1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
2 /* Copyright (C) 2015-2019 Netronome Systems, Inc. */
3
4 /*
5 * nfp_net_common.c
6 * Netronome network device driver: Common functions between PF and VF
7 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
8 * Jason McMullan <jason.mcmullan@netronome.com>
9 * Rolf Neugebauer <rolf.neugebauer@netronome.com>
10 * Brad Petrus <brad.petrus@netronome.com>
11 * Chris Telfer <chris.telfer@netronome.com>
12 */
13
14 #include <linux/bitfield.h>
15 #include <linux/bpf.h>
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/init.h>
19 #include <linux/fs.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/interrupt.h>
23 #include <linux/ip.h>
24 #include <linux/ipv6.h>
25 #include <linux/mm.h>
26 #include <linux/overflow.h>
27 #include <linux/page_ref.h>
28 #include <linux/pci.h>
29 #include <linux/pci_regs.h>
30 #include <linux/ethtool.h>
31 #include <linux/log2.h>
32 #include <linux/if_vlan.h>
33 #include <linux/if_bridge.h>
34 #include <linux/random.h>
35 #include <linux/vmalloc.h>
36 #include <linux/ktime.h>
37
38 #include <net/tls.h>
39 #include <net/vxlan.h>
40 #include <net/xdp_sock_drv.h>
41 #include <net/xfrm.h>
42
43 #include "nfpcore/nfp_dev.h"
44 #include "nfpcore/nfp_nsp.h"
45 #include "ccm.h"
46 #include "nfp_app.h"
47 #include "nfp_net_ctrl.h"
48 #include "nfp_net.h"
49 #include "nfp_net_dp.h"
50 #include "nfp_net_sriov.h"
51 #include "nfp_net_xsk.h"
52 #include "nfp_port.h"
53 #include "crypto/crypto.h"
54 #include "crypto/fw.h"
55
56 static int nfp_net_mc_unsync(struct net_device *netdev, const unsigned char *addr);
57
58 /**
59 * nfp_net_get_fw_version() - Read and parse the FW version
60 * @fw_ver: Output fw_version structure to read to
61 * @ctrl_bar: Mapped address of the control BAR
62 */
nfp_net_get_fw_version(struct nfp_net_fw_version * fw_ver,void __iomem * ctrl_bar)63 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver,
64 void __iomem *ctrl_bar)
65 {
66 u32 reg;
67
68 reg = readl(ctrl_bar + NFP_NET_CFG_VERSION);
69 put_unaligned_le32(reg, fw_ver);
70 }
71
nfp_qcp_queue_offset(const struct nfp_dev_info * dev_info,u16 queue)72 u32 nfp_qcp_queue_offset(const struct nfp_dev_info *dev_info, u16 queue)
73 {
74 queue &= dev_info->qc_idx_mask;
75 return dev_info->qc_addr_offset + NFP_QCP_QUEUE_ADDR_SZ * queue;
76 }
77
78 /* Firmware reconfig
79 *
80 * Firmware reconfig may take a while so we have two versions of it -
81 * synchronous and asynchronous (posted). All synchronous callers are holding
82 * RTNL so we don't have to worry about serializing them.
83 */
nfp_net_reconfig_start(struct nfp_net * nn,u32 update)84 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update)
85 {
86 nn_writel(nn, NFP_NET_CFG_UPDATE, update);
87 /* ensure update is written before pinging HW */
88 nn_pci_flush(nn);
89 nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1);
90 nn->reconfig_in_progress_update = update;
91 }
92
93 /* Pass 0 as update to run posted reconfigs. */
nfp_net_reconfig_start_async(struct nfp_net * nn,u32 update)94 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update)
95 {
96 update |= nn->reconfig_posted;
97 nn->reconfig_posted = 0;
98
99 nfp_net_reconfig_start(nn, update);
100
101 nn->reconfig_timer_active = true;
102 mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ);
103 }
104
nfp_net_reconfig_check_done(struct nfp_net * nn,bool last_check)105 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check)
106 {
107 u32 reg;
108
109 reg = nn_readl(nn, NFP_NET_CFG_UPDATE);
110 if (reg == 0)
111 return true;
112 if (reg & NFP_NET_CFG_UPDATE_ERR) {
113 nn_err(nn, "Reconfig error (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n",
114 reg, nn->reconfig_in_progress_update,
115 nn_readl(nn, NFP_NET_CFG_CTRL));
116 return true;
117 } else if (last_check) {
118 nn_err(nn, "Reconfig timeout (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n",
119 reg, nn->reconfig_in_progress_update,
120 nn_readl(nn, NFP_NET_CFG_CTRL));
121 return true;
122 }
123
124 return false;
125 }
126
__nfp_net_reconfig_wait(struct nfp_net * nn,unsigned long deadline)127 static bool __nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
128 {
129 bool timed_out = false;
130 int i;
131
132 /* Poll update field, waiting for NFP to ack the config.
133 * Do an opportunistic wait-busy loop, afterward sleep.
134 */
135 for (i = 0; i < 50; i++) {
136 if (nfp_net_reconfig_check_done(nn, false))
137 return false;
138 udelay(4);
139 }
140
141 while (!nfp_net_reconfig_check_done(nn, timed_out)) {
142 usleep_range(250, 500);
143 timed_out = time_is_before_eq_jiffies(deadline);
144 }
145
146 return timed_out;
147 }
148
nfp_net_reconfig_wait(struct nfp_net * nn,unsigned long deadline)149 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
150 {
151 if (__nfp_net_reconfig_wait(nn, deadline))
152 return -EIO;
153
154 if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR)
155 return -EIO;
156
157 return 0;
158 }
159
nfp_net_reconfig_timer(struct timer_list * t)160 static void nfp_net_reconfig_timer(struct timer_list *t)
161 {
162 struct nfp_net *nn = from_timer(nn, t, reconfig_timer);
163
164 spin_lock_bh(&nn->reconfig_lock);
165
166 nn->reconfig_timer_active = false;
167
168 /* If sync caller is present it will take over from us */
169 if (nn->reconfig_sync_present)
170 goto done;
171
172 /* Read reconfig status and report errors */
173 nfp_net_reconfig_check_done(nn, true);
174
175 if (nn->reconfig_posted)
176 nfp_net_reconfig_start_async(nn, 0);
177 done:
178 spin_unlock_bh(&nn->reconfig_lock);
179 }
180
181 /**
182 * nfp_net_reconfig_post() - Post async reconfig request
183 * @nn: NFP Net device to reconfigure
184 * @update: The value for the update field in the BAR config
185 *
186 * Record FW reconfiguration request. Reconfiguration will be kicked off
187 * whenever reconfiguration machinery is idle. Multiple requests can be
188 * merged together!
189 */
nfp_net_reconfig_post(struct nfp_net * nn,u32 update)190 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update)
191 {
192 spin_lock_bh(&nn->reconfig_lock);
193
194 /* Sync caller will kick off async reconf when it's done, just post */
195 if (nn->reconfig_sync_present) {
196 nn->reconfig_posted |= update;
197 goto done;
198 }
199
200 /* Opportunistically check if the previous command is done */
201 if (!nn->reconfig_timer_active ||
202 nfp_net_reconfig_check_done(nn, false))
203 nfp_net_reconfig_start_async(nn, update);
204 else
205 nn->reconfig_posted |= update;
206 done:
207 spin_unlock_bh(&nn->reconfig_lock);
208 }
209
nfp_net_reconfig_sync_enter(struct nfp_net * nn)210 static void nfp_net_reconfig_sync_enter(struct nfp_net *nn)
211 {
212 bool cancelled_timer = false;
213 u32 pre_posted_requests;
214
215 spin_lock_bh(&nn->reconfig_lock);
216
217 WARN_ON(nn->reconfig_sync_present);
218 nn->reconfig_sync_present = true;
219
220 if (nn->reconfig_timer_active) {
221 nn->reconfig_timer_active = false;
222 cancelled_timer = true;
223 }
224 pre_posted_requests = nn->reconfig_posted;
225 nn->reconfig_posted = 0;
226
227 spin_unlock_bh(&nn->reconfig_lock);
228
229 if (cancelled_timer) {
230 del_timer_sync(&nn->reconfig_timer);
231 nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires);
232 }
233
234 /* Run the posted reconfigs which were issued before we started */
235 if (pre_posted_requests) {
236 nfp_net_reconfig_start(nn, pre_posted_requests);
237 nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
238 }
239 }
240
nfp_net_reconfig_wait_posted(struct nfp_net * nn)241 static void nfp_net_reconfig_wait_posted(struct nfp_net *nn)
242 {
243 nfp_net_reconfig_sync_enter(nn);
244
245 spin_lock_bh(&nn->reconfig_lock);
246 nn->reconfig_sync_present = false;
247 spin_unlock_bh(&nn->reconfig_lock);
248 }
249
250 /**
251 * __nfp_net_reconfig() - Reconfigure the firmware
252 * @nn: NFP Net device to reconfigure
253 * @update: The value for the update field in the BAR config
254 *
255 * Write the update word to the BAR and ping the reconfig queue. The
256 * poll until the firmware has acknowledged the update by zeroing the
257 * update word.
258 *
259 * Return: Negative errno on error, 0 on success
260 */
__nfp_net_reconfig(struct nfp_net * nn,u32 update)261 int __nfp_net_reconfig(struct nfp_net *nn, u32 update)
262 {
263 int ret;
264
265 nfp_net_reconfig_sync_enter(nn);
266
267 nfp_net_reconfig_start(nn, update);
268 ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
269
270 spin_lock_bh(&nn->reconfig_lock);
271
272 if (nn->reconfig_posted)
273 nfp_net_reconfig_start_async(nn, 0);
274
275 nn->reconfig_sync_present = false;
276
277 spin_unlock_bh(&nn->reconfig_lock);
278
279 return ret;
280 }
281
nfp_net_reconfig(struct nfp_net * nn,u32 update)282 int nfp_net_reconfig(struct nfp_net *nn, u32 update)
283 {
284 int ret;
285
286 nn_ctrl_bar_lock(nn);
287 ret = __nfp_net_reconfig(nn, update);
288 nn_ctrl_bar_unlock(nn);
289
290 return ret;
291 }
292
nfp_net_mbox_lock(struct nfp_net * nn,unsigned int data_size)293 int nfp_net_mbox_lock(struct nfp_net *nn, unsigned int data_size)
294 {
295 if (nn->tlv_caps.mbox_len < NFP_NET_CFG_MBOX_SIMPLE_VAL + data_size) {
296 nn_err(nn, "mailbox too small for %u of data (%u)\n",
297 data_size, nn->tlv_caps.mbox_len);
298 return -EIO;
299 }
300
301 nn_ctrl_bar_lock(nn);
302 return 0;
303 }
304
305 /**
306 * nfp_net_mbox_reconfig() - Reconfigure the firmware via the mailbox
307 * @nn: NFP Net device to reconfigure
308 * @mbox_cmd: The value for the mailbox command
309 *
310 * Helper function for mailbox updates
311 *
312 * Return: Negative errno on error, 0 on success
313 */
nfp_net_mbox_reconfig(struct nfp_net * nn,u32 mbox_cmd)314 int nfp_net_mbox_reconfig(struct nfp_net *nn, u32 mbox_cmd)
315 {
316 u32 mbox = nn->tlv_caps.mbox_off;
317 int ret;
318
319 nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd);
320
321 ret = __nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MBOX);
322 if (ret) {
323 nn_err(nn, "Mailbox update error\n");
324 return ret;
325 }
326
327 return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET);
328 }
329
nfp_net_mbox_reconfig_post(struct nfp_net * nn,u32 mbox_cmd)330 void nfp_net_mbox_reconfig_post(struct nfp_net *nn, u32 mbox_cmd)
331 {
332 u32 mbox = nn->tlv_caps.mbox_off;
333
334 nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd);
335
336 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_MBOX);
337 }
338
nfp_net_mbox_reconfig_wait_posted(struct nfp_net * nn)339 int nfp_net_mbox_reconfig_wait_posted(struct nfp_net *nn)
340 {
341 u32 mbox = nn->tlv_caps.mbox_off;
342
343 nfp_net_reconfig_wait_posted(nn);
344
345 return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET);
346 }
347
nfp_net_mbox_reconfig_and_unlock(struct nfp_net * nn,u32 mbox_cmd)348 int nfp_net_mbox_reconfig_and_unlock(struct nfp_net *nn, u32 mbox_cmd)
349 {
350 int ret;
351
352 ret = nfp_net_mbox_reconfig(nn, mbox_cmd);
353 nn_ctrl_bar_unlock(nn);
354 return ret;
355 }
356
357 /* Interrupt configuration and handling
358 */
359
360 /**
361 * nfp_net_irqs_alloc() - allocates MSI-X irqs
362 * @pdev: PCI device structure
363 * @irq_entries: Array to be initialized and used to hold the irq entries
364 * @min_irqs: Minimal acceptable number of interrupts
365 * @wanted_irqs: Target number of interrupts to allocate
366 *
367 * Return: Number of irqs obtained or 0 on error.
368 */
369 unsigned int
nfp_net_irqs_alloc(struct pci_dev * pdev,struct msix_entry * irq_entries,unsigned int min_irqs,unsigned int wanted_irqs)370 nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries,
371 unsigned int min_irqs, unsigned int wanted_irqs)
372 {
373 unsigned int i;
374 int got_irqs;
375
376 for (i = 0; i < wanted_irqs; i++)
377 irq_entries[i].entry = i;
378
379 got_irqs = pci_enable_msix_range(pdev, irq_entries,
380 min_irqs, wanted_irqs);
381 if (got_irqs < 0) {
382 dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n",
383 min_irqs, wanted_irqs, got_irqs);
384 return 0;
385 }
386
387 if (got_irqs < wanted_irqs)
388 dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n",
389 wanted_irqs, got_irqs);
390
391 return got_irqs;
392 }
393
394 /**
395 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev
396 * @nn: NFP Network structure
397 * @irq_entries: Table of allocated interrupts
398 * @n: Size of @irq_entries (number of entries to grab)
399 *
400 * After interrupts are allocated with nfp_net_irqs_alloc() this function
401 * should be called to assign them to a specific netdev (port).
402 */
403 void
nfp_net_irqs_assign(struct nfp_net * nn,struct msix_entry * irq_entries,unsigned int n)404 nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries,
405 unsigned int n)
406 {
407 struct nfp_net_dp *dp = &nn->dp;
408
409 nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS;
410 dp->num_r_vecs = nn->max_r_vecs;
411
412 memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n);
413
414 if (dp->num_rx_rings > dp->num_r_vecs ||
415 dp->num_tx_rings > dp->num_r_vecs)
416 dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n",
417 dp->num_rx_rings, dp->num_tx_rings,
418 dp->num_r_vecs);
419
420 dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings);
421 dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings);
422 dp->num_stack_tx_rings = dp->num_tx_rings;
423 }
424
425 /**
426 * nfp_net_irqs_disable() - Disable interrupts
427 * @pdev: PCI device structure
428 *
429 * Undoes what @nfp_net_irqs_alloc() does.
430 */
nfp_net_irqs_disable(struct pci_dev * pdev)431 void nfp_net_irqs_disable(struct pci_dev *pdev)
432 {
433 pci_disable_msix(pdev);
434 }
435
436 /**
437 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings.
438 * @irq: Interrupt
439 * @data: Opaque data structure
440 *
441 * Return: Indicate if the interrupt has been handled.
442 */
nfp_net_irq_rxtx(int irq,void * data)443 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data)
444 {
445 struct nfp_net_r_vector *r_vec = data;
446
447 /* Currently we cannot tell if it's a rx or tx interrupt,
448 * since dim does not need accurate event_ctr to calculate,
449 * we just use this counter for both rx and tx dim.
450 */
451 r_vec->event_ctr++;
452
453 napi_schedule_irqoff(&r_vec->napi);
454
455 /* The FW auto-masks any interrupt, either via the MASK bit in
456 * the MSI-X table or via the per entry ICR field. So there
457 * is no need to disable interrupts here.
458 */
459 return IRQ_HANDLED;
460 }
461
nfp_ctrl_irq_rxtx(int irq,void * data)462 static irqreturn_t nfp_ctrl_irq_rxtx(int irq, void *data)
463 {
464 struct nfp_net_r_vector *r_vec = data;
465
466 tasklet_schedule(&r_vec->tasklet);
467
468 return IRQ_HANDLED;
469 }
470
471 /**
472 * nfp_net_read_link_status() - Reread link status from control BAR
473 * @nn: NFP Network structure
474 */
nfp_net_read_link_status(struct nfp_net * nn)475 static void nfp_net_read_link_status(struct nfp_net *nn)
476 {
477 unsigned long flags;
478 bool link_up;
479 u16 sts;
480
481 spin_lock_irqsave(&nn->link_status_lock, flags);
482
483 sts = nn_readw(nn, NFP_NET_CFG_STS);
484 link_up = !!(sts & NFP_NET_CFG_STS_LINK);
485
486 if (nn->link_up == link_up)
487 goto out;
488
489 nn->link_up = link_up;
490 if (nn->port) {
491 set_bit(NFP_PORT_CHANGED, &nn->port->flags);
492 if (nn->port->link_cb)
493 nn->port->link_cb(nn->port);
494 }
495
496 if (nn->link_up) {
497 netif_carrier_on(nn->dp.netdev);
498 netdev_info(nn->dp.netdev, "NIC Link is Up\n");
499 } else {
500 netif_carrier_off(nn->dp.netdev);
501 netdev_info(nn->dp.netdev, "NIC Link is Down\n");
502 }
503 out:
504 spin_unlock_irqrestore(&nn->link_status_lock, flags);
505 }
506
507 /**
508 * nfp_net_irq_lsc() - Interrupt service routine for link state changes
509 * @irq: Interrupt
510 * @data: Opaque data structure
511 *
512 * Return: Indicate if the interrupt has been handled.
513 */
nfp_net_irq_lsc(int irq,void * data)514 static irqreturn_t nfp_net_irq_lsc(int irq, void *data)
515 {
516 struct nfp_net *nn = data;
517 struct msix_entry *entry;
518
519 entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX];
520
521 nfp_net_read_link_status(nn);
522
523 nfp_net_irq_unmask(nn, entry->entry);
524
525 return IRQ_HANDLED;
526 }
527
528 /**
529 * nfp_net_irq_exn() - Interrupt service routine for exceptions
530 * @irq: Interrupt
531 * @data: Opaque data structure
532 *
533 * Return: Indicate if the interrupt has been handled.
534 */
nfp_net_irq_exn(int irq,void * data)535 static irqreturn_t nfp_net_irq_exn(int irq, void *data)
536 {
537 struct nfp_net *nn = data;
538
539 nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__);
540 /* XXX TO BE IMPLEMENTED */
541 return IRQ_HANDLED;
542 }
543
544 /**
545 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN)
546 * @nn: NFP Network structure
547 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
548 * @format: printf-style format to construct the interrupt name
549 * @name: Pointer to allocated space for interrupt name
550 * @name_sz: Size of space for interrupt name
551 * @vector_idx: Index of MSI-X vector used for this interrupt
552 * @handler: IRQ handler to register for this interrupt
553 */
554 static int
nfp_net_aux_irq_request(struct nfp_net * nn,u32 ctrl_offset,const char * format,char * name,size_t name_sz,unsigned int vector_idx,irq_handler_t handler)555 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset,
556 const char *format, char *name, size_t name_sz,
557 unsigned int vector_idx, irq_handler_t handler)
558 {
559 struct msix_entry *entry;
560 int err;
561
562 entry = &nn->irq_entries[vector_idx];
563
564 snprintf(name, name_sz, format, nfp_net_name(nn));
565 err = request_irq(entry->vector, handler, 0, name, nn);
566 if (err) {
567 nn_err(nn, "Failed to request IRQ %d (err=%d).\n",
568 entry->vector, err);
569 return err;
570 }
571 nn_writeb(nn, ctrl_offset, entry->entry);
572 nfp_net_irq_unmask(nn, entry->entry);
573
574 return 0;
575 }
576
577 /**
578 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN)
579 * @nn: NFP Network structure
580 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
581 * @vector_idx: Index of MSI-X vector used for this interrupt
582 */
nfp_net_aux_irq_free(struct nfp_net * nn,u32 ctrl_offset,unsigned int vector_idx)583 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset,
584 unsigned int vector_idx)
585 {
586 nn_writeb(nn, ctrl_offset, 0xff);
587 nn_pci_flush(nn);
588 free_irq(nn->irq_entries[vector_idx].vector, nn);
589 }
590
591 struct sk_buff *
nfp_net_tls_tx(struct nfp_net_dp * dp,struct nfp_net_r_vector * r_vec,struct sk_buff * skb,u64 * tls_handle,int * nr_frags)592 nfp_net_tls_tx(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
593 struct sk_buff *skb, u64 *tls_handle, int *nr_frags)
594 {
595 #ifdef CONFIG_TLS_DEVICE
596 struct nfp_net_tls_offload_ctx *ntls;
597 struct sk_buff *nskb;
598 bool resync_pending;
599 u32 datalen, seq;
600
601 if (likely(!dp->ktls_tx))
602 return skb;
603 if (!tls_is_skb_tx_device_offloaded(skb))
604 return skb;
605
606 datalen = skb->len - skb_tcp_all_headers(skb);
607 seq = ntohl(tcp_hdr(skb)->seq);
608 ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX);
609 resync_pending = tls_offload_tx_resync_pending(skb->sk);
610 if (unlikely(resync_pending || ntls->next_seq != seq)) {
611 /* Pure ACK out of order already */
612 if (!datalen)
613 return skb;
614
615 u64_stats_update_begin(&r_vec->tx_sync);
616 r_vec->tls_tx_fallback++;
617 u64_stats_update_end(&r_vec->tx_sync);
618
619 nskb = tls_encrypt_skb(skb);
620 if (!nskb) {
621 u64_stats_update_begin(&r_vec->tx_sync);
622 r_vec->tls_tx_no_fallback++;
623 u64_stats_update_end(&r_vec->tx_sync);
624 return NULL;
625 }
626 /* encryption wasn't necessary */
627 if (nskb == skb)
628 return skb;
629 /* we don't re-check ring space */
630 if (unlikely(skb_is_nonlinear(nskb))) {
631 nn_dp_warn(dp, "tls_encrypt_skb() produced fragmented frame\n");
632 u64_stats_update_begin(&r_vec->tx_sync);
633 r_vec->tx_errors++;
634 u64_stats_update_end(&r_vec->tx_sync);
635 dev_kfree_skb_any(nskb);
636 return NULL;
637 }
638
639 /* jump forward, a TX may have gotten lost, need to sync TX */
640 if (!resync_pending && seq - ntls->next_seq < U32_MAX / 4)
641 tls_offload_tx_resync_request(nskb->sk, seq,
642 ntls->next_seq);
643
644 *nr_frags = 0;
645 return nskb;
646 }
647
648 if (datalen) {
649 u64_stats_update_begin(&r_vec->tx_sync);
650 if (!skb_is_gso(skb))
651 r_vec->hw_tls_tx++;
652 else
653 r_vec->hw_tls_tx += skb_shinfo(skb)->gso_segs;
654 u64_stats_update_end(&r_vec->tx_sync);
655 }
656
657 memcpy(tls_handle, ntls->fw_handle, sizeof(ntls->fw_handle));
658 ntls->next_seq += datalen;
659 #endif
660 return skb;
661 }
662
nfp_net_tls_tx_undo(struct sk_buff * skb,u64 tls_handle)663 void nfp_net_tls_tx_undo(struct sk_buff *skb, u64 tls_handle)
664 {
665 #ifdef CONFIG_TLS_DEVICE
666 struct nfp_net_tls_offload_ctx *ntls;
667 u32 datalen, seq;
668
669 if (!tls_handle)
670 return;
671 if (WARN_ON_ONCE(!tls_is_skb_tx_device_offloaded(skb)))
672 return;
673
674 datalen = skb->len - skb_tcp_all_headers(skb);
675 seq = ntohl(tcp_hdr(skb)->seq);
676
677 ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX);
678 if (ntls->next_seq == seq + datalen)
679 ntls->next_seq = seq;
680 else
681 WARN_ON_ONCE(1);
682 #endif
683 }
684
nfp_net_tx_timeout(struct net_device * netdev,unsigned int txqueue)685 static void nfp_net_tx_timeout(struct net_device *netdev, unsigned int txqueue)
686 {
687 struct nfp_net *nn = netdev_priv(netdev);
688
689 nn_warn(nn, "TX watchdog timeout on ring: %u\n", txqueue);
690 }
691
692 /* Receive processing */
693 static unsigned int
nfp_net_calc_fl_bufsz_data(struct nfp_net_dp * dp)694 nfp_net_calc_fl_bufsz_data(struct nfp_net_dp *dp)
695 {
696 unsigned int fl_bufsz = 0;
697
698 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
699 fl_bufsz += NFP_NET_MAX_PREPEND;
700 else
701 fl_bufsz += dp->rx_offset;
702 fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu;
703
704 return fl_bufsz;
705 }
706
nfp_net_calc_fl_bufsz(struct nfp_net_dp * dp)707 static unsigned int nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp)
708 {
709 unsigned int fl_bufsz;
710
711 fl_bufsz = NFP_NET_RX_BUF_HEADROOM;
712 fl_bufsz += dp->rx_dma_off;
713 fl_bufsz += nfp_net_calc_fl_bufsz_data(dp);
714
715 fl_bufsz = SKB_DATA_ALIGN(fl_bufsz);
716 fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
717
718 return fl_bufsz;
719 }
720
nfp_net_calc_fl_bufsz_xsk(struct nfp_net_dp * dp)721 static unsigned int nfp_net_calc_fl_bufsz_xsk(struct nfp_net_dp *dp)
722 {
723 unsigned int fl_bufsz;
724
725 fl_bufsz = XDP_PACKET_HEADROOM;
726 fl_bufsz += nfp_net_calc_fl_bufsz_data(dp);
727
728 return fl_bufsz;
729 }
730
731 /* Setup and Configuration
732 */
733
734 /**
735 * nfp_net_vecs_init() - Assign IRQs and setup rvecs.
736 * @nn: NFP Network structure
737 */
nfp_net_vecs_init(struct nfp_net * nn)738 static void nfp_net_vecs_init(struct nfp_net *nn)
739 {
740 int numa_node = dev_to_node(&nn->pdev->dev);
741 struct nfp_net_r_vector *r_vec;
742 unsigned int r;
743
744 nn->lsc_handler = nfp_net_irq_lsc;
745 nn->exn_handler = nfp_net_irq_exn;
746
747 for (r = 0; r < nn->max_r_vecs; r++) {
748 struct msix_entry *entry;
749
750 entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r];
751
752 r_vec = &nn->r_vecs[r];
753 r_vec->nfp_net = nn;
754 r_vec->irq_entry = entry->entry;
755 r_vec->irq_vector = entry->vector;
756
757 if (nn->dp.netdev) {
758 r_vec->handler = nfp_net_irq_rxtx;
759 } else {
760 r_vec->handler = nfp_ctrl_irq_rxtx;
761
762 __skb_queue_head_init(&r_vec->queue);
763 spin_lock_init(&r_vec->lock);
764 tasklet_setup(&r_vec->tasklet, nn->dp.ops->ctrl_poll);
765 tasklet_disable(&r_vec->tasklet);
766 }
767
768 cpumask_set_cpu(cpumask_local_spread(r, numa_node), &r_vec->affinity_mask);
769 }
770 }
771
772 static void
nfp_net_napi_add(struct nfp_net_dp * dp,struct nfp_net_r_vector * r_vec,int idx)773 nfp_net_napi_add(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, int idx)
774 {
775 if (dp->netdev)
776 netif_napi_add(dp->netdev, &r_vec->napi,
777 nfp_net_has_xsk_pool_slow(dp, idx) ? dp->ops->xsk_poll : dp->ops->poll);
778 else
779 tasklet_enable(&r_vec->tasklet);
780 }
781
782 static void
nfp_net_napi_del(struct nfp_net_dp * dp,struct nfp_net_r_vector * r_vec)783 nfp_net_napi_del(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec)
784 {
785 if (dp->netdev)
786 netif_napi_del(&r_vec->napi);
787 else
788 tasklet_disable(&r_vec->tasklet);
789 }
790
791 static void
nfp_net_vector_assign_rings(struct nfp_net_dp * dp,struct nfp_net_r_vector * r_vec,int idx)792 nfp_net_vector_assign_rings(struct nfp_net_dp *dp,
793 struct nfp_net_r_vector *r_vec, int idx)
794 {
795 r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL;
796 r_vec->tx_ring =
797 idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL;
798
799 r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ?
800 &dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL;
801
802 if (nfp_net_has_xsk_pool_slow(dp, idx) || r_vec->xsk_pool) {
803 r_vec->xsk_pool = dp->xdp_prog ? dp->xsk_pools[idx] : NULL;
804
805 if (r_vec->xsk_pool)
806 xsk_pool_set_rxq_info(r_vec->xsk_pool,
807 &r_vec->rx_ring->xdp_rxq);
808
809 nfp_net_napi_del(dp, r_vec);
810 nfp_net_napi_add(dp, r_vec, idx);
811 }
812 }
813
814 static int
nfp_net_prepare_vector(struct nfp_net * nn,struct nfp_net_r_vector * r_vec,int idx)815 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
816 int idx)
817 {
818 int err;
819
820 nfp_net_napi_add(&nn->dp, r_vec, idx);
821
822 snprintf(r_vec->name, sizeof(r_vec->name),
823 "%s-rxtx-%d", nfp_net_name(nn), idx);
824 err = request_irq(r_vec->irq_vector, r_vec->handler, IRQF_NO_AUTOEN,
825 r_vec->name, r_vec);
826 if (err) {
827 nfp_net_napi_del(&nn->dp, r_vec);
828 nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector);
829 return err;
830 }
831
832 irq_update_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask);
833
834 nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector,
835 r_vec->irq_entry);
836
837 return 0;
838 }
839
840 static void
nfp_net_cleanup_vector(struct nfp_net * nn,struct nfp_net_r_vector * r_vec)841 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec)
842 {
843 irq_update_affinity_hint(r_vec->irq_vector, NULL);
844 nfp_net_napi_del(&nn->dp, r_vec);
845 free_irq(r_vec->irq_vector, r_vec);
846 }
847
848 /**
849 * nfp_net_rss_write_itbl() - Write RSS indirection table to device
850 * @nn: NFP Net device to reconfigure
851 */
nfp_net_rss_write_itbl(struct nfp_net * nn)852 void nfp_net_rss_write_itbl(struct nfp_net *nn)
853 {
854 int i;
855
856 for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4)
857 nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i,
858 get_unaligned_le32(nn->rss_itbl + i));
859 }
860
861 /**
862 * nfp_net_rss_write_key() - Write RSS hash key to device
863 * @nn: NFP Net device to reconfigure
864 */
nfp_net_rss_write_key(struct nfp_net * nn)865 void nfp_net_rss_write_key(struct nfp_net *nn)
866 {
867 int i;
868
869 for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4)
870 nn_writel(nn, NFP_NET_CFG_RSS_KEY + i,
871 get_unaligned_le32(nn->rss_key + i));
872 }
873
874 /**
875 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW
876 * @nn: NFP Net device to reconfigure
877 */
nfp_net_coalesce_write_cfg(struct nfp_net * nn)878 void nfp_net_coalesce_write_cfg(struct nfp_net *nn)
879 {
880 u8 i;
881 u32 factor;
882 u32 value;
883
884 /* Compute factor used to convert coalesce '_usecs' parameters to
885 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp
886 * count.
887 */
888 factor = nn->tlv_caps.me_freq_mhz / 16;
889
890 /* copy RX interrupt coalesce parameters */
891 value = (nn->rx_coalesce_max_frames << 16) |
892 (factor * nn->rx_coalesce_usecs);
893 for (i = 0; i < nn->dp.num_rx_rings; i++)
894 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value);
895
896 /* copy TX interrupt coalesce parameters */
897 value = (nn->tx_coalesce_max_frames << 16) |
898 (factor * nn->tx_coalesce_usecs);
899 for (i = 0; i < nn->dp.num_tx_rings; i++)
900 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value);
901 }
902
903 /**
904 * nfp_net_write_mac_addr() - Write mac address to the device control BAR
905 * @nn: NFP Net device to reconfigure
906 * @addr: MAC address to write
907 *
908 * Writes the MAC address from the netdev to the device control BAR. Does not
909 * perform the required reconfig. We do a bit of byte swapping dance because
910 * firmware is LE.
911 */
nfp_net_write_mac_addr(struct nfp_net * nn,const u8 * addr)912 static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr)
913 {
914 nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr));
915 nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4));
916 }
917
918 /**
919 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP
920 * @nn: NFP Net device to reconfigure
921 *
922 * Warning: must be fully idempotent.
923 */
nfp_net_clear_config_and_disable(struct nfp_net * nn)924 static void nfp_net_clear_config_and_disable(struct nfp_net *nn)
925 {
926 u32 new_ctrl, new_ctrl_w1, update;
927 unsigned int r;
928 int err;
929
930 new_ctrl = nn->dp.ctrl;
931 new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE;
932 update = NFP_NET_CFG_UPDATE_GEN;
933 update |= NFP_NET_CFG_UPDATE_MSIX;
934 update |= NFP_NET_CFG_UPDATE_RING;
935
936 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
937 new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG;
938
939 if (!(nn->cap_w1 & NFP_NET_CFG_CTRL_FREELIST_EN)) {
940 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
941 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
942 }
943
944 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
945 err = nfp_net_reconfig(nn, update);
946 if (err)
947 nn_err(nn, "Could not disable device: %d\n", err);
948
949 if (nn->cap_w1 & NFP_NET_CFG_CTRL_FREELIST_EN) {
950 new_ctrl_w1 = nn->dp.ctrl_w1;
951 new_ctrl_w1 &= ~NFP_NET_CFG_CTRL_FREELIST_EN;
952 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
953 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
954
955 nn_writel(nn, NFP_NET_CFG_CTRL_WORD1, new_ctrl_w1);
956 err = nfp_net_reconfig(nn, update);
957 if (err)
958 nn_err(nn, "Could not disable FREELIST_EN: %d\n", err);
959 nn->dp.ctrl_w1 = new_ctrl_w1;
960 }
961
962 for (r = 0; r < nn->dp.num_rx_rings; r++) {
963 nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]);
964 if (nfp_net_has_xsk_pool_slow(&nn->dp, nn->dp.rx_rings[r].idx))
965 nfp_net_xsk_rx_bufs_free(&nn->dp.rx_rings[r]);
966 }
967 for (r = 0; r < nn->dp.num_tx_rings; r++)
968 nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]);
969 for (r = 0; r < nn->dp.num_r_vecs; r++)
970 nfp_net_vec_clear_ring_data(nn, r);
971
972 nn->dp.ctrl = new_ctrl;
973 }
974
975 /**
976 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP
977 * @nn: NFP Net device to reconfigure
978 */
nfp_net_set_config_and_enable(struct nfp_net * nn)979 static int nfp_net_set_config_and_enable(struct nfp_net *nn)
980 {
981 u32 bufsz, new_ctrl, new_ctrl_w1, update = 0;
982 unsigned int r;
983 int err;
984
985 new_ctrl = nn->dp.ctrl;
986 new_ctrl_w1 = nn->dp.ctrl_w1;
987
988 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) {
989 nfp_net_rss_write_key(nn);
990 nfp_net_rss_write_itbl(nn);
991 nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg);
992 update |= NFP_NET_CFG_UPDATE_RSS;
993 }
994
995 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) {
996 nfp_net_coalesce_write_cfg(nn);
997 update |= NFP_NET_CFG_UPDATE_IRQMOD;
998 }
999
1000 for (r = 0; r < nn->dp.num_tx_rings; r++)
1001 nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r);
1002 for (r = 0; r < nn->dp.num_rx_rings; r++)
1003 nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r);
1004
1005 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE,
1006 U64_MAX >> (64 - nn->dp.num_tx_rings));
1007
1008 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE,
1009 U64_MAX >> (64 - nn->dp.num_rx_rings));
1010
1011 if (nn->dp.netdev)
1012 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
1013
1014 nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.mtu);
1015
1016 bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA;
1017 nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz);
1018
1019 /* Enable device
1020 * Step 1: Replace the CTRL_ENABLE by NFP_NET_CFG_CTRL_FREELIST_EN if
1021 * FREELIST_EN exits.
1022 */
1023 if (nn->cap_w1 & NFP_NET_CFG_CTRL_FREELIST_EN)
1024 new_ctrl_w1 |= NFP_NET_CFG_CTRL_FREELIST_EN;
1025 else
1026 new_ctrl |= NFP_NET_CFG_CTRL_ENABLE;
1027 update |= NFP_NET_CFG_UPDATE_GEN;
1028 update |= NFP_NET_CFG_UPDATE_MSIX;
1029 update |= NFP_NET_CFG_UPDATE_RING;
1030 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
1031 new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG;
1032
1033 /* Step 2: Send the configuration and write the freelist.
1034 * - The freelist only need to be written once.
1035 */
1036 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
1037 nn_writel(nn, NFP_NET_CFG_CTRL_WORD1, new_ctrl_w1);
1038 err = nfp_net_reconfig(nn, update);
1039 if (err) {
1040 nfp_net_clear_config_and_disable(nn);
1041 return err;
1042 }
1043
1044 nn->dp.ctrl = new_ctrl;
1045 nn->dp.ctrl_w1 = new_ctrl_w1;
1046
1047 for (r = 0; r < nn->dp.num_rx_rings; r++)
1048 nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]);
1049
1050 /* Step 3: Do the NFP_NET_CFG_CTRL_ENABLE. Send the configuration.
1051 */
1052 if (nn->cap_w1 & NFP_NET_CFG_CTRL_FREELIST_EN) {
1053 new_ctrl |= NFP_NET_CFG_CTRL_ENABLE;
1054 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
1055
1056 err = nfp_net_reconfig(nn, update);
1057 if (err) {
1058 nfp_net_clear_config_and_disable(nn);
1059 return err;
1060 }
1061 nn->dp.ctrl = new_ctrl;
1062 }
1063
1064 return 0;
1065 }
1066
1067 /**
1068 * nfp_net_close_stack() - Quiesce the stack (part of close)
1069 * @nn: NFP Net device to reconfigure
1070 */
nfp_net_close_stack(struct nfp_net * nn)1071 static void nfp_net_close_stack(struct nfp_net *nn)
1072 {
1073 struct nfp_net_r_vector *r_vec;
1074 unsigned int r;
1075
1076 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
1077 netif_carrier_off(nn->dp.netdev);
1078 nn->link_up = false;
1079
1080 for (r = 0; r < nn->dp.num_r_vecs; r++) {
1081 r_vec = &nn->r_vecs[r];
1082
1083 disable_irq(r_vec->irq_vector);
1084 napi_disable(&r_vec->napi);
1085
1086 if (r_vec->rx_ring)
1087 cancel_work_sync(&r_vec->rx_dim.work);
1088
1089 if (r_vec->tx_ring)
1090 cancel_work_sync(&r_vec->tx_dim.work);
1091 }
1092
1093 netif_tx_disable(nn->dp.netdev);
1094 }
1095
1096 /**
1097 * nfp_net_close_free_all() - Free all runtime resources
1098 * @nn: NFP Net device to reconfigure
1099 */
nfp_net_close_free_all(struct nfp_net * nn)1100 static void nfp_net_close_free_all(struct nfp_net *nn)
1101 {
1102 unsigned int r;
1103
1104 nfp_net_tx_rings_free(&nn->dp);
1105 nfp_net_rx_rings_free(&nn->dp);
1106
1107 for (r = 0; r < nn->dp.num_r_vecs; r++)
1108 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
1109
1110 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
1111 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
1112 }
1113
1114 /**
1115 * nfp_net_netdev_close() - Called when the device is downed
1116 * @netdev: netdev structure
1117 */
nfp_net_netdev_close(struct net_device * netdev)1118 static int nfp_net_netdev_close(struct net_device *netdev)
1119 {
1120 struct nfp_net *nn = netdev_priv(netdev);
1121
1122 /* Step 1: Disable RX and TX rings from the Linux kernel perspective
1123 */
1124 nfp_net_close_stack(nn);
1125
1126 /* Step 2: Tell NFP
1127 */
1128 if (nn->cap_w1 & NFP_NET_CFG_CTRL_MCAST_FILTER)
1129 __dev_mc_unsync(netdev, nfp_net_mc_unsync);
1130
1131 nfp_net_clear_config_and_disable(nn);
1132 nfp_port_configure(netdev, false);
1133
1134 /* Step 3: Free resources
1135 */
1136 nfp_net_close_free_all(nn);
1137
1138 nn_dbg(nn, "%s down", netdev->name);
1139 return 0;
1140 }
1141
nfp_ctrl_close(struct nfp_net * nn)1142 void nfp_ctrl_close(struct nfp_net *nn)
1143 {
1144 int r;
1145
1146 rtnl_lock();
1147
1148 for (r = 0; r < nn->dp.num_r_vecs; r++) {
1149 disable_irq(nn->r_vecs[r].irq_vector);
1150 tasklet_disable(&nn->r_vecs[r].tasklet);
1151 }
1152
1153 nfp_net_clear_config_and_disable(nn);
1154
1155 nfp_net_close_free_all(nn);
1156
1157 rtnl_unlock();
1158 }
1159
nfp_net_rx_dim_work(struct work_struct * work)1160 static void nfp_net_rx_dim_work(struct work_struct *work)
1161 {
1162 struct nfp_net_r_vector *r_vec;
1163 unsigned int factor, value;
1164 struct dim_cq_moder moder;
1165 struct nfp_net *nn;
1166 struct dim *dim;
1167
1168 dim = container_of(work, struct dim, work);
1169 moder = net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
1170 r_vec = container_of(dim, struct nfp_net_r_vector, rx_dim);
1171 nn = r_vec->nfp_net;
1172
1173 /* Compute factor used to convert coalesce '_usecs' parameters to
1174 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp
1175 * count.
1176 */
1177 factor = nn->tlv_caps.me_freq_mhz / 16;
1178 if (nfp_net_coalesce_para_check(factor * moder.usec) ||
1179 nfp_net_coalesce_para_check(moder.pkts))
1180 return;
1181
1182 /* copy RX interrupt coalesce parameters */
1183 value = (moder.pkts << 16) | (factor * moder.usec);
1184 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(r_vec->rx_ring->idx), value);
1185 (void)nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_IRQMOD);
1186
1187 dim->state = DIM_START_MEASURE;
1188 }
1189
nfp_net_tx_dim_work(struct work_struct * work)1190 static void nfp_net_tx_dim_work(struct work_struct *work)
1191 {
1192 struct nfp_net_r_vector *r_vec;
1193 unsigned int factor, value;
1194 struct dim_cq_moder moder;
1195 struct nfp_net *nn;
1196 struct dim *dim;
1197
1198 dim = container_of(work, struct dim, work);
1199 moder = net_dim_get_tx_moderation(dim->mode, dim->profile_ix);
1200 r_vec = container_of(dim, struct nfp_net_r_vector, tx_dim);
1201 nn = r_vec->nfp_net;
1202
1203 /* Compute factor used to convert coalesce '_usecs' parameters to
1204 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp
1205 * count.
1206 */
1207 factor = nn->tlv_caps.me_freq_mhz / 16;
1208 if (nfp_net_coalesce_para_check(factor * moder.usec) ||
1209 nfp_net_coalesce_para_check(moder.pkts))
1210 return;
1211
1212 /* copy TX interrupt coalesce parameters */
1213 value = (moder.pkts << 16) | (factor * moder.usec);
1214 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(r_vec->tx_ring->idx), value);
1215 (void)nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_IRQMOD);
1216
1217 dim->state = DIM_START_MEASURE;
1218 }
1219
1220 /**
1221 * nfp_net_open_stack() - Start the device from stack's perspective
1222 * @nn: NFP Net device to reconfigure
1223 */
nfp_net_open_stack(struct nfp_net * nn)1224 static void nfp_net_open_stack(struct nfp_net *nn)
1225 {
1226 struct nfp_net_r_vector *r_vec;
1227 unsigned int r;
1228
1229 for (r = 0; r < nn->dp.num_r_vecs; r++) {
1230 r_vec = &nn->r_vecs[r];
1231
1232 if (r_vec->rx_ring) {
1233 INIT_WORK(&r_vec->rx_dim.work, nfp_net_rx_dim_work);
1234 r_vec->rx_dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
1235 }
1236
1237 if (r_vec->tx_ring) {
1238 INIT_WORK(&r_vec->tx_dim.work, nfp_net_tx_dim_work);
1239 r_vec->tx_dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
1240 }
1241
1242 napi_enable(&r_vec->napi);
1243 enable_irq(r_vec->irq_vector);
1244 }
1245
1246 netif_tx_wake_all_queues(nn->dp.netdev);
1247
1248 enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
1249 nfp_net_read_link_status(nn);
1250 }
1251
nfp_net_open_alloc_all(struct nfp_net * nn)1252 static int nfp_net_open_alloc_all(struct nfp_net *nn)
1253 {
1254 int err, r;
1255
1256 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn",
1257 nn->exn_name, sizeof(nn->exn_name),
1258 NFP_NET_IRQ_EXN_IDX, nn->exn_handler);
1259 if (err)
1260 return err;
1261 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc",
1262 nn->lsc_name, sizeof(nn->lsc_name),
1263 NFP_NET_IRQ_LSC_IDX, nn->lsc_handler);
1264 if (err)
1265 goto err_free_exn;
1266 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
1267
1268 for (r = 0; r < nn->dp.num_r_vecs; r++) {
1269 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
1270 if (err)
1271 goto err_cleanup_vec_p;
1272 }
1273
1274 err = nfp_net_rx_rings_prepare(nn, &nn->dp);
1275 if (err)
1276 goto err_cleanup_vec;
1277
1278 err = nfp_net_tx_rings_prepare(nn, &nn->dp);
1279 if (err)
1280 goto err_free_rx_rings;
1281
1282 for (r = 0; r < nn->max_r_vecs; r++)
1283 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
1284
1285 return 0;
1286
1287 err_free_rx_rings:
1288 nfp_net_rx_rings_free(&nn->dp);
1289 err_cleanup_vec:
1290 r = nn->dp.num_r_vecs;
1291 err_cleanup_vec_p:
1292 while (r--)
1293 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
1294 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
1295 err_free_exn:
1296 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
1297 return err;
1298 }
1299
nfp_net_netdev_open(struct net_device * netdev)1300 static int nfp_net_netdev_open(struct net_device *netdev)
1301 {
1302 struct nfp_net *nn = netdev_priv(netdev);
1303 int err;
1304
1305 /* Step 1: Allocate resources for rings and the like
1306 * - Request interrupts
1307 * - Allocate RX and TX ring resources
1308 * - Setup initial RSS table
1309 */
1310 err = nfp_net_open_alloc_all(nn);
1311 if (err)
1312 return err;
1313
1314 err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings);
1315 if (err)
1316 goto err_free_all;
1317
1318 err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings);
1319 if (err)
1320 goto err_free_all;
1321
1322 /* Step 2: Configure the NFP
1323 * - Ifup the physical interface if it exists
1324 * - Enable rings from 0 to tx_rings/rx_rings - 1.
1325 * - Write MAC address (in case it changed)
1326 * - Set the MTU
1327 * - Set the Freelist buffer size
1328 * - Enable the FW
1329 */
1330 err = nfp_port_configure(netdev, true);
1331 if (err)
1332 goto err_free_all;
1333
1334 err = nfp_net_set_config_and_enable(nn);
1335 if (err)
1336 goto err_port_disable;
1337
1338 /* Step 3: Enable for kernel
1339 * - put some freelist descriptors on each RX ring
1340 * - enable NAPI on each ring
1341 * - enable all TX queues
1342 * - set link state
1343 */
1344 nfp_net_open_stack(nn);
1345
1346 return 0;
1347
1348 err_port_disable:
1349 nfp_port_configure(netdev, false);
1350 err_free_all:
1351 nfp_net_close_free_all(nn);
1352 return err;
1353 }
1354
nfp_ctrl_open(struct nfp_net * nn)1355 int nfp_ctrl_open(struct nfp_net *nn)
1356 {
1357 int err, r;
1358
1359 /* ring dumping depends on vNICs being opened/closed under rtnl */
1360 rtnl_lock();
1361
1362 err = nfp_net_open_alloc_all(nn);
1363 if (err)
1364 goto err_unlock;
1365
1366 err = nfp_net_set_config_and_enable(nn);
1367 if (err)
1368 goto err_free_all;
1369
1370 for (r = 0; r < nn->dp.num_r_vecs; r++)
1371 enable_irq(nn->r_vecs[r].irq_vector);
1372
1373 rtnl_unlock();
1374
1375 return 0;
1376
1377 err_free_all:
1378 nfp_net_close_free_all(nn);
1379 err_unlock:
1380 rtnl_unlock();
1381 return err;
1382 }
1383
nfp_net_sched_mbox_amsg_work(struct nfp_net * nn,u32 cmd,const void * data,size_t len,int (* cb)(struct nfp_net *,struct nfp_mbox_amsg_entry *))1384 int nfp_net_sched_mbox_amsg_work(struct nfp_net *nn, u32 cmd, const void *data, size_t len,
1385 int (*cb)(struct nfp_net *, struct nfp_mbox_amsg_entry *))
1386 {
1387 struct nfp_mbox_amsg_entry *entry;
1388
1389 entry = kmalloc(sizeof(*entry) + len, GFP_ATOMIC);
1390 if (!entry)
1391 return -ENOMEM;
1392
1393 memcpy(entry->msg, data, len);
1394 entry->cmd = cmd;
1395 entry->cfg = cb;
1396
1397 spin_lock_bh(&nn->mbox_amsg.lock);
1398 list_add_tail(&entry->list, &nn->mbox_amsg.list);
1399 spin_unlock_bh(&nn->mbox_amsg.lock);
1400
1401 schedule_work(&nn->mbox_amsg.work);
1402
1403 return 0;
1404 }
1405
nfp_net_mbox_amsg_work(struct work_struct * work)1406 static void nfp_net_mbox_amsg_work(struct work_struct *work)
1407 {
1408 struct nfp_net *nn = container_of(work, struct nfp_net, mbox_amsg.work);
1409 struct nfp_mbox_amsg_entry *entry, *tmp;
1410 struct list_head tmp_list;
1411
1412 INIT_LIST_HEAD(&tmp_list);
1413
1414 spin_lock_bh(&nn->mbox_amsg.lock);
1415 list_splice_init(&nn->mbox_amsg.list, &tmp_list);
1416 spin_unlock_bh(&nn->mbox_amsg.lock);
1417
1418 list_for_each_entry_safe(entry, tmp, &tmp_list, list) {
1419 int err = entry->cfg(nn, entry);
1420
1421 if (err)
1422 nn_err(nn, "Config cmd %d to HW failed %d.\n", entry->cmd, err);
1423
1424 list_del(&entry->list);
1425 kfree(entry);
1426 }
1427 }
1428
nfp_net_mc_cfg(struct nfp_net * nn,struct nfp_mbox_amsg_entry * entry)1429 static int nfp_net_mc_cfg(struct nfp_net *nn, struct nfp_mbox_amsg_entry *entry)
1430 {
1431 unsigned char *addr = entry->msg;
1432 int ret;
1433
1434 ret = nfp_net_mbox_lock(nn, NFP_NET_CFG_MULTICAST_SZ);
1435 if (ret)
1436 return ret;
1437
1438 nn_writel(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_MULTICAST_MAC_HI,
1439 get_unaligned_be32(addr));
1440 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_MULTICAST_MAC_LO,
1441 get_unaligned_be16(addr + 4));
1442
1443 return nfp_net_mbox_reconfig_and_unlock(nn, entry->cmd);
1444 }
1445
nfp_net_mc_sync(struct net_device * netdev,const unsigned char * addr)1446 static int nfp_net_mc_sync(struct net_device *netdev, const unsigned char *addr)
1447 {
1448 struct nfp_net *nn = netdev_priv(netdev);
1449
1450 if (netdev_mc_count(netdev) > NFP_NET_CFG_MAC_MC_MAX) {
1451 nn_err(nn, "Requested number of MC addresses (%d) exceeds maximum (%d).\n",
1452 netdev_mc_count(netdev), NFP_NET_CFG_MAC_MC_MAX);
1453 return -EINVAL;
1454 }
1455
1456 return nfp_net_sched_mbox_amsg_work(nn, NFP_NET_CFG_MBOX_CMD_MULTICAST_ADD, addr,
1457 NFP_NET_CFG_MULTICAST_SZ, nfp_net_mc_cfg);
1458 }
1459
nfp_net_mc_unsync(struct net_device * netdev,const unsigned char * addr)1460 static int nfp_net_mc_unsync(struct net_device *netdev, const unsigned char *addr)
1461 {
1462 struct nfp_net *nn = netdev_priv(netdev);
1463
1464 return nfp_net_sched_mbox_amsg_work(nn, NFP_NET_CFG_MBOX_CMD_MULTICAST_DEL, addr,
1465 NFP_NET_CFG_MULTICAST_SZ, nfp_net_mc_cfg);
1466 }
1467
nfp_net_set_rx_mode(struct net_device * netdev)1468 static void nfp_net_set_rx_mode(struct net_device *netdev)
1469 {
1470 struct nfp_net *nn = netdev_priv(netdev);
1471 u32 new_ctrl, new_ctrl_w1;
1472
1473 new_ctrl = nn->dp.ctrl;
1474 new_ctrl_w1 = nn->dp.ctrl_w1;
1475
1476 if (!netdev_mc_empty(netdev) || netdev->flags & IFF_ALLMULTI)
1477 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_L2MC;
1478 else
1479 new_ctrl &= ~NFP_NET_CFG_CTRL_L2MC;
1480
1481 if (netdev->flags & IFF_ALLMULTI)
1482 new_ctrl_w1 &= ~NFP_NET_CFG_CTRL_MCAST_FILTER;
1483 else
1484 new_ctrl_w1 |= nn->cap_w1 & NFP_NET_CFG_CTRL_MCAST_FILTER;
1485
1486 if (netdev->flags & IFF_PROMISC) {
1487 if (nn->cap & NFP_NET_CFG_CTRL_PROMISC)
1488 new_ctrl |= NFP_NET_CFG_CTRL_PROMISC;
1489 else
1490 nn_warn(nn, "FW does not support promiscuous mode\n");
1491 } else {
1492 new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC;
1493 }
1494
1495 if ((nn->cap_w1 & NFP_NET_CFG_CTRL_MCAST_FILTER) &&
1496 __dev_mc_sync(netdev, nfp_net_mc_sync, nfp_net_mc_unsync))
1497 netdev_err(netdev, "Sync mc address failed\n");
1498
1499 if (new_ctrl == nn->dp.ctrl && new_ctrl_w1 == nn->dp.ctrl_w1)
1500 return;
1501
1502 if (new_ctrl != nn->dp.ctrl)
1503 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
1504 if (new_ctrl_w1 != nn->dp.ctrl_w1)
1505 nn_writel(nn, NFP_NET_CFG_CTRL_WORD1, new_ctrl_w1);
1506 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN);
1507
1508 nn->dp.ctrl = new_ctrl;
1509 nn->dp.ctrl_w1 = new_ctrl_w1;
1510 }
1511
nfp_net_rss_init_itbl(struct nfp_net * nn)1512 static void nfp_net_rss_init_itbl(struct nfp_net *nn)
1513 {
1514 int i;
1515
1516 for (i = 0; i < sizeof(nn->rss_itbl); i++)
1517 nn->rss_itbl[i] =
1518 ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings);
1519 }
1520
nfp_net_dp_swap(struct nfp_net * nn,struct nfp_net_dp * dp)1521 static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp)
1522 {
1523 struct nfp_net_dp new_dp = *dp;
1524
1525 *dp = nn->dp;
1526 nn->dp = new_dp;
1527
1528 WRITE_ONCE(nn->dp.netdev->mtu, new_dp.mtu);
1529
1530 if (!netif_is_rxfh_configured(nn->dp.netdev))
1531 nfp_net_rss_init_itbl(nn);
1532 }
1533
nfp_net_dp_swap_enable(struct nfp_net * nn,struct nfp_net_dp * dp)1534 static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp)
1535 {
1536 unsigned int r;
1537 int err;
1538
1539 nfp_net_dp_swap(nn, dp);
1540
1541 for (r = 0; r < nn->max_r_vecs; r++)
1542 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
1543
1544 err = netif_set_real_num_queues(nn->dp.netdev,
1545 nn->dp.num_stack_tx_rings,
1546 nn->dp.num_rx_rings);
1547 if (err)
1548 return err;
1549
1550 return nfp_net_set_config_and_enable(nn);
1551 }
1552
nfp_net_clone_dp(struct nfp_net * nn)1553 struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn)
1554 {
1555 struct nfp_net_dp *new;
1556
1557 new = kmalloc(sizeof(*new), GFP_KERNEL);
1558 if (!new)
1559 return NULL;
1560
1561 *new = nn->dp;
1562
1563 new->xsk_pools = kmemdup(new->xsk_pools,
1564 array_size(nn->max_r_vecs,
1565 sizeof(new->xsk_pools)),
1566 GFP_KERNEL);
1567 if (!new->xsk_pools) {
1568 kfree(new);
1569 return NULL;
1570 }
1571
1572 /* Clear things which need to be recomputed */
1573 new->fl_bufsz = 0;
1574 new->tx_rings = NULL;
1575 new->rx_rings = NULL;
1576 new->num_r_vecs = 0;
1577 new->num_stack_tx_rings = 0;
1578 new->txrwb = NULL;
1579 new->txrwb_dma = 0;
1580
1581 return new;
1582 }
1583
nfp_net_free_dp(struct nfp_net_dp * dp)1584 static void nfp_net_free_dp(struct nfp_net_dp *dp)
1585 {
1586 kfree(dp->xsk_pools);
1587 kfree(dp);
1588 }
1589
1590 static int
nfp_net_check_config(struct nfp_net * nn,struct nfp_net_dp * dp,struct netlink_ext_ack * extack)1591 nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp,
1592 struct netlink_ext_ack *extack)
1593 {
1594 unsigned int r, xsk_min_fl_bufsz;
1595
1596 /* XDP-enabled tests */
1597 if (!dp->xdp_prog)
1598 return 0;
1599 if (dp->fl_bufsz > PAGE_SIZE) {
1600 NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled");
1601 return -EINVAL;
1602 }
1603 if (dp->num_tx_rings > nn->max_tx_rings) {
1604 NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled");
1605 return -EINVAL;
1606 }
1607
1608 xsk_min_fl_bufsz = nfp_net_calc_fl_bufsz_xsk(dp);
1609 for (r = 0; r < nn->max_r_vecs; r++) {
1610 if (!dp->xsk_pools[r])
1611 continue;
1612
1613 if (xsk_pool_get_rx_frame_size(dp->xsk_pools[r]) < xsk_min_fl_bufsz) {
1614 NL_SET_ERR_MSG_MOD(extack,
1615 "XSK buffer pool chunk size too small");
1616 return -EINVAL;
1617 }
1618 }
1619
1620 return 0;
1621 }
1622
nfp_net_ring_reconfig(struct nfp_net * nn,struct nfp_net_dp * dp,struct netlink_ext_ack * extack)1623 int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp,
1624 struct netlink_ext_ack *extack)
1625 {
1626 int r, err;
1627
1628 dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp);
1629
1630 dp->num_stack_tx_rings = dp->num_tx_rings;
1631 if (dp->xdp_prog)
1632 dp->num_stack_tx_rings -= dp->num_rx_rings;
1633
1634 dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings);
1635
1636 err = nfp_net_check_config(nn, dp, extack);
1637 if (err)
1638 goto exit_free_dp;
1639
1640 if (!netif_running(dp->netdev)) {
1641 nfp_net_dp_swap(nn, dp);
1642 err = 0;
1643 goto exit_free_dp;
1644 }
1645
1646 /* Prepare new rings */
1647 for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) {
1648 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
1649 if (err) {
1650 dp->num_r_vecs = r;
1651 goto err_cleanup_vecs;
1652 }
1653 }
1654
1655 err = nfp_net_rx_rings_prepare(nn, dp);
1656 if (err)
1657 goto err_cleanup_vecs;
1658
1659 err = nfp_net_tx_rings_prepare(nn, dp);
1660 if (err)
1661 goto err_free_rx;
1662
1663 /* Stop device, swap in new rings, try to start the firmware */
1664 nfp_net_close_stack(nn);
1665 nfp_net_clear_config_and_disable(nn);
1666
1667 err = nfp_net_dp_swap_enable(nn, dp);
1668 if (err) {
1669 int err2;
1670
1671 nfp_net_clear_config_and_disable(nn);
1672
1673 /* Try with old configuration and old rings */
1674 err2 = nfp_net_dp_swap_enable(nn, dp);
1675 if (err2)
1676 nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n",
1677 err, err2);
1678 }
1679 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
1680 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
1681
1682 nfp_net_rx_rings_free(dp);
1683 nfp_net_tx_rings_free(dp);
1684
1685 nfp_net_open_stack(nn);
1686 exit_free_dp:
1687 nfp_net_free_dp(dp);
1688
1689 return err;
1690
1691 err_free_rx:
1692 nfp_net_rx_rings_free(dp);
1693 err_cleanup_vecs:
1694 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
1695 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
1696 nfp_net_free_dp(dp);
1697 return err;
1698 }
1699
nfp_net_change_mtu(struct net_device * netdev,int new_mtu)1700 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu)
1701 {
1702 struct nfp_net *nn = netdev_priv(netdev);
1703 struct nfp_net_dp *dp;
1704 int err;
1705
1706 err = nfp_app_check_mtu(nn->app, netdev, new_mtu);
1707 if (err)
1708 return err;
1709
1710 dp = nfp_net_clone_dp(nn);
1711 if (!dp)
1712 return -ENOMEM;
1713
1714 dp->mtu = new_mtu;
1715
1716 return nfp_net_ring_reconfig(nn, dp, NULL);
1717 }
1718
1719 static int
nfp_net_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)1720 nfp_net_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
1721 {
1722 const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD;
1723 struct nfp_net *nn = netdev_priv(netdev);
1724 int err;
1725
1726 /* Priority tagged packets with vlan id 0 are processed by the
1727 * NFP as untagged packets
1728 */
1729 if (!vid)
1730 return 0;
1731
1732 err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ);
1733 if (err)
1734 return err;
1735
1736 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid);
1737 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO,
1738 ETH_P_8021Q);
1739
1740 return nfp_net_mbox_reconfig_and_unlock(nn, cmd);
1741 }
1742
1743 static int
nfp_net_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)1744 nfp_net_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
1745 {
1746 const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL;
1747 struct nfp_net *nn = netdev_priv(netdev);
1748 int err;
1749
1750 /* Priority tagged packets with vlan id 0 are processed by the
1751 * NFP as untagged packets
1752 */
1753 if (!vid)
1754 return 0;
1755
1756 err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ);
1757 if (err)
1758 return err;
1759
1760 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid);
1761 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO,
1762 ETH_P_8021Q);
1763
1764 return nfp_net_mbox_reconfig_and_unlock(nn, cmd);
1765 }
1766
1767 static void
nfp_net_fs_fill_v4(struct nfp_net * nn,struct nfp_fs_entry * entry,u32 op,u32 * addr)1768 nfp_net_fs_fill_v4(struct nfp_net *nn, struct nfp_fs_entry *entry, u32 op, u32 *addr)
1769 {
1770 unsigned int i;
1771
1772 union {
1773 struct {
1774 __be16 loc;
1775 u8 k_proto, m_proto;
1776 __be32 k_sip, m_sip, k_dip, m_dip;
1777 __be16 k_sport, m_sport, k_dport, m_dport;
1778 };
1779 __be32 val[7];
1780 } v4_rule;
1781
1782 nn_writel(nn, *addr, op);
1783 *addr += sizeof(u32);
1784
1785 v4_rule.loc = cpu_to_be16(entry->loc);
1786 v4_rule.k_proto = entry->key.l4_proto;
1787 v4_rule.m_proto = entry->msk.l4_proto;
1788 v4_rule.k_sip = entry->key.sip4;
1789 v4_rule.m_sip = entry->msk.sip4;
1790 v4_rule.k_dip = entry->key.dip4;
1791 v4_rule.m_dip = entry->msk.dip4;
1792 v4_rule.k_sport = entry->key.sport;
1793 v4_rule.m_sport = entry->msk.sport;
1794 v4_rule.k_dport = entry->key.dport;
1795 v4_rule.m_dport = entry->msk.dport;
1796
1797 for (i = 0; i < ARRAY_SIZE(v4_rule.val); i++, *addr += sizeof(__be32))
1798 nn_writel(nn, *addr, be32_to_cpu(v4_rule.val[i]));
1799 }
1800
1801 static void
nfp_net_fs_fill_v6(struct nfp_net * nn,struct nfp_fs_entry * entry,u32 op,u32 * addr)1802 nfp_net_fs_fill_v6(struct nfp_net *nn, struct nfp_fs_entry *entry, u32 op, u32 *addr)
1803 {
1804 unsigned int i;
1805
1806 union {
1807 struct {
1808 __be16 loc;
1809 u8 k_proto, m_proto;
1810 __be32 k_sip[4], m_sip[4], k_dip[4], m_dip[4];
1811 __be16 k_sport, m_sport, k_dport, m_dport;
1812 };
1813 __be32 val[19];
1814 } v6_rule;
1815
1816 nn_writel(nn, *addr, op);
1817 *addr += sizeof(u32);
1818
1819 v6_rule.loc = cpu_to_be16(entry->loc);
1820 v6_rule.k_proto = entry->key.l4_proto;
1821 v6_rule.m_proto = entry->msk.l4_proto;
1822 for (i = 0; i < 4; i++) {
1823 v6_rule.k_sip[i] = entry->key.sip6[i];
1824 v6_rule.m_sip[i] = entry->msk.sip6[i];
1825 v6_rule.k_dip[i] = entry->key.dip6[i];
1826 v6_rule.m_dip[i] = entry->msk.dip6[i];
1827 }
1828 v6_rule.k_sport = entry->key.sport;
1829 v6_rule.m_sport = entry->msk.sport;
1830 v6_rule.k_dport = entry->key.dport;
1831 v6_rule.m_dport = entry->msk.dport;
1832
1833 for (i = 0; i < ARRAY_SIZE(v6_rule.val); i++, *addr += sizeof(__be32))
1834 nn_writel(nn, *addr, be32_to_cpu(v6_rule.val[i]));
1835 }
1836
1837 #define NFP_FS_QUEUE_ID GENMASK(22, 16)
1838 #define NFP_FS_ACT GENMASK(15, 0)
1839 #define NFP_FS_ACT_DROP BIT(0)
1840 #define NFP_FS_ACT_Q BIT(1)
1841 static void
nfp_net_fs_fill_act(struct nfp_net * nn,struct nfp_fs_entry * entry,u32 addr)1842 nfp_net_fs_fill_act(struct nfp_net *nn, struct nfp_fs_entry *entry, u32 addr)
1843 {
1844 u32 action = 0; /* 0 means default passthrough */
1845
1846 if (entry->action == RX_CLS_FLOW_DISC)
1847 action = NFP_FS_ACT_DROP;
1848 else if (!(entry->flow_type & FLOW_RSS))
1849 action = FIELD_PREP(NFP_FS_QUEUE_ID, entry->action) | NFP_FS_ACT_Q;
1850
1851 nn_writel(nn, addr, action);
1852 }
1853
nfp_net_fs_add_hw(struct nfp_net * nn,struct nfp_fs_entry * entry)1854 int nfp_net_fs_add_hw(struct nfp_net *nn, struct nfp_fs_entry *entry)
1855 {
1856 u32 addr = nn->tlv_caps.mbox_off + NFP_NET_CFG_MBOX_SIMPLE_VAL;
1857 int err;
1858
1859 err = nfp_net_mbox_lock(nn, NFP_NET_CFG_FS_SZ);
1860 if (err)
1861 return err;
1862
1863 switch (entry->flow_type & ~FLOW_RSS) {
1864 case TCP_V4_FLOW:
1865 case UDP_V4_FLOW:
1866 case SCTP_V4_FLOW:
1867 case IPV4_USER_FLOW:
1868 nfp_net_fs_fill_v4(nn, entry, NFP_NET_CFG_MBOX_CMD_FS_ADD_V4, &addr);
1869 break;
1870 case TCP_V6_FLOW:
1871 case UDP_V6_FLOW:
1872 case SCTP_V6_FLOW:
1873 case IPV6_USER_FLOW:
1874 nfp_net_fs_fill_v6(nn, entry, NFP_NET_CFG_MBOX_CMD_FS_ADD_V6, &addr);
1875 break;
1876 case ETHER_FLOW:
1877 nn_writel(nn, addr, NFP_NET_CFG_MBOX_CMD_FS_ADD_ETHTYPE);
1878 addr += sizeof(u32);
1879 nn_writew(nn, addr, be16_to_cpu(entry->key.l3_proto));
1880 addr += sizeof(u32);
1881 break;
1882 }
1883
1884 nfp_net_fs_fill_act(nn, entry, addr);
1885
1886 err = nfp_net_mbox_reconfig_and_unlock(nn, NFP_NET_CFG_MBOX_CMD_FLOW_STEER);
1887 if (err) {
1888 nn_err(nn, "Add new fs rule failed with %d\n", err);
1889 return -EIO;
1890 }
1891
1892 return 0;
1893 }
1894
nfp_net_fs_del_hw(struct nfp_net * nn,struct nfp_fs_entry * entry)1895 int nfp_net_fs_del_hw(struct nfp_net *nn, struct nfp_fs_entry *entry)
1896 {
1897 u32 addr = nn->tlv_caps.mbox_off + NFP_NET_CFG_MBOX_SIMPLE_VAL;
1898 int err;
1899
1900 err = nfp_net_mbox_lock(nn, NFP_NET_CFG_FS_SZ);
1901 if (err)
1902 return err;
1903
1904 switch (entry->flow_type & ~FLOW_RSS) {
1905 case TCP_V4_FLOW:
1906 case UDP_V4_FLOW:
1907 case SCTP_V4_FLOW:
1908 case IPV4_USER_FLOW:
1909 nfp_net_fs_fill_v4(nn, entry, NFP_NET_CFG_MBOX_CMD_FS_DEL_V4, &addr);
1910 break;
1911 case TCP_V6_FLOW:
1912 case UDP_V6_FLOW:
1913 case SCTP_V6_FLOW:
1914 case IPV6_USER_FLOW:
1915 nfp_net_fs_fill_v6(nn, entry, NFP_NET_CFG_MBOX_CMD_FS_DEL_V6, &addr);
1916 break;
1917 case ETHER_FLOW:
1918 nn_writel(nn, addr, NFP_NET_CFG_MBOX_CMD_FS_DEL_ETHTYPE);
1919 addr += sizeof(u32);
1920 nn_writew(nn, addr, be16_to_cpu(entry->key.l3_proto));
1921 addr += sizeof(u32);
1922 break;
1923 }
1924
1925 nfp_net_fs_fill_act(nn, entry, addr);
1926
1927 err = nfp_net_mbox_reconfig_and_unlock(nn, NFP_NET_CFG_MBOX_CMD_FLOW_STEER);
1928 if (err) {
1929 nn_err(nn, "Delete fs rule failed with %d\n", err);
1930 return -EIO;
1931 }
1932
1933 return 0;
1934 }
1935
nfp_net_fs_clean(struct nfp_net * nn)1936 static void nfp_net_fs_clean(struct nfp_net *nn)
1937 {
1938 struct nfp_fs_entry *entry, *tmp;
1939
1940 list_for_each_entry_safe(entry, tmp, &nn->fs.list, node) {
1941 nfp_net_fs_del_hw(nn, entry);
1942 list_del(&entry->node);
1943 kfree(entry);
1944 }
1945 }
1946
nfp_net_stat64(struct net_device * netdev,struct rtnl_link_stats64 * stats)1947 static void nfp_net_stat64(struct net_device *netdev,
1948 struct rtnl_link_stats64 *stats)
1949 {
1950 struct nfp_net *nn = netdev_priv(netdev);
1951 int r;
1952
1953 /* Collect software stats */
1954 for (r = 0; r < nn->max_r_vecs; r++) {
1955 struct nfp_net_r_vector *r_vec = &nn->r_vecs[r];
1956 u64 data[3];
1957 unsigned int start;
1958
1959 do {
1960 start = u64_stats_fetch_begin(&r_vec->rx_sync);
1961 data[0] = r_vec->rx_pkts;
1962 data[1] = r_vec->rx_bytes;
1963 data[2] = r_vec->rx_drops;
1964 } while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
1965 stats->rx_packets += data[0];
1966 stats->rx_bytes += data[1];
1967 stats->rx_dropped += data[2];
1968
1969 do {
1970 start = u64_stats_fetch_begin(&r_vec->tx_sync);
1971 data[0] = r_vec->tx_pkts;
1972 data[1] = r_vec->tx_bytes;
1973 data[2] = r_vec->tx_errors;
1974 } while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
1975 stats->tx_packets += data[0];
1976 stats->tx_bytes += data[1];
1977 stats->tx_errors += data[2];
1978 }
1979
1980 /* Add in device stats */
1981 stats->multicast += nn_readq(nn, NFP_NET_CFG_STATS_RX_MC_FRAMES);
1982 stats->rx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_RX_DISCARDS);
1983 stats->rx_errors += nn_readq(nn, NFP_NET_CFG_STATS_RX_ERRORS);
1984
1985 stats->tx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_TX_DISCARDS);
1986 stats->tx_errors += nn_readq(nn, NFP_NET_CFG_STATS_TX_ERRORS);
1987 }
1988
nfp_net_set_features(struct net_device * netdev,netdev_features_t features)1989 static int nfp_net_set_features(struct net_device *netdev,
1990 netdev_features_t features)
1991 {
1992 netdev_features_t changed = netdev->features ^ features;
1993 struct nfp_net *nn = netdev_priv(netdev);
1994 u32 new_ctrl;
1995 int err;
1996
1997 /* Assume this is not called with features we have not advertised */
1998
1999 new_ctrl = nn->dp.ctrl;
2000
2001 if (changed & NETIF_F_RXCSUM) {
2002 if (features & NETIF_F_RXCSUM)
2003 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
2004 else
2005 new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY;
2006 }
2007
2008 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
2009 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
2010 new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
2011 else
2012 new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM;
2013 }
2014
2015 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
2016 if (features & (NETIF_F_TSO | NETIF_F_TSO6))
2017 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
2018 NFP_NET_CFG_CTRL_LSO;
2019 else
2020 new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
2021 }
2022
2023 if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
2024 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2025 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXVLAN_V2 ?:
2026 NFP_NET_CFG_CTRL_RXVLAN;
2027 else
2028 new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN_ANY;
2029 }
2030
2031 if (changed & NETIF_F_HW_VLAN_CTAG_TX) {
2032 if (features & NETIF_F_HW_VLAN_CTAG_TX)
2033 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_TXVLAN_V2 ?:
2034 NFP_NET_CFG_CTRL_TXVLAN;
2035 else
2036 new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN_ANY;
2037 }
2038
2039 if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) {
2040 if (features & NETIF_F_HW_VLAN_CTAG_FILTER)
2041 new_ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER;
2042 else
2043 new_ctrl &= ~NFP_NET_CFG_CTRL_CTAG_FILTER;
2044 }
2045
2046 if (changed & NETIF_F_HW_VLAN_STAG_RX) {
2047 if (features & NETIF_F_HW_VLAN_STAG_RX)
2048 new_ctrl |= NFP_NET_CFG_CTRL_RXQINQ;
2049 else
2050 new_ctrl &= ~NFP_NET_CFG_CTRL_RXQINQ;
2051 }
2052
2053 if (changed & NETIF_F_SG) {
2054 if (features & NETIF_F_SG)
2055 new_ctrl |= NFP_NET_CFG_CTRL_GATHER;
2056 else
2057 new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER;
2058 }
2059
2060 err = nfp_port_set_features(netdev, features);
2061 if (err)
2062 return err;
2063
2064 nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n",
2065 netdev->features, features, changed);
2066
2067 if (new_ctrl == nn->dp.ctrl)
2068 return 0;
2069
2070 nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl);
2071 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2072 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN);
2073 if (err)
2074 return err;
2075
2076 nn->dp.ctrl = new_ctrl;
2077
2078 return 0;
2079 }
2080
2081 static netdev_features_t
nfp_net_fix_features(struct net_device * netdev,netdev_features_t features)2082 nfp_net_fix_features(struct net_device *netdev,
2083 netdev_features_t features)
2084 {
2085 if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
2086 (features & NETIF_F_HW_VLAN_STAG_RX)) {
2087 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
2088 features &= ~NETIF_F_HW_VLAN_CTAG_RX;
2089 netdev->wanted_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
2090 netdev_warn(netdev,
2091 "S-tag and C-tag stripping can't be enabled at the same time. Enabling S-tag stripping and disabling C-tag stripping\n");
2092 } else if (netdev->features & NETIF_F_HW_VLAN_STAG_RX) {
2093 features &= ~NETIF_F_HW_VLAN_STAG_RX;
2094 netdev->wanted_features &= ~NETIF_F_HW_VLAN_STAG_RX;
2095 netdev_warn(netdev,
2096 "S-tag and C-tag stripping can't be enabled at the same time. Enabling C-tag stripping and disabling S-tag stripping\n");
2097 }
2098 }
2099 return features;
2100 }
2101
2102 static netdev_features_t
nfp_net_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2103 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev,
2104 netdev_features_t features)
2105 {
2106 u8 l4_hdr;
2107
2108 /* We can't do TSO over double tagged packets (802.1AD) */
2109 features &= vlan_features_check(skb, features);
2110
2111 if (!skb->encapsulation)
2112 return features;
2113
2114 /* Ensure that inner L4 header offset fits into TX descriptor field */
2115 if (skb_is_gso(skb)) {
2116 u32 hdrlen;
2117
2118 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)
2119 hdrlen = skb_inner_transport_offset(skb) + sizeof(struct udphdr);
2120 else
2121 hdrlen = skb_inner_tcp_all_headers(skb);
2122
2123 /* Assume worst case scenario of having longest possible
2124 * metadata prepend - 8B
2125 */
2126 if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ - 8))
2127 features &= ~NETIF_F_GSO_MASK;
2128 }
2129
2130 if (xfrm_offload(skb))
2131 return features;
2132
2133 /* VXLAN/GRE check */
2134 switch (vlan_get_protocol(skb)) {
2135 case htons(ETH_P_IP):
2136 l4_hdr = ip_hdr(skb)->protocol;
2137 break;
2138 case htons(ETH_P_IPV6):
2139 l4_hdr = ipv6_hdr(skb)->nexthdr;
2140 break;
2141 default:
2142 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2143 }
2144
2145 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
2146 skb->inner_protocol != htons(ETH_P_TEB) ||
2147 (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) ||
2148 (l4_hdr == IPPROTO_UDP &&
2149 (skb_inner_mac_header(skb) - skb_transport_header(skb) !=
2150 sizeof(struct udphdr) + sizeof(struct vxlanhdr))))
2151 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2152
2153 return features;
2154 }
2155
2156 static int
nfp_net_get_phys_port_name(struct net_device * netdev,char * name,size_t len)2157 nfp_net_get_phys_port_name(struct net_device *netdev, char *name, size_t len)
2158 {
2159 struct nfp_net *nn = netdev_priv(netdev);
2160 int n;
2161
2162 /* If port is defined, devlink_port is registered and devlink core
2163 * is taking care of name formatting.
2164 */
2165 if (nn->port)
2166 return -EOPNOTSUPP;
2167
2168 if (nn->dp.is_vf || nn->vnic_no_name)
2169 return -EOPNOTSUPP;
2170
2171 n = snprintf(name, len, "n%d", nn->id);
2172 if (n >= len)
2173 return -EINVAL;
2174
2175 return 0;
2176 }
2177
nfp_net_xdp_setup_drv(struct nfp_net * nn,struct netdev_bpf * bpf)2178 static int nfp_net_xdp_setup_drv(struct nfp_net *nn, struct netdev_bpf *bpf)
2179 {
2180 struct bpf_prog *prog = bpf->prog;
2181 struct nfp_net_dp *dp;
2182 int err;
2183
2184 if (!prog == !nn->dp.xdp_prog) {
2185 WRITE_ONCE(nn->dp.xdp_prog, prog);
2186 xdp_attachment_setup(&nn->xdp, bpf);
2187 return 0;
2188 }
2189
2190 dp = nfp_net_clone_dp(nn);
2191 if (!dp)
2192 return -ENOMEM;
2193
2194 dp->xdp_prog = prog;
2195 dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings;
2196 dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
2197 dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0;
2198
2199 /* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */
2200 err = nfp_net_ring_reconfig(nn, dp, bpf->extack);
2201 if (err)
2202 return err;
2203
2204 xdp_attachment_setup(&nn->xdp, bpf);
2205 return 0;
2206 }
2207
nfp_net_xdp_setup_hw(struct nfp_net * nn,struct netdev_bpf * bpf)2208 static int nfp_net_xdp_setup_hw(struct nfp_net *nn, struct netdev_bpf *bpf)
2209 {
2210 int err;
2211
2212 err = nfp_app_xdp_offload(nn->app, nn, bpf->prog, bpf->extack);
2213 if (err)
2214 return err;
2215
2216 xdp_attachment_setup(&nn->xdp_hw, bpf);
2217 return 0;
2218 }
2219
nfp_net_xdp(struct net_device * netdev,struct netdev_bpf * xdp)2220 static int nfp_net_xdp(struct net_device *netdev, struct netdev_bpf *xdp)
2221 {
2222 struct nfp_net *nn = netdev_priv(netdev);
2223
2224 switch (xdp->command) {
2225 case XDP_SETUP_PROG:
2226 return nfp_net_xdp_setup_drv(nn, xdp);
2227 case XDP_SETUP_PROG_HW:
2228 return nfp_net_xdp_setup_hw(nn, xdp);
2229 case XDP_SETUP_XSK_POOL:
2230 return nfp_net_xsk_setup_pool(netdev, xdp->xsk.pool,
2231 xdp->xsk.queue_id);
2232 default:
2233 return nfp_app_bpf(nn->app, nn, xdp);
2234 }
2235 }
2236
nfp_net_set_mac_address(struct net_device * netdev,void * addr)2237 static int nfp_net_set_mac_address(struct net_device *netdev, void *addr)
2238 {
2239 struct nfp_net *nn = netdev_priv(netdev);
2240 struct sockaddr *saddr = addr;
2241 int err;
2242
2243 err = eth_prepare_mac_addr_change(netdev, addr);
2244 if (err)
2245 return err;
2246
2247 nfp_net_write_mac_addr(nn, saddr->sa_data);
2248
2249 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR);
2250 if (err)
2251 return err;
2252
2253 eth_commit_mac_addr_change(netdev, addr);
2254
2255 return 0;
2256 }
2257
nfp_net_bridge_getlink(struct sk_buff * skb,u32 pid,u32 seq,struct net_device * dev,u32 filter_mask,int nlflags)2258 static int nfp_net_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
2259 struct net_device *dev, u32 filter_mask,
2260 int nlflags)
2261 {
2262 struct nfp_net *nn = netdev_priv(dev);
2263 u16 mode;
2264
2265 if (!(nn->cap & NFP_NET_CFG_CTRL_VEPA))
2266 return -EOPNOTSUPP;
2267
2268 mode = (nn->dp.ctrl & NFP_NET_CFG_CTRL_VEPA) ?
2269 BRIDGE_MODE_VEPA : BRIDGE_MODE_VEB;
2270
2271 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, mode, 0, 0,
2272 nlflags, filter_mask, NULL);
2273 }
2274
nfp_net_bridge_setlink(struct net_device * dev,struct nlmsghdr * nlh,u16 flags,struct netlink_ext_ack * extack)2275 static int nfp_net_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
2276 u16 flags, struct netlink_ext_ack *extack)
2277 {
2278 struct nfp_net *nn = netdev_priv(dev);
2279 struct nlattr *attr, *br_spec;
2280 int rem, err;
2281 u32 new_ctrl;
2282 u16 mode;
2283
2284 if (!(nn->cap & NFP_NET_CFG_CTRL_VEPA))
2285 return -EOPNOTSUPP;
2286
2287 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
2288 if (!br_spec)
2289 return -EINVAL;
2290
2291 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) {
2292 new_ctrl = nn->dp.ctrl;
2293 mode = nla_get_u16(attr);
2294 if (mode == BRIDGE_MODE_VEPA)
2295 new_ctrl |= NFP_NET_CFG_CTRL_VEPA;
2296 else if (mode == BRIDGE_MODE_VEB)
2297 new_ctrl &= ~NFP_NET_CFG_CTRL_VEPA;
2298 else
2299 return -EOPNOTSUPP;
2300
2301 if (new_ctrl == nn->dp.ctrl)
2302 return 0;
2303
2304 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2305 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN);
2306 if (!err)
2307 nn->dp.ctrl = new_ctrl;
2308
2309 return err;
2310 }
2311
2312 return -EINVAL;
2313 }
2314
2315 const struct net_device_ops nfp_nfd3_netdev_ops = {
2316 .ndo_init = nfp_app_ndo_init,
2317 .ndo_uninit = nfp_app_ndo_uninit,
2318 .ndo_open = nfp_net_netdev_open,
2319 .ndo_stop = nfp_net_netdev_close,
2320 .ndo_start_xmit = nfp_net_tx,
2321 .ndo_get_stats64 = nfp_net_stat64,
2322 .ndo_vlan_rx_add_vid = nfp_net_vlan_rx_add_vid,
2323 .ndo_vlan_rx_kill_vid = nfp_net_vlan_rx_kill_vid,
2324 .ndo_set_vf_mac = nfp_app_set_vf_mac,
2325 .ndo_set_vf_vlan = nfp_app_set_vf_vlan,
2326 .ndo_set_vf_rate = nfp_app_set_vf_rate,
2327 .ndo_set_vf_spoofchk = nfp_app_set_vf_spoofchk,
2328 .ndo_set_vf_trust = nfp_app_set_vf_trust,
2329 .ndo_get_vf_config = nfp_app_get_vf_config,
2330 .ndo_set_vf_link_state = nfp_app_set_vf_link_state,
2331 .ndo_setup_tc = nfp_port_setup_tc,
2332 .ndo_tx_timeout = nfp_net_tx_timeout,
2333 .ndo_set_rx_mode = nfp_net_set_rx_mode,
2334 .ndo_change_mtu = nfp_net_change_mtu,
2335 .ndo_set_mac_address = nfp_net_set_mac_address,
2336 .ndo_set_features = nfp_net_set_features,
2337 .ndo_fix_features = nfp_net_fix_features,
2338 .ndo_features_check = nfp_net_features_check,
2339 .ndo_get_phys_port_name = nfp_net_get_phys_port_name,
2340 .ndo_bpf = nfp_net_xdp,
2341 .ndo_xsk_wakeup = nfp_net_xsk_wakeup,
2342 .ndo_bridge_getlink = nfp_net_bridge_getlink,
2343 .ndo_bridge_setlink = nfp_net_bridge_setlink,
2344 };
2345
2346 const struct net_device_ops nfp_nfdk_netdev_ops = {
2347 .ndo_init = nfp_app_ndo_init,
2348 .ndo_uninit = nfp_app_ndo_uninit,
2349 .ndo_open = nfp_net_netdev_open,
2350 .ndo_stop = nfp_net_netdev_close,
2351 .ndo_start_xmit = nfp_net_tx,
2352 .ndo_get_stats64 = nfp_net_stat64,
2353 .ndo_vlan_rx_add_vid = nfp_net_vlan_rx_add_vid,
2354 .ndo_vlan_rx_kill_vid = nfp_net_vlan_rx_kill_vid,
2355 .ndo_set_vf_mac = nfp_app_set_vf_mac,
2356 .ndo_set_vf_vlan = nfp_app_set_vf_vlan,
2357 .ndo_set_vf_rate = nfp_app_set_vf_rate,
2358 .ndo_set_vf_spoofchk = nfp_app_set_vf_spoofchk,
2359 .ndo_set_vf_trust = nfp_app_set_vf_trust,
2360 .ndo_get_vf_config = nfp_app_get_vf_config,
2361 .ndo_set_vf_link_state = nfp_app_set_vf_link_state,
2362 .ndo_setup_tc = nfp_port_setup_tc,
2363 .ndo_tx_timeout = nfp_net_tx_timeout,
2364 .ndo_set_rx_mode = nfp_net_set_rx_mode,
2365 .ndo_change_mtu = nfp_net_change_mtu,
2366 .ndo_set_mac_address = nfp_net_set_mac_address,
2367 .ndo_set_features = nfp_net_set_features,
2368 .ndo_fix_features = nfp_net_fix_features,
2369 .ndo_features_check = nfp_net_features_check,
2370 .ndo_get_phys_port_name = nfp_net_get_phys_port_name,
2371 .ndo_bpf = nfp_net_xdp,
2372 .ndo_bridge_getlink = nfp_net_bridge_getlink,
2373 .ndo_bridge_setlink = nfp_net_bridge_setlink,
2374 };
2375
nfp_udp_tunnel_sync(struct net_device * netdev,unsigned int table)2376 static int nfp_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
2377 {
2378 struct nfp_net *nn = netdev_priv(netdev);
2379 int i;
2380
2381 BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1);
2382 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2) {
2383 struct udp_tunnel_info ti0, ti1;
2384
2385 udp_tunnel_nic_get_port(netdev, table, i, &ti0);
2386 udp_tunnel_nic_get_port(netdev, table, i + 1, &ti1);
2387
2388 nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(ti0.port),
2389 be16_to_cpu(ti1.port) << 16 | be16_to_cpu(ti0.port));
2390 }
2391
2392 return nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_VXLAN);
2393 }
2394
2395 static const struct udp_tunnel_nic_info nfp_udp_tunnels = {
2396 .sync_table = nfp_udp_tunnel_sync,
2397 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
2398 UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
2399 .tables = {
2400 {
2401 .n_entries = NFP_NET_N_VXLAN_PORTS,
2402 .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,
2403 },
2404 },
2405 };
2406
2407 /**
2408 * nfp_net_info() - Print general info about the NIC
2409 * @nn: NFP Net device to reconfigure
2410 */
nfp_net_info(struct nfp_net * nn)2411 void nfp_net_info(struct nfp_net *nn)
2412 {
2413 nn_info(nn, "NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n",
2414 nn->dp.is_vf ? "VF " : "",
2415 nn->dp.num_tx_rings, nn->max_tx_rings,
2416 nn->dp.num_rx_rings, nn->max_rx_rings);
2417 nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n",
2418 nn->fw_ver.extend, nn->fw_ver.class,
2419 nn->fw_ver.major, nn->fw_ver.minor,
2420 nn->max_mtu);
2421 nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2422 nn->cap,
2423 nn->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "",
2424 nn->cap & NFP_NET_CFG_CTRL_L2BC ? "L2BCFILT " : "",
2425 nn->cap & NFP_NET_CFG_CTRL_L2MC ? "L2MCFILT " : "",
2426 nn->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "",
2427 nn->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "",
2428 nn->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "",
2429 nn->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "",
2430 nn->cap & NFP_NET_CFG_CTRL_RXQINQ ? "RXQINQ " : "",
2431 nn->cap & NFP_NET_CFG_CTRL_RXVLAN_V2 ? "RXVLANv2 " : "",
2432 nn->cap & NFP_NET_CFG_CTRL_TXVLAN_V2 ? "TXVLANv2 " : "",
2433 nn->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "",
2434 nn->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "",
2435 nn->cap & NFP_NET_CFG_CTRL_LSO ? "TSO1 " : "",
2436 nn->cap & NFP_NET_CFG_CTRL_LSO2 ? "TSO2 " : "",
2437 nn->cap & NFP_NET_CFG_CTRL_RSS ? "RSS1 " : "",
2438 nn->cap & NFP_NET_CFG_CTRL_RSS2 ? "RSS2 " : "",
2439 nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER ? "CTAG_FILTER " : "",
2440 nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "",
2441 nn->cap & NFP_NET_CFG_CTRL_IRQMOD ? "IRQMOD " : "",
2442 nn->cap & NFP_NET_CFG_CTRL_TXRWB ? "TXRWB " : "",
2443 nn->cap & NFP_NET_CFG_CTRL_VEPA ? "VEPA " : "",
2444 nn->cap & NFP_NET_CFG_CTRL_VXLAN ? "VXLAN " : "",
2445 nn->cap & NFP_NET_CFG_CTRL_NVGRE ? "NVGRE " : "",
2446 nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ?
2447 "RXCSUM_COMPLETE " : "",
2448 nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "",
2449 nn->cap_w1 & NFP_NET_CFG_CTRL_MCAST_FILTER ? "MULTICAST_FILTER " : "",
2450 nn->cap_w1 & NFP_NET_CFG_CTRL_USO ? "USO " : "",
2451 nfp_app_extra_cap(nn->app, nn));
2452 }
2453
2454 /**
2455 * nfp_net_alloc() - Allocate netdev and related structure
2456 * @pdev: PCI device
2457 * @dev_info: NFP ASIC params
2458 * @ctrl_bar: PCI IOMEM with vNIC config memory
2459 * @needs_netdev: Whether to allocate a netdev for this vNIC
2460 * @max_tx_rings: Maximum number of TX rings supported by device
2461 * @max_rx_rings: Maximum number of RX rings supported by device
2462 *
2463 * This function allocates a netdev device and fills in the initial
2464 * part of the @struct nfp_net structure. In case of control device
2465 * nfp_net structure is allocated without the netdev.
2466 *
2467 * Return: NFP Net device structure, or ERR_PTR on error.
2468 */
2469 struct nfp_net *
nfp_net_alloc(struct pci_dev * pdev,const struct nfp_dev_info * dev_info,void __iomem * ctrl_bar,bool needs_netdev,unsigned int max_tx_rings,unsigned int max_rx_rings)2470 nfp_net_alloc(struct pci_dev *pdev, const struct nfp_dev_info *dev_info,
2471 void __iomem *ctrl_bar, bool needs_netdev,
2472 unsigned int max_tx_rings, unsigned int max_rx_rings)
2473 {
2474 u64 dma_mask = dma_get_mask(&pdev->dev);
2475 struct nfp_net *nn;
2476 int err;
2477
2478 if (needs_netdev) {
2479 struct net_device *netdev;
2480
2481 netdev = alloc_etherdev_mqs(sizeof(struct nfp_net),
2482 max_tx_rings, max_rx_rings);
2483 if (!netdev)
2484 return ERR_PTR(-ENOMEM);
2485
2486 SET_NETDEV_DEV(netdev, &pdev->dev);
2487 nn = netdev_priv(netdev);
2488 nn->dp.netdev = netdev;
2489 } else {
2490 nn = vzalloc(sizeof(*nn));
2491 if (!nn)
2492 return ERR_PTR(-ENOMEM);
2493 }
2494
2495 nn->dp.dev = &pdev->dev;
2496 nn->dp.ctrl_bar = ctrl_bar;
2497 nn->dev_info = dev_info;
2498 nn->pdev = pdev;
2499 nfp_net_get_fw_version(&nn->fw_ver, ctrl_bar);
2500
2501 switch (FIELD_GET(NFP_NET_CFG_VERSION_DP_MASK, nn->fw_ver.extend)) {
2502 case NFP_NET_CFG_VERSION_DP_NFD3:
2503 nn->dp.ops = &nfp_nfd3_ops;
2504 break;
2505 case NFP_NET_CFG_VERSION_DP_NFDK:
2506 if (nn->fw_ver.major < 5) {
2507 dev_err(&pdev->dev,
2508 "NFDK must use ABI 5 or newer, found: %d\n",
2509 nn->fw_ver.major);
2510 err = -EINVAL;
2511 goto err_free_nn;
2512 }
2513 nn->dp.ops = &nfp_nfdk_ops;
2514 break;
2515 default:
2516 err = -EINVAL;
2517 goto err_free_nn;
2518 }
2519
2520 if ((dma_mask & nn->dp.ops->dma_mask) != dma_mask) {
2521 dev_err(&pdev->dev,
2522 "DMA mask of loaded firmware: %llx, required DMA mask: %llx\n",
2523 nn->dp.ops->dma_mask, dma_mask);
2524 err = -EINVAL;
2525 goto err_free_nn;
2526 }
2527
2528 nn->max_tx_rings = max_tx_rings;
2529 nn->max_rx_rings = max_rx_rings;
2530
2531 nn->dp.num_tx_rings = min_t(unsigned int,
2532 max_tx_rings, num_online_cpus());
2533 nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings,
2534 netif_get_num_default_rss_queues());
2535
2536 nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings);
2537 nn->dp.num_r_vecs = min_t(unsigned int,
2538 nn->dp.num_r_vecs, num_online_cpus());
2539 nn->max_r_vecs = nn->dp.num_r_vecs;
2540
2541 nn->dp.xsk_pools = kcalloc(nn->max_r_vecs, sizeof(nn->dp.xsk_pools),
2542 GFP_KERNEL);
2543 if (!nn->dp.xsk_pools) {
2544 err = -ENOMEM;
2545 goto err_free_nn;
2546 }
2547
2548 nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT;
2549 nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT;
2550
2551 sema_init(&nn->bar_lock, 1);
2552
2553 spin_lock_init(&nn->reconfig_lock);
2554 spin_lock_init(&nn->link_status_lock);
2555
2556 timer_setup(&nn->reconfig_timer, nfp_net_reconfig_timer, 0);
2557
2558 err = nfp_net_tlv_caps_parse(&nn->pdev->dev, nn->dp.ctrl_bar,
2559 &nn->tlv_caps);
2560 if (err)
2561 goto err_free_nn;
2562
2563 err = nfp_ccm_mbox_alloc(nn);
2564 if (err)
2565 goto err_free_nn;
2566
2567 return nn;
2568
2569 err_free_nn:
2570 if (nn->dp.netdev)
2571 free_netdev(nn->dp.netdev);
2572 else
2573 vfree(nn);
2574 return ERR_PTR(err);
2575 }
2576
2577 /**
2578 * nfp_net_free() - Undo what @nfp_net_alloc() did
2579 * @nn: NFP Net device to reconfigure
2580 */
nfp_net_free(struct nfp_net * nn)2581 void nfp_net_free(struct nfp_net *nn)
2582 {
2583 WARN_ON(timer_pending(&nn->reconfig_timer) || nn->reconfig_posted);
2584 nfp_ccm_mbox_free(nn);
2585
2586 kfree(nn->dp.xsk_pools);
2587 if (nn->dp.netdev)
2588 free_netdev(nn->dp.netdev);
2589 else
2590 vfree(nn);
2591 }
2592
2593 /**
2594 * nfp_net_rss_key_sz() - Get current size of the RSS key
2595 * @nn: NFP Net device instance
2596 *
2597 * Return: size of the RSS key for currently selected hash function.
2598 */
nfp_net_rss_key_sz(struct nfp_net * nn)2599 unsigned int nfp_net_rss_key_sz(struct nfp_net *nn)
2600 {
2601 switch (nn->rss_hfunc) {
2602 case ETH_RSS_HASH_TOP:
2603 return NFP_NET_CFG_RSS_KEY_SZ;
2604 case ETH_RSS_HASH_XOR:
2605 return 0;
2606 case ETH_RSS_HASH_CRC32:
2607 return 4;
2608 }
2609
2610 nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc);
2611 return 0;
2612 }
2613
2614 /**
2615 * nfp_net_rss_init() - Set the initial RSS parameters
2616 * @nn: NFP Net device to reconfigure
2617 */
nfp_net_rss_init(struct nfp_net * nn)2618 static void nfp_net_rss_init(struct nfp_net *nn)
2619 {
2620 unsigned long func_bit, rss_cap_hfunc;
2621 u32 reg;
2622
2623 /* Read the RSS function capability and select first supported func */
2624 reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP);
2625 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg);
2626 if (!rss_cap_hfunc)
2627 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC,
2628 NFP_NET_CFG_RSS_TOEPLITZ);
2629
2630 func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS);
2631 if (func_bit == NFP_NET_CFG_RSS_HFUNCS) {
2632 dev_warn(nn->dp.dev,
2633 "Bad RSS config, defaulting to Toeplitz hash\n");
2634 func_bit = ETH_RSS_HASH_TOP_BIT;
2635 }
2636 nn->rss_hfunc = 1 << func_bit;
2637
2638 netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn));
2639
2640 nfp_net_rss_init_itbl(nn);
2641
2642 /* Enable IPv4/IPv6 TCP by default */
2643 nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP |
2644 NFP_NET_CFG_RSS_IPV6_TCP |
2645 NFP_NET_CFG_RSS_IPV4_UDP |
2646 NFP_NET_CFG_RSS_IPV6_UDP |
2647 FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) |
2648 NFP_NET_CFG_RSS_MASK;
2649 }
2650
2651 /**
2652 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters
2653 * @nn: NFP Net device to reconfigure
2654 */
nfp_net_irqmod_init(struct nfp_net * nn)2655 static void nfp_net_irqmod_init(struct nfp_net *nn)
2656 {
2657 nn->rx_coalesce_usecs = 50;
2658 nn->rx_coalesce_max_frames = 64;
2659 nn->tx_coalesce_usecs = 50;
2660 nn->tx_coalesce_max_frames = 64;
2661
2662 nn->rx_coalesce_adapt_on = true;
2663 nn->tx_coalesce_adapt_on = true;
2664 }
2665
nfp_net_netdev_init(struct nfp_net * nn)2666 static void nfp_net_netdev_init(struct nfp_net *nn)
2667 {
2668 struct net_device *netdev = nn->dp.netdev;
2669
2670 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
2671
2672 netdev->mtu = nn->dp.mtu;
2673
2674 /* Advertise/enable offloads based on capabilities
2675 *
2676 * Note: netdev->features show the currently enabled features
2677 * and netdev->hw_features advertises which features are
2678 * supported. By default we enable most features.
2679 */
2680 if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR)
2681 netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
2682
2683 netdev->hw_features = NETIF_F_HIGHDMA;
2684 if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) {
2685 netdev->hw_features |= NETIF_F_RXCSUM;
2686 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
2687 }
2688 if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) {
2689 netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
2690 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
2691 }
2692 if (nn->cap & NFP_NET_CFG_CTRL_GATHER) {
2693 netdev->hw_features |= NETIF_F_SG;
2694 nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER;
2695 }
2696 if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) ||
2697 nn->cap & NFP_NET_CFG_CTRL_LSO2) {
2698 netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
2699 if (nn->cap_w1 & NFP_NET_CFG_CTRL_USO)
2700 netdev->hw_features |= NETIF_F_GSO_UDP_L4;
2701 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
2702 NFP_NET_CFG_CTRL_LSO;
2703 }
2704 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY)
2705 netdev->hw_features |= NETIF_F_RXHASH;
2706
2707 #ifdef CONFIG_NFP_NET_IPSEC
2708 if (nn->cap_w1 & NFP_NET_CFG_CTRL_IPSEC)
2709 netdev->hw_features |= NETIF_F_HW_ESP | NETIF_F_HW_ESP_TX_CSUM;
2710 #endif
2711
2712 if (nn->cap & NFP_NET_CFG_CTRL_VXLAN) {
2713 if (nn->cap & NFP_NET_CFG_CTRL_LSO) {
2714 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL |
2715 NETIF_F_GSO_UDP_TUNNEL_CSUM |
2716 NETIF_F_GSO_PARTIAL;
2717 netdev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM;
2718 }
2719 netdev->udp_tunnel_nic_info = &nfp_udp_tunnels;
2720 nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN;
2721 }
2722 if (nn->cap & NFP_NET_CFG_CTRL_NVGRE) {
2723 if (nn->cap & NFP_NET_CFG_CTRL_LSO)
2724 netdev->hw_features |= NETIF_F_GSO_GRE;
2725 nn->dp.ctrl |= NFP_NET_CFG_CTRL_NVGRE;
2726 }
2727 if (nn->cap & (NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE))
2728 netdev->hw_enc_features = netdev->hw_features;
2729
2730 netdev->vlan_features = netdev->hw_features;
2731
2732 if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN_ANY) {
2733 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
2734 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXVLAN_V2 ?:
2735 NFP_NET_CFG_CTRL_RXVLAN;
2736 }
2737 if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN_ANY) {
2738 if (nn->cap & NFP_NET_CFG_CTRL_LSO2) {
2739 nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n");
2740 } else {
2741 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
2742 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_TXVLAN_V2 ?:
2743 NFP_NET_CFG_CTRL_TXVLAN;
2744 }
2745 }
2746 if (nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER) {
2747 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2748 nn->dp.ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER;
2749 }
2750 if (nn->cap & NFP_NET_CFG_CTRL_RXQINQ) {
2751 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX;
2752 nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXQINQ;
2753 }
2754
2755 netdev->features = netdev->hw_features;
2756
2757 if (nfp_app_has_tc(nn->app) && nn->port)
2758 netdev->hw_features |= NETIF_F_HW_TC;
2759
2760 /* C-Tag strip and S-Tag strip can't be supported simultaneously,
2761 * so enable C-Tag strip and disable S-Tag strip by default.
2762 */
2763 netdev->features &= ~NETIF_F_HW_VLAN_STAG_RX;
2764 nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_RXQINQ;
2765
2766 netdev->xdp_features = NETDEV_XDP_ACT_BASIC;
2767 if (nn->app && nn->app->type->id == NFP_APP_BPF_NIC)
2768 netdev->xdp_features |= NETDEV_XDP_ACT_HW_OFFLOAD;
2769
2770 /* Finalise the netdev setup */
2771 switch (nn->dp.ops->version) {
2772 case NFP_NFD_VER_NFD3:
2773 netdev->netdev_ops = &nfp_nfd3_netdev_ops;
2774 netdev->xdp_features |= NETDEV_XDP_ACT_XSK_ZEROCOPY;
2775 netdev->xdp_features |= NETDEV_XDP_ACT_REDIRECT;
2776 break;
2777 case NFP_NFD_VER_NFDK:
2778 netdev->netdev_ops = &nfp_nfdk_netdev_ops;
2779 break;
2780 }
2781
2782 netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000);
2783
2784 /* MTU range: 68 - hw-specific max */
2785 netdev->min_mtu = ETH_MIN_MTU;
2786 netdev->max_mtu = nn->max_mtu;
2787
2788 netif_set_tso_max_segs(netdev, NFP_NET_LSO_MAX_SEGS);
2789
2790 netif_carrier_off(netdev);
2791
2792 nfp_net_set_ethtool_ops(netdev);
2793 }
2794
nfp_net_read_caps(struct nfp_net * nn)2795 static int nfp_net_read_caps(struct nfp_net *nn)
2796 {
2797 /* Get some of the read-only fields from the BAR */
2798 nn->cap = nn_readl(nn, NFP_NET_CFG_CAP);
2799 nn->cap_w1 = nn_readl(nn, NFP_NET_CFG_CAP_WORD1);
2800 nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU);
2801
2802 /* ABI 4.x and ctrl vNIC always use chained metadata, in other cases
2803 * we allow use of non-chained metadata if RSS(v1) is the only
2804 * advertised capability requiring metadata.
2805 */
2806 nn->dp.chained_metadata_format = nn->fw_ver.major == 4 ||
2807 !nn->dp.netdev ||
2808 !(nn->cap & NFP_NET_CFG_CTRL_RSS) ||
2809 nn->cap & NFP_NET_CFG_CTRL_CHAIN_META;
2810 /* RSS(v1) uses non-chained metadata format, except in ABI 4.x where
2811 * it has the same meaning as RSSv2.
2812 */
2813 if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4)
2814 nn->cap &= ~NFP_NET_CFG_CTRL_RSS;
2815
2816 /* Determine RX packet/metadata boundary offset */
2817 if (nn->fw_ver.major >= 2) {
2818 u32 reg;
2819
2820 reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET);
2821 if (reg > NFP_NET_MAX_PREPEND) {
2822 nn_err(nn, "Invalid rx offset: %d\n", reg);
2823 return -EINVAL;
2824 }
2825 nn->dp.rx_offset = reg;
2826 } else {
2827 nn->dp.rx_offset = NFP_NET_RX_OFFSET;
2828 }
2829
2830 /* Mask out NFD-version-specific features */
2831 nn->cap &= nn->dp.ops->cap_mask;
2832
2833 /* For control vNICs mask out the capabilities app doesn't want. */
2834 if (!nn->dp.netdev)
2835 nn->cap &= nn->app->type->ctrl_cap_mask;
2836
2837 return 0;
2838 }
2839
2840 /**
2841 * nfp_net_init() - Initialise/finalise the nfp_net structure
2842 * @nn: NFP Net device structure
2843 *
2844 * Return: 0 on success or negative errno on error.
2845 */
nfp_net_init(struct nfp_net * nn)2846 int nfp_net_init(struct nfp_net *nn)
2847 {
2848 int err;
2849
2850 nn->dp.rx_dma_dir = DMA_FROM_DEVICE;
2851
2852 err = nfp_net_read_caps(nn);
2853 if (err)
2854 return err;
2855
2856 /* Set default MTU and Freelist buffer size */
2857 if (!nfp_net_is_data_vnic(nn) && nn->app->ctrl_mtu) {
2858 nn->dp.mtu = min(nn->app->ctrl_mtu, nn->max_mtu);
2859 } else if (nn->max_mtu < NFP_NET_DEFAULT_MTU) {
2860 nn->dp.mtu = nn->max_mtu;
2861 } else {
2862 nn->dp.mtu = NFP_NET_DEFAULT_MTU;
2863 }
2864 nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp);
2865
2866 if (nfp_app_ctrl_uses_data_vnics(nn->app))
2867 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_CMSG_DATA;
2868
2869 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) {
2870 nfp_net_rss_init(nn);
2871 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?:
2872 NFP_NET_CFG_CTRL_RSS;
2873 }
2874
2875 /* Allow L2 Broadcast and Multicast through by default, if supported */
2876 if (nn->cap & NFP_NET_CFG_CTRL_L2BC)
2877 nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC;
2878
2879 /* Allow IRQ moderation, if supported */
2880 if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
2881 nfp_net_irqmod_init(nn);
2882 nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
2883 }
2884
2885 /* Enable TX pointer writeback, if supported */
2886 if (nn->cap & NFP_NET_CFG_CTRL_TXRWB)
2887 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXRWB;
2888
2889 if (nn->cap_w1 & NFP_NET_CFG_CTRL_MCAST_FILTER)
2890 nn->dp.ctrl_w1 |= NFP_NET_CFG_CTRL_MCAST_FILTER;
2891
2892 /* Stash the re-configuration queue away. First odd queue in TX Bar */
2893 nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ;
2894
2895 /* Make sure the FW knows the netdev is supposed to be disabled here */
2896 nn_writel(nn, NFP_NET_CFG_CTRL, 0);
2897 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
2898 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
2899 nn_writel(nn, NFP_NET_CFG_CTRL_WORD1, 0);
2900 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING |
2901 NFP_NET_CFG_UPDATE_GEN);
2902 if (err)
2903 return err;
2904
2905 if (nn->dp.netdev) {
2906 nfp_net_netdev_init(nn);
2907
2908 err = nfp_ccm_mbox_init(nn);
2909 if (err)
2910 return err;
2911
2912 err = nfp_net_tls_init(nn);
2913 if (err)
2914 goto err_clean_mbox;
2915
2916 nfp_net_ipsec_init(nn);
2917 }
2918
2919 nfp_net_vecs_init(nn);
2920
2921 if (!nn->dp.netdev)
2922 return 0;
2923
2924 spin_lock_init(&nn->mbox_amsg.lock);
2925 INIT_LIST_HEAD(&nn->mbox_amsg.list);
2926 INIT_WORK(&nn->mbox_amsg.work, nfp_net_mbox_amsg_work);
2927
2928 INIT_LIST_HEAD(&nn->fs.list);
2929
2930 return register_netdev(nn->dp.netdev);
2931
2932 err_clean_mbox:
2933 nfp_ccm_mbox_clean(nn);
2934 return err;
2935 }
2936
2937 /**
2938 * nfp_net_clean() - Undo what nfp_net_init() did.
2939 * @nn: NFP Net device structure
2940 */
nfp_net_clean(struct nfp_net * nn)2941 void nfp_net_clean(struct nfp_net *nn)
2942 {
2943 if (!nn->dp.netdev)
2944 return;
2945
2946 unregister_netdev(nn->dp.netdev);
2947 nfp_net_ipsec_clean(nn);
2948 nfp_ccm_mbox_clean(nn);
2949 nfp_net_fs_clean(nn);
2950 flush_work(&nn->mbox_amsg.work);
2951 nfp_net_reconfig_wait_posted(nn);
2952 }
2953