1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Video Capture Driver (Video for Linux 1/2)
4 * for the Matrox Marvel G200,G400 and Rainbow Runner-G series
5 *
6 * This module is an interface to the KS0127 video decoder chip.
7 *
8 * Copyright (C) 1999 Ryan Drake <stiletto@mediaone.net>
9 *
10 *****************************************************************************
11 *
12 * Modified and extended by
13 * Mike Bernson <mike@mlb.org>
14 * Gerard v.d. Horst
15 * Leon van Stuivenberg <l.vanstuivenberg@chello.nl>
16 * Gernot Ziegler <gz@lysator.liu.se>
17 *
18 * Version History:
19 * V1.0 Ryan Drake Initial version by Ryan Drake
20 * V1.1 Gerard v.d. Horst Added some debugoutput, reset the video-standard
21 */
22
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/delay.h>
26 #include <linux/errno.h>
27 #include <linux/kernel.h>
28 #include <linux/i2c.h>
29 #include <linux/videodev2.h>
30 #include <linux/slab.h>
31 #include <media/v4l2-device.h>
32 #include "ks0127.h"
33
34 MODULE_DESCRIPTION("KS0127 video decoder driver");
35 MODULE_AUTHOR("Ryan Drake");
36 MODULE_LICENSE("GPL");
37
38 /* Addresses */
39 #define I2C_KS0127_ADDON 0xD8
40 #define I2C_KS0127_ONBOARD 0xDA
41
42
43 /* ks0127 control registers */
44 #define KS_STAT 0x00
45 #define KS_CMDA 0x01
46 #define KS_CMDB 0x02
47 #define KS_CMDC 0x03
48 #define KS_CMDD 0x04
49 #define KS_HAVB 0x05
50 #define KS_HAVE 0x06
51 #define KS_HS1B 0x07
52 #define KS_HS1E 0x08
53 #define KS_HS2B 0x09
54 #define KS_HS2E 0x0a
55 #define KS_AGC 0x0b
56 #define KS_HXTRA 0x0c
57 #define KS_CDEM 0x0d
58 #define KS_PORTAB 0x0e
59 #define KS_LUMA 0x0f
60 #define KS_CON 0x10
61 #define KS_BRT 0x11
62 #define KS_CHROMA 0x12
63 #define KS_CHROMB 0x13
64 #define KS_DEMOD 0x14
65 #define KS_SAT 0x15
66 #define KS_HUE 0x16
67 #define KS_VERTIA 0x17
68 #define KS_VERTIB 0x18
69 #define KS_VERTIC 0x19
70 #define KS_HSCLL 0x1a
71 #define KS_HSCLH 0x1b
72 #define KS_VSCLL 0x1c
73 #define KS_VSCLH 0x1d
74 #define KS_OFMTA 0x1e
75 #define KS_OFMTB 0x1f
76 #define KS_VBICTL 0x20
77 #define KS_CCDAT2 0x21
78 #define KS_CCDAT1 0x22
79 #define KS_VBIL30 0x23
80 #define KS_VBIL74 0x24
81 #define KS_VBIL118 0x25
82 #define KS_VBIL1512 0x26
83 #define KS_TTFRAM 0x27
84 #define KS_TESTA 0x28
85 #define KS_UVOFFH 0x29
86 #define KS_UVOFFL 0x2a
87 #define KS_UGAIN 0x2b
88 #define KS_VGAIN 0x2c
89 #define KS_VAVB 0x2d
90 #define KS_VAVE 0x2e
91 #define KS_CTRACK 0x2f
92 #define KS_POLCTL 0x30
93 #define KS_REFCOD 0x31
94 #define KS_INVALY 0x32
95 #define KS_INVALU 0x33
96 #define KS_INVALV 0x34
97 #define KS_UNUSEY 0x35
98 #define KS_UNUSEU 0x36
99 #define KS_UNUSEV 0x37
100 #define KS_USRSAV 0x38
101 #define KS_USREAV 0x39
102 #define KS_SHS1A 0x3a
103 #define KS_SHS1B 0x3b
104 #define KS_SHS1C 0x3c
105 #define KS_CMDE 0x3d
106 #define KS_VSDEL 0x3e
107 #define KS_CMDF 0x3f
108 #define KS_GAMMA0 0x40
109 #define KS_GAMMA1 0x41
110 #define KS_GAMMA2 0x42
111 #define KS_GAMMA3 0x43
112 #define KS_GAMMA4 0x44
113 #define KS_GAMMA5 0x45
114 #define KS_GAMMA6 0x46
115 #define KS_GAMMA7 0x47
116 #define KS_GAMMA8 0x48
117 #define KS_GAMMA9 0x49
118 #define KS_GAMMA10 0x4a
119 #define KS_GAMMA11 0x4b
120 #define KS_GAMMA12 0x4c
121 #define KS_GAMMA13 0x4d
122 #define KS_GAMMA14 0x4e
123 #define KS_GAMMA15 0x4f
124 #define KS_GAMMA16 0x50
125 #define KS_GAMMA17 0x51
126 #define KS_GAMMA18 0x52
127 #define KS_GAMMA19 0x53
128 #define KS_GAMMA20 0x54
129 #define KS_GAMMA21 0x55
130 #define KS_GAMMA22 0x56
131 #define KS_GAMMA23 0x57
132 #define KS_GAMMA24 0x58
133 #define KS_GAMMA25 0x59
134 #define KS_GAMMA26 0x5a
135 #define KS_GAMMA27 0x5b
136 #define KS_GAMMA28 0x5c
137 #define KS_GAMMA29 0x5d
138 #define KS_GAMMA30 0x5e
139 #define KS_GAMMA31 0x5f
140 #define KS_GAMMAD0 0x60
141 #define KS_GAMMAD1 0x61
142 #define KS_GAMMAD2 0x62
143 #define KS_GAMMAD3 0x63
144 #define KS_GAMMAD4 0x64
145 #define KS_GAMMAD5 0x65
146 #define KS_GAMMAD6 0x66
147 #define KS_GAMMAD7 0x67
148 #define KS_GAMMAD8 0x68
149 #define KS_GAMMAD9 0x69
150 #define KS_GAMMAD10 0x6a
151 #define KS_GAMMAD11 0x6b
152 #define KS_GAMMAD12 0x6c
153 #define KS_GAMMAD13 0x6d
154 #define KS_GAMMAD14 0x6e
155 #define KS_GAMMAD15 0x6f
156 #define KS_GAMMAD16 0x70
157 #define KS_GAMMAD17 0x71
158 #define KS_GAMMAD18 0x72
159 #define KS_GAMMAD19 0x73
160 #define KS_GAMMAD20 0x74
161 #define KS_GAMMAD21 0x75
162 #define KS_GAMMAD22 0x76
163 #define KS_GAMMAD23 0x77
164 #define KS_GAMMAD24 0x78
165 #define KS_GAMMAD25 0x79
166 #define KS_GAMMAD26 0x7a
167 #define KS_GAMMAD27 0x7b
168 #define KS_GAMMAD28 0x7c
169 #define KS_GAMMAD29 0x7d
170 #define KS_GAMMAD30 0x7e
171 #define KS_GAMMAD31 0x7f
172
173
174 /****************************************************************************
175 * mga_dev : represents one ks0127 chip.
176 ****************************************************************************/
177
178 struct ks0127 {
179 struct v4l2_subdev sd;
180 v4l2_std_id norm;
181 u8 regs[256];
182 };
183
to_ks0127(struct v4l2_subdev * sd)184 static inline struct ks0127 *to_ks0127(struct v4l2_subdev *sd)
185 {
186 return container_of(sd, struct ks0127, sd);
187 }
188
189
190 static int debug; /* insmod parameter */
191
192 module_param(debug, int, 0);
193 MODULE_PARM_DESC(debug, "Debug output");
194
195 static u8 reg_defaults[64];
196
init_reg_defaults(void)197 static void init_reg_defaults(void)
198 {
199 static int initialized;
200 u8 *table = reg_defaults;
201
202 if (initialized)
203 return;
204 initialized = 1;
205
206 table[KS_CMDA] = 0x2c; /* VSE=0, CCIR 601, autodetect standard */
207 table[KS_CMDB] = 0x12; /* VALIGN=0, AGC control and input */
208 table[KS_CMDC] = 0x00; /* Test options */
209 /* clock & input select, write 1 to PORTA */
210 table[KS_CMDD] = 0x01;
211 table[KS_HAVB] = 0x00; /* HAV Start Control */
212 table[KS_HAVE] = 0x00; /* HAV End Control */
213 table[KS_HS1B] = 0x10; /* HS1 Start Control */
214 table[KS_HS1E] = 0x00; /* HS1 End Control */
215 table[KS_HS2B] = 0x00; /* HS2 Start Control */
216 table[KS_HS2E] = 0x00; /* HS2 End Control */
217 table[KS_AGC] = 0x53; /* Manual setting for AGC */
218 table[KS_HXTRA] = 0x00; /* Extra Bits for HAV and HS1/2 */
219 table[KS_CDEM] = 0x00; /* Chroma Demodulation Control */
220 table[KS_PORTAB] = 0x0f; /* port B is input, port A output GPPORT */
221 table[KS_LUMA] = 0x01; /* Luma control */
222 table[KS_CON] = 0x00; /* Contrast Control */
223 table[KS_BRT] = 0x00; /* Brightness Control */
224 table[KS_CHROMA] = 0x2a; /* Chroma control A */
225 table[KS_CHROMB] = 0x90; /* Chroma control B */
226 table[KS_DEMOD] = 0x00; /* Chroma Demodulation Control & Status */
227 table[KS_SAT] = 0x00; /* Color Saturation Control*/
228 table[KS_HUE] = 0x00; /* Hue Control */
229 table[KS_VERTIA] = 0x00; /* Vertical Processing Control A */
230 /* Vertical Processing Control B, luma 1 line delayed */
231 table[KS_VERTIB] = 0x12;
232 table[KS_VERTIC] = 0x0b; /* Vertical Processing Control C */
233 table[KS_HSCLL] = 0x00; /* Horizontal Scaling Ratio Low */
234 table[KS_HSCLH] = 0x00; /* Horizontal Scaling Ratio High */
235 table[KS_VSCLL] = 0x00; /* Vertical Scaling Ratio Low */
236 table[KS_VSCLH] = 0x00; /* Vertical Scaling Ratio High */
237 /* 16 bit YCbCr 4:2:2 output; I can't make the bt866 like 8 bit /Sam */
238 table[KS_OFMTA] = 0x30;
239 table[KS_OFMTB] = 0x00; /* Output Control B */
240 /* VBI Decoder Control; 4bit fmt: avoid Y overflow */
241 table[KS_VBICTL] = 0x5d;
242 table[KS_CCDAT2] = 0x00; /* Read Only register */
243 table[KS_CCDAT1] = 0x00; /* Read Only register */
244 table[KS_VBIL30] = 0xa8; /* VBI data decoding options */
245 table[KS_VBIL74] = 0xaa; /* VBI data decoding options */
246 table[KS_VBIL118] = 0x2a; /* VBI data decoding options */
247 table[KS_VBIL1512] = 0x00; /* VBI data decoding options */
248 table[KS_TTFRAM] = 0x00; /* Teletext frame alignment pattern */
249 table[KS_TESTA] = 0x00; /* test register, shouldn't be written */
250 table[KS_UVOFFH] = 0x00; /* UV Offset Adjustment High */
251 table[KS_UVOFFL] = 0x00; /* UV Offset Adjustment Low */
252 table[KS_UGAIN] = 0x00; /* U Component Gain Adjustment */
253 table[KS_VGAIN] = 0x00; /* V Component Gain Adjustment */
254 table[KS_VAVB] = 0x07; /* VAV Begin */
255 table[KS_VAVE] = 0x00; /* VAV End */
256 table[KS_CTRACK] = 0x00; /* Chroma Tracking Control */
257 table[KS_POLCTL] = 0x41; /* Timing Signal Polarity Control */
258 table[KS_REFCOD] = 0x80; /* Reference Code Insertion Control */
259 table[KS_INVALY] = 0x10; /* Invalid Y Code */
260 table[KS_INVALU] = 0x80; /* Invalid U Code */
261 table[KS_INVALV] = 0x80; /* Invalid V Code */
262 table[KS_UNUSEY] = 0x10; /* Unused Y Code */
263 table[KS_UNUSEU] = 0x80; /* Unused U Code */
264 table[KS_UNUSEV] = 0x80; /* Unused V Code */
265 table[KS_USRSAV] = 0x00; /* reserved */
266 table[KS_USREAV] = 0x00; /* reserved */
267 table[KS_SHS1A] = 0x00; /* User Defined SHS1 A */
268 /* User Defined SHS1 B, ALT656=1 on 0127B */
269 table[KS_SHS1B] = 0x80;
270 table[KS_SHS1C] = 0x00; /* User Defined SHS1 C */
271 table[KS_CMDE] = 0x00; /* Command Register E */
272 table[KS_VSDEL] = 0x00; /* VS Delay Control */
273 /* Command Register F, update -immediately- */
274 /* (there might come no vsync)*/
275 table[KS_CMDF] = 0x02;
276 }
277
278
279 /* We need to manually read because of a bug in the KS0127 chip.
280 *
281 * An explanation from kayork@mail.utexas.edu:
282 *
283 * During I2C reads, the KS0127 only samples for a stop condition
284 * during the place where the acknowledge bit should be. Any standard
285 * I2C implementation (correctly) throws in another clock transition
286 * at the 9th bit, and the KS0127 will not recognize the stop condition
287 * and will continue to clock out data.
288 *
289 * So we have to do the read ourself. Big deal.
290 * workaround in i2c-algo-bit
291 */
292
293
ks0127_read(struct v4l2_subdev * sd,u8 reg)294 static u8 ks0127_read(struct v4l2_subdev *sd, u8 reg)
295 {
296 struct i2c_client *client = v4l2_get_subdevdata(sd);
297 char val = 0;
298 struct i2c_msg msgs[] = {
299 {
300 .addr = client->addr,
301 .len = sizeof(reg),
302 .buf = ®
303 },
304 {
305 .addr = client->addr,
306 .flags = I2C_M_RD | I2C_M_NO_RD_ACK,
307 .len = sizeof(val),
308 .buf = &val
309 }
310 };
311 int ret;
312
313 ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
314 if (ret != ARRAY_SIZE(msgs))
315 v4l2_dbg(1, debug, sd, "read error\n");
316
317 return val;
318 }
319
320
ks0127_write(struct v4l2_subdev * sd,u8 reg,u8 val)321 static void ks0127_write(struct v4l2_subdev *sd, u8 reg, u8 val)
322 {
323 struct i2c_client *client = v4l2_get_subdevdata(sd);
324 struct ks0127 *ks = to_ks0127(sd);
325 char msg[] = { reg, val };
326
327 if (i2c_master_send(client, msg, sizeof(msg)) != sizeof(msg))
328 v4l2_dbg(1, debug, sd, "write error\n");
329
330 ks->regs[reg] = val;
331 }
332
333
334 /* generic bit-twiddling */
ks0127_and_or(struct v4l2_subdev * sd,u8 reg,u8 and_v,u8 or_v)335 static void ks0127_and_or(struct v4l2_subdev *sd, u8 reg, u8 and_v, u8 or_v)
336 {
337 struct ks0127 *ks = to_ks0127(sd);
338
339 u8 val = ks->regs[reg];
340 val = (val & and_v) | or_v;
341 ks0127_write(sd, reg, val);
342 }
343
344
345
346 /****************************************************************************
347 * ks0127 private api
348 ****************************************************************************/
ks0127_init(struct v4l2_subdev * sd)349 static void ks0127_init(struct v4l2_subdev *sd)
350 {
351 u8 *table = reg_defaults;
352 int i;
353
354 v4l2_dbg(1, debug, sd, "reset\n");
355 msleep(1);
356
357 /* initialize all registers to known values */
358 /* (except STAT, 0x21, 0x22, TEST and 0x38,0x39) */
359
360 for (i = 1; i < 33; i++)
361 ks0127_write(sd, i, table[i]);
362
363 for (i = 35; i < 40; i++)
364 ks0127_write(sd, i, table[i]);
365
366 for (i = 41; i < 56; i++)
367 ks0127_write(sd, i, table[i]);
368
369 for (i = 58; i < 64; i++)
370 ks0127_write(sd, i, table[i]);
371
372
373 if ((ks0127_read(sd, KS_STAT) & 0x80) == 0) {
374 v4l2_dbg(1, debug, sd, "ks0122s found\n");
375 return;
376 }
377
378 switch (ks0127_read(sd, KS_CMDE) & 0x0f) {
379 case 0:
380 v4l2_dbg(1, debug, sd, "ks0127 found\n");
381 break;
382
383 case 9:
384 v4l2_dbg(1, debug, sd, "ks0127B Revision A found\n");
385 break;
386
387 default:
388 v4l2_dbg(1, debug, sd, "unknown revision\n");
389 break;
390 }
391 }
392
ks0127_s_routing(struct v4l2_subdev * sd,u32 input,u32 output,u32 config)393 static int ks0127_s_routing(struct v4l2_subdev *sd,
394 u32 input, u32 output, u32 config)
395 {
396 struct ks0127 *ks = to_ks0127(sd);
397
398 switch (input) {
399 case KS_INPUT_COMPOSITE_1:
400 case KS_INPUT_COMPOSITE_2:
401 case KS_INPUT_COMPOSITE_3:
402 case KS_INPUT_COMPOSITE_4:
403 case KS_INPUT_COMPOSITE_5:
404 case KS_INPUT_COMPOSITE_6:
405 v4l2_dbg(1, debug, sd,
406 "s_routing %d: Composite\n", input);
407 /* autodetect 50/60 Hz */
408 ks0127_and_or(sd, KS_CMDA, 0xfc, 0x00);
409 /* VSE=0 */
410 ks0127_and_or(sd, KS_CMDA, ~0x40, 0x00);
411 /* set input line */
412 ks0127_and_or(sd, KS_CMDB, 0xb0, input);
413 /* non-freerunning mode */
414 ks0127_and_or(sd, KS_CMDC, 0x70, 0x0a);
415 /* analog input */
416 ks0127_and_or(sd, KS_CMDD, 0x03, 0x00);
417 /* enable chroma demodulation */
418 ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x00);
419 /* chroma trap, HYBWR=1 */
420 ks0127_and_or(sd, KS_LUMA, 0x00,
421 (reg_defaults[KS_LUMA])|0x0c);
422 /* scaler fullbw, luma comb off */
423 ks0127_and_or(sd, KS_VERTIA, 0x08, 0x81);
424 /* manual chroma comb .25 .5 .25 */
425 ks0127_and_or(sd, KS_VERTIC, 0x0f, 0x90);
426
427 /* chroma path delay */
428 ks0127_and_or(sd, KS_CHROMB, 0x0f, 0x90);
429
430 ks0127_write(sd, KS_UGAIN, reg_defaults[KS_UGAIN]);
431 ks0127_write(sd, KS_VGAIN, reg_defaults[KS_VGAIN]);
432 ks0127_write(sd, KS_UVOFFH, reg_defaults[KS_UVOFFH]);
433 ks0127_write(sd, KS_UVOFFL, reg_defaults[KS_UVOFFL]);
434 break;
435
436 case KS_INPUT_SVIDEO_1:
437 case KS_INPUT_SVIDEO_2:
438 case KS_INPUT_SVIDEO_3:
439 v4l2_dbg(1, debug, sd,
440 "s_routing %d: S-Video\n", input);
441 /* autodetect 50/60 Hz */
442 ks0127_and_or(sd, KS_CMDA, 0xfc, 0x00);
443 /* VSE=0 */
444 ks0127_and_or(sd, KS_CMDA, ~0x40, 0x00);
445 /* set input line */
446 ks0127_and_or(sd, KS_CMDB, 0xb0, input);
447 /* non-freerunning mode */
448 ks0127_and_or(sd, KS_CMDC, 0x70, 0x0a);
449 /* analog input */
450 ks0127_and_or(sd, KS_CMDD, 0x03, 0x00);
451 /* enable chroma demodulation */
452 ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x00);
453 ks0127_and_or(sd, KS_LUMA, 0x00,
454 reg_defaults[KS_LUMA]);
455 /* disable luma comb */
456 ks0127_and_or(sd, KS_VERTIA, 0x08,
457 (reg_defaults[KS_VERTIA]&0xf0)|0x01);
458 ks0127_and_or(sd, KS_VERTIC, 0x0f,
459 reg_defaults[KS_VERTIC]&0xf0);
460
461 ks0127_and_or(sd, KS_CHROMB, 0x0f,
462 reg_defaults[KS_CHROMB]&0xf0);
463
464 ks0127_write(sd, KS_UGAIN, reg_defaults[KS_UGAIN]);
465 ks0127_write(sd, KS_VGAIN, reg_defaults[KS_VGAIN]);
466 ks0127_write(sd, KS_UVOFFH, reg_defaults[KS_UVOFFH]);
467 ks0127_write(sd, KS_UVOFFL, reg_defaults[KS_UVOFFL]);
468 break;
469
470 case KS_INPUT_YUV656:
471 v4l2_dbg(1, debug, sd, "s_routing 15: YUV656\n");
472 if (ks->norm & V4L2_STD_525_60)
473 /* force 60 Hz */
474 ks0127_and_or(sd, KS_CMDA, 0xfc, 0x03);
475 else
476 /* force 50 Hz */
477 ks0127_and_or(sd, KS_CMDA, 0xfc, 0x02);
478
479 ks0127_and_or(sd, KS_CMDA, 0xff, 0x40); /* VSE=1 */
480 /* set input line and VALIGN */
481 ks0127_and_or(sd, KS_CMDB, 0xb0, (input | 0x40));
482 /* freerunning mode, */
483 /* TSTGEN = 1 TSTGFR=11 TSTGPH=0 TSTGPK=0 VMEM=1*/
484 ks0127_and_or(sd, KS_CMDC, 0x70, 0x87);
485 /* digital input, SYNDIR = 0 INPSL=01 CLKDIR=0 EAV=0 */
486 ks0127_and_or(sd, KS_CMDD, 0x03, 0x08);
487 /* disable chroma demodulation */
488 ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x30);
489 /* HYPK =01 CTRAP = 0 HYBWR=0 PED=1 RGBH=1 UNIT=1 */
490 ks0127_and_or(sd, KS_LUMA, 0x00, 0x71);
491 ks0127_and_or(sd, KS_VERTIC, 0x0f,
492 reg_defaults[KS_VERTIC]&0xf0);
493
494 /* scaler fullbw, luma comb off */
495 ks0127_and_or(sd, KS_VERTIA, 0x08, 0x81);
496
497 ks0127_and_or(sd, KS_CHROMB, 0x0f,
498 reg_defaults[KS_CHROMB]&0xf0);
499
500 ks0127_and_or(sd, KS_CON, 0x00, 0x00);
501 ks0127_and_or(sd, KS_BRT, 0x00, 32); /* spec: 34 */
502 /* spec: 229 (e5) */
503 ks0127_and_or(sd, KS_SAT, 0x00, 0xe8);
504 ks0127_and_or(sd, KS_HUE, 0x00, 0);
505
506 ks0127_and_or(sd, KS_UGAIN, 0x00, 238);
507 ks0127_and_or(sd, KS_VGAIN, 0x00, 0x00);
508
509 /*UOFF:0x30, VOFF:0x30, TSTCGN=1 */
510 ks0127_and_or(sd, KS_UVOFFH, 0x00, 0x4f);
511 ks0127_and_or(sd, KS_UVOFFL, 0x00, 0x00);
512 break;
513
514 default:
515 v4l2_dbg(1, debug, sd,
516 "s_routing: Unknown input %d\n", input);
517 break;
518 }
519
520 /* hack: CDMLPF sometimes spontaneously switches on; */
521 /* force back off */
522 ks0127_write(sd, KS_DEMOD, reg_defaults[KS_DEMOD]);
523 return 0;
524 }
525
ks0127_s_std(struct v4l2_subdev * sd,v4l2_std_id std)526 static int ks0127_s_std(struct v4l2_subdev *sd, v4l2_std_id std)
527 {
528 struct ks0127 *ks = to_ks0127(sd);
529
530 /* Set to automatic SECAM/Fsc mode */
531 ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x00);
532
533 ks->norm = std;
534 if (std & V4L2_STD_NTSC) {
535 v4l2_dbg(1, debug, sd,
536 "s_std: NTSC_M\n");
537 ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x20);
538 } else if (std & V4L2_STD_PAL_N) {
539 v4l2_dbg(1, debug, sd,
540 "s_std: NTSC_N (fixme)\n");
541 ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x40);
542 } else if (std & V4L2_STD_PAL) {
543 v4l2_dbg(1, debug, sd,
544 "s_std: PAL_N\n");
545 ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x20);
546 } else if (std & V4L2_STD_PAL_M) {
547 v4l2_dbg(1, debug, sd,
548 "s_std: PAL_M (fixme)\n");
549 ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x40);
550 } else if (std & V4L2_STD_SECAM) {
551 v4l2_dbg(1, debug, sd,
552 "s_std: SECAM\n");
553
554 /* set to secam autodetection */
555 ks0127_and_or(sd, KS_CHROMA, 0xdf, 0x20);
556 ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x00);
557 schedule_timeout_interruptible(HZ/10+1);
558
559 /* did it autodetect? */
560 if (!(ks0127_read(sd, KS_DEMOD) & 0x40))
561 /* force to secam mode */
562 ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x0f);
563 } else {
564 v4l2_dbg(1, debug, sd, "s_std: Unknown norm %llx\n",
565 (unsigned long long)std);
566 }
567 return 0;
568 }
569
ks0127_s_stream(struct v4l2_subdev * sd,int enable)570 static int ks0127_s_stream(struct v4l2_subdev *sd, int enable)
571 {
572 v4l2_dbg(1, debug, sd, "s_stream(%d)\n", enable);
573 if (enable) {
574 /* All output pins on */
575 ks0127_and_or(sd, KS_OFMTA, 0xcf, 0x30);
576 /* Obey the OEN pin */
577 ks0127_and_or(sd, KS_CDEM, 0x7f, 0x00);
578 } else {
579 /* Video output pins off */
580 ks0127_and_or(sd, KS_OFMTA, 0xcf, 0x00);
581 /* Ignore the OEN pin */
582 ks0127_and_or(sd, KS_CDEM, 0x7f, 0x80);
583 }
584 return 0;
585 }
586
ks0127_status(struct v4l2_subdev * sd,u32 * pstatus,v4l2_std_id * pstd)587 static int ks0127_status(struct v4l2_subdev *sd, u32 *pstatus, v4l2_std_id *pstd)
588 {
589 int stat = V4L2_IN_ST_NO_SIGNAL;
590 u8 status;
591 v4l2_std_id std = pstd ? *pstd : V4L2_STD_ALL;
592
593 status = ks0127_read(sd, KS_STAT);
594 if (!(status & 0x20)) /* NOVID not set */
595 stat = 0;
596 if (!(status & 0x01)) { /* CLOCK set */
597 stat |= V4L2_IN_ST_NO_COLOR;
598 std = V4L2_STD_UNKNOWN;
599 } else {
600 if ((status & 0x08)) /* PALDET set */
601 std &= V4L2_STD_PAL;
602 else
603 std &= V4L2_STD_NTSC;
604 }
605 if ((status & 0x10)) /* PALDET set */
606 std &= V4L2_STD_525_60;
607 else
608 std &= V4L2_STD_625_50;
609 if (pstd)
610 *pstd = std;
611 if (pstatus)
612 *pstatus = stat;
613 return 0;
614 }
615
ks0127_querystd(struct v4l2_subdev * sd,v4l2_std_id * std)616 static int ks0127_querystd(struct v4l2_subdev *sd, v4l2_std_id *std)
617 {
618 v4l2_dbg(1, debug, sd, "querystd\n");
619 return ks0127_status(sd, NULL, std);
620 }
621
ks0127_g_input_status(struct v4l2_subdev * sd,u32 * status)622 static int ks0127_g_input_status(struct v4l2_subdev *sd, u32 *status)
623 {
624 v4l2_dbg(1, debug, sd, "g_input_status\n");
625 return ks0127_status(sd, status, NULL);
626 }
627
628 /* ----------------------------------------------------------------------- */
629
630 static const struct v4l2_subdev_video_ops ks0127_video_ops = {
631 .s_std = ks0127_s_std,
632 .s_routing = ks0127_s_routing,
633 .s_stream = ks0127_s_stream,
634 .querystd = ks0127_querystd,
635 .g_input_status = ks0127_g_input_status,
636 };
637
638 static const struct v4l2_subdev_ops ks0127_ops = {
639 .video = &ks0127_video_ops,
640 };
641
642 /* ----------------------------------------------------------------------- */
643
644
ks0127_probe(struct i2c_client * client)645 static int ks0127_probe(struct i2c_client *client)
646 {
647 struct ks0127 *ks;
648 struct v4l2_subdev *sd;
649
650 v4l_info(client, "%s chip found @ 0x%x (%s)\n",
651 client->addr == (I2C_KS0127_ADDON >> 1) ? "addon" : "on-board",
652 client->addr << 1, client->adapter->name);
653
654 ks = devm_kzalloc(&client->dev, sizeof(*ks), GFP_KERNEL);
655 if (ks == NULL)
656 return -ENOMEM;
657 sd = &ks->sd;
658 v4l2_i2c_subdev_init(sd, client, &ks0127_ops);
659
660 /* power up */
661 init_reg_defaults();
662 ks0127_write(sd, KS_CMDA, 0x2c);
663 mdelay(10);
664
665 /* reset the device */
666 ks0127_init(sd);
667 return 0;
668 }
669
ks0127_remove(struct i2c_client * client)670 static void ks0127_remove(struct i2c_client *client)
671 {
672 struct v4l2_subdev *sd = i2c_get_clientdata(client);
673
674 v4l2_device_unregister_subdev(sd);
675 ks0127_write(sd, KS_OFMTA, 0x20); /* tristate */
676 ks0127_write(sd, KS_CMDA, 0x2c | 0x80); /* power down */
677 }
678
679 static const struct i2c_device_id ks0127_id[] = {
680 { "ks0127" },
681 { "ks0127b" },
682 { "ks0122s" },
683 { }
684 };
685 MODULE_DEVICE_TABLE(i2c, ks0127_id);
686
687 static struct i2c_driver ks0127_driver = {
688 .driver = {
689 .name = "ks0127",
690 },
691 .probe = ks0127_probe,
692 .remove = ks0127_remove,
693 .id_table = ks0127_id,
694 };
695
696 module_i2c_driver(ks0127_driver);
697