1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2005, Intec Automation Inc.
4 * Copyright (C) 2014, Freescale Semiconductor, Inc.
5 */
6
7 #include <linux/mtd/spi-nor.h>
8
9 #include "core.h"
10
11 #define MXIC_NOR_OP_RD_CR2 0x71 /* Read configuration register 2 opcode */
12 #define MXIC_NOR_OP_WR_CR2 0x72 /* Write configuration register 2 opcode */
13 #define MXIC_NOR_ADDR_CR2_MODE 0x00000000 /* CR2 address for setting spi/sopi/dopi mode */
14 #define MXIC_NOR_ADDR_CR2_DC 0x00000300 /* CR2 address for setting dummy cycles */
15 #define MXIC_NOR_REG_DOPI_EN 0x2 /* Enable Octal DTR */
16 #define MXIC_NOR_REG_SPI_EN 0x0 /* Enable SPI */
17
18 /* Convert dummy cycles to bit pattern */
19 #define MXIC_NOR_REG_DC(p) \
20 ((20 - (p)) >> 1)
21
22 #define MXIC_NOR_WR_CR2(addr, ndata, buf) \
23 SPI_MEM_OP(SPI_MEM_OP_CMD(MXIC_NOR_OP_WR_CR2, 0), \
24 SPI_MEM_OP_ADDR(4, addr, 0), \
25 SPI_MEM_OP_NO_DUMMY, \
26 SPI_MEM_OP_DATA_OUT(ndata, buf, 0))
27
28 static int
mx25l25635_post_bfpt_fixups(struct spi_nor * nor,const struct sfdp_parameter_header * bfpt_header,const struct sfdp_bfpt * bfpt)29 mx25l25635_post_bfpt_fixups(struct spi_nor *nor,
30 const struct sfdp_parameter_header *bfpt_header,
31 const struct sfdp_bfpt *bfpt)
32 {
33 /*
34 * MX25L25635F supports 4B opcodes but MX25L25635E does not.
35 * Unfortunately, Macronix has re-used the same JEDEC ID for both
36 * variants which prevents us from defining a new entry in the parts
37 * table.
38 * We need a way to differentiate MX25L25635E and MX25L25635F, and it
39 * seems that the F version advertises support for Fast Read 4-4-4 in
40 * its BFPT table.
41 */
42 if (bfpt->dwords[SFDP_DWORD(5)] & BFPT_DWORD5_FAST_READ_4_4_4)
43 nor->flags |= SNOR_F_4B_OPCODES;
44
45 return 0;
46 }
47
48 static const struct spi_nor_fixups mx25l25635_fixups = {
49 .post_bfpt = mx25l25635_post_bfpt_fixups,
50 };
51
52 static const struct flash_info macronix_nor_parts[] = {
53 {
54 .id = SNOR_ID(0xc2, 0x20, 0x10),
55 .name = "mx25l512e",
56 .size = SZ_64K,
57 .no_sfdp_flags = SECT_4K,
58 }, {
59 .id = SNOR_ID(0xc2, 0x20, 0x12),
60 .name = "mx25l2005a",
61 .size = SZ_256K,
62 .no_sfdp_flags = SECT_4K,
63 }, {
64 .id = SNOR_ID(0xc2, 0x20, 0x13),
65 .name = "mx25l4005a",
66 .size = SZ_512K,
67 .no_sfdp_flags = SECT_4K,
68 }, {
69 .id = SNOR_ID(0xc2, 0x20, 0x14),
70 .name = "mx25l8005",
71 .size = SZ_1M,
72 }, {
73 .id = SNOR_ID(0xc2, 0x20, 0x15),
74 .name = "mx25l1606e",
75 .size = SZ_2M,
76 .no_sfdp_flags = SECT_4K,
77 }, {
78 .id = SNOR_ID(0xc2, 0x20, 0x16),
79 .name = "mx25l3205d",
80 .size = SZ_4M,
81 .no_sfdp_flags = SECT_4K,
82 }, {
83 .id = SNOR_ID(0xc2, 0x20, 0x17),
84 .name = "mx25l6405d",
85 .size = SZ_8M,
86 .no_sfdp_flags = SECT_4K,
87 }, {
88 .id = SNOR_ID(0xc2, 0x20, 0x18),
89 .name = "mx25l12805d",
90 .size = SZ_16M,
91 .flags = SPI_NOR_HAS_LOCK | SPI_NOR_4BIT_BP,
92 .no_sfdp_flags = SECT_4K,
93 }, {
94 .id = SNOR_ID(0xc2, 0x20, 0x19),
95 .name = "mx25l25635e",
96 .size = SZ_32M,
97 .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
98 .fixups = &mx25l25635_fixups
99 }, {
100 .id = SNOR_ID(0xc2, 0x20, 0x1a),
101 .name = "mx66l51235f",
102 .size = SZ_64M,
103 .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
104 .fixup_flags = SPI_NOR_4B_OPCODES,
105 }, {
106 .id = SNOR_ID(0xc2, 0x20, 0x1b),
107 .name = "mx66l1g45g",
108 .size = SZ_128M,
109 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
110 }, {
111 .id = SNOR_ID(0xc2, 0x23, 0x14),
112 .name = "mx25v8035f",
113 .size = SZ_1M,
114 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
115 }, {
116 .id = SNOR_ID(0xc2, 0x25, 0x32),
117 .name = "mx25u2033e",
118 .size = SZ_256K,
119 .no_sfdp_flags = SECT_4K,
120 }, {
121 .id = SNOR_ID(0xc2, 0x25, 0x33),
122 .name = "mx25u4035",
123 .size = SZ_512K,
124 .no_sfdp_flags = SECT_4K,
125 }, {
126 .id = SNOR_ID(0xc2, 0x25, 0x34),
127 .name = "mx25u8035",
128 .size = SZ_1M,
129 .no_sfdp_flags = SECT_4K,
130 }, {
131 .id = SNOR_ID(0xc2, 0x25, 0x36),
132 .name = "mx25u3235f",
133 .size = SZ_4M,
134 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
135 }, {
136 .id = SNOR_ID(0xc2, 0x25, 0x37),
137 .name = "mx25u6435f",
138 .size = SZ_8M,
139 .no_sfdp_flags = SECT_4K,
140 }, {
141 .id = SNOR_ID(0xc2, 0x25, 0x38),
142 .name = "mx25u12835f",
143 .size = SZ_16M,
144 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
145 }, {
146 .id = SNOR_ID(0xc2, 0x25, 0x39),
147 .name = "mx25u25635f",
148 .size = SZ_32M,
149 .no_sfdp_flags = SECT_4K,
150 .fixup_flags = SPI_NOR_4B_OPCODES,
151 }, {
152 .id = SNOR_ID(0xc2, 0x25, 0x3a),
153 .name = "mx25u51245g",
154 .size = SZ_64M,
155 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
156 .fixup_flags = SPI_NOR_4B_OPCODES,
157 }, {
158 .id = SNOR_ID(0xc2, 0x25, 0x3a),
159 .name = "mx66u51235f",
160 .size = SZ_64M,
161 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
162 .fixup_flags = SPI_NOR_4B_OPCODES,
163 }, {
164 .id = SNOR_ID(0xc2, 0x25, 0x3c),
165 .name = "mx66u2g45g",
166 .size = SZ_256M,
167 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
168 .fixup_flags = SPI_NOR_4B_OPCODES,
169 }, {
170 .id = SNOR_ID(0xc2, 0x26, 0x18),
171 .name = "mx25l12855e",
172 .size = SZ_16M,
173 }, {
174 .id = SNOR_ID(0xc2, 0x26, 0x19),
175 .name = "mx25l25655e",
176 .size = SZ_32M,
177 }, {
178 .id = SNOR_ID(0xc2, 0x26, 0x1b),
179 .name = "mx66l1g55g",
180 .size = SZ_128M,
181 .no_sfdp_flags = SPI_NOR_QUAD_READ,
182 }, {
183 .id = SNOR_ID(0xc2, 0x28, 0x15),
184 .name = "mx25r1635f",
185 .size = SZ_2M,
186 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
187 }, {
188 .id = SNOR_ID(0xc2, 0x28, 0x16),
189 .name = "mx25r3235f",
190 .size = SZ_4M,
191 .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
192 }, {
193 .id = SNOR_ID(0xc2, 0x81, 0x3a),
194 .name = "mx25uw51245g",
195 .n_banks = 4,
196 .flags = SPI_NOR_RWW,
197 }, {
198 .id = SNOR_ID(0xc2, 0x9e, 0x16),
199 .name = "mx25l3255e",
200 .size = SZ_4M,
201 .no_sfdp_flags = SECT_4K,
202 },
203 /*
204 * This spares us of adding new flash entries for flashes that can be
205 * initialized solely based on the SFDP data, but still need the
206 * manufacturer hooks to set parameters that can't be discovered at SFDP
207 * parsing time.
208 */
209 { .id = SNOR_ID(0xc2) }
210 };
211
macronix_nor_octal_dtr_en(struct spi_nor * nor)212 static int macronix_nor_octal_dtr_en(struct spi_nor *nor)
213 {
214 struct spi_mem_op op;
215 u8 *buf = nor->bouncebuf, i;
216 int ret;
217
218 /* Use dummy cycles which is parse by SFDP and convert to bit pattern. */
219 buf[0] = MXIC_NOR_REG_DC(nor->params->reads[SNOR_CMD_READ_8_8_8_DTR].num_wait_states);
220 op = (struct spi_mem_op)MXIC_NOR_WR_CR2(MXIC_NOR_ADDR_CR2_DC, 1, buf);
221 ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
222 if (ret)
223 return ret;
224
225 /* Set the octal and DTR enable bits. */
226 buf[0] = MXIC_NOR_REG_DOPI_EN;
227 op = (struct spi_mem_op)MXIC_NOR_WR_CR2(MXIC_NOR_ADDR_CR2_MODE, 1, buf);
228 ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
229 if (ret)
230 return ret;
231
232 /* Read flash ID to make sure the switch was successful. */
233 ret = spi_nor_read_id(nor, 4, 4, buf, SNOR_PROTO_8_8_8_DTR);
234 if (ret) {
235 dev_dbg(nor->dev, "error %d reading JEDEC ID after enabling 8D-8D-8D mode\n", ret);
236 return ret;
237 }
238
239 /* Macronix SPI-NOR flash 8D-8D-8D read ID would get 6 bytes data A-A-B-B-C-C */
240 for (i = 0; i < nor->info->id->len; i++)
241 if (buf[i * 2] != buf[(i * 2) + 1] || buf[i * 2] != nor->info->id->bytes[i])
242 return -EINVAL;
243
244 return 0;
245 }
246
macronix_nor_octal_dtr_dis(struct spi_nor * nor)247 static int macronix_nor_octal_dtr_dis(struct spi_nor *nor)
248 {
249 struct spi_mem_op op;
250 u8 *buf = nor->bouncebuf;
251 int ret;
252
253 /*
254 * The register is 1-byte wide, but 1-byte transactions are not
255 * allowed in 8D-8D-8D mode. Since there is no register at the
256 * next location, just initialize the value to 0 and let the
257 * transaction go on.
258 */
259 buf[0] = MXIC_NOR_REG_SPI_EN;
260 buf[1] = 0x0;
261 op = (struct spi_mem_op)MXIC_NOR_WR_CR2(MXIC_NOR_ADDR_CR2_MODE, 2, buf);
262 ret = spi_nor_write_any_volatile_reg(nor, &op, SNOR_PROTO_8_8_8_DTR);
263 if (ret)
264 return ret;
265
266 /* Read flash ID to make sure the switch was successful. */
267 ret = spi_nor_read_id(nor, 0, 0, buf, SNOR_PROTO_1_1_1);
268 if (ret) {
269 dev_dbg(nor->dev, "error %d reading JEDEC ID after disabling 8D-8D-8D mode\n", ret);
270 return ret;
271 }
272
273 if (memcmp(buf, nor->info->id->bytes, nor->info->id->len))
274 return -EINVAL;
275
276 return 0;
277 }
278
macronix_nor_set_octal_dtr(struct spi_nor * nor,bool enable)279 static int macronix_nor_set_octal_dtr(struct spi_nor *nor, bool enable)
280 {
281 return enable ? macronix_nor_octal_dtr_en(nor) : macronix_nor_octal_dtr_dis(nor);
282 }
283
macronix_nor_default_init(struct spi_nor * nor)284 static void macronix_nor_default_init(struct spi_nor *nor)
285 {
286 nor->params->quad_enable = spi_nor_sr1_bit6_quad_enable;
287 }
288
macronix_nor_late_init(struct spi_nor * nor)289 static int macronix_nor_late_init(struct spi_nor *nor)
290 {
291 if (!nor->params->set_4byte_addr_mode)
292 nor->params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_en4b_ex4b;
293 nor->params->set_octal_dtr = macronix_nor_set_octal_dtr;
294
295 return 0;
296 }
297
298 static const struct spi_nor_fixups macronix_nor_fixups = {
299 .default_init = macronix_nor_default_init,
300 .late_init = macronix_nor_late_init,
301 };
302
303 const struct spi_nor_manufacturer spi_nor_macronix = {
304 .name = "macronix",
305 .parts = macronix_nor_parts,
306 .nparts = ARRAY_SIZE(macronix_nor_parts),
307 .fixups = ¯onix_nor_fixups,
308 };
309