1 // SPDX-License-Identifier: GPL-2.0+
2 #include <linux/bitfield.h>
3 #include <linux/bitmap.h>
4 #include <linux/mfd/syscon.h>
5 #include <linux/module.h>
6 #include <linux/nvmem-consumer.h>
7 #include <linux/pinctrl/consumer.h>
8 #include <linux/phy.h>
9 #include <linux/regmap.h>
10
11 #define MTK_GPHY_ID_MT7981 0x03a29461
12 #define MTK_GPHY_ID_MT7988 0x03a29481
13
14 #define MTK_EXT_PAGE_ACCESS 0x1f
15 #define MTK_PHY_PAGE_STANDARD 0x0000
16 #define MTK_PHY_PAGE_EXTENDED_3 0x0003
17
18 #define MTK_PHY_LPI_REG_14 0x14
19 #define MTK_PHY_LPI_WAKE_TIMER_1000_MASK GENMASK(8, 0)
20
21 #define MTK_PHY_LPI_REG_1c 0x1c
22 #define MTK_PHY_SMI_DET_ON_THRESH_MASK GENMASK(13, 8)
23
24 #define MTK_PHY_PAGE_EXTENDED_2A30 0x2a30
25 #define MTK_PHY_PAGE_EXTENDED_52B5 0x52b5
26
27 #define ANALOG_INTERNAL_OPERATION_MAX_US 20
28 #define TXRESERVE_MIN 0
29 #define TXRESERVE_MAX 7
30
31 #define MTK_PHY_ANARG_RG 0x10
32 #define MTK_PHY_TCLKOFFSET_MASK GENMASK(12, 8)
33
34 /* Registers on MDIO_MMD_VEND1 */
35 #define MTK_PHY_TXVLD_DA_RG 0x12
36 #define MTK_PHY_DA_TX_I2MPB_A_GBE_MASK GENMASK(15, 10)
37 #define MTK_PHY_DA_TX_I2MPB_A_TBT_MASK GENMASK(5, 0)
38
39 #define MTK_PHY_TX_I2MPB_TEST_MODE_A2 0x16
40 #define MTK_PHY_DA_TX_I2MPB_A_HBT_MASK GENMASK(15, 10)
41 #define MTK_PHY_DA_TX_I2MPB_A_TST_MASK GENMASK(5, 0)
42
43 #define MTK_PHY_TX_I2MPB_TEST_MODE_B1 0x17
44 #define MTK_PHY_DA_TX_I2MPB_B_GBE_MASK GENMASK(13, 8)
45 #define MTK_PHY_DA_TX_I2MPB_B_TBT_MASK GENMASK(5, 0)
46
47 #define MTK_PHY_TX_I2MPB_TEST_MODE_B2 0x18
48 #define MTK_PHY_DA_TX_I2MPB_B_HBT_MASK GENMASK(13, 8)
49 #define MTK_PHY_DA_TX_I2MPB_B_TST_MASK GENMASK(5, 0)
50
51 #define MTK_PHY_TX_I2MPB_TEST_MODE_C1 0x19
52 #define MTK_PHY_DA_TX_I2MPB_C_GBE_MASK GENMASK(13, 8)
53 #define MTK_PHY_DA_TX_I2MPB_C_TBT_MASK GENMASK(5, 0)
54
55 #define MTK_PHY_TX_I2MPB_TEST_MODE_C2 0x20
56 #define MTK_PHY_DA_TX_I2MPB_C_HBT_MASK GENMASK(13, 8)
57 #define MTK_PHY_DA_TX_I2MPB_C_TST_MASK GENMASK(5, 0)
58
59 #define MTK_PHY_TX_I2MPB_TEST_MODE_D1 0x21
60 #define MTK_PHY_DA_TX_I2MPB_D_GBE_MASK GENMASK(13, 8)
61 #define MTK_PHY_DA_TX_I2MPB_D_TBT_MASK GENMASK(5, 0)
62
63 #define MTK_PHY_TX_I2MPB_TEST_MODE_D2 0x22
64 #define MTK_PHY_DA_TX_I2MPB_D_HBT_MASK GENMASK(13, 8)
65 #define MTK_PHY_DA_TX_I2MPB_D_TST_MASK GENMASK(5, 0)
66
67 #define MTK_PHY_RXADC_CTRL_RG7 0xc6
68 #define MTK_PHY_DA_AD_BUF_BIAS_LP_MASK GENMASK(9, 8)
69
70 #define MTK_PHY_RXADC_CTRL_RG9 0xc8
71 #define MTK_PHY_DA_RX_PSBN_TBT_MASK GENMASK(14, 12)
72 #define MTK_PHY_DA_RX_PSBN_HBT_MASK GENMASK(10, 8)
73 #define MTK_PHY_DA_RX_PSBN_GBE_MASK GENMASK(6, 4)
74 #define MTK_PHY_DA_RX_PSBN_LP_MASK GENMASK(2, 0)
75
76 #define MTK_PHY_LDO_OUTPUT_V 0xd7
77
78 #define MTK_PHY_RG_ANA_CAL_RG0 0xdb
79 #define MTK_PHY_RG_CAL_CKINV BIT(12)
80 #define MTK_PHY_RG_ANA_CALEN BIT(8)
81 #define MTK_PHY_RG_ZCALEN_A BIT(0)
82
83 #define MTK_PHY_RG_ANA_CAL_RG1 0xdc
84 #define MTK_PHY_RG_ZCALEN_B BIT(12)
85 #define MTK_PHY_RG_ZCALEN_C BIT(8)
86 #define MTK_PHY_RG_ZCALEN_D BIT(4)
87 #define MTK_PHY_RG_TXVOS_CALEN BIT(0)
88
89 #define MTK_PHY_RG_ANA_CAL_RG5 0xe0
90 #define MTK_PHY_RG_REXT_TRIM_MASK GENMASK(13, 8)
91
92 #define MTK_PHY_RG_TX_FILTER 0xfe
93
94 #define MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG120 0x120
95 #define MTK_PHY_LPI_SIG_EN_LO_THRESH1000_MASK GENMASK(12, 8)
96 #define MTK_PHY_LPI_SIG_EN_HI_THRESH1000_MASK GENMASK(4, 0)
97
98 #define MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG122 0x122
99 #define MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK GENMASK(7, 0)
100
101 #define MTK_PHY_RG_TESTMUX_ADC_CTRL 0x144
102 #define MTK_PHY_RG_TXEN_DIG_MASK GENMASK(5, 5)
103
104 #define MTK_PHY_RG_CR_TX_AMP_OFFSET_A_B 0x172
105 #define MTK_PHY_CR_TX_AMP_OFFSET_A_MASK GENMASK(13, 8)
106 #define MTK_PHY_CR_TX_AMP_OFFSET_B_MASK GENMASK(6, 0)
107
108 #define MTK_PHY_RG_CR_TX_AMP_OFFSET_C_D 0x173
109 #define MTK_PHY_CR_TX_AMP_OFFSET_C_MASK GENMASK(13, 8)
110 #define MTK_PHY_CR_TX_AMP_OFFSET_D_MASK GENMASK(6, 0)
111
112 #define MTK_PHY_RG_AD_CAL_COMP 0x17a
113 #define MTK_PHY_AD_CAL_COMP_OUT_SHIFT (8)
114
115 #define MTK_PHY_RG_AD_CAL_CLK 0x17b
116 #define MTK_PHY_DA_CAL_CLK BIT(0)
117
118 #define MTK_PHY_RG_AD_CALIN 0x17c
119 #define MTK_PHY_DA_CALIN_FLAG BIT(0)
120
121 #define MTK_PHY_RG_DASN_DAC_IN0_A 0x17d
122 #define MTK_PHY_DASN_DAC_IN0_A_MASK GENMASK(9, 0)
123
124 #define MTK_PHY_RG_DASN_DAC_IN0_B 0x17e
125 #define MTK_PHY_DASN_DAC_IN0_B_MASK GENMASK(9, 0)
126
127 #define MTK_PHY_RG_DASN_DAC_IN0_C 0x17f
128 #define MTK_PHY_DASN_DAC_IN0_C_MASK GENMASK(9, 0)
129
130 #define MTK_PHY_RG_DASN_DAC_IN0_D 0x180
131 #define MTK_PHY_DASN_DAC_IN0_D_MASK GENMASK(9, 0)
132
133 #define MTK_PHY_RG_DASN_DAC_IN1_A 0x181
134 #define MTK_PHY_DASN_DAC_IN1_A_MASK GENMASK(9, 0)
135
136 #define MTK_PHY_RG_DASN_DAC_IN1_B 0x182
137 #define MTK_PHY_DASN_DAC_IN1_B_MASK GENMASK(9, 0)
138
139 #define MTK_PHY_RG_DASN_DAC_IN1_C 0x183
140 #define MTK_PHY_DASN_DAC_IN1_C_MASK GENMASK(9, 0)
141
142 #define MTK_PHY_RG_DASN_DAC_IN1_D 0x184
143 #define MTK_PHY_DASN_DAC_IN1_D_MASK GENMASK(9, 0)
144
145 #define MTK_PHY_RG_DEV1E_REG19b 0x19b
146 #define MTK_PHY_BYPASS_DSP_LPI_READY BIT(8)
147
148 #define MTK_PHY_RG_LP_IIR2_K1_L 0x22a
149 #define MTK_PHY_RG_LP_IIR2_K1_U 0x22b
150 #define MTK_PHY_RG_LP_IIR2_K2_L 0x22c
151 #define MTK_PHY_RG_LP_IIR2_K2_U 0x22d
152 #define MTK_PHY_RG_LP_IIR2_K3_L 0x22e
153 #define MTK_PHY_RG_LP_IIR2_K3_U 0x22f
154 #define MTK_PHY_RG_LP_IIR2_K4_L 0x230
155 #define MTK_PHY_RG_LP_IIR2_K4_U 0x231
156 #define MTK_PHY_RG_LP_IIR2_K5_L 0x232
157 #define MTK_PHY_RG_LP_IIR2_K5_U 0x233
158
159 #define MTK_PHY_RG_DEV1E_REG234 0x234
160 #define MTK_PHY_TR_OPEN_LOOP_EN_MASK GENMASK(0, 0)
161 #define MTK_PHY_LPF_X_AVERAGE_MASK GENMASK(7, 4)
162 #define MTK_PHY_TR_LP_IIR_EEE_EN BIT(12)
163
164 #define MTK_PHY_RG_LPF_CNT_VAL 0x235
165
166 #define MTK_PHY_RG_DEV1E_REG238 0x238
167 #define MTK_PHY_LPI_SLV_SEND_TX_TIMER_MASK GENMASK(8, 0)
168 #define MTK_PHY_LPI_SLV_SEND_TX_EN BIT(12)
169
170 #define MTK_PHY_RG_DEV1E_REG239 0x239
171 #define MTK_PHY_LPI_SEND_LOC_TIMER_MASK GENMASK(8, 0)
172 #define MTK_PHY_LPI_TXPCS_LOC_RCV BIT(12)
173
174 #define MTK_PHY_RG_DEV1E_REG27C 0x27c
175 #define MTK_PHY_VGASTATE_FFE_THR_ST1_MASK GENMASK(12, 8)
176 #define MTK_PHY_RG_DEV1E_REG27D 0x27d
177 #define MTK_PHY_VGASTATE_FFE_THR_ST2_MASK GENMASK(4, 0)
178
179 #define MTK_PHY_RG_DEV1E_REG2C7 0x2c7
180 #define MTK_PHY_MAX_GAIN_MASK GENMASK(4, 0)
181 #define MTK_PHY_MIN_GAIN_MASK GENMASK(12, 8)
182
183 #define MTK_PHY_RG_DEV1E_REG2D1 0x2d1
184 #define MTK_PHY_VCO_SLICER_THRESH_BITS_HIGH_EEE_MASK GENMASK(7, 0)
185 #define MTK_PHY_LPI_SKIP_SD_SLV_TR BIT(8)
186 #define MTK_PHY_LPI_TR_READY BIT(9)
187 #define MTK_PHY_LPI_VCO_EEE_STG0_EN BIT(10)
188
189 #define MTK_PHY_RG_DEV1E_REG323 0x323
190 #define MTK_PHY_EEE_WAKE_MAS_INT_DC BIT(0)
191 #define MTK_PHY_EEE_WAKE_SLV_INT_DC BIT(4)
192
193 #define MTK_PHY_RG_DEV1E_REG324 0x324
194 #define MTK_PHY_SMI_DETCNT_MAX_MASK GENMASK(5, 0)
195 #define MTK_PHY_SMI_DET_MAX_EN BIT(8)
196
197 #define MTK_PHY_RG_DEV1E_REG326 0x326
198 #define MTK_PHY_LPI_MODE_SD_ON BIT(0)
199 #define MTK_PHY_RESET_RANDUPD_CNT BIT(1)
200 #define MTK_PHY_TREC_UPDATE_ENAB_CLR BIT(2)
201 #define MTK_PHY_LPI_QUIT_WAIT_DFE_SIG_DET_OFF BIT(4)
202 #define MTK_PHY_TR_READY_SKIP_AFE_WAKEUP BIT(5)
203
204 #define MTK_PHY_LDO_PUMP_EN_PAIRAB 0x502
205 #define MTK_PHY_LDO_PUMP_EN_PAIRCD 0x503
206
207 #define MTK_PHY_DA_TX_R50_PAIR_A 0x53d
208 #define MTK_PHY_DA_TX_R50_PAIR_B 0x53e
209 #define MTK_PHY_DA_TX_R50_PAIR_C 0x53f
210 #define MTK_PHY_DA_TX_R50_PAIR_D 0x540
211
212 /* Registers on MDIO_MMD_VEND2 */
213 #define MTK_PHY_LED0_ON_CTRL 0x24
214 #define MTK_PHY_LED1_ON_CTRL 0x26
215 #define MTK_PHY_LED_ON_MASK GENMASK(6, 0)
216 #define MTK_PHY_LED_ON_LINK1000 BIT(0)
217 #define MTK_PHY_LED_ON_LINK100 BIT(1)
218 #define MTK_PHY_LED_ON_LINK10 BIT(2)
219 #define MTK_PHY_LED_ON_LINK (MTK_PHY_LED_ON_LINK10 |\
220 MTK_PHY_LED_ON_LINK100 |\
221 MTK_PHY_LED_ON_LINK1000)
222 #define MTK_PHY_LED_ON_LINKDOWN BIT(3)
223 #define MTK_PHY_LED_ON_FDX BIT(4) /* Full duplex */
224 #define MTK_PHY_LED_ON_HDX BIT(5) /* Half duplex */
225 #define MTK_PHY_LED_ON_FORCE_ON BIT(6)
226 #define MTK_PHY_LED_ON_POLARITY BIT(14)
227 #define MTK_PHY_LED_ON_ENABLE BIT(15)
228
229 #define MTK_PHY_LED0_BLINK_CTRL 0x25
230 #define MTK_PHY_LED1_BLINK_CTRL 0x27
231 #define MTK_PHY_LED_BLINK_1000TX BIT(0)
232 #define MTK_PHY_LED_BLINK_1000RX BIT(1)
233 #define MTK_PHY_LED_BLINK_100TX BIT(2)
234 #define MTK_PHY_LED_BLINK_100RX BIT(3)
235 #define MTK_PHY_LED_BLINK_10TX BIT(4)
236 #define MTK_PHY_LED_BLINK_10RX BIT(5)
237 #define MTK_PHY_LED_BLINK_RX (MTK_PHY_LED_BLINK_10RX |\
238 MTK_PHY_LED_BLINK_100RX |\
239 MTK_PHY_LED_BLINK_1000RX)
240 #define MTK_PHY_LED_BLINK_TX (MTK_PHY_LED_BLINK_10TX |\
241 MTK_PHY_LED_BLINK_100TX |\
242 MTK_PHY_LED_BLINK_1000TX)
243 #define MTK_PHY_LED_BLINK_COLLISION BIT(6)
244 #define MTK_PHY_LED_BLINK_RX_CRC_ERR BIT(7)
245 #define MTK_PHY_LED_BLINK_RX_IDLE_ERR BIT(8)
246 #define MTK_PHY_LED_BLINK_FORCE_BLINK BIT(9)
247
248 #define MTK_PHY_LED1_DEFAULT_POLARITIES BIT(1)
249
250 #define MTK_PHY_RG_BG_RASEL 0x115
251 #define MTK_PHY_RG_BG_RASEL_MASK GENMASK(2, 0)
252
253 /* 'boottrap' register reflecting the configuration of the 4 PHY LEDs */
254 #define RG_GPIO_MISC_TPBANK0 0x6f0
255 #define RG_GPIO_MISC_TPBANK0_BOOTMODE GENMASK(11, 8)
256
257 /* These macro privides efuse parsing for internal phy. */
258 #define EFS_DA_TX_I2MPB_A(x) (((x) >> 0) & GENMASK(5, 0))
259 #define EFS_DA_TX_I2MPB_B(x) (((x) >> 6) & GENMASK(5, 0))
260 #define EFS_DA_TX_I2MPB_C(x) (((x) >> 12) & GENMASK(5, 0))
261 #define EFS_DA_TX_I2MPB_D(x) (((x) >> 18) & GENMASK(5, 0))
262 #define EFS_DA_TX_AMP_OFFSET_A(x) (((x) >> 24) & GENMASK(5, 0))
263
264 #define EFS_DA_TX_AMP_OFFSET_B(x) (((x) >> 0) & GENMASK(5, 0))
265 #define EFS_DA_TX_AMP_OFFSET_C(x) (((x) >> 6) & GENMASK(5, 0))
266 #define EFS_DA_TX_AMP_OFFSET_D(x) (((x) >> 12) & GENMASK(5, 0))
267 #define EFS_DA_TX_R50_A(x) (((x) >> 18) & GENMASK(5, 0))
268 #define EFS_DA_TX_R50_B(x) (((x) >> 24) & GENMASK(5, 0))
269
270 #define EFS_DA_TX_R50_C(x) (((x) >> 0) & GENMASK(5, 0))
271 #define EFS_DA_TX_R50_D(x) (((x) >> 6) & GENMASK(5, 0))
272
273 #define EFS_RG_BG_RASEL(x) (((x) >> 4) & GENMASK(2, 0))
274 #define EFS_RG_REXT_TRIM(x) (((x) >> 7) & GENMASK(5, 0))
275
276 enum {
277 NO_PAIR,
278 PAIR_A,
279 PAIR_B,
280 PAIR_C,
281 PAIR_D,
282 };
283
284 enum calibration_mode {
285 EFUSE_K,
286 SW_K
287 };
288
289 enum CAL_ITEM {
290 REXT,
291 TX_OFFSET,
292 TX_AMP,
293 TX_R50,
294 TX_VCM
295 };
296
297 enum CAL_MODE {
298 EFUSE_M,
299 SW_M
300 };
301
302 #define MTK_PHY_LED_STATE_FORCE_ON 0
303 #define MTK_PHY_LED_STATE_FORCE_BLINK 1
304 #define MTK_PHY_LED_STATE_NETDEV 2
305
306 struct mtk_socphy_priv {
307 unsigned long led_state;
308 };
309
310 struct mtk_socphy_shared {
311 u32 boottrap;
312 struct mtk_socphy_priv priv[4];
313 };
314
mtk_socphy_read_page(struct phy_device * phydev)315 static int mtk_socphy_read_page(struct phy_device *phydev)
316 {
317 return __phy_read(phydev, MTK_EXT_PAGE_ACCESS);
318 }
319
mtk_socphy_write_page(struct phy_device * phydev,int page)320 static int mtk_socphy_write_page(struct phy_device *phydev, int page)
321 {
322 return __phy_write(phydev, MTK_EXT_PAGE_ACCESS, page);
323 }
324
325 /* One calibration cycle consists of:
326 * 1.Set DA_CALIN_FLAG high to start calibration. Keep it high
327 * until AD_CAL_COMP is ready to output calibration result.
328 * 2.Wait until DA_CAL_CLK is available.
329 * 3.Fetch AD_CAL_COMP_OUT.
330 */
cal_cycle(struct phy_device * phydev,int devad,u32 regnum,u16 mask,u16 cal_val)331 static int cal_cycle(struct phy_device *phydev, int devad,
332 u32 regnum, u16 mask, u16 cal_val)
333 {
334 int reg_val;
335 int ret;
336
337 phy_modify_mmd(phydev, devad, regnum,
338 mask, cal_val);
339 phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_AD_CALIN,
340 MTK_PHY_DA_CALIN_FLAG);
341
342 ret = phy_read_mmd_poll_timeout(phydev, MDIO_MMD_VEND1,
343 MTK_PHY_RG_AD_CAL_CLK, reg_val,
344 reg_val & MTK_PHY_DA_CAL_CLK, 500,
345 ANALOG_INTERNAL_OPERATION_MAX_US, false);
346 if (ret) {
347 phydev_err(phydev, "Calibration cycle timeout\n");
348 return ret;
349 }
350
351 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_AD_CALIN,
352 MTK_PHY_DA_CALIN_FLAG);
353 ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_AD_CAL_COMP) >>
354 MTK_PHY_AD_CAL_COMP_OUT_SHIFT;
355 phydev_dbg(phydev, "cal_val: 0x%x, ret: %d\n", cal_val, ret);
356
357 return ret;
358 }
359
rext_fill_result(struct phy_device * phydev,u16 * buf)360 static int rext_fill_result(struct phy_device *phydev, u16 *buf)
361 {
362 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG5,
363 MTK_PHY_RG_REXT_TRIM_MASK, buf[0] << 8);
364 phy_modify_mmd(phydev, MDIO_MMD_VEND2, MTK_PHY_RG_BG_RASEL,
365 MTK_PHY_RG_BG_RASEL_MASK, buf[1]);
366
367 return 0;
368 }
369
rext_cal_efuse(struct phy_device * phydev,u32 * buf)370 static int rext_cal_efuse(struct phy_device *phydev, u32 *buf)
371 {
372 u16 rext_cal_val[2];
373
374 rext_cal_val[0] = EFS_RG_REXT_TRIM(buf[3]);
375 rext_cal_val[1] = EFS_RG_BG_RASEL(buf[3]);
376 rext_fill_result(phydev, rext_cal_val);
377
378 return 0;
379 }
380
tx_offset_fill_result(struct phy_device * phydev,u16 * buf)381 static int tx_offset_fill_result(struct phy_device *phydev, u16 *buf)
382 {
383 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_A_B,
384 MTK_PHY_CR_TX_AMP_OFFSET_A_MASK, buf[0] << 8);
385 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_A_B,
386 MTK_PHY_CR_TX_AMP_OFFSET_B_MASK, buf[1]);
387 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_C_D,
388 MTK_PHY_CR_TX_AMP_OFFSET_C_MASK, buf[2] << 8);
389 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_C_D,
390 MTK_PHY_CR_TX_AMP_OFFSET_D_MASK, buf[3]);
391
392 return 0;
393 }
394
tx_offset_cal_efuse(struct phy_device * phydev,u32 * buf)395 static int tx_offset_cal_efuse(struct phy_device *phydev, u32 *buf)
396 {
397 u16 tx_offset_cal_val[4];
398
399 tx_offset_cal_val[0] = EFS_DA_TX_AMP_OFFSET_A(buf[0]);
400 tx_offset_cal_val[1] = EFS_DA_TX_AMP_OFFSET_B(buf[1]);
401 tx_offset_cal_val[2] = EFS_DA_TX_AMP_OFFSET_C(buf[1]);
402 tx_offset_cal_val[3] = EFS_DA_TX_AMP_OFFSET_D(buf[1]);
403
404 tx_offset_fill_result(phydev, tx_offset_cal_val);
405
406 return 0;
407 }
408
tx_amp_fill_result(struct phy_device * phydev,u16 * buf)409 static int tx_amp_fill_result(struct phy_device *phydev, u16 *buf)
410 {
411 int i;
412 int bias[16] = {};
413 const int vals_9461[16] = { 7, 1, 4, 7,
414 7, 1, 4, 7,
415 7, 1, 4, 7,
416 7, 1, 4, 7 };
417 const int vals_9481[16] = { 10, 6, 6, 10,
418 10, 6, 6, 10,
419 10, 6, 6, 10,
420 10, 6, 6, 10 };
421 switch (phydev->drv->phy_id) {
422 case MTK_GPHY_ID_MT7981:
423 /* We add some calibration to efuse values
424 * due to board level influence.
425 * GBE: +7, TBT: +1, HBT: +4, TST: +7
426 */
427 memcpy(bias, (const void *)vals_9461, sizeof(bias));
428 break;
429 case MTK_GPHY_ID_MT7988:
430 memcpy(bias, (const void *)vals_9481, sizeof(bias));
431 break;
432 }
433
434 /* Prevent overflow */
435 for (i = 0; i < 12; i++) {
436 if (buf[i >> 2] + bias[i] > 63) {
437 buf[i >> 2] = 63;
438 bias[i] = 0;
439 }
440 }
441
442 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TXVLD_DA_RG,
443 MTK_PHY_DA_TX_I2MPB_A_GBE_MASK, (buf[0] + bias[0]) << 10);
444 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TXVLD_DA_RG,
445 MTK_PHY_DA_TX_I2MPB_A_TBT_MASK, buf[0] + bias[1]);
446 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_A2,
447 MTK_PHY_DA_TX_I2MPB_A_HBT_MASK, (buf[0] + bias[2]) << 10);
448 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_A2,
449 MTK_PHY_DA_TX_I2MPB_A_TST_MASK, buf[0] + bias[3]);
450
451 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B1,
452 MTK_PHY_DA_TX_I2MPB_B_GBE_MASK, (buf[1] + bias[4]) << 8);
453 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B1,
454 MTK_PHY_DA_TX_I2MPB_B_TBT_MASK, buf[1] + bias[5]);
455 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B2,
456 MTK_PHY_DA_TX_I2MPB_B_HBT_MASK, (buf[1] + bias[6]) << 8);
457 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B2,
458 MTK_PHY_DA_TX_I2MPB_B_TST_MASK, buf[1] + bias[7]);
459
460 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C1,
461 MTK_PHY_DA_TX_I2MPB_C_GBE_MASK, (buf[2] + bias[8]) << 8);
462 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C1,
463 MTK_PHY_DA_TX_I2MPB_C_TBT_MASK, buf[2] + bias[9]);
464 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C2,
465 MTK_PHY_DA_TX_I2MPB_C_HBT_MASK, (buf[2] + bias[10]) << 8);
466 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C2,
467 MTK_PHY_DA_TX_I2MPB_C_TST_MASK, buf[2] + bias[11]);
468
469 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D1,
470 MTK_PHY_DA_TX_I2MPB_D_GBE_MASK, (buf[3] + bias[12]) << 8);
471 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D1,
472 MTK_PHY_DA_TX_I2MPB_D_TBT_MASK, buf[3] + bias[13]);
473 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D2,
474 MTK_PHY_DA_TX_I2MPB_D_HBT_MASK, (buf[3] + bias[14]) << 8);
475 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D2,
476 MTK_PHY_DA_TX_I2MPB_D_TST_MASK, buf[3] + bias[15]);
477
478 return 0;
479 }
480
tx_amp_cal_efuse(struct phy_device * phydev,u32 * buf)481 static int tx_amp_cal_efuse(struct phy_device *phydev, u32 *buf)
482 {
483 u16 tx_amp_cal_val[4];
484
485 tx_amp_cal_val[0] = EFS_DA_TX_I2MPB_A(buf[0]);
486 tx_amp_cal_val[1] = EFS_DA_TX_I2MPB_B(buf[0]);
487 tx_amp_cal_val[2] = EFS_DA_TX_I2MPB_C(buf[0]);
488 tx_amp_cal_val[3] = EFS_DA_TX_I2MPB_D(buf[0]);
489 tx_amp_fill_result(phydev, tx_amp_cal_val);
490
491 return 0;
492 }
493
tx_r50_fill_result(struct phy_device * phydev,u16 tx_r50_cal_val,u8 txg_calen_x)494 static int tx_r50_fill_result(struct phy_device *phydev, u16 tx_r50_cal_val,
495 u8 txg_calen_x)
496 {
497 int bias = 0;
498 u16 reg, val;
499
500 if (phydev->drv->phy_id == MTK_GPHY_ID_MT7988)
501 bias = -1;
502
503 val = clamp_val(bias + tx_r50_cal_val, 0, 63);
504
505 switch (txg_calen_x) {
506 case PAIR_A:
507 reg = MTK_PHY_DA_TX_R50_PAIR_A;
508 break;
509 case PAIR_B:
510 reg = MTK_PHY_DA_TX_R50_PAIR_B;
511 break;
512 case PAIR_C:
513 reg = MTK_PHY_DA_TX_R50_PAIR_C;
514 break;
515 case PAIR_D:
516 reg = MTK_PHY_DA_TX_R50_PAIR_D;
517 break;
518 default:
519 return -EINVAL;
520 }
521
522 phy_write_mmd(phydev, MDIO_MMD_VEND1, reg, val | val << 8);
523
524 return 0;
525 }
526
tx_r50_cal_efuse(struct phy_device * phydev,u32 * buf,u8 txg_calen_x)527 static int tx_r50_cal_efuse(struct phy_device *phydev, u32 *buf,
528 u8 txg_calen_x)
529 {
530 u16 tx_r50_cal_val;
531
532 switch (txg_calen_x) {
533 case PAIR_A:
534 tx_r50_cal_val = EFS_DA_TX_R50_A(buf[1]);
535 break;
536 case PAIR_B:
537 tx_r50_cal_val = EFS_DA_TX_R50_B(buf[1]);
538 break;
539 case PAIR_C:
540 tx_r50_cal_val = EFS_DA_TX_R50_C(buf[2]);
541 break;
542 case PAIR_D:
543 tx_r50_cal_val = EFS_DA_TX_R50_D(buf[2]);
544 break;
545 default:
546 return -EINVAL;
547 }
548 tx_r50_fill_result(phydev, tx_r50_cal_val, txg_calen_x);
549
550 return 0;
551 }
552
tx_vcm_cal_sw(struct phy_device * phydev,u8 rg_txreserve_x)553 static int tx_vcm_cal_sw(struct phy_device *phydev, u8 rg_txreserve_x)
554 {
555 u8 lower_idx, upper_idx, txreserve_val;
556 u8 lower_ret, upper_ret;
557 int ret;
558
559 phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
560 MTK_PHY_RG_ANA_CALEN);
561 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
562 MTK_PHY_RG_CAL_CKINV);
563 phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG1,
564 MTK_PHY_RG_TXVOS_CALEN);
565
566 switch (rg_txreserve_x) {
567 case PAIR_A:
568 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
569 MTK_PHY_RG_DASN_DAC_IN0_A,
570 MTK_PHY_DASN_DAC_IN0_A_MASK);
571 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
572 MTK_PHY_RG_DASN_DAC_IN1_A,
573 MTK_PHY_DASN_DAC_IN1_A_MASK);
574 phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
575 MTK_PHY_RG_ANA_CAL_RG0,
576 MTK_PHY_RG_ZCALEN_A);
577 break;
578 case PAIR_B:
579 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
580 MTK_PHY_RG_DASN_DAC_IN0_B,
581 MTK_PHY_DASN_DAC_IN0_B_MASK);
582 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
583 MTK_PHY_RG_DASN_DAC_IN1_B,
584 MTK_PHY_DASN_DAC_IN1_B_MASK);
585 phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
586 MTK_PHY_RG_ANA_CAL_RG1,
587 MTK_PHY_RG_ZCALEN_B);
588 break;
589 case PAIR_C:
590 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
591 MTK_PHY_RG_DASN_DAC_IN0_C,
592 MTK_PHY_DASN_DAC_IN0_C_MASK);
593 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
594 MTK_PHY_RG_DASN_DAC_IN1_C,
595 MTK_PHY_DASN_DAC_IN1_C_MASK);
596 phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
597 MTK_PHY_RG_ANA_CAL_RG1,
598 MTK_PHY_RG_ZCALEN_C);
599 break;
600 case PAIR_D:
601 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
602 MTK_PHY_RG_DASN_DAC_IN0_D,
603 MTK_PHY_DASN_DAC_IN0_D_MASK);
604 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
605 MTK_PHY_RG_DASN_DAC_IN1_D,
606 MTK_PHY_DASN_DAC_IN1_D_MASK);
607 phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
608 MTK_PHY_RG_ANA_CAL_RG1,
609 MTK_PHY_RG_ZCALEN_D);
610 break;
611 default:
612 ret = -EINVAL;
613 goto restore;
614 }
615
616 lower_idx = TXRESERVE_MIN;
617 upper_idx = TXRESERVE_MAX;
618
619 phydev_dbg(phydev, "Start TX-VCM SW cal.\n");
620 while ((upper_idx - lower_idx) > 1) {
621 txreserve_val = DIV_ROUND_CLOSEST(lower_idx + upper_idx, 2);
622 ret = cal_cycle(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG9,
623 MTK_PHY_DA_RX_PSBN_TBT_MASK |
624 MTK_PHY_DA_RX_PSBN_HBT_MASK |
625 MTK_PHY_DA_RX_PSBN_GBE_MASK |
626 MTK_PHY_DA_RX_PSBN_LP_MASK,
627 txreserve_val << 12 | txreserve_val << 8 |
628 txreserve_val << 4 | txreserve_val);
629 if (ret == 1) {
630 upper_idx = txreserve_val;
631 upper_ret = ret;
632 } else if (ret == 0) {
633 lower_idx = txreserve_val;
634 lower_ret = ret;
635 } else {
636 goto restore;
637 }
638 }
639
640 if (lower_idx == TXRESERVE_MIN) {
641 lower_ret = cal_cycle(phydev, MDIO_MMD_VEND1,
642 MTK_PHY_RXADC_CTRL_RG9,
643 MTK_PHY_DA_RX_PSBN_TBT_MASK |
644 MTK_PHY_DA_RX_PSBN_HBT_MASK |
645 MTK_PHY_DA_RX_PSBN_GBE_MASK |
646 MTK_PHY_DA_RX_PSBN_LP_MASK,
647 lower_idx << 12 | lower_idx << 8 |
648 lower_idx << 4 | lower_idx);
649 ret = lower_ret;
650 } else if (upper_idx == TXRESERVE_MAX) {
651 upper_ret = cal_cycle(phydev, MDIO_MMD_VEND1,
652 MTK_PHY_RXADC_CTRL_RG9,
653 MTK_PHY_DA_RX_PSBN_TBT_MASK |
654 MTK_PHY_DA_RX_PSBN_HBT_MASK |
655 MTK_PHY_DA_RX_PSBN_GBE_MASK |
656 MTK_PHY_DA_RX_PSBN_LP_MASK,
657 upper_idx << 12 | upper_idx << 8 |
658 upper_idx << 4 | upper_idx);
659 ret = upper_ret;
660 }
661 if (ret < 0)
662 goto restore;
663
664 /* We calibrate TX-VCM in different logic. Check upper index and then
665 * lower index. If this calibration is valid, apply lower index's result.
666 */
667 ret = upper_ret - lower_ret;
668 if (ret == 1) {
669 ret = 0;
670 /* Make sure we use upper_idx in our calibration system */
671 cal_cycle(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG9,
672 MTK_PHY_DA_RX_PSBN_TBT_MASK |
673 MTK_PHY_DA_RX_PSBN_HBT_MASK |
674 MTK_PHY_DA_RX_PSBN_GBE_MASK |
675 MTK_PHY_DA_RX_PSBN_LP_MASK,
676 upper_idx << 12 | upper_idx << 8 |
677 upper_idx << 4 | upper_idx);
678 phydev_dbg(phydev, "TX-VCM SW cal result: 0x%x\n", upper_idx);
679 } else if (lower_idx == TXRESERVE_MIN && upper_ret == 1 &&
680 lower_ret == 1) {
681 ret = 0;
682 cal_cycle(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG9,
683 MTK_PHY_DA_RX_PSBN_TBT_MASK |
684 MTK_PHY_DA_RX_PSBN_HBT_MASK |
685 MTK_PHY_DA_RX_PSBN_GBE_MASK |
686 MTK_PHY_DA_RX_PSBN_LP_MASK,
687 lower_idx << 12 | lower_idx << 8 |
688 lower_idx << 4 | lower_idx);
689 phydev_warn(phydev, "TX-VCM SW cal result at low margin 0x%x\n",
690 lower_idx);
691 } else if (upper_idx == TXRESERVE_MAX && upper_ret == 0 &&
692 lower_ret == 0) {
693 ret = 0;
694 phydev_warn(phydev, "TX-VCM SW cal result at high margin 0x%x\n",
695 upper_idx);
696 } else {
697 ret = -EINVAL;
698 }
699
700 restore:
701 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
702 MTK_PHY_RG_ANA_CALEN);
703 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG1,
704 MTK_PHY_RG_TXVOS_CALEN);
705 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
706 MTK_PHY_RG_ZCALEN_A);
707 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG1,
708 MTK_PHY_RG_ZCALEN_B | MTK_PHY_RG_ZCALEN_C |
709 MTK_PHY_RG_ZCALEN_D);
710
711 return ret;
712 }
713
mt798x_phy_common_finetune(struct phy_device * phydev)714 static void mt798x_phy_common_finetune(struct phy_device *phydev)
715 {
716 phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5);
717 /* SlvDSPreadyTime = 24, MasDSPreadyTime = 24 */
718 __phy_write(phydev, 0x11, 0xc71);
719 __phy_write(phydev, 0x12, 0xc);
720 __phy_write(phydev, 0x10, 0x8fae);
721
722 /* EnabRandUpdTrig = 1 */
723 __phy_write(phydev, 0x11, 0x2f00);
724 __phy_write(phydev, 0x12, 0xe);
725 __phy_write(phydev, 0x10, 0x8fb0);
726
727 /* NormMseLoThresh = 85 */
728 __phy_write(phydev, 0x11, 0x55a0);
729 __phy_write(phydev, 0x12, 0x0);
730 __phy_write(phydev, 0x10, 0x83aa);
731
732 /* FfeUpdGainForce = 1(Enable), FfeUpdGainForceVal = 4 */
733 __phy_write(phydev, 0x11, 0x240);
734 __phy_write(phydev, 0x12, 0x0);
735 __phy_write(phydev, 0x10, 0x9680);
736
737 /* TrFreeze = 0 (mt7988 default) */
738 __phy_write(phydev, 0x11, 0x0);
739 __phy_write(phydev, 0x12, 0x0);
740 __phy_write(phydev, 0x10, 0x9686);
741
742 /* SSTrKp100 = 5 */
743 /* SSTrKf100 = 6 */
744 /* SSTrKp1000Mas = 5 */
745 /* SSTrKf1000Mas = 6 */
746 /* SSTrKp1000Slv = 5 */
747 /* SSTrKf1000Slv = 6 */
748 __phy_write(phydev, 0x11, 0xbaef);
749 __phy_write(phydev, 0x12, 0x2e);
750 __phy_write(phydev, 0x10, 0x968c);
751 phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
752 }
753
mt7981_phy_finetune(struct phy_device * phydev)754 static void mt7981_phy_finetune(struct phy_device *phydev)
755 {
756 u16 val[8] = { 0x01ce, 0x01c1,
757 0x020f, 0x0202,
758 0x03d0, 0x03c0,
759 0x0013, 0x0005 };
760 int i, k;
761
762 /* 100M eye finetune:
763 * Keep middle level of TX MLT3 shapper as default.
764 * Only change TX MLT3 overshoot level here.
765 */
766 for (k = 0, i = 1; i < 12; i++) {
767 if (i % 3 == 0)
768 continue;
769 phy_write_mmd(phydev, MDIO_MMD_VEND1, i, val[k++]);
770 }
771
772 phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5);
773 /* ResetSyncOffset = 6 */
774 __phy_write(phydev, 0x11, 0x600);
775 __phy_write(phydev, 0x12, 0x0);
776 __phy_write(phydev, 0x10, 0x8fc0);
777
778 /* VgaDecRate = 1 */
779 __phy_write(phydev, 0x11, 0x4c2a);
780 __phy_write(phydev, 0x12, 0x3e);
781 __phy_write(phydev, 0x10, 0x8fa4);
782
783 /* MrvlTrFix100Kp = 3, MrvlTrFix100Kf = 2,
784 * MrvlTrFix1000Kp = 3, MrvlTrFix1000Kf = 2
785 */
786 __phy_write(phydev, 0x11, 0xd10a);
787 __phy_write(phydev, 0x12, 0x34);
788 __phy_write(phydev, 0x10, 0x8f82);
789
790 /* VcoSlicerThreshBitsHigh */
791 __phy_write(phydev, 0x11, 0x5555);
792 __phy_write(phydev, 0x12, 0x55);
793 __phy_write(phydev, 0x10, 0x8ec0);
794 phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
795
796 /* TR_OPEN_LOOP_EN = 1, lpf_x_average = 9 */
797 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG234,
798 MTK_PHY_TR_OPEN_LOOP_EN_MASK | MTK_PHY_LPF_X_AVERAGE_MASK,
799 BIT(0) | FIELD_PREP(MTK_PHY_LPF_X_AVERAGE_MASK, 0x9));
800
801 /* rg_tr_lpf_cnt_val = 512 */
802 phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LPF_CNT_VAL, 0x200);
803
804 /* IIR2 related */
805 phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K1_L, 0x82);
806 phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K1_U, 0x0);
807 phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K2_L, 0x103);
808 phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K2_U, 0x0);
809 phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K3_L, 0x82);
810 phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K3_U, 0x0);
811 phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K4_L, 0xd177);
812 phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K4_U, 0x3);
813 phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K5_L, 0x2c82);
814 phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K5_U, 0xe);
815
816 /* FFE peaking */
817 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG27C,
818 MTK_PHY_VGASTATE_FFE_THR_ST1_MASK, 0x1b << 8);
819 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG27D,
820 MTK_PHY_VGASTATE_FFE_THR_ST2_MASK, 0x1e);
821
822 /* Disable LDO pump */
823 phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_LDO_PUMP_EN_PAIRAB, 0x0);
824 phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_LDO_PUMP_EN_PAIRCD, 0x0);
825 /* Adjust LDO output voltage */
826 phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_LDO_OUTPUT_V, 0x2222);
827 }
828
mt7988_phy_finetune(struct phy_device * phydev)829 static void mt7988_phy_finetune(struct phy_device *phydev)
830 {
831 u16 val[12] = { 0x0187, 0x01cd, 0x01c8, 0x0182,
832 0x020d, 0x0206, 0x0384, 0x03d0,
833 0x03c6, 0x030a, 0x0011, 0x0005 };
834 int i;
835
836 /* Set default MLT3 shaper first */
837 for (i = 0; i < 12; i++)
838 phy_write_mmd(phydev, MDIO_MMD_VEND1, i, val[i]);
839
840 /* TCT finetune */
841 phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_TX_FILTER, 0x5);
842
843 phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5);
844 /* ResetSyncOffset = 5 */
845 __phy_write(phydev, 0x11, 0x500);
846 __phy_write(phydev, 0x12, 0x0);
847 __phy_write(phydev, 0x10, 0x8fc0);
848
849 /* VgaDecRate is 1 at default on mt7988 */
850
851 /* MrvlTrFix100Kp = 6, MrvlTrFix100Kf = 7,
852 * MrvlTrFix1000Kp = 6, MrvlTrFix1000Kf = 7
853 */
854 __phy_write(phydev, 0x11, 0xb90a);
855 __phy_write(phydev, 0x12, 0x6f);
856 __phy_write(phydev, 0x10, 0x8f82);
857
858 /* RemAckCntLimitCtrl = 1 */
859 __phy_write(phydev, 0x11, 0xfbba);
860 __phy_write(phydev, 0x12, 0xc3);
861 __phy_write(phydev, 0x10, 0x87f8);
862
863 phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
864
865 /* TR_OPEN_LOOP_EN = 1, lpf_x_average = 10 */
866 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG234,
867 MTK_PHY_TR_OPEN_LOOP_EN_MASK | MTK_PHY_LPF_X_AVERAGE_MASK,
868 BIT(0) | FIELD_PREP(MTK_PHY_LPF_X_AVERAGE_MASK, 0xa));
869
870 /* rg_tr_lpf_cnt_val = 1023 */
871 phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LPF_CNT_VAL, 0x3ff);
872 }
873
mt798x_phy_eee(struct phy_device * phydev)874 static void mt798x_phy_eee(struct phy_device *phydev)
875 {
876 phy_modify_mmd(phydev, MDIO_MMD_VEND1,
877 MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG120,
878 MTK_PHY_LPI_SIG_EN_LO_THRESH1000_MASK |
879 MTK_PHY_LPI_SIG_EN_HI_THRESH1000_MASK,
880 FIELD_PREP(MTK_PHY_LPI_SIG_EN_LO_THRESH1000_MASK, 0x0) |
881 FIELD_PREP(MTK_PHY_LPI_SIG_EN_HI_THRESH1000_MASK, 0x14));
882
883 phy_modify_mmd(phydev, MDIO_MMD_VEND1,
884 MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG122,
885 MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK,
886 FIELD_PREP(MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK,
887 0xff));
888
889 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
890 MTK_PHY_RG_TESTMUX_ADC_CTRL,
891 MTK_PHY_RG_TXEN_DIG_MASK);
892
893 phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
894 MTK_PHY_RG_DEV1E_REG19b, MTK_PHY_BYPASS_DSP_LPI_READY);
895
896 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
897 MTK_PHY_RG_DEV1E_REG234, MTK_PHY_TR_LP_IIR_EEE_EN);
898
899 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG238,
900 MTK_PHY_LPI_SLV_SEND_TX_TIMER_MASK |
901 MTK_PHY_LPI_SLV_SEND_TX_EN,
902 FIELD_PREP(MTK_PHY_LPI_SLV_SEND_TX_TIMER_MASK, 0x120));
903
904 /* Keep MTK_PHY_LPI_SEND_LOC_TIMER as 375 */
905 phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG239,
906 MTK_PHY_LPI_TXPCS_LOC_RCV);
907
908 /* This also fixes some IoT issues, such as CH340 */
909 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG2C7,
910 MTK_PHY_MAX_GAIN_MASK | MTK_PHY_MIN_GAIN_MASK,
911 FIELD_PREP(MTK_PHY_MAX_GAIN_MASK, 0x8) |
912 FIELD_PREP(MTK_PHY_MIN_GAIN_MASK, 0x13));
913
914 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG2D1,
915 MTK_PHY_VCO_SLICER_THRESH_BITS_HIGH_EEE_MASK,
916 FIELD_PREP(MTK_PHY_VCO_SLICER_THRESH_BITS_HIGH_EEE_MASK,
917 0x33) |
918 MTK_PHY_LPI_SKIP_SD_SLV_TR | MTK_PHY_LPI_TR_READY |
919 MTK_PHY_LPI_VCO_EEE_STG0_EN);
920
921 phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG323,
922 MTK_PHY_EEE_WAKE_MAS_INT_DC |
923 MTK_PHY_EEE_WAKE_SLV_INT_DC);
924
925 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG324,
926 MTK_PHY_SMI_DETCNT_MAX_MASK,
927 FIELD_PREP(MTK_PHY_SMI_DETCNT_MAX_MASK, 0x3f) |
928 MTK_PHY_SMI_DET_MAX_EN);
929
930 phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG326,
931 MTK_PHY_LPI_MODE_SD_ON | MTK_PHY_RESET_RANDUPD_CNT |
932 MTK_PHY_TREC_UPDATE_ENAB_CLR |
933 MTK_PHY_LPI_QUIT_WAIT_DFE_SIG_DET_OFF |
934 MTK_PHY_TR_READY_SKIP_AFE_WAKEUP);
935
936 phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5);
937 /* Regsigdet_sel_1000 = 0 */
938 __phy_write(phydev, 0x11, 0xb);
939 __phy_write(phydev, 0x12, 0x0);
940 __phy_write(phydev, 0x10, 0x9690);
941
942 /* REG_EEE_st2TrKf1000 = 2 */
943 __phy_write(phydev, 0x11, 0x114f);
944 __phy_write(phydev, 0x12, 0x2);
945 __phy_write(phydev, 0x10, 0x969a);
946
947 /* RegEEE_slv_wake_tr_timer_tar = 6, RegEEE_slv_remtx_timer_tar = 20 */
948 __phy_write(phydev, 0x11, 0x3028);
949 __phy_write(phydev, 0x12, 0x0);
950 __phy_write(phydev, 0x10, 0x969e);
951
952 /* RegEEE_slv_wake_int_timer_tar = 8 */
953 __phy_write(phydev, 0x11, 0x5010);
954 __phy_write(phydev, 0x12, 0x0);
955 __phy_write(phydev, 0x10, 0x96a0);
956
957 /* RegEEE_trfreeze_timer2 = 586 */
958 __phy_write(phydev, 0x11, 0x24a);
959 __phy_write(phydev, 0x12, 0x0);
960 __phy_write(phydev, 0x10, 0x96a8);
961
962 /* RegEEE100Stg1_tar = 16 */
963 __phy_write(phydev, 0x11, 0x3210);
964 __phy_write(phydev, 0x12, 0x0);
965 __phy_write(phydev, 0x10, 0x96b8);
966
967 /* REGEEE_wake_slv_tr_wait_dfesigdet_en = 0 */
968 __phy_write(phydev, 0x11, 0x1463);
969 __phy_write(phydev, 0x12, 0x0);
970 __phy_write(phydev, 0x10, 0x96ca);
971
972 /* DfeTailEnableVgaThresh1000 = 27 */
973 __phy_write(phydev, 0x11, 0x36);
974 __phy_write(phydev, 0x12, 0x0);
975 __phy_write(phydev, 0x10, 0x8f80);
976 phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
977
978 phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_3);
979 __phy_modify(phydev, MTK_PHY_LPI_REG_14, MTK_PHY_LPI_WAKE_TIMER_1000_MASK,
980 FIELD_PREP(MTK_PHY_LPI_WAKE_TIMER_1000_MASK, 0x19c));
981
982 __phy_modify(phydev, MTK_PHY_LPI_REG_1c, MTK_PHY_SMI_DET_ON_THRESH_MASK,
983 FIELD_PREP(MTK_PHY_SMI_DET_ON_THRESH_MASK, 0xc));
984 phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
985
986 phy_modify_mmd(phydev, MDIO_MMD_VEND1,
987 MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG122,
988 MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK,
989 FIELD_PREP(MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK, 0xff));
990 }
991
cal_sw(struct phy_device * phydev,enum CAL_ITEM cal_item,u8 start_pair,u8 end_pair)992 static int cal_sw(struct phy_device *phydev, enum CAL_ITEM cal_item,
993 u8 start_pair, u8 end_pair)
994 {
995 u8 pair_n;
996 int ret;
997
998 for (pair_n = start_pair; pair_n <= end_pair; pair_n++) {
999 /* TX_OFFSET & TX_AMP have no SW calibration. */
1000 switch (cal_item) {
1001 case TX_VCM:
1002 ret = tx_vcm_cal_sw(phydev, pair_n);
1003 break;
1004 default:
1005 return -EINVAL;
1006 }
1007 if (ret)
1008 return ret;
1009 }
1010 return 0;
1011 }
1012
cal_efuse(struct phy_device * phydev,enum CAL_ITEM cal_item,u8 start_pair,u8 end_pair,u32 * buf)1013 static int cal_efuse(struct phy_device *phydev, enum CAL_ITEM cal_item,
1014 u8 start_pair, u8 end_pair, u32 *buf)
1015 {
1016 u8 pair_n;
1017 int ret;
1018
1019 for (pair_n = start_pair; pair_n <= end_pair; pair_n++) {
1020 /* TX_VCM has no efuse calibration. */
1021 switch (cal_item) {
1022 case REXT:
1023 ret = rext_cal_efuse(phydev, buf);
1024 break;
1025 case TX_OFFSET:
1026 ret = tx_offset_cal_efuse(phydev, buf);
1027 break;
1028 case TX_AMP:
1029 ret = tx_amp_cal_efuse(phydev, buf);
1030 break;
1031 case TX_R50:
1032 ret = tx_r50_cal_efuse(phydev, buf, pair_n);
1033 break;
1034 default:
1035 return -EINVAL;
1036 }
1037 if (ret)
1038 return ret;
1039 }
1040
1041 return 0;
1042 }
1043
start_cal(struct phy_device * phydev,enum CAL_ITEM cal_item,enum CAL_MODE cal_mode,u8 start_pair,u8 end_pair,u32 * buf)1044 static int start_cal(struct phy_device *phydev, enum CAL_ITEM cal_item,
1045 enum CAL_MODE cal_mode, u8 start_pair,
1046 u8 end_pair, u32 *buf)
1047 {
1048 int ret;
1049
1050 switch (cal_mode) {
1051 case EFUSE_M:
1052 ret = cal_efuse(phydev, cal_item, start_pair,
1053 end_pair, buf);
1054 break;
1055 case SW_M:
1056 ret = cal_sw(phydev, cal_item, start_pair, end_pair);
1057 break;
1058 default:
1059 return -EINVAL;
1060 }
1061
1062 if (ret) {
1063 phydev_err(phydev, "cal %d failed\n", cal_item);
1064 return -EIO;
1065 }
1066
1067 return 0;
1068 }
1069
mt798x_phy_calibration(struct phy_device * phydev)1070 static int mt798x_phy_calibration(struct phy_device *phydev)
1071 {
1072 int ret = 0;
1073 u32 *buf;
1074 size_t len;
1075 struct nvmem_cell *cell;
1076
1077 cell = nvmem_cell_get(&phydev->mdio.dev, "phy-cal-data");
1078 if (IS_ERR(cell)) {
1079 if (PTR_ERR(cell) == -EPROBE_DEFER)
1080 return PTR_ERR(cell);
1081 return 0;
1082 }
1083
1084 buf = (u32 *)nvmem_cell_read(cell, &len);
1085 if (IS_ERR(buf))
1086 return PTR_ERR(buf);
1087 nvmem_cell_put(cell);
1088
1089 if (!buf[0] || !buf[1] || !buf[2] || !buf[3] || len < 4 * sizeof(u32)) {
1090 phydev_err(phydev, "invalid efuse data\n");
1091 ret = -EINVAL;
1092 goto out;
1093 }
1094
1095 ret = start_cal(phydev, REXT, EFUSE_M, NO_PAIR, NO_PAIR, buf);
1096 if (ret)
1097 goto out;
1098 ret = start_cal(phydev, TX_OFFSET, EFUSE_M, NO_PAIR, NO_PAIR, buf);
1099 if (ret)
1100 goto out;
1101 ret = start_cal(phydev, TX_AMP, EFUSE_M, NO_PAIR, NO_PAIR, buf);
1102 if (ret)
1103 goto out;
1104 ret = start_cal(phydev, TX_R50, EFUSE_M, PAIR_A, PAIR_D, buf);
1105 if (ret)
1106 goto out;
1107 ret = start_cal(phydev, TX_VCM, SW_M, PAIR_A, PAIR_A, buf);
1108 if (ret)
1109 goto out;
1110
1111 out:
1112 kfree(buf);
1113 return ret;
1114 }
1115
mt798x_phy_config_init(struct phy_device * phydev)1116 static int mt798x_phy_config_init(struct phy_device *phydev)
1117 {
1118 switch (phydev->drv->phy_id) {
1119 case MTK_GPHY_ID_MT7981:
1120 mt7981_phy_finetune(phydev);
1121 break;
1122 case MTK_GPHY_ID_MT7988:
1123 mt7988_phy_finetune(phydev);
1124 break;
1125 }
1126
1127 mt798x_phy_common_finetune(phydev);
1128 mt798x_phy_eee(phydev);
1129
1130 return mt798x_phy_calibration(phydev);
1131 }
1132
mt798x_phy_hw_led_on_set(struct phy_device * phydev,u8 index,bool on)1133 static int mt798x_phy_hw_led_on_set(struct phy_device *phydev, u8 index,
1134 bool on)
1135 {
1136 unsigned int bit_on = MTK_PHY_LED_STATE_FORCE_ON + (index ? 16 : 0);
1137 struct mtk_socphy_priv *priv = phydev->priv;
1138 bool changed;
1139
1140 if (on)
1141 changed = !test_and_set_bit(bit_on, &priv->led_state);
1142 else
1143 changed = !!test_and_clear_bit(bit_on, &priv->led_state);
1144
1145 changed |= !!test_and_clear_bit(MTK_PHY_LED_STATE_NETDEV +
1146 (index ? 16 : 0), &priv->led_state);
1147 if (changed)
1148 return phy_modify_mmd(phydev, MDIO_MMD_VEND2, index ?
1149 MTK_PHY_LED1_ON_CTRL : MTK_PHY_LED0_ON_CTRL,
1150 MTK_PHY_LED_ON_MASK,
1151 on ? MTK_PHY_LED_ON_FORCE_ON : 0);
1152 else
1153 return 0;
1154 }
1155
mt798x_phy_hw_led_blink_set(struct phy_device * phydev,u8 index,bool blinking)1156 static int mt798x_phy_hw_led_blink_set(struct phy_device *phydev, u8 index,
1157 bool blinking)
1158 {
1159 unsigned int bit_blink = MTK_PHY_LED_STATE_FORCE_BLINK + (index ? 16 : 0);
1160 struct mtk_socphy_priv *priv = phydev->priv;
1161 bool changed;
1162
1163 if (blinking)
1164 changed = !test_and_set_bit(bit_blink, &priv->led_state);
1165 else
1166 changed = !!test_and_clear_bit(bit_blink, &priv->led_state);
1167
1168 changed |= !!test_bit(MTK_PHY_LED_STATE_NETDEV +
1169 (index ? 16 : 0), &priv->led_state);
1170 if (changed)
1171 return phy_write_mmd(phydev, MDIO_MMD_VEND2, index ?
1172 MTK_PHY_LED1_BLINK_CTRL : MTK_PHY_LED0_BLINK_CTRL,
1173 blinking ? MTK_PHY_LED_BLINK_FORCE_BLINK : 0);
1174 else
1175 return 0;
1176 }
1177
mt798x_phy_led_blink_set(struct phy_device * phydev,u8 index,unsigned long * delay_on,unsigned long * delay_off)1178 static int mt798x_phy_led_blink_set(struct phy_device *phydev, u8 index,
1179 unsigned long *delay_on,
1180 unsigned long *delay_off)
1181 {
1182 bool blinking = false;
1183 int err = 0;
1184
1185 if (index > 1)
1186 return -EINVAL;
1187
1188 if (delay_on && delay_off && (*delay_on > 0) && (*delay_off > 0)) {
1189 blinking = true;
1190 *delay_on = 50;
1191 *delay_off = 50;
1192 }
1193
1194 err = mt798x_phy_hw_led_blink_set(phydev, index, blinking);
1195 if (err)
1196 return err;
1197
1198 return mt798x_phy_hw_led_on_set(phydev, index, false);
1199 }
1200
mt798x_phy_led_brightness_set(struct phy_device * phydev,u8 index,enum led_brightness value)1201 static int mt798x_phy_led_brightness_set(struct phy_device *phydev,
1202 u8 index, enum led_brightness value)
1203 {
1204 int err;
1205
1206 err = mt798x_phy_hw_led_blink_set(phydev, index, false);
1207 if (err)
1208 return err;
1209
1210 return mt798x_phy_hw_led_on_set(phydev, index, (value != LED_OFF));
1211 }
1212
1213 static const unsigned long supported_triggers = (BIT(TRIGGER_NETDEV_FULL_DUPLEX) |
1214 BIT(TRIGGER_NETDEV_HALF_DUPLEX) |
1215 BIT(TRIGGER_NETDEV_LINK) |
1216 BIT(TRIGGER_NETDEV_LINK_10) |
1217 BIT(TRIGGER_NETDEV_LINK_100) |
1218 BIT(TRIGGER_NETDEV_LINK_1000) |
1219 BIT(TRIGGER_NETDEV_RX) |
1220 BIT(TRIGGER_NETDEV_TX));
1221
mt798x_phy_led_hw_is_supported(struct phy_device * phydev,u8 index,unsigned long rules)1222 static int mt798x_phy_led_hw_is_supported(struct phy_device *phydev, u8 index,
1223 unsigned long rules)
1224 {
1225 if (index > 1)
1226 return -EINVAL;
1227
1228 /* All combinations of the supported triggers are allowed */
1229 if (rules & ~supported_triggers)
1230 return -EOPNOTSUPP;
1231
1232 return 0;
1233 };
1234
mt798x_phy_led_hw_control_get(struct phy_device * phydev,u8 index,unsigned long * rules)1235 static int mt798x_phy_led_hw_control_get(struct phy_device *phydev, u8 index,
1236 unsigned long *rules)
1237 {
1238 unsigned int bit_blink = MTK_PHY_LED_STATE_FORCE_BLINK + (index ? 16 : 0);
1239 unsigned int bit_netdev = MTK_PHY_LED_STATE_NETDEV + (index ? 16 : 0);
1240 unsigned int bit_on = MTK_PHY_LED_STATE_FORCE_ON + (index ? 16 : 0);
1241 struct mtk_socphy_priv *priv = phydev->priv;
1242 int on, blink;
1243
1244 if (index > 1)
1245 return -EINVAL;
1246
1247 on = phy_read_mmd(phydev, MDIO_MMD_VEND2,
1248 index ? MTK_PHY_LED1_ON_CTRL : MTK_PHY_LED0_ON_CTRL);
1249
1250 if (on < 0)
1251 return -EIO;
1252
1253 blink = phy_read_mmd(phydev, MDIO_MMD_VEND2,
1254 index ? MTK_PHY_LED1_BLINK_CTRL :
1255 MTK_PHY_LED0_BLINK_CTRL);
1256 if (blink < 0)
1257 return -EIO;
1258
1259 if ((on & (MTK_PHY_LED_ON_LINK | MTK_PHY_LED_ON_FDX | MTK_PHY_LED_ON_HDX |
1260 MTK_PHY_LED_ON_LINKDOWN)) ||
1261 (blink & (MTK_PHY_LED_BLINK_RX | MTK_PHY_LED_BLINK_TX)))
1262 set_bit(bit_netdev, &priv->led_state);
1263 else
1264 clear_bit(bit_netdev, &priv->led_state);
1265
1266 if (on & MTK_PHY_LED_ON_FORCE_ON)
1267 set_bit(bit_on, &priv->led_state);
1268 else
1269 clear_bit(bit_on, &priv->led_state);
1270
1271 if (blink & MTK_PHY_LED_BLINK_FORCE_BLINK)
1272 set_bit(bit_blink, &priv->led_state);
1273 else
1274 clear_bit(bit_blink, &priv->led_state);
1275
1276 if (!rules)
1277 return 0;
1278
1279 if (on & MTK_PHY_LED_ON_LINK)
1280 *rules |= BIT(TRIGGER_NETDEV_LINK);
1281
1282 if (on & MTK_PHY_LED_ON_LINK10)
1283 *rules |= BIT(TRIGGER_NETDEV_LINK_10);
1284
1285 if (on & MTK_PHY_LED_ON_LINK100)
1286 *rules |= BIT(TRIGGER_NETDEV_LINK_100);
1287
1288 if (on & MTK_PHY_LED_ON_LINK1000)
1289 *rules |= BIT(TRIGGER_NETDEV_LINK_1000);
1290
1291 if (on & MTK_PHY_LED_ON_FDX)
1292 *rules |= BIT(TRIGGER_NETDEV_FULL_DUPLEX);
1293
1294 if (on & MTK_PHY_LED_ON_HDX)
1295 *rules |= BIT(TRIGGER_NETDEV_HALF_DUPLEX);
1296
1297 if (blink & MTK_PHY_LED_BLINK_RX)
1298 *rules |= BIT(TRIGGER_NETDEV_RX);
1299
1300 if (blink & MTK_PHY_LED_BLINK_TX)
1301 *rules |= BIT(TRIGGER_NETDEV_TX);
1302
1303 return 0;
1304 };
1305
mt798x_phy_led_hw_control_set(struct phy_device * phydev,u8 index,unsigned long rules)1306 static int mt798x_phy_led_hw_control_set(struct phy_device *phydev, u8 index,
1307 unsigned long rules)
1308 {
1309 unsigned int bit_netdev = MTK_PHY_LED_STATE_NETDEV + (index ? 16 : 0);
1310 struct mtk_socphy_priv *priv = phydev->priv;
1311 u16 on = 0, blink = 0;
1312 int ret;
1313
1314 if (index > 1)
1315 return -EINVAL;
1316
1317 if (rules & BIT(TRIGGER_NETDEV_FULL_DUPLEX))
1318 on |= MTK_PHY_LED_ON_FDX;
1319
1320 if (rules & BIT(TRIGGER_NETDEV_HALF_DUPLEX))
1321 on |= MTK_PHY_LED_ON_HDX;
1322
1323 if (rules & (BIT(TRIGGER_NETDEV_LINK_10) | BIT(TRIGGER_NETDEV_LINK)))
1324 on |= MTK_PHY_LED_ON_LINK10;
1325
1326 if (rules & (BIT(TRIGGER_NETDEV_LINK_100) | BIT(TRIGGER_NETDEV_LINK)))
1327 on |= MTK_PHY_LED_ON_LINK100;
1328
1329 if (rules & (BIT(TRIGGER_NETDEV_LINK_1000) | BIT(TRIGGER_NETDEV_LINK)))
1330 on |= MTK_PHY_LED_ON_LINK1000;
1331
1332 if (rules & BIT(TRIGGER_NETDEV_RX)) {
1333 blink |= (on & MTK_PHY_LED_ON_LINK) ?
1334 (((on & MTK_PHY_LED_ON_LINK10) ? MTK_PHY_LED_BLINK_10RX : 0) |
1335 ((on & MTK_PHY_LED_ON_LINK100) ? MTK_PHY_LED_BLINK_100RX : 0) |
1336 ((on & MTK_PHY_LED_ON_LINK1000) ? MTK_PHY_LED_BLINK_1000RX : 0)) :
1337 MTK_PHY_LED_BLINK_RX;
1338 }
1339
1340 if (rules & BIT(TRIGGER_NETDEV_TX)) {
1341 blink |= (on & MTK_PHY_LED_ON_LINK) ?
1342 (((on & MTK_PHY_LED_ON_LINK10) ? MTK_PHY_LED_BLINK_10TX : 0) |
1343 ((on & MTK_PHY_LED_ON_LINK100) ? MTK_PHY_LED_BLINK_100TX : 0) |
1344 ((on & MTK_PHY_LED_ON_LINK1000) ? MTK_PHY_LED_BLINK_1000TX : 0)) :
1345 MTK_PHY_LED_BLINK_TX;
1346 }
1347
1348 if (blink || on)
1349 set_bit(bit_netdev, &priv->led_state);
1350 else
1351 clear_bit(bit_netdev, &priv->led_state);
1352
1353 ret = phy_modify_mmd(phydev, MDIO_MMD_VEND2, index ?
1354 MTK_PHY_LED1_ON_CTRL :
1355 MTK_PHY_LED0_ON_CTRL,
1356 MTK_PHY_LED_ON_FDX |
1357 MTK_PHY_LED_ON_HDX |
1358 MTK_PHY_LED_ON_LINK,
1359 on);
1360
1361 if (ret)
1362 return ret;
1363
1364 return phy_write_mmd(phydev, MDIO_MMD_VEND2, index ?
1365 MTK_PHY_LED1_BLINK_CTRL :
1366 MTK_PHY_LED0_BLINK_CTRL, blink);
1367 };
1368
mt7988_phy_led_get_polarity(struct phy_device * phydev,int led_num)1369 static bool mt7988_phy_led_get_polarity(struct phy_device *phydev, int led_num)
1370 {
1371 struct mtk_socphy_shared *priv = phydev->shared->priv;
1372 u32 polarities;
1373
1374 if (led_num == 0)
1375 polarities = ~(priv->boottrap);
1376 else
1377 polarities = MTK_PHY_LED1_DEFAULT_POLARITIES;
1378
1379 if (polarities & BIT(phydev->mdio.addr))
1380 return true;
1381
1382 return false;
1383 }
1384
mt7988_phy_fix_leds_polarities(struct phy_device * phydev)1385 static int mt7988_phy_fix_leds_polarities(struct phy_device *phydev)
1386 {
1387 struct pinctrl *pinctrl;
1388 int index;
1389
1390 /* Setup LED polarity according to bootstrap use of LED pins */
1391 for (index = 0; index < 2; ++index)
1392 phy_modify_mmd(phydev, MDIO_MMD_VEND2, index ?
1393 MTK_PHY_LED1_ON_CTRL : MTK_PHY_LED0_ON_CTRL,
1394 MTK_PHY_LED_ON_POLARITY,
1395 mt7988_phy_led_get_polarity(phydev, index) ?
1396 MTK_PHY_LED_ON_POLARITY : 0);
1397
1398 /* Only now setup pinctrl to avoid bogus blinking */
1399 pinctrl = devm_pinctrl_get_select(&phydev->mdio.dev, "gbe-led");
1400 if (IS_ERR(pinctrl))
1401 dev_err(&phydev->mdio.bus->dev, "Failed to setup PHY LED pinctrl\n");
1402
1403 return 0;
1404 }
1405
mt7988_phy_probe_shared(struct phy_device * phydev)1406 static int mt7988_phy_probe_shared(struct phy_device *phydev)
1407 {
1408 struct device_node *np = dev_of_node(&phydev->mdio.bus->dev);
1409 struct mtk_socphy_shared *shared = phydev->shared->priv;
1410 struct regmap *regmap;
1411 u32 reg;
1412 int ret;
1413
1414 /* The LED0 of the 4 PHYs in MT7988 are wired to SoC pins LED_A, LED_B,
1415 * LED_C and LED_D respectively. At the same time those pins are used to
1416 * bootstrap configuration of the reference clock source (LED_A),
1417 * DRAM DDRx16b x2/x1 (LED_B) and boot device (LED_C, LED_D).
1418 * In practise this is done using a LED and a resistor pulling the pin
1419 * either to GND or to VIO.
1420 * The detected value at boot time is accessible at run-time using the
1421 * TPBANK0 register located in the gpio base of the pinctrl, in order
1422 * to read it here it needs to be referenced by a phandle called
1423 * 'mediatek,pio' in the MDIO bus hosting the PHY.
1424 * The 4 bits in TPBANK0 are kept as package shared data and are used to
1425 * set LED polarity for each of the LED0.
1426 */
1427 regmap = syscon_regmap_lookup_by_phandle(np, "mediatek,pio");
1428 if (IS_ERR(regmap))
1429 return PTR_ERR(regmap);
1430
1431 ret = regmap_read(regmap, RG_GPIO_MISC_TPBANK0, ®);
1432 if (ret)
1433 return ret;
1434
1435 shared->boottrap = FIELD_GET(RG_GPIO_MISC_TPBANK0_BOOTMODE, reg);
1436
1437 return 0;
1438 }
1439
mt798x_phy_leds_state_init(struct phy_device * phydev)1440 static void mt798x_phy_leds_state_init(struct phy_device *phydev)
1441 {
1442 int i;
1443
1444 for (i = 0; i < 2; ++i)
1445 mt798x_phy_led_hw_control_get(phydev, i, NULL);
1446 }
1447
mt7988_phy_probe(struct phy_device * phydev)1448 static int mt7988_phy_probe(struct phy_device *phydev)
1449 {
1450 struct mtk_socphy_shared *shared;
1451 struct mtk_socphy_priv *priv;
1452 int err;
1453
1454 if (phydev->mdio.addr > 3)
1455 return -EINVAL;
1456
1457 err = devm_phy_package_join(&phydev->mdio.dev, phydev, 0,
1458 sizeof(struct mtk_socphy_shared));
1459 if (err)
1460 return err;
1461
1462 if (phy_package_probe_once(phydev)) {
1463 err = mt7988_phy_probe_shared(phydev);
1464 if (err)
1465 return err;
1466 }
1467
1468 shared = phydev->shared->priv;
1469 priv = &shared->priv[phydev->mdio.addr];
1470
1471 phydev->priv = priv;
1472
1473 mt798x_phy_leds_state_init(phydev);
1474
1475 err = mt7988_phy_fix_leds_polarities(phydev);
1476 if (err)
1477 return err;
1478
1479 /* Disable TX power saving at probing to:
1480 * 1. Meet common mode compliance test criteria
1481 * 2. Make sure that TX-VCM calibration works fine
1482 */
1483 phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG7,
1484 MTK_PHY_DA_AD_BUF_BIAS_LP_MASK, 0x3 << 8);
1485
1486 return mt798x_phy_calibration(phydev);
1487 }
1488
mt7981_phy_probe(struct phy_device * phydev)1489 static int mt7981_phy_probe(struct phy_device *phydev)
1490 {
1491 struct mtk_socphy_priv *priv;
1492
1493 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(struct mtk_socphy_priv),
1494 GFP_KERNEL);
1495 if (!priv)
1496 return -ENOMEM;
1497
1498 phydev->priv = priv;
1499
1500 mt798x_phy_leds_state_init(phydev);
1501
1502 return mt798x_phy_calibration(phydev);
1503 }
1504
1505 static struct phy_driver mtk_socphy_driver[] = {
1506 {
1507 PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7981),
1508 .name = "MediaTek MT7981 PHY",
1509 .config_init = mt798x_phy_config_init,
1510 .config_intr = genphy_no_config_intr,
1511 .handle_interrupt = genphy_handle_interrupt_no_ack,
1512 .probe = mt7981_phy_probe,
1513 .suspend = genphy_suspend,
1514 .resume = genphy_resume,
1515 .read_page = mtk_socphy_read_page,
1516 .write_page = mtk_socphy_write_page,
1517 .led_blink_set = mt798x_phy_led_blink_set,
1518 .led_brightness_set = mt798x_phy_led_brightness_set,
1519 .led_hw_is_supported = mt798x_phy_led_hw_is_supported,
1520 .led_hw_control_set = mt798x_phy_led_hw_control_set,
1521 .led_hw_control_get = mt798x_phy_led_hw_control_get,
1522 },
1523 {
1524 PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7988),
1525 .name = "MediaTek MT7988 PHY",
1526 .config_init = mt798x_phy_config_init,
1527 .config_intr = genphy_no_config_intr,
1528 .handle_interrupt = genphy_handle_interrupt_no_ack,
1529 .probe = mt7988_phy_probe,
1530 .suspend = genphy_suspend,
1531 .resume = genphy_resume,
1532 .read_page = mtk_socphy_read_page,
1533 .write_page = mtk_socphy_write_page,
1534 .led_blink_set = mt798x_phy_led_blink_set,
1535 .led_brightness_set = mt798x_phy_led_brightness_set,
1536 .led_hw_is_supported = mt798x_phy_led_hw_is_supported,
1537 .led_hw_control_set = mt798x_phy_led_hw_control_set,
1538 .led_hw_control_get = mt798x_phy_led_hw_control_get,
1539 },
1540 };
1541
1542 module_phy_driver(mtk_socphy_driver);
1543
1544 static struct mdio_device_id __maybe_unused mtk_socphy_tbl[] = {
1545 { PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7981) },
1546 { PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7988) },
1547 { }
1548 };
1549
1550 MODULE_DESCRIPTION("MediaTek SoC Gigabit Ethernet PHY driver");
1551 MODULE_AUTHOR("Daniel Golle <daniel@makrotopia.org>");
1552 MODULE_AUTHOR("SkyLake Huang <SkyLake.Huang@mediatek.com>");
1553 MODULE_LICENSE("GPL");
1554
1555 MODULE_DEVICE_TABLE(mdio, mtk_socphy_tbl);
1556