1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2018 Cadence Design Systems Inc. 4 * 5 * Author: Boris Brezillon <boris.brezillon@bootlin.com> 6 */ 7 8 #include <linux/atomic.h> 9 #include <linux/bug.h> 10 #include <linux/device.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/err.h> 13 #include <linux/export.h> 14 #include <linux/kernel.h> 15 #include <linux/list.h> 16 #include <linux/of.h> 17 #include <linux/pm_runtime.h> 18 #include <linux/slab.h> 19 #include <linux/spinlock.h> 20 #include <linux/workqueue.h> 21 22 #include "internals.h" 23 24 static DEFINE_IDR(i3c_bus_idr); 25 static DEFINE_MUTEX(i3c_core_lock); 26 static int __i3c_first_dynamic_bus_num; 27 static BLOCKING_NOTIFIER_HEAD(i3c_bus_notifier); 28 29 /** 30 * i3c_bus_maintenance_lock - Lock the bus for a maintenance operation 31 * @bus: I3C bus to take the lock on 32 * 33 * This function takes the bus lock so that no other operations can occur on 34 * the bus. This is needed for all kind of bus maintenance operation, like 35 * - enabling/disabling slave events 36 * - re-triggering DAA 37 * - changing the dynamic address of a device 38 * - relinquishing mastership 39 * - ... 40 * 41 * The reason for this kind of locking is that we don't want drivers and core 42 * logic to rely on I3C device information that could be changed behind their 43 * back. 44 */ 45 static void i3c_bus_maintenance_lock(struct i3c_bus *bus) 46 { 47 down_write(&bus->lock); 48 } 49 50 /** 51 * i3c_bus_maintenance_unlock - Release the bus lock after a maintenance 52 * operation 53 * @bus: I3C bus to release the lock on 54 * 55 * Should be called when the bus maintenance operation is done. See 56 * i3c_bus_maintenance_lock() for more details on what these maintenance 57 * operations are. 58 */ 59 static void i3c_bus_maintenance_unlock(struct i3c_bus *bus) 60 { 61 up_write(&bus->lock); 62 } 63 64 /** 65 * i3c_bus_normaluse_lock - Lock the bus for a normal operation 66 * @bus: I3C bus to take the lock on 67 * 68 * This function takes the bus lock for any operation that is not a maintenance 69 * operation (see i3c_bus_maintenance_lock() for a non-exhaustive list of 70 * maintenance operations). Basically all communications with I3C devices are 71 * normal operations (HDR, SDR transfers or CCC commands that do not change bus 72 * state or I3C dynamic address). 73 * 74 * Note that this lock is not guaranteeing serialization of normal operations. 75 * In other words, transfer requests passed to the I3C master can be submitted 76 * in parallel and I3C master drivers have to use their own locking to make 77 * sure two different communications are not inter-mixed, or access to the 78 * output/input queue is not done while the engine is busy. 79 */ 80 void i3c_bus_normaluse_lock(struct i3c_bus *bus) 81 { 82 down_read(&bus->lock); 83 } 84 85 /** 86 * i3c_bus_normaluse_unlock - Release the bus lock after a normal operation 87 * @bus: I3C bus to release the lock on 88 * 89 * Should be called when a normal operation is done. See 90 * i3c_bus_normaluse_lock() for more details on what these normal operations 91 * are. 92 */ 93 void i3c_bus_normaluse_unlock(struct i3c_bus *bus) 94 { 95 up_read(&bus->lock); 96 } 97 98 static struct i3c_master_controller * 99 i3c_bus_to_i3c_master(struct i3c_bus *i3cbus) 100 { 101 return container_of(i3cbus, struct i3c_master_controller, bus); 102 } 103 104 static struct i3c_master_controller *dev_to_i3cmaster(struct device *dev) 105 { 106 return container_of(dev, struct i3c_master_controller, dev); 107 } 108 109 static int __must_check i3c_master_rpm_get(struct i3c_master_controller *master) 110 { 111 int ret = master->rpm_allowed ? pm_runtime_resume_and_get(master->dev.parent) : 0; 112 113 if (ret < 0) { 114 dev_err(master->dev.parent, "runtime resume failed, error %d\n", ret); 115 return ret; 116 } 117 return 0; 118 } 119 120 static void i3c_master_rpm_put(struct i3c_master_controller *master) 121 { 122 if (master->rpm_allowed) 123 pm_runtime_put_autosuspend(master->dev.parent); 124 } 125 126 int i3c_bus_rpm_get(struct i3c_bus *bus) 127 { 128 return i3c_master_rpm_get(i3c_bus_to_i3c_master(bus)); 129 } 130 131 void i3c_bus_rpm_put(struct i3c_bus *bus) 132 { 133 i3c_master_rpm_put(i3c_bus_to_i3c_master(bus)); 134 } 135 136 bool i3c_bus_rpm_ibi_allowed(struct i3c_bus *bus) 137 { 138 return i3c_bus_to_i3c_master(bus)->rpm_ibi_allowed; 139 } 140 141 static const struct device_type i3c_device_type; 142 143 static struct i3c_bus *dev_to_i3cbus(struct device *dev) 144 { 145 struct i3c_master_controller *master; 146 147 if (dev->type == &i3c_device_type) 148 return dev_to_i3cdev(dev)->bus; 149 150 master = dev_to_i3cmaster(dev); 151 152 return &master->bus; 153 } 154 155 static struct i3c_dev_desc *dev_to_i3cdesc(struct device *dev) 156 { 157 struct i3c_master_controller *master; 158 159 if (dev->type == &i3c_device_type) 160 return dev_to_i3cdev(dev)->desc; 161 162 master = dev_to_i3cmaster(dev); 163 164 return master->this; 165 } 166 167 static ssize_t bcr_show(struct device *dev, 168 struct device_attribute *da, 169 char *buf) 170 { 171 struct i3c_bus *bus = dev_to_i3cbus(dev); 172 struct i3c_dev_desc *desc; 173 ssize_t ret; 174 175 i3c_bus_normaluse_lock(bus); 176 desc = dev_to_i3cdesc(dev); 177 ret = sprintf(buf, "0x%02x\n", desc->info.bcr); 178 i3c_bus_normaluse_unlock(bus); 179 180 return ret; 181 } 182 static DEVICE_ATTR_RO(bcr); 183 184 static ssize_t dcr_show(struct device *dev, 185 struct device_attribute *da, 186 char *buf) 187 { 188 struct i3c_bus *bus = dev_to_i3cbus(dev); 189 struct i3c_dev_desc *desc; 190 ssize_t ret; 191 192 i3c_bus_normaluse_lock(bus); 193 desc = dev_to_i3cdesc(dev); 194 ret = sprintf(buf, "0x%02x\n", desc->info.dcr); 195 i3c_bus_normaluse_unlock(bus); 196 197 return ret; 198 } 199 static DEVICE_ATTR_RO(dcr); 200 201 static ssize_t pid_show(struct device *dev, 202 struct device_attribute *da, 203 char *buf) 204 { 205 struct i3c_bus *bus = dev_to_i3cbus(dev); 206 struct i3c_dev_desc *desc; 207 ssize_t ret; 208 209 i3c_bus_normaluse_lock(bus); 210 desc = dev_to_i3cdesc(dev); 211 ret = sprintf(buf, "%llx\n", desc->info.pid); 212 i3c_bus_normaluse_unlock(bus); 213 214 return ret; 215 } 216 static DEVICE_ATTR_RO(pid); 217 218 static ssize_t dynamic_address_show(struct device *dev, 219 struct device_attribute *da, 220 char *buf) 221 { 222 struct i3c_bus *bus = dev_to_i3cbus(dev); 223 struct i3c_dev_desc *desc; 224 ssize_t ret; 225 226 i3c_bus_normaluse_lock(bus); 227 desc = dev_to_i3cdesc(dev); 228 ret = sprintf(buf, "%02x\n", desc->info.dyn_addr); 229 i3c_bus_normaluse_unlock(bus); 230 231 return ret; 232 } 233 static DEVICE_ATTR_RO(dynamic_address); 234 235 static const char * const hdrcap_strings[] = { 236 "hdr-ddr", "hdr-tsp", "hdr-tsl", 237 }; 238 239 static ssize_t hdrcap_show(struct device *dev, 240 struct device_attribute *da, 241 char *buf) 242 { 243 struct i3c_bus *bus = dev_to_i3cbus(dev); 244 struct i3c_dev_desc *desc; 245 ssize_t offset = 0, ret; 246 unsigned long caps; 247 int mode; 248 249 i3c_bus_normaluse_lock(bus); 250 desc = dev_to_i3cdesc(dev); 251 caps = desc->info.hdr_cap; 252 for_each_set_bit(mode, &caps, 8) { 253 if (mode >= ARRAY_SIZE(hdrcap_strings)) 254 break; 255 256 if (!hdrcap_strings[mode]) 257 continue; 258 259 ret = sprintf(buf + offset, offset ? " %s" : "%s", 260 hdrcap_strings[mode]); 261 if (ret < 0) 262 goto out; 263 264 offset += ret; 265 } 266 267 ret = sprintf(buf + offset, "\n"); 268 if (ret < 0) 269 goto out; 270 271 ret = offset + ret; 272 273 out: 274 i3c_bus_normaluse_unlock(bus); 275 276 return ret; 277 } 278 static DEVICE_ATTR_RO(hdrcap); 279 280 static ssize_t modalias_show(struct device *dev, 281 struct device_attribute *da, char *buf) 282 { 283 struct i3c_device *i3c = dev_to_i3cdev(dev); 284 struct i3c_device_info devinfo; 285 u16 manuf, part, ext; 286 287 i3c_device_get_info(i3c, &devinfo); 288 manuf = I3C_PID_MANUF_ID(devinfo.pid); 289 part = I3C_PID_PART_ID(devinfo.pid); 290 ext = I3C_PID_EXTRA_INFO(devinfo.pid); 291 292 if (I3C_PID_RND_LOWER_32BITS(devinfo.pid)) 293 return sprintf(buf, "i3c:dcr%02Xmanuf%04X", devinfo.dcr, 294 manuf); 295 296 return sprintf(buf, "i3c:dcr%02Xmanuf%04Xpart%04Xext%04X", 297 devinfo.dcr, manuf, part, ext); 298 } 299 static DEVICE_ATTR_RO(modalias); 300 301 static struct attribute *i3c_device_attrs[] = { 302 &dev_attr_bcr.attr, 303 &dev_attr_dcr.attr, 304 &dev_attr_pid.attr, 305 &dev_attr_dynamic_address.attr, 306 &dev_attr_hdrcap.attr, 307 &dev_attr_modalias.attr, 308 NULL, 309 }; 310 ATTRIBUTE_GROUPS(i3c_device); 311 312 static int i3c_device_uevent(const struct device *dev, struct kobj_uevent_env *env) 313 { 314 const struct i3c_device *i3cdev = dev_to_i3cdev(dev); 315 struct i3c_device_info devinfo; 316 u16 manuf, part, ext; 317 318 if (i3cdev->desc) 319 devinfo = i3cdev->desc->info; 320 manuf = I3C_PID_MANUF_ID(devinfo.pid); 321 part = I3C_PID_PART_ID(devinfo.pid); 322 ext = I3C_PID_EXTRA_INFO(devinfo.pid); 323 324 if (I3C_PID_RND_LOWER_32BITS(devinfo.pid)) 325 return add_uevent_var(env, "MODALIAS=i3c:dcr%02Xmanuf%04X", 326 devinfo.dcr, manuf); 327 328 return add_uevent_var(env, 329 "MODALIAS=i3c:dcr%02Xmanuf%04Xpart%04Xext%04X", 330 devinfo.dcr, manuf, part, ext); 331 } 332 333 static const struct device_type i3c_device_type = { 334 .groups = i3c_device_groups, 335 .uevent = i3c_device_uevent, 336 }; 337 338 static int i3c_device_match(struct device *dev, const struct device_driver *drv) 339 { 340 struct i3c_device *i3cdev; 341 const struct i3c_driver *i3cdrv; 342 343 if (dev->type != &i3c_device_type) 344 return 0; 345 346 i3cdev = dev_to_i3cdev(dev); 347 i3cdrv = drv_to_i3cdrv(drv); 348 if (i3c_device_match_id(i3cdev, i3cdrv->id_table)) 349 return 1; 350 351 return 0; 352 } 353 354 static int i3c_device_probe(struct device *dev) 355 { 356 struct i3c_device *i3cdev = dev_to_i3cdev(dev); 357 struct i3c_driver *driver = drv_to_i3cdrv(dev->driver); 358 359 return driver->probe(i3cdev); 360 } 361 362 static void i3c_device_remove(struct device *dev) 363 { 364 struct i3c_device *i3cdev = dev_to_i3cdev(dev); 365 struct i3c_driver *driver = drv_to_i3cdrv(dev->driver); 366 367 if (driver->remove) 368 driver->remove(i3cdev); 369 } 370 371 const struct bus_type i3c_bus_type = { 372 .name = "i3c", 373 .match = i3c_device_match, 374 .probe = i3c_device_probe, 375 .remove = i3c_device_remove, 376 }; 377 EXPORT_SYMBOL_GPL(i3c_bus_type); 378 379 static enum i3c_addr_slot_status 380 i3c_bus_get_addr_slot_status_mask(struct i3c_bus *bus, u16 addr, u32 mask) 381 { 382 unsigned long status; 383 int bitpos = addr * I3C_ADDR_SLOT_STATUS_BITS; 384 385 if (addr > I2C_MAX_ADDR) 386 return I3C_ADDR_SLOT_RSVD; 387 388 status = bus->addrslots[bitpos / BITS_PER_LONG]; 389 status >>= bitpos % BITS_PER_LONG; 390 391 return status & mask; 392 } 393 394 static enum i3c_addr_slot_status 395 i3c_bus_get_addr_slot_status(struct i3c_bus *bus, u16 addr) 396 { 397 return i3c_bus_get_addr_slot_status_mask(bus, addr, I3C_ADDR_SLOT_STATUS_MASK); 398 } 399 400 static void i3c_bus_set_addr_slot_status_mask(struct i3c_bus *bus, u16 addr, 401 enum i3c_addr_slot_status status, u32 mask) 402 { 403 int bitpos = addr * I3C_ADDR_SLOT_STATUS_BITS; 404 unsigned long *ptr; 405 406 if (addr > I2C_MAX_ADDR) 407 return; 408 409 ptr = bus->addrslots + (bitpos / BITS_PER_LONG); 410 *ptr &= ~((unsigned long)mask << (bitpos % BITS_PER_LONG)); 411 *ptr |= ((unsigned long)status & mask) << (bitpos % BITS_PER_LONG); 412 } 413 414 static void i3c_bus_set_addr_slot_status(struct i3c_bus *bus, u16 addr, 415 enum i3c_addr_slot_status status) 416 { 417 i3c_bus_set_addr_slot_status_mask(bus, addr, status, I3C_ADDR_SLOT_STATUS_MASK); 418 } 419 420 static bool i3c_bus_dev_addr_is_avail(struct i3c_bus *bus, u8 addr) 421 { 422 enum i3c_addr_slot_status status; 423 424 status = i3c_bus_get_addr_slot_status(bus, addr); 425 426 return status == I3C_ADDR_SLOT_FREE; 427 } 428 429 /* 430 * ┌────┬─────────────┬───┬─────────┬───┐ 431 * │S/Sr│ 7'h7E RnW=0 │ACK│ ENTDAA │ T ├────┐ 432 * └────┴─────────────┴───┴─────────┴───┘ │ 433 * ┌─────────────────────────────────────────┘ 434 * │ ┌──┬─────────────┬───┬─────────────────┬────────────────┬───┬─────────┐ 435 * └─►│Sr│7'h7E RnW=1 │ACK│48bit UID BCR DCR│Assign 7bit Addr│PAR│ ACK/NACK│ 436 * └──┴─────────────┴───┴─────────────────┴────────────────┴───┴─────────┘ 437 * Some master controllers (such as HCI) need to prepare the entire above transaction before 438 * sending it out to the I3C bus. This means that a 7-bit dynamic address needs to be allocated 439 * before knowing the target device's UID information. 440 * 441 * However, some I3C targets may request specific addresses (called as "init_dyn_addr"), which is 442 * typically specified by the DT-'s assigned-address property. Lower addresses having higher IBI 443 * priority. If it is available, i3c_bus_get_free_addr() preferably return a free address that is 444 * not in the list of desired addresses (called as "init_dyn_addr"). This allows the device with 445 * the "init_dyn_addr" to switch to its "init_dyn_addr" when it hot-joins the I3C bus. Otherwise, 446 * if the "init_dyn_addr" is already in use by another I3C device, the target device will not be 447 * able to switch to its desired address. 448 * 449 * If the previous step fails, fallback returning one of the remaining unassigned address, 450 * regardless of its state in the desired list. 451 */ 452 static int i3c_bus_get_free_addr(struct i3c_bus *bus, u8 start_addr) 453 { 454 enum i3c_addr_slot_status status; 455 u8 addr; 456 457 for (addr = start_addr; addr < I3C_MAX_ADDR; addr++) { 458 status = i3c_bus_get_addr_slot_status_mask(bus, addr, 459 I3C_ADDR_SLOT_EXT_STATUS_MASK); 460 if (status == I3C_ADDR_SLOT_FREE) 461 return addr; 462 } 463 464 for (addr = start_addr; addr < I3C_MAX_ADDR; addr++) { 465 status = i3c_bus_get_addr_slot_status_mask(bus, addr, 466 I3C_ADDR_SLOT_STATUS_MASK); 467 if (status == I3C_ADDR_SLOT_FREE) 468 return addr; 469 } 470 471 return -ENOMEM; 472 } 473 474 static void i3c_bus_init_addrslots(struct i3c_bus *bus) 475 { 476 int i; 477 478 /* Addresses 0 to 7 are reserved. */ 479 for (i = 0; i < 8; i++) 480 i3c_bus_set_addr_slot_status(bus, i, I3C_ADDR_SLOT_RSVD); 481 482 /* 483 * Reserve broadcast address and all addresses that might collide 484 * with the broadcast address when facing a single bit error. 485 */ 486 i3c_bus_set_addr_slot_status(bus, I3C_BROADCAST_ADDR, 487 I3C_ADDR_SLOT_RSVD); 488 for (i = 0; i < 7; i++) 489 i3c_bus_set_addr_slot_status(bus, I3C_BROADCAST_ADDR ^ BIT(i), 490 I3C_ADDR_SLOT_RSVD); 491 } 492 493 static void i3c_bus_cleanup(struct i3c_bus *i3cbus) 494 { 495 mutex_lock(&i3c_core_lock); 496 idr_remove(&i3c_bus_idr, i3cbus->id); 497 mutex_unlock(&i3c_core_lock); 498 } 499 500 static int i3c_bus_init(struct i3c_bus *i3cbus, struct device_node *np) 501 { 502 int ret, start, end, id = -1; 503 504 init_rwsem(&i3cbus->lock); 505 INIT_LIST_HEAD(&i3cbus->devs.i2c); 506 INIT_LIST_HEAD(&i3cbus->devs.i3c); 507 i3c_bus_init_addrslots(i3cbus); 508 i3cbus->mode = I3C_BUS_MODE_PURE; 509 510 if (np) 511 id = of_alias_get_id(np, "i3c"); 512 513 mutex_lock(&i3c_core_lock); 514 if (id >= 0) { 515 start = id; 516 end = start + 1; 517 } else { 518 start = __i3c_first_dynamic_bus_num; 519 end = 0; 520 } 521 522 ret = idr_alloc(&i3c_bus_idr, i3cbus, start, end, GFP_KERNEL); 523 mutex_unlock(&i3c_core_lock); 524 525 if (ret < 0) 526 return ret; 527 528 i3cbus->id = ret; 529 530 return 0; 531 } 532 533 void i3c_for_each_bus_locked(int (*fn)(struct i3c_bus *bus, void *data), 534 void *data) 535 { 536 struct i3c_bus *bus; 537 int id; 538 539 mutex_lock(&i3c_core_lock); 540 idr_for_each_entry(&i3c_bus_idr, bus, id) 541 fn(bus, data); 542 mutex_unlock(&i3c_core_lock); 543 } 544 EXPORT_SYMBOL_GPL(i3c_for_each_bus_locked); 545 546 int i3c_register_notifier(struct notifier_block *nb) 547 { 548 return blocking_notifier_chain_register(&i3c_bus_notifier, nb); 549 } 550 EXPORT_SYMBOL_GPL(i3c_register_notifier); 551 552 int i3c_unregister_notifier(struct notifier_block *nb) 553 { 554 return blocking_notifier_chain_unregister(&i3c_bus_notifier, nb); 555 } 556 EXPORT_SYMBOL_GPL(i3c_unregister_notifier); 557 558 static void i3c_bus_notify(struct i3c_bus *bus, unsigned int action) 559 { 560 blocking_notifier_call_chain(&i3c_bus_notifier, action, bus); 561 } 562 563 static const char * const i3c_bus_mode_strings[] = { 564 [I3C_BUS_MODE_PURE] = "pure", 565 [I3C_BUS_MODE_MIXED_FAST] = "mixed-fast", 566 [I3C_BUS_MODE_MIXED_LIMITED] = "mixed-limited", 567 [I3C_BUS_MODE_MIXED_SLOW] = "mixed-slow", 568 }; 569 570 static ssize_t mode_show(struct device *dev, 571 struct device_attribute *da, 572 char *buf) 573 { 574 struct i3c_bus *i3cbus = dev_to_i3cbus(dev); 575 ssize_t ret; 576 577 i3c_bus_normaluse_lock(i3cbus); 578 if (i3cbus->mode < 0 || 579 i3cbus->mode >= ARRAY_SIZE(i3c_bus_mode_strings) || 580 !i3c_bus_mode_strings[i3cbus->mode]) 581 ret = sprintf(buf, "unknown\n"); 582 else 583 ret = sprintf(buf, "%s\n", i3c_bus_mode_strings[i3cbus->mode]); 584 i3c_bus_normaluse_unlock(i3cbus); 585 586 return ret; 587 } 588 static DEVICE_ATTR_RO(mode); 589 590 static ssize_t current_master_show(struct device *dev, 591 struct device_attribute *da, 592 char *buf) 593 { 594 struct i3c_bus *i3cbus = dev_to_i3cbus(dev); 595 ssize_t ret; 596 597 i3c_bus_normaluse_lock(i3cbus); 598 ret = sprintf(buf, "%d-%llx\n", i3cbus->id, 599 i3cbus->cur_master->info.pid); 600 i3c_bus_normaluse_unlock(i3cbus); 601 602 return ret; 603 } 604 static DEVICE_ATTR_RO(current_master); 605 606 static ssize_t i3c_scl_frequency_show(struct device *dev, 607 struct device_attribute *da, 608 char *buf) 609 { 610 struct i3c_bus *i3cbus = dev_to_i3cbus(dev); 611 ssize_t ret; 612 613 i3c_bus_normaluse_lock(i3cbus); 614 ret = sprintf(buf, "%ld\n", i3cbus->scl_rate.i3c); 615 i3c_bus_normaluse_unlock(i3cbus); 616 617 return ret; 618 } 619 static DEVICE_ATTR_RO(i3c_scl_frequency); 620 621 static ssize_t i2c_scl_frequency_show(struct device *dev, 622 struct device_attribute *da, 623 char *buf) 624 { 625 struct i3c_bus *i3cbus = dev_to_i3cbus(dev); 626 ssize_t ret; 627 628 i3c_bus_normaluse_lock(i3cbus); 629 ret = sprintf(buf, "%ld\n", i3cbus->scl_rate.i2c); 630 i3c_bus_normaluse_unlock(i3cbus); 631 632 return ret; 633 } 634 static DEVICE_ATTR_RO(i2c_scl_frequency); 635 636 static int i3c_set_hotjoin(struct i3c_master_controller *master, bool enable) 637 { 638 int ret; 639 640 if (!master || !master->ops) 641 return -EINVAL; 642 643 if (!master->ops->enable_hotjoin || !master->ops->disable_hotjoin) 644 return -EINVAL; 645 646 if (enable || master->rpm_ibi_allowed) { 647 ret = i3c_master_rpm_get(master); 648 if (ret) 649 return ret; 650 } 651 652 i3c_bus_normaluse_lock(&master->bus); 653 654 if (enable) 655 ret = master->ops->enable_hotjoin(master); 656 else 657 ret = master->ops->disable_hotjoin(master); 658 659 if (!ret) 660 master->hotjoin = enable; 661 662 i3c_bus_normaluse_unlock(&master->bus); 663 664 if ((enable && ret) || (!enable && !ret) || master->rpm_ibi_allowed) 665 i3c_master_rpm_put(master); 666 667 return ret; 668 } 669 670 static ssize_t hotjoin_store(struct device *dev, struct device_attribute *attr, 671 const char *buf, size_t count) 672 { 673 struct i3c_bus *i3cbus = dev_to_i3cbus(dev); 674 int ret; 675 bool res; 676 677 if (!i3cbus->cur_master) 678 return -EINVAL; 679 680 if (kstrtobool(buf, &res)) 681 return -EINVAL; 682 683 ret = i3c_set_hotjoin(i3cbus->cur_master->common.master, res); 684 if (ret) 685 return ret; 686 687 return count; 688 } 689 690 /* 691 * i3c_master_enable_hotjoin - Enable hotjoin 692 * @master: I3C master object 693 * 694 * Return: a 0 in case of success, an negative error code otherwise. 695 */ 696 int i3c_master_enable_hotjoin(struct i3c_master_controller *master) 697 { 698 return i3c_set_hotjoin(master, true); 699 } 700 EXPORT_SYMBOL_GPL(i3c_master_enable_hotjoin); 701 702 /* 703 * i3c_master_disable_hotjoin - Disable hotjoin 704 * @master: I3C master object 705 * 706 * Return: a 0 in case of success, an negative error code otherwise. 707 */ 708 int i3c_master_disable_hotjoin(struct i3c_master_controller *master) 709 { 710 return i3c_set_hotjoin(master, false); 711 } 712 EXPORT_SYMBOL_GPL(i3c_master_disable_hotjoin); 713 714 static ssize_t hotjoin_show(struct device *dev, struct device_attribute *da, char *buf) 715 { 716 struct i3c_bus *i3cbus = dev_to_i3cbus(dev); 717 ssize_t ret; 718 719 i3c_bus_normaluse_lock(i3cbus); 720 ret = sysfs_emit(buf, "%d\n", i3cbus->cur_master->common.master->hotjoin); 721 i3c_bus_normaluse_unlock(i3cbus); 722 723 return ret; 724 } 725 726 static DEVICE_ATTR_RW(hotjoin); 727 728 static ssize_t dev_nack_retry_count_show(struct device *dev, 729 struct device_attribute *attr, char *buf) 730 { 731 return sysfs_emit(buf, "%u\n", dev_to_i3cmaster(dev)->dev_nack_retry_count); 732 } 733 734 static ssize_t dev_nack_retry_count_store(struct device *dev, 735 struct device_attribute *attr, 736 const char *buf, size_t count) 737 { 738 struct i3c_bus *i3cbus = dev_to_i3cbus(dev); 739 struct i3c_master_controller *master = dev_to_i3cmaster(dev); 740 unsigned long val; 741 int ret; 742 743 ret = kstrtoul(buf, 0, &val); 744 if (ret) 745 return ret; 746 747 i3c_bus_maintenance_lock(i3cbus); 748 ret = master->ops->set_dev_nack_retry(master, val); 749 i3c_bus_maintenance_unlock(i3cbus); 750 751 if (ret) 752 return ret; 753 754 master->dev_nack_retry_count = val; 755 756 return count; 757 } 758 759 static DEVICE_ATTR_RW(dev_nack_retry_count); 760 761 static struct attribute *i3c_masterdev_attrs[] = { 762 &dev_attr_mode.attr, 763 &dev_attr_current_master.attr, 764 &dev_attr_i3c_scl_frequency.attr, 765 &dev_attr_i2c_scl_frequency.attr, 766 &dev_attr_bcr.attr, 767 &dev_attr_dcr.attr, 768 &dev_attr_pid.attr, 769 &dev_attr_dynamic_address.attr, 770 &dev_attr_hdrcap.attr, 771 &dev_attr_hotjoin.attr, 772 NULL, 773 }; 774 ATTRIBUTE_GROUPS(i3c_masterdev); 775 776 static void i3c_masterdev_release(struct device *dev) 777 { 778 struct i3c_master_controller *master = dev_to_i3cmaster(dev); 779 struct i3c_bus *bus = dev_to_i3cbus(dev); 780 781 if (master->wq) 782 destroy_workqueue(master->wq); 783 784 WARN_ON(!list_empty(&bus->devs.i2c) || !list_empty(&bus->devs.i3c)); 785 i3c_bus_cleanup(bus); 786 787 of_node_put(dev->of_node); 788 } 789 790 static const struct device_type i3c_masterdev_type = { 791 .groups = i3c_masterdev_groups, 792 }; 793 794 static int i3c_bus_set_mode(struct i3c_bus *i3cbus, enum i3c_bus_mode mode, 795 unsigned long max_i2c_scl_rate) 796 { 797 struct i3c_master_controller *master = i3c_bus_to_i3c_master(i3cbus); 798 799 i3cbus->mode = mode; 800 801 switch (i3cbus->mode) { 802 case I3C_BUS_MODE_PURE: 803 if (!i3cbus->scl_rate.i3c) 804 i3cbus->scl_rate.i3c = I3C_BUS_I3C_SCL_TYP_RATE; 805 break; 806 case I3C_BUS_MODE_MIXED_FAST: 807 case I3C_BUS_MODE_MIXED_LIMITED: 808 if (!i3cbus->scl_rate.i3c) 809 i3cbus->scl_rate.i3c = I3C_BUS_I3C_SCL_TYP_RATE; 810 if (!i3cbus->scl_rate.i2c) 811 i3cbus->scl_rate.i2c = max_i2c_scl_rate; 812 break; 813 case I3C_BUS_MODE_MIXED_SLOW: 814 if (!i3cbus->scl_rate.i2c) 815 i3cbus->scl_rate.i2c = max_i2c_scl_rate; 816 if (!i3cbus->scl_rate.i3c || 817 i3cbus->scl_rate.i3c > i3cbus->scl_rate.i2c) 818 i3cbus->scl_rate.i3c = i3cbus->scl_rate.i2c; 819 break; 820 default: 821 return -EINVAL; 822 } 823 824 dev_dbg(&master->dev, "i2c-scl = %ld Hz i3c-scl = %ld Hz\n", 825 i3cbus->scl_rate.i2c, i3cbus->scl_rate.i3c); 826 827 /* 828 * I3C/I2C frequency may have been overridden, check that user-provided 829 * values are not exceeding max possible frequency. 830 */ 831 if (i3cbus->scl_rate.i3c > I3C_BUS_I3C_SCL_MAX_RATE || 832 i3cbus->scl_rate.i2c > I3C_BUS_I2C_FM_PLUS_SCL_MAX_RATE) 833 return -EINVAL; 834 835 return 0; 836 } 837 838 static struct i3c_master_controller * 839 i2c_adapter_to_i3c_master(struct i2c_adapter *adap) 840 { 841 return container_of(adap, struct i3c_master_controller, i2c); 842 } 843 844 static struct i2c_adapter * 845 i3c_master_to_i2c_adapter(struct i3c_master_controller *master) 846 { 847 return &master->i2c; 848 } 849 850 static void i3c_master_free_i2c_dev(struct i2c_dev_desc *dev) 851 { 852 kfree(dev); 853 } 854 855 static struct i2c_dev_desc * 856 i3c_master_alloc_i2c_dev(struct i3c_master_controller *master, 857 u16 addr, u8 lvr) 858 { 859 struct i2c_dev_desc *dev; 860 861 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 862 if (!dev) 863 return ERR_PTR(-ENOMEM); 864 865 dev->common.master = master; 866 dev->addr = addr; 867 dev->lvr = lvr; 868 869 return dev; 870 } 871 872 static void *i3c_ccc_cmd_dest_init(struct i3c_ccc_cmd_dest *dest, u8 addr, 873 u16 payloadlen) 874 { 875 dest->addr = addr; 876 dest->payload.len = payloadlen; 877 if (payloadlen) 878 dest->payload.data = kzalloc(payloadlen, GFP_KERNEL); 879 else 880 dest->payload.data = NULL; 881 882 return dest->payload.data; 883 } 884 885 static void i3c_ccc_cmd_dest_cleanup(struct i3c_ccc_cmd_dest *dest) 886 { 887 kfree(dest->payload.data); 888 } 889 890 static void i3c_ccc_cmd_init(struct i3c_ccc_cmd *cmd, bool rnw, u8 id, 891 struct i3c_ccc_cmd_dest *dests, 892 unsigned int ndests) 893 { 894 cmd->rnw = rnw ? 1 : 0; 895 cmd->id = id; 896 cmd->dests = dests; 897 cmd->ndests = ndests; 898 cmd->err = I3C_ERROR_UNKNOWN; 899 } 900 901 static int i3c_master_send_ccc_cmd_locked(struct i3c_master_controller *master, 902 struct i3c_ccc_cmd *cmd) 903 { 904 int ret; 905 906 if (!cmd || !master) 907 return -EINVAL; 908 909 if (WARN_ON(master->init_done && 910 !rwsem_is_locked(&master->bus.lock))) 911 return -EINVAL; 912 913 if (!master->ops->send_ccc_cmd) 914 return -EOPNOTSUPP; 915 916 if ((cmd->id & I3C_CCC_DIRECT) && (!cmd->dests || !cmd->ndests)) 917 return -EINVAL; 918 919 if (master->ops->supports_ccc_cmd && 920 !master->ops->supports_ccc_cmd(master, cmd)) 921 return -EOPNOTSUPP; 922 923 ret = master->ops->send_ccc_cmd(master, cmd); 924 if (ret) { 925 if (cmd->err != I3C_ERROR_UNKNOWN) 926 return cmd->err; 927 928 return ret; 929 } 930 931 return 0; 932 } 933 934 static struct i2c_dev_desc * 935 i3c_master_find_i2c_dev_by_addr(const struct i3c_master_controller *master, 936 u16 addr) 937 { 938 struct i2c_dev_desc *dev; 939 940 i3c_bus_for_each_i2cdev(&master->bus, dev) { 941 if (dev->addr == addr) 942 return dev; 943 } 944 945 return NULL; 946 } 947 948 /** 949 * i3c_master_get_free_addr() - get a free address on the bus 950 * @master: I3C master object 951 * @start_addr: where to start searching 952 * 953 * This function must be called with the bus lock held in write mode. 954 * 955 * Return: the first free address starting at @start_addr (included) or -ENOMEM 956 * if there's no more address available. 957 */ 958 int i3c_master_get_free_addr(struct i3c_master_controller *master, 959 u8 start_addr) 960 { 961 return i3c_bus_get_free_addr(&master->bus, start_addr); 962 } 963 EXPORT_SYMBOL_GPL(i3c_master_get_free_addr); 964 965 static void i3c_device_release(struct device *dev) 966 { 967 struct i3c_device *i3cdev = dev_to_i3cdev(dev); 968 969 WARN_ON(i3cdev->desc); 970 971 of_node_put(i3cdev->dev.of_node); 972 kfree(i3cdev); 973 } 974 975 static void i3c_master_free_i3c_dev(struct i3c_dev_desc *dev) 976 { 977 kfree(dev); 978 } 979 980 static struct i3c_dev_desc * 981 i3c_master_alloc_i3c_dev(struct i3c_master_controller *master, 982 const struct i3c_device_info *info) 983 { 984 struct i3c_dev_desc *dev; 985 986 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 987 if (!dev) 988 return ERR_PTR(-ENOMEM); 989 990 dev->common.master = master; 991 dev->info = *info; 992 mutex_init(&dev->ibi_lock); 993 994 return dev; 995 } 996 997 static int i3c_master_rstdaa_locked(struct i3c_master_controller *master, 998 u8 addr) 999 { 1000 enum i3c_addr_slot_status addrstat; 1001 struct i3c_ccc_cmd_dest dest; 1002 struct i3c_ccc_cmd cmd; 1003 int ret; 1004 1005 if (!master) 1006 return -EINVAL; 1007 1008 addrstat = i3c_bus_get_addr_slot_status(&master->bus, addr); 1009 if (addr != I3C_BROADCAST_ADDR && addrstat != I3C_ADDR_SLOT_I3C_DEV) 1010 return -EINVAL; 1011 1012 i3c_ccc_cmd_dest_init(&dest, addr, 0); 1013 i3c_ccc_cmd_init(&cmd, false, 1014 I3C_CCC_RSTDAA(addr == I3C_BROADCAST_ADDR), 1015 &dest, 1); 1016 ret = i3c_master_send_ccc_cmd_locked(master, &cmd); 1017 i3c_ccc_cmd_dest_cleanup(&dest); 1018 1019 return ret; 1020 } 1021 1022 /** 1023 * i3c_master_entdaa_locked() - start a DAA (Dynamic Address Assignment) 1024 * procedure 1025 * @master: master used to send frames on the bus 1026 * 1027 * Send a ENTDAA CCC command to start a DAA procedure. 1028 * 1029 * Note that this function only sends the ENTDAA CCC command, all the logic 1030 * behind dynamic address assignment has to be handled in the I3C master 1031 * driver. 1032 * 1033 * This function must be called with the bus lock held in write mode. 1034 * 1035 * Return: 0 in case of success, a positive I3C error code if the error is 1036 * one of the official Mx error codes, and a negative error code otherwise. 1037 */ 1038 int i3c_master_entdaa_locked(struct i3c_master_controller *master) 1039 { 1040 struct i3c_ccc_cmd_dest dest; 1041 struct i3c_ccc_cmd cmd; 1042 int ret; 1043 1044 i3c_ccc_cmd_dest_init(&dest, I3C_BROADCAST_ADDR, 0); 1045 i3c_ccc_cmd_init(&cmd, false, I3C_CCC_ENTDAA, &dest, 1); 1046 ret = i3c_master_send_ccc_cmd_locked(master, &cmd); 1047 i3c_ccc_cmd_dest_cleanup(&dest); 1048 1049 return ret; 1050 } 1051 EXPORT_SYMBOL_GPL(i3c_master_entdaa_locked); 1052 1053 static int i3c_master_enec_disec_locked(struct i3c_master_controller *master, 1054 u8 addr, bool enable, u8 evts) 1055 { 1056 struct i3c_ccc_events *events; 1057 struct i3c_ccc_cmd_dest dest; 1058 struct i3c_ccc_cmd cmd; 1059 int ret; 1060 1061 events = i3c_ccc_cmd_dest_init(&dest, addr, sizeof(*events)); 1062 if (!events) 1063 return -ENOMEM; 1064 1065 events->events = evts; 1066 i3c_ccc_cmd_init(&cmd, false, 1067 enable ? 1068 I3C_CCC_ENEC(addr == I3C_BROADCAST_ADDR) : 1069 I3C_CCC_DISEC(addr == I3C_BROADCAST_ADDR), 1070 &dest, 1); 1071 ret = i3c_master_send_ccc_cmd_locked(master, &cmd); 1072 i3c_ccc_cmd_dest_cleanup(&dest); 1073 1074 return ret; 1075 } 1076 1077 /** 1078 * i3c_master_disec_locked() - send a DISEC CCC command 1079 * @master: master used to send frames on the bus 1080 * @addr: a valid I3C slave address or %I3C_BROADCAST_ADDR 1081 * @evts: events to disable 1082 * 1083 * Send a DISEC CCC command to disable some or all events coming from a 1084 * specific slave, or all devices if @addr is %I3C_BROADCAST_ADDR. 1085 * 1086 * This function must be called with the bus lock held in write mode. 1087 * 1088 * Return: 0 in case of success, a positive I3C error code if the error is 1089 * one of the official Mx error codes, and a negative error code otherwise. 1090 */ 1091 int i3c_master_disec_locked(struct i3c_master_controller *master, u8 addr, 1092 u8 evts) 1093 { 1094 return i3c_master_enec_disec_locked(master, addr, false, evts); 1095 } 1096 EXPORT_SYMBOL_GPL(i3c_master_disec_locked); 1097 1098 /** 1099 * i3c_master_enec_locked() - send an ENEC CCC command 1100 * @master: master used to send frames on the bus 1101 * @addr: a valid I3C slave address or %I3C_BROADCAST_ADDR 1102 * @evts: events to disable 1103 * 1104 * Sends an ENEC CCC command to enable some or all events coming from a 1105 * specific slave, or all devices if @addr is %I3C_BROADCAST_ADDR. 1106 * 1107 * This function must be called with the bus lock held in write mode. 1108 * 1109 * Return: 0 in case of success, a positive I3C error code if the error is 1110 * one of the official Mx error codes, and a negative error code otherwise. 1111 */ 1112 int i3c_master_enec_locked(struct i3c_master_controller *master, u8 addr, 1113 u8 evts) 1114 { 1115 return i3c_master_enec_disec_locked(master, addr, true, evts); 1116 } 1117 EXPORT_SYMBOL_GPL(i3c_master_enec_locked); 1118 1119 /** 1120 * i3c_master_defslvs_locked() - send a DEFSLVS CCC command 1121 * @master: master used to send frames on the bus 1122 * 1123 * Send a DEFSLVS CCC command containing all the devices known to the @master. 1124 * This is useful when you have secondary masters on the bus to propagate 1125 * device information. 1126 * 1127 * This should be called after all I3C devices have been discovered (in other 1128 * words, after the DAA procedure has finished) and instantiated in 1129 * &i3c_master_controller_ops->bus_init(). 1130 * It should also be called if a master ACKed an Hot-Join request and assigned 1131 * a dynamic address to the device joining the bus. 1132 * 1133 * This function must be called with the bus lock held in write mode. 1134 * 1135 * Return: 0 in case of success, a positive I3C error code if the error is 1136 * one of the official Mx error codes, and a negative error code otherwise. 1137 */ 1138 int i3c_master_defslvs_locked(struct i3c_master_controller *master) 1139 { 1140 struct i3c_ccc_defslvs *defslvs; 1141 struct i3c_ccc_dev_desc *desc; 1142 struct i3c_ccc_cmd_dest dest; 1143 struct i3c_dev_desc *i3cdev; 1144 struct i2c_dev_desc *i2cdev; 1145 struct i3c_ccc_cmd cmd; 1146 struct i3c_bus *bus; 1147 bool send = false; 1148 int ndevs = 0, ret; 1149 1150 if (!master) 1151 return -EINVAL; 1152 1153 bus = i3c_master_get_bus(master); 1154 i3c_bus_for_each_i3cdev(bus, i3cdev) { 1155 ndevs++; 1156 1157 if (i3cdev == master->this) 1158 continue; 1159 1160 if (I3C_BCR_DEVICE_ROLE(i3cdev->info.bcr) == 1161 I3C_BCR_I3C_MASTER) 1162 send = true; 1163 } 1164 1165 /* No other master on the bus, skip DEFSLVS. */ 1166 if (!send) 1167 return 0; 1168 1169 i3c_bus_for_each_i2cdev(bus, i2cdev) 1170 ndevs++; 1171 1172 defslvs = i3c_ccc_cmd_dest_init(&dest, I3C_BROADCAST_ADDR, 1173 struct_size(defslvs, slaves, 1174 ndevs - 1)); 1175 if (!defslvs) 1176 return -ENOMEM; 1177 1178 defslvs->count = ndevs; 1179 defslvs->master.bcr = master->this->info.bcr; 1180 defslvs->master.dcr = master->this->info.dcr; 1181 defslvs->master.dyn_addr = master->this->info.dyn_addr << 1; 1182 defslvs->master.static_addr = I3C_BROADCAST_ADDR << 1; 1183 1184 desc = defslvs->slaves; 1185 i3c_bus_for_each_i2cdev(bus, i2cdev) { 1186 desc->lvr = i2cdev->lvr; 1187 desc->static_addr = i2cdev->addr << 1; 1188 desc++; 1189 } 1190 1191 i3c_bus_for_each_i3cdev(bus, i3cdev) { 1192 /* Skip the I3C dev representing this master. */ 1193 if (i3cdev == master->this) 1194 continue; 1195 1196 desc->bcr = i3cdev->info.bcr; 1197 desc->dcr = i3cdev->info.dcr; 1198 desc->dyn_addr = i3cdev->info.dyn_addr << 1; 1199 desc->static_addr = i3cdev->info.static_addr << 1; 1200 desc++; 1201 } 1202 1203 i3c_ccc_cmd_init(&cmd, false, I3C_CCC_DEFSLVS, &dest, 1); 1204 ret = i3c_master_send_ccc_cmd_locked(master, &cmd); 1205 i3c_ccc_cmd_dest_cleanup(&dest); 1206 1207 return ret; 1208 } 1209 EXPORT_SYMBOL_GPL(i3c_master_defslvs_locked); 1210 1211 static int i3c_master_setda_locked(struct i3c_master_controller *master, 1212 u8 oldaddr, u8 newaddr, bool setdasa) 1213 { 1214 struct i3c_ccc_cmd_dest dest; 1215 struct i3c_ccc_setda *setda; 1216 struct i3c_ccc_cmd cmd; 1217 int ret; 1218 1219 if (!oldaddr || !newaddr) 1220 return -EINVAL; 1221 1222 setda = i3c_ccc_cmd_dest_init(&dest, oldaddr, sizeof(*setda)); 1223 if (!setda) 1224 return -ENOMEM; 1225 1226 setda->addr = newaddr << 1; 1227 i3c_ccc_cmd_init(&cmd, false, 1228 setdasa ? I3C_CCC_SETDASA : I3C_CCC_SETNEWDA, 1229 &dest, 1); 1230 ret = i3c_master_send_ccc_cmd_locked(master, &cmd); 1231 i3c_ccc_cmd_dest_cleanup(&dest); 1232 1233 return ret; 1234 } 1235 1236 static int i3c_master_setdasa_locked(struct i3c_master_controller *master, 1237 u8 static_addr, u8 dyn_addr) 1238 { 1239 return i3c_master_setda_locked(master, static_addr, dyn_addr, true); 1240 } 1241 1242 static int i3c_master_setnewda_locked(struct i3c_master_controller *master, 1243 u8 oldaddr, u8 newaddr) 1244 { 1245 return i3c_master_setda_locked(master, oldaddr, newaddr, false); 1246 } 1247 1248 static int i3c_master_getmrl_locked(struct i3c_master_controller *master, 1249 struct i3c_device_info *info) 1250 { 1251 struct i3c_ccc_cmd_dest dest; 1252 struct i3c_ccc_mrl *mrl; 1253 struct i3c_ccc_cmd cmd; 1254 int ret; 1255 1256 mrl = i3c_ccc_cmd_dest_init(&dest, info->dyn_addr, sizeof(*mrl)); 1257 if (!mrl) 1258 return -ENOMEM; 1259 1260 /* 1261 * When the device does not have IBI payload GETMRL only returns 2 1262 * bytes of data. 1263 */ 1264 if (!(info->bcr & I3C_BCR_IBI_PAYLOAD)) 1265 dest.payload.len -= 1; 1266 1267 i3c_ccc_cmd_init(&cmd, true, I3C_CCC_GETMRL, &dest, 1); 1268 ret = i3c_master_send_ccc_cmd_locked(master, &cmd); 1269 if (ret) 1270 goto out; 1271 1272 switch (dest.payload.len) { 1273 case 3: 1274 info->max_ibi_len = mrl->ibi_len; 1275 fallthrough; 1276 case 2: 1277 info->max_read_len = be16_to_cpu(mrl->read_len); 1278 break; 1279 default: 1280 ret = -EIO; 1281 goto out; 1282 } 1283 1284 out: 1285 i3c_ccc_cmd_dest_cleanup(&dest); 1286 1287 return ret; 1288 } 1289 1290 static int i3c_master_getmwl_locked(struct i3c_master_controller *master, 1291 struct i3c_device_info *info) 1292 { 1293 struct i3c_ccc_cmd_dest dest; 1294 struct i3c_ccc_mwl *mwl; 1295 struct i3c_ccc_cmd cmd; 1296 int ret; 1297 1298 mwl = i3c_ccc_cmd_dest_init(&dest, info->dyn_addr, sizeof(*mwl)); 1299 if (!mwl) 1300 return -ENOMEM; 1301 1302 i3c_ccc_cmd_init(&cmd, true, I3C_CCC_GETMWL, &dest, 1); 1303 ret = i3c_master_send_ccc_cmd_locked(master, &cmd); 1304 if (ret) 1305 goto out; 1306 1307 if (dest.payload.len != sizeof(*mwl)) { 1308 ret = -EIO; 1309 goto out; 1310 } 1311 1312 info->max_write_len = be16_to_cpu(mwl->len); 1313 1314 out: 1315 i3c_ccc_cmd_dest_cleanup(&dest); 1316 1317 return ret; 1318 } 1319 1320 static int i3c_master_getmxds_locked(struct i3c_master_controller *master, 1321 struct i3c_device_info *info) 1322 { 1323 struct i3c_ccc_getmxds *getmaxds; 1324 struct i3c_ccc_cmd_dest dest; 1325 struct i3c_ccc_cmd cmd; 1326 int ret; 1327 1328 getmaxds = i3c_ccc_cmd_dest_init(&dest, info->dyn_addr, 1329 sizeof(*getmaxds)); 1330 if (!getmaxds) 1331 return -ENOMEM; 1332 1333 i3c_ccc_cmd_init(&cmd, true, I3C_CCC_GETMXDS, &dest, 1); 1334 ret = i3c_master_send_ccc_cmd_locked(master, &cmd); 1335 if (ret) { 1336 /* 1337 * Retry when the device does not support max read turnaround 1338 * while expecting shorter length from this CCC command. 1339 */ 1340 dest.payload.len -= 3; 1341 ret = i3c_master_send_ccc_cmd_locked(master, &cmd); 1342 if (ret) 1343 goto out; 1344 } 1345 1346 if (dest.payload.len != 2 && dest.payload.len != 5) { 1347 ret = -EIO; 1348 goto out; 1349 } 1350 1351 info->max_read_ds = getmaxds->maxrd; 1352 info->max_write_ds = getmaxds->maxwr; 1353 if (dest.payload.len == 5) 1354 info->max_read_turnaround = getmaxds->maxrdturn[0] | 1355 ((u32)getmaxds->maxrdturn[1] << 8) | 1356 ((u32)getmaxds->maxrdturn[2] << 16); 1357 1358 out: 1359 i3c_ccc_cmd_dest_cleanup(&dest); 1360 1361 return ret; 1362 } 1363 1364 static int i3c_master_gethdrcap_locked(struct i3c_master_controller *master, 1365 struct i3c_device_info *info) 1366 { 1367 struct i3c_ccc_gethdrcap *gethdrcap; 1368 struct i3c_ccc_cmd_dest dest; 1369 struct i3c_ccc_cmd cmd; 1370 int ret; 1371 1372 gethdrcap = i3c_ccc_cmd_dest_init(&dest, info->dyn_addr, 1373 sizeof(*gethdrcap)); 1374 if (!gethdrcap) 1375 return -ENOMEM; 1376 1377 i3c_ccc_cmd_init(&cmd, true, I3C_CCC_GETHDRCAP, &dest, 1); 1378 ret = i3c_master_send_ccc_cmd_locked(master, &cmd); 1379 if (ret) 1380 goto out; 1381 1382 if (dest.payload.len != 1) { 1383 ret = -EIO; 1384 goto out; 1385 } 1386 1387 info->hdr_cap = gethdrcap->modes; 1388 1389 out: 1390 i3c_ccc_cmd_dest_cleanup(&dest); 1391 1392 return ret; 1393 } 1394 1395 static int i3c_master_getpid_locked(struct i3c_master_controller *master, 1396 struct i3c_device_info *info) 1397 { 1398 struct i3c_ccc_getpid *getpid; 1399 struct i3c_ccc_cmd_dest dest; 1400 struct i3c_ccc_cmd cmd; 1401 int ret, i; 1402 1403 getpid = i3c_ccc_cmd_dest_init(&dest, info->dyn_addr, sizeof(*getpid)); 1404 if (!getpid) 1405 return -ENOMEM; 1406 1407 i3c_ccc_cmd_init(&cmd, true, I3C_CCC_GETPID, &dest, 1); 1408 ret = i3c_master_send_ccc_cmd_locked(master, &cmd); 1409 if (ret) 1410 goto out; 1411 1412 info->pid = 0; 1413 for (i = 0; i < sizeof(getpid->pid); i++) { 1414 int sft = (sizeof(getpid->pid) - i - 1) * 8; 1415 1416 info->pid |= (u64)getpid->pid[i] << sft; 1417 } 1418 1419 out: 1420 i3c_ccc_cmd_dest_cleanup(&dest); 1421 1422 return ret; 1423 } 1424 1425 static int i3c_master_getbcr_locked(struct i3c_master_controller *master, 1426 struct i3c_device_info *info) 1427 { 1428 struct i3c_ccc_getbcr *getbcr; 1429 struct i3c_ccc_cmd_dest dest; 1430 struct i3c_ccc_cmd cmd; 1431 int ret; 1432 1433 getbcr = i3c_ccc_cmd_dest_init(&dest, info->dyn_addr, sizeof(*getbcr)); 1434 if (!getbcr) 1435 return -ENOMEM; 1436 1437 i3c_ccc_cmd_init(&cmd, true, I3C_CCC_GETBCR, &dest, 1); 1438 ret = i3c_master_send_ccc_cmd_locked(master, &cmd); 1439 if (ret) 1440 goto out; 1441 1442 info->bcr = getbcr->bcr; 1443 1444 out: 1445 i3c_ccc_cmd_dest_cleanup(&dest); 1446 1447 return ret; 1448 } 1449 1450 static int i3c_master_getdcr_locked(struct i3c_master_controller *master, 1451 struct i3c_device_info *info) 1452 { 1453 struct i3c_ccc_getdcr *getdcr; 1454 struct i3c_ccc_cmd_dest dest; 1455 struct i3c_ccc_cmd cmd; 1456 int ret; 1457 1458 getdcr = i3c_ccc_cmd_dest_init(&dest, info->dyn_addr, sizeof(*getdcr)); 1459 if (!getdcr) 1460 return -ENOMEM; 1461 1462 i3c_ccc_cmd_init(&cmd, true, I3C_CCC_GETDCR, &dest, 1); 1463 ret = i3c_master_send_ccc_cmd_locked(master, &cmd); 1464 if (ret) 1465 goto out; 1466 1467 info->dcr = getdcr->dcr; 1468 1469 out: 1470 i3c_ccc_cmd_dest_cleanup(&dest); 1471 1472 return ret; 1473 } 1474 1475 static int i3c_master_retrieve_dev_info(struct i3c_dev_desc *dev) 1476 { 1477 struct i3c_master_controller *master = i3c_dev_get_master(dev); 1478 enum i3c_addr_slot_status slot_status; 1479 int ret; 1480 1481 if (!dev->info.dyn_addr) 1482 return -EINVAL; 1483 1484 slot_status = i3c_bus_get_addr_slot_status(&master->bus, 1485 dev->info.dyn_addr); 1486 if (slot_status == I3C_ADDR_SLOT_RSVD || 1487 slot_status == I3C_ADDR_SLOT_I2C_DEV) 1488 return -EINVAL; 1489 1490 ret = i3c_master_getpid_locked(master, &dev->info); 1491 if (ret) 1492 return ret; 1493 1494 ret = i3c_master_getbcr_locked(master, &dev->info); 1495 if (ret) 1496 return ret; 1497 1498 ret = i3c_master_getdcr_locked(master, &dev->info); 1499 if (ret) 1500 return ret; 1501 1502 if (dev->info.bcr & I3C_BCR_MAX_DATA_SPEED_LIM) { 1503 ret = i3c_master_getmxds_locked(master, &dev->info); 1504 if (ret) 1505 return ret; 1506 } 1507 1508 if (dev->info.bcr & I3C_BCR_IBI_PAYLOAD) 1509 dev->info.max_ibi_len = 1; 1510 1511 i3c_master_getmrl_locked(master, &dev->info); 1512 i3c_master_getmwl_locked(master, &dev->info); 1513 1514 if (dev->info.bcr & I3C_BCR_HDR_CAP) { 1515 ret = i3c_master_gethdrcap_locked(master, &dev->info); 1516 if (ret && ret != -EOPNOTSUPP) 1517 return ret; 1518 } 1519 1520 return 0; 1521 } 1522 1523 static void i3c_master_put_i3c_addrs(struct i3c_dev_desc *dev) 1524 { 1525 struct i3c_master_controller *master = i3c_dev_get_master(dev); 1526 1527 if (dev->info.static_addr) 1528 i3c_bus_set_addr_slot_status(&master->bus, 1529 dev->info.static_addr, 1530 I3C_ADDR_SLOT_FREE); 1531 1532 if (dev->info.dyn_addr) 1533 i3c_bus_set_addr_slot_status(&master->bus, dev->info.dyn_addr, 1534 I3C_ADDR_SLOT_FREE); 1535 1536 if (dev->boardinfo && dev->boardinfo->init_dyn_addr) 1537 i3c_bus_set_addr_slot_status(&master->bus, dev->boardinfo->init_dyn_addr, 1538 I3C_ADDR_SLOT_FREE); 1539 } 1540 1541 static int i3c_master_get_i3c_addrs(struct i3c_dev_desc *dev) 1542 { 1543 struct i3c_master_controller *master = i3c_dev_get_master(dev); 1544 enum i3c_addr_slot_status status; 1545 1546 if (!dev->info.static_addr && !dev->info.dyn_addr) 1547 return 0; 1548 1549 if (dev->info.static_addr) { 1550 status = i3c_bus_get_addr_slot_status(&master->bus, 1551 dev->info.static_addr); 1552 /* Since static address and assigned dynamic address can be 1553 * equal, allow this case to pass. 1554 */ 1555 if (status != I3C_ADDR_SLOT_FREE && 1556 dev->info.static_addr != dev->boardinfo->init_dyn_addr) 1557 return -EBUSY; 1558 1559 i3c_bus_set_addr_slot_status(&master->bus, 1560 dev->info.static_addr, 1561 I3C_ADDR_SLOT_I3C_DEV); 1562 } 1563 1564 /* 1565 * ->init_dyn_addr should have been reserved before that, so, if we're 1566 * trying to apply a pre-reserved dynamic address, we should not try 1567 * to reserve the address slot a second time. 1568 */ 1569 if (dev->info.dyn_addr && 1570 (!dev->boardinfo || 1571 dev->boardinfo->init_dyn_addr != dev->info.dyn_addr)) { 1572 status = i3c_bus_get_addr_slot_status(&master->bus, 1573 dev->info.dyn_addr); 1574 if (status != I3C_ADDR_SLOT_FREE) 1575 goto err_release_static_addr; 1576 1577 i3c_bus_set_addr_slot_status(&master->bus, dev->info.dyn_addr, 1578 I3C_ADDR_SLOT_I3C_DEV); 1579 } 1580 1581 return 0; 1582 1583 err_release_static_addr: 1584 if (dev->info.static_addr) 1585 i3c_bus_set_addr_slot_status(&master->bus, 1586 dev->info.static_addr, 1587 I3C_ADDR_SLOT_FREE); 1588 1589 return -EBUSY; 1590 } 1591 1592 static int i3c_master_attach_i3c_dev(struct i3c_master_controller *master, 1593 struct i3c_dev_desc *dev) 1594 { 1595 int ret; 1596 1597 /* 1598 * We don't attach devices to the controller until they are 1599 * addressable on the bus. 1600 */ 1601 if (!dev->info.static_addr && !dev->info.dyn_addr) 1602 return 0; 1603 1604 ret = i3c_master_get_i3c_addrs(dev); 1605 if (ret) 1606 return ret; 1607 1608 /* Do not attach the master device itself. */ 1609 if (master->this != dev && master->ops->attach_i3c_dev) { 1610 ret = master->ops->attach_i3c_dev(dev); 1611 if (ret) { 1612 i3c_master_put_i3c_addrs(dev); 1613 return ret; 1614 } 1615 } 1616 1617 list_add_tail(&dev->common.node, &master->bus.devs.i3c); 1618 1619 return 0; 1620 } 1621 1622 static int i3c_master_reattach_i3c_dev(struct i3c_dev_desc *dev, 1623 u8 old_dyn_addr) 1624 { 1625 struct i3c_master_controller *master = i3c_dev_get_master(dev); 1626 int ret; 1627 1628 if (dev->info.dyn_addr != old_dyn_addr) { 1629 i3c_bus_set_addr_slot_status(&master->bus, 1630 dev->info.dyn_addr, 1631 I3C_ADDR_SLOT_I3C_DEV); 1632 if (old_dyn_addr) 1633 i3c_bus_set_addr_slot_status(&master->bus, old_dyn_addr, 1634 I3C_ADDR_SLOT_FREE); 1635 } 1636 1637 if (master->ops->reattach_i3c_dev) { 1638 ret = master->ops->reattach_i3c_dev(dev, old_dyn_addr); 1639 if (ret) { 1640 i3c_master_put_i3c_addrs(dev); 1641 return ret; 1642 } 1643 } 1644 1645 return 0; 1646 } 1647 1648 static void i3c_master_detach_i3c_dev(struct i3c_dev_desc *dev) 1649 { 1650 struct i3c_master_controller *master = i3c_dev_get_master(dev); 1651 1652 /* Do not detach the master device itself. */ 1653 if (master->this != dev && master->ops->detach_i3c_dev) 1654 master->ops->detach_i3c_dev(dev); 1655 1656 i3c_master_put_i3c_addrs(dev); 1657 list_del(&dev->common.node); 1658 } 1659 1660 static int i3c_master_attach_i2c_dev(struct i3c_master_controller *master, 1661 struct i2c_dev_desc *dev) 1662 { 1663 int ret; 1664 1665 if (master->ops->attach_i2c_dev) { 1666 ret = master->ops->attach_i2c_dev(dev); 1667 if (ret) 1668 return ret; 1669 } 1670 1671 list_add_tail(&dev->common.node, &master->bus.devs.i2c); 1672 1673 return 0; 1674 } 1675 1676 static void i3c_master_detach_i2c_dev(struct i2c_dev_desc *dev) 1677 { 1678 struct i3c_master_controller *master = i2c_dev_get_master(dev); 1679 1680 list_del(&dev->common.node); 1681 1682 if (master->ops->detach_i2c_dev) 1683 master->ops->detach_i2c_dev(dev); 1684 } 1685 1686 static int i3c_master_early_i3c_dev_add(struct i3c_master_controller *master, 1687 struct i3c_dev_boardinfo *boardinfo) 1688 { 1689 struct i3c_device_info info = { 1690 .static_addr = boardinfo->static_addr, 1691 .pid = boardinfo->pid, 1692 }; 1693 struct i3c_dev_desc *i3cdev; 1694 int ret; 1695 1696 i3cdev = i3c_master_alloc_i3c_dev(master, &info); 1697 if (IS_ERR(i3cdev)) 1698 return -ENOMEM; 1699 1700 i3cdev->boardinfo = boardinfo; 1701 1702 ret = i3c_master_attach_i3c_dev(master, i3cdev); 1703 if (ret) 1704 goto err_free_dev; 1705 1706 ret = i3c_master_setdasa_locked(master, i3cdev->info.static_addr, 1707 i3cdev->boardinfo->init_dyn_addr); 1708 if (ret) 1709 goto err_detach_dev; 1710 1711 i3cdev->info.dyn_addr = i3cdev->boardinfo->init_dyn_addr; 1712 ret = i3c_master_reattach_i3c_dev(i3cdev, 0); 1713 if (ret) 1714 goto err_rstdaa; 1715 1716 ret = i3c_master_retrieve_dev_info(i3cdev); 1717 if (ret) 1718 goto err_rstdaa; 1719 1720 return 0; 1721 1722 err_rstdaa: 1723 i3c_master_rstdaa_locked(master, i3cdev->boardinfo->init_dyn_addr); 1724 err_detach_dev: 1725 i3c_master_detach_i3c_dev(i3cdev); 1726 err_free_dev: 1727 i3c_master_free_i3c_dev(i3cdev); 1728 1729 return ret; 1730 } 1731 1732 static void 1733 i3c_master_register_new_i3c_devs(struct i3c_master_controller *master) 1734 { 1735 struct i3c_dev_desc *desc; 1736 int ret; 1737 1738 if (!master->init_done) 1739 return; 1740 1741 i3c_bus_for_each_i3cdev(&master->bus, desc) { 1742 if (desc->dev || !desc->info.dyn_addr || desc == master->this) 1743 continue; 1744 1745 desc->dev = kzalloc(sizeof(*desc->dev), GFP_KERNEL); 1746 if (!desc->dev) 1747 continue; 1748 1749 desc->dev->bus = &master->bus; 1750 desc->dev->desc = desc; 1751 desc->dev->dev.parent = &master->dev; 1752 desc->dev->dev.type = &i3c_device_type; 1753 desc->dev->dev.bus = &i3c_bus_type; 1754 desc->dev->dev.release = i3c_device_release; 1755 dev_set_name(&desc->dev->dev, "%d-%llx", master->bus.id, 1756 desc->info.pid); 1757 1758 if (desc->boardinfo) 1759 desc->dev->dev.of_node = desc->boardinfo->of_node; 1760 1761 ret = device_register(&desc->dev->dev); 1762 if (ret) { 1763 dev_err(&master->dev, 1764 "Failed to add I3C device (err = %d)\n", ret); 1765 put_device(&desc->dev->dev); 1766 } 1767 } 1768 } 1769 1770 /** 1771 * i3c_master_do_daa_ext() - Dynamic Address Assignment (extended version) 1772 * @master: controller 1773 * @rstdaa: whether to first perform Reset of Dynamic Addresses (RSTDAA) 1774 * 1775 * Perform Dynamic Address Assignment with optional support for System 1776 * Hibernation (@rstdaa is true). 1777 * 1778 * After System Hibernation, Dynamic Addresses can have been reassigned at boot 1779 * time to different values. A simple strategy is followed to handle that. 1780 * Perform a Reset of Dynamic Addresses (RSTDAA) followed by the normal DAA 1781 * procedure which has provision for reassigning addresses that differ from the 1782 * previously recorded addresses. 1783 * 1784 * Return: a 0 in case of success, an negative error code otherwise. 1785 */ 1786 int i3c_master_do_daa_ext(struct i3c_master_controller *master, bool rstdaa) 1787 { 1788 int rstret = 0; 1789 int ret; 1790 1791 ret = i3c_master_rpm_get(master); 1792 if (ret) 1793 return ret; 1794 1795 i3c_bus_maintenance_lock(&master->bus); 1796 1797 if (rstdaa) { 1798 rstret = i3c_master_rstdaa_locked(master, I3C_BROADCAST_ADDR); 1799 if (rstret == I3C_ERROR_M2) 1800 rstret = 0; 1801 } 1802 1803 ret = master->ops->do_daa(master); 1804 1805 i3c_bus_maintenance_unlock(&master->bus); 1806 1807 if (ret) 1808 goto out; 1809 1810 i3c_bus_normaluse_lock(&master->bus); 1811 i3c_master_register_new_i3c_devs(master); 1812 i3c_bus_normaluse_unlock(&master->bus); 1813 out: 1814 i3c_master_rpm_put(master); 1815 1816 return rstret ?: ret; 1817 } 1818 EXPORT_SYMBOL_GPL(i3c_master_do_daa_ext); 1819 1820 /** 1821 * i3c_master_do_daa() - do a DAA (Dynamic Address Assignment) 1822 * @master: master doing the DAA 1823 * 1824 * This function instantiates I3C device objects and adds them to the 1825 * I3C device list. All device information is automatically retrieved using 1826 * standard CCC commands. 1827 * 1828 * Return: a 0 in case of success, an negative error code otherwise. 1829 */ 1830 int i3c_master_do_daa(struct i3c_master_controller *master) 1831 { 1832 return i3c_master_do_daa_ext(master, false); 1833 } 1834 EXPORT_SYMBOL_GPL(i3c_master_do_daa); 1835 1836 /** 1837 * i3c_master_dma_map_single() - Map buffer for single DMA transfer 1838 * @dev: device object of a device doing DMA 1839 * @buf: destination/source buffer for DMA 1840 * @len: length of transfer 1841 * @force_bounce: true, force to use a bounce buffer, 1842 * false, function will auto check is a bounce buffer required 1843 * @dir: DMA direction 1844 * 1845 * Map buffer for a DMA transfer and allocate a bounce buffer if required. 1846 * 1847 * Return: I3C DMA transfer descriptor or NULL in case of error. 1848 */ 1849 struct i3c_dma *i3c_master_dma_map_single(struct device *dev, void *buf, 1850 size_t len, bool force_bounce, enum dma_data_direction dir) 1851 { 1852 void *bounce __free(kfree) = NULL; 1853 void *dma_buf = buf; 1854 1855 struct i3c_dma *dma_xfer __free(kfree) = kzalloc(sizeof(*dma_xfer), GFP_KERNEL); 1856 if (!dma_xfer) 1857 return NULL; 1858 1859 dma_xfer->dev = dev; 1860 dma_xfer->buf = buf; 1861 dma_xfer->dir = dir; 1862 dma_xfer->len = len; 1863 dma_xfer->map_len = len; 1864 1865 if (is_vmalloc_addr(buf)) 1866 force_bounce = true; 1867 1868 if (force_bounce) { 1869 dma_xfer->map_len = ALIGN(len, cache_line_size()); 1870 if (dir == DMA_FROM_DEVICE) 1871 bounce = kzalloc(dma_xfer->map_len, GFP_KERNEL); 1872 else 1873 bounce = kmemdup(buf, dma_xfer->map_len, GFP_KERNEL); 1874 if (!bounce) 1875 return NULL; 1876 dma_buf = bounce; 1877 } 1878 1879 dma_xfer->addr = dma_map_single(dev, dma_buf, dma_xfer->map_len, dir); 1880 if (dma_mapping_error(dev, dma_xfer->addr)) 1881 return NULL; 1882 1883 dma_xfer->bounce_buf = no_free_ptr(bounce); 1884 return no_free_ptr(dma_xfer); 1885 } 1886 EXPORT_SYMBOL_GPL(i3c_master_dma_map_single); 1887 1888 /** 1889 * i3c_master_dma_unmap_single() - Unmap buffer after DMA 1890 * @dma_xfer: DMA transfer and mapping descriptor 1891 * 1892 * Unmap buffer and cleanup DMA transfer descriptor. 1893 */ 1894 void i3c_master_dma_unmap_single(struct i3c_dma *dma_xfer) 1895 { 1896 dma_unmap_single(dma_xfer->dev, dma_xfer->addr, 1897 dma_xfer->map_len, dma_xfer->dir); 1898 if (dma_xfer->bounce_buf) { 1899 if (dma_xfer->dir == DMA_FROM_DEVICE) 1900 memcpy(dma_xfer->buf, dma_xfer->bounce_buf, 1901 dma_xfer->len); 1902 kfree(dma_xfer->bounce_buf); 1903 } 1904 kfree(dma_xfer); 1905 } 1906 EXPORT_SYMBOL_GPL(i3c_master_dma_unmap_single); 1907 1908 /** 1909 * i3c_master_set_info() - set master device information 1910 * @master: master used to send frames on the bus 1911 * @info: I3C device information 1912 * 1913 * Set master device info. This should be called from 1914 * &i3c_master_controller_ops->bus_init(). 1915 * 1916 * Not all &i3c_device_info fields are meaningful for a master device. 1917 * Here is a list of fields that should be properly filled: 1918 * 1919 * - &i3c_device_info->dyn_addr 1920 * - &i3c_device_info->bcr 1921 * - &i3c_device_info->dcr 1922 * - &i3c_device_info->pid 1923 * - &i3c_device_info->hdr_cap if %I3C_BCR_HDR_CAP bit is set in 1924 * &i3c_device_info->bcr 1925 * 1926 * This function must be called with the bus lock held in maintenance mode. 1927 * 1928 * Return: 0 if @info contains valid information (not every piece of 1929 * information can be checked, but we can at least make sure @info->dyn_addr 1930 * and @info->bcr are correct), -EINVAL otherwise. 1931 */ 1932 int i3c_master_set_info(struct i3c_master_controller *master, 1933 const struct i3c_device_info *info) 1934 { 1935 struct i3c_dev_desc *i3cdev; 1936 int ret; 1937 1938 if (!i3c_bus_dev_addr_is_avail(&master->bus, info->dyn_addr)) 1939 return -EINVAL; 1940 1941 if (I3C_BCR_DEVICE_ROLE(info->bcr) == I3C_BCR_I3C_MASTER && 1942 master->secondary) 1943 return -EINVAL; 1944 1945 if (master->this) 1946 return -EINVAL; 1947 1948 i3cdev = i3c_master_alloc_i3c_dev(master, info); 1949 if (IS_ERR(i3cdev)) 1950 return PTR_ERR(i3cdev); 1951 1952 master->this = i3cdev; 1953 master->bus.cur_master = master->this; 1954 1955 ret = i3c_master_attach_i3c_dev(master, i3cdev); 1956 if (ret) 1957 goto err_free_dev; 1958 1959 return 0; 1960 1961 err_free_dev: 1962 i3c_master_free_i3c_dev(i3cdev); 1963 1964 return ret; 1965 } 1966 EXPORT_SYMBOL_GPL(i3c_master_set_info); 1967 1968 static void i3c_master_detach_free_devs(struct i3c_master_controller *master) 1969 { 1970 struct i3c_dev_desc *i3cdev, *i3ctmp; 1971 struct i2c_dev_desc *i2cdev, *i2ctmp; 1972 1973 list_for_each_entry_safe(i3cdev, i3ctmp, &master->bus.devs.i3c, 1974 common.node) { 1975 i3c_master_detach_i3c_dev(i3cdev); 1976 1977 if (i3cdev->boardinfo && i3cdev->boardinfo->init_dyn_addr) 1978 i3c_bus_set_addr_slot_status(&master->bus, 1979 i3cdev->boardinfo->init_dyn_addr, 1980 I3C_ADDR_SLOT_FREE); 1981 1982 i3c_master_free_i3c_dev(i3cdev); 1983 } 1984 1985 list_for_each_entry_safe(i2cdev, i2ctmp, &master->bus.devs.i2c, 1986 common.node) { 1987 i3c_master_detach_i2c_dev(i2cdev); 1988 i3c_bus_set_addr_slot_status(&master->bus, 1989 i2cdev->addr, 1990 I3C_ADDR_SLOT_FREE); 1991 i3c_master_free_i2c_dev(i2cdev); 1992 } 1993 } 1994 1995 /** 1996 * i3c_master_bus_init() - initialize an I3C bus 1997 * @master: main master initializing the bus 1998 * 1999 * This function is following all initialisation steps described in the I3C 2000 * specification: 2001 * 2002 * 1. Attach I2C devs to the master so that the master can fill its internal 2003 * device table appropriately 2004 * 2005 * 2. Call &i3c_master_controller_ops->bus_init() method to initialize 2006 * the master controller. That's usually where the bus mode is selected 2007 * (pure bus or mixed fast/slow bus) 2008 * 2009 * 3. Instruct all devices on the bus to drop their dynamic address. This is 2010 * particularly important when the bus was previously configured by someone 2011 * else (for example the bootloader) 2012 * 2013 * 4. Disable all slave events. 2014 * 2015 * 5. Reserve address slots for I3C devices with init_dyn_addr. And if devices 2016 * also have static_addr, try to pre-assign dynamic addresses requested by 2017 * the FW with SETDASA and attach corresponding statically defined I3C 2018 * devices to the master. 2019 * 2020 * 6. Do a DAA (Dynamic Address Assignment) to assign dynamic addresses to all 2021 * remaining I3C devices 2022 * 2023 * Once this is done, all I3C and I2C devices should be usable. 2024 * 2025 * Return: a 0 in case of success, an negative error code otherwise. 2026 */ 2027 static int i3c_master_bus_init(struct i3c_master_controller *master) 2028 { 2029 enum i3c_addr_slot_status status; 2030 struct i2c_dev_boardinfo *i2cboardinfo; 2031 struct i3c_dev_boardinfo *i3cboardinfo; 2032 struct i2c_dev_desc *i2cdev; 2033 int ret; 2034 2035 /* 2036 * First attach all devices with static definitions provided by the 2037 * FW. 2038 */ 2039 list_for_each_entry(i2cboardinfo, &master->boardinfo.i2c, node) { 2040 status = i3c_bus_get_addr_slot_status(&master->bus, 2041 i2cboardinfo->base.addr); 2042 if (status != I3C_ADDR_SLOT_FREE) { 2043 ret = -EBUSY; 2044 goto err_detach_devs; 2045 } 2046 2047 i3c_bus_set_addr_slot_status(&master->bus, 2048 i2cboardinfo->base.addr, 2049 I3C_ADDR_SLOT_I2C_DEV); 2050 2051 i2cdev = i3c_master_alloc_i2c_dev(master, 2052 i2cboardinfo->base.addr, 2053 i2cboardinfo->lvr); 2054 if (IS_ERR(i2cdev)) { 2055 ret = PTR_ERR(i2cdev); 2056 goto err_detach_devs; 2057 } 2058 2059 ret = i3c_master_attach_i2c_dev(master, i2cdev); 2060 if (ret) { 2061 i3c_master_free_i2c_dev(i2cdev); 2062 goto err_detach_devs; 2063 } 2064 } 2065 2066 /* 2067 * Now execute the controller specific ->bus_init() routine, which 2068 * might configure its internal logic to match the bus limitations. 2069 */ 2070 ret = master->ops->bus_init(master); 2071 if (ret) 2072 goto err_detach_devs; 2073 2074 /* 2075 * The master device should have been instantiated in ->bus_init(), 2076 * complain if this was not the case. 2077 */ 2078 if (!master->this) { 2079 dev_err(&master->dev, 2080 "master_set_info() was not called in ->bus_init()\n"); 2081 ret = -EINVAL; 2082 goto err_bus_cleanup; 2083 } 2084 2085 if (master->ops->set_speed) { 2086 ret = master->ops->set_speed(master, I3C_OPEN_DRAIN_SLOW_SPEED); 2087 if (ret) 2088 goto err_bus_cleanup; 2089 } 2090 2091 /* 2092 * Reset all dynamic address that may have been assigned before 2093 * (assigned by the bootloader for example). 2094 */ 2095 ret = i3c_master_rstdaa_locked(master, I3C_BROADCAST_ADDR); 2096 if (ret && ret != I3C_ERROR_M2) 2097 goto err_bus_cleanup; 2098 2099 if (master->ops->set_speed) { 2100 ret = master->ops->set_speed(master, I3C_OPEN_DRAIN_NORMAL_SPEED); 2101 if (ret) 2102 goto err_bus_cleanup; 2103 } 2104 2105 /* Disable all slave events before starting DAA. */ 2106 ret = i3c_master_disec_locked(master, I3C_BROADCAST_ADDR, 2107 I3C_CCC_EVENT_SIR | I3C_CCC_EVENT_MR | 2108 I3C_CCC_EVENT_HJ); 2109 if (ret && ret != I3C_ERROR_M2) 2110 goto err_bus_cleanup; 2111 2112 /* 2113 * Reserve init_dyn_addr first, and then try to pre-assign dynamic 2114 * address and retrieve device information if needed. 2115 * In case pre-assign dynamic address fails, setting dynamic address to 2116 * the requested init_dyn_addr is retried after DAA is done in 2117 * i3c_master_add_i3c_dev_locked(). 2118 */ 2119 list_for_each_entry(i3cboardinfo, &master->boardinfo.i3c, node) { 2120 2121 /* 2122 * We don't reserve a dynamic address for devices that 2123 * don't explicitly request one. 2124 */ 2125 if (!i3cboardinfo->init_dyn_addr) 2126 continue; 2127 2128 ret = i3c_bus_get_addr_slot_status(&master->bus, 2129 i3cboardinfo->init_dyn_addr); 2130 if (ret != I3C_ADDR_SLOT_FREE) { 2131 ret = -EBUSY; 2132 goto err_rstdaa; 2133 } 2134 2135 /* Do not mark as occupied until real device exist in bus */ 2136 i3c_bus_set_addr_slot_status_mask(&master->bus, 2137 i3cboardinfo->init_dyn_addr, 2138 I3C_ADDR_SLOT_EXT_DESIRED, 2139 I3C_ADDR_SLOT_EXT_STATUS_MASK); 2140 2141 /* 2142 * Only try to create/attach devices that have a static 2143 * address. Other devices will be created/attached when 2144 * DAA happens, and the requested dynamic address will 2145 * be set using SETNEWDA once those devices become 2146 * addressable. 2147 */ 2148 2149 if (i3cboardinfo->static_addr) 2150 i3c_master_early_i3c_dev_add(master, i3cboardinfo); 2151 } 2152 2153 ret = i3c_master_do_daa(master); 2154 if (ret) 2155 goto err_rstdaa; 2156 2157 return 0; 2158 2159 err_rstdaa: 2160 i3c_master_rstdaa_locked(master, I3C_BROADCAST_ADDR); 2161 2162 err_bus_cleanup: 2163 if (master->ops->bus_cleanup) 2164 master->ops->bus_cleanup(master); 2165 2166 err_detach_devs: 2167 i3c_master_detach_free_devs(master); 2168 2169 return ret; 2170 } 2171 2172 static void i3c_master_bus_cleanup(struct i3c_master_controller *master) 2173 { 2174 if (master->ops->bus_cleanup) { 2175 int ret = i3c_master_rpm_get(master); 2176 2177 if (ret) { 2178 dev_err(&master->dev, 2179 "runtime resume error: master bus_cleanup() not done\n"); 2180 } else { 2181 master->ops->bus_cleanup(master); 2182 i3c_master_rpm_put(master); 2183 } 2184 } 2185 2186 i3c_master_detach_free_devs(master); 2187 } 2188 2189 static void i3c_master_attach_boardinfo(struct i3c_dev_desc *i3cdev) 2190 { 2191 struct i3c_master_controller *master = i3cdev->common.master; 2192 struct i3c_dev_boardinfo *i3cboardinfo; 2193 2194 list_for_each_entry(i3cboardinfo, &master->boardinfo.i3c, node) { 2195 if (i3cdev->info.pid != i3cboardinfo->pid) 2196 continue; 2197 2198 i3cdev->boardinfo = i3cboardinfo; 2199 i3cdev->info.static_addr = i3cboardinfo->static_addr; 2200 return; 2201 } 2202 } 2203 2204 static struct i3c_dev_desc * 2205 i3c_master_search_i3c_dev_duplicate(struct i3c_dev_desc *refdev) 2206 { 2207 struct i3c_master_controller *master = i3c_dev_get_master(refdev); 2208 struct i3c_dev_desc *i3cdev; 2209 2210 i3c_bus_for_each_i3cdev(&master->bus, i3cdev) { 2211 if (i3cdev != refdev && i3cdev->info.pid == refdev->info.pid) 2212 return i3cdev; 2213 } 2214 2215 return NULL; 2216 } 2217 2218 /** 2219 * i3c_master_add_i3c_dev_locked() - add an I3C slave to the bus 2220 * @master: master used to send frames on the bus 2221 * @addr: I3C slave dynamic address assigned to the device 2222 * 2223 * This function is instantiating an I3C device object and adding it to the 2224 * I3C device list. All device information are automatically retrieved using 2225 * standard CCC commands. 2226 * 2227 * The I3C device object is returned in case the master wants to attach 2228 * private data to it using i3c_dev_set_master_data(). 2229 * 2230 * This function must be called with the bus lock held in write mode. 2231 * 2232 * Return: a 0 in case of success, an negative error code otherwise. 2233 */ 2234 int i3c_master_add_i3c_dev_locked(struct i3c_master_controller *master, 2235 u8 addr) 2236 { 2237 struct i3c_device_info info = { .dyn_addr = addr }; 2238 struct i3c_dev_desc *newdev, *olddev; 2239 u8 old_dyn_addr = addr, expected_dyn_addr; 2240 struct i3c_ibi_setup ibireq = { }; 2241 bool enable_ibi = false; 2242 int ret; 2243 2244 if (!master) 2245 return -EINVAL; 2246 2247 newdev = i3c_master_alloc_i3c_dev(master, &info); 2248 if (IS_ERR(newdev)) 2249 return PTR_ERR(newdev); 2250 2251 ret = i3c_master_attach_i3c_dev(master, newdev); 2252 if (ret) 2253 goto err_free_dev; 2254 2255 ret = i3c_master_retrieve_dev_info(newdev); 2256 if (ret) 2257 goto err_detach_dev; 2258 2259 i3c_master_attach_boardinfo(newdev); 2260 2261 olddev = i3c_master_search_i3c_dev_duplicate(newdev); 2262 if (olddev) { 2263 newdev->dev = olddev->dev; 2264 if (newdev->dev) 2265 newdev->dev->desc = newdev; 2266 2267 /* 2268 * We need to restore the IBI state too, so let's save the 2269 * IBI information and try to restore them after olddev has 2270 * been detached+released and its IBI has been stopped and 2271 * the associated resources have been freed. 2272 */ 2273 mutex_lock(&olddev->ibi_lock); 2274 if (olddev->ibi) { 2275 ibireq.handler = olddev->ibi->handler; 2276 ibireq.max_payload_len = olddev->ibi->max_payload_len; 2277 ibireq.num_slots = olddev->ibi->num_slots; 2278 2279 if (olddev->ibi->enabled) 2280 enable_ibi = true; 2281 /* 2282 * The olddev should not receive any commands on the 2283 * i3c bus as it does not exist and has been assigned 2284 * a new address. This will result in NACK or timeout. 2285 * So, update the olddev->ibi->enabled flag to false 2286 * to avoid DISEC with OldAddr. 2287 */ 2288 olddev->ibi->enabled = false; 2289 i3c_dev_free_ibi_locked(olddev); 2290 } 2291 mutex_unlock(&olddev->ibi_lock); 2292 2293 old_dyn_addr = olddev->info.dyn_addr; 2294 2295 i3c_master_detach_i3c_dev(olddev); 2296 i3c_master_free_i3c_dev(olddev); 2297 } 2298 2299 /* 2300 * Depending on our previous state, the expected dynamic address might 2301 * differ: 2302 * - if the device already had a dynamic address assigned, let's try to 2303 * re-apply this one 2304 * - if the device did not have a dynamic address and the firmware 2305 * requested a specific address, pick this one 2306 * - in any other case, keep the address automatically assigned by the 2307 * master 2308 */ 2309 if (old_dyn_addr && old_dyn_addr != newdev->info.dyn_addr) 2310 expected_dyn_addr = old_dyn_addr; 2311 else if (newdev->boardinfo && newdev->boardinfo->init_dyn_addr) 2312 expected_dyn_addr = newdev->boardinfo->init_dyn_addr; 2313 else 2314 expected_dyn_addr = newdev->info.dyn_addr; 2315 2316 if (newdev->info.dyn_addr != expected_dyn_addr && 2317 i3c_bus_get_addr_slot_status(&master->bus, expected_dyn_addr) == I3C_ADDR_SLOT_FREE) { 2318 /* 2319 * Try to apply the expected dynamic address. If it fails, keep 2320 * the address assigned by the master. 2321 */ 2322 ret = i3c_master_setnewda_locked(master, 2323 newdev->info.dyn_addr, 2324 expected_dyn_addr); 2325 if (!ret) { 2326 old_dyn_addr = newdev->info.dyn_addr; 2327 newdev->info.dyn_addr = expected_dyn_addr; 2328 i3c_master_reattach_i3c_dev(newdev, old_dyn_addr); 2329 } else { 2330 dev_err(&master->dev, 2331 "Failed to assign reserved/old address to device %d%llx", 2332 master->bus.id, newdev->info.pid); 2333 } 2334 } 2335 2336 /* 2337 * Now is time to try to restore the IBI setup. If we're lucky, 2338 * everything works as before, otherwise, all we can do is complain. 2339 * FIXME: maybe we should add callback to inform the driver that it 2340 * should request the IBI again instead of trying to hide that from 2341 * him. 2342 */ 2343 if (ibireq.handler) { 2344 mutex_lock(&newdev->ibi_lock); 2345 ret = i3c_dev_request_ibi_locked(newdev, &ibireq); 2346 if (ret) { 2347 dev_err(&master->dev, 2348 "Failed to request IBI on device %d-%llx", 2349 master->bus.id, newdev->info.pid); 2350 } else if (enable_ibi) { 2351 ret = i3c_dev_enable_ibi_locked(newdev); 2352 if (ret) 2353 dev_err(&master->dev, 2354 "Failed to re-enable IBI on device %d-%llx", 2355 master->bus.id, newdev->info.pid); 2356 } 2357 mutex_unlock(&newdev->ibi_lock); 2358 } 2359 2360 return 0; 2361 2362 err_detach_dev: 2363 if (newdev->dev && newdev->dev->desc) 2364 newdev->dev->desc = NULL; 2365 2366 i3c_master_detach_i3c_dev(newdev); 2367 2368 err_free_dev: 2369 i3c_master_free_i3c_dev(newdev); 2370 2371 return ret; 2372 } 2373 EXPORT_SYMBOL_GPL(i3c_master_add_i3c_dev_locked); 2374 2375 #define OF_I3C_REG1_IS_I2C_DEV BIT(31) 2376 2377 static int 2378 of_i3c_master_add_i2c_boardinfo(struct i3c_master_controller *master, 2379 struct device_node *node, u32 *reg) 2380 { 2381 struct i2c_dev_boardinfo *boardinfo; 2382 struct device *dev = &master->dev; 2383 int ret; 2384 2385 boardinfo = devm_kzalloc(dev, sizeof(*boardinfo), GFP_KERNEL); 2386 if (!boardinfo) 2387 return -ENOMEM; 2388 2389 ret = of_i2c_get_board_info(dev, node, &boardinfo->base); 2390 if (ret) 2391 return ret; 2392 2393 /* 2394 * The I3C Specification does not clearly say I2C devices with 10-bit 2395 * address are supported. These devices can't be passed properly through 2396 * DEFSLVS command. 2397 */ 2398 if (boardinfo->base.flags & I2C_CLIENT_TEN) { 2399 dev_err(dev, "I2C device with 10 bit address not supported."); 2400 return -EOPNOTSUPP; 2401 } 2402 2403 /* LVR is encoded in reg[2]. */ 2404 boardinfo->lvr = reg[2]; 2405 2406 list_add_tail(&boardinfo->node, &master->boardinfo.i2c); 2407 of_node_get(node); 2408 2409 return 0; 2410 } 2411 2412 static int 2413 of_i3c_master_add_i3c_boardinfo(struct i3c_master_controller *master, 2414 struct device_node *node, u32 *reg) 2415 { 2416 struct i3c_dev_boardinfo *boardinfo; 2417 struct device *dev = &master->dev; 2418 enum i3c_addr_slot_status addrstatus; 2419 u32 init_dyn_addr = 0; 2420 2421 boardinfo = devm_kzalloc(dev, sizeof(*boardinfo), GFP_KERNEL); 2422 if (!boardinfo) 2423 return -ENOMEM; 2424 2425 if (reg[0]) { 2426 if (reg[0] > I3C_MAX_ADDR) 2427 return -EINVAL; 2428 2429 addrstatus = i3c_bus_get_addr_slot_status(&master->bus, 2430 reg[0]); 2431 if (addrstatus != I3C_ADDR_SLOT_FREE) 2432 return -EINVAL; 2433 } 2434 2435 boardinfo->static_addr = reg[0]; 2436 2437 if (!of_property_read_u32(node, "assigned-address", &init_dyn_addr)) { 2438 if (init_dyn_addr > I3C_MAX_ADDR) 2439 return -EINVAL; 2440 2441 addrstatus = i3c_bus_get_addr_slot_status(&master->bus, 2442 init_dyn_addr); 2443 if (addrstatus != I3C_ADDR_SLOT_FREE) 2444 return -EINVAL; 2445 } 2446 2447 boardinfo->pid = ((u64)reg[1] << 32) | reg[2]; 2448 2449 if ((boardinfo->pid & GENMASK_ULL(63, 48)) || 2450 I3C_PID_RND_LOWER_32BITS(boardinfo->pid)) 2451 return -EINVAL; 2452 2453 boardinfo->init_dyn_addr = init_dyn_addr; 2454 boardinfo->of_node = of_node_get(node); 2455 list_add_tail(&boardinfo->node, &master->boardinfo.i3c); 2456 2457 return 0; 2458 } 2459 2460 static int of_i3c_master_add_dev(struct i3c_master_controller *master, 2461 struct device_node *node) 2462 { 2463 u32 reg[3]; 2464 int ret; 2465 2466 if (!master) 2467 return -EINVAL; 2468 2469 ret = of_property_read_u32_array(node, "reg", reg, ARRAY_SIZE(reg)); 2470 if (ret) 2471 return ret; 2472 2473 /* 2474 * The manufacturer ID can't be 0. If reg[1] == 0 that means we're 2475 * dealing with an I2C device. 2476 */ 2477 if (!reg[1]) 2478 ret = of_i3c_master_add_i2c_boardinfo(master, node, reg); 2479 else 2480 ret = of_i3c_master_add_i3c_boardinfo(master, node, reg); 2481 2482 return ret; 2483 } 2484 2485 static int of_populate_i3c_bus(struct i3c_master_controller *master) 2486 { 2487 struct device *dev = &master->dev; 2488 struct device_node *i3cbus_np = dev->of_node; 2489 int ret; 2490 u32 val; 2491 2492 if (!i3cbus_np) 2493 return 0; 2494 2495 for_each_available_child_of_node_scoped(i3cbus_np, node) { 2496 ret = of_i3c_master_add_dev(master, node); 2497 if (ret) 2498 return ret; 2499 } 2500 2501 /* 2502 * The user might want to limit I2C and I3C speed in case some devices 2503 * on the bus are not supporting typical rates, or if the bus topology 2504 * prevents it from using max possible rate. 2505 */ 2506 if (!of_property_read_u32(i3cbus_np, "i2c-scl-hz", &val)) 2507 master->bus.scl_rate.i2c = val; 2508 2509 if (!of_property_read_u32(i3cbus_np, "i3c-scl-hz", &val)) 2510 master->bus.scl_rate.i3c = val; 2511 2512 return 0; 2513 } 2514 2515 static int i3c_master_i2c_adapter_xfer(struct i2c_adapter *adap, 2516 struct i2c_msg *xfers, int nxfers) 2517 { 2518 struct i3c_master_controller *master = i2c_adapter_to_i3c_master(adap); 2519 struct i2c_dev_desc *dev; 2520 int i, ret; 2521 u16 addr; 2522 2523 if (!xfers || !master || nxfers <= 0) 2524 return -EINVAL; 2525 2526 if (!master->ops->i2c_xfers) 2527 return -EOPNOTSUPP; 2528 2529 /* Doing transfers to different devices is not supported. */ 2530 addr = xfers[0].addr; 2531 for (i = 1; i < nxfers; i++) { 2532 if (addr != xfers[i].addr) 2533 return -EOPNOTSUPP; 2534 } 2535 2536 ret = i3c_master_rpm_get(master); 2537 if (ret) 2538 return ret; 2539 2540 i3c_bus_normaluse_lock(&master->bus); 2541 dev = i3c_master_find_i2c_dev_by_addr(master, addr); 2542 if (!dev) 2543 ret = -ENOENT; 2544 else 2545 ret = master->ops->i2c_xfers(dev, xfers, nxfers); 2546 i3c_bus_normaluse_unlock(&master->bus); 2547 2548 i3c_master_rpm_put(master); 2549 2550 return ret ? ret : nxfers; 2551 } 2552 2553 static u32 i3c_master_i2c_funcs(struct i2c_adapter *adapter) 2554 { 2555 return I2C_FUNC_SMBUS_EMUL | I2C_FUNC_I2C; 2556 } 2557 2558 static u8 i3c_master_i2c_get_lvr(struct i2c_client *client) 2559 { 2560 /* Fall back to no spike filters and FM bus mode. */ 2561 u8 lvr = I3C_LVR_I2C_INDEX(2) | I3C_LVR_I2C_FM_MODE; 2562 u32 reg[3]; 2563 2564 if (!of_property_read_u32_array(client->dev.of_node, "reg", reg, ARRAY_SIZE(reg))) 2565 lvr = reg[2]; 2566 2567 return lvr; 2568 } 2569 2570 static int i3c_master_i2c_attach(struct i2c_adapter *adap, struct i2c_client *client) 2571 { 2572 struct i3c_master_controller *master = i2c_adapter_to_i3c_master(adap); 2573 enum i3c_addr_slot_status status; 2574 struct i2c_dev_desc *i2cdev; 2575 int ret; 2576 2577 /* Already added by board info? */ 2578 if (i3c_master_find_i2c_dev_by_addr(master, client->addr)) 2579 return 0; 2580 2581 status = i3c_bus_get_addr_slot_status(&master->bus, client->addr); 2582 if (status != I3C_ADDR_SLOT_FREE) 2583 return -EBUSY; 2584 2585 i3c_bus_set_addr_slot_status(&master->bus, client->addr, 2586 I3C_ADDR_SLOT_I2C_DEV); 2587 2588 i2cdev = i3c_master_alloc_i2c_dev(master, client->addr, 2589 i3c_master_i2c_get_lvr(client)); 2590 if (IS_ERR(i2cdev)) { 2591 ret = PTR_ERR(i2cdev); 2592 goto out_clear_status; 2593 } 2594 2595 ret = i3c_master_attach_i2c_dev(master, i2cdev); 2596 if (ret) 2597 goto out_free_dev; 2598 2599 return 0; 2600 2601 out_free_dev: 2602 i3c_master_free_i2c_dev(i2cdev); 2603 out_clear_status: 2604 i3c_bus_set_addr_slot_status(&master->bus, client->addr, 2605 I3C_ADDR_SLOT_FREE); 2606 2607 return ret; 2608 } 2609 2610 static int i3c_master_i2c_detach(struct i2c_adapter *adap, struct i2c_client *client) 2611 { 2612 struct i3c_master_controller *master = i2c_adapter_to_i3c_master(adap); 2613 struct i2c_dev_desc *dev; 2614 2615 dev = i3c_master_find_i2c_dev_by_addr(master, client->addr); 2616 if (!dev) 2617 return -ENODEV; 2618 2619 i3c_master_detach_i2c_dev(dev); 2620 i3c_bus_set_addr_slot_status(&master->bus, dev->addr, 2621 I3C_ADDR_SLOT_FREE); 2622 i3c_master_free_i2c_dev(dev); 2623 2624 return 0; 2625 } 2626 2627 static const struct i2c_algorithm i3c_master_i2c_algo = { 2628 .master_xfer = i3c_master_i2c_adapter_xfer, 2629 .functionality = i3c_master_i2c_funcs, 2630 }; 2631 2632 static int i3c_i2c_notifier_call(struct notifier_block *nb, unsigned long action, 2633 void *data) 2634 { 2635 struct i2c_adapter *adap; 2636 struct i2c_client *client; 2637 struct device *dev = data; 2638 struct i3c_master_controller *master; 2639 int ret; 2640 2641 if (dev->type != &i2c_client_type) 2642 return 0; 2643 2644 client = to_i2c_client(dev); 2645 adap = client->adapter; 2646 2647 if (adap->algo != &i3c_master_i2c_algo) 2648 return 0; 2649 2650 master = i2c_adapter_to_i3c_master(adap); 2651 2652 ret = i3c_master_rpm_get(master); 2653 if (ret) 2654 return ret; 2655 2656 i3c_bus_maintenance_lock(&master->bus); 2657 switch (action) { 2658 case BUS_NOTIFY_ADD_DEVICE: 2659 ret = i3c_master_i2c_attach(adap, client); 2660 break; 2661 case BUS_NOTIFY_DEL_DEVICE: 2662 ret = i3c_master_i2c_detach(adap, client); 2663 break; 2664 default: 2665 ret = -EINVAL; 2666 } 2667 i3c_bus_maintenance_unlock(&master->bus); 2668 2669 i3c_master_rpm_put(master); 2670 2671 return ret; 2672 } 2673 2674 static struct notifier_block i2cdev_notifier = { 2675 .notifier_call = i3c_i2c_notifier_call, 2676 }; 2677 2678 static int i3c_master_i2c_adapter_init(struct i3c_master_controller *master) 2679 { 2680 struct i2c_adapter *adap = i3c_master_to_i2c_adapter(master); 2681 struct i2c_dev_desc *i2cdev; 2682 struct i2c_dev_boardinfo *i2cboardinfo; 2683 int ret, id; 2684 2685 adap->dev.parent = master->dev.parent; 2686 adap->owner = master->dev.parent->driver->owner; 2687 adap->algo = &i3c_master_i2c_algo; 2688 strscpy(adap->name, dev_name(master->dev.parent), sizeof(adap->name)); 2689 adap->timeout = HZ; 2690 adap->retries = 3; 2691 2692 id = of_alias_get_id(master->dev.of_node, "i2c"); 2693 if (id >= 0) { 2694 adap->nr = id; 2695 ret = i2c_add_numbered_adapter(adap); 2696 } else { 2697 ret = i2c_add_adapter(adap); 2698 } 2699 if (ret) 2700 return ret; 2701 2702 /* 2703 * We silently ignore failures here. The bus should keep working 2704 * correctly even if one or more i2c devices are not registered. 2705 */ 2706 list_for_each_entry(i2cboardinfo, &master->boardinfo.i2c, node) { 2707 i2cdev = i3c_master_find_i2c_dev_by_addr(master, 2708 i2cboardinfo->base.addr); 2709 if (WARN_ON(!i2cdev)) 2710 continue; 2711 i2cdev->dev = i2c_new_client_device(adap, &i2cboardinfo->base); 2712 } 2713 2714 return 0; 2715 } 2716 2717 static void i3c_master_i2c_adapter_cleanup(struct i3c_master_controller *master) 2718 { 2719 struct i2c_dev_desc *i2cdev; 2720 2721 i2c_del_adapter(&master->i2c); 2722 2723 i3c_bus_for_each_i2cdev(&master->bus, i2cdev) 2724 i2cdev->dev = NULL; 2725 } 2726 2727 static void i3c_master_unregister_i3c_devs(struct i3c_master_controller *master) 2728 { 2729 struct i3c_dev_desc *i3cdev; 2730 2731 i3c_bus_for_each_i3cdev(&master->bus, i3cdev) { 2732 if (!i3cdev->dev) 2733 continue; 2734 2735 i3cdev->dev->desc = NULL; 2736 if (device_is_registered(&i3cdev->dev->dev)) 2737 device_unregister(&i3cdev->dev->dev); 2738 else 2739 put_device(&i3cdev->dev->dev); 2740 i3cdev->dev = NULL; 2741 } 2742 } 2743 2744 /** 2745 * i3c_master_queue_ibi() - Queue an IBI 2746 * @dev: the device this IBI is coming from 2747 * @slot: the IBI slot used to store the payload 2748 * 2749 * Queue an IBI to the controller workqueue. The IBI handler attached to 2750 * the dev will be called from a workqueue context. 2751 */ 2752 void i3c_master_queue_ibi(struct i3c_dev_desc *dev, struct i3c_ibi_slot *slot) 2753 { 2754 if (!dev->ibi || !slot) 2755 return; 2756 2757 atomic_inc(&dev->ibi->pending_ibis); 2758 queue_work(dev->ibi->wq, &slot->work); 2759 } 2760 EXPORT_SYMBOL_GPL(i3c_master_queue_ibi); 2761 2762 static void i3c_master_handle_ibi(struct work_struct *work) 2763 { 2764 struct i3c_ibi_slot *slot = container_of(work, struct i3c_ibi_slot, 2765 work); 2766 struct i3c_dev_desc *dev = slot->dev; 2767 struct i3c_master_controller *master = i3c_dev_get_master(dev); 2768 struct i3c_ibi_payload payload; 2769 2770 payload.data = slot->data; 2771 payload.len = slot->len; 2772 2773 if (dev->dev) 2774 dev->ibi->handler(dev->dev, &payload); 2775 2776 master->ops->recycle_ibi_slot(dev, slot); 2777 if (atomic_dec_and_test(&dev->ibi->pending_ibis)) 2778 complete(&dev->ibi->all_ibis_handled); 2779 } 2780 2781 static void i3c_master_init_ibi_slot(struct i3c_dev_desc *dev, 2782 struct i3c_ibi_slot *slot) 2783 { 2784 slot->dev = dev; 2785 INIT_WORK(&slot->work, i3c_master_handle_ibi); 2786 } 2787 2788 struct i3c_generic_ibi_slot { 2789 struct list_head node; 2790 struct i3c_ibi_slot base; 2791 }; 2792 2793 struct i3c_generic_ibi_pool { 2794 spinlock_t lock; 2795 unsigned int num_slots; 2796 struct i3c_generic_ibi_slot *slots; 2797 void *payload_buf; 2798 struct list_head free_slots; 2799 struct list_head pending; 2800 }; 2801 2802 /** 2803 * i3c_generic_ibi_free_pool() - Free a generic IBI pool 2804 * @pool: the IBI pool to free 2805 * 2806 * Free all IBI slots allated by a generic IBI pool. 2807 */ 2808 void i3c_generic_ibi_free_pool(struct i3c_generic_ibi_pool *pool) 2809 { 2810 struct i3c_generic_ibi_slot *slot; 2811 unsigned int nslots = 0; 2812 2813 while (!list_empty(&pool->free_slots)) { 2814 slot = list_first_entry(&pool->free_slots, 2815 struct i3c_generic_ibi_slot, node); 2816 list_del(&slot->node); 2817 nslots++; 2818 } 2819 2820 /* 2821 * If the number of freed slots is not equal to the number of allocated 2822 * slots we have a leak somewhere. 2823 */ 2824 WARN_ON(nslots != pool->num_slots); 2825 2826 kfree(pool->payload_buf); 2827 kfree(pool->slots); 2828 kfree(pool); 2829 } 2830 EXPORT_SYMBOL_GPL(i3c_generic_ibi_free_pool); 2831 2832 /** 2833 * i3c_generic_ibi_alloc_pool() - Create a generic IBI pool 2834 * @dev: the device this pool will be used for 2835 * @req: IBI setup request describing what the device driver expects 2836 * 2837 * Create a generic IBI pool based on the information provided in @req. 2838 * 2839 * Return: a valid IBI pool in case of success, an ERR_PTR() otherwise. 2840 */ 2841 struct i3c_generic_ibi_pool * 2842 i3c_generic_ibi_alloc_pool(struct i3c_dev_desc *dev, 2843 const struct i3c_ibi_setup *req) 2844 { 2845 struct i3c_generic_ibi_pool *pool; 2846 struct i3c_generic_ibi_slot *slot; 2847 unsigned int i; 2848 int ret; 2849 2850 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2851 if (!pool) 2852 return ERR_PTR(-ENOMEM); 2853 2854 spin_lock_init(&pool->lock); 2855 INIT_LIST_HEAD(&pool->free_slots); 2856 INIT_LIST_HEAD(&pool->pending); 2857 2858 pool->slots = kcalloc(req->num_slots, sizeof(*slot), GFP_KERNEL); 2859 if (!pool->slots) { 2860 ret = -ENOMEM; 2861 goto err_free_pool; 2862 } 2863 2864 if (req->max_payload_len) { 2865 pool->payload_buf = kcalloc(req->num_slots, 2866 req->max_payload_len, GFP_KERNEL); 2867 if (!pool->payload_buf) { 2868 ret = -ENOMEM; 2869 goto err_free_pool; 2870 } 2871 } 2872 2873 for (i = 0; i < req->num_slots; i++) { 2874 slot = &pool->slots[i]; 2875 i3c_master_init_ibi_slot(dev, &slot->base); 2876 2877 if (req->max_payload_len) 2878 slot->base.data = pool->payload_buf + 2879 (i * req->max_payload_len); 2880 2881 list_add_tail(&slot->node, &pool->free_slots); 2882 pool->num_slots++; 2883 } 2884 2885 return pool; 2886 2887 err_free_pool: 2888 i3c_generic_ibi_free_pool(pool); 2889 return ERR_PTR(ret); 2890 } 2891 EXPORT_SYMBOL_GPL(i3c_generic_ibi_alloc_pool); 2892 2893 /** 2894 * i3c_generic_ibi_get_free_slot() - Get a free slot from a generic IBI pool 2895 * @pool: the pool to query an IBI slot on 2896 * 2897 * Search for a free slot in a generic IBI pool. 2898 * The slot should be returned to the pool using i3c_generic_ibi_recycle_slot() 2899 * when it's no longer needed. 2900 * 2901 * Return: a pointer to a free slot, or NULL if there's no free slot available. 2902 */ 2903 struct i3c_ibi_slot * 2904 i3c_generic_ibi_get_free_slot(struct i3c_generic_ibi_pool *pool) 2905 { 2906 struct i3c_generic_ibi_slot *slot; 2907 unsigned long flags; 2908 2909 spin_lock_irqsave(&pool->lock, flags); 2910 slot = list_first_entry_or_null(&pool->free_slots, 2911 struct i3c_generic_ibi_slot, node); 2912 if (slot) 2913 list_del(&slot->node); 2914 spin_unlock_irqrestore(&pool->lock, flags); 2915 2916 return slot ? &slot->base : NULL; 2917 } 2918 EXPORT_SYMBOL_GPL(i3c_generic_ibi_get_free_slot); 2919 2920 /** 2921 * i3c_generic_ibi_recycle_slot() - Return a slot to a generic IBI pool 2922 * @pool: the pool to return the IBI slot to 2923 * @s: IBI slot to recycle 2924 * 2925 * Add an IBI slot back to its generic IBI pool. Should be called from the 2926 * master driver struct_master_controller_ops->recycle_ibi() method. 2927 */ 2928 void i3c_generic_ibi_recycle_slot(struct i3c_generic_ibi_pool *pool, 2929 struct i3c_ibi_slot *s) 2930 { 2931 struct i3c_generic_ibi_slot *slot; 2932 unsigned long flags; 2933 2934 if (!s) 2935 return; 2936 2937 slot = container_of(s, struct i3c_generic_ibi_slot, base); 2938 spin_lock_irqsave(&pool->lock, flags); 2939 list_add_tail(&slot->node, &pool->free_slots); 2940 spin_unlock_irqrestore(&pool->lock, flags); 2941 } 2942 EXPORT_SYMBOL_GPL(i3c_generic_ibi_recycle_slot); 2943 2944 static int i3c_master_check_ops(const struct i3c_master_controller_ops *ops) 2945 { 2946 if (!ops || !ops->bus_init || !ops->i3c_xfers || 2947 !ops->send_ccc_cmd || !ops->do_daa || !ops->i2c_xfers) 2948 return -EINVAL; 2949 2950 if (ops->request_ibi && 2951 (!ops->enable_ibi || !ops->disable_ibi || !ops->free_ibi || 2952 !ops->recycle_ibi_slot)) 2953 return -EINVAL; 2954 2955 return 0; 2956 } 2957 2958 /** 2959 * i3c_master_register() - register an I3C master 2960 * @master: master used to send frames on the bus 2961 * @parent: the parent device (the one that provides this I3C master 2962 * controller) 2963 * @ops: the master controller operations 2964 * @secondary: true if you are registering a secondary master. Will return 2965 * -EOPNOTSUPP if set to true since secondary masters are not yet 2966 * supported 2967 * 2968 * This function takes care of everything for you: 2969 * 2970 * - creates and initializes the I3C bus 2971 * - populates the bus with static I2C devs if @parent->of_node is not 2972 * NULL 2973 * - registers all I3C devices added by the controller during bus 2974 * initialization 2975 * - registers the I2C adapter and all I2C devices 2976 * 2977 * Return: 0 in case of success, a negative error code otherwise. 2978 */ 2979 int i3c_master_register(struct i3c_master_controller *master, 2980 struct device *parent, 2981 const struct i3c_master_controller_ops *ops, 2982 bool secondary) 2983 { 2984 unsigned long i2c_scl_rate = I3C_BUS_I2C_FM_PLUS_SCL_MAX_RATE; 2985 struct i3c_bus *i3cbus = i3c_master_get_bus(master); 2986 enum i3c_bus_mode mode = I3C_BUS_MODE_PURE; 2987 struct i2c_dev_boardinfo *i2cbi; 2988 int ret; 2989 2990 /* We do not support secondary masters yet. */ 2991 if (secondary) 2992 return -EOPNOTSUPP; 2993 2994 ret = i3c_master_check_ops(ops); 2995 if (ret) 2996 return ret; 2997 2998 master->dev.parent = parent; 2999 master->dev.of_node = of_node_get(parent->of_node); 3000 master->dev.bus = &i3c_bus_type; 3001 master->dev.type = &i3c_masterdev_type; 3002 master->dev.release = i3c_masterdev_release; 3003 master->ops = ops; 3004 master->secondary = secondary; 3005 INIT_LIST_HEAD(&master->boardinfo.i2c); 3006 INIT_LIST_HEAD(&master->boardinfo.i3c); 3007 3008 ret = i3c_master_rpm_get(master); 3009 if (ret) 3010 return ret; 3011 3012 device_initialize(&master->dev); 3013 3014 master->dev.dma_mask = parent->dma_mask; 3015 master->dev.coherent_dma_mask = parent->coherent_dma_mask; 3016 master->dev.dma_parms = parent->dma_parms; 3017 3018 ret = i3c_bus_init(i3cbus, master->dev.of_node); 3019 if (ret) 3020 goto err_put_dev; 3021 3022 dev_set_name(&master->dev, "i3c-%d", i3cbus->id); 3023 3024 ret = of_populate_i3c_bus(master); 3025 if (ret) 3026 goto err_put_dev; 3027 3028 list_for_each_entry(i2cbi, &master->boardinfo.i2c, node) { 3029 switch (i2cbi->lvr & I3C_LVR_I2C_INDEX_MASK) { 3030 case I3C_LVR_I2C_INDEX(0): 3031 if (mode < I3C_BUS_MODE_MIXED_FAST) 3032 mode = I3C_BUS_MODE_MIXED_FAST; 3033 break; 3034 case I3C_LVR_I2C_INDEX(1): 3035 if (mode < I3C_BUS_MODE_MIXED_LIMITED) 3036 mode = I3C_BUS_MODE_MIXED_LIMITED; 3037 break; 3038 case I3C_LVR_I2C_INDEX(2): 3039 if (mode < I3C_BUS_MODE_MIXED_SLOW) 3040 mode = I3C_BUS_MODE_MIXED_SLOW; 3041 break; 3042 default: 3043 ret = -EINVAL; 3044 goto err_put_dev; 3045 } 3046 3047 if (i2cbi->lvr & I3C_LVR_I2C_FM_MODE) 3048 i2c_scl_rate = I3C_BUS_I2C_FM_SCL_MAX_RATE; 3049 } 3050 3051 ret = i3c_bus_set_mode(i3cbus, mode, i2c_scl_rate); 3052 if (ret) 3053 goto err_put_dev; 3054 3055 master->wq = alloc_workqueue("%s", WQ_PERCPU, 0, dev_name(parent)); 3056 if (!master->wq) { 3057 ret = -ENOMEM; 3058 goto err_put_dev; 3059 } 3060 3061 ret = i3c_master_bus_init(master); 3062 if (ret) 3063 goto err_put_dev; 3064 3065 ret = device_add(&master->dev); 3066 if (ret) 3067 goto err_cleanup_bus; 3068 3069 /* 3070 * Expose our I3C bus as an I2C adapter so that I2C devices are exposed 3071 * through the I2C subsystem. 3072 */ 3073 ret = i3c_master_i2c_adapter_init(master); 3074 if (ret) 3075 goto err_del_dev; 3076 3077 i3c_bus_notify(i3cbus, I3C_NOTIFY_BUS_ADD); 3078 3079 pm_runtime_no_callbacks(&master->dev); 3080 pm_suspend_ignore_children(&master->dev, true); 3081 pm_runtime_enable(&master->dev); 3082 3083 /* 3084 * We're done initializing the bus and the controller, we can now 3085 * register I3C devices discovered during the initial DAA. 3086 */ 3087 master->init_done = true; 3088 i3c_bus_normaluse_lock(&master->bus); 3089 i3c_master_register_new_i3c_devs(master); 3090 i3c_bus_normaluse_unlock(&master->bus); 3091 3092 if (master->ops->set_dev_nack_retry) 3093 device_create_file(&master->dev, &dev_attr_dev_nack_retry_count); 3094 3095 i3c_master_rpm_put(master); 3096 3097 return 0; 3098 3099 err_del_dev: 3100 device_del(&master->dev); 3101 3102 err_cleanup_bus: 3103 i3c_master_bus_cleanup(master); 3104 3105 err_put_dev: 3106 i3c_master_rpm_put(master); 3107 put_device(&master->dev); 3108 3109 return ret; 3110 } 3111 EXPORT_SYMBOL_GPL(i3c_master_register); 3112 3113 /** 3114 * i3c_master_unregister() - unregister an I3C master 3115 * @master: master used to send frames on the bus 3116 * 3117 * Basically undo everything done in i3c_master_register(). 3118 */ 3119 void i3c_master_unregister(struct i3c_master_controller *master) 3120 { 3121 i3c_bus_notify(&master->bus, I3C_NOTIFY_BUS_REMOVE); 3122 3123 if (master->ops->set_dev_nack_retry) 3124 device_remove_file(&master->dev, &dev_attr_dev_nack_retry_count); 3125 3126 i3c_master_i2c_adapter_cleanup(master); 3127 i3c_master_unregister_i3c_devs(master); 3128 i3c_master_bus_cleanup(master); 3129 pm_runtime_disable(&master->dev); 3130 device_unregister(&master->dev); 3131 } 3132 EXPORT_SYMBOL_GPL(i3c_master_unregister); 3133 3134 int i3c_dev_setdasa_locked(struct i3c_dev_desc *dev) 3135 { 3136 struct i3c_master_controller *master; 3137 3138 if (!dev) 3139 return -ENOENT; 3140 3141 master = i3c_dev_get_master(dev); 3142 if (!master) 3143 return -EINVAL; 3144 3145 if (!dev->boardinfo || !dev->boardinfo->init_dyn_addr || 3146 !dev->boardinfo->static_addr) 3147 return -EINVAL; 3148 3149 return i3c_master_setdasa_locked(master, dev->info.static_addr, 3150 dev->boardinfo->init_dyn_addr); 3151 } 3152 3153 int i3c_dev_do_xfers_locked(struct i3c_dev_desc *dev, struct i3c_xfer *xfers, 3154 int nxfers, enum i3c_xfer_mode mode) 3155 { 3156 struct i3c_master_controller *master; 3157 3158 if (!dev) 3159 return -ENOENT; 3160 3161 master = i3c_dev_get_master(dev); 3162 if (!master || !xfers) 3163 return -EINVAL; 3164 3165 if (mode != I3C_SDR && !(master->this->info.hdr_cap & BIT(mode))) 3166 return -EOPNOTSUPP; 3167 3168 return master->ops->i3c_xfers(dev, xfers, nxfers, mode); 3169 } 3170 3171 int i3c_dev_disable_ibi_locked(struct i3c_dev_desc *dev) 3172 { 3173 struct i3c_master_controller *master; 3174 int ret; 3175 3176 if (!dev->ibi) 3177 return -EINVAL; 3178 3179 master = i3c_dev_get_master(dev); 3180 ret = master->ops->disable_ibi(dev); 3181 if (ret) 3182 return ret; 3183 3184 reinit_completion(&dev->ibi->all_ibis_handled); 3185 if (atomic_read(&dev->ibi->pending_ibis)) 3186 wait_for_completion(&dev->ibi->all_ibis_handled); 3187 3188 dev->ibi->enabled = false; 3189 3190 return 0; 3191 } 3192 3193 int i3c_dev_enable_ibi_locked(struct i3c_dev_desc *dev) 3194 { 3195 struct i3c_master_controller *master = i3c_dev_get_master(dev); 3196 int ret; 3197 3198 if (!dev->ibi) 3199 return -EINVAL; 3200 3201 ret = master->ops->enable_ibi(dev); 3202 if (!ret) 3203 dev->ibi->enabled = true; 3204 3205 return ret; 3206 } 3207 3208 int i3c_dev_request_ibi_locked(struct i3c_dev_desc *dev, 3209 const struct i3c_ibi_setup *req) 3210 { 3211 struct i3c_master_controller *master = i3c_dev_get_master(dev); 3212 struct i3c_device_ibi_info *ibi; 3213 int ret; 3214 3215 if (!master->ops->request_ibi) 3216 return -EOPNOTSUPP; 3217 3218 if (dev->ibi) 3219 return -EBUSY; 3220 3221 ibi = kzalloc(sizeof(*ibi), GFP_KERNEL); 3222 if (!ibi) 3223 return -ENOMEM; 3224 3225 ibi->wq = alloc_ordered_workqueue(dev_name(i3cdev_to_dev(dev->dev)), WQ_MEM_RECLAIM); 3226 if (!ibi->wq) { 3227 kfree(ibi); 3228 return -ENOMEM; 3229 } 3230 3231 atomic_set(&ibi->pending_ibis, 0); 3232 init_completion(&ibi->all_ibis_handled); 3233 ibi->handler = req->handler; 3234 ibi->max_payload_len = req->max_payload_len; 3235 ibi->num_slots = req->num_slots; 3236 3237 dev->ibi = ibi; 3238 ret = master->ops->request_ibi(dev, req); 3239 if (ret) { 3240 kfree(ibi); 3241 dev->ibi = NULL; 3242 } 3243 3244 return ret; 3245 } 3246 3247 void i3c_dev_free_ibi_locked(struct i3c_dev_desc *dev) 3248 { 3249 struct i3c_master_controller *master = i3c_dev_get_master(dev); 3250 3251 if (!dev->ibi) 3252 return; 3253 3254 if (dev->ibi->enabled) { 3255 int ret; 3256 3257 dev_err(&master->dev, "Freeing IBI that is still enabled\n"); 3258 ret = i3c_master_rpm_get(master); 3259 if (!ret) { 3260 ret = i3c_dev_disable_ibi_locked(dev); 3261 i3c_master_rpm_put(master); 3262 } 3263 if (ret) 3264 dev_err(&master->dev, "Failed to disable IBI before freeing\n"); 3265 } 3266 3267 master->ops->free_ibi(dev); 3268 3269 if (dev->ibi->wq) { 3270 destroy_workqueue(dev->ibi->wq); 3271 dev->ibi->wq = NULL; 3272 } 3273 3274 kfree(dev->ibi); 3275 dev->ibi = NULL; 3276 } 3277 3278 static int __init i3c_init(void) 3279 { 3280 int res; 3281 3282 res = of_alias_get_highest_id("i3c"); 3283 if (res >= 0) { 3284 mutex_lock(&i3c_core_lock); 3285 __i3c_first_dynamic_bus_num = res + 1; 3286 mutex_unlock(&i3c_core_lock); 3287 } 3288 3289 res = bus_register_notifier(&i2c_bus_type, &i2cdev_notifier); 3290 if (res) 3291 return res; 3292 3293 res = bus_register(&i3c_bus_type); 3294 if (res) 3295 goto out_unreg_notifier; 3296 3297 return 0; 3298 3299 out_unreg_notifier: 3300 bus_unregister_notifier(&i2c_bus_type, &i2cdev_notifier); 3301 3302 return res; 3303 } 3304 subsys_initcall(i3c_init); 3305 3306 static void __exit i3c_exit(void) 3307 { 3308 bus_unregister_notifier(&i2c_bus_type, &i2cdev_notifier); 3309 idr_destroy(&i3c_bus_idr); 3310 bus_unregister(&i3c_bus_type); 3311 } 3312 module_exit(i3c_exit); 3313 3314 MODULE_AUTHOR("Boris Brezillon <boris.brezillon@bootlin.com>"); 3315 MODULE_DESCRIPTION("I3C core"); 3316 MODULE_LICENSE("GPL v2"); 3317