)	((type) == DATA || (type) == NODE)
1123 enum page_type {
1124 	DATA = 0,
1125 	NODE = 1,	/* should not change this */
1126 	META,
1127 	NR_PAGE_TYPE,
1128 	META_FLUSH,
1129 	IPU,		/* the below types are used by tracepoints only. */
1130 	OPU,
1131 };
1132 
1133 enum temp_type {
1134 	HOT = 0,	/* must be zero for meta bio */
1135 	WARM,
1136 	COLD,
1137 	NR_TEMP_TYPE,
1138 };
1139 
1140 enum need_lock_type {
1141 	LOCK_REQ = 0,
1142 	LOCK_DONE,
1143 	LOCK_RETRY,
1144 };
1145 
1146 enum cp_reason_type {
1147 	CP_NO_NEEDED,
1148 	CP_NON_REGULAR,
1149 	CP_COMPRESSED,
1150 	CP_HARDLINK,
1151 	CP_SB_NEED_CP,
1152 	CP_WRONG_PINO,
1153 	CP_NO_SPC_ROLL,
1154 	CP_NODE_NEED_CP,
1155 	CP_FASTBOOT_MODE,
1156 	CP_SPEC_LOG_NUM,
1157 	CP_RECOVER_DIR,
1158 };
1159 
1160 enum iostat_type {
1161 	/* WRITE IO */
1162 	APP_DIRECT_IO,			/* app direct write IOs */
1163 	APP_BUFFERED_IO,		/* app buffered write IOs */
1164 	APP_WRITE_IO,			/* app write IOs */
1165 	APP_MAPPED_IO,			/* app mapped IOs */
1166 	APP_BUFFERED_CDATA_IO,		/* app buffered write IOs on compressed file */
1167 	APP_MAPPED_CDATA_IO,		/* app mapped write IOs on compressed file */
1168 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1169 	FS_CDATA_IO,			/* data IOs from kworker/fsync/reclaimer on compressed file */
1170 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1171 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1172 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1173 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1174 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1175 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1176 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1177 
1178 	/* READ IO */
1179 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1180 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1181 	APP_READ_IO,			/* app read IOs */
1182 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1183 	APP_BUFFERED_CDATA_READ_IO,	/* app buffered read IOs on compressed file  */
1184 	APP_MAPPED_CDATA_READ_IO,	/* app mapped read IOs on compressed file  */
1185 	FS_DATA_READ_IO,		/* data read IOs */
1186 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1187 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1188 	FS_NODE_READ_IO,		/* node read IOs */
1189 	FS_META_READ_IO,		/* meta read IOs */
1190 
1191 	/* other */
1192 	FS_DISCARD_IO,			/* discard */
1193 	FS_FLUSH_IO,			/* flush */
1194 	FS_ZONE_RESET_IO,		/* zone reset */
1195 	NR_IO_TYPE,
1196 };
1197 
1198 struct f2fs_io_info {
1199 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1200 	nid_t ino;		/* inode number */
1201 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1202 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1203 	enum req_op op;		/* contains REQ_OP_ */
1204 	blk_opf_t op_flags;	/* req_flag_bits */
1205 	block_t new_blkaddr;	/* new block address to be written */
1206 	block_t old_blkaddr;	/* old block address before Cow */
1207 	struct page *page;	/* page to be written */
1208 	struct page *encrypted_page;	/* encrypted page */
1209 	struct page *compressed_page;	/* compressed page */
1210 	struct list_head list;		/* serialize IOs */
1211 	unsigned int compr_blocks;	/* # of compressed block addresses */
1212 	unsigned int need_lock:8;	/* indicate we need to lock cp_rwsem */
1213 	unsigned int version:8;		/* version of the node */
1214 	unsigned int submitted:1;	/* indicate IO submission */
1215 	unsigned int in_list:1;		/* indicate fio is in io_list */
1216 	unsigned int is_por:1;		/* indicate IO is from recovery or not */
1217 	unsigned int encrypted:1;	/* indicate file is encrypted */
1218 	unsigned int meta_gc:1;		/* require meta inode GC */
1219 	enum iostat_type io_type;	/* io type */
1220 	struct writeback_control *io_wbc; /* writeback control */
1221 	struct bio **bio;		/* bio for ipu */
1222 	sector_t *last_block;		/* last block number in bio */
1223 };
1224 
1225 struct bio_entry {
1226 	struct bio *bio;
1227 	struct list_head list;
1228 };
1229 
1230 #define is_read_io(rw) ((rw) == READ)
1231 struct f2fs_bio_info {
1232 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1233 	struct bio *bio;		/* bios to merge */
1234 	sector_t last_block_in_bio;	/* last block number */
1235 	struct f2fs_io_info fio;	/* store buffered io info. */
1236 #ifdef CONFIG_BLK_DEV_ZONED
1237 	struct completion zone_wait;	/* condition value for the previous open zone to close */
1238 	struct bio *zone_pending_bio;	/* pending bio for the previous zone */
1239 	void *bi_private;		/* previous bi_private for pending bio */
1240 #endif
1241 	struct f2fs_rwsem io_rwsem;	/* blocking op for bio */
1242 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1243 	struct list_head io_list;	/* track fios */
1244 	struct list_head bio_list;	/* bio entry list head */
1245 	struct f2fs_rwsem bio_list_lock;	/* lock to protect bio entry list */
1246 };
1247 
1248 #define FDEV(i)				(sbi->devs[i])
1249 #define RDEV(i)				(raw_super->devs[i])
1250 struct f2fs_dev_info {
1251 	struct file *bdev_file;
1252 	struct block_device *bdev;
1253 	char path[MAX_PATH_LEN];
1254 	unsigned int total_segments;
1255 	block_t start_blk;
1256 	block_t end_blk;
1257 #ifdef CONFIG_BLK_DEV_ZONED
1258 	unsigned int nr_blkz;		/* Total number of zones */
1259 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1260 #endif
1261 };
1262 
1263 enum inode_type {
1264 	DIR_INODE,			/* for dirty dir inode */
1265 	FILE_INODE,			/* for dirty regular/symlink inode */
1266 	DIRTY_META,			/* for all dirtied inode metadata */
1267 	NR_INODE_TYPE,
1268 };
1269 
1270 /* for inner inode cache management */
1271 struct inode_management {
1272 	struct radix_tree_root ino_root;	/* ino entry array */
1273 	spinlock_t ino_lock;			/* for ino entry lock */
1274 	struct list_head ino_list;		/* inode list head */
1275 	unsigned long ino_num;			/* number of entries */
1276 };
1277 
1278 /* for GC_AT */
1279 struct atgc_management {
1280 	bool atgc_enabled;			/* ATGC is enabled or not */
1281 	struct rb_root_cached root;		/* root of victim rb-tree */
1282 	struct list_head victim_list;		/* linked with all victim entries */
1283 	unsigned int victim_count;		/* victim count in rb-tree */
1284 	unsigned int candidate_ratio;		/* candidate ratio */
1285 	unsigned int max_candidate_count;	/* max candidate count */
1286 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1287 	unsigned long long age_threshold;	/* age threshold */
1288 };
1289 
1290 struct f2fs_gc_control {
1291 	unsigned int victim_segno;	/* target victim segment number */
1292 	int init_gc_type;		/* FG_GC or BG_GC */
1293 	bool no_bg_gc;			/* check the space and stop bg_gc */
1294 	bool should_migrate_blocks;	/* should migrate blocks */
1295 	bool err_gc_skipped;		/* return EAGAIN if GC skipped */
1296 	unsigned int nr_free_secs;	/* # of free sections to do GC */
1297 };
1298 
1299 /*
1300  * For s_flag in struct f2fs_sb_info
1301  * Modification on enum should be synchronized with s_flag array
1302  */
1303 enum {
1304 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1305 	SBI_IS_CLOSE,				/* specify unmounting */
1306 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1307 	SBI_POR_DOING,				/* recovery is doing or not */
1308 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1309 	SBI_NEED_CP,				/* need to checkpoint */
1310 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1311 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1312 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1313 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1314 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1315 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1316 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1317 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1318 	SBI_IS_FREEZING,			/* freezefs is in process */
1319 	SBI_IS_WRITABLE,			/* remove ro mountoption transiently */
1320 	MAX_SBI_FLAG,
1321 };
1322 
1323 enum {
1324 	CP_TIME,
1325 	REQ_TIME,
1326 	DISCARD_TIME,
1327 	GC_TIME,
1328 	DISABLE_TIME,
1329 	UMOUNT_DISCARD_TIMEOUT,
1330 	MAX_TIME,
1331 };
1332 
1333 /* Note that you need to keep synchronization with this gc_mode_names array */
1334 enum {
1335 	GC_NORMAL,
1336 	GC_IDLE_CB,
1337 	GC_IDLE_GREEDY,
1338 	GC_IDLE_AT,
1339 	GC_URGENT_HIGH,
1340 	GC_URGENT_LOW,
1341 	GC_URGENT_MID,
1342 	MAX_GC_MODE,
1343 };
1344 
1345 enum {
1346 	BGGC_MODE_ON,		/* background gc is on */
1347 	BGGC_MODE_OFF,		/* background gc is off */
1348 	BGGC_MODE_SYNC,		/*
1349 				 * background gc is on, migrating blocks
1350 				 * like foreground gc
1351 				 */
1352 };
1353 
1354 enum {
1355 	FS_MODE_ADAPTIVE,		/* use both lfs/ssr allocation */
1356 	FS_MODE_LFS,			/* use lfs allocation only */
1357 	FS_MODE_FRAGMENT_SEG,		/* segment fragmentation mode */
1358 	FS_MODE_FRAGMENT_BLK,		/* block fragmentation mode */
1359 };
1360 
1361 enum {
1362 	ALLOC_MODE_DEFAULT,	/* stay default */
1363 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1364 };
1365 
1366 enum fsync_mode {
1367 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1368 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1369 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1370 };
1371 
1372 enum {
1373 	COMPR_MODE_FS,		/*
1374 				 * automatically compress compression
1375 				 * enabled files
1376 				 */
1377 	COMPR_MODE_USER,	/*
1378 				 * automatical compression is disabled.
1379 				 * user can control the file compression
1380 				 * using ioctls
1381 				 */
1382 };
1383 
1384 enum {
1385 	DISCARD_UNIT_BLOCK,	/* basic discard unit is block */
1386 	DISCARD_UNIT_SEGMENT,	/* basic discard unit is segment */
1387 	DISCARD_UNIT_SECTION,	/* basic discard unit is section */
1388 };
1389 
1390 enum {
1391 	MEMORY_MODE_NORMAL,	/* memory mode for normal devices */
1392 	MEMORY_MODE_LOW,	/* memory mode for low memry devices */
1393 };
1394 
1395 enum errors_option {
1396 	MOUNT_ERRORS_READONLY,	/* remount fs ro on errors */
1397 	MOUNT_ERRORS_CONTINUE,	/* continue on errors */
1398 	MOUNT_ERRORS_PANIC,	/* panic on errors */
1399 };
1400 
1401 enum {
1402 	BACKGROUND,
1403 	FOREGROUND,
1404 	MAX_CALL_TYPE,
1405 	TOTAL_CALL = FOREGROUND,
1406 };
1407 
1408 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1409 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1410 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1411 
1412 /*
1413  * Layout of f2fs page.private:
1414  *
1415  * Layout A: lowest bit should be 1
1416  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1417  * bit 0	PAGE_PRIVATE_NOT_POINTER
1418  * bit 1	PAGE_PRIVATE_ONGOING_MIGRATION
1419  * bit 2	PAGE_PRIVATE_INLINE_INODE
1420  * bit 3	PAGE_PRIVATE_REF_RESOURCE
1421  * bit 4-	f2fs private data
1422  *
1423  * Layout B: lowest bit should be 0
1424  * page.private is a wrapped pointer.
1425  */
1426 enum {
1427 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1428 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1429 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1430 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1431 	PAGE_PRIVATE_MAX
1432 };
1433 
1434 /* For compression */
1435 enum compress_algorithm_type {
1436 	COMPRESS_LZO,
1437 	COMPRESS_LZ4,
1438 	COMPRESS_ZSTD,
1439 	COMPRESS_LZORLE,
1440 	COMPRESS_MAX,
1441 };
1442 
1443 enum compress_flag {
1444 	COMPRESS_CHKSUM,
1445 	COMPRESS_MAX_FLAG,
1446 };
1447 
1448 #define	COMPRESS_WATERMARK			20
1449 #define	COMPRESS_PERCENT			20
1450 
1451 #define COMPRESS_DATA_RESERVED_SIZE		4
1452 struct compress_data {
1453 	__le32 clen;			/* compressed data size */
1454 	__le32 chksum;			/* compressed data chksum */
1455 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1456 	u8 cdata[];			/* compressed data */
1457 };
1458 
1459 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1460 
1461 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1462 
1463 #define F2FS_ZSTD_DEFAULT_CLEVEL	1
1464 
1465 #define	COMPRESS_LEVEL_OFFSET	8
1466 
1467 /* compress context */
1468 struct compress_ctx {
1469 	struct inode *inode;		/* inode the context belong to */
1470 	pgoff_t cluster_idx;		/* cluster index number */
1471 	unsigned int cluster_size;	/* page count in cluster */
1472 	unsigned int log_cluster_size;	/* log of cluster size */
1473 	struct page **rpages;		/* pages store raw data in cluster */
1474 	unsigned int nr_rpages;		/* total page number in rpages */
1475 	struct page **cpages;		/* pages store compressed data in cluster */
1476 	unsigned int nr_cpages;		/* total page number in cpages */
1477 	unsigned int valid_nr_cpages;	/* valid page number in cpages */
1478 	void *rbuf;			/* virtual mapped address on rpages */
1479 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1480 	size_t rlen;			/* valid data length in rbuf */
1481 	size_t clen;			/* valid data length in cbuf */
1482 	void *private;			/* payload buffer for specified compression algorithm */
1483 	void *private2;			/* extra payload buffer */
1484 };
1485 
1486 /* compress context for write IO path */
1487 struct compress_io_ctx {
1488 	u32 magic;			/* magic number to indicate page is compressed */
1489 	struct inode *inode;		/* inode the context belong to */
1490 	struct page **rpages;		/* pages store raw data in cluster */
1491 	unsigned int nr_rpages;		/* total page number in rpages */
1492 	atomic_t pending_pages;		/* in-flight compressed page count */
1493 };
1494 
1495 /* Context for decompressing one cluster on the read IO path */
1496 struct decompress_io_ctx {
1497 	u32 magic;			/* magic number to indicate page is compressed */
1498 	struct inode *inode;		/* inode the context belong to */
1499 	pgoff_t cluster_idx;		/* cluster index number */
1500 	unsigned int cluster_size;	/* page count in cluster */
1501 	unsigned int log_cluster_size;	/* log of cluster size */
1502 	struct page **rpages;		/* pages store raw data in cluster */
1503 	unsigned int nr_rpages;		/* total page number in rpages */
1504 	struct page **cpages;		/* pages store compressed data in cluster */
1505 	unsigned int nr_cpages;		/* total page number in cpages */
1506 	struct page **tpages;		/* temp pages to pad holes in cluster */
1507 	void *rbuf;			/* virtual mapped address on rpages */
1508 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1509 	size_t rlen;			/* valid data length in rbuf */
1510 	size_t clen;			/* valid data length in cbuf */
1511 
1512 	/*
1513 	 * The number of compressed pages remaining to be read in this cluster.
1514 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1515 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1516 	 * is decompressed (or an error is reported).
1517 	 *
1518 	 * If an error occurs before all the pages have been submitted for I/O,
1519 	 * then this will never reach 0.  In this case the I/O submitter is
1520 	 * responsible for calling f2fs_decompress_end_io() instead.
1521 	 */
1522 	atomic_t remaining_pages;
1523 
1524 	/*
1525 	 * Number of references to this decompress_io_ctx.
1526 	 *
1527 	 * One reference is held for I/O completion.  This reference is dropped
1528 	 * after the pagecache pages are updated and unlocked -- either after
1529 	 * decompression (and verity if enabled), or after an error.
1530 	 *
1531 	 * In addition, each compressed page holds a reference while it is in a
1532 	 * bio.  These references are necessary prevent compressed pages from
1533 	 * being freed while they are still in a bio.
1534 	 */
1535 	refcount_t refcnt;
1536 
1537 	bool failed;			/* IO error occurred before decompression? */
1538 	bool need_verity;		/* need fs-verity verification after decompression? */
1539 	void *private;			/* payload buffer for specified decompression algorithm */
1540 	void *private2;			/* extra payload buffer */
1541 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1542 	struct work_struct free_work;	/* work for late free this structure itself */
1543 };
1544 
1545 #define NULL_CLUSTER			((unsigned int)(~0))
1546 #define MIN_COMPRESS_LOG_SIZE		2
1547 #define MAX_COMPRESS_LOG_SIZE		8
1548 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1549 
1550 struct f2fs_sb_info {
1551 	struct super_block *sb;			/* pointer to VFS super block */
1552 	struct proc_dir_entry *s_proc;		/* proc entry */
1553 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1554 	struct f2fs_rwsem sb_lock;		/* lock for raw super block */
1555 	int valid_super_block;			/* valid super block no */
1556 	unsigned long s_flag;				/* flags for sbi */
1557 	struct mutex writepages;		/* mutex for writepages() */
1558 
1559 #ifdef CONFIG_BLK_DEV_ZONED
1560 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1561 	unsigned int max_open_zones;		/* max open zone resources of the zoned device */
1562 #endif
1563 
1564 	/* for node-related operations */
1565 	struct f2fs_nm_info *nm_info;		/* node manager */
1566 	struct inode *node_inode;		/* cache node blocks */
1567 
1568 	/* for segment-related operations */
1569 	struct f2fs_sm_info *sm_info;		/* segment manager */
1570 
1571 	/* for bio operations */
1572 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1573 	/* keep migration IO order for LFS mode */
1574 	struct f2fs_rwsem io_order_lock;
1575 	pgoff_t page_eio_ofs[NR_PAGE_TYPE];	/* EIO page offset */
1576 	int page_eio_cnt[NR_PAGE_TYPE];		/* EIO count */
1577 
1578 	/* for checkpoint */
1579 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1580 	int cur_cp_pack;			/* remain current cp pack */
1581 	spinlock_t cp_lock;			/* for flag in ckpt */
1582 	struct inode *meta_inode;		/* cache meta blocks */
1583 	struct f2fs_rwsem cp_global_sem;	/* checkpoint procedure lock */
1584 	struct f2fs_rwsem cp_rwsem;		/* blocking FS operations */
1585 	struct f2fs_rwsem node_write;		/* locking node writes */
1586 	struct f2fs_rwsem node_change;	/* locking node change */
1587 	wait_queue_head_t cp_wait;
1588 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1589 	long interval_time[MAX_TIME];		/* to store thresholds */
1590 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1591 
1592 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1593 
1594 	spinlock_t fsync_node_lock;		/* for node entry lock */
1595 	struct list_head fsync_node_list;	/* node list head */
1596 	unsigned int fsync_seg_id;		/* sequence id */
1597 	unsigned int fsync_node_num;		/* number of node entries */
1598 
1599 	/* for orphan inode, use 0'th array */
1600 	unsigned int max_orphans;		/* max orphan inodes */
1601 
1602 	/* for inode management */
1603 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1604 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1605 	struct mutex flush_lock;		/* for flush exclusion */
1606 
1607 	/* for extent tree cache */
1608 	struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
1609 	atomic64_t allocated_data_blocks;	/* for block age extent_cache */
1610 
1611 	/* The threshold used for hot and warm data seperation*/
1612 	unsigned int hot_data_age_threshold;
1613 	unsigned int warm_data_age_threshold;
1614 	unsigned int last_age_weight;
1615 
1616 	/* basic filesystem units */
1617 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1618 	unsigned int log_blocksize;		/* log2 block size */
1619 	unsigned int blocksize;			/* block size */
1620 	unsigned int root_ino_num;		/* root inode number*/
1621 	unsigned int node_ino_num;		/* node inode number*/
1622 	unsigned int meta_ino_num;		/* meta inode number*/
1623 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1624 	unsigned int blocks_per_seg;		/* blocks per segment */
1625 	unsigned int unusable_blocks_per_sec;	/* unusable blocks per section */
1626 	unsigned int segs_per_sec;		/* segments per section */
1627 	unsigned int secs_per_zone;		/* sections per zone */
1628 	unsigned int total_sections;		/* total section count */
1629 	unsigned int total_node_count;		/* total node block count */
1630 	unsigned int total_valid_node_count;	/* valid node block count */
1631 	int dir_level;				/* directory level */
1632 	bool readdir_ra;			/* readahead inode in readdir */
1633 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1634 
1635 	block_t user_block_count;		/* # of user blocks */
1636 	block_t total_valid_block_count;	/* # of valid blocks */
1637 	block_t discard_blks;			/* discard command candidats */
1638 	block_t last_valid_block_count;		/* for recovery */
1639 	block_t reserved_blocks;		/* configurable reserved blocks */
1640 	block_t current_reserved_blocks;	/* current reserved blocks */
1641 
1642 	/* Additional tracking for no checkpoint mode */
1643 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1644 
1645 	unsigned int nquota_files;		/* # of quota sysfile */
1646 	struct f2fs_rwsem quota_sem;		/* blocking cp for flags */
1647 
1648 	/* # of pages, see count_type */
1649 	atomic_t nr_pages[NR_COUNT_TYPE];
1650 	/* # of allocated blocks */
1651 	struct percpu_counter alloc_valid_block_count;
1652 	/* # of node block writes as roll forward recovery */
1653 	struct percpu_counter rf_node_block_count;
1654 
1655 	/* writeback control */
1656 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1657 
1658 	/* valid inode count */
1659 	struct percpu_counter total_valid_inode_count;
1660 
1661 	struct f2fs_mount_info mount_opt;	/* mount options */
1662 
1663 	/* for cleaning operations */
1664 	struct f2fs_rwsem gc_lock;		/*
1665 						 * semaphore for GC, avoid
1666 						 * race between GC and GC or CP
1667 						 */
1668 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1669 	struct atgc_management am;		/* atgc management */
1670 	unsigned int cur_victim_sec;		/* current victim section num */
1671 	unsigned int gc_mode;			/* current GC state */
1672 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1673 	spinlock_t gc_remaining_trials_lock;
1674 	/* remaining trial count for GC_URGENT_* and GC_IDLE_* */
1675 	unsigned int gc_remaining_trials;
1676 
1677 	/* for skip statistic */
1678 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1679 
1680 	/* threshold for gc trials on pinned files */
1681 	unsigned short gc_pin_file_threshold;
1682 	struct f2fs_rwsem pin_sem;
1683 
1684 	/* maximum # of trials to find a victim segment for SSR and GC */
1685 	unsigned int max_victim_search;
1686 	/* migration granularity of garbage collection, unit: segment */
1687 	unsigned int migration_granularity;
1688 
1689 	/*
1690 	 * for stat information.
1691 	 * one is for the LFS mode, and the other is for the SSR mode.
1692 	 */
1693 #ifdef CONFIG_F2FS_STAT_FS
1694 	struct f2fs_stat_info *stat_info;	/* FS status information */
1695 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1696 	unsigned int segment_count[2];		/* # of allocated segments */
1697 	unsigned int block_count[2];		/* # of allocated blocks */
1698 	atomic_t inplace_count;		/* # of inplace update */
1699 	/* # of lookup extent cache */
1700 	atomic64_t total_hit_ext[NR_EXTENT_CACHES];
1701 	/* # of hit rbtree extent node */
1702 	atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
1703 	/* # of hit cached extent node */
1704 	atomic64_t read_hit_cached[NR_EXTENT_CACHES];
1705 	/* # of hit largest extent node in read extent cache */
1706 	atomic64_t read_hit_largest;
1707 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1708 	atomic_t inline_inode;			/* # of inline_data inodes */
1709 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1710 	atomic_t compr_inode;			/* # of compressed inodes */
1711 	atomic64_t compr_blocks;		/* # of compressed blocks */
1712 	atomic_t swapfile_inode;		/* # of swapfile inodes */
1713 	atomic_t atomic_files;			/* # of opened atomic file */
1714 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1715 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1716 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1717 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1718 	atomic_t cp_call_count[MAX_CALL_TYPE];	/* # of cp call */
1719 #endif
1720 	spinlock_t stat_lock;			/* lock for stat operations */
1721 
1722 	/* to attach REQ_META|REQ_FUA flags */
1723 	unsigned int data_io_flag;
1724 	unsigned int node_io_flag;
1725 
1726 	/* For sysfs support */
1727 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1728 	struct completion s_kobj_unregister;
1729 
1730 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1731 	struct completion s_stat_kobj_unregister;
1732 
1733 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1734 	struct completion s_feature_list_kobj_unregister;
1735 
1736 	/* For shrinker support */
1737 	struct list_head s_list;
1738 	struct mutex umount_mutex;
1739 	unsigned int shrinker_run_no;
1740 
1741 	/* For multi devices */
1742 	int s_ndevs;				/* number of devices */
1743 	struct f2fs_dev_info *devs;		/* for device list */
1744 	unsigned int dirty_device;		/* for checkpoint data flush */
1745 	spinlock_t dev_lock;			/* protect dirty_device */
1746 	bool aligned_blksize;			/* all devices has the same logical blksize */
1747 
1748 	/* For write statistics */
1749 	u64 sectors_written_start;
1750 	u64 kbytes_written;
1751 
1752 	/* Reference to checksum algorithm driver via cryptoapi */
1753 	struct crypto_shash *s_chksum_driver;
1754 
1755 	/* Precomputed FS UUID checksum for seeding other checksums */
1756 	__u32 s_chksum_seed;
1757 
1758 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1759 
1760 	/*
1761 	 * If we are in irq context, let's update error information into
1762 	 * on-disk superblock in the work.
1763 	 */
1764 	struct work_struct s_error_work;
1765 	unsigned char errors[MAX_F2FS_ERRORS];		/* error flags */
1766 	unsigned char stop_reason[MAX_STOP_REASON];	/* stop reason */
1767 	spinlock_t error_lock;			/* protect errors/stop_reason array */
1768 	bool error_dirty;			/* errors of sb is dirty */
1769 
1770 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1771 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1772 
1773 	/* For reclaimed segs statistics per each GC mode */
1774 	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1775 	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1776 
1777 	unsigned long seq_file_ra_mul;		/* multiplier for ra_pages of seq. files in fadvise */
1778 
1779 	int max_fragment_chunk;			/* max chunk size for block fragmentation mode */
1780 	int max_fragment_hole;			/* max hole size for block fragmentation mode */
1781 
1782 	/* For atomic write statistics */
1783 	atomic64_t current_atomic_write;
1784 	s64 peak_atomic_write;
1785 	u64 committed_atomic_block;
1786 	u64 revoked_atomic_block;
1787 
1788 #ifdef CONFIG_F2FS_FS_COMPRESSION
1789 	struct kmem_cache *page_array_slab;	/* page array entry */
1790 	unsigned int page_array_slab_size;	/* default page array slab size */
1791 
1792 	/* For runtime compression statistics */
1793 	u64 compr_written_block;
1794 	u64 compr_saved_block;
1795 	u32 compr_new_inode;
1796 
1797 	/* For compressed block cache */
1798 	struct inode *compress_inode;		/* cache compressed blocks */
1799 	unsigned int compress_percent;		/* cache page percentage */
1800 	unsigned int compress_watermark;	/* cache page watermark */
1801 	atomic_t compress_page_hit;		/* cache hit count */
1802 #endif
1803 
1804 #ifdef CONFIG_F2FS_IOSTAT
1805 	/* For app/fs IO statistics */
1806 	spinlock_t iostat_lock;
1807 	unsigned long long iostat_count[NR_IO_TYPE];
1808 	unsigned long long iostat_bytes[NR_IO_TYPE];
1809 	unsigned long long prev_iostat_bytes[NR_IO_TYPE];
1810 	bool iostat_enable;
1811 	unsigned long iostat_next_period;
1812 	unsigned int iostat_period_ms;
1813 
1814 	/* For io latency related statistics info in one iostat period */
1815 	spinlock_t iostat_lat_lock;
1816 	struct iostat_lat_info *iostat_io_lat;
1817 #endif
1818 };
1819 
1820 /* Definitions to access f2fs_sb_info */
1821 #define SEGS_TO_BLKS(sbi, segs)					\
1822 		((segs) << (sbi)->log_blocks_per_seg)
1823 #define BLKS_TO_SEGS(sbi, blks)					\
1824 		((blks) >> (sbi)->log_blocks_per_seg)
1825 
1826 #define BLKS_PER_SEG(sbi)	((sbi)->blocks_per_seg)
1827 #define BLKS_PER_SEC(sbi)	(SEGS_TO_BLKS(sbi, (sbi)->segs_per_sec))
1828 #define SEGS_PER_SEC(sbi)	((sbi)->segs_per_sec)
1829 
1830 __printf(3, 4)
1831 void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, const char *fmt, ...);
1832 
1833 #define f2fs_err(sbi, fmt, ...)						\
1834 	f2fs_printk(sbi, false, KERN_ERR fmt, ##__VA_ARGS__)
1835 #define f2fs_warn(sbi, fmt, ...)					\
1836 	f2fs_printk(sbi, false, KERN_WARNING fmt, ##__VA_ARGS__)
1837 #define f2fs_notice(sbi, fmt, ...)					\
1838 	f2fs_printk(sbi, false, KERN_NOTICE fmt, ##__VA_ARGS__)
1839 #define f2fs_info(sbi, fmt, ...)					\
1840 	f2fs_printk(sbi, false, KERN_INFO fmt, ##__VA_ARGS__)
1841 #define f2fs_debug(sbi, fmt, ...)					\
1842 	f2fs_printk(sbi, false, KERN_DEBUG fmt, ##__VA_ARGS__)
1843 
1844 #define f2fs_err_ratelimited(sbi, fmt, ...)				\
1845 	f2fs_printk(sbi, true, KERN_ERR fmt, ##__VA_ARGS__)
1846 #define f2fs_warn_ratelimited(sbi, fmt, ...)				\
1847 	f2fs_printk(sbi, true, KERN_WARNING fmt, ##__VA_ARGS__)
1848 #define f2fs_info_ratelimited(sbi, fmt, ...)				\
1849 	f2fs_printk(sbi, true, KERN_INFO fmt, ##__VA_ARGS__)
1850 
1851 #ifdef CONFIG_F2FS_FAULT_INJECTION
1852 #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__,	\
1853 									__builtin_return_address(0))
__time_to_inject(struct f2fs_sb_info * sbi,int type,const char * func,const char * parent_func)1854 static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type,
1855 				const char *func, const char *parent_func)
1856 {
1857 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1858 
1859 	if (!ffi->inject_rate)
1860 		return false;
1861 
1862 	if (!IS_FAULT_SET(ffi, type))
1863 		return false;
1864 
1865 	atomic_inc(&ffi->inject_ops);
1866 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1867 		atomic_set(&ffi->inject_ops, 0);
1868 		f2fs_info_ratelimited(sbi, "inject %s in %s of %pS",
1869 				f2fs_fault_name[type], func, parent_func);
1870 		return true;
1871 	}
1872 	return false;
1873 }
1874 #else
time_to_inject(struct f2fs_sb_info * sbi,int type)1875 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1876 {
1877 	return false;
1878 }
1879 #endif
1880 
1881 /*
1882  * Test if the mounted volume is a multi-device volume.
1883  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1884  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1885  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1886  */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1887 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1888 {
1889 	return sbi->s_ndevs > 1;
1890 }
1891 
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1892 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1893 {
1894 	unsigned long now = jiffies;
1895 
1896 	sbi->last_time[type] = now;
1897 
1898 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1899 	if (type == REQ_TIME) {
1900 		sbi->last_time[DISCARD_TIME] = now;
1901 		sbi->last_time[GC_TIME] = now;
1902 	}
1903 }
1904 
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1905 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1906 {
1907 	unsigned long interval = sbi->interval_time[type] * HZ;
1908 
1909 	return time_after(jiffies, sbi->last_time[type] + interval);
1910 }
1911 
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1912 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1913 						int type)
1914 {
1915 	unsigned long interval = sbi->interval_time[type] * HZ;
1916 	unsigned int wait_ms = 0;
1917 	long delta;
1918 
1919 	delta = (sbi->last_time[type] + interval) - jiffies;
1920 	if (delta > 0)
1921 		wait_ms = jiffies_to_msecs(delta);
1922 
1923 	return wait_ms;
1924 }
1925 
1926 /*
1927  * Inline functions
1928  */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1929 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1930 			      const void *address, unsigned int length)
1931 {
1932 	struct {
1933 		struct shash_desc shash;
1934 		char ctx[4];
1935 	} desc;
1936 	int err;
1937 
1938 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1939 
1940 	desc.shash.tfm = sbi->s_chksum_driver;
1941 	*(u32 *)desc.ctx = crc;
1942 
1943 	err = crypto_shash_update(&desc.shash, address, length);
1944 	BUG_ON(err);
1945 
1946 	return *(u32 *)desc.ctx;
1947 }
1948 
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1949 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1950 			   unsigned int length)
1951 {
1952 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1953 }
1954 
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1955 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1956 				  void *buf, size_t buf_size)
1957 {
1958 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1959 }
1960 
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1961 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1962 			      const void *address, unsigned int length)
1963 {
1964 	return __f2fs_crc32(sbi, crc, address, length);
1965 }
1966 
F2FS_I(struct inode * inode)1967 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1968 {
1969 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1970 }
1971 
F2FS_SB(struct super_block * sb)1972 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1973 {
1974 	return sb->s_fs_info;
1975 }
1976 
F2FS_I_SB(struct inode * inode)1977 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1978 {
1979 	return F2FS_SB(inode->i_sb);
1980 }
1981 
F2FS_M_SB(struct address_space * mapping)1982 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1983 {
1984 	return F2FS_I_SB(mapping->host);
1985 }
1986 
F2FS_P_SB(struct page * page)1987 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1988 {
1989 	return F2FS_M_SB(page_file_mapping(page));
1990 }
1991 
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)1992 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1993 {
1994 	return (struct f2fs_super_block *)(sbi->raw_super);
1995 }
1996 
F2FS_CKPT(struct f2fs_sb_info * sbi)1997 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1998 {
1999 	return (struct f2fs_checkpoint *)(sbi->ckpt);
2000 }
2001 
F2FS_NODE(struct page * page)2002 static inline struct f2fs_node *F2FS_NODE(struct page *page)
2003 {
2004 	return (struct f2fs_node *)page_address(page);
2005 }
2006 
F2FS_INODE(struct page * page)2007 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
2008 {
2009 	return &((struct f2fs_node *)page_address(page))->i;
2010 }
2011 
NM_I(struct f2fs_sb_info * sbi)2012 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2013 {
2014 	return (struct f2fs_nm_info *)(sbi->nm_info);
2015 }
2016 
SM_I(struct f2fs_sb_info * sbi)2017 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2018 {
2019 	return (struct f2fs_sm_info *)(sbi->sm_info);
2020 }
2021 
SIT_I(struct f2fs_sb_info * sbi)2022 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2023 {
2024 	return (struct sit_info *)(SM_I(sbi)->sit_info);
2025 }
2026 
FREE_I(struct f2fs_sb_info * sbi)2027 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2028 {
2029 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2030 }
2031 
DIRTY_I(struct f2fs_sb_info * sbi)2032 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2033 {
2034 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2035 }
2036 
META_MAPPING(struct f2fs_sb_info * sbi)2037 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2038 {
2039 	return sbi->meta_inode->i_mapping;
2040 }
2041 
NODE_MAPPING(struct f2fs_sb_info * sbi)2042 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2043 {
2044 	return sbi->node_inode->i_mapping;
2045 }
2046 
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)2047 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2048 {
2049 	return test_bit(type, &sbi->s_flag);
2050 }
2051 
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2052 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2053 {
2054 	set_bit(type, &sbi->s_flag);
2055 }
2056 
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2057 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2058 {
2059 	clear_bit(type, &sbi->s_flag);
2060 }
2061 
cur_cp_version(struct f2fs_checkpoint * cp)2062 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2063 {
2064 	return le64_to_cpu(cp->checkpoint_ver);
2065 }
2066 
f2fs_qf_ino(struct super_block * sb,int type)2067 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2068 {
2069 	if (type < F2FS_MAX_QUOTAS)
2070 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2071 	return 0;
2072 }
2073 
cur_cp_crc(struct f2fs_checkpoint * cp)2074 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2075 {
2076 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2077 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2078 }
2079 
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2080 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2081 {
2082 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2083 
2084 	return ckpt_flags & f;
2085 }
2086 
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2087 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2088 {
2089 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2090 }
2091 
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2092 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2093 {
2094 	unsigned int ckpt_flags;
2095 
2096 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2097 	ckpt_flags |= f;
2098 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2099 }
2100 
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2101 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2102 {
2103 	unsigned long flags;
2104 
2105 	spin_lock_irqsave(&sbi->cp_lock, flags);
2106 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2107 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2108 }
2109 
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2110 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2111 {
2112 	unsigned int ckpt_flags;
2113 
2114 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2115 	ckpt_flags &= (~f);
2116 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2117 }
2118 
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2119 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2120 {
2121 	unsigned long flags;
2122 
2123 	spin_lock_irqsave(&sbi->cp_lock, flags);
2124 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2125 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2126 }
2127 
2128 #define init_f2fs_rwsem(sem)					\
2129 do {								\
2130 	static struct lock_class_key __key;			\
2131 								\
2132 	__init_f2fs_rwsem((sem), #sem, &__key);			\
2133 } while (0)
2134 
__init_f2fs_rwsem(struct f2fs_rwsem * sem,const char * sem_name,struct lock_class_key * key)2135 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2136 		const char *sem_name, struct lock_class_key *key)
2137 {
2138 	__init_rwsem(&sem->internal_rwsem, sem_name, key);
2139 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2140 	init_waitqueue_head(&sem->read_waiters);
2141 #endif
2142 }
2143 
f2fs_rwsem_is_locked(struct f2fs_rwsem * sem)2144 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2145 {
2146 	return rwsem_is_locked(&sem->internal_rwsem);
2147 }
2148 
f2fs_rwsem_is_contended(struct f2fs_rwsem * sem)2149 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2150 {
2151 	return rwsem_is_contended(&sem->internal_rwsem);
2152 }
2153 
f2fs_down_read(struct f2fs_rwsem * sem)2154 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2155 {
2156 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2157 	wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2158 #else
2159 	down_read(&sem->internal_rwsem);
2160 #endif
2161 }
2162 
f2fs_down_read_trylock(struct f2fs_rwsem * sem)2163 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2164 {
2165 	return down_read_trylock(&sem->internal_rwsem);
2166 }
2167 
f2fs_up_read(struct f2fs_rwsem * sem)2168 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2169 {
2170 	up_read(&sem->internal_rwsem);
2171 }
2172 
f2fs_down_write(struct f2fs_rwsem * sem)2173 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2174 {
2175 	down_write(&sem->internal_rwsem);
2176 }
2177 
2178 #ifdef CONFIG_DEBUG_LOCK_ALLOC
f2fs_down_read_nested(struct f2fs_rwsem * sem,int subclass)2179 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2180 {
2181 	down_read_nested(&sem->internal_rwsem, subclass);
2182 }
2183 
f2fs_down_write_nested(struct f2fs_rwsem * sem,int subclass)2184 static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass)
2185 {
2186 	down_write_nested(&sem->internal_rwsem, subclass);
2187 }
2188 #else
2189 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2190 #define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem)
2191 #endif
2192 
f2fs_down_write_trylock(struct f2fs_rwsem * sem)2193 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2194 {
2195 	return down_write_trylock(&sem->internal_rwsem);
2196 }
2197 
f2fs_up_write(struct f2fs_rwsem * sem)2198 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2199 {
2200 	up_write(&sem->internal_rwsem);
2201 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2202 	wake_up_all(&sem->read_waiters);
2203 #endif
2204 }
2205 
f2fs_lock_op(struct f2fs_sb_info * sbi)2206 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2207 {
2208 	f2fs_down_read(&sbi->cp_rwsem);
2209 }
2210 
f2fs_trylock_op(struct f2fs_sb_info * sbi)2211 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2212 {
2213 	if (time_to_inject(sbi, FAULT_LOCK_OP))
2214 		return 0;
2215 	return f2fs_down_read_trylock(&sbi->cp_rwsem);
2216 }
2217 
f2fs_unlock_op(struct f2fs_sb_info * sbi)2218 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2219 {
2220 	f2fs_up_read(&sbi->cp_rwsem);
2221 }
2222 
f2fs_lock_all(struct f2fs_sb_info * sbi)2223 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2224 {
2225 	f2fs_down_write(&sbi->cp_rwsem);
2226 }
2227 
f2fs_unlock_all(struct f2fs_sb_info * sbi)2228 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2229 {
2230 	f2fs_up_write(&sbi->cp_rwsem);
2231 }
2232 
__get_cp_reason(struct f2fs_sb_info * sbi)2233 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2234 {
2235 	int reason = CP_SYNC;
2236 
2237 	if (test_opt(sbi, FASTBOOT))
2238 		reason = CP_FASTBOOT;
2239 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2240 		reason = CP_UMOUNT;
2241 	return reason;
2242 }
2243 
__remain_node_summaries(int reason)2244 static inline bool __remain_node_summaries(int reason)
2245 {
2246 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2247 }
2248 
__exist_node_summaries(struct f2fs_sb_info * sbi)2249 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2250 {
2251 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2252 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2253 }
2254 
2255 /*
2256  * Check whether the inode has blocks or not
2257  */
F2FS_HAS_BLOCKS(struct inode * inode)2258 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2259 {
2260 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2261 
2262 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2263 }
2264 
f2fs_has_xattr_block(unsigned int ofs)2265 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2266 {
2267 	return ofs == XATTR_NODE_OFFSET;
2268 }
2269 
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2270 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2271 					struct inode *inode, bool cap)
2272 {
2273 	if (!inode)
2274 		return true;
2275 	if (!test_opt(sbi, RESERVE_ROOT))
2276 		return false;
2277 	if (IS_NOQUOTA(inode))
2278 		return true;
2279 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2280 		return true;
2281 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2282 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2283 		return true;
2284 	if (cap && capable(CAP_SYS_RESOURCE))
2285 		return true;
2286 	return false;
2287 }
2288 
get_available_block_count(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2289 static inline unsigned int get_available_block_count(struct f2fs_sb_info *sbi,
2290 						struct inode *inode, bool cap)
2291 {
2292 	block_t avail_user_block_count;
2293 
2294 	avail_user_block_count = sbi->user_block_count -
2295 					sbi->current_reserved_blocks;
2296 
2297 	if (!__allow_reserved_blocks(sbi, inode, cap))
2298 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2299 
2300 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2301 		if (avail_user_block_count > sbi->unusable_block_count)
2302 			avail_user_block_count -= sbi->unusable_block_count;
2303 		else
2304 			avail_user_block_count = 0;
2305 	}
2306 
2307 	return avail_user_block_count;
2308 }
2309 
2310 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count,bool partial)2311 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2312 				 struct inode *inode, blkcnt_t *count, bool partial)
2313 {
2314 	long long diff = 0, release = 0;
2315 	block_t avail_user_block_count;
2316 	int ret;
2317 
2318 	ret = dquot_reserve_block(inode, *count);
2319 	if (ret)
2320 		return ret;
2321 
2322 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2323 		release = *count;
2324 		goto release_quota;
2325 	}
2326 
2327 	/*
2328 	 * let's increase this in prior to actual block count change in order
2329 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2330 	 */
2331 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2332 
2333 	spin_lock(&sbi->stat_lock);
2334 
2335 	avail_user_block_count = get_available_block_count(sbi, inode, true);
2336 	diff = (long long)sbi->total_valid_block_count + *count -
2337 						avail_user_block_count;
2338 	if (unlikely(diff > 0)) {
2339 		if (!partial) {
2340 			spin_unlock(&sbi->stat_lock);
2341 			release = *count;
2342 			goto enospc;
2343 		}
2344 		if (diff > *count)
2345 			diff = *count;
2346 		*count -= diff;
2347 		release = diff;
2348 		if (!*count) {
2349 			spin_unlock(&sbi->stat_lock);
2350 			goto enospc;
2351 		}
2352 	}
2353 	sbi->total_valid_block_count += (block_t)(*count);
2354 
2355 	spin_unlock(&sbi->stat_lock);
2356 
2357 	if (unlikely(release)) {
2358 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2359 		dquot_release_reservation_block(inode, release);
2360 	}
2361 	f2fs_i_blocks_write(inode, *count, true, true);
2362 	return 0;
2363 
2364 enospc:
2365 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2366 release_quota:
2367 	dquot_release_reservation_block(inode, release);
2368 	return -ENOSPC;
2369 }
2370 
2371 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
2372 static inline bool page_private_##name(struct page *page) \
2373 { \
2374 	return PagePrivate(page) && \
2375 		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
2376 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2377 }
2378 
2379 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
2380 static inline void set_page_private_##name(struct page *page) \
2381 { \
2382 	if (!PagePrivate(page)) \
2383 		attach_page_private(page, (void *)0); \
2384 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
2385 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2386 }
2387 
2388 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
2389 static inline void clear_page_private_##name(struct page *page) \
2390 { \
2391 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2392 	if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \
2393 		detach_page_private(page); \
2394 }
2395 
2396 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
2397 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
2398 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
2399 
2400 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
2401 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
2402 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
2403 
2404 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
2405 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
2406 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
2407 
get_page_private_data(struct page * page)2408 static inline unsigned long get_page_private_data(struct page *page)
2409 {
2410 	unsigned long data = page_private(page);
2411 
2412 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
2413 		return 0;
2414 	return data >> PAGE_PRIVATE_MAX;
2415 }
2416 
set_page_private_data(struct page * page,unsigned long data)2417 static inline void set_page_private_data(struct page *page, unsigned long data)
2418 {
2419 	if (!PagePrivate(page))
2420 		attach_page_private(page, (void *)0);
2421 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
2422 	page_private(page) |= data << PAGE_PRIVATE_MAX;
2423 }
2424 
clear_page_private_data(struct page * page)2425 static inline void clear_page_private_data(struct page *page)
2426 {
2427 	page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0);
2428 	if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER))
2429 		detach_page_private(page);
2430 }
2431 
clear_page_private_all(struct page * page)2432 static inline void clear_page_private_all(struct page *page)
2433 {
2434 	clear_page_private_data(page);
2435 	clear_page_private_reference(page);
2436 	clear_page_private_gcing(page);
2437 	clear_page_private_inline(page);
2438 
2439 	f2fs_bug_on(F2FS_P_SB(page), page_private(page));
2440 }
2441 
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2442 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2443 						struct inode *inode,
2444 						block_t count)
2445 {
2446 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2447 
2448 	spin_lock(&sbi->stat_lock);
2449 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2450 	sbi->total_valid_block_count -= (block_t)count;
2451 	if (sbi->reserved_blocks &&
2452 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2453 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2454 					sbi->current_reserved_blocks + count);
2455 	spin_unlock(&sbi->stat_lock);
2456 	if (unlikely(inode->i_blocks < sectors)) {
2457 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2458 			  inode->i_ino,
2459 			  (unsigned long long)inode->i_blocks,
2460 			  (unsigned long long)sectors);
2461 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2462 		return;
2463 	}
2464 	f2fs_i_blocks_write(inode, count, false, true);
2465 }
2466 
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2467 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2468 {
2469 	atomic_inc(&sbi->nr_pages[count_type]);
2470 
2471 	if (count_type == F2FS_DIRTY_DENTS ||
2472 			count_type == F2FS_DIRTY_NODES ||
2473 			count_type == F2FS_DIRTY_META ||
2474 			count_type == F2FS_DIRTY_QDATA ||
2475 			count_type == F2FS_DIRTY_IMETA)
2476 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2477 }
2478 
inode_inc_dirty_pages(struct inode * inode)2479 static inline void inode_inc_dirty_pages(struct inode *inode)
2480 {
2481 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2482 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2483 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2484 	if (IS_NOQUOTA(inode))
2485 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2486 }
2487 
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2488 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2489 {
2490 	atomic_dec(&sbi->nr_pages[count_type]);
2491 }
2492 
inode_dec_dirty_pages(struct inode * inode)2493 static inline void inode_dec_dirty_pages(struct inode *inode)
2494 {
2495 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2496 			!S_ISLNK(inode->i_mode))
2497 		return;
2498 
2499 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2500 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2501 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2502 	if (IS_NOQUOTA(inode))
2503 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2504 }
2505 
inc_atomic_write_cnt(struct inode * inode)2506 static inline void inc_atomic_write_cnt(struct inode *inode)
2507 {
2508 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2509 	struct f2fs_inode_info *fi = F2FS_I(inode);
2510 	u64 current_write;
2511 
2512 	fi->atomic_write_cnt++;
2513 	atomic64_inc(&sbi->current_atomic_write);
2514 	current_write = atomic64_read(&sbi->current_atomic_write);
2515 	if (current_write > sbi->peak_atomic_write)
2516 		sbi->peak_atomic_write = current_write;
2517 }
2518 
release_atomic_write_cnt(struct inode * inode)2519 static inline void release_atomic_write_cnt(struct inode *inode)
2520 {
2521 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2522 	struct f2fs_inode_info *fi = F2FS_I(inode);
2523 
2524 	atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2525 	fi->atomic_write_cnt = 0;
2526 }
2527 
get_pages(struct f2fs_sb_info * sbi,int count_type)2528 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2529 {
2530 	return atomic_read(&sbi->nr_pages[count_type]);
2531 }
2532 
get_dirty_pages(struct inode * inode)2533 static inline int get_dirty_pages(struct inode *inode)
2534 {
2535 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2536 }
2537 
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2538 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2539 {
2540 	return div_u64(get_pages(sbi, block_type) + BLKS_PER_SEC(sbi) - 1,
2541 							BLKS_PER_SEC(sbi));
2542 }
2543 
valid_user_blocks(struct f2fs_sb_info * sbi)2544 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2545 {
2546 	return sbi->total_valid_block_count;
2547 }
2548 
discard_blocks(struct f2fs_sb_info * sbi)2549 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2550 {
2551 	return sbi->discard_blks;
2552 }
2553 
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2554 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2555 {
2556 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2557 
2558 	/* return NAT or SIT bitmap */
2559 	if (flag == NAT_BITMAP)
2560 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2561 	else if (flag == SIT_BITMAP)
2562 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2563 
2564 	return 0;
2565 }
2566 
__cp_payload(struct f2fs_sb_info * sbi)2567 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2568 {
2569 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2570 }
2571 
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2572 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2573 {
2574 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2575 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2576 	int offset;
2577 
2578 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2579 		offset = (flag == SIT_BITMAP) ?
2580 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2581 		/*
2582 		 * if large_nat_bitmap feature is enabled, leave checksum
2583 		 * protection for all nat/sit bitmaps.
2584 		 */
2585 		return tmp_ptr + offset + sizeof(__le32);
2586 	}
2587 
2588 	if (__cp_payload(sbi) > 0) {
2589 		if (flag == NAT_BITMAP)
2590 			return tmp_ptr;
2591 		else
2592 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2593 	} else {
2594 		offset = (flag == NAT_BITMAP) ?
2595 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2596 		return tmp_ptr + offset;
2597 	}
2598 }
2599 
__start_cp_addr(struct f2fs_sb_info * sbi)2600 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2601 {
2602 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2603 
2604 	if (sbi->cur_cp_pack == 2)
2605 		start_addr += BLKS_PER_SEG(sbi);
2606 	return start_addr;
2607 }
2608 
__start_cp_next_addr(struct f2fs_sb_info * sbi)2609 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2610 {
2611 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2612 
2613 	if (sbi->cur_cp_pack == 1)
2614 		start_addr += BLKS_PER_SEG(sbi);
2615 	return start_addr;
2616 }
2617 
__set_cp_next_pack(struct f2fs_sb_info * sbi)2618 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2619 {
2620 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2621 }
2622 
__start_sum_addr(struct f2fs_sb_info * sbi)2623 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2624 {
2625 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2626 }
2627 
2628 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2629 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2630 					struct inode *inode, bool is_inode)
2631 {
2632 	block_t	valid_block_count;
2633 	unsigned int valid_node_count;
2634 	unsigned int avail_user_block_count;
2635 	int err;
2636 
2637 	if (is_inode) {
2638 		if (inode) {
2639 			err = dquot_alloc_inode(inode);
2640 			if (err)
2641 				return err;
2642 		}
2643 	} else {
2644 		err = dquot_reserve_block(inode, 1);
2645 		if (err)
2646 			return err;
2647 	}
2648 
2649 	if (time_to_inject(sbi, FAULT_BLOCK))
2650 		goto enospc;
2651 
2652 	spin_lock(&sbi->stat_lock);
2653 
2654 	valid_block_count = sbi->total_valid_block_count + 1;
2655 	avail_user_block_count = get_available_block_count(sbi, inode, false);
2656 
2657 	if (unlikely(valid_block_count > avail_user_block_count)) {
2658 		spin_unlock(&sbi->stat_lock);
2659 		goto enospc;
2660 	}
2661 
2662 	valid_node_count = sbi->total_valid_node_count + 1;
2663 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2664 		spin_unlock(&sbi->stat_lock);
2665 		goto enospc;
2666 	}
2667 
2668 	sbi->total_valid_node_count++;
2669 	sbi->total_valid_block_count++;
2670 	spin_unlock(&sbi->stat_lock);
2671 
2672 	if (inode) {
2673 		if (is_inode)
2674 			f2fs_mark_inode_dirty_sync(inode, true);
2675 		else
2676 			f2fs_i_blocks_write(inode, 1, true, true);
2677 	}
2678 
2679 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2680 	return 0;
2681 
2682 enospc:
2683 	if (is_inode) {
2684 		if (inode)
2685 			dquot_free_inode(inode);
2686 	} else {
2687 		dquot_release_reservation_block(inode, 1);
2688 	}
2689 	return -ENOSPC;
2690 }
2691 
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2692 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2693 					struct inode *inode, bool is_inode)
2694 {
2695 	spin_lock(&sbi->stat_lock);
2696 
2697 	if (unlikely(!sbi->total_valid_block_count ||
2698 			!sbi->total_valid_node_count)) {
2699 		f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2700 			  sbi->total_valid_block_count,
2701 			  sbi->total_valid_node_count);
2702 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2703 	} else {
2704 		sbi->total_valid_block_count--;
2705 		sbi->total_valid_node_count--;
2706 	}
2707 
2708 	if (sbi->reserved_blocks &&
2709 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2710 		sbi->current_reserved_blocks++;
2711 
2712 	spin_unlock(&sbi->stat_lock);
2713 
2714 	if (is_inode) {
2715 		dquot_free_inode(inode);
2716 	} else {
2717 		if (unlikely(inode->i_blocks == 0)) {
2718 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2719 				  inode->i_ino,
2720 				  (unsigned long long)inode->i_blocks);
2721 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2722 			return;
2723 		}
2724 		f2fs_i_blocks_write(inode, 1, false, true);
2725 	}
2726 }
2727 
valid_node_count(struct f2fs_sb_info * sbi)2728 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2729 {
2730 	return sbi->total_valid_node_count;
2731 }
2732 
inc_valid_inode_count(struct f2fs_sb_info * sbi)2733 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2734 {
2735 	percpu_counter_inc(&sbi->total_valid_inode_count);
2736 }
2737 
dec_valid_inode_count(struct f2fs_sb_info * sbi)2738 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2739 {
2740 	percpu_counter_dec(&sbi->total_valid_inode_count);
2741 }
2742 
valid_inode_count(struct f2fs_sb_info * sbi)2743 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2744 {
2745 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2746 }
2747 
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2748 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2749 						pgoff_t index, bool for_write)
2750 {
2751 	struct page *page;
2752 	unsigned int flags;
2753 
2754 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2755 		if (!for_write)
2756 			page = find_get_page_flags(mapping, index,
2757 							FGP_LOCK | FGP_ACCESSED);
2758 		else
2759 			page = find_lock_page(mapping, index);
2760 		if (page)
2761 			return page;
2762 
2763 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
2764 			return NULL;
2765 	}
2766 
2767 	if (!for_write)
2768 		return grab_cache_page(mapping, index);
2769 
2770 	flags = memalloc_nofs_save();
2771 	page = grab_cache_page_write_begin(mapping, index);
2772 	memalloc_nofs_restore(flags);
2773 
2774 	return page;
2775 }
2776 
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,fgf_t fgp_flags,gfp_t gfp_mask)2777 static inline struct page *f2fs_pagecache_get_page(
2778 				struct address_space *mapping, pgoff_t index,
2779 				fgf_t fgp_flags, gfp_t gfp_mask)
2780 {
2781 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET))
2782 		return NULL;
2783 
2784 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2785 }
2786 
f2fs_put_page(struct page * page,int unlock)2787 static inline void f2fs_put_page(struct page *page, int unlock)
2788 {
2789 	if (!page)
2790 		return;
2791 
2792 	if (unlock) {
2793 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2794 		unlock_page(page);
2795 	}
2796 	put_page(page);
2797 }
2798 
f2fs_put_dnode(struct dnode_of_data * dn)2799 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2800 {
2801 	if (dn->node_page)
2802 		f2fs_put_page(dn->node_page, 1);
2803 	if (dn->inode_page && dn->node_page != dn->inode_page)
2804 		f2fs_put_page(dn->inode_page, 0);
2805 	dn->node_page = NULL;
2806 	dn->inode_page = NULL;
2807 }
2808 
f2fs_kmem_cache_create(const char * name,size_t size)2809 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2810 					size_t size)
2811 {
2812 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2813 }
2814 
f2fs_kmem_cache_alloc_nofail(struct kmem_cache * cachep,gfp_t flags)2815 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2816 						gfp_t flags)
2817 {
2818 	void *entry;
2819 
2820 	entry = kmem_cache_alloc(cachep, flags);
2821 	if (!entry)
2822 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2823 	return entry;
2824 }
2825 
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags,bool nofail,struct f2fs_sb_info * sbi)2826 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2827 			gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2828 {
2829 	if (nofail)
2830 		return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2831 
2832 	if (time_to_inject(sbi, FAULT_SLAB_ALLOC))
2833 		return NULL;
2834 
2835 	return kmem_cache_alloc(cachep, flags);
2836 }
2837 
is_inflight_io(struct f2fs_sb_info * sbi,int type)2838 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2839 {
2840 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2841 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2842 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2843 		get_pages(sbi, F2FS_DIO_READ) ||
2844 		get_pages(sbi, F2FS_DIO_WRITE))
2845 		return true;
2846 
2847 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2848 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2849 		return true;
2850 
2851 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2852 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2853 		return true;
2854 	return false;
2855 }
2856 
is_idle(struct f2fs_sb_info * sbi,int type)2857 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2858 {
2859 	if (sbi->gc_mode == GC_URGENT_HIGH)
2860 		return true;
2861 
2862 	if (is_inflight_io(sbi, type))
2863 		return false;
2864 
2865 	if (sbi->gc_mode == GC_URGENT_MID)
2866 		return true;
2867 
2868 	if (sbi->gc_mode == GC_URGENT_LOW &&
2869 			(type == DISCARD_TIME || type == GC_TIME))
2870 		return true;
2871 
2872 	return f2fs_time_over(sbi, type);
2873 }
2874 
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2875 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2876 				unsigned long index, void *item)
2877 {
2878 	while (radix_tree_insert(root, index, item))
2879 		cond_resched();
2880 }
2881 
2882 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2883 
IS_INODE(struct page * page)2884 static inline bool IS_INODE(struct page *page)
2885 {
2886 	struct f2fs_node *p = F2FS_NODE(page);
2887 
2888 	return RAW_IS_INODE(p);
2889 }
2890 
offset_in_addr(struct f2fs_inode * i)2891 static inline int offset_in_addr(struct f2fs_inode *i)
2892 {
2893 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2894 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2895 }
2896 
blkaddr_in_node(struct f2fs_node * node)2897 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2898 {
2899 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2900 }
2901 
2902 static inline int f2fs_has_extra_attr(struct inode *inode);
data_blkaddr(struct inode * inode,struct page * node_page,unsigned int offset)2903 static inline block_t data_blkaddr(struct inode *inode,
2904 			struct page *node_page, unsigned int offset)
2905 {
2906 	struct f2fs_node *raw_node;
2907 	__le32 *addr_array;
2908 	int base = 0;
2909 	bool is_inode = IS_INODE(node_page);
2910 
2911 	raw_node = F2FS_NODE(node_page);
2912 
2913 	if (is_inode) {
2914 		if (!inode)
2915 			/* from GC path only */
2916 			base = offset_in_addr(&raw_node->i);
2917 		else if (f2fs_has_extra_attr(inode))
2918 			base = get_extra_isize(inode);
2919 	}
2920 
2921 	addr_array = blkaddr_in_node(raw_node);
2922 	return le32_to_cpu(addr_array[base + offset]);
2923 }
2924 
f2fs_data_blkaddr(struct dnode_of_data * dn)2925 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2926 {
2927 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2928 }
2929 
f2fs_test_bit(unsigned int nr,char * addr)2930 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2931 {
2932 	int mask;
2933 
2934 	addr += (nr >> 3);
2935 	mask = BIT(7 - (nr & 0x07));
2936 	return mask & *addr;
2937 }
2938 
f2fs_set_bit(unsigned int nr,char * addr)2939 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2940 {
2941 	int mask;
2942 
2943 	addr += (nr >> 3);
2944 	mask = BIT(7 - (nr & 0x07));
2945 	*addr |= mask;
2946 }
2947 
f2fs_clear_bit(unsigned int nr,char * addr)2948 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2949 {
2950 	int mask;
2951 
2952 	addr += (nr >> 3);
2953 	mask = BIT(7 - (nr & 0x07));
2954 	*addr &= ~mask;
2955 }
2956 
f2fs_test_and_set_bit(unsigned int nr,char * addr)2957 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2958 {
2959 	int mask;
2960 	int ret;
2961 
2962 	addr += (nr >> 3);
2963 	mask = BIT(7 - (nr & 0x07));
2964 	ret = mask & *addr;
2965 	*addr |= mask;
2966 	return ret;
2967 }
2968 
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2969 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2970 {
2971 	int mask;
2972 	int ret;
2973 
2974 	addr += (nr >> 3);
2975 	mask = BIT(7 - (nr & 0x07));
2976 	ret = mask & *addr;
2977 	*addr &= ~mask;
2978 	return ret;
2979 }
2980 
f2fs_change_bit(unsigned int nr,char * addr)2981 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2982 {
2983 	int mask;
2984 
2985 	addr += (nr >> 3);
2986 	mask = BIT(7 - (nr & 0x07));
2987 	*addr ^= mask;
2988 }
2989 
2990 /*
2991  * On-disk inode flags (f2fs_inode::i_flags)
2992  */
2993 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2994 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2995 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2996 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2997 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2998 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2999 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
3000 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
3001 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
3002 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
3003 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
3004 
3005 #define F2FS_QUOTA_DEFAULT_FL		(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL)
3006 
3007 /* Flags that should be inherited by new inodes from their parent. */
3008 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
3009 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3010 			   F2FS_CASEFOLD_FL)
3011 
3012 /* Flags that are appropriate for regular files (all but dir-specific ones). */
3013 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3014 				F2FS_CASEFOLD_FL))
3015 
3016 /* Flags that are appropriate for non-directories/regular files. */
3017 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
3018 
f2fs_mask_flags(umode_t mode,__u32 flags)3019 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
3020 {
3021 	if (S_ISDIR(mode))
3022 		return flags;
3023 	else if (S_ISREG(mode))
3024 		return flags & F2FS_REG_FLMASK;
3025 	else
3026 		return flags & F2FS_OTHER_FLMASK;
3027 }
3028 
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)3029 static inline void __mark_inode_dirty_flag(struct inode *inode,
3030 						int flag, bool set)
3031 {
3032 	switch (flag) {
3033 	case FI_INLINE_XATTR:
3034 	case FI_INLINE_DATA:
3035 	case FI_INLINE_DENTRY:
3036 	case FI_NEW_INODE:
3037 		if (set)
3038 			return;
3039 		fallthrough;
3040 	case FI_DATA_EXIST:
3041 	case FI_INLINE_DOTS:
3042 	case FI_PIN_FILE:
3043 	case FI_COMPRESS_RELEASED:
3044 	case FI_ATOMIC_COMMITTED:
3045 		f2fs_mark_inode_dirty_sync(inode, true);
3046 	}
3047 }
3048 
set_inode_flag(struct inode * inode,int flag)3049 static inline void set_inode_flag(struct inode *inode, int flag)
3050 {
3051 	set_bit(flag, F2FS_I(inode)->flags);
3052 	__mark_inode_dirty_flag(inode, flag, true);
3053 }
3054 
is_inode_flag_set(struct inode * inode,int flag)3055 static inline int is_inode_flag_set(struct inode *inode, int flag)
3056 {
3057 	return test_bit(flag, F2FS_I(inode)->flags);
3058 }
3059 
clear_inode_flag(struct inode * inode,int flag)3060 static inline void clear_inode_flag(struct inode *inode, int flag)
3061 {
3062 	clear_bit(flag, F2FS_I(inode)->flags);
3063 	__mark_inode_dirty_flag(inode, flag, false);
3064 }
3065 
f2fs_verity_in_progress(struct inode * inode)3066 static inline bool f2fs_verity_in_progress(struct inode *inode)
3067 {
3068 	return IS_ENABLED(CONFIG_FS_VERITY) &&
3069 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3070 }
3071 
set_acl_inode(struct inode * inode,umode_t mode)3072 static inline void set_acl_inode(struct inode *inode, umode_t mode)
3073 {
3074 	F2FS_I(inode)->i_acl_mode = mode;
3075 	set_inode_flag(inode, FI_ACL_MODE);
3076 	f2fs_mark_inode_dirty_sync(inode, false);
3077 }
3078 
f2fs_i_links_write(struct inode * inode,bool inc)3079 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3080 {
3081 	if (inc)
3082 		inc_nlink(inode);
3083 	else
3084 		drop_nlink(inode);
3085 	f2fs_mark_inode_dirty_sync(inode, true);
3086 }
3087 
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)3088 static inline void f2fs_i_blocks_write(struct inode *inode,
3089 					block_t diff, bool add, bool claim)
3090 {
3091 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3092 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3093 
3094 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
3095 	if (add) {
3096 		if (claim)
3097 			dquot_claim_block(inode, diff);
3098 		else
3099 			dquot_alloc_block_nofail(inode, diff);
3100 	} else {
3101 		dquot_free_block(inode, diff);
3102 	}
3103 
3104 	f2fs_mark_inode_dirty_sync(inode, true);
3105 	if (clean || recover)
3106 		set_inode_flag(inode, FI_AUTO_RECOVER);
3107 }
3108 
3109 static inline bool f2fs_is_atomic_file(struct inode *inode);
3110 
f2fs_i_size_write(struct inode * inode,loff_t i_size)3111 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3112 {
3113 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3114 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3115 
3116 	if (i_size_read(inode) == i_size)
3117 		return;
3118 
3119 	i_size_write(inode, i_size);
3120 
3121 	if (f2fs_is_atomic_file(inode))
3122 		return;
3123 
3124 	f2fs_mark_inode_dirty_sync(inode, true);
3125 	if (clean || recover)
3126 		set_inode_flag(inode, FI_AUTO_RECOVER);
3127 }
3128 
f2fs_i_depth_write(struct inode * inode,unsigned int depth)3129 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3130 {
3131 	F2FS_I(inode)->i_current_depth = depth;
3132 	f2fs_mark_inode_dirty_sync(inode, true);
3133 }
3134 
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)3135 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3136 					unsigned int count)
3137 {
3138 	F2FS_I(inode)->i_gc_failures = count;
3139 	f2fs_mark_inode_dirty_sync(inode, true);
3140 }
3141 
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)3142 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3143 {
3144 	F2FS_I(inode)->i_xattr_nid = xnid;
3145 	f2fs_mark_inode_dirty_sync(inode, true);
3146 }
3147 
f2fs_i_pino_write(struct inode * inode,nid_t pino)3148 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3149 {
3150 	F2FS_I(inode)->i_pino = pino;
3151 	f2fs_mark_inode_dirty_sync(inode, true);
3152 }
3153 
get_inline_info(struct inode * inode,struct f2fs_inode * ri)3154 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3155 {
3156 	struct f2fs_inode_info *fi = F2FS_I(inode);
3157 
3158 	if (ri->i_inline & F2FS_INLINE_XATTR)
3159 		set_bit(FI_INLINE_XATTR, fi->flags);
3160 	if (ri->i_inline & F2FS_INLINE_DATA)
3161 		set_bit(FI_INLINE_DATA, fi->flags);
3162 	if (ri->i_inline & F2FS_INLINE_DENTRY)
3163 		set_bit(FI_INLINE_DENTRY, fi->flags);
3164 	if (ri->i_inline & F2FS_DATA_EXIST)
3165 		set_bit(FI_DATA_EXIST, fi->flags);
3166 	if (ri->i_inline & F2FS_INLINE_DOTS)
3167 		set_bit(FI_INLINE_DOTS, fi->flags);
3168 	if (ri->i_inline & F2FS_EXTRA_ATTR)
3169 		set_bit(FI_EXTRA_ATTR, fi->flags);
3170 	if (ri->i_inline & F2FS_PIN_FILE)
3171 		set_bit(FI_PIN_FILE, fi->flags);
3172 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3173 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
3174 }
3175 
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)3176 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3177 {
3178 	ri->i_inline = 0;
3179 
3180 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3181 		ri->i_inline |= F2FS_INLINE_XATTR;
3182 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
3183 		ri->i_inline |= F2FS_INLINE_DATA;
3184 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3185 		ri->i_inline |= F2FS_INLINE_DENTRY;
3186 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
3187 		ri->i_inline |= F2FS_DATA_EXIST;
3188 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
3189 		ri->i_inline |= F2FS_INLINE_DOTS;
3190 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3191 		ri->i_inline |= F2FS_EXTRA_ATTR;
3192 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3193 		ri->i_inline |= F2FS_PIN_FILE;
3194 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3195 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
3196 }
3197 
f2fs_has_extra_attr(struct inode * inode)3198 static inline int f2fs_has_extra_attr(struct inode *inode)
3199 {
3200 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3201 }
3202 
f2fs_has_inline_xattr(struct inode * inode)3203 static inline int f2fs_has_inline_xattr(struct inode *inode)
3204 {
3205 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
3206 }
3207 
f2fs_compressed_file(struct inode * inode)3208 static inline int f2fs_compressed_file(struct inode *inode)
3209 {
3210 	return S_ISREG(inode->i_mode) &&
3211 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3212 }
3213 
f2fs_need_compress_data(struct inode * inode)3214 static inline bool f2fs_need_compress_data(struct inode *inode)
3215 {
3216 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3217 
3218 	if (!f2fs_compressed_file(inode))
3219 		return false;
3220 
3221 	if (compress_mode == COMPR_MODE_FS)
3222 		return true;
3223 	else if (compress_mode == COMPR_MODE_USER &&
3224 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3225 		return true;
3226 
3227 	return false;
3228 }
3229 
addrs_per_page(struct inode * inode,bool is_inode)3230 static inline unsigned int addrs_per_page(struct inode *inode,
3231 							bool is_inode)
3232 {
3233 	unsigned int addrs = is_inode ? (CUR_ADDRS_PER_INODE(inode) -
3234 			get_inline_xattr_addrs(inode)) : DEF_ADDRS_PER_BLOCK;
3235 
3236 	if (f2fs_compressed_file(inode))
3237 		return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3238 	return addrs;
3239 }
3240 
inline_xattr_addr(struct inode * inode,struct page * page)3241 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3242 {
3243 	struct f2fs_inode *ri = F2FS_INODE(page);
3244 
3245 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3246 					get_inline_xattr_addrs(inode)]);
3247 }
3248 
inline_xattr_size(struct inode * inode)3249 static inline int inline_xattr_size(struct inode *inode)
3250 {
3251 	if (f2fs_has_inline_xattr(inode))
3252 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3253 	return 0;
3254 }
3255 
3256 /*
3257  * Notice: check inline_data flag without inode page lock is unsafe.
3258  * It could change at any time by f2fs_convert_inline_page().
3259  */
f2fs_has_inline_data(struct inode * inode)3260 static inline int f2fs_has_inline_data(struct inode *inode)
3261 {
3262 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3263 }
3264 
f2fs_exist_data(struct inode * inode)3265 static inline int f2fs_exist_data(struct inode *inode)
3266 {
3267 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3268 }
3269 
f2fs_has_inline_dots(struct inode * inode)3270 static inline int f2fs_has_inline_dots(struct inode *inode)
3271 {
3272 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
3273 }
3274 
f2fs_is_mmap_file(struct inode * inode)3275 static inline int f2fs_is_mmap_file(struct inode *inode)
3276 {
3277 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3278 }
3279 
f2fs_is_pinned_file(struct inode * inode)3280 static inline bool f2fs_is_pinned_file(struct inode *inode)
3281 {
3282 	return is_inode_flag_set(inode, FI_PIN_FILE);
3283 }
3284 
f2fs_is_atomic_file(struct inode * inode)3285 static inline bool f2fs_is_atomic_file(struct inode *inode)
3286 {
3287 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3288 }
3289 
f2fs_is_cow_file(struct inode * inode)3290 static inline bool f2fs_is_cow_file(struct inode *inode)
3291 {
3292 	return is_inode_flag_set(inode, FI_COW_FILE);
3293 }
3294 
3295 static inline __le32 *get_dnode_addr(struct inode *inode,
3296 					struct page *node_page);
inline_data_addr(struct inode * inode,struct page * page)3297 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3298 {
3299 	__le32 *addr = get_dnode_addr(inode, page);
3300 
3301 	return (void *)(addr + DEF_INLINE_RESERVED_SIZE);
3302 }
3303 
f2fs_has_inline_dentry(struct inode * inode)3304 static inline int f2fs_has_inline_dentry(struct inode *inode)
3305 {
3306 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3307 }
3308 
is_file(struct inode * inode,int type)3309 static inline int is_file(struct inode *inode, int type)
3310 {
3311 	return F2FS_I(inode)->i_advise & type;
3312 }
3313 
set_file(struct inode * inode,int type)3314 static inline void set_file(struct inode *inode, int type)
3315 {
3316 	if (is_file(inode, type))
3317 		return;
3318 	F2FS_I(inode)->i_advise |= type;
3319 	f2fs_mark_inode_dirty_sync(inode, true);
3320 }
3321 
clear_file(struct inode * inode,int type)3322 static inline void clear_file(struct inode *inode, int type)
3323 {
3324 	if (!is_file(inode, type))
3325 		return;
3326 	F2FS_I(inode)->i_advise &= ~type;
3327 	f2fs_mark_inode_dirty_sync(inode, true);
3328 }
3329 
f2fs_is_time_consistent(struct inode * inode)3330 static inline bool f2fs_is_time_consistent(struct inode *inode)
3331 {
3332 	struct timespec64 ts = inode_get_atime(inode);
3333 
3334 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &ts))
3335 		return false;
3336 	ts = inode_get_ctime(inode);
3337 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &ts))
3338 		return false;
3339 	ts = inode_get_mtime(inode);
3340 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &ts))
3341 		return false;
3342 	return true;
3343 }
3344 
f2fs_skip_inode_update(struct inode * inode,int dsync)3345 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3346 {
3347 	bool ret;
3348 
3349 	if (dsync) {
3350 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3351 
3352 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3353 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3354 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3355 		return ret;
3356 	}
3357 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3358 			file_keep_isize(inode) ||
3359 			i_size_read(inode) & ~PAGE_MASK)
3360 		return false;
3361 
3362 	if (!f2fs_is_time_consistent(inode))
3363 		return false;
3364 
3365 	spin_lock(&F2FS_I(inode)->i_size_lock);
3366 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3367 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3368 
3369 	return ret;
3370 }
3371 
f2fs_readonly(struct super_block * sb)3372 static inline bool f2fs_readonly(struct super_block *sb)
3373 {
3374 	return sb_rdonly(sb);
3375 }
3376 
f2fs_cp_error(struct f2fs_sb_info * sbi)3377 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3378 {
3379 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3380 }
3381 
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3382 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3383 					size_t size, gfp_t flags)
3384 {
3385 	if (time_to_inject(sbi, FAULT_KMALLOC))
3386 		return NULL;
3387 
3388 	return kmalloc(size, flags);
3389 }
3390 
f2fs_getname(struct f2fs_sb_info * sbi)3391 static inline void *f2fs_getname(struct f2fs_sb_info *sbi)
3392 {
3393 	if (time_to_inject(sbi, FAULT_KMALLOC))
3394 		return NULL;
3395 
3396 	return __getname();
3397 }
3398 
f2fs_putname(char * buf)3399 static inline void f2fs_putname(char *buf)
3400 {
3401 	__putname(buf);
3402 }
3403 
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3404 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3405 					size_t size, gfp_t flags)
3406 {
3407 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3408 }
3409 
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3410 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3411 					size_t size, gfp_t flags)
3412 {
3413 	if (time_to_inject(sbi, FAULT_KVMALLOC))
3414 		return NULL;
3415 
3416 	return kvmalloc(size, flags);
3417 }
3418 
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3419 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3420 					size_t size, gfp_t flags)
3421 {
3422 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3423 }
3424 
get_extra_isize(struct inode * inode)3425 static inline int get_extra_isize(struct inode *inode)
3426 {
3427 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3428 }
3429 
get_inline_xattr_addrs(struct inode * inode)3430 static inline int get_inline_xattr_addrs(struct inode *inode)
3431 {
3432 	return F2FS_I(inode)->i_inline_xattr_size;
3433 }
3434 
get_dnode_addr(struct inode * inode,struct page * node_page)3435 static inline __le32 *get_dnode_addr(struct inode *inode,
3436 					struct page *node_page)
3437 {
3438 	int base = 0;
3439 
3440 	if (IS_INODE(node_page) && f2fs_has_extra_attr(inode))
3441 		base = get_extra_isize(inode);
3442 
3443 	return blkaddr_in_node(F2FS_NODE(node_page)) + base;
3444 }
3445 
3446 #define f2fs_get_inode_mode(i) \
3447 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3448 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3449 
3450 #define F2FS_MIN_EXTRA_ATTR_SIZE		(sizeof(__le32))
3451 
3452 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3453 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3454 	offsetof(struct f2fs_inode, i_extra_isize))	\
3455 
3456 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3457 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3458 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3459 		sizeof((f2fs_inode)->field))			\
3460 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3461 
3462 #define __is_large_section(sbi)		(SEGS_PER_SEC(sbi) > 1)
3463 
3464 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3465 
3466 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3467 					block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3468 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3469 					block_t blkaddr, int type)
3470 {
3471 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type))
3472 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3473 			 blkaddr, type);
3474 }
3475 
__is_valid_data_blkaddr(block_t blkaddr)3476 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3477 {
3478 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3479 			blkaddr == COMPRESS_ADDR)
3480 		return false;
3481 	return true;
3482 }
3483 
3484 /*
3485  * file.c
3486  */
3487 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3488 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3489 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3490 int f2fs_truncate(struct inode *inode);
3491 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
3492 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3493 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3494 		 struct iattr *attr);
3495 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3496 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3497 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
3498 							bool readonly);
3499 int f2fs_precache_extents(struct inode *inode);
3500 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3501 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3502 		      struct dentry *dentry, struct fileattr *fa);
3503 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3504 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3505 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3506 int f2fs_pin_file_control(struct inode *inode, bool inc);
3507 
3508 /*
3509  * inode.c
3510  */
3511 void f2fs_set_inode_flags(struct inode *inode);
3512 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3513 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3514 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3515 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3516 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3517 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3518 void f2fs_update_inode_page(struct inode *inode);
3519 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3520 void f2fs_evict_inode(struct inode *inode);
3521 void f2fs_handle_failed_inode(struct inode *inode);
3522 
3523 /*
3524  * namei.c
3525  */
3526 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3527 							bool hot, bool set);
3528 struct dentry *f2fs_get_parent(struct dentry *child);
3529 int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3530 		     struct inode **new_inode);
3531 
3532 /*
3533  * dir.c
3534  */
3535 #if IS_ENABLED(CONFIG_UNICODE)
3536 int f2fs_init_casefolded_name(const struct inode *dir,
3537 			      struct f2fs_filename *fname);
3538 void f2fs_free_casefolded_name(struct f2fs_filename *fname);
3539 #else
f2fs_init_casefolded_name(const struct inode * dir,struct f2fs_filename * fname)3540 static inline int f2fs_init_casefolded_name(const struct inode *dir,
3541 					    struct f2fs_filename *fname)
3542 {
3543 	return 0;
3544 }
3545 
f2fs_free_casefolded_name(struct f2fs_filename * fname)3546 static inline void f2fs_free_casefolded_name(struct f2fs_filename *fname)
3547 {
3548 }
3549 #endif /* CONFIG_UNICODE */
3550 
3551 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3552 			int lookup, struct f2fs_filename *fname);
3553 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3554 			struct f2fs_filename *fname);
3555 void f2fs_free_filename(struct f2fs_filename *fname);
3556 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3557 			const struct f2fs_filename *fname, int *max_slots);
3558 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3559 			unsigned int start_pos, struct fscrypt_str *fstr);
3560 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3561 			struct f2fs_dentry_ptr *d);
3562 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3563 			const struct f2fs_filename *fname, struct page *dpage);
3564 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3565 			unsigned int current_depth);
3566 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3567 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3568 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3569 					 const struct f2fs_filename *fname,
3570 					 struct page **res_page);
3571 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3572 			const struct qstr *child, struct page **res_page);
3573 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3574 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3575 			struct page **page);
3576 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3577 			struct page *page, struct inode *inode);
3578 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3579 			  const struct f2fs_filename *fname);
3580 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3581 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3582 			unsigned int bit_pos);
3583 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3584 			struct inode *inode, nid_t ino, umode_t mode);
3585 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3586 			struct inode *inode, nid_t ino, umode_t mode);
3587 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3588 			struct inode *inode, nid_t ino, umode_t mode);
3589 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3590 			struct inode *dir, struct inode *inode);
3591 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir,
3592 					struct f2fs_filename *fname);
3593 bool f2fs_empty_dir(struct inode *dir);
3594 
f2fs_add_link(struct dentry * dentry,struct inode * inode)3595 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3596 {
3597 	if (fscrypt_is_nokey_name(dentry))
3598 		return -ENOKEY;
3599 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3600 				inode, inode->i_ino, inode->i_mode);
3601 }
3602 
3603 /*
3604  * super.c
3605  */
3606 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3607 void f2fs_inode_synced(struct inode *inode);
3608 int f2fs_dquot_initialize(struct inode *inode);
3609 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3610 int f2fs_quota_sync(struct super_block *sb, int type);
3611 loff_t max_file_blocks(struct inode *inode);
3612 void f2fs_quota_off_umount(struct super_block *sb);
3613 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag);
3614 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason,
3615 							bool irq_context);
3616 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3617 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error);
3618 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3619 int f2fs_sync_fs(struct super_block *sb, int sync);
3620 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3621 
3622 /*
3623  * hash.c
3624  */
3625 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3626 
3627 /*
3628  * node.c
3629  */
3630 struct node_info;
3631 
3632 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3633 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3634 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3635 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3636 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3637 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3638 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3639 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3640 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3641 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3642 				struct node_info *ni, bool checkpoint_context);
3643 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3644 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3645 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3646 int f2fs_truncate_xattr_node(struct inode *inode);
3647 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3648 					unsigned int seq_id);
3649 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3650 int f2fs_remove_inode_page(struct inode *inode);
3651 struct page *f2fs_new_inode_page(struct inode *inode);
3652 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3653 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3654 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3655 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3656 int f2fs_move_node_page(struct page *node_page, int gc_type);
3657 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3658 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3659 			struct writeback_control *wbc, bool atomic,
3660 			unsigned int *seq_id);
3661 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3662 			struct writeback_control *wbc,
3663 			bool do_balance, enum iostat_type io_type);
3664 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3665 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3666 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3667 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3668 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3669 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3670 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3671 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3672 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3673 			unsigned int segno, struct f2fs_summary_block *sum);
3674 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3675 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3676 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3677 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3678 int __init f2fs_create_node_manager_caches(void);
3679 void f2fs_destroy_node_manager_caches(void);
3680 
3681 /*
3682  * segment.c
3683  */
3684 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3685 int f2fs_commit_atomic_write(struct inode *inode);
3686 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3687 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3688 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3689 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3690 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3691 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3692 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3693 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3694 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3695 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3696 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3697 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3698 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3699 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3700 					struct cp_control *cpc);
3701 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3702 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3703 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3704 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3705 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3706 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3707 int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3708 int f2fs_reinit_atgc_curseg(struct f2fs_sb_info *sbi);
3709 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3710 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3711 int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3712 					unsigned int start, unsigned int end);
3713 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3714 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi);
3715 int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3716 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3717 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3718 					struct cp_control *cpc);
3719 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3720 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3721 					block_t blk_addr);
3722 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3723 						enum iostat_type io_type);
3724 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3725 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3726 			struct f2fs_io_info *fio);
3727 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3728 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3729 			block_t old_blkaddr, block_t new_blkaddr,
3730 			bool recover_curseg, bool recover_newaddr,
3731 			bool from_gc);
3732 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3733 			block_t old_addr, block_t new_addr,
3734 			unsigned char version, bool recover_curseg,
3735 			bool recover_newaddr);
3736 int f2fs_get_segment_temp(int seg_type);
3737 int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3738 			block_t old_blkaddr, block_t *new_blkaddr,
3739 			struct f2fs_summary *sum, int type,
3740 			struct f2fs_io_info *fio);
3741 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3742 					block_t blkaddr, unsigned int blkcnt);
3743 void f2fs_wait_on_page_writeback(struct page *page,
3744 			enum page_type type, bool ordered, bool locked);
3745 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3746 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3747 								block_t len);
3748 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3749 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3750 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3751 			unsigned int val, int alloc);
3752 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3753 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3754 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3755 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3756 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3757 int __init f2fs_create_segment_manager_caches(void);
3758 void f2fs_destroy_segment_manager_caches(void);
3759 int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint);
3760 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3761 			enum page_type type, enum temp_type temp);
3762 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3763 			unsigned int segno);
3764 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3765 			unsigned int segno);
3766 
3767 #define DEF_FRAGMENT_SIZE	4
3768 #define MIN_FRAGMENT_SIZE	1
3769 #define MAX_FRAGMENT_SIZE	512
3770 
f2fs_need_rand_seg(struct f2fs_sb_info * sbi)3771 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3772 {
3773 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3774 		F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3775 }
3776 
3777 /*
3778  * checkpoint.c
3779  */
3780 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3781 							unsigned char reason);
3782 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3783 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3784 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3785 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3786 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3787 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3788 					block_t blkaddr, int type);
3789 bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi,
3790 					block_t blkaddr, int type);
3791 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3792 			int type, bool sync);
3793 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3794 							unsigned int ra_blocks);
3795 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3796 			long nr_to_write, enum iostat_type io_type);
3797 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3798 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3799 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3800 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3801 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3802 					unsigned int devidx, int type);
3803 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3804 					unsigned int devidx, int type);
3805 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3806 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3807 void f2fs_add_orphan_inode(struct inode *inode);
3808 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3809 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3810 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3811 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3812 void f2fs_remove_dirty_inode(struct inode *inode);
3813 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3814 								bool from_cp);
3815 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3816 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3817 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3818 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3819 int __init f2fs_create_checkpoint_caches(void);
3820 void f2fs_destroy_checkpoint_caches(void);
3821 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3822 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3823 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3824 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3825 
3826 /*
3827  * data.c
3828  */
3829 int __init f2fs_init_bioset(void);
3830 void f2fs_destroy_bioset(void);
3831 bool f2fs_is_cp_guaranteed(struct page *page);
3832 int f2fs_init_bio_entry_cache(void);
3833 void f2fs_destroy_bio_entry_cache(void);
3834 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
3835 			  enum page_type type);
3836 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3837 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3838 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3839 				struct inode *inode, struct page *page,
3840 				nid_t ino, enum page_type type);
3841 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3842 					struct bio **bio, struct page *page);
3843 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3844 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3845 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3846 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3847 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3848 		block_t blk_addr, sector_t *sector);
3849 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3850 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3851 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3852 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3853 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3854 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index);
3855 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3856 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3857 			blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs);
3858 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
3859 							pgoff_t *next_pgofs);
3860 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3861 			bool for_write);
3862 struct page *f2fs_get_new_data_page(struct inode *inode,
3863 			struct page *ipage, pgoff_t index, bool new_i_size);
3864 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3865 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag);
3866 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3867 			u64 start, u64 len);
3868 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3869 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3870 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3871 int f2fs_write_single_data_page(struct page *page, int *submitted,
3872 				struct bio **bio, sector_t *last_block,
3873 				struct writeback_control *wbc,
3874 				enum iostat_type io_type,
3875 				int compr_blocks, bool allow_balance);
3876 void f2fs_write_failed(struct inode *inode, loff_t to);
3877 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3878 bool f2fs_release_folio(struct folio *folio, gfp_t wait);
3879 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3880 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3881 int f2fs_init_post_read_processing(void);
3882 void f2fs_destroy_post_read_processing(void);
3883 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3884 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3885 extern const struct iomap_ops f2fs_iomap_ops;
3886 
3887 /*
3888  * gc.c
3889  */
3890 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3891 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3892 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3893 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
3894 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3895 int f2fs_gc_range(struct f2fs_sb_info *sbi,
3896 		unsigned int start_seg, unsigned int end_seg,
3897 		bool dry_run, unsigned int dry_run_sections);
3898 int f2fs_resize_fs(struct file *filp, __u64 block_count);
3899 int __init f2fs_create_garbage_collection_cache(void);
3900 void f2fs_destroy_garbage_collection_cache(void);
3901 /* victim selection function for cleaning and SSR */
3902 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
3903 			int gc_type, int type, char alloc_mode,
3904 			unsigned long long age);
3905 
3906 /*
3907  * recovery.c
3908  */
3909 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3910 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3911 int __init f2fs_create_recovery_cache(void);
3912 void f2fs_destroy_recovery_cache(void);
3913 
3914 /*
3915  * debug.c
3916  */
3917 #ifdef CONFIG_F2FS_STAT_FS
3918 struct f2fs_stat_info {
3919 	struct list_head stat_list;
3920 	struct f2fs_sb_info *sbi;
3921 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3922 	int main_area_segs, main_area_sections, main_area_zones;
3923 	unsigned long long hit_cached[NR_EXTENT_CACHES];
3924 	unsigned long long hit_rbtree[NR_EXTENT_CACHES];
3925 	unsigned long long total_ext[NR_EXTENT_CACHES];
3926 	unsigned long long hit_total[NR_EXTENT_CACHES];
3927 	int ext_tree[NR_EXTENT_CACHES];
3928 	int zombie_tree[NR_EXTENT_CACHES];
3929 	int ext_node[NR_EXTENT_CACHES];
3930 	/* to count memory footprint */
3931 	unsigned long long ext_mem[NR_EXTENT_CACHES];
3932 	/* for read extent cache */
3933 	unsigned long long hit_largest;
3934 	/* for block age extent cache */
3935 	unsigned long long allocated_data_blocks;
3936 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3937 	int ndirty_data, ndirty_qdata;
3938 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3939 	int nats, dirty_nats, sits, dirty_sits;
3940 	int free_nids, avail_nids, alloc_nids;
3941 	int total_count, utilization;
3942 	int nr_wb_cp_data, nr_wb_data;
3943 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3944 	int nr_dio_read, nr_dio_write;
3945 	unsigned int io_skip_bggc, other_skip_bggc;
3946 	int nr_flushing, nr_flushed, flush_list_empty;
3947 	int nr_discarding, nr_discarded;
3948 	int nr_discard_cmd;
3949 	unsigned int undiscard_blks;
3950 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3951 	unsigned int cur_ckpt_time, peak_ckpt_time;
3952 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3953 	int compr_inode, swapfile_inode;
3954 	unsigned long long compr_blocks;
3955 	int aw_cnt, max_aw_cnt;
3956 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3957 	unsigned int bimodal, avg_vblocks;
3958 	int util_free, util_valid, util_invalid;
3959 	int rsvd_segs, overp_segs;
3960 	int dirty_count, node_pages, meta_pages, compress_pages;
3961 	int compress_page_hit;
3962 	int prefree_count, free_segs, free_secs;
3963 	int cp_call_count[MAX_CALL_TYPE], cp_count;
3964 	int gc_call_count[MAX_CALL_TYPE];
3965 	int gc_segs[2][2];
3966 	int gc_secs[2][2];
3967 	int tot_blks, data_blks, node_blks;
3968 	int bg_data_blks, bg_node_blks;
3969 	int curseg[NR_CURSEG_TYPE];
3970 	int cursec[NR_CURSEG_TYPE];
3971 	int curzone[NR_CURSEG_TYPE];
3972 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3973 	unsigned int full_seg[NR_CURSEG_TYPE];
3974 	unsigned int valid_blks[NR_CURSEG_TYPE];
3975 
3976 	unsigned int meta_count[META_MAX];
3977 	unsigned int segment_count[2];
3978 	unsigned int block_count[2];
3979 	unsigned int inplace_count;
3980 	unsigned long long base_mem, cache_mem, page_mem;
3981 };
3982 
F2FS_STAT(struct f2fs_sb_info * sbi)3983 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3984 {
3985 	return (struct f2fs_stat_info *)sbi->stat_info;
3986 }
3987 
3988 #define stat_inc_cp_call_count(sbi, foreground)				\
3989 		atomic_inc(&sbi->cp_call_count[(foreground)])
3990 #define stat_inc_cp_count(si)		(F2FS_STAT(sbi)->cp_count++)
3991 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3992 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3993 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3994 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3995 #define stat_inc_total_hit(sbi, type)		(atomic64_inc(&(sbi)->total_hit_ext[type]))
3996 #define stat_inc_rbtree_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_rbtree[type]))
3997 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3998 #define stat_inc_cached_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_cached[type]))
3999 #define stat_inc_inline_xattr(inode)					\
4000 	do {								\
4001 		if (f2fs_has_inline_xattr(inode))			\
4002 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
4003 	} while (0)
4004 #define stat_dec_inline_xattr(inode)					\
4005 	do {								\
4006 		if (f2fs_has_inline_xattr(inode))			\
4007 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
4008 	} while (0)
4009 #define stat_inc_inline_inode(inode)					\
4010 	do {								\
4011 		if (f2fs_has_inline_data(inode))			\
4012 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
4013 	} while (0)
4014 #define stat_dec_inline_inode(inode)					\
4015 	do {								\
4016 		if (f2fs_has_inline_data(inode))			\
4017 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
4018 	} while (0)
4019 #define stat_inc_inline_dir(inode)					\
4020 	do {								\
4021 		if (f2fs_has_inline_dentry(inode))			\
4022 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
4023 	} while (0)
4024 #define stat_dec_inline_dir(inode)					\
4025 	do {								\
4026 		if (f2fs_has_inline_dentry(inode))			\
4027 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
4028 	} while (0)
4029 #define stat_inc_compr_inode(inode)					\
4030 	do {								\
4031 		if (f2fs_compressed_file(inode))			\
4032 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
4033 	} while (0)
4034 #define stat_dec_compr_inode(inode)					\
4035 	do {								\
4036 		if (f2fs_compressed_file(inode))			\
4037 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
4038 	} while (0)
4039 #define stat_add_compr_blocks(inode, blocks)				\
4040 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
4041 #define stat_sub_compr_blocks(inode, blocks)				\
4042 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
4043 #define stat_inc_swapfile_inode(inode)					\
4044 		(atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
4045 #define stat_dec_swapfile_inode(inode)					\
4046 		(atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
4047 #define stat_inc_atomic_inode(inode)					\
4048 			(atomic_inc(&F2FS_I_SB(inode)->atomic_files))
4049 #define stat_dec_atomic_inode(inode)					\
4050 			(atomic_dec(&F2FS_I_SB(inode)->atomic_files))
4051 #define stat_inc_meta_count(sbi, blkaddr)				\
4052 	do {								\
4053 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
4054 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
4055 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
4056 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
4057 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
4058 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
4059 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
4060 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
4061 	} while (0)
4062 #define stat_inc_seg_type(sbi, curseg)					\
4063 		((sbi)->segment_count[(curseg)->alloc_type]++)
4064 #define stat_inc_block_count(sbi, curseg)				\
4065 		((sbi)->block_count[(curseg)->alloc_type]++)
4066 #define stat_inc_inplace_blocks(sbi)					\
4067 		(atomic_inc(&(sbi)->inplace_count))
4068 #define stat_update_max_atomic_write(inode)				\
4069 	do {								\
4070 		int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files);	\
4071 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
4072 		if (cur > max)						\
4073 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
4074 	} while (0)
4075 #define stat_inc_gc_call_count(sbi, foreground)				\
4076 		(F2FS_STAT(sbi)->gc_call_count[(foreground)]++)
4077 #define stat_inc_gc_sec_count(sbi, type, gc_type)			\
4078 		(F2FS_STAT(sbi)->gc_secs[(type)][(gc_type)]++)
4079 #define stat_inc_gc_seg_count(sbi, type, gc_type)			\
4080 		(F2FS_STAT(sbi)->gc_segs[(type)][(gc_type)]++)
4081 
4082 #define stat_inc_tot_blk_count(si, blks)				\
4083 	((si)->tot_blks += (blks))
4084 
4085 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
4086 	do {								\
4087 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4088 		stat_inc_tot_blk_count(si, blks);			\
4089 		si->data_blks += (blks);				\
4090 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4091 	} while (0)
4092 
4093 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
4094 	do {								\
4095 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4096 		stat_inc_tot_blk_count(si, blks);			\
4097 		si->node_blks += (blks);				\
4098 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4099 	} while (0)
4100 
4101 int f2fs_build_stats(struct f2fs_sb_info *sbi);
4102 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4103 void __init f2fs_create_root_stats(void);
4104 void f2fs_destroy_root_stats(void);
4105 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4106 #else
4107 #define stat_inc_cp_call_count(sbi, foreground)		do { } while (0)
4108 #define stat_inc_cp_count(sbi)				do { } while (0)
4109 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
4110 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
4111 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
4112 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
4113 #define stat_inc_total_hit(sbi, type)			do { } while (0)
4114 #define stat_inc_rbtree_node_hit(sbi, type)		do { } while (0)
4115 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
4116 #define stat_inc_cached_node_hit(sbi, type)		do { } while (0)
4117 #define stat_inc_inline_xattr(inode)			do { } while (0)
4118 #define stat_dec_inline_xattr(inode)			do { } while (0)
4119 #define stat_inc_inline_inode(inode)			do { } while (0)
4120 #define stat_dec_inline_inode(inode)			do { } while (0)
4121 #define stat_inc_inline_dir(inode)			do { } while (0)
4122 #define stat_dec_inline_dir(inode)			do { } while (0)
4123 #define stat_inc_compr_inode(inode)			do { } while (0)
4124 #define stat_dec_compr_inode(inode)			do { } while (0)
4125 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
4126 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
4127 #define stat_inc_swapfile_inode(inode)			do { } while (0)
4128 #define stat_dec_swapfile_inode(inode)			do { } while (0)
4129 #define stat_inc_atomic_inode(inode)			do { } while (0)
4130 #define stat_dec_atomic_inode(inode)			do { } while (0)
4131 #define stat_update_max_atomic_write(inode)		do { } while (0)
4132 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
4133 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
4134 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
4135 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
4136 #define stat_inc_gc_call_count(sbi, foreground)		do { } while (0)
4137 #define stat_inc_gc_sec_count(sbi, type, gc_type)	do { } while (0)
4138 #define stat_inc_gc_seg_count(sbi, type, gc_type)	do { } while (0)
4139 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
4140 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
4141 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
4142 
f2fs_build_stats(struct f2fs_sb_info * sbi)4143 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)4144 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)4145 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)4146 static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)4147 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4148 #endif
4149 
4150 extern const struct file_operations f2fs_dir_operations;
4151 extern const struct file_operations f2fs_file_operations;
4152 extern const struct inode_operations f2fs_file_inode_operations;
4153 extern const struct address_space_operations f2fs_dblock_aops;
4154 extern const struct address_space_operations f2fs_node_aops;
4155 extern const struct address_space_operations f2fs_meta_aops;
4156 extern const struct inode_operations f2fs_dir_inode_operations;
4157 extern const struct inode_operations f2fs_symlink_inode_operations;
4158 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4159 extern const struct inode_operations f2fs_special_inode_operations;
4160 extern struct kmem_cache *f2fs_inode_entry_slab;
4161 
4162 /*
4163  * inline.c
4164  */
4165 bool f2fs_may_inline_data(struct inode *inode);
4166 bool f2fs_sanity_check_inline_data(struct inode *inode, struct page *ipage);
4167 bool f2fs_may_inline_dentry(struct inode *inode);
4168 void f2fs_do_read_inline_data(struct folio *folio, struct page *ipage);
4169 void f2fs_truncate_inline_inode(struct inode *inode,
4170 						struct page *ipage, u64 from);
4171 int f2fs_read_inline_data(struct inode *inode, struct folio *folio);
4172 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4173 int f2fs_convert_inline_inode(struct inode *inode);
4174 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4175 int f2fs_write_inline_data(struct inode *inode, struct page *page);
4176 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4177 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4178 					const struct f2fs_filename *fname,
4179 					struct page **res_page);
4180 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4181 			struct page *ipage);
4182 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4183 			struct inode *inode, nid_t ino, umode_t mode);
4184 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4185 				struct page *page, struct inode *dir,
4186 				struct inode *inode);
4187 bool f2fs_empty_inline_dir(struct inode *dir);
4188 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4189 			struct fscrypt_str *fstr);
4190 int f2fs_inline_data_fiemap(struct inode *inode,
4191 			struct fiemap_extent_info *fieinfo,
4192 			__u64 start, __u64 len);
4193 
4194 /*
4195  * shrinker.c
4196  */
4197 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4198 			struct shrink_control *sc);
4199 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4200 			struct shrink_control *sc);
4201 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4202 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4203 
4204 /*
4205  * extent_cache.c
4206  */
4207 bool sanity_check_extent_cache(struct inode *inode, struct page *ipage);
4208 void f2fs_init_extent_tree(struct inode *inode);
4209 void f2fs_drop_extent_tree(struct inode *inode);
4210 void f2fs_destroy_extent_node(struct inode *inode);
4211 void f2fs_destroy_extent_tree(struct inode *inode);
4212 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4213 int __init f2fs_create_extent_cache(void);
4214 void f2fs_destroy_extent_cache(void);
4215 
4216 /* read extent cache ops */
4217 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage);
4218 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
4219 			struct extent_info *ei);
4220 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
4221 			block_t *blkaddr);
4222 void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
4223 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
4224 			pgoff_t fofs, block_t blkaddr, unsigned int len);
4225 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
4226 			int nr_shrink);
4227 
4228 /* block age extent cache ops */
4229 void f2fs_init_age_extent_tree(struct inode *inode);
4230 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
4231 			struct extent_info *ei);
4232 void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
4233 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
4234 			pgoff_t fofs, unsigned int len);
4235 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
4236 			int nr_shrink);
4237 
4238 /*
4239  * sysfs.c
4240  */
4241 #define MIN_RA_MUL	2
4242 #define MAX_RA_MUL	256
4243 
4244 int __init f2fs_init_sysfs(void);
4245 void f2fs_exit_sysfs(void);
4246 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4247 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4248 
4249 /* verity.c */
4250 extern const struct fsverity_operations f2fs_verityops;
4251 
4252 /*
4253  * crypto support
4254  */
f2fs_encrypted_file(struct inode * inode)4255 static inline bool f2fs_encrypted_file(struct inode *inode)
4256 {
4257 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4258 }
4259 
f2fs_set_encrypted_inode(struct inode * inode)4260 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4261 {
4262 #ifdef CONFIG_FS_ENCRYPTION
4263 	file_set_encrypt(inode);
4264 	f2fs_set_inode_flags(inode);
4265 #endif
4266 }
4267 
4268 /*
4269  * Returns true if the reads of the inode's data need to undergo some
4270  * postprocessing step, like decryption or authenticity verification.
4271  */
f2fs_post_read_required(struct inode * inode)4272 static inline bool f2fs_post_read_required(struct inode *inode)
4273 {
4274 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4275 		f2fs_compressed_file(inode);
4276 }
4277 
f2fs_used_in_atomic_write(struct inode * inode)4278 static inline bool f2fs_used_in_atomic_write(struct inode *inode)
4279 {
4280 	return f2fs_is_atomic_file(inode) || f2fs_is_cow_file(inode);
4281 }
4282 
f2fs_meta_inode_gc_required(struct inode * inode)4283 static inline bool f2fs_meta_inode_gc_required(struct inode *inode)
4284 {
4285 	return f2fs_post_read_required(inode) || f2fs_used_in_atomic_write(inode);
4286 }
4287 
4288 /*
4289  * compress.c
4290  */
4291 #ifdef CONFIG_F2FS_FS_COMPRESSION
4292 bool f2fs_is_compressed_page(struct page *page);
4293 struct page *f2fs_compress_control_page(struct page *page);
4294 int f2fs_prepare_compress_overwrite(struct inode *inode,
4295 			struct page **pagep, pgoff_t index, void **fsdata);
4296 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4297 					pgoff_t index, unsigned copied);
4298 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4299 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4300 bool f2fs_is_compress_backend_ready(struct inode *inode);
4301 bool f2fs_is_compress_level_valid(int alg, int lvl);
4302 int __init f2fs_init_compress_mempool(void);
4303 void f2fs_destroy_compress_mempool(void);
4304 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4305 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4306 				block_t blkaddr, bool in_task);
4307 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4308 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4309 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4310 				int index, int nr_pages, bool uptodate);
4311 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4312 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4313 int f2fs_write_multi_pages(struct compress_ctx *cc,
4314 						int *submitted,
4315 						struct writeback_control *wbc,
4316 						enum iostat_type io_type);
4317 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4318 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
4319 				pgoff_t fofs, block_t blkaddr,
4320 				unsigned int llen, unsigned int c_len);
4321 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4322 				unsigned nr_pages, sector_t *last_block_in_bio,
4323 				struct readahead_control *rac, bool for_write);
4324 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4325 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4326 				bool in_task);
4327 void f2fs_put_page_dic(struct page *page, bool in_task);
4328 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn,
4329 						unsigned int ofs_in_node);
4330 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4331 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4332 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4333 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4334 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4335 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4336 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4337 int __init f2fs_init_compress_cache(void);
4338 void f2fs_destroy_compress_cache(void);
4339 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4340 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4341 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4342 						nid_t ino, block_t blkaddr);
4343 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4344 								block_t blkaddr);
4345 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4346 #define inc_compr_inode_stat(inode)					\
4347 	do {								\
4348 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4349 		sbi->compr_new_inode++;					\
4350 	} while (0)
4351 #define add_compr_block_stat(inode, blocks)				\
4352 	do {								\
4353 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4354 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4355 		sbi->compr_written_block += blocks;			\
4356 		sbi->compr_saved_block += diff;				\
4357 	} while (0)
4358 #else
f2fs_is_compressed_page(struct page * page)4359 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)4360 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4361 {
4362 	if (!f2fs_compressed_file(inode))
4363 		return true;
4364 	/* not support compression */
4365 	return false;
4366 }
f2fs_is_compress_level_valid(int alg,int lvl)4367 static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; }
f2fs_compress_control_page(struct page * page)4368 static inline struct page *f2fs_compress_control_page(struct page *page)
4369 {
4370 	WARN_ON_ONCE(1);
4371 	return ERR_PTR(-EINVAL);
4372 }
f2fs_init_compress_mempool(void)4373 static inline int __init f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)4374 static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_decompress_cluster(struct decompress_io_ctx * dic,bool in_task)4375 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4376 				bool in_task) { }
f2fs_end_read_compressed_page(struct page * page,bool failed,block_t blkaddr,bool in_task)4377 static inline void f2fs_end_read_compressed_page(struct page *page,
4378 				bool failed, block_t blkaddr, bool in_task)
4379 {
4380 	WARN_ON_ONCE(1);
4381 }
f2fs_put_page_dic(struct page * page,bool in_task)4382 static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4383 {
4384 	WARN_ON_ONCE(1);
4385 }
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn,unsigned int ofs_in_node)4386 static inline unsigned int f2fs_cluster_blocks_are_contiguous(
4387 			struct dnode_of_data *dn, unsigned int ofs_in_node) { return 0; }
f2fs_sanity_check_cluster(struct dnode_of_data * dn)4388 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)4389 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)4390 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)4391 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)4392 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)4393 static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)4394 static inline void f2fs_destroy_compress_cache(void) { }
f2fs_invalidate_compress_page(struct f2fs_sb_info * sbi,block_t blkaddr)4395 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4396 				block_t blkaddr) { }
f2fs_cache_compressed_page(struct f2fs_sb_info * sbi,struct page * page,nid_t ino,block_t blkaddr)4397 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4398 				struct page *page, nid_t ino, block_t blkaddr) { }
f2fs_load_compressed_page(struct f2fs_sb_info * sbi,struct page * page,block_t blkaddr)4399 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4400 				struct page *page, block_t blkaddr) { return false; }
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)4401 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4402 							nid_t ino) { }
4403 #define inc_compr_inode_stat(inode)		do { } while (0)
f2fs_update_read_extent_tree_range_compressed(struct inode * inode,pgoff_t fofs,block_t blkaddr,unsigned int llen,unsigned int c_len)4404 static inline void f2fs_update_read_extent_tree_range_compressed(
4405 				struct inode *inode,
4406 				pgoff_t fofs, block_t blkaddr,
4407 				unsigned int llen, unsigned int c_len) { }
4408 #endif
4409 
set_compress_context(struct inode * inode)4410 static inline int set_compress_context(struct inode *inode)
4411 {
4412 #ifdef CONFIG_F2FS_FS_COMPRESSION
4413 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4414 	struct f2fs_inode_info *fi = F2FS_I(inode);
4415 
4416 	fi->i_compress_algorithm = F2FS_OPTION(sbi).compress_algorithm;
4417 	fi->i_log_cluster_size = F2FS_OPTION(sbi).compress_log_size;
4418 	fi->i_compress_flag = F2FS_OPTION(sbi).compress_chksum ?
4419 					BIT(COMPRESS_CHKSUM) : 0;
4420 	fi->i_cluster_size = BIT(fi->i_log_cluster_size);
4421 	if ((fi->i_compress_algorithm == COMPRESS_LZ4 ||
4422 		fi->i_compress_algorithm == COMPRESS_ZSTD) &&
4423 			F2FS_OPTION(sbi).compress_level)
4424 		fi->i_compress_level = F2FS_OPTION(sbi).compress_level;
4425 	fi->i_flags |= F2FS_COMPR_FL;
4426 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4427 	stat_inc_compr_inode(inode);
4428 	inc_compr_inode_stat(inode);
4429 	f2fs_mark_inode_dirty_sync(inode, true);
4430 	return 0;
4431 #else
4432 	return -EOPNOTSUPP;
4433 #endif
4434 }
4435 
f2fs_disable_compressed_file(struct inode * inode)4436 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4437 {
4438 	struct f2fs_inode_info *fi = F2FS_I(inode);
4439 
4440 	f2fs_down_write(&fi->i_sem);
4441 
4442 	if (!f2fs_compressed_file(inode)) {
4443 		f2fs_up_write(&fi->i_sem);
4444 		return true;
4445 	}
4446 	if (f2fs_is_mmap_file(inode) ||
4447 		(S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))) {
4448 		f2fs_up_write(&fi->i_sem);
4449 		return false;
4450 	}
4451 
4452 	fi->i_flags &= ~F2FS_COMPR_FL;
4453 	stat_dec_compr_inode(inode);
4454 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4455 	f2fs_mark_inode_dirty_sync(inode, true);
4456 
4457 	f2fs_up_write(&fi->i_sem);
4458 	return true;
4459 }
4460 
4461 #define F2FS_FEATURE_FUNCS(name, flagname) \
4462 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4463 { \
4464 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4465 }
4466 
4467 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4468 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4469 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4470 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4471 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4472 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4473 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4474 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4475 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4476 F2FS_FEATURE_FUNCS(verity, VERITY);
4477 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4478 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4479 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4480 F2FS_FEATURE_FUNCS(readonly, RO);
4481 
4482 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4483 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4484 				    block_t blkaddr)
4485 {
4486 	unsigned int zno = blkaddr / sbi->blocks_per_blkz;
4487 
4488 	return test_bit(zno, FDEV(devi).blkz_seq);
4489 }
4490 #endif
4491 
f2fs_bdev_index(struct f2fs_sb_info * sbi,struct block_device * bdev)4492 static inline int f2fs_bdev_index(struct f2fs_sb_info *sbi,
4493 				  struct block_device *bdev)
4494 {
4495 	int i;
4496 
4497 	if (!f2fs_is_multi_device(sbi))
4498 		return 0;
4499 
4500 	for (i = 0; i < sbi->s_ndevs; i++)
4501 		if (FDEV(i).bdev == bdev)
4502 			return i;
4503 
4504 	WARN_ON(1);
4505 	return -1;
4506 }
4507 
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4508 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4509 {
4510 	return f2fs_sb_has_blkzoned(sbi);
4511 }
4512 
f2fs_bdev_support_discard(struct block_device * bdev)4513 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4514 {
4515 	return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4516 }
4517 
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4518 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4519 {
4520 	int i;
4521 
4522 	if (!f2fs_is_multi_device(sbi))
4523 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4524 
4525 	for (i = 0; i < sbi->s_ndevs; i++)
4526 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4527 			return true;
4528 	return false;
4529 }
4530 
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4531 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4532 {
4533 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4534 					f2fs_hw_should_discard(sbi);
4535 }
4536 
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4537 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4538 {
4539 	int i;
4540 
4541 	if (!f2fs_is_multi_device(sbi))
4542 		return bdev_read_only(sbi->sb->s_bdev);
4543 
4544 	for (i = 0; i < sbi->s_ndevs; i++)
4545 		if (bdev_read_only(FDEV(i).bdev))
4546 			return true;
4547 	return false;
4548 }
4549 
f2fs_dev_is_readonly(struct f2fs_sb_info * sbi)4550 static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi)
4551 {
4552 	return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi);
4553 }
4554 
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4555 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4556 {
4557 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4558 }
4559 
f2fs_valid_pinned_area(struct f2fs_sb_info * sbi,block_t blkaddr)4560 static inline bool f2fs_valid_pinned_area(struct f2fs_sb_info *sbi,
4561 					  block_t blkaddr)
4562 {
4563 	if (f2fs_sb_has_blkzoned(sbi)) {
4564 		int devi = f2fs_target_device_index(sbi, blkaddr);
4565 
4566 		return !bdev_is_zoned(FDEV(devi).bdev);
4567 	}
4568 	return true;
4569 }
4570 
f2fs_low_mem_mode(struct f2fs_sb_info * sbi)4571 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4572 {
4573 	return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4574 }
4575 
f2fs_may_compress(struct inode * inode)4576 static inline bool f2fs_may_compress(struct inode *inode)
4577 {
4578 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4579 		f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) ||
4580 		f2fs_is_mmap_file(inode))
4581 		return false;
4582 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4583 }
4584 
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4585 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4586 						u64 blocks, bool add)
4587 {
4588 	struct f2fs_inode_info *fi = F2FS_I(inode);
4589 	int diff = fi->i_cluster_size - blocks;
4590 
4591 	/* don't update i_compr_blocks if saved blocks were released */
4592 	if (!add && !atomic_read(&fi->i_compr_blocks))
4593 		return;
4594 
4595 	if (add) {
4596 		atomic_add(diff, &fi->i_compr_blocks);
4597 		stat_add_compr_blocks(inode, diff);
4598 	} else {
4599 		atomic_sub(diff, &fi->i_compr_blocks);
4600 		stat_sub_compr_blocks(inode, diff);
4601 	}
4602 	f2fs_mark_inode_dirty_sync(inode, true);
4603 }
4604 
f2fs_allow_multi_device_dio(struct f2fs_sb_info * sbi,int flag)4605 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4606 								int flag)
4607 {
4608 	if (!f2fs_is_multi_device(sbi))
4609 		return false;
4610 	if (flag != F2FS_GET_BLOCK_DIO)
4611 		return false;
4612 	return sbi->aligned_blksize;
4613 }
4614 
f2fs_need_verity(const struct inode * inode,pgoff_t idx)4615 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4616 {
4617 	return fsverity_active(inode) &&
4618 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4619 }
4620 
4621 #ifdef CONFIG_F2FS_FAULT_INJECTION
4622 extern int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate,
4623 							unsigned long type);
4624 #else
f2fs_build_fault_attr(struct f2fs_sb_info * sbi,unsigned long rate,unsigned long type)4625 static inline int f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
4626 					unsigned long rate, unsigned long type)
4627 {
4628 	return 0;
4629 }
4630 #endif
4631 
is_journalled_quota(struct f2fs_sb_info * sbi)4632 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4633 {
4634 #ifdef CONFIG_QUOTA
4635 	if (f2fs_sb_has_quota_ino(sbi))
4636 		return true;
4637 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4638 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4639 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4640 		return true;
4641 #endif
4642 	return false;
4643 }
4644 
f2fs_block_unit_discard(struct f2fs_sb_info * sbi)4645 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4646 {
4647 	return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4648 }
4649 
f2fs_io_schedule_timeout(long timeout)4650 static inline void f2fs_io_schedule_timeout(long timeout)
4651 {
4652 	set_current_state(TASK_UNINTERRUPTIBLE);
4653 	io_schedule_timeout(timeout);
4654 }
4655 
f2fs_handle_page_eio(struct f2fs_sb_info * sbi,pgoff_t ofs,enum page_type type)4656 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs,
4657 					enum page_type type)
4658 {
4659 	if (unlikely(f2fs_cp_error(sbi)))
4660 		return;
4661 
4662 	if (ofs == sbi->page_eio_ofs[type]) {
4663 		if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4664 			set_ckpt_flags(sbi, CP_ERROR_FLAG);
4665 	} else {
4666 		sbi->page_eio_ofs[type] = ofs;
4667 		sbi->page_eio_cnt[type] = 0;
4668 	}
4669 }
4670 
f2fs_is_readonly(struct f2fs_sb_info * sbi)4671 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi)
4672 {
4673 	return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb);
4674 }
4675 
f2fs_truncate_meta_inode_pages(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned int cnt)4676 static inline void f2fs_truncate_meta_inode_pages(struct f2fs_sb_info *sbi,
4677 					block_t blkaddr, unsigned int cnt)
4678 {
4679 	bool need_submit = false;
4680 	int i = 0;
4681 
4682 	do {
4683 		struct page *page;
4684 
4685 		page = find_get_page(META_MAPPING(sbi), blkaddr + i);
4686 		if (page) {
4687 			if (folio_test_writeback(page_folio(page)))
4688 				need_submit = true;
4689 			f2fs_put_page(page, 0);
4690 		}
4691 	} while (++i < cnt && !need_submit);
4692 
4693 	if (need_submit)
4694 		f2fs_submit_merged_write_cond(sbi, sbi->meta_inode,
4695 							NULL, 0, DATA);
4696 
4697 	truncate_inode_pages_range(META_MAPPING(sbi),
4698 			F2FS_BLK_TO_BYTES((loff_t)blkaddr),
4699 			F2FS_BLK_END_BYTES((loff_t)(blkaddr + cnt - 1)));
4700 }
4701 
f2fs_invalidate_internal_cache(struct f2fs_sb_info * sbi,block_t blkaddr)4702 static inline void f2fs_invalidate_internal_cache(struct f2fs_sb_info *sbi,
4703 								block_t blkaddr)
4704 {
4705 	f2fs_truncate_meta_inode_pages(sbi, blkaddr, 1);
4706 	f2fs_invalidate_compress_page(sbi, blkaddr);
4707 }
4708 
4709 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4710 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4711 
4712 #endif /* _LINUX_F2FS_H */
4713