xref: /linux/drivers/net/ethernet/micrel/ksz884x.c (revision 136114e0abf03005e182d75761ab694648e6d388)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
4  *
5  * Copyright (c) 2009-2010 Micrel, Inc.
6  * 	Tristram Ha <Tristram.Ha@micrel.com>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/hex.h>
16 #include <linux/ioport.h>
17 #include <linux/pci.h>
18 #include <linux/proc_fs.h>
19 #include <linux/mii.h>
20 #include <linux/platform_device.h>
21 #include <linux/ethtool.h>
22 #include <linux/etherdevice.h>
23 #include <linux/in.h>
24 #include <linux/ip.h>
25 #include <linux/if_vlan.h>
26 #include <linux/crc32.h>
27 #include <linux/sched.h>
28 #include <linux/slab.h>
29 #include <linux/micrel_phy.h>
30 
31 
32 /* DMA Registers */
33 
34 #define KS_DMA_TX_CTRL			0x0000
35 #define DMA_TX_ENABLE			0x00000001
36 #define DMA_TX_CRC_ENABLE		0x00000002
37 #define DMA_TX_PAD_ENABLE		0x00000004
38 #define DMA_TX_LOOPBACK			0x00000100
39 #define DMA_TX_FLOW_ENABLE		0x00000200
40 #define DMA_TX_CSUM_IP			0x00010000
41 #define DMA_TX_CSUM_TCP			0x00020000
42 #define DMA_TX_CSUM_UDP			0x00040000
43 #define DMA_TX_BURST_SIZE		0x3F000000
44 
45 #define KS_DMA_RX_CTRL			0x0004
46 #define DMA_RX_ENABLE			0x00000001
47 #define KS884X_DMA_RX_MULTICAST		0x00000002
48 #define DMA_RX_PROMISCUOUS		0x00000004
49 #define DMA_RX_ERROR			0x00000008
50 #define DMA_RX_UNICAST			0x00000010
51 #define DMA_RX_ALL_MULTICAST		0x00000020
52 #define DMA_RX_BROADCAST		0x00000040
53 #define DMA_RX_FLOW_ENABLE		0x00000200
54 #define DMA_RX_CSUM_IP			0x00010000
55 #define DMA_RX_CSUM_TCP			0x00020000
56 #define DMA_RX_CSUM_UDP			0x00040000
57 #define DMA_RX_BURST_SIZE		0x3F000000
58 
59 #define DMA_BURST_SHIFT			24
60 #define DMA_BURST_DEFAULT		8
61 
62 #define KS_DMA_TX_START			0x0008
63 #define KS_DMA_RX_START			0x000C
64 #define DMA_START			0x00000001
65 
66 #define KS_DMA_TX_ADDR			0x0010
67 #define KS_DMA_RX_ADDR			0x0014
68 
69 #define DMA_ADDR_LIST_MASK		0xFFFFFFFC
70 #define DMA_ADDR_LIST_SHIFT		2
71 
72 /* MTR0 */
73 #define KS884X_MULTICAST_0_OFFSET	0x0020
74 #define KS884X_MULTICAST_1_OFFSET	0x0021
75 #define KS884X_MULTICAST_2_OFFSET	0x0022
76 #define KS884x_MULTICAST_3_OFFSET	0x0023
77 /* MTR1 */
78 #define KS884X_MULTICAST_4_OFFSET	0x0024
79 #define KS884X_MULTICAST_5_OFFSET	0x0025
80 #define KS884X_MULTICAST_6_OFFSET	0x0026
81 #define KS884X_MULTICAST_7_OFFSET	0x0027
82 
83 /* Interrupt Registers */
84 
85 /* INTEN */
86 #define KS884X_INTERRUPTS_ENABLE	0x0028
87 /* INTST */
88 #define KS884X_INTERRUPTS_STATUS	0x002C
89 
90 #define KS884X_INT_RX_STOPPED		0x02000000
91 #define KS884X_INT_TX_STOPPED		0x04000000
92 #define KS884X_INT_RX_OVERRUN		0x08000000
93 #define KS884X_INT_TX_EMPTY		0x10000000
94 #define KS884X_INT_RX			0x20000000
95 #define KS884X_INT_TX			0x40000000
96 #define KS884X_INT_PHY			0x80000000
97 
98 #define KS884X_INT_RX_MASK		\
99 	(KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
100 #define KS884X_INT_TX_MASK		\
101 	(KS884X_INT_TX | KS884X_INT_TX_EMPTY)
102 #define KS884X_INT_MASK	(KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
103 
104 /* MAC Additional Station Address */
105 
106 /* MAAL0 */
107 #define KS_ADD_ADDR_0_LO		0x0080
108 /* MAAH0 */
109 #define KS_ADD_ADDR_0_HI		0x0084
110 /* MAAL1 */
111 #define KS_ADD_ADDR_1_LO		0x0088
112 /* MAAH1 */
113 #define KS_ADD_ADDR_1_HI		0x008C
114 /* MAAL2 */
115 #define KS_ADD_ADDR_2_LO		0x0090
116 /* MAAH2 */
117 #define KS_ADD_ADDR_2_HI		0x0094
118 /* MAAL3 */
119 #define KS_ADD_ADDR_3_LO		0x0098
120 /* MAAH3 */
121 #define KS_ADD_ADDR_3_HI		0x009C
122 /* MAAL4 */
123 #define KS_ADD_ADDR_4_LO		0x00A0
124 /* MAAH4 */
125 #define KS_ADD_ADDR_4_HI		0x00A4
126 /* MAAL5 */
127 #define KS_ADD_ADDR_5_LO		0x00A8
128 /* MAAH5 */
129 #define KS_ADD_ADDR_5_HI		0x00AC
130 /* MAAL6 */
131 #define KS_ADD_ADDR_6_LO		0x00B0
132 /* MAAH6 */
133 #define KS_ADD_ADDR_6_HI		0x00B4
134 /* MAAL7 */
135 #define KS_ADD_ADDR_7_LO		0x00B8
136 /* MAAH7 */
137 #define KS_ADD_ADDR_7_HI		0x00BC
138 /* MAAL8 */
139 #define KS_ADD_ADDR_8_LO		0x00C0
140 /* MAAH8 */
141 #define KS_ADD_ADDR_8_HI		0x00C4
142 /* MAAL9 */
143 #define KS_ADD_ADDR_9_LO		0x00C8
144 /* MAAH9 */
145 #define KS_ADD_ADDR_9_HI		0x00CC
146 /* MAAL10 */
147 #define KS_ADD_ADDR_A_LO		0x00D0
148 /* MAAH10 */
149 #define KS_ADD_ADDR_A_HI		0x00D4
150 /* MAAL11 */
151 #define KS_ADD_ADDR_B_LO		0x00D8
152 /* MAAH11 */
153 #define KS_ADD_ADDR_B_HI		0x00DC
154 /* MAAL12 */
155 #define KS_ADD_ADDR_C_LO		0x00E0
156 /* MAAH12 */
157 #define KS_ADD_ADDR_C_HI		0x00E4
158 /* MAAL13 */
159 #define KS_ADD_ADDR_D_LO		0x00E8
160 /* MAAH13 */
161 #define KS_ADD_ADDR_D_HI		0x00EC
162 /* MAAL14 */
163 #define KS_ADD_ADDR_E_LO		0x00F0
164 /* MAAH14 */
165 #define KS_ADD_ADDR_E_HI		0x00F4
166 /* MAAL15 */
167 #define KS_ADD_ADDR_F_LO		0x00F8
168 /* MAAH15 */
169 #define KS_ADD_ADDR_F_HI		0x00FC
170 
171 #define ADD_ADDR_HI_MASK		0x0000FFFF
172 #define ADD_ADDR_ENABLE			0x80000000
173 #define ADD_ADDR_INCR			8
174 
175 /* Miscellaneous Registers */
176 
177 /* MARL */
178 #define KS884X_ADDR_0_OFFSET		0x0200
179 #define KS884X_ADDR_1_OFFSET		0x0201
180 /* MARM */
181 #define KS884X_ADDR_2_OFFSET		0x0202
182 #define KS884X_ADDR_3_OFFSET		0x0203
183 /* MARH */
184 #define KS884X_ADDR_4_OFFSET		0x0204
185 #define KS884X_ADDR_5_OFFSET		0x0205
186 
187 /* OBCR */
188 #define KS884X_BUS_CTRL_OFFSET		0x0210
189 
190 #define BUS_SPEED_125_MHZ		0x0000
191 #define BUS_SPEED_62_5_MHZ		0x0001
192 #define BUS_SPEED_41_66_MHZ		0x0002
193 #define BUS_SPEED_25_MHZ		0x0003
194 
195 /* EEPCR */
196 #define KS884X_EEPROM_CTRL_OFFSET	0x0212
197 
198 #define EEPROM_CHIP_SELECT		0x0001
199 #define EEPROM_SERIAL_CLOCK		0x0002
200 #define EEPROM_DATA_OUT			0x0004
201 #define EEPROM_DATA_IN			0x0008
202 #define EEPROM_ACCESS_ENABLE		0x0010
203 
204 /* MBIR */
205 #define KS884X_MEM_INFO_OFFSET		0x0214
206 
207 #define RX_MEM_TEST_FAILED		0x0008
208 #define RX_MEM_TEST_FINISHED		0x0010
209 #define TX_MEM_TEST_FAILED		0x0800
210 #define TX_MEM_TEST_FINISHED		0x1000
211 
212 /* GCR */
213 #define KS884X_GLOBAL_CTRL_OFFSET	0x0216
214 #define GLOBAL_SOFTWARE_RESET		0x0001
215 
216 #define KS8841_POWER_MANAGE_OFFSET	0x0218
217 
218 /* WFCR */
219 #define KS8841_WOL_CTRL_OFFSET		0x021A
220 #define KS8841_WOL_MAGIC_ENABLE		0x0080
221 #define KS8841_WOL_FRAME3_ENABLE	0x0008
222 #define KS8841_WOL_FRAME2_ENABLE	0x0004
223 #define KS8841_WOL_FRAME1_ENABLE	0x0002
224 #define KS8841_WOL_FRAME0_ENABLE	0x0001
225 
226 /* WF0 */
227 #define KS8841_WOL_FRAME_CRC_OFFSET	0x0220
228 #define KS8841_WOL_FRAME_BYTE0_OFFSET	0x0224
229 #define KS8841_WOL_FRAME_BYTE2_OFFSET	0x0228
230 
231 /* IACR */
232 #define KS884X_IACR_P			0x04A0
233 #define KS884X_IACR_OFFSET		KS884X_IACR_P
234 
235 /* IADR1 */
236 #define KS884X_IADR1_P			0x04A2
237 #define KS884X_IADR2_P			0x04A4
238 #define KS884X_IADR3_P			0x04A6
239 #define KS884X_IADR4_P			0x04A8
240 #define KS884X_IADR5_P			0x04AA
241 
242 #define KS884X_ACC_CTRL_SEL_OFFSET	KS884X_IACR_P
243 #define KS884X_ACC_CTRL_INDEX_OFFSET	(KS884X_ACC_CTRL_SEL_OFFSET + 1)
244 
245 #define KS884X_ACC_DATA_0_OFFSET	KS884X_IADR4_P
246 #define KS884X_ACC_DATA_1_OFFSET	(KS884X_ACC_DATA_0_OFFSET + 1)
247 #define KS884X_ACC_DATA_2_OFFSET	KS884X_IADR5_P
248 #define KS884X_ACC_DATA_3_OFFSET	(KS884X_ACC_DATA_2_OFFSET + 1)
249 #define KS884X_ACC_DATA_4_OFFSET	KS884X_IADR2_P
250 #define KS884X_ACC_DATA_5_OFFSET	(KS884X_ACC_DATA_4_OFFSET + 1)
251 #define KS884X_ACC_DATA_6_OFFSET	KS884X_IADR3_P
252 #define KS884X_ACC_DATA_7_OFFSET	(KS884X_ACC_DATA_6_OFFSET + 1)
253 #define KS884X_ACC_DATA_8_OFFSET	KS884X_IADR1_P
254 
255 /* P1MBCR */
256 #define KS884X_P1MBCR_P			0x04D0
257 #define KS884X_P1MBSR_P			0x04D2
258 #define KS884X_PHY1ILR_P		0x04D4
259 #define KS884X_PHY1IHR_P		0x04D6
260 #define KS884X_P1ANAR_P			0x04D8
261 #define KS884X_P1ANLPR_P		0x04DA
262 
263 /* P2MBCR */
264 #define KS884X_P2MBCR_P			0x04E0
265 #define KS884X_P2MBSR_P			0x04E2
266 #define KS884X_PHY2ILR_P		0x04E4
267 #define KS884X_PHY2IHR_P		0x04E6
268 #define KS884X_P2ANAR_P			0x04E8
269 #define KS884X_P2ANLPR_P		0x04EA
270 
271 #define KS884X_PHY_1_CTRL_OFFSET	KS884X_P1MBCR_P
272 #define PHY_CTRL_INTERVAL		(KS884X_P2MBCR_P - KS884X_P1MBCR_P)
273 
274 #define KS884X_PHY_CTRL_OFFSET		0x00
275 
276 #define KS884X_PHY_STATUS_OFFSET	0x02
277 
278 #define KS884X_PHY_ID_1_OFFSET		0x04
279 #define KS884X_PHY_ID_2_OFFSET		0x06
280 
281 #define KS884X_PHY_AUTO_NEG_OFFSET	0x08
282 
283 #define KS884X_PHY_REMOTE_CAP_OFFSET	0x0A
284 
285 /* P1VCT */
286 #define KS884X_P1VCT_P			0x04F0
287 #define KS884X_P1PHYCTRL_P		0x04F2
288 
289 /* P2VCT */
290 #define KS884X_P2VCT_P			0x04F4
291 #define KS884X_P2PHYCTRL_P		0x04F6
292 
293 #define KS884X_PHY_SPECIAL_OFFSET	KS884X_P1VCT_P
294 #define PHY_SPECIAL_INTERVAL		(KS884X_P2VCT_P - KS884X_P1VCT_P)
295 
296 #define KS884X_PHY_LINK_MD_OFFSET	0x00
297 
298 #define PHY_START_CABLE_DIAG		0x8000
299 #define PHY_CABLE_DIAG_RESULT		0x6000
300 #define PHY_CABLE_STAT_NORMAL		0x0000
301 #define PHY_CABLE_STAT_OPEN		0x2000
302 #define PHY_CABLE_STAT_SHORT		0x4000
303 #define PHY_CABLE_STAT_FAILED		0x6000
304 #define PHY_CABLE_10M_SHORT		0x1000
305 #define PHY_CABLE_FAULT_COUNTER		0x01FF
306 
307 #define KS884X_PHY_PHY_CTRL_OFFSET	0x02
308 
309 #define PHY_STAT_REVERSED_POLARITY	0x0020
310 #define PHY_STAT_MDIX			0x0010
311 #define PHY_FORCE_LINK			0x0008
312 #define PHY_POWER_SAVING_DISABLE	0x0004
313 #define PHY_REMOTE_LOOPBACK		0x0002
314 
315 /* SIDER */
316 #define KS884X_SIDER_P			0x0400
317 #define KS884X_CHIP_ID_OFFSET		KS884X_SIDER_P
318 #define KS884X_FAMILY_ID_OFFSET		(KS884X_CHIP_ID_OFFSET + 1)
319 
320 #define REG_FAMILY_ID			0x88
321 
322 #define REG_CHIP_ID_41			0x8810
323 #define REG_CHIP_ID_42			0x8800
324 
325 #define KS884X_CHIP_ID_MASK_41		0xFF10
326 #define KS884X_CHIP_ID_MASK		0xFFF0
327 #define KS884X_CHIP_ID_SHIFT		4
328 #define KS884X_REVISION_MASK		0x000E
329 #define KS884X_REVISION_SHIFT		1
330 #define KS8842_START			0x0001
331 
332 #define CHIP_IP_41_M			0x8810
333 #define CHIP_IP_42_M			0x8800
334 #define CHIP_IP_61_M			0x8890
335 #define CHIP_IP_62_M			0x8880
336 
337 #define CHIP_IP_41_P			0x8850
338 #define CHIP_IP_42_P			0x8840
339 #define CHIP_IP_61_P			0x88D0
340 #define CHIP_IP_62_P			0x88C0
341 
342 /* SGCR1 */
343 #define KS8842_SGCR1_P			0x0402
344 #define KS8842_SWITCH_CTRL_1_OFFSET	KS8842_SGCR1_P
345 
346 #define SWITCH_PASS_ALL			0x8000
347 #define SWITCH_TX_FLOW_CTRL		0x2000
348 #define SWITCH_RX_FLOW_CTRL		0x1000
349 #define SWITCH_CHECK_LENGTH		0x0800
350 #define SWITCH_AGING_ENABLE		0x0400
351 #define SWITCH_FAST_AGING		0x0200
352 #define SWITCH_AGGR_BACKOFF		0x0100
353 #define SWITCH_PASS_PAUSE		0x0008
354 #define SWITCH_LINK_AUTO_AGING		0x0001
355 
356 /* SGCR2 */
357 #define KS8842_SGCR2_P			0x0404
358 #define KS8842_SWITCH_CTRL_2_OFFSET	KS8842_SGCR2_P
359 
360 #define SWITCH_VLAN_ENABLE		0x8000
361 #define SWITCH_IGMP_SNOOP		0x4000
362 #define IPV6_MLD_SNOOP_ENABLE		0x2000
363 #define IPV6_MLD_SNOOP_OPTION		0x1000
364 #define PRIORITY_SCHEME_SELECT		0x0800
365 #define SWITCH_MIRROR_RX_TX		0x0100
366 #define UNICAST_VLAN_BOUNDARY		0x0080
367 #define MULTICAST_STORM_DISABLE		0x0040
368 #define SWITCH_BACK_PRESSURE		0x0020
369 #define FAIR_FLOW_CTRL			0x0010
370 #define NO_EXC_COLLISION_DROP		0x0008
371 #define SWITCH_HUGE_PACKET		0x0004
372 #define SWITCH_LEGAL_PACKET		0x0002
373 #define SWITCH_BUF_RESERVE		0x0001
374 
375 /* SGCR3 */
376 #define KS8842_SGCR3_P			0x0406
377 #define KS8842_SWITCH_CTRL_3_OFFSET	KS8842_SGCR3_P
378 
379 #define BROADCAST_STORM_RATE_LO		0xFF00
380 #define SWITCH_REPEATER			0x0080
381 #define SWITCH_HALF_DUPLEX		0x0040
382 #define SWITCH_FLOW_CTRL		0x0020
383 #define SWITCH_10_MBIT			0x0010
384 #define SWITCH_REPLACE_NULL_VID		0x0008
385 #define BROADCAST_STORM_RATE_HI		0x0007
386 
387 #define BROADCAST_STORM_RATE		0x07FF
388 
389 /* SGCR4 */
390 #define KS8842_SGCR4_P			0x0408
391 
392 /* SGCR5 */
393 #define KS8842_SGCR5_P			0x040A
394 #define KS8842_SWITCH_CTRL_5_OFFSET	KS8842_SGCR5_P
395 
396 #define LED_MODE			0x8200
397 #define LED_SPEED_DUPLEX_ACT		0x0000
398 #define LED_SPEED_DUPLEX_LINK_ACT	0x8000
399 #define LED_DUPLEX_10_100		0x0200
400 
401 /* SGCR6 */
402 #define KS8842_SGCR6_P			0x0410
403 #define KS8842_SWITCH_CTRL_6_OFFSET	KS8842_SGCR6_P
404 
405 #define KS8842_PRIORITY_MASK		3
406 #define KS8842_PRIORITY_SHIFT		2
407 
408 /* SGCR7 */
409 #define KS8842_SGCR7_P			0x0412
410 #define KS8842_SWITCH_CTRL_7_OFFSET	KS8842_SGCR7_P
411 
412 #define SWITCH_UNK_DEF_PORT_ENABLE	0x0008
413 #define SWITCH_UNK_DEF_PORT_3		0x0004
414 #define SWITCH_UNK_DEF_PORT_2		0x0002
415 #define SWITCH_UNK_DEF_PORT_1		0x0001
416 
417 /* MACAR1 */
418 #define KS8842_MACAR1_P			0x0470
419 #define KS8842_MACAR2_P			0x0472
420 #define KS8842_MACAR3_P			0x0474
421 #define KS8842_MAC_ADDR_1_OFFSET	KS8842_MACAR1_P
422 #define KS8842_MAC_ADDR_0_OFFSET	(KS8842_MAC_ADDR_1_OFFSET + 1)
423 #define KS8842_MAC_ADDR_3_OFFSET	KS8842_MACAR2_P
424 #define KS8842_MAC_ADDR_2_OFFSET	(KS8842_MAC_ADDR_3_OFFSET + 1)
425 #define KS8842_MAC_ADDR_5_OFFSET	KS8842_MACAR3_P
426 #define KS8842_MAC_ADDR_4_OFFSET	(KS8842_MAC_ADDR_5_OFFSET + 1)
427 
428 /* TOSR1 */
429 #define KS8842_TOSR1_P			0x0480
430 #define KS8842_TOSR2_P			0x0482
431 #define KS8842_TOSR3_P			0x0484
432 #define KS8842_TOSR4_P			0x0486
433 #define KS8842_TOSR5_P			0x0488
434 #define KS8842_TOSR6_P			0x048A
435 #define KS8842_TOSR7_P			0x0490
436 #define KS8842_TOSR8_P			0x0492
437 #define KS8842_TOS_1_OFFSET		KS8842_TOSR1_P
438 #define KS8842_TOS_2_OFFSET		KS8842_TOSR2_P
439 #define KS8842_TOS_3_OFFSET		KS8842_TOSR3_P
440 #define KS8842_TOS_4_OFFSET		KS8842_TOSR4_P
441 #define KS8842_TOS_5_OFFSET		KS8842_TOSR5_P
442 #define KS8842_TOS_6_OFFSET		KS8842_TOSR6_P
443 
444 #define KS8842_TOS_7_OFFSET		KS8842_TOSR7_P
445 #define KS8842_TOS_8_OFFSET		KS8842_TOSR8_P
446 
447 /* P1CR1 */
448 #define KS8842_P1CR1_P			0x0500
449 #define KS8842_P1CR2_P			0x0502
450 #define KS8842_P1VIDR_P			0x0504
451 #define KS8842_P1CR3_P			0x0506
452 #define KS8842_P1IRCR_P			0x0508
453 #define KS8842_P1ERCR_P			0x050A
454 #define KS884X_P1SCSLMD_P		0x0510
455 #define KS884X_P1CR4_P			0x0512
456 #define KS884X_P1SR_P			0x0514
457 
458 /* P2CR1 */
459 #define KS8842_P2CR1_P			0x0520
460 #define KS8842_P2CR2_P			0x0522
461 #define KS8842_P2VIDR_P			0x0524
462 #define KS8842_P2CR3_P			0x0526
463 #define KS8842_P2IRCR_P			0x0528
464 #define KS8842_P2ERCR_P			0x052A
465 #define KS884X_P2SCSLMD_P		0x0530
466 #define KS884X_P2CR4_P			0x0532
467 #define KS884X_P2SR_P			0x0534
468 
469 /* P3CR1 */
470 #define KS8842_P3CR1_P			0x0540
471 #define KS8842_P3CR2_P			0x0542
472 #define KS8842_P3VIDR_P			0x0544
473 #define KS8842_P3CR3_P			0x0546
474 #define KS8842_P3IRCR_P			0x0548
475 #define KS8842_P3ERCR_P			0x054A
476 
477 #define KS8842_PORT_1_CTRL_1		KS8842_P1CR1_P
478 #define KS8842_PORT_2_CTRL_1		KS8842_P2CR1_P
479 #define KS8842_PORT_3_CTRL_1		KS8842_P3CR1_P
480 
481 #define PORT_CTRL_ADDR(port, addr)		\
482 	(addr = KS8842_PORT_1_CTRL_1 + (port) *	\
483 		(KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
484 
485 #define KS8842_PORT_CTRL_1_OFFSET	0x00
486 
487 #define PORT_BROADCAST_STORM		0x0080
488 #define PORT_DIFFSERV_ENABLE		0x0040
489 #define PORT_802_1P_ENABLE		0x0020
490 #define PORT_BASED_PRIORITY_MASK	0x0018
491 #define PORT_BASED_PRIORITY_BASE	0x0003
492 #define PORT_BASED_PRIORITY_SHIFT	3
493 #define PORT_BASED_PRIORITY_0		0x0000
494 #define PORT_BASED_PRIORITY_1		0x0008
495 #define PORT_BASED_PRIORITY_2		0x0010
496 #define PORT_BASED_PRIORITY_3		0x0018
497 #define PORT_INSERT_TAG			0x0004
498 #define PORT_REMOVE_TAG			0x0002
499 #define PORT_PRIO_QUEUE_ENABLE		0x0001
500 
501 #define KS8842_PORT_CTRL_2_OFFSET	0x02
502 
503 #define PORT_INGRESS_VLAN_FILTER	0x4000
504 #define PORT_DISCARD_NON_VID		0x2000
505 #define PORT_FORCE_FLOW_CTRL		0x1000
506 #define PORT_BACK_PRESSURE		0x0800
507 #define PORT_TX_ENABLE			0x0400
508 #define PORT_RX_ENABLE			0x0200
509 #define PORT_LEARN_DISABLE		0x0100
510 #define PORT_MIRROR_SNIFFER		0x0080
511 #define PORT_MIRROR_RX			0x0040
512 #define PORT_MIRROR_TX			0x0020
513 #define PORT_USER_PRIORITY_CEILING	0x0008
514 #define PORT_VLAN_MEMBERSHIP		0x0007
515 
516 #define KS8842_PORT_CTRL_VID_OFFSET	0x04
517 
518 #define PORT_DEFAULT_VID		0x0001
519 
520 #define KS8842_PORT_CTRL_3_OFFSET	0x06
521 
522 #define PORT_INGRESS_LIMIT_MODE		0x000C
523 #define PORT_INGRESS_ALL		0x0000
524 #define PORT_INGRESS_UNICAST		0x0004
525 #define PORT_INGRESS_MULTICAST		0x0008
526 #define PORT_INGRESS_BROADCAST		0x000C
527 #define PORT_COUNT_IFG			0x0002
528 #define PORT_COUNT_PREAMBLE		0x0001
529 
530 #define KS8842_PORT_IN_RATE_OFFSET	0x08
531 #define KS8842_PORT_OUT_RATE_OFFSET	0x0A
532 
533 #define PORT_PRIORITY_RATE		0x0F
534 #define PORT_PRIORITY_RATE_SHIFT	4
535 
536 #define KS884X_PORT_LINK_MD		0x10
537 
538 #define PORT_CABLE_10M_SHORT		0x8000
539 #define PORT_CABLE_DIAG_RESULT		0x6000
540 #define PORT_CABLE_STAT_NORMAL		0x0000
541 #define PORT_CABLE_STAT_OPEN		0x2000
542 #define PORT_CABLE_STAT_SHORT		0x4000
543 #define PORT_CABLE_STAT_FAILED		0x6000
544 #define PORT_START_CABLE_DIAG		0x1000
545 #define PORT_FORCE_LINK			0x0800
546 #define PORT_POWER_SAVING_DISABLE	0x0400
547 #define PORT_PHY_REMOTE_LOOPBACK	0x0200
548 #define PORT_CABLE_FAULT_COUNTER	0x01FF
549 
550 #define KS884X_PORT_CTRL_4_OFFSET	0x12
551 
552 #define PORT_LED_OFF			0x8000
553 #define PORT_TX_DISABLE			0x4000
554 #define PORT_AUTO_NEG_RESTART		0x2000
555 #define PORT_REMOTE_FAULT_DISABLE	0x1000
556 #define PORT_POWER_DOWN			0x0800
557 #define PORT_AUTO_MDIX_DISABLE		0x0400
558 #define PORT_FORCE_MDIX			0x0200
559 #define PORT_LOOPBACK			0x0100
560 #define PORT_AUTO_NEG_ENABLE		0x0080
561 #define PORT_FORCE_100_MBIT		0x0040
562 #define PORT_FORCE_FULL_DUPLEX		0x0020
563 #define PORT_AUTO_NEG_SYM_PAUSE		0x0010
564 #define PORT_AUTO_NEG_100BTX_FD		0x0008
565 #define PORT_AUTO_NEG_100BTX		0x0004
566 #define PORT_AUTO_NEG_10BT_FD		0x0002
567 #define PORT_AUTO_NEG_10BT		0x0001
568 
569 #define KS884X_PORT_STATUS_OFFSET	0x14
570 
571 #define PORT_HP_MDIX			0x8000
572 #define PORT_REVERSED_POLARITY		0x2000
573 #define PORT_RX_FLOW_CTRL		0x0800
574 #define PORT_TX_FLOW_CTRL		0x1000
575 #define PORT_STATUS_SPEED_100MBIT	0x0400
576 #define PORT_STATUS_FULL_DUPLEX		0x0200
577 #define PORT_REMOTE_FAULT		0x0100
578 #define PORT_MDIX_STATUS		0x0080
579 #define PORT_AUTO_NEG_COMPLETE		0x0040
580 #define PORT_STATUS_LINK_GOOD		0x0020
581 #define PORT_REMOTE_SYM_PAUSE		0x0010
582 #define PORT_REMOTE_100BTX_FD		0x0008
583 #define PORT_REMOTE_100BTX		0x0004
584 #define PORT_REMOTE_10BT_FD		0x0002
585 #define PORT_REMOTE_10BT		0x0001
586 
587 /*
588 #define STATIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
589 #define STATIC_MAC_TABLE_FWD_PORTS	00-00070000-00000000
590 #define STATIC_MAC_TABLE_VALID		00-00080000-00000000
591 #define STATIC_MAC_TABLE_OVERRIDE	00-00100000-00000000
592 #define STATIC_MAC_TABLE_USE_FID	00-00200000-00000000
593 #define STATIC_MAC_TABLE_FID		00-03C00000-00000000
594 */
595 
596 #define STATIC_MAC_TABLE_ADDR		0x0000FFFF
597 #define STATIC_MAC_TABLE_FWD_PORTS	0x00070000
598 #define STATIC_MAC_TABLE_VALID		0x00080000
599 #define STATIC_MAC_TABLE_OVERRIDE	0x00100000
600 #define STATIC_MAC_TABLE_USE_FID	0x00200000
601 #define STATIC_MAC_TABLE_FID		0x03C00000
602 
603 #define STATIC_MAC_FWD_PORTS_SHIFT	16
604 #define STATIC_MAC_FID_SHIFT		22
605 
606 /*
607 #define VLAN_TABLE_VID			00-00000000-00000FFF
608 #define VLAN_TABLE_FID			00-00000000-0000F000
609 #define VLAN_TABLE_MEMBERSHIP		00-00000000-00070000
610 #define VLAN_TABLE_VALID		00-00000000-00080000
611 */
612 
613 #define VLAN_TABLE_VID			0x00000FFF
614 #define VLAN_TABLE_FID			0x0000F000
615 #define VLAN_TABLE_MEMBERSHIP		0x00070000
616 #define VLAN_TABLE_VALID		0x00080000
617 
618 #define VLAN_TABLE_FID_SHIFT		12
619 #define VLAN_TABLE_MEMBERSHIP_SHIFT	16
620 
621 /*
622 #define DYNAMIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
623 #define DYNAMIC_MAC_TABLE_FID		00-000F0000-00000000
624 #define DYNAMIC_MAC_TABLE_SRC_PORT	00-00300000-00000000
625 #define DYNAMIC_MAC_TABLE_TIMESTAMP	00-00C00000-00000000
626 #define DYNAMIC_MAC_TABLE_ENTRIES	03-FF000000-00000000
627 #define DYNAMIC_MAC_TABLE_MAC_EMPTY	04-00000000-00000000
628 #define DYNAMIC_MAC_TABLE_RESERVED	78-00000000-00000000
629 #define DYNAMIC_MAC_TABLE_NOT_READY	80-00000000-00000000
630 */
631 
632 #define DYNAMIC_MAC_TABLE_ADDR		0x0000FFFF
633 #define DYNAMIC_MAC_TABLE_FID		0x000F0000
634 #define DYNAMIC_MAC_TABLE_SRC_PORT	0x00300000
635 #define DYNAMIC_MAC_TABLE_TIMESTAMP	0x00C00000
636 #define DYNAMIC_MAC_TABLE_ENTRIES	0xFF000000
637 
638 #define DYNAMIC_MAC_TABLE_ENTRIES_H	0x03
639 #define DYNAMIC_MAC_TABLE_MAC_EMPTY	0x04
640 #define DYNAMIC_MAC_TABLE_RESERVED	0x78
641 #define DYNAMIC_MAC_TABLE_NOT_READY	0x80
642 
643 #define DYNAMIC_MAC_FID_SHIFT		16
644 #define DYNAMIC_MAC_SRC_PORT_SHIFT	20
645 #define DYNAMIC_MAC_TIMESTAMP_SHIFT	22
646 #define DYNAMIC_MAC_ENTRIES_SHIFT	24
647 #define DYNAMIC_MAC_ENTRIES_H_SHIFT	8
648 
649 /*
650 #define MIB_COUNTER_VALUE		00-00000000-3FFFFFFF
651 #define MIB_COUNTER_VALID		00-00000000-40000000
652 #define MIB_COUNTER_OVERFLOW		00-00000000-80000000
653 */
654 
655 #define MIB_COUNTER_VALUE		0x3FFFFFFF
656 #define MIB_COUNTER_VALID		0x40000000
657 #define MIB_COUNTER_OVERFLOW		0x80000000
658 
659 #define MIB_PACKET_DROPPED		0x0000FFFF
660 
661 #define KS_MIB_PACKET_DROPPED_TX_0	0x100
662 #define KS_MIB_PACKET_DROPPED_TX_1	0x101
663 #define KS_MIB_PACKET_DROPPED_TX	0x102
664 #define KS_MIB_PACKET_DROPPED_RX_0	0x103
665 #define KS_MIB_PACKET_DROPPED_RX_1	0x104
666 #define KS_MIB_PACKET_DROPPED_RX	0x105
667 
668 /* Change default LED mode. */
669 #define SET_DEFAULT_LED			LED_SPEED_DUPLEX_ACT
670 
671 #define MAC_ADDR_ORDER(i)		(ETH_ALEN - 1 - (i))
672 
673 #define MAX_ETHERNET_BODY_SIZE		1500
674 #define ETHERNET_HEADER_SIZE		(14 + VLAN_HLEN)
675 
676 #define MAX_ETHERNET_PACKET_SIZE	\
677 	(MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
678 
679 #define REGULAR_RX_BUF_SIZE		(MAX_ETHERNET_PACKET_SIZE + 4)
680 #define MAX_RX_BUF_SIZE			(1912 + 4)
681 
682 #define ADDITIONAL_ENTRIES		16
683 #define MAX_MULTICAST_LIST		32
684 
685 #define HW_MULTICAST_SIZE		8
686 
687 #define HW_TO_DEV_PORT(port)		(port - 1)
688 
689 enum {
690 	media_connected,
691 	media_disconnected
692 };
693 
694 enum {
695 	OID_COUNTER_UNKOWN,
696 
697 	OID_COUNTER_FIRST,
698 
699 	/* total transmit errors */
700 	OID_COUNTER_XMIT_ERROR,
701 
702 	/* total receive errors */
703 	OID_COUNTER_RCV_ERROR,
704 
705 	OID_COUNTER_LAST
706 };
707 
708 /*
709  * Hardware descriptor definitions
710  */
711 
712 #define DESC_ALIGNMENT			16
713 #define BUFFER_ALIGNMENT		8
714 
715 #define NUM_OF_RX_DESC			64
716 #define NUM_OF_TX_DESC			64
717 
718 #define KS_DESC_RX_FRAME_LEN		0x000007FF
719 #define KS_DESC_RX_FRAME_TYPE		0x00008000
720 #define KS_DESC_RX_ERROR_CRC		0x00010000
721 #define KS_DESC_RX_ERROR_RUNT		0x00020000
722 #define KS_DESC_RX_ERROR_TOO_LONG	0x00040000
723 #define KS_DESC_RX_ERROR_PHY		0x00080000
724 #define KS884X_DESC_RX_PORT_MASK	0x00300000
725 #define KS_DESC_RX_MULTICAST		0x01000000
726 #define KS_DESC_RX_ERROR		0x02000000
727 #define KS_DESC_RX_ERROR_CSUM_UDP	0x04000000
728 #define KS_DESC_RX_ERROR_CSUM_TCP	0x08000000
729 #define KS_DESC_RX_ERROR_CSUM_IP	0x10000000
730 #define KS_DESC_RX_LAST			0x20000000
731 #define KS_DESC_RX_FIRST		0x40000000
732 #define KS_DESC_RX_ERROR_COND		\
733 	(KS_DESC_RX_ERROR_CRC |		\
734 	KS_DESC_RX_ERROR_RUNT |		\
735 	KS_DESC_RX_ERROR_PHY |		\
736 	KS_DESC_RX_ERROR_TOO_LONG)
737 
738 #define KS_DESC_HW_OWNED		0x80000000
739 
740 #define KS_DESC_BUF_SIZE		0x000007FF
741 #define KS884X_DESC_TX_PORT_MASK	0x00300000
742 #define KS_DESC_END_OF_RING		0x02000000
743 #define KS_DESC_TX_CSUM_GEN_UDP		0x04000000
744 #define KS_DESC_TX_CSUM_GEN_TCP		0x08000000
745 #define KS_DESC_TX_CSUM_GEN_IP		0x10000000
746 #define KS_DESC_TX_LAST			0x20000000
747 #define KS_DESC_TX_FIRST		0x40000000
748 #define KS_DESC_TX_INTERRUPT		0x80000000
749 
750 #define KS_DESC_PORT_SHIFT		20
751 
752 #define KS_DESC_RX_MASK			(KS_DESC_BUF_SIZE)
753 
754 #define KS_DESC_TX_MASK			\
755 	(KS_DESC_TX_INTERRUPT |		\
756 	KS_DESC_TX_FIRST |		\
757 	KS_DESC_TX_LAST |		\
758 	KS_DESC_TX_CSUM_GEN_IP |	\
759 	KS_DESC_TX_CSUM_GEN_TCP |	\
760 	KS_DESC_TX_CSUM_GEN_UDP |	\
761 	KS_DESC_BUF_SIZE)
762 
763 struct ksz_desc_rx_stat {
764 #ifdef __BIG_ENDIAN_BITFIELD
765 	u32 hw_owned:1;
766 	u32 first_desc:1;
767 	u32 last_desc:1;
768 	u32 csum_err_ip:1;
769 	u32 csum_err_tcp:1;
770 	u32 csum_err_udp:1;
771 	u32 error:1;
772 	u32 multicast:1;
773 	u32 src_port:4;
774 	u32 err_phy:1;
775 	u32 err_too_long:1;
776 	u32 err_runt:1;
777 	u32 err_crc:1;
778 	u32 frame_type:1;
779 	u32 reserved1:4;
780 	u32 frame_len:11;
781 #else
782 	u32 frame_len:11;
783 	u32 reserved1:4;
784 	u32 frame_type:1;
785 	u32 err_crc:1;
786 	u32 err_runt:1;
787 	u32 err_too_long:1;
788 	u32 err_phy:1;
789 	u32 src_port:4;
790 	u32 multicast:1;
791 	u32 error:1;
792 	u32 csum_err_udp:1;
793 	u32 csum_err_tcp:1;
794 	u32 csum_err_ip:1;
795 	u32 last_desc:1;
796 	u32 first_desc:1;
797 	u32 hw_owned:1;
798 #endif
799 };
800 
801 struct ksz_desc_tx_stat {
802 #ifdef __BIG_ENDIAN_BITFIELD
803 	u32 hw_owned:1;
804 	u32 reserved1:31;
805 #else
806 	u32 reserved1:31;
807 	u32 hw_owned:1;
808 #endif
809 };
810 
811 struct ksz_desc_rx_buf {
812 #ifdef __BIG_ENDIAN_BITFIELD
813 	u32 reserved4:6;
814 	u32 end_of_ring:1;
815 	u32 reserved3:14;
816 	u32 buf_size:11;
817 #else
818 	u32 buf_size:11;
819 	u32 reserved3:14;
820 	u32 end_of_ring:1;
821 	u32 reserved4:6;
822 #endif
823 };
824 
825 struct ksz_desc_tx_buf {
826 #ifdef __BIG_ENDIAN_BITFIELD
827 	u32 intr:1;
828 	u32 first_seg:1;
829 	u32 last_seg:1;
830 	u32 csum_gen_ip:1;
831 	u32 csum_gen_tcp:1;
832 	u32 csum_gen_udp:1;
833 	u32 end_of_ring:1;
834 	u32 reserved4:1;
835 	u32 dest_port:4;
836 	u32 reserved3:9;
837 	u32 buf_size:11;
838 #else
839 	u32 buf_size:11;
840 	u32 reserved3:9;
841 	u32 dest_port:4;
842 	u32 reserved4:1;
843 	u32 end_of_ring:1;
844 	u32 csum_gen_udp:1;
845 	u32 csum_gen_tcp:1;
846 	u32 csum_gen_ip:1;
847 	u32 last_seg:1;
848 	u32 first_seg:1;
849 	u32 intr:1;
850 #endif
851 };
852 
853 union desc_stat {
854 	struct ksz_desc_rx_stat rx;
855 	struct ksz_desc_tx_stat tx;
856 	u32 data;
857 };
858 
859 union desc_buf {
860 	struct ksz_desc_rx_buf rx;
861 	struct ksz_desc_tx_buf tx;
862 	u32 data;
863 };
864 
865 /**
866  * struct ksz_hw_desc - Hardware descriptor data structure
867  * @ctrl:	Descriptor control value.
868  * @buf:	Descriptor buffer value.
869  * @addr:	Physical address of memory buffer.
870  * @next:	Pointer to next hardware descriptor.
871  */
872 struct ksz_hw_desc {
873 	union desc_stat ctrl;
874 	union desc_buf buf;
875 	u32 addr;
876 	u32 next;
877 };
878 
879 /**
880  * struct ksz_sw_desc - Software descriptor data structure
881  * @ctrl:	Descriptor control value.
882  * @buf:	Descriptor buffer value.
883  * @buf_size:	Current buffers size value in hardware descriptor.
884  */
885 struct ksz_sw_desc {
886 	union desc_stat ctrl;
887 	union desc_buf buf;
888 	u32 buf_size;
889 };
890 
891 /**
892  * struct ksz_dma_buf - OS dependent DMA buffer data structure
893  * @skb:	Associated socket buffer.
894  * @dma:	Associated physical DMA address.
895  * @len:	Actual len used.
896  */
897 struct ksz_dma_buf {
898 	struct sk_buff *skb;
899 	dma_addr_t dma;
900 	int len;
901 };
902 
903 /**
904  * struct ksz_desc - Descriptor structure
905  * @phw:	Hardware descriptor pointer to uncached physical memory.
906  * @sw:		Cached memory to hold hardware descriptor values for
907  * 		manipulation.
908  * @dma_buf:	Operating system dependent data structure to hold physical
909  * 		memory buffer allocation information.
910  */
911 struct ksz_desc {
912 	struct ksz_hw_desc *phw;
913 	struct ksz_sw_desc sw;
914 	struct ksz_dma_buf dma_buf;
915 };
916 
917 #define DMA_BUFFER(desc)  ((struct ksz_dma_buf *)(&(desc)->dma_buf))
918 
919 /**
920  * struct ksz_desc_info - Descriptor information data structure
921  * @ring:	First descriptor in the ring.
922  * @cur:	Current descriptor being manipulated.
923  * @ring_virt:	First hardware descriptor in the ring.
924  * @ring_phys:	The physical address of the first descriptor of the ring.
925  * @size:	Size of hardware descriptor.
926  * @alloc:	Number of descriptors allocated.
927  * @avail:	Number of descriptors available for use.
928  * @last:	Index for last descriptor released to hardware.
929  * @next:	Index for next descriptor available for use.
930  * @mask:	Mask for index wrapping.
931  */
932 struct ksz_desc_info {
933 	struct ksz_desc *ring;
934 	struct ksz_desc *cur;
935 	struct ksz_hw_desc *ring_virt;
936 	u32 ring_phys;
937 	int size;
938 	int alloc;
939 	int avail;
940 	int last;
941 	int next;
942 	int mask;
943 };
944 
945 /*
946  * KSZ8842 switch definitions
947  */
948 
949 enum {
950 	TABLE_STATIC_MAC = 0,
951 	TABLE_VLAN,
952 	TABLE_DYNAMIC_MAC,
953 	TABLE_MIB
954 };
955 
956 #define LEARNED_MAC_TABLE_ENTRIES	1024
957 #define STATIC_MAC_TABLE_ENTRIES	8
958 
959 /**
960  * struct ksz_mac_table - Static MAC table data structure
961  * @mac_addr:	MAC address to filter.
962  * @vid:	VID value.
963  * @fid:	FID value.
964  * @ports:	Port membership.
965  * @override:	Override setting.
966  * @use_fid:	FID use setting.
967  * @valid:	Valid setting indicating the entry is being used.
968  */
969 struct ksz_mac_table {
970 	u8 mac_addr[ETH_ALEN];
971 	u16 vid;
972 	u8 fid;
973 	u8 ports;
974 	u8 override:1;
975 	u8 use_fid:1;
976 	u8 valid:1;
977 };
978 
979 #define VLAN_TABLE_ENTRIES		16
980 
981 /**
982  * struct ksz_vlan_table - VLAN table data structure
983  * @vid:	VID value.
984  * @fid:	FID value.
985  * @member:	Port membership.
986  */
987 struct ksz_vlan_table {
988 	u16 vid;
989 	u8 fid;
990 	u8 member;
991 };
992 
993 #define DIFFSERV_ENTRIES		64
994 #define PRIO_802_1P_ENTRIES		8
995 #define PRIO_QUEUES			4
996 
997 #define SWITCH_PORT_NUM			2
998 #define TOTAL_PORT_NUM			(SWITCH_PORT_NUM + 1)
999 #define HOST_MASK			(1 << SWITCH_PORT_NUM)
1000 #define PORT_MASK			7
1001 
1002 #define MAIN_PORT			0
1003 #define OTHER_PORT			1
1004 #define HOST_PORT			SWITCH_PORT_NUM
1005 
1006 #define PORT_COUNTER_NUM		0x20
1007 #define TOTAL_PORT_COUNTER_NUM		(PORT_COUNTER_NUM + 2)
1008 
1009 #define MIB_COUNTER_RX_LO_PRIORITY	0x00
1010 #define MIB_COUNTER_RX_HI_PRIORITY	0x01
1011 #define MIB_COUNTER_RX_UNDERSIZE	0x02
1012 #define MIB_COUNTER_RX_FRAGMENT		0x03
1013 #define MIB_COUNTER_RX_OVERSIZE		0x04
1014 #define MIB_COUNTER_RX_JABBER		0x05
1015 #define MIB_COUNTER_RX_SYMBOL_ERR	0x06
1016 #define MIB_COUNTER_RX_CRC_ERR		0x07
1017 #define MIB_COUNTER_RX_ALIGNMENT_ERR	0x08
1018 #define MIB_COUNTER_RX_CTRL_8808	0x09
1019 #define MIB_COUNTER_RX_PAUSE		0x0A
1020 #define MIB_COUNTER_RX_BROADCAST	0x0B
1021 #define MIB_COUNTER_RX_MULTICAST	0x0C
1022 #define MIB_COUNTER_RX_UNICAST		0x0D
1023 #define MIB_COUNTER_RX_OCTET_64		0x0E
1024 #define MIB_COUNTER_RX_OCTET_65_127	0x0F
1025 #define MIB_COUNTER_RX_OCTET_128_255	0x10
1026 #define MIB_COUNTER_RX_OCTET_256_511	0x11
1027 #define MIB_COUNTER_RX_OCTET_512_1023	0x12
1028 #define MIB_COUNTER_RX_OCTET_1024_1522	0x13
1029 #define MIB_COUNTER_TX_LO_PRIORITY	0x14
1030 #define MIB_COUNTER_TX_HI_PRIORITY	0x15
1031 #define MIB_COUNTER_TX_LATE_COLLISION	0x16
1032 #define MIB_COUNTER_TX_PAUSE		0x17
1033 #define MIB_COUNTER_TX_BROADCAST	0x18
1034 #define MIB_COUNTER_TX_MULTICAST	0x19
1035 #define MIB_COUNTER_TX_UNICAST		0x1A
1036 #define MIB_COUNTER_TX_DEFERRED		0x1B
1037 #define MIB_COUNTER_TX_TOTAL_COLLISION	0x1C
1038 #define MIB_COUNTER_TX_EXCESS_COLLISION	0x1D
1039 #define MIB_COUNTER_TX_SINGLE_COLLISION	0x1E
1040 #define MIB_COUNTER_TX_MULTI_COLLISION	0x1F
1041 
1042 #define MIB_COUNTER_RX_DROPPED_PACKET	0x20
1043 #define MIB_COUNTER_TX_DROPPED_PACKET	0x21
1044 
1045 /**
1046  * struct ksz_port_mib - Port MIB data structure
1047  * @cnt_ptr:	Current pointer to MIB counter index.
1048  * @link_down:	Indication the link has just gone down.
1049  * @state:	Connection status of the port.
1050  * @mib_start:	The starting counter index.  Some ports do not start at 0.
1051  * @counter:	64-bit MIB counter value.
1052  * @dropped:	Temporary buffer to remember last read packet dropped values.
1053  *
1054  * MIB counters needs to be read periodically so that counters do not get
1055  * overflowed and give incorrect values.  A right balance is needed to
1056  * satisfy this condition and not waste too much CPU time.
1057  *
1058  * It is pointless to read MIB counters when the port is disconnected.  The
1059  * @state provides the connection status so that MIB counters are read only
1060  * when the port is connected.  The @link_down indicates the port is just
1061  * disconnected so that all MIB counters are read one last time to update the
1062  * information.
1063  */
1064 struct ksz_port_mib {
1065 	u8 cnt_ptr;
1066 	u8 link_down;
1067 	u8 state;
1068 	u8 mib_start;
1069 
1070 	u64 counter[TOTAL_PORT_COUNTER_NUM];
1071 	u32 dropped[2];
1072 };
1073 
1074 /**
1075  * struct ksz_port_cfg - Port configuration data structure
1076  * @vid:	VID value.
1077  * @member:	Port membership.
1078  * @port_prio:	Port priority.
1079  * @rx_rate:	Receive priority rate.
1080  * @tx_rate:	Transmit priority rate.
1081  * @stp_state:	Current Spanning Tree Protocol state.
1082  */
1083 struct ksz_port_cfg {
1084 	u16 vid;
1085 	u8 member;
1086 	u8 port_prio;
1087 	u32 rx_rate[PRIO_QUEUES];
1088 	u32 tx_rate[PRIO_QUEUES];
1089 	int stp_state;
1090 };
1091 
1092 /**
1093  * struct ksz_switch - KSZ8842 switch data structure
1094  * @mac_table:	MAC table entries information.
1095  * @vlan_table:	VLAN table entries information.
1096  * @port_cfg:	Port configuration information.
1097  * @diffserv:	DiffServ priority settings.  Possible values from 6-bit of ToS
1098  * 		(bit7 ~ bit2) field.
1099  * @p_802_1p:	802.1P priority settings.  Possible values from 3-bit of 802.1p
1100  * 		Tag priority field.
1101  * @br_addr:	Bridge address.  Used for STP.
1102  * @other_addr:	Other MAC address.  Used for multiple network device mode.
1103  * @broad_per:	Broadcast storm percentage.
1104  * @member:	Current port membership.  Used for STP.
1105  */
1106 struct ksz_switch {
1107 	struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1108 	struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1109 	struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1110 
1111 	u8 diffserv[DIFFSERV_ENTRIES];
1112 	u8 p_802_1p[PRIO_802_1P_ENTRIES];
1113 
1114 	u8 br_addr[ETH_ALEN];
1115 	u8 other_addr[ETH_ALEN];
1116 
1117 	u8 broad_per;
1118 	u8 member;
1119 };
1120 
1121 #define TX_RATE_UNIT			10000
1122 
1123 /**
1124  * struct ksz_port_info - Port information data structure
1125  * @state:	Connection status of the port.
1126  * @tx_rate:	Transmit rate divided by 10000 to get Mbit.
1127  * @duplex:	Duplex mode.
1128  * @advertised:	Advertised auto-negotiation setting.  Used to determine link.
1129  * @partner:	Auto-negotiation partner setting.  Used to determine link.
1130  * @port_id:	Port index to access actual hardware register.
1131  * @pdev:	Pointer to OS dependent network device.
1132  */
1133 struct ksz_port_info {
1134 	uint state;
1135 	uint tx_rate;
1136 	u8 duplex;
1137 	u8 advertised;
1138 	u8 partner;
1139 	u8 port_id;
1140 	void *pdev;
1141 };
1142 
1143 #define MAX_TX_HELD_SIZE		52000
1144 
1145 /* Hardware features and bug fixes. */
1146 #define LINK_INT_WORKING		(1 << 0)
1147 #define SMALL_PACKET_TX_BUG		(1 << 1)
1148 #define HALF_DUPLEX_SIGNAL_BUG		(1 << 2)
1149 #define RX_HUGE_FRAME			(1 << 4)
1150 #define STP_SUPPORT			(1 << 8)
1151 
1152 /* Software overrides. */
1153 #define PAUSE_FLOW_CTRL			(1 << 0)
1154 #define FAST_AGING			(1 << 1)
1155 
1156 /**
1157  * struct ksz_hw - KSZ884X hardware data structure
1158  * @io:			Virtual address assigned.
1159  * @ksz_switch:		Pointer to KSZ8842 switch.
1160  * @port_info:		Port information.
1161  * @port_mib:		Port MIB information.
1162  * @dev_count:		Number of network devices this hardware supports.
1163  * @dst_ports:		Destination ports in switch for transmission.
1164  * @id:			Hardware ID.  Used for display only.
1165  * @mib_cnt:		Number of MIB counters this hardware has.
1166  * @mib_port_cnt:	Number of ports with MIB counters.
1167  * @tx_cfg:		Cached transmit control settings.
1168  * @rx_cfg:		Cached receive control settings.
1169  * @intr_mask:		Current interrupt mask.
1170  * @intr_set:		Current interrupt set.
1171  * @intr_blocked:	Interrupt blocked.
1172  * @rx_desc_info:	Receive descriptor information.
1173  * @tx_desc_info:	Transmit descriptor information.
1174  * @tx_int_cnt:		Transmit interrupt count.  Used for TX optimization.
1175  * @tx_int_mask:	Transmit interrupt mask.  Used for TX optimization.
1176  * @tx_size:		Transmit data size.  Used for TX optimization.
1177  * 			The maximum is defined by MAX_TX_HELD_SIZE.
1178  * @perm_addr:		Permanent MAC address.
1179  * @override_addr:	Overridden MAC address.
1180  * @address:		Additional MAC address entries.
1181  * @addr_list_size:	Additional MAC address list size.
1182  * @mac_override:	Indication of MAC address overridden.
1183  * @promiscuous:	Counter to keep track of promiscuous mode set.
1184  * @all_multi:		Counter to keep track of all multicast mode set.
1185  * @multi_list:		Multicast address entries.
1186  * @multi_bits:		Cached multicast hash table settings.
1187  * @multi_list_size:	Multicast address list size.
1188  * @enabled:		Indication of hardware enabled.
1189  * @rx_stop:		Indication of receive process stop.
1190  * @reserved2:		none
1191  * @features:		Hardware features to enable.
1192  * @overrides:		Hardware features to override.
1193  * @parent:		Pointer to parent, network device private structure.
1194  */
1195 struct ksz_hw {
1196 	void __iomem *io;
1197 
1198 	struct ksz_switch *ksz_switch;
1199 	struct ksz_port_info port_info[SWITCH_PORT_NUM];
1200 	struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1201 	int dev_count;
1202 	int dst_ports;
1203 	int id;
1204 	int mib_cnt;
1205 	int mib_port_cnt;
1206 
1207 	u32 tx_cfg;
1208 	u32 rx_cfg;
1209 	u32 intr_mask;
1210 	u32 intr_set;
1211 	uint intr_blocked;
1212 
1213 	struct ksz_desc_info rx_desc_info;
1214 	struct ksz_desc_info tx_desc_info;
1215 
1216 	int tx_int_cnt;
1217 	int tx_int_mask;
1218 	int tx_size;
1219 
1220 	u8 perm_addr[ETH_ALEN];
1221 	u8 override_addr[ETH_ALEN];
1222 	u8 address[ADDITIONAL_ENTRIES][ETH_ALEN];
1223 	u8 addr_list_size;
1224 	u8 mac_override;
1225 	u8 promiscuous;
1226 	u8 all_multi;
1227 	u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN];
1228 	u8 multi_bits[HW_MULTICAST_SIZE];
1229 	u8 multi_list_size;
1230 
1231 	u8 enabled;
1232 	u8 rx_stop;
1233 	u8 reserved2[1];
1234 
1235 	uint features;
1236 	uint overrides;
1237 
1238 	void *parent;
1239 };
1240 
1241 enum {
1242 	PHY_NO_FLOW_CTRL,
1243 	PHY_FLOW_CTRL,
1244 	PHY_TX_ONLY,
1245 	PHY_RX_ONLY
1246 };
1247 
1248 /**
1249  * struct ksz_port - Virtual port data structure
1250  * @duplex:		Duplex mode setting.  1 for half duplex, 2 for full
1251  * 			duplex, and 0 for auto, which normally results in full
1252  * 			duplex.
1253  * @speed:		Speed setting.  10 for 10 Mbit, 100 for 100 Mbit, and
1254  * 			0 for auto, which normally results in 100 Mbit.
1255  * @force_link:		Force link setting.  0 for auto-negotiation, and 1 for
1256  * 			force.
1257  * @flow_ctrl:		Flow control setting.  PHY_NO_FLOW_CTRL for no flow
1258  * 			control, and PHY_FLOW_CTRL for flow control.
1259  * 			PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1260  * 			Mbit PHY.
1261  * @first_port:		Index of first port this port supports.
1262  * @mib_port_cnt:	Number of ports with MIB counters.
1263  * @port_cnt:		Number of ports this port supports.
1264  * @counter:		Port statistics counter.
1265  * @hw:			Pointer to hardware structure.
1266  * @linked:		Pointer to port information linked to this port.
1267  */
1268 struct ksz_port {
1269 	u8 duplex;
1270 	u8 speed;
1271 	u8 force_link;
1272 	u8 flow_ctrl;
1273 
1274 	int first_port;
1275 	int mib_port_cnt;
1276 	int port_cnt;
1277 	u64 counter[OID_COUNTER_LAST];
1278 
1279 	struct ksz_hw *hw;
1280 	struct ksz_port_info *linked;
1281 };
1282 
1283 /**
1284  * struct ksz_timer_info - Timer information data structure
1285  * @timer:	Kernel timer.
1286  * @cnt:	Running timer counter.
1287  * @max:	Number of times to run timer; -1 for infinity.
1288  * @period:	Timer period in jiffies.
1289  */
1290 struct ksz_timer_info {
1291 	struct timer_list timer;
1292 	int cnt;
1293 	int max;
1294 	int period;
1295 };
1296 
1297 /**
1298  * struct ksz_shared_mem - OS dependent shared memory data structure
1299  * @dma_addr:	Physical DMA address allocated.
1300  * @alloc_size:	Allocation size.
1301  * @phys:	Actual physical address used.
1302  * @alloc_virt:	Virtual address allocated.
1303  * @virt:	Actual virtual address used.
1304  */
1305 struct ksz_shared_mem {
1306 	dma_addr_t dma_addr;
1307 	uint alloc_size;
1308 	uint phys;
1309 	u8 *alloc_virt;
1310 	u8 *virt;
1311 };
1312 
1313 /**
1314  * struct ksz_counter_info - OS dependent counter information data structure
1315  * @counter:	Wait queue to wakeup after counters are read.
1316  * @time:	Next time in jiffies to read counter.
1317  * @read:	Indication of counters read in full or not.
1318  */
1319 struct ksz_counter_info {
1320 	wait_queue_head_t counter;
1321 	unsigned long time;
1322 	int read;
1323 };
1324 
1325 /**
1326  * struct dev_info - Network device information data structure
1327  * @dev:		Pointer to network device.
1328  * @pdev:		Pointer to PCI device.
1329  * @hw:			Hardware structure.
1330  * @desc_pool:		Physical memory used for descriptor pool.
1331  * @hwlock:		Spinlock to prevent hardware from accessing.
1332  * @lock:		Mutex lock to prevent device from accessing.
1333  * @dev_rcv:		Receive process function used.
1334  * @last_skb:		Socket buffer allocated for descriptor rx fragments.
1335  * @skb_index:		Buffer index for receiving fragments.
1336  * @skb_len:		Buffer length for receiving fragments.
1337  * @mib_read:		Workqueue to read MIB counters.
1338  * @mib_timer_info:	Timer to read MIB counters.
1339  * @counter:		Used for MIB reading.
1340  * @mtu:		Current MTU used.  The default is REGULAR_RX_BUF_SIZE;
1341  * 			the maximum is MAX_RX_BUF_SIZE.
1342  * @opened:		Counter to keep track of device open.
1343  * @rx_tasklet:		Receive processing tasklet.
1344  * @tx_tasklet:		Transmit processing tasklet.
1345  * @wol_enable:		Wake-on-LAN enable set by ethtool.
1346  * @wol_support:	Wake-on-LAN support used by ethtool.
1347  * @pme_wait:		Used for KSZ8841 power management.
1348  */
1349 struct dev_info {
1350 	struct net_device *dev;
1351 	struct pci_dev *pdev;
1352 
1353 	struct ksz_hw hw;
1354 	struct ksz_shared_mem desc_pool;
1355 
1356 	spinlock_t hwlock;
1357 	struct mutex lock;
1358 
1359 	int (*dev_rcv)(struct dev_info *);
1360 
1361 	struct sk_buff *last_skb;
1362 	int skb_index;
1363 	int skb_len;
1364 
1365 	struct work_struct mib_read;
1366 	struct ksz_timer_info mib_timer_info;
1367 	struct ksz_counter_info counter[TOTAL_PORT_NUM];
1368 
1369 	int mtu;
1370 	int opened;
1371 
1372 	struct tasklet_struct rx_tasklet;
1373 	struct tasklet_struct tx_tasklet;
1374 
1375 	int wol_enable;
1376 	int wol_support;
1377 	unsigned long pme_wait;
1378 };
1379 
1380 /**
1381  * struct dev_priv - Network device private data structure
1382  * @adapter:		Adapter device information.
1383  * @port:		Port information.
1384  * @monitor_timer_info:	Timer to monitor ports.
1385  * @proc_sem:		Semaphore for proc accessing.
1386  * @id:			Device ID.
1387  * @mii_if:		MII interface information.
1388  * @advertising:	Temporary variable to store advertised settings.
1389  * @msg_enable:		The message flags controlling driver output.
1390  * @media_state:	The connection status of the device.
1391  * @multicast:		The all multicast state of the device.
1392  * @promiscuous:	The promiscuous state of the device.
1393  */
1394 struct dev_priv {
1395 	struct dev_info *adapter;
1396 	struct ksz_port port;
1397 	struct ksz_timer_info monitor_timer_info;
1398 
1399 	struct semaphore proc_sem;
1400 	int id;
1401 
1402 	struct mii_if_info mii_if;
1403 	u32 advertising;
1404 
1405 	u32 msg_enable;
1406 	int media_state;
1407 	int multicast;
1408 	int promiscuous;
1409 };
1410 
1411 #define DRV_NAME		"KSZ884X PCI"
1412 #define DEVICE_NAME		"KSZ884x PCI"
1413 #define DRV_VERSION		"1.0.0"
1414 #define DRV_RELDATE		"Feb 8, 2010"
1415 
1416 static char version[] =
1417 	"Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1418 
1419 static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1420 
1421 /*
1422  * Interrupt processing primary routines
1423  */
1424 
1425 static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1426 {
1427 	writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1428 }
1429 
1430 static inline void hw_dis_intr(struct ksz_hw *hw)
1431 {
1432 	hw->intr_blocked = hw->intr_mask;
1433 	writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1434 	hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1435 }
1436 
1437 static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1438 {
1439 	hw->intr_set = interrupt;
1440 	writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1441 }
1442 
1443 static inline void hw_ena_intr(struct ksz_hw *hw)
1444 {
1445 	hw->intr_blocked = 0;
1446 	hw_set_intr(hw, hw->intr_mask);
1447 }
1448 
1449 static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1450 {
1451 	hw->intr_mask &= ~(bit);
1452 }
1453 
1454 static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1455 {
1456 	u32 read_intr;
1457 
1458 	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1459 	hw->intr_set = read_intr & ~interrupt;
1460 	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1461 	hw_dis_intr_bit(hw, interrupt);
1462 }
1463 
1464 /**
1465  * hw_turn_on_intr - turn on specified interrupts
1466  * @hw: 	The hardware instance.
1467  * @bit:	The interrupt bits to be on.
1468  *
1469  * This routine turns on the specified interrupts in the interrupt mask so that
1470  * those interrupts will be enabled.
1471  */
1472 static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1473 {
1474 	hw->intr_mask |= bit;
1475 
1476 	if (!hw->intr_blocked)
1477 		hw_set_intr(hw, hw->intr_mask);
1478 }
1479 
1480 static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1481 {
1482 	*status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1483 	*status = *status & hw->intr_set;
1484 }
1485 
1486 static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1487 {
1488 	if (interrupt)
1489 		hw_ena_intr(hw);
1490 }
1491 
1492 /**
1493  * hw_block_intr - block hardware interrupts
1494  * @hw: The hardware instance.
1495  *
1496  * This function blocks all interrupts of the hardware and returns the current
1497  * interrupt enable mask so that interrupts can be restored later.
1498  *
1499  * Return the current interrupt enable mask.
1500  */
1501 static uint hw_block_intr(struct ksz_hw *hw)
1502 {
1503 	uint interrupt = 0;
1504 
1505 	if (!hw->intr_blocked) {
1506 		hw_dis_intr(hw);
1507 		interrupt = hw->intr_blocked;
1508 	}
1509 	return interrupt;
1510 }
1511 
1512 /*
1513  * Hardware descriptor routines
1514  */
1515 
1516 static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1517 {
1518 	status.rx.hw_owned = 0;
1519 	desc->phw->ctrl.data = cpu_to_le32(status.data);
1520 }
1521 
1522 static inline void release_desc(struct ksz_desc *desc)
1523 {
1524 	desc->sw.ctrl.tx.hw_owned = 1;
1525 	if (desc->sw.buf_size != desc->sw.buf.data) {
1526 		desc->sw.buf_size = desc->sw.buf.data;
1527 		desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1528 	}
1529 	desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1530 }
1531 
1532 static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1533 {
1534 	*desc = &info->ring[info->last];
1535 	info->last++;
1536 	info->last &= info->mask;
1537 	info->avail--;
1538 	(*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1539 }
1540 
1541 static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1542 {
1543 	desc->phw->addr = cpu_to_le32(addr);
1544 }
1545 
1546 static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1547 {
1548 	desc->sw.buf.rx.buf_size = len;
1549 }
1550 
1551 static inline void get_tx_pkt(struct ksz_desc_info *info,
1552 	struct ksz_desc **desc)
1553 {
1554 	*desc = &info->ring[info->next];
1555 	info->next++;
1556 	info->next &= info->mask;
1557 	info->avail--;
1558 	(*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1559 }
1560 
1561 static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1562 {
1563 	desc->phw->addr = cpu_to_le32(addr);
1564 }
1565 
1566 static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1567 {
1568 	desc->sw.buf.tx.buf_size = len;
1569 }
1570 
1571 /* Switch functions */
1572 
1573 #define TABLE_READ			0x10
1574 #define TABLE_SEL_SHIFT			2
1575 
1576 #define HW_DELAY(hw, reg)			\
1577 	do {					\
1578 		readw(hw->io + reg);		\
1579 	} while (0)
1580 
1581 /**
1582  * sw_r_table - read 4 bytes of data from switch table
1583  * @hw:		The hardware instance.
1584  * @table:	The table selector.
1585  * @addr:	The address of the table entry.
1586  * @data:	Buffer to store the read data.
1587  *
1588  * This routine reads 4 bytes of data from the table of the switch.
1589  * Hardware interrupts are disabled to minimize corruption of read data.
1590  */
1591 static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1592 {
1593 	u16 ctrl_addr;
1594 	uint interrupt;
1595 
1596 	ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1597 
1598 	interrupt = hw_block_intr(hw);
1599 
1600 	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1601 	HW_DELAY(hw, KS884X_IACR_OFFSET);
1602 	*data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1603 
1604 	hw_restore_intr(hw, interrupt);
1605 }
1606 
1607 /**
1608  * sw_w_table_64 - write 8 bytes of data to the switch table
1609  * @hw:		The hardware instance.
1610  * @table:	The table selector.
1611  * @addr:	The address of the table entry.
1612  * @data_hi:	The high part of data to be written (bit63 ~ bit32).
1613  * @data_lo:	The low part of data to be written (bit31 ~ bit0).
1614  *
1615  * This routine writes 8 bytes of data to the table of the switch.
1616  * Hardware interrupts are disabled to minimize corruption of written data.
1617  */
1618 static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1619 	u32 data_lo)
1620 {
1621 	u16 ctrl_addr;
1622 	uint interrupt;
1623 
1624 	ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1625 
1626 	interrupt = hw_block_intr(hw);
1627 
1628 	writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1629 	writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1630 
1631 	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1632 	HW_DELAY(hw, KS884X_IACR_OFFSET);
1633 
1634 	hw_restore_intr(hw, interrupt);
1635 }
1636 
1637 /**
1638  * sw_w_sta_mac_table - write to the static MAC table
1639  * @hw: 	The hardware instance.
1640  * @addr:	The address of the table entry.
1641  * @mac_addr:	The MAC address.
1642  * @ports:	The port members.
1643  * @override:	The flag to override the port receive/transmit settings.
1644  * @valid:	The flag to indicate entry is valid.
1645  * @use_fid:	The flag to indicate the FID is valid.
1646  * @fid:	The FID value.
1647  *
1648  * This routine writes an entry of the static MAC table of the switch.  It
1649  * calls sw_w_table_64() to write the data.
1650  */
1651 static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1652 	u8 ports, int override, int valid, int use_fid, u8 fid)
1653 {
1654 	u32 data_hi;
1655 	u32 data_lo;
1656 
1657 	data_lo = ((u32) mac_addr[2] << 24) |
1658 		((u32) mac_addr[3] << 16) |
1659 		((u32) mac_addr[4] << 8) | mac_addr[5];
1660 	data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1661 	data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1662 
1663 	if (override)
1664 		data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1665 	if (use_fid) {
1666 		data_hi |= STATIC_MAC_TABLE_USE_FID;
1667 		data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1668 	}
1669 	if (valid)
1670 		data_hi |= STATIC_MAC_TABLE_VALID;
1671 
1672 	sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1673 }
1674 
1675 /**
1676  * sw_r_vlan_table - read from the VLAN table
1677  * @hw: 	The hardware instance.
1678  * @addr:	The address of the table entry.
1679  * @vid:	Buffer to store the VID.
1680  * @fid:	Buffer to store the VID.
1681  * @member:	Buffer to store the port membership.
1682  *
1683  * This function reads an entry of the VLAN table of the switch.  It calls
1684  * sw_r_table() to get the data.
1685  *
1686  * Return 0 if the entry is valid; otherwise -1.
1687  */
1688 static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1689 	u8 *member)
1690 {
1691 	u32 data;
1692 
1693 	sw_r_table(hw, TABLE_VLAN, addr, &data);
1694 	if (data & VLAN_TABLE_VALID) {
1695 		*vid = (u16)(data & VLAN_TABLE_VID);
1696 		*fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1697 		*member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1698 			VLAN_TABLE_MEMBERSHIP_SHIFT);
1699 		return 0;
1700 	}
1701 	return -1;
1702 }
1703 
1704 /**
1705  * port_r_mib_cnt - read MIB counter
1706  * @hw: 	The hardware instance.
1707  * @port:	The port index.
1708  * @addr:	The address of the counter.
1709  * @cnt:	Buffer to store the counter.
1710  *
1711  * This routine reads a MIB counter of the port.
1712  * Hardware interrupts are disabled to minimize corruption of read data.
1713  */
1714 static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1715 {
1716 	u32 data;
1717 	u16 ctrl_addr;
1718 	uint interrupt;
1719 	int timeout;
1720 
1721 	ctrl_addr = addr + PORT_COUNTER_NUM * port;
1722 
1723 	interrupt = hw_block_intr(hw);
1724 
1725 	ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1726 	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1727 	HW_DELAY(hw, KS884X_IACR_OFFSET);
1728 
1729 	for (timeout = 100; timeout > 0; timeout--) {
1730 		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1731 
1732 		if (data & MIB_COUNTER_VALID) {
1733 			if (data & MIB_COUNTER_OVERFLOW)
1734 				*cnt += MIB_COUNTER_VALUE + 1;
1735 			*cnt += data & MIB_COUNTER_VALUE;
1736 			break;
1737 		}
1738 	}
1739 
1740 	hw_restore_intr(hw, interrupt);
1741 }
1742 
1743 /**
1744  * port_r_mib_pkt - read dropped packet counts
1745  * @hw: 	The hardware instance.
1746  * @port:	The port index.
1747  * @last:	last one
1748  * @cnt:	Buffer to store the receive and transmit dropped packet counts.
1749  *
1750  * This routine reads the dropped packet counts of the port.
1751  * Hardware interrupts are disabled to minimize corruption of read data.
1752  */
1753 static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1754 {
1755 	u32 cur;
1756 	u32 data;
1757 	u16 ctrl_addr;
1758 	uint interrupt;
1759 	int index;
1760 
1761 	index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1762 	do {
1763 		interrupt = hw_block_intr(hw);
1764 
1765 		ctrl_addr = (u16) index;
1766 		ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1767 			<< 8);
1768 		writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1769 		HW_DELAY(hw, KS884X_IACR_OFFSET);
1770 		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1771 
1772 		hw_restore_intr(hw, interrupt);
1773 
1774 		data &= MIB_PACKET_DROPPED;
1775 		cur = *last;
1776 		if (data != cur) {
1777 			*last = data;
1778 			if (data < cur)
1779 				data += MIB_PACKET_DROPPED + 1;
1780 			data -= cur;
1781 			*cnt += data;
1782 		}
1783 		++last;
1784 		++cnt;
1785 		index -= KS_MIB_PACKET_DROPPED_TX -
1786 			KS_MIB_PACKET_DROPPED_TX_0 + 1;
1787 	} while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1788 }
1789 
1790 /**
1791  * port_r_cnt - read MIB counters periodically
1792  * @hw: 	The hardware instance.
1793  * @port:	The port index.
1794  *
1795  * This routine is used to read the counters of the port periodically to avoid
1796  * counter overflow.  The hardware should be acquired first before calling this
1797  * routine.
1798  *
1799  * Return non-zero when not all counters not read.
1800  */
1801 static int port_r_cnt(struct ksz_hw *hw, int port)
1802 {
1803 	struct ksz_port_mib *mib = &hw->port_mib[port];
1804 
1805 	if (mib->mib_start < PORT_COUNTER_NUM)
1806 		while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1807 			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1808 				&mib->counter[mib->cnt_ptr]);
1809 			++mib->cnt_ptr;
1810 		}
1811 	if (hw->mib_cnt > PORT_COUNTER_NUM)
1812 		port_r_mib_pkt(hw, port, mib->dropped,
1813 			&mib->counter[PORT_COUNTER_NUM]);
1814 	mib->cnt_ptr = 0;
1815 	return 0;
1816 }
1817 
1818 /**
1819  * port_init_cnt - initialize MIB counter values
1820  * @hw: 	The hardware instance.
1821  * @port:	The port index.
1822  *
1823  * This routine is used to initialize all counters to zero if the hardware
1824  * cannot do it after reset.
1825  */
1826 static void port_init_cnt(struct ksz_hw *hw, int port)
1827 {
1828 	struct ksz_port_mib *mib = &hw->port_mib[port];
1829 
1830 	mib->cnt_ptr = 0;
1831 	if (mib->mib_start < PORT_COUNTER_NUM)
1832 		do {
1833 			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1834 				&mib->counter[mib->cnt_ptr]);
1835 			++mib->cnt_ptr;
1836 		} while (mib->cnt_ptr < PORT_COUNTER_NUM);
1837 	if (hw->mib_cnt > PORT_COUNTER_NUM)
1838 		port_r_mib_pkt(hw, port, mib->dropped,
1839 			&mib->counter[PORT_COUNTER_NUM]);
1840 	memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1841 	mib->cnt_ptr = 0;
1842 }
1843 
1844 /*
1845  * Port functions
1846  */
1847 
1848 /**
1849  * port_cfg - set port register bits
1850  * @hw: 	The hardware instance.
1851  * @port:	The port index.
1852  * @offset:	The offset of the port register.
1853  * @bits:	The data bits to set.
1854  * @set:	The flag indicating whether the bits are to be set or not.
1855  *
1856  * This routine sets or resets the specified bits of the port register.
1857  */
1858 static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1859 	int set)
1860 {
1861 	u32 addr;
1862 	u16 data;
1863 
1864 	PORT_CTRL_ADDR(port, addr);
1865 	addr += offset;
1866 	data = readw(hw->io + addr);
1867 	if (set)
1868 		data |= bits;
1869 	else
1870 		data &= ~bits;
1871 	writew(data, hw->io + addr);
1872 }
1873 
1874 /**
1875  * port_r8 - read byte from port register
1876  * @hw: 	The hardware instance.
1877  * @port:	The port index.
1878  * @offset:	The offset of the port register.
1879  * @data:	Buffer to store the data.
1880  *
1881  * This routine reads a byte from the port register.
1882  */
1883 static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
1884 {
1885 	u32 addr;
1886 
1887 	PORT_CTRL_ADDR(port, addr);
1888 	addr += offset;
1889 	*data = readb(hw->io + addr);
1890 }
1891 
1892 /**
1893  * port_r16 - read word from port register.
1894  * @hw: 	The hardware instance.
1895  * @port:	The port index.
1896  * @offset:	The offset of the port register.
1897  * @data:	Buffer to store the data.
1898  *
1899  * This routine reads a word from the port register.
1900  */
1901 static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
1902 {
1903 	u32 addr;
1904 
1905 	PORT_CTRL_ADDR(port, addr);
1906 	addr += offset;
1907 	*data = readw(hw->io + addr);
1908 }
1909 
1910 /**
1911  * port_w16 - write word to port register.
1912  * @hw: 	The hardware instance.
1913  * @port:	The port index.
1914  * @offset:	The offset of the port register.
1915  * @data:	Data to write.
1916  *
1917  * This routine writes a word to the port register.
1918  */
1919 static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
1920 {
1921 	u32 addr;
1922 
1923 	PORT_CTRL_ADDR(port, addr);
1924 	addr += offset;
1925 	writew(data, hw->io + addr);
1926 }
1927 
1928 /**
1929  * sw_chk - check switch register bits
1930  * @hw: 	The hardware instance.
1931  * @addr:	The address of the switch register.
1932  * @bits:	The data bits to check.
1933  *
1934  * This function checks whether the specified bits of the switch register are
1935  * set or not.
1936  *
1937  * Return 0 if the bits are not set.
1938  */
1939 static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
1940 {
1941 	u16 data;
1942 
1943 	data = readw(hw->io + addr);
1944 	return (data & bits) == bits;
1945 }
1946 
1947 /**
1948  * sw_cfg - set switch register bits
1949  * @hw: 	The hardware instance.
1950  * @addr:	The address of the switch register.
1951  * @bits:	The data bits to set.
1952  * @set:	The flag indicating whether the bits are to be set or not.
1953  *
1954  * This function sets or resets the specified bits of the switch register.
1955  */
1956 static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
1957 {
1958 	u16 data;
1959 
1960 	data = readw(hw->io + addr);
1961 	if (set)
1962 		data |= bits;
1963 	else
1964 		data &= ~bits;
1965 	writew(data, hw->io + addr);
1966 }
1967 
1968 /* Bandwidth */
1969 
1970 static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
1971 {
1972 	port_cfg(hw, p,
1973 		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
1974 }
1975 
1976 /* Driver set switch broadcast storm protection at 10% rate. */
1977 #define BROADCAST_STORM_PROTECTION_RATE	10
1978 
1979 /* 148,800 frames * 67 ms / 100 */
1980 #define BROADCAST_STORM_VALUE		9969
1981 
1982 /**
1983  * sw_cfg_broad_storm - configure broadcast storm threshold
1984  * @hw: 	The hardware instance.
1985  * @percent:	Broadcast storm threshold in percent of transmit rate.
1986  *
1987  * This routine configures the broadcast storm threshold of the switch.
1988  */
1989 static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
1990 {
1991 	u16 data;
1992 	u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
1993 
1994 	if (value > BROADCAST_STORM_RATE)
1995 		value = BROADCAST_STORM_RATE;
1996 
1997 	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
1998 	data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
1999 	data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
2000 	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2001 }
2002 
2003 /**
2004  * sw_get_broad_storm - get broadcast storm threshold
2005  * @hw: 	The hardware instance.
2006  * @percent:	Buffer to store the broadcast storm threshold percentage.
2007  *
2008  * This routine retrieves the broadcast storm threshold of the switch.
2009  */
2010 static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2011 {
2012 	int num;
2013 	u16 data;
2014 
2015 	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2016 	num = (data & BROADCAST_STORM_RATE_HI);
2017 	num <<= 8;
2018 	num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2019 	num = DIV_ROUND_CLOSEST(num * 100, BROADCAST_STORM_VALUE);
2020 	*percent = (u8) num;
2021 }
2022 
2023 /**
2024  * sw_dis_broad_storm - disable broadstorm
2025  * @hw: 	The hardware instance.
2026  * @port:	The port index.
2027  *
2028  * This routine disables the broadcast storm limit function of the switch.
2029  */
2030 static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2031 {
2032 	port_cfg_broad_storm(hw, port, 0);
2033 }
2034 
2035 /**
2036  * sw_ena_broad_storm - enable broadcast storm
2037  * @hw: 	The hardware instance.
2038  * @port:	The port index.
2039  *
2040  * This routine enables the broadcast storm limit function of the switch.
2041  */
2042 static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2043 {
2044 	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2045 	port_cfg_broad_storm(hw, port, 1);
2046 }
2047 
2048 /**
2049  * sw_init_broad_storm - initialize broadcast storm
2050  * @hw: 	The hardware instance.
2051  *
2052  * This routine initializes the broadcast storm limit function of the switch.
2053  */
2054 static void sw_init_broad_storm(struct ksz_hw *hw)
2055 {
2056 	int port;
2057 
2058 	hw->ksz_switch->broad_per = 1;
2059 	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2060 	for (port = 0; port < TOTAL_PORT_NUM; port++)
2061 		sw_dis_broad_storm(hw, port);
2062 	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2063 }
2064 
2065 /**
2066  * hw_cfg_broad_storm - configure broadcast storm
2067  * @hw: 	The hardware instance.
2068  * @percent:	Broadcast storm threshold in percent of transmit rate.
2069  *
2070  * This routine configures the broadcast storm threshold of the switch.
2071  * It is called by user functions.  The hardware should be acquired first.
2072  */
2073 static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2074 {
2075 	if (percent > 100)
2076 		percent = 100;
2077 
2078 	sw_cfg_broad_storm(hw, percent);
2079 	sw_get_broad_storm(hw, &percent);
2080 	hw->ksz_switch->broad_per = percent;
2081 }
2082 
2083 /**
2084  * sw_dis_prio_rate - disable switch priority rate
2085  * @hw: 	The hardware instance.
2086  * @port:	The port index.
2087  *
2088  * This routine disables the priority rate function of the switch.
2089  */
2090 static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2091 {
2092 	u32 addr;
2093 
2094 	PORT_CTRL_ADDR(port, addr);
2095 	addr += KS8842_PORT_IN_RATE_OFFSET;
2096 	writel(0, hw->io + addr);
2097 }
2098 
2099 /**
2100  * sw_init_prio_rate - initialize switch priority rate
2101  * @hw: 	The hardware instance.
2102  *
2103  * This routine initializes the priority rate function of the switch.
2104  */
2105 static void sw_init_prio_rate(struct ksz_hw *hw)
2106 {
2107 	int port;
2108 	int prio;
2109 	struct ksz_switch *sw = hw->ksz_switch;
2110 
2111 	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2112 		for (prio = 0; prio < PRIO_QUEUES; prio++) {
2113 			sw->port_cfg[port].rx_rate[prio] =
2114 			sw->port_cfg[port].tx_rate[prio] = 0;
2115 		}
2116 		sw_dis_prio_rate(hw, port);
2117 	}
2118 }
2119 
2120 /* Communication */
2121 
2122 static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2123 {
2124 	port_cfg(hw, p,
2125 		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2126 }
2127 
2128 /* Mirroring */
2129 
2130 static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2131 {
2132 	port_cfg(hw, p,
2133 		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2134 }
2135 
2136 static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2137 {
2138 	port_cfg(hw, p,
2139 		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2140 }
2141 
2142 static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2143 {
2144 	port_cfg(hw, p,
2145 		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2146 }
2147 
2148 static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2149 {
2150 	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2151 }
2152 
2153 static void sw_init_mirror(struct ksz_hw *hw)
2154 {
2155 	int port;
2156 
2157 	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2158 		port_cfg_mirror_sniffer(hw, port, 0);
2159 		port_cfg_mirror_rx(hw, port, 0);
2160 		port_cfg_mirror_tx(hw, port, 0);
2161 	}
2162 	sw_cfg_mirror_rx_tx(hw, 0);
2163 }
2164 
2165 /* Priority */
2166 
2167 static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2168 {
2169 	port_cfg(hw, p,
2170 		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2171 }
2172 
2173 static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2174 {
2175 	port_cfg(hw, p,
2176 		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2177 }
2178 
2179 static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2180 {
2181 	port_cfg(hw, p,
2182 		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2183 }
2184 
2185 static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2186 {
2187 	port_cfg(hw, p,
2188 		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2189 }
2190 
2191 /**
2192  * sw_dis_diffserv - disable switch DiffServ priority
2193  * @hw: 	The hardware instance.
2194  * @port:	The port index.
2195  *
2196  * This routine disables the DiffServ priority function of the switch.
2197  */
2198 static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2199 {
2200 	port_cfg_diffserv(hw, port, 0);
2201 }
2202 
2203 /**
2204  * sw_dis_802_1p - disable switch 802.1p priority
2205  * @hw: 	The hardware instance.
2206  * @port:	The port index.
2207  *
2208  * This routine disables the 802.1p priority function of the switch.
2209  */
2210 static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2211 {
2212 	port_cfg_802_1p(hw, port, 0);
2213 }
2214 
2215 /**
2216  * sw_cfg_replace_null_vid -
2217  * @hw: 	The hardware instance.
2218  * @set:	The flag to disable or enable.
2219  *
2220  */
2221 static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2222 {
2223 	sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2224 }
2225 
2226 /**
2227  * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2228  * @hw: 	The hardware instance.
2229  * @port:	The port index.
2230  * @set:	The flag to disable or enable.
2231  *
2232  * This routine enables the 802.1p priority re-mapping function of the switch.
2233  * That allows 802.1p priority field to be replaced with the port's default
2234  * tag's priority value if the ingress packet's 802.1p priority has a higher
2235  * priority than port's default tag's priority.
2236  */
2237 static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2238 {
2239 	port_cfg_replace_vid(hw, port, set);
2240 }
2241 
2242 /**
2243  * sw_cfg_port_based - configure switch port based priority
2244  * @hw: 	The hardware instance.
2245  * @port:	The port index.
2246  * @prio:	The priority to set.
2247  *
2248  * This routine configures the port based priority of the switch.
2249  */
2250 static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2251 {
2252 	u16 data;
2253 
2254 	if (prio > PORT_BASED_PRIORITY_BASE)
2255 		prio = PORT_BASED_PRIORITY_BASE;
2256 
2257 	hw->ksz_switch->port_cfg[port].port_prio = prio;
2258 
2259 	port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2260 	data &= ~PORT_BASED_PRIORITY_MASK;
2261 	data |= prio << PORT_BASED_PRIORITY_SHIFT;
2262 	port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2263 }
2264 
2265 /**
2266  * sw_dis_multi_queue - disable transmit multiple queues
2267  * @hw: 	The hardware instance.
2268  * @port:	The port index.
2269  *
2270  * This routine disables the transmit multiple queues selection of the switch
2271  * port.  Only single transmit queue on the port.
2272  */
2273 static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2274 {
2275 	port_cfg_prio(hw, port, 0);
2276 }
2277 
2278 /**
2279  * sw_init_prio - initialize switch priority
2280  * @hw: 	The hardware instance.
2281  *
2282  * This routine initializes the switch QoS priority functions.
2283  */
2284 static void sw_init_prio(struct ksz_hw *hw)
2285 {
2286 	int port;
2287 	int tos;
2288 	struct ksz_switch *sw = hw->ksz_switch;
2289 
2290 	/*
2291 	 * Init all the 802.1p tag priority value to be assigned to different
2292 	 * priority queue.
2293 	 */
2294 	sw->p_802_1p[0] = 0;
2295 	sw->p_802_1p[1] = 0;
2296 	sw->p_802_1p[2] = 1;
2297 	sw->p_802_1p[3] = 1;
2298 	sw->p_802_1p[4] = 2;
2299 	sw->p_802_1p[5] = 2;
2300 	sw->p_802_1p[6] = 3;
2301 	sw->p_802_1p[7] = 3;
2302 
2303 	/*
2304 	 * Init all the DiffServ priority value to be assigned to priority
2305 	 * queue 0.
2306 	 */
2307 	for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2308 		sw->diffserv[tos] = 0;
2309 
2310 	/* All QoS functions disabled. */
2311 	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2312 		sw_dis_multi_queue(hw, port);
2313 		sw_dis_diffserv(hw, port);
2314 		sw_dis_802_1p(hw, port);
2315 		sw_cfg_replace_vid(hw, port, 0);
2316 
2317 		sw->port_cfg[port].port_prio = 0;
2318 		sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2319 	}
2320 	sw_cfg_replace_null_vid(hw, 0);
2321 }
2322 
2323 /**
2324  * port_get_def_vid - get port default VID.
2325  * @hw: 	The hardware instance.
2326  * @port:	The port index.
2327  * @vid:	Buffer to store the VID.
2328  *
2329  * This routine retrieves the default VID of the port.
2330  */
2331 static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2332 {
2333 	u32 addr;
2334 
2335 	PORT_CTRL_ADDR(port, addr);
2336 	addr += KS8842_PORT_CTRL_VID_OFFSET;
2337 	*vid = readw(hw->io + addr);
2338 }
2339 
2340 /**
2341  * sw_init_vlan - initialize switch VLAN
2342  * @hw: 	The hardware instance.
2343  *
2344  * This routine initializes the VLAN function of the switch.
2345  */
2346 static void sw_init_vlan(struct ksz_hw *hw)
2347 {
2348 	int port;
2349 	int entry;
2350 	struct ksz_switch *sw = hw->ksz_switch;
2351 
2352 	/* Read 16 VLAN entries from device's VLAN table. */
2353 	for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2354 		sw_r_vlan_table(hw, entry,
2355 			&sw->vlan_table[entry].vid,
2356 			&sw->vlan_table[entry].fid,
2357 			&sw->vlan_table[entry].member);
2358 	}
2359 
2360 	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2361 		port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2362 		sw->port_cfg[port].member = PORT_MASK;
2363 	}
2364 }
2365 
2366 /**
2367  * sw_cfg_port_base_vlan - configure port-based VLAN membership
2368  * @hw: 	The hardware instance.
2369  * @port:	The port index.
2370  * @member:	The port-based VLAN membership.
2371  *
2372  * This routine configures the port-based VLAN membership of the port.
2373  */
2374 static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2375 {
2376 	u32 addr;
2377 	u8 data;
2378 
2379 	PORT_CTRL_ADDR(port, addr);
2380 	addr += KS8842_PORT_CTRL_2_OFFSET;
2381 
2382 	data = readb(hw->io + addr);
2383 	data &= ~PORT_VLAN_MEMBERSHIP;
2384 	data |= (member & PORT_MASK);
2385 	writeb(data, hw->io + addr);
2386 
2387 	hw->ksz_switch->port_cfg[port].member = member;
2388 }
2389 
2390 /**
2391  * sw_set_addr - configure switch MAC address
2392  * @hw: 	The hardware instance.
2393  * @mac_addr:	The MAC address.
2394  *
2395  * This function configures the MAC address of the switch.
2396  */
2397 static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2398 {
2399 	int i;
2400 
2401 	for (i = 0; i < 6; i += 2) {
2402 		writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2403 		writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2404 	}
2405 }
2406 
2407 /**
2408  * sw_set_global_ctrl - set switch global control
2409  * @hw: 	The hardware instance.
2410  *
2411  * This routine sets the global control of the switch function.
2412  */
2413 static void sw_set_global_ctrl(struct ksz_hw *hw)
2414 {
2415 	u16 data;
2416 
2417 	/* Enable switch MII flow control. */
2418 	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2419 	data |= SWITCH_FLOW_CTRL;
2420 	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2421 
2422 	data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2423 
2424 	/* Enable aggressive back off algorithm in half duplex mode. */
2425 	data |= SWITCH_AGGR_BACKOFF;
2426 
2427 	/* Enable automatic fast aging when link changed detected. */
2428 	data |= SWITCH_AGING_ENABLE;
2429 	data |= SWITCH_LINK_AUTO_AGING;
2430 
2431 	if (hw->overrides & FAST_AGING)
2432 		data |= SWITCH_FAST_AGING;
2433 	else
2434 		data &= ~SWITCH_FAST_AGING;
2435 	writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2436 
2437 	data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2438 
2439 	/* Enable no excessive collision drop. */
2440 	data |= NO_EXC_COLLISION_DROP;
2441 	writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2442 }
2443 
2444 enum {
2445 	STP_STATE_DISABLED = 0,
2446 	STP_STATE_LISTENING,
2447 	STP_STATE_LEARNING,
2448 	STP_STATE_FORWARDING,
2449 	STP_STATE_BLOCKED,
2450 	STP_STATE_SIMPLE
2451 };
2452 
2453 /**
2454  * port_set_stp_state - configure port spanning tree state
2455  * @hw: 	The hardware instance.
2456  * @port:	The port index.
2457  * @state:	The spanning tree state.
2458  *
2459  * This routine configures the spanning tree state of the port.
2460  */
2461 static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2462 {
2463 	u16 data;
2464 
2465 	port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2466 	switch (state) {
2467 	case STP_STATE_DISABLED:
2468 		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2469 		data |= PORT_LEARN_DISABLE;
2470 		break;
2471 	case STP_STATE_LISTENING:
2472 /*
2473  * No need to turn on transmit because of port direct mode.
2474  * Turning on receive is required if static MAC table is not setup.
2475  */
2476 		data &= ~PORT_TX_ENABLE;
2477 		data |= PORT_RX_ENABLE;
2478 		data |= PORT_LEARN_DISABLE;
2479 		break;
2480 	case STP_STATE_LEARNING:
2481 		data &= ~PORT_TX_ENABLE;
2482 		data |= PORT_RX_ENABLE;
2483 		data &= ~PORT_LEARN_DISABLE;
2484 		break;
2485 	case STP_STATE_FORWARDING:
2486 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2487 		data &= ~PORT_LEARN_DISABLE;
2488 		break;
2489 	case STP_STATE_BLOCKED:
2490 /*
2491  * Need to setup static MAC table with override to keep receiving BPDU
2492  * messages.  See sw_init_stp routine.
2493  */
2494 		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2495 		data |= PORT_LEARN_DISABLE;
2496 		break;
2497 	case STP_STATE_SIMPLE:
2498 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2499 		data |= PORT_LEARN_DISABLE;
2500 		break;
2501 	}
2502 	port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2503 	hw->ksz_switch->port_cfg[port].stp_state = state;
2504 }
2505 
2506 #define STP_ENTRY			0
2507 #define BROADCAST_ENTRY			1
2508 #define BRIDGE_ADDR_ENTRY		2
2509 #define IPV6_ADDR_ENTRY			3
2510 
2511 /**
2512  * sw_clr_sta_mac_table - clear static MAC table
2513  * @hw: 	The hardware instance.
2514  *
2515  * This routine clears the static MAC table.
2516  */
2517 static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2518 {
2519 	struct ksz_mac_table *entry;
2520 	int i;
2521 
2522 	for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2523 		entry = &hw->ksz_switch->mac_table[i];
2524 		sw_w_sta_mac_table(hw, i,
2525 			entry->mac_addr, entry->ports,
2526 			entry->override, 0,
2527 			entry->use_fid, entry->fid);
2528 	}
2529 }
2530 
2531 /**
2532  * sw_init_stp - initialize switch spanning tree support
2533  * @hw: 	The hardware instance.
2534  *
2535  * This routine initializes the spanning tree support of the switch.
2536  */
2537 static void sw_init_stp(struct ksz_hw *hw)
2538 {
2539 	struct ksz_mac_table *entry;
2540 
2541 	entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2542 	entry->mac_addr[0] = 0x01;
2543 	entry->mac_addr[1] = 0x80;
2544 	entry->mac_addr[2] = 0xC2;
2545 	entry->mac_addr[3] = 0x00;
2546 	entry->mac_addr[4] = 0x00;
2547 	entry->mac_addr[5] = 0x00;
2548 	entry->ports = HOST_MASK;
2549 	entry->override = 1;
2550 	entry->valid = 1;
2551 	sw_w_sta_mac_table(hw, STP_ENTRY,
2552 		entry->mac_addr, entry->ports,
2553 		entry->override, entry->valid,
2554 		entry->use_fid, entry->fid);
2555 }
2556 
2557 /**
2558  * sw_block_addr - block certain packets from the host port
2559  * @hw: 	The hardware instance.
2560  *
2561  * This routine blocks certain packets from reaching to the host port.
2562  */
2563 static void sw_block_addr(struct ksz_hw *hw)
2564 {
2565 	struct ksz_mac_table *entry;
2566 	int i;
2567 
2568 	for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2569 		entry = &hw->ksz_switch->mac_table[i];
2570 		entry->valid = 0;
2571 		sw_w_sta_mac_table(hw, i,
2572 			entry->mac_addr, entry->ports,
2573 			entry->override, entry->valid,
2574 			entry->use_fid, entry->fid);
2575 	}
2576 }
2577 
2578 static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2579 {
2580 	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2581 }
2582 
2583 static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2584 {
2585 	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2586 }
2587 
2588 /**
2589  * hw_r_phy - read data from PHY register
2590  * @hw: 	The hardware instance.
2591  * @port:	Port to read.
2592  * @reg:	PHY register to read.
2593  * @val:	Buffer to store the read data.
2594  *
2595  * This routine reads data from the PHY register.
2596  */
2597 static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2598 {
2599 	int phy;
2600 
2601 	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2602 	*val = readw(hw->io + phy);
2603 }
2604 
2605 /**
2606  * hw_w_phy - write data to PHY register
2607  * @hw: 	The hardware instance.
2608  * @port:	Port to write.
2609  * @reg:	PHY register to write.
2610  * @val:	Word data to write.
2611  *
2612  * This routine writes data to the PHY register.
2613  */
2614 static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2615 {
2616 	int phy;
2617 
2618 	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2619 	writew(val, hw->io + phy);
2620 }
2621 
2622 /*
2623  * EEPROM access functions
2624  */
2625 
2626 #define AT93C_CODE			0
2627 #define AT93C_WR_OFF			0x00
2628 #define AT93C_WR_ALL			0x10
2629 #define AT93C_ER_ALL			0x20
2630 #define AT93C_WR_ON			0x30
2631 
2632 #define AT93C_WRITE			1
2633 #define AT93C_READ			2
2634 #define AT93C_ERASE			3
2635 
2636 #define EEPROM_DELAY			4
2637 
2638 static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
2639 {
2640 	u16 data;
2641 
2642 	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
2643 	data &= ~gpio;
2644 	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
2645 }
2646 
2647 static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
2648 {
2649 	u16 data;
2650 
2651 	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
2652 	data |= gpio;
2653 	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
2654 }
2655 
2656 static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
2657 {
2658 	u16 data;
2659 
2660 	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
2661 	return (u8)(data & gpio);
2662 }
2663 
2664 static void eeprom_clk(struct ksz_hw *hw)
2665 {
2666 	raise_gpio(hw, EEPROM_SERIAL_CLOCK);
2667 	udelay(EEPROM_DELAY);
2668 	drop_gpio(hw, EEPROM_SERIAL_CLOCK);
2669 	udelay(EEPROM_DELAY);
2670 }
2671 
2672 static u16 spi_r(struct ksz_hw *hw)
2673 {
2674 	int i;
2675 	u16 temp = 0;
2676 
2677 	for (i = 15; i >= 0; i--) {
2678 		raise_gpio(hw, EEPROM_SERIAL_CLOCK);
2679 		udelay(EEPROM_DELAY);
2680 
2681 		temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
2682 
2683 		drop_gpio(hw, EEPROM_SERIAL_CLOCK);
2684 		udelay(EEPROM_DELAY);
2685 	}
2686 	return temp;
2687 }
2688 
2689 static void spi_w(struct ksz_hw *hw, u16 data)
2690 {
2691 	int i;
2692 
2693 	for (i = 15; i >= 0; i--) {
2694 		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
2695 			drop_gpio(hw, EEPROM_DATA_OUT);
2696 		eeprom_clk(hw);
2697 	}
2698 }
2699 
2700 static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
2701 {
2702 	int i;
2703 
2704 	/* Initial start bit */
2705 	raise_gpio(hw, EEPROM_DATA_OUT);
2706 	eeprom_clk(hw);
2707 
2708 	/* AT93C operation */
2709 	for (i = 1; i >= 0; i--) {
2710 		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
2711 			drop_gpio(hw, EEPROM_DATA_OUT);
2712 		eeprom_clk(hw);
2713 	}
2714 
2715 	/* Address location */
2716 	for (i = 5; i >= 0; i--) {
2717 		(reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
2718 			drop_gpio(hw, EEPROM_DATA_OUT);
2719 		eeprom_clk(hw);
2720 	}
2721 }
2722 
2723 #define EEPROM_DATA_RESERVED		0
2724 #define EEPROM_DATA_MAC_ADDR_0		1
2725 #define EEPROM_DATA_MAC_ADDR_1		2
2726 #define EEPROM_DATA_MAC_ADDR_2		3
2727 #define EEPROM_DATA_SUBSYS_ID		4
2728 #define EEPROM_DATA_SUBSYS_VEN_ID	5
2729 #define EEPROM_DATA_PM_CAP		6
2730 
2731 /* User defined EEPROM data */
2732 #define EEPROM_DATA_OTHER_MAC_ADDR	9
2733 
2734 /**
2735  * eeprom_read - read from AT93C46 EEPROM
2736  * @hw: 	The hardware instance.
2737  * @reg:	The register offset.
2738  *
2739  * This function reads a word from the AT93C46 EEPROM.
2740  *
2741  * Return the data value.
2742  */
2743 static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
2744 {
2745 	u16 data;
2746 
2747 	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
2748 
2749 	spi_reg(hw, AT93C_READ, reg);
2750 	data = spi_r(hw);
2751 
2752 	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
2753 
2754 	return data;
2755 }
2756 
2757 /**
2758  * eeprom_write - write to AT93C46 EEPROM
2759  * @hw: 	The hardware instance.
2760  * @reg:	The register offset.
2761  * @data:	The data value.
2762  *
2763  * This procedure writes a word to the AT93C46 EEPROM.
2764  */
2765 static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
2766 {
2767 	int timeout;
2768 
2769 	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
2770 
2771 	/* Enable write. */
2772 	spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
2773 	drop_gpio(hw, EEPROM_CHIP_SELECT);
2774 	udelay(1);
2775 
2776 	/* Erase the register. */
2777 	raise_gpio(hw, EEPROM_CHIP_SELECT);
2778 	spi_reg(hw, AT93C_ERASE, reg);
2779 	drop_gpio(hw, EEPROM_CHIP_SELECT);
2780 	udelay(1);
2781 
2782 	/* Check operation complete. */
2783 	raise_gpio(hw, EEPROM_CHIP_SELECT);
2784 	timeout = 8;
2785 	mdelay(2);
2786 	do {
2787 		mdelay(1);
2788 	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
2789 	drop_gpio(hw, EEPROM_CHIP_SELECT);
2790 	udelay(1);
2791 
2792 	/* Write the register. */
2793 	raise_gpio(hw, EEPROM_CHIP_SELECT);
2794 	spi_reg(hw, AT93C_WRITE, reg);
2795 	spi_w(hw, data);
2796 	drop_gpio(hw, EEPROM_CHIP_SELECT);
2797 	udelay(1);
2798 
2799 	/* Check operation complete. */
2800 	raise_gpio(hw, EEPROM_CHIP_SELECT);
2801 	timeout = 8;
2802 	mdelay(2);
2803 	do {
2804 		mdelay(1);
2805 	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
2806 	drop_gpio(hw, EEPROM_CHIP_SELECT);
2807 	udelay(1);
2808 
2809 	/* Disable write. */
2810 	raise_gpio(hw, EEPROM_CHIP_SELECT);
2811 	spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
2812 
2813 	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
2814 }
2815 
2816 /*
2817  * Link detection routines
2818  */
2819 
2820 static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
2821 {
2822 	ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
2823 	switch (port->flow_ctrl) {
2824 	case PHY_FLOW_CTRL:
2825 		ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
2826 		break;
2827 	/* Not supported. */
2828 	case PHY_TX_ONLY:
2829 	case PHY_RX_ONLY:
2830 	default:
2831 		break;
2832 	}
2833 	return ctrl;
2834 }
2835 
2836 static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
2837 {
2838 	u32 rx_cfg;
2839 	u32 tx_cfg;
2840 
2841 	rx_cfg = hw->rx_cfg;
2842 	tx_cfg = hw->tx_cfg;
2843 	if (rx)
2844 		hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
2845 	else
2846 		hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
2847 	if (tx)
2848 		hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
2849 	else
2850 		hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
2851 	if (hw->enabled) {
2852 		if (rx_cfg != hw->rx_cfg)
2853 			writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
2854 		if (tx_cfg != hw->tx_cfg)
2855 			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
2856 	}
2857 }
2858 
2859 static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
2860 	u16 local, u16 remote)
2861 {
2862 	int rx;
2863 	int tx;
2864 
2865 	if (hw->overrides & PAUSE_FLOW_CTRL)
2866 		return;
2867 
2868 	rx = tx = 0;
2869 	if (port->force_link)
2870 		rx = tx = 1;
2871 	if (remote & LPA_PAUSE_CAP) {
2872 		if (local & ADVERTISE_PAUSE_CAP) {
2873 			rx = tx = 1;
2874 		} else if ((remote & LPA_PAUSE_ASYM) &&
2875 			   (local &
2876 			    (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM)) ==
2877 			   ADVERTISE_PAUSE_ASYM) {
2878 			tx = 1;
2879 		}
2880 	} else if (remote & LPA_PAUSE_ASYM) {
2881 		if ((local & (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM))
2882 		    == (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM))
2883 			rx = 1;
2884 	}
2885 	if (!hw->ksz_switch)
2886 		set_flow_ctrl(hw, rx, tx);
2887 }
2888 
2889 static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
2890 	struct ksz_port_info *info, u16 link_status)
2891 {
2892 	if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
2893 			!(hw->overrides & PAUSE_FLOW_CTRL)) {
2894 		u32 cfg = hw->tx_cfg;
2895 
2896 		/* Disable flow control in the half duplex mode. */
2897 		if (1 == info->duplex)
2898 			hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
2899 		if (hw->enabled && cfg != hw->tx_cfg)
2900 			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
2901 	}
2902 }
2903 
2904 /**
2905  * port_get_link_speed - get current link status
2906  * @port: 	The port instance.
2907  *
2908  * This routine reads PHY registers to determine the current link status of the
2909  * switch ports.
2910  */
2911 static void port_get_link_speed(struct ksz_port *port)
2912 {
2913 	uint interrupt;
2914 	struct ksz_port_info *info;
2915 	struct ksz_port_info *linked = NULL;
2916 	struct ksz_hw *hw = port->hw;
2917 	u16 data;
2918 	u16 status;
2919 	u8 local;
2920 	u8 remote;
2921 	int i;
2922 	int p;
2923 
2924 	interrupt = hw_block_intr(hw);
2925 
2926 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
2927 		info = &hw->port_info[p];
2928 		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
2929 		port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
2930 
2931 		/*
2932 		 * Link status is changing all the time even when there is no
2933 		 * cable connection!
2934 		 */
2935 		remote = status & (PORT_AUTO_NEG_COMPLETE |
2936 			PORT_STATUS_LINK_GOOD);
2937 		local = (u8) data;
2938 
2939 		/* No change to status. */
2940 		if (local == info->advertised && remote == info->partner)
2941 			continue;
2942 
2943 		info->advertised = local;
2944 		info->partner = remote;
2945 		if (status & PORT_STATUS_LINK_GOOD) {
2946 
2947 			/* Remember the first linked port. */
2948 			if (!linked)
2949 				linked = info;
2950 
2951 			info->tx_rate = 10 * TX_RATE_UNIT;
2952 			if (status & PORT_STATUS_SPEED_100MBIT)
2953 				info->tx_rate = 100 * TX_RATE_UNIT;
2954 
2955 			info->duplex = 1;
2956 			if (status & PORT_STATUS_FULL_DUPLEX)
2957 				info->duplex = 2;
2958 
2959 			if (media_connected != info->state) {
2960 				hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
2961 					&data);
2962 				hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
2963 					&status);
2964 				determine_flow_ctrl(hw, port, data, status);
2965 				if (hw->ksz_switch) {
2966 					port_cfg_back_pressure(hw, p,
2967 						(1 == info->duplex));
2968 				}
2969 				port_cfg_change(hw, port, info, status);
2970 			}
2971 			info->state = media_connected;
2972 		} else {
2973 			/* Indicate the link just goes down. */
2974 			if (media_disconnected != info->state)
2975 				hw->port_mib[p].link_down = 1;
2976 
2977 			info->state = media_disconnected;
2978 		}
2979 		hw->port_mib[p].state = (u8) info->state;
2980 	}
2981 
2982 	if (linked && media_disconnected == port->linked->state)
2983 		port->linked = linked;
2984 
2985 	hw_restore_intr(hw, interrupt);
2986 }
2987 
2988 #define PHY_RESET_TIMEOUT		10
2989 
2990 /**
2991  * port_set_link_speed - set port speed
2992  * @port: 	The port instance.
2993  *
2994  * This routine sets the link speed of the switch ports.
2995  */
2996 static void port_set_link_speed(struct ksz_port *port)
2997 {
2998 	struct ksz_hw *hw = port->hw;
2999 	u16 data;
3000 	u16 cfg;
3001 	u8 status;
3002 	int i;
3003 	int p;
3004 
3005 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3006 		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3007 		port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3008 
3009 		cfg = 0;
3010 		if (status & PORT_STATUS_LINK_GOOD)
3011 			cfg = data;
3012 
3013 		data |= PORT_AUTO_NEG_ENABLE;
3014 		data = advertised_flow_ctrl(port, data);
3015 
3016 		data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3017 			PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3018 
3019 		/* Check if manual configuration is specified by the user. */
3020 		if (port->speed || port->duplex) {
3021 			if (10 == port->speed)
3022 				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3023 					PORT_AUTO_NEG_100BTX);
3024 			else if (100 == port->speed)
3025 				data &= ~(PORT_AUTO_NEG_10BT_FD |
3026 					PORT_AUTO_NEG_10BT);
3027 			if (1 == port->duplex)
3028 				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3029 					PORT_AUTO_NEG_10BT_FD);
3030 			else if (2 == port->duplex)
3031 				data &= ~(PORT_AUTO_NEG_100BTX |
3032 					PORT_AUTO_NEG_10BT);
3033 		}
3034 		if (data != cfg) {
3035 			data |= PORT_AUTO_NEG_RESTART;
3036 			port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3037 		}
3038 	}
3039 }
3040 
3041 /**
3042  * port_force_link_speed - force port speed
3043  * @port: 	The port instance.
3044  *
3045  * This routine forces the link speed of the switch ports.
3046  */
3047 static void port_force_link_speed(struct ksz_port *port)
3048 {
3049 	struct ksz_hw *hw = port->hw;
3050 	u16 data;
3051 	int i;
3052 	int phy;
3053 	int p;
3054 
3055 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3056 		phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3057 		hw_r_phy_ctrl(hw, phy, &data);
3058 
3059 		data &= ~BMCR_ANENABLE;
3060 
3061 		if (10 == port->speed)
3062 			data &= ~BMCR_SPEED100;
3063 		else if (100 == port->speed)
3064 			data |= BMCR_SPEED100;
3065 		if (1 == port->duplex)
3066 			data &= ~BMCR_FULLDPLX;
3067 		else if (2 == port->duplex)
3068 			data |= BMCR_FULLDPLX;
3069 		hw_w_phy_ctrl(hw, phy, data);
3070 	}
3071 }
3072 
3073 static void port_set_power_saving(struct ksz_port *port, int enable)
3074 {
3075 	struct ksz_hw *hw = port->hw;
3076 	int i;
3077 	int p;
3078 
3079 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3080 		port_cfg(hw, p,
3081 			KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3082 }
3083 
3084 /*
3085  * KSZ8841 power management functions
3086  */
3087 
3088 /**
3089  * hw_chk_wol_pme_status - check PMEN pin
3090  * @hw: 	The hardware instance.
3091  *
3092  * This function is used to check PMEN pin is asserted.
3093  *
3094  * Return 1 if PMEN pin is asserted; otherwise, 0.
3095  */
3096 static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3097 {
3098 	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3099 	struct pci_dev *pdev = hw_priv->pdev;
3100 	u16 data;
3101 
3102 	if (!pdev->pm_cap)
3103 		return 0;
3104 	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3105 	return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3106 }
3107 
3108 /**
3109  * hw_clr_wol_pme_status - clear PMEN pin
3110  * @hw: 	The hardware instance.
3111  *
3112  * This routine is used to clear PME_Status to deassert PMEN pin.
3113  */
3114 static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3115 {
3116 	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3117 	struct pci_dev *pdev = hw_priv->pdev;
3118 	u16 data;
3119 
3120 	if (!pdev->pm_cap)
3121 		return;
3122 
3123 	/* Clear PME_Status to deassert PMEN pin. */
3124 	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3125 	data |= PCI_PM_CTRL_PME_STATUS;
3126 	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3127 }
3128 
3129 /**
3130  * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3131  * @hw: 	The hardware instance.
3132  * @set:	The flag indicating whether to enable or disable.
3133  *
3134  * This routine is used to enable or disable Wake-on-LAN.
3135  */
3136 static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3137 {
3138 	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3139 	struct pci_dev *pdev = hw_priv->pdev;
3140 	u16 data;
3141 
3142 	if (!pdev->pm_cap)
3143 		return;
3144 	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3145 	data &= ~PCI_PM_CTRL_STATE_MASK;
3146 	if (set)
3147 		data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3148 	else
3149 		data &= ~PCI_PM_CTRL_PME_ENABLE;
3150 	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3151 }
3152 
3153 /**
3154  * hw_cfg_wol - configure Wake-on-LAN features
3155  * @hw: 	The hardware instance.
3156  * @frame:	The pattern frame bit.
3157  * @set:	The flag indicating whether to enable or disable.
3158  *
3159  * This routine is used to enable or disable certain Wake-on-LAN features.
3160  */
3161 static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3162 {
3163 	u16 data;
3164 
3165 	data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3166 	if (set)
3167 		data |= frame;
3168 	else
3169 		data &= ~frame;
3170 	writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3171 }
3172 
3173 /**
3174  * hw_set_wol_frame - program Wake-on-LAN pattern
3175  * @hw: 	The hardware instance.
3176  * @i:		The frame index.
3177  * @mask_size:	The size of the mask.
3178  * @mask:	Mask to ignore certain bytes in the pattern.
3179  * @frame_size:	The size of the frame.
3180  * @pattern:	The frame data.
3181  *
3182  * This routine is used to program Wake-on-LAN pattern.
3183  */
3184 static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3185 	const u8 *mask, uint frame_size, const u8 *pattern)
3186 {
3187 	int bits;
3188 	int from;
3189 	int len;
3190 	int to;
3191 	u32 crc;
3192 	u8 data[64];
3193 	u8 val = 0;
3194 
3195 	if (frame_size > mask_size * 8)
3196 		frame_size = mask_size * 8;
3197 	if (frame_size > 64)
3198 		frame_size = 64;
3199 
3200 	i *= 0x10;
3201 	writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3202 	writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3203 
3204 	bits = len = from = to = 0;
3205 	do {
3206 		if (bits) {
3207 			if ((val & 1))
3208 				data[to++] = pattern[from];
3209 			val >>= 1;
3210 			++from;
3211 			--bits;
3212 		} else {
3213 			val = mask[len];
3214 			writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3215 				+ len);
3216 			++len;
3217 			if (val)
3218 				bits = 8;
3219 			else
3220 				from += 8;
3221 		}
3222 	} while (from < (int) frame_size);
3223 	if (val) {
3224 		bits = mask[len - 1];
3225 		val <<= (from % 8);
3226 		bits &= ~val;
3227 		writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3228 			1);
3229 	}
3230 	crc = ether_crc(to, data);
3231 	writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3232 }
3233 
3234 /**
3235  * hw_add_wol_arp - add ARP pattern
3236  * @hw: 	The hardware instance.
3237  * @ip_addr:	The IPv4 address assigned to the device.
3238  *
3239  * This routine is used to add ARP pattern for waking up the host.
3240  */
3241 static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
3242 {
3243 	static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3244 	u8 pattern[42] = {
3245 		0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3246 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3247 		0x08, 0x06,
3248 		0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3249 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3250 		0x00, 0x00, 0x00, 0x00,
3251 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3252 		0x00, 0x00, 0x00, 0x00 };
3253 
3254 	memcpy(&pattern[38], ip_addr, 4);
3255 	hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3256 }
3257 
3258 /**
3259  * hw_add_wol_bcast - add broadcast pattern
3260  * @hw: 	The hardware instance.
3261  *
3262  * This routine is used to add broadcast pattern for waking up the host.
3263  */
3264 static void hw_add_wol_bcast(struct ksz_hw *hw)
3265 {
3266 	static const u8 mask[] = { 0x3F };
3267 	static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3268 
3269 	hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern);
3270 }
3271 
3272 /**
3273  * hw_add_wol_mcast - add multicast pattern
3274  * @hw: 	The hardware instance.
3275  *
3276  * This routine is used to add multicast pattern for waking up the host.
3277  *
3278  * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3279  * by IPv6 ping command.  Note that multicast packets are filtred through the
3280  * multicast hash table, so not all multicast packets can wake up the host.
3281  */
3282 static void hw_add_wol_mcast(struct ksz_hw *hw)
3283 {
3284 	static const u8 mask[] = { 0x3F };
3285 	u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3286 
3287 	memcpy(&pattern[3], &hw->override_addr[3], 3);
3288 	hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3289 }
3290 
3291 /**
3292  * hw_add_wol_ucast - add unicast pattern
3293  * @hw: 	The hardware instance.
3294  *
3295  * This routine is used to add unicast pattern to wakeup the host.
3296  *
3297  * It is assumed the unicast packet is directed to the device, as the hardware
3298  * can only receive them in normal case.
3299  */
3300 static void hw_add_wol_ucast(struct ksz_hw *hw)
3301 {
3302 	static const u8 mask[] = { 0x3F };
3303 
3304 	hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr);
3305 }
3306 
3307 /**
3308  * hw_enable_wol - enable Wake-on-LAN
3309  * @hw: 	The hardware instance.
3310  * @wol_enable:	The Wake-on-LAN settings.
3311  * @net_addr:	The IPv4 address assigned to the device.
3312  *
3313  * This routine is used to enable Wake-on-LAN depending on driver settings.
3314  */
3315 static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
3316 {
3317 	hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3318 	hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3319 	hw_add_wol_ucast(hw);
3320 	hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3321 	hw_add_wol_mcast(hw);
3322 	hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3323 	hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3324 	hw_add_wol_arp(hw, net_addr);
3325 }
3326 
3327 /**
3328  * hw_init - check driver is correct for the hardware
3329  * @hw: 	The hardware instance.
3330  *
3331  * This function checks the hardware is correct for this driver and sets the
3332  * hardware up for proper initialization.
3333  *
3334  * Return number of ports or 0 if not right.
3335  */
3336 static int hw_init(struct ksz_hw *hw)
3337 {
3338 	int rc = 0;
3339 	u16 data;
3340 	u16 revision;
3341 
3342 	/* Set bus speed to 125MHz. */
3343 	writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3344 
3345 	/* Check KSZ884x chip ID. */
3346 	data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3347 
3348 	revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3349 	data &= KS884X_CHIP_ID_MASK_41;
3350 	if (REG_CHIP_ID_41 == data)
3351 		rc = 1;
3352 	else if (REG_CHIP_ID_42 == data)
3353 		rc = 2;
3354 	else
3355 		return 0;
3356 
3357 	/* Setup hardware features or bug workarounds. */
3358 	if (revision <= 1) {
3359 		hw->features |= SMALL_PACKET_TX_BUG;
3360 		if (1 == rc)
3361 			hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3362 	}
3363 	return rc;
3364 }
3365 
3366 /**
3367  * hw_reset - reset the hardware
3368  * @hw: 	The hardware instance.
3369  *
3370  * This routine resets the hardware.
3371  */
3372 static void hw_reset(struct ksz_hw *hw)
3373 {
3374 	writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3375 
3376 	/* Wait for device to reset. */
3377 	mdelay(10);
3378 
3379 	/* Write 0 to clear device reset. */
3380 	writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3381 }
3382 
3383 /**
3384  * hw_setup - setup the hardware
3385  * @hw: 	The hardware instance.
3386  *
3387  * This routine setup the hardware for proper operation.
3388  */
3389 static void hw_setup(struct ksz_hw *hw)
3390 {
3391 #if SET_DEFAULT_LED
3392 	u16 data;
3393 
3394 	/* Change default LED mode. */
3395 	data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3396 	data &= ~LED_MODE;
3397 	data |= SET_DEFAULT_LED;
3398 	writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3399 #endif
3400 
3401 	/* Setup transmit control. */
3402 	hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3403 		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3404 
3405 	/* Setup receive control. */
3406 	hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3407 		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3408 	hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3409 
3410 	/* Hardware cannot handle UDP packet in IP fragments. */
3411 	hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3412 
3413 	if (hw->all_multi)
3414 		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3415 	if (hw->promiscuous)
3416 		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3417 }
3418 
3419 /**
3420  * hw_setup_intr - setup interrupt mask
3421  * @hw: 	The hardware instance.
3422  *
3423  * This routine setup the interrupt mask for proper operation.
3424  */
3425 static void hw_setup_intr(struct ksz_hw *hw)
3426 {
3427 	hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3428 }
3429 
3430 static void ksz_check_desc_num(struct ksz_desc_info *info)
3431 {
3432 #define MIN_DESC_SHIFT  2
3433 
3434 	int alloc = info->alloc;
3435 	int shift;
3436 
3437 	shift = 0;
3438 	while (!(alloc & 1)) {
3439 		shift++;
3440 		alloc >>= 1;
3441 	}
3442 	if (alloc != 1 || shift < MIN_DESC_SHIFT) {
3443 		pr_alert("Hardware descriptor numbers not right!\n");
3444 		while (alloc) {
3445 			shift++;
3446 			alloc >>= 1;
3447 		}
3448 		if (shift < MIN_DESC_SHIFT)
3449 			shift = MIN_DESC_SHIFT;
3450 		alloc = 1 << shift;
3451 		info->alloc = alloc;
3452 	}
3453 	info->mask = info->alloc - 1;
3454 }
3455 
3456 static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3457 {
3458 	int i;
3459 	u32 phys = desc_info->ring_phys;
3460 	struct ksz_hw_desc *desc = desc_info->ring_virt;
3461 	struct ksz_desc *cur = desc_info->ring;
3462 	struct ksz_desc *previous = NULL;
3463 
3464 	for (i = 0; i < desc_info->alloc; i++) {
3465 		cur->phw = desc++;
3466 		phys += desc_info->size;
3467 		previous = cur++;
3468 		previous->phw->next = cpu_to_le32(phys);
3469 	}
3470 	previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3471 	previous->sw.buf.rx.end_of_ring = 1;
3472 	previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3473 
3474 	desc_info->avail = desc_info->alloc;
3475 	desc_info->last = desc_info->next = 0;
3476 
3477 	desc_info->cur = desc_info->ring;
3478 }
3479 
3480 /**
3481  * hw_set_desc_base - set descriptor base addresses
3482  * @hw: 	The hardware instance.
3483  * @tx_addr:	The transmit descriptor base.
3484  * @rx_addr:	The receive descriptor base.
3485  *
3486  * This routine programs the descriptor base addresses after reset.
3487  */
3488 static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3489 {
3490 	/* Set base address of Tx/Rx descriptors. */
3491 	writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3492 	writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3493 }
3494 
3495 static void hw_reset_pkts(struct ksz_desc_info *info)
3496 {
3497 	info->cur = info->ring;
3498 	info->avail = info->alloc;
3499 	info->last = info->next = 0;
3500 }
3501 
3502 static inline void hw_resume_rx(struct ksz_hw *hw)
3503 {
3504 	writel(DMA_START, hw->io + KS_DMA_RX_START);
3505 }
3506 
3507 /**
3508  * hw_start_rx - start receiving
3509  * @hw: 	The hardware instance.
3510  *
3511  * This routine starts the receive function of the hardware.
3512  */
3513 static void hw_start_rx(struct ksz_hw *hw)
3514 {
3515 	writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3516 
3517 	/* Notify when the receive stops. */
3518 	hw->intr_mask |= KS884X_INT_RX_STOPPED;
3519 
3520 	writel(DMA_START, hw->io + KS_DMA_RX_START);
3521 	hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3522 	hw->rx_stop++;
3523 
3524 	/* Variable overflows. */
3525 	if (0 == hw->rx_stop)
3526 		hw->rx_stop = 2;
3527 }
3528 
3529 /**
3530  * hw_stop_rx - stop receiving
3531  * @hw: 	The hardware instance.
3532  *
3533  * This routine stops the receive function of the hardware.
3534  */
3535 static void hw_stop_rx(struct ksz_hw *hw)
3536 {
3537 	hw->rx_stop = 0;
3538 	hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3539 	writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3540 }
3541 
3542 /**
3543  * hw_start_tx - start transmitting
3544  * @hw: 	The hardware instance.
3545  *
3546  * This routine starts the transmit function of the hardware.
3547  */
3548 static void hw_start_tx(struct ksz_hw *hw)
3549 {
3550 	writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3551 }
3552 
3553 /**
3554  * hw_stop_tx - stop transmitting
3555  * @hw: 	The hardware instance.
3556  *
3557  * This routine stops the transmit function of the hardware.
3558  */
3559 static void hw_stop_tx(struct ksz_hw *hw)
3560 {
3561 	writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3562 }
3563 
3564 /**
3565  * hw_disable - disable hardware
3566  * @hw: 	The hardware instance.
3567  *
3568  * This routine disables the hardware.
3569  */
3570 static void hw_disable(struct ksz_hw *hw)
3571 {
3572 	hw_stop_rx(hw);
3573 	hw_stop_tx(hw);
3574 	hw->enabled = 0;
3575 }
3576 
3577 /**
3578  * hw_enable - enable hardware
3579  * @hw: 	The hardware instance.
3580  *
3581  * This routine enables the hardware.
3582  */
3583 static void hw_enable(struct ksz_hw *hw)
3584 {
3585 	hw_start_tx(hw);
3586 	hw_start_rx(hw);
3587 	hw->enabled = 1;
3588 }
3589 
3590 /**
3591  * hw_alloc_pkt - allocate enough descriptors for transmission
3592  * @hw: 	The hardware instance.
3593  * @length:	The length of the packet.
3594  * @physical:	Number of descriptors required.
3595  *
3596  * This function allocates descriptors for transmission.
3597  *
3598  * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3599  */
3600 static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3601 {
3602 	/* Always leave one descriptor free. */
3603 	if (hw->tx_desc_info.avail <= 1)
3604 		return 0;
3605 
3606 	/* Allocate a descriptor for transmission and mark it current. */
3607 	get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3608 	hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3609 
3610 	/* Keep track of number of transmit descriptors used so far. */
3611 	++hw->tx_int_cnt;
3612 	hw->tx_size += length;
3613 
3614 	/* Cannot hold on too much data. */
3615 	if (hw->tx_size >= MAX_TX_HELD_SIZE)
3616 		hw->tx_int_cnt = hw->tx_int_mask + 1;
3617 
3618 	if (physical > hw->tx_desc_info.avail)
3619 		return 1;
3620 
3621 	return hw->tx_desc_info.avail;
3622 }
3623 
3624 /**
3625  * hw_send_pkt - mark packet for transmission
3626  * @hw: 	The hardware instance.
3627  *
3628  * This routine marks the packet for transmission in PCI version.
3629  */
3630 static void hw_send_pkt(struct ksz_hw *hw)
3631 {
3632 	struct ksz_desc *cur = hw->tx_desc_info.cur;
3633 
3634 	cur->sw.buf.tx.last_seg = 1;
3635 
3636 	/* Interrupt only after specified number of descriptors used. */
3637 	if (hw->tx_int_cnt > hw->tx_int_mask) {
3638 		cur->sw.buf.tx.intr = 1;
3639 		hw->tx_int_cnt = 0;
3640 		hw->tx_size = 0;
3641 	}
3642 
3643 	/* KSZ8842 supports port directed transmission. */
3644 	cur->sw.buf.tx.dest_port = hw->dst_ports;
3645 
3646 	release_desc(cur);
3647 
3648 	writel(0, hw->io + KS_DMA_TX_START);
3649 }
3650 
3651 static int empty_addr(u8 *addr)
3652 {
3653 	u32 *addr1 = (u32 *) addr;
3654 	u16 *addr2 = (u16 *) &addr[4];
3655 
3656 	return 0 == *addr1 && 0 == *addr2;
3657 }
3658 
3659 /**
3660  * hw_set_addr - set MAC address
3661  * @hw: 	The hardware instance.
3662  *
3663  * This routine programs the MAC address of the hardware when the address is
3664  * overridden.
3665  */
3666 static void hw_set_addr(struct ksz_hw *hw)
3667 {
3668 	int i;
3669 
3670 	for (i = 0; i < ETH_ALEN; i++)
3671 		writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
3672 			hw->io + KS884X_ADDR_0_OFFSET + i);
3673 
3674 	sw_set_addr(hw, hw->override_addr);
3675 }
3676 
3677 /**
3678  * hw_read_addr - read MAC address
3679  * @hw: 	The hardware instance.
3680  *
3681  * This routine retrieves the MAC address of the hardware.
3682  */
3683 static void hw_read_addr(struct ksz_hw *hw)
3684 {
3685 	int i;
3686 
3687 	for (i = 0; i < ETH_ALEN; i++)
3688 		hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
3689 			KS884X_ADDR_0_OFFSET + i);
3690 
3691 	if (!hw->mac_override) {
3692 		memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN);
3693 		if (empty_addr(hw->override_addr)) {
3694 			memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN);
3695 			memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
3696 			       ETH_ALEN);
3697 			hw->override_addr[5] += hw->id;
3698 			hw_set_addr(hw);
3699 		}
3700 	}
3701 }
3702 
3703 static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
3704 {
3705 	int i;
3706 	u32 mac_addr_lo;
3707 	u32 mac_addr_hi;
3708 
3709 	mac_addr_hi = 0;
3710 	for (i = 0; i < 2; i++) {
3711 		mac_addr_hi <<= 8;
3712 		mac_addr_hi |= mac_addr[i];
3713 	}
3714 	mac_addr_hi |= ADD_ADDR_ENABLE;
3715 	mac_addr_lo = 0;
3716 	for (i = 2; i < 6; i++) {
3717 		mac_addr_lo <<= 8;
3718 		mac_addr_lo |= mac_addr[i];
3719 	}
3720 	index *= ADD_ADDR_INCR;
3721 
3722 	writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
3723 	writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
3724 }
3725 
3726 static void hw_set_add_addr(struct ksz_hw *hw)
3727 {
3728 	int i;
3729 
3730 	for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
3731 		if (empty_addr(hw->address[i]))
3732 			writel(0, hw->io + ADD_ADDR_INCR * i +
3733 				KS_ADD_ADDR_0_HI);
3734 		else
3735 			hw_ena_add_addr(hw, i, hw->address[i]);
3736 	}
3737 }
3738 
3739 static int hw_add_addr(struct ksz_hw *hw, const u8 *mac_addr)
3740 {
3741 	int i;
3742 	int j = ADDITIONAL_ENTRIES;
3743 
3744 	if (ether_addr_equal(hw->override_addr, mac_addr))
3745 		return 0;
3746 	for (i = 0; i < hw->addr_list_size; i++) {
3747 		if (ether_addr_equal(hw->address[i], mac_addr))
3748 			return 0;
3749 		if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
3750 			j = i;
3751 	}
3752 	if (j < ADDITIONAL_ENTRIES) {
3753 		memcpy(hw->address[j], mac_addr, ETH_ALEN);
3754 		hw_ena_add_addr(hw, j, hw->address[j]);
3755 		return 0;
3756 	}
3757 	return -1;
3758 }
3759 
3760 static int hw_del_addr(struct ksz_hw *hw, const u8 *mac_addr)
3761 {
3762 	int i;
3763 
3764 	for (i = 0; i < hw->addr_list_size; i++) {
3765 		if (ether_addr_equal(hw->address[i], mac_addr)) {
3766 			eth_zero_addr(hw->address[i]);
3767 			writel(0, hw->io + ADD_ADDR_INCR * i +
3768 				KS_ADD_ADDR_0_HI);
3769 			return 0;
3770 		}
3771 	}
3772 	return -1;
3773 }
3774 
3775 /**
3776  * hw_clr_multicast - clear multicast addresses
3777  * @hw: 	The hardware instance.
3778  *
3779  * This routine removes all multicast addresses set in the hardware.
3780  */
3781 static void hw_clr_multicast(struct ksz_hw *hw)
3782 {
3783 	int i;
3784 
3785 	for (i = 0; i < HW_MULTICAST_SIZE; i++) {
3786 		hw->multi_bits[i] = 0;
3787 
3788 		writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
3789 	}
3790 }
3791 
3792 /**
3793  * hw_set_grp_addr - set multicast addresses
3794  * @hw: 	The hardware instance.
3795  *
3796  * This routine programs multicast addresses for the hardware to accept those
3797  * addresses.
3798  */
3799 static void hw_set_grp_addr(struct ksz_hw *hw)
3800 {
3801 	int i;
3802 	int index;
3803 	int position;
3804 	int value;
3805 
3806 	memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
3807 
3808 	for (i = 0; i < hw->multi_list_size; i++) {
3809 		position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
3810 		index = position >> 3;
3811 		value = 1 << (position & 7);
3812 		hw->multi_bits[index] |= (u8) value;
3813 	}
3814 
3815 	for (i = 0; i < HW_MULTICAST_SIZE; i++)
3816 		writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
3817 			i);
3818 }
3819 
3820 /**
3821  * hw_set_multicast - enable or disable all multicast receiving
3822  * @hw: 	The hardware instance.
3823  * @multicast:	To turn on or off the all multicast feature.
3824  *
3825  * This routine enables/disables the hardware to accept all multicast packets.
3826  */
3827 static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
3828 {
3829 	/* Stop receiving for reconfiguration. */
3830 	hw_stop_rx(hw);
3831 
3832 	if (multicast)
3833 		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3834 	else
3835 		hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
3836 
3837 	if (hw->enabled)
3838 		hw_start_rx(hw);
3839 }
3840 
3841 /**
3842  * hw_set_promiscuous - enable or disable promiscuous receiving
3843  * @hw: 	The hardware instance.
3844  * @prom:	To turn on or off the promiscuous feature.
3845  *
3846  * This routine enables/disables the hardware to accept all packets.
3847  */
3848 static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
3849 {
3850 	/* Stop receiving for reconfiguration. */
3851 	hw_stop_rx(hw);
3852 
3853 	if (prom)
3854 		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3855 	else
3856 		hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
3857 
3858 	if (hw->enabled)
3859 		hw_start_rx(hw);
3860 }
3861 
3862 /**
3863  * sw_enable - enable the switch
3864  * @hw: 	The hardware instance.
3865  * @enable:	The flag to enable or disable the switch
3866  *
3867  * This routine is used to enable/disable the switch in KSZ8842.
3868  */
3869 static void sw_enable(struct ksz_hw *hw, int enable)
3870 {
3871 	int port;
3872 
3873 	for (port = 0; port < SWITCH_PORT_NUM; port++) {
3874 		if (hw->dev_count > 1) {
3875 			/* Set port-base vlan membership with host port. */
3876 			sw_cfg_port_base_vlan(hw, port,
3877 				HOST_MASK | (1 << port));
3878 			port_set_stp_state(hw, port, STP_STATE_DISABLED);
3879 		} else {
3880 			sw_cfg_port_base_vlan(hw, port, PORT_MASK);
3881 			port_set_stp_state(hw, port, STP_STATE_FORWARDING);
3882 		}
3883 	}
3884 	if (hw->dev_count > 1)
3885 		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
3886 	else
3887 		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
3888 
3889 	if (enable)
3890 		enable = KS8842_START;
3891 	writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
3892 }
3893 
3894 /**
3895  * sw_setup - setup the switch
3896  * @hw: 	The hardware instance.
3897  *
3898  * This routine setup the hardware switch engine for default operation.
3899  */
3900 static void sw_setup(struct ksz_hw *hw)
3901 {
3902 	int port;
3903 
3904 	sw_set_global_ctrl(hw);
3905 
3906 	/* Enable switch broadcast storm protection at 10% percent rate. */
3907 	sw_init_broad_storm(hw);
3908 	hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
3909 	for (port = 0; port < SWITCH_PORT_NUM; port++)
3910 		sw_ena_broad_storm(hw, port);
3911 
3912 	sw_init_prio(hw);
3913 
3914 	sw_init_mirror(hw);
3915 
3916 	sw_init_prio_rate(hw);
3917 
3918 	sw_init_vlan(hw);
3919 
3920 	if (hw->features & STP_SUPPORT)
3921 		sw_init_stp(hw);
3922 	if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
3923 			SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
3924 		hw->overrides |= PAUSE_FLOW_CTRL;
3925 	sw_enable(hw, 1);
3926 }
3927 
3928 /**
3929  * ksz_start_timer - start kernel timer
3930  * @info:	Kernel timer information.
3931  * @time:	The time tick.
3932  *
3933  * This routine starts the kernel timer after the specified time tick.
3934  */
3935 static void ksz_start_timer(struct ksz_timer_info *info, int time)
3936 {
3937 	info->cnt = 0;
3938 	info->timer.expires = jiffies + time;
3939 	add_timer(&info->timer);
3940 
3941 	/* infinity */
3942 	info->max = -1;
3943 }
3944 
3945 /**
3946  * ksz_stop_timer - stop kernel timer
3947  * @info:	Kernel timer information.
3948  *
3949  * This routine stops the kernel timer.
3950  */
3951 static void ksz_stop_timer(struct ksz_timer_info *info)
3952 {
3953 	if (info->max) {
3954 		info->max = 0;
3955 		timer_delete_sync(&info->timer);
3956 	}
3957 }
3958 
3959 static void ksz_init_timer(struct ksz_timer_info *info, int period,
3960 	void (*function)(struct timer_list *))
3961 {
3962 	info->max = 0;
3963 	info->period = period;
3964 	timer_setup(&info->timer, function, 0);
3965 }
3966 
3967 static void ksz_update_timer(struct ksz_timer_info *info)
3968 {
3969 	++info->cnt;
3970 	if (info->max > 0) {
3971 		if (info->cnt < info->max) {
3972 			info->timer.expires = jiffies + info->period;
3973 			add_timer(&info->timer);
3974 		} else
3975 			info->max = 0;
3976 	} else if (info->max < 0) {
3977 		info->timer.expires = jiffies + info->period;
3978 		add_timer(&info->timer);
3979 	}
3980 }
3981 
3982 /**
3983  * ksz_alloc_soft_desc - allocate software descriptors
3984  * @desc_info:	Descriptor information structure.
3985  * @transmit:	Indication that descriptors are for transmit.
3986  *
3987  * This local function allocates software descriptors for manipulation in
3988  * memory.
3989  *
3990  * Return 0 if successful.
3991  */
3992 static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
3993 {
3994 	desc_info->ring = kcalloc(desc_info->alloc, sizeof(struct ksz_desc),
3995 				  GFP_KERNEL);
3996 	if (!desc_info->ring)
3997 		return 1;
3998 	hw_init_desc(desc_info, transmit);
3999 	return 0;
4000 }
4001 
4002 /**
4003  * ksz_alloc_desc - allocate hardware descriptors
4004  * @adapter:	Adapter information structure.
4005  *
4006  * This local function allocates hardware descriptors for receiving and
4007  * transmitting.
4008  *
4009  * Return 0 if successful.
4010  */
4011 static int ksz_alloc_desc(struct dev_info *adapter)
4012 {
4013 	struct ksz_hw *hw = &adapter->hw;
4014 	int offset;
4015 
4016 	/* Allocate memory for RX & TX descriptors. */
4017 	adapter->desc_pool.alloc_size =
4018 		hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4019 		hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4020 		DESC_ALIGNMENT;
4021 
4022 	adapter->desc_pool.alloc_virt =
4023 		dma_alloc_coherent(&adapter->pdev->dev,
4024 				   adapter->desc_pool.alloc_size,
4025 				   &adapter->desc_pool.dma_addr, GFP_KERNEL);
4026 	if (adapter->desc_pool.alloc_virt == NULL) {
4027 		adapter->desc_pool.alloc_size = 0;
4028 		return 1;
4029 	}
4030 
4031 	/* Align to the next cache line boundary. */
4032 	offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4033 		(DESC_ALIGNMENT -
4034 		((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4035 	adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4036 	adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4037 
4038 	/* Allocate receive/transmit descriptors. */
4039 	hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4040 		adapter->desc_pool.virt;
4041 	hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4042 	offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4043 	hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4044 		(adapter->desc_pool.virt + offset);
4045 	hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4046 
4047 	if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4048 		return 1;
4049 	if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4050 		return 1;
4051 
4052 	return 0;
4053 }
4054 
4055 /**
4056  * free_dma_buf - release DMA buffer resources
4057  * @adapter:	Adapter information structure.
4058  * @dma_buf:	pointer to buf
4059  * @direction:	to or from device
4060  *
4061  * This routine is just a helper function to release the DMA buffer resources.
4062  */
4063 static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4064 	int direction)
4065 {
4066 	dma_unmap_single(&adapter->pdev->dev, dma_buf->dma, dma_buf->len,
4067 			 direction);
4068 	dev_kfree_skb(dma_buf->skb);
4069 	dma_buf->skb = NULL;
4070 	dma_buf->dma = 0;
4071 }
4072 
4073 /**
4074  * ksz_init_rx_buffers - initialize receive descriptors
4075  * @adapter:	Adapter information structure.
4076  *
4077  * This routine initializes DMA buffers for receiving.
4078  */
4079 static void ksz_init_rx_buffers(struct dev_info *adapter)
4080 {
4081 	int i;
4082 	struct ksz_desc *desc;
4083 	struct ksz_dma_buf *dma_buf;
4084 	struct ksz_hw *hw = &adapter->hw;
4085 	struct ksz_desc_info *info = &hw->rx_desc_info;
4086 
4087 	for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4088 		get_rx_pkt(info, &desc);
4089 
4090 		dma_buf = DMA_BUFFER(desc);
4091 		if (dma_buf->skb && dma_buf->len != adapter->mtu)
4092 			free_dma_buf(adapter, dma_buf, DMA_FROM_DEVICE);
4093 		dma_buf->len = adapter->mtu;
4094 		if (!dma_buf->skb)
4095 			dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4096 		if (dma_buf->skb && !dma_buf->dma)
4097 			dma_buf->dma = dma_map_single(&adapter->pdev->dev,
4098 						skb_tail_pointer(dma_buf->skb),
4099 						dma_buf->len,
4100 						DMA_FROM_DEVICE);
4101 
4102 		/* Set descriptor. */
4103 		set_rx_buf(desc, dma_buf->dma);
4104 		set_rx_len(desc, dma_buf->len);
4105 		release_desc(desc);
4106 	}
4107 }
4108 
4109 /**
4110  * ksz_alloc_mem - allocate memory for hardware descriptors
4111  * @adapter:	Adapter information structure.
4112  *
4113  * This function allocates memory for use by hardware descriptors for receiving
4114  * and transmitting.
4115  *
4116  * Return 0 if successful.
4117  */
4118 static int ksz_alloc_mem(struct dev_info *adapter)
4119 {
4120 	struct ksz_hw *hw = &adapter->hw;
4121 
4122 	/* Determine the number of receive and transmit descriptors. */
4123 	hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4124 	hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4125 
4126 	/* Determine how many descriptors to skip transmit interrupt. */
4127 	hw->tx_int_cnt = 0;
4128 	hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4129 	if (hw->tx_int_mask > 8)
4130 		hw->tx_int_mask = 8;
4131 	while (hw->tx_int_mask) {
4132 		hw->tx_int_cnt++;
4133 		hw->tx_int_mask >>= 1;
4134 	}
4135 	if (hw->tx_int_cnt) {
4136 		hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4137 		hw->tx_int_cnt = 0;
4138 	}
4139 
4140 	/* Determine the descriptor size. */
4141 	hw->rx_desc_info.size =
4142 		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4143 		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4144 	hw->tx_desc_info.size =
4145 		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4146 		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4147 	if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
4148 		pr_alert("Hardware descriptor size not right!\n");
4149 	ksz_check_desc_num(&hw->rx_desc_info);
4150 	ksz_check_desc_num(&hw->tx_desc_info);
4151 
4152 	/* Allocate descriptors. */
4153 	if (ksz_alloc_desc(adapter))
4154 		return 1;
4155 
4156 	return 0;
4157 }
4158 
4159 /**
4160  * ksz_free_desc - free software and hardware descriptors
4161  * @adapter:	Adapter information structure.
4162  *
4163  * This local routine frees the software and hardware descriptors allocated by
4164  * ksz_alloc_desc().
4165  */
4166 static void ksz_free_desc(struct dev_info *adapter)
4167 {
4168 	struct ksz_hw *hw = &adapter->hw;
4169 
4170 	/* Reset descriptor. */
4171 	hw->rx_desc_info.ring_virt = NULL;
4172 	hw->tx_desc_info.ring_virt = NULL;
4173 	hw->rx_desc_info.ring_phys = 0;
4174 	hw->tx_desc_info.ring_phys = 0;
4175 
4176 	/* Free memory. */
4177 	if (adapter->desc_pool.alloc_virt)
4178 		dma_free_coherent(&adapter->pdev->dev,
4179 				  adapter->desc_pool.alloc_size,
4180 				  adapter->desc_pool.alloc_virt,
4181 				  adapter->desc_pool.dma_addr);
4182 
4183 	/* Reset resource pool. */
4184 	adapter->desc_pool.alloc_size = 0;
4185 	adapter->desc_pool.alloc_virt = NULL;
4186 
4187 	kfree(hw->rx_desc_info.ring);
4188 	hw->rx_desc_info.ring = NULL;
4189 	kfree(hw->tx_desc_info.ring);
4190 	hw->tx_desc_info.ring = NULL;
4191 }
4192 
4193 /**
4194  * ksz_free_buffers - free buffers used in the descriptors
4195  * @adapter:	Adapter information structure.
4196  * @desc_info:	Descriptor information structure.
4197  * @direction:	to or from device
4198  *
4199  * This local routine frees buffers used in the DMA buffers.
4200  */
4201 static void ksz_free_buffers(struct dev_info *adapter,
4202 	struct ksz_desc_info *desc_info, int direction)
4203 {
4204 	int i;
4205 	struct ksz_dma_buf *dma_buf;
4206 	struct ksz_desc *desc = desc_info->ring;
4207 
4208 	for (i = 0; i < desc_info->alloc; i++) {
4209 		dma_buf = DMA_BUFFER(desc);
4210 		if (dma_buf->skb)
4211 			free_dma_buf(adapter, dma_buf, direction);
4212 		desc++;
4213 	}
4214 }
4215 
4216 /**
4217  * ksz_free_mem - free all resources used by descriptors
4218  * @adapter:	Adapter information structure.
4219  *
4220  * This local routine frees all the resources allocated by ksz_alloc_mem().
4221  */
4222 static void ksz_free_mem(struct dev_info *adapter)
4223 {
4224 	/* Free transmit buffers. */
4225 	ksz_free_buffers(adapter, &adapter->hw.tx_desc_info, DMA_TO_DEVICE);
4226 
4227 	/* Free receive buffers. */
4228 	ksz_free_buffers(adapter, &adapter->hw.rx_desc_info, DMA_FROM_DEVICE);
4229 
4230 	/* Free descriptors. */
4231 	ksz_free_desc(adapter);
4232 }
4233 
4234 static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4235 	u64 *counter)
4236 {
4237 	int i;
4238 	int mib;
4239 	int port;
4240 	struct ksz_port_mib *port_mib;
4241 
4242 	memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4243 	for (i = 0, port = first; i < cnt; i++, port++) {
4244 		port_mib = &hw->port_mib[port];
4245 		for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4246 			counter[mib] += port_mib->counter[mib];
4247 	}
4248 }
4249 
4250 /**
4251  * send_packet - send packet
4252  * @skb:	Socket buffer.
4253  * @dev:	Network device.
4254  *
4255  * This routine is used to send a packet out to the network.
4256  */
4257 static void send_packet(struct sk_buff *skb, struct net_device *dev)
4258 {
4259 	struct ksz_desc *desc;
4260 	struct ksz_desc *first;
4261 	struct dev_priv *priv = netdev_priv(dev);
4262 	struct dev_info *hw_priv = priv->adapter;
4263 	struct ksz_hw *hw = &hw_priv->hw;
4264 	struct ksz_desc_info *info = &hw->tx_desc_info;
4265 	struct ksz_dma_buf *dma_buf;
4266 	int len;
4267 	int last_frag = skb_shinfo(skb)->nr_frags;
4268 
4269 	/*
4270 	 * KSZ8842 with multiple device interfaces needs to be told which port
4271 	 * to send.
4272 	 */
4273 	if (hw->dev_count > 1)
4274 		hw->dst_ports = 1 << priv->port.first_port;
4275 
4276 	/* Hardware will pad the length to 60. */
4277 	len = skb->len;
4278 
4279 	/* Remember the very first descriptor. */
4280 	first = info->cur;
4281 	desc = first;
4282 
4283 	dma_buf = DMA_BUFFER(desc);
4284 	if (last_frag) {
4285 		int frag;
4286 		skb_frag_t *this_frag;
4287 
4288 		dma_buf->len = skb_headlen(skb);
4289 
4290 		dma_buf->dma = dma_map_single(&hw_priv->pdev->dev, skb->data,
4291 					      dma_buf->len, DMA_TO_DEVICE);
4292 		set_tx_buf(desc, dma_buf->dma);
4293 		set_tx_len(desc, dma_buf->len);
4294 
4295 		frag = 0;
4296 		do {
4297 			this_frag = &skb_shinfo(skb)->frags[frag];
4298 
4299 			/* Get a new descriptor. */
4300 			get_tx_pkt(info, &desc);
4301 
4302 			/* Keep track of descriptors used so far. */
4303 			++hw->tx_int_cnt;
4304 
4305 			dma_buf = DMA_BUFFER(desc);
4306 			dma_buf->len = skb_frag_size(this_frag);
4307 
4308 			dma_buf->dma = dma_map_single(&hw_priv->pdev->dev,
4309 						      skb_frag_address(this_frag),
4310 						      dma_buf->len,
4311 						      DMA_TO_DEVICE);
4312 			set_tx_buf(desc, dma_buf->dma);
4313 			set_tx_len(desc, dma_buf->len);
4314 
4315 			frag++;
4316 			if (frag == last_frag)
4317 				break;
4318 
4319 			/* Do not release the last descriptor here. */
4320 			release_desc(desc);
4321 		} while (1);
4322 
4323 		/* current points to the last descriptor. */
4324 		info->cur = desc;
4325 
4326 		/* Release the first descriptor. */
4327 		release_desc(first);
4328 	} else {
4329 		dma_buf->len = len;
4330 
4331 		dma_buf->dma = dma_map_single(&hw_priv->pdev->dev, skb->data,
4332 					      dma_buf->len, DMA_TO_DEVICE);
4333 		set_tx_buf(desc, dma_buf->dma);
4334 		set_tx_len(desc, dma_buf->len);
4335 	}
4336 
4337 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
4338 		(desc)->sw.buf.tx.csum_gen_tcp = 1;
4339 		(desc)->sw.buf.tx.csum_gen_udp = 1;
4340 	}
4341 
4342 	/*
4343 	 * The last descriptor holds the packet so that it can be returned to
4344 	 * network subsystem after all descriptors are transmitted.
4345 	 */
4346 	dma_buf->skb = skb;
4347 
4348 	hw_send_pkt(hw);
4349 
4350 	/* Update transmit statistics. */
4351 	dev->stats.tx_packets++;
4352 	dev->stats.tx_bytes += len;
4353 }
4354 
4355 /**
4356  * transmit_cleanup - clean up transmit descriptors
4357  * @hw_priv:	Network device.
4358  * @normal:	break if owned
4359  *
4360  * This routine is called to clean up the transmitted buffers.
4361  */
4362 static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4363 {
4364 	int last;
4365 	union desc_stat status;
4366 	struct ksz_hw *hw = &hw_priv->hw;
4367 	struct ksz_desc_info *info = &hw->tx_desc_info;
4368 	struct ksz_desc *desc;
4369 	struct ksz_dma_buf *dma_buf;
4370 	struct net_device *dev = NULL;
4371 
4372 	spin_lock_irq(&hw_priv->hwlock);
4373 	last = info->last;
4374 
4375 	while (info->avail < info->alloc) {
4376 		/* Get next descriptor which is not hardware owned. */
4377 		desc = &info->ring[last];
4378 		status.data = le32_to_cpu(desc->phw->ctrl.data);
4379 		if (status.tx.hw_owned) {
4380 			if (normal)
4381 				break;
4382 			else
4383 				reset_desc(desc, status);
4384 		}
4385 
4386 		dma_buf = DMA_BUFFER(desc);
4387 		dma_unmap_single(&hw_priv->pdev->dev, dma_buf->dma,
4388 				 dma_buf->len, DMA_TO_DEVICE);
4389 
4390 		/* This descriptor contains the last buffer in the packet. */
4391 		if (dma_buf->skb) {
4392 			dev = dma_buf->skb->dev;
4393 
4394 			/* Release the packet back to network subsystem. */
4395 			dev_kfree_skb_irq(dma_buf->skb);
4396 			dma_buf->skb = NULL;
4397 		}
4398 
4399 		/* Free the transmitted descriptor. */
4400 		last++;
4401 		last &= info->mask;
4402 		info->avail++;
4403 	}
4404 	info->last = last;
4405 	spin_unlock_irq(&hw_priv->hwlock);
4406 
4407 	/* Notify the network subsystem that the packet has been sent. */
4408 	if (dev)
4409 		netif_trans_update(dev);
4410 }
4411 
4412 /**
4413  * tx_done - transmit done processing
4414  * @hw_priv:	Network device.
4415  *
4416  * This routine is called when the transmit interrupt is triggered, indicating
4417  * either a packet is sent successfully or there are transmit errors.
4418  */
4419 static void tx_done(struct dev_info *hw_priv)
4420 {
4421 	struct ksz_hw *hw = &hw_priv->hw;
4422 	int port;
4423 
4424 	transmit_cleanup(hw_priv, 1);
4425 
4426 	for (port = 0; port < hw->dev_count; port++) {
4427 		struct net_device *dev = hw->port_info[port].pdev;
4428 
4429 		if (netif_running(dev) && netif_queue_stopped(dev))
4430 			netif_wake_queue(dev);
4431 	}
4432 }
4433 
4434 static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4435 {
4436 	skb->dev = old->dev;
4437 	skb->protocol = old->protocol;
4438 	skb->ip_summed = old->ip_summed;
4439 	skb->csum = old->csum;
4440 	skb_set_network_header(skb, ETH_HLEN);
4441 
4442 	dev_consume_skb_any(old);
4443 }
4444 
4445 /**
4446  * netdev_tx - send out packet
4447  * @skb:	Socket buffer.
4448  * @dev:	Network device.
4449  *
4450  * This function is used by the upper network layer to send out a packet.
4451  *
4452  * Return 0 if successful; otherwise an error code indicating failure.
4453  */
4454 static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
4455 {
4456 	struct dev_priv *priv = netdev_priv(dev);
4457 	struct dev_info *hw_priv = priv->adapter;
4458 	struct ksz_hw *hw = &hw_priv->hw;
4459 	int left;
4460 	int num = 1;
4461 	int rc = 0;
4462 
4463 	if (hw->features & SMALL_PACKET_TX_BUG) {
4464 		struct sk_buff *org_skb = skb;
4465 
4466 		if (skb->len <= 48) {
4467 			if (skb_end_pointer(skb) - skb->data >= 50) {
4468 				memset(&skb->data[skb->len], 0, 50 - skb->len);
4469 				skb->len = 50;
4470 			} else {
4471 				skb = netdev_alloc_skb(dev, 50);
4472 				if (!skb)
4473 					return NETDEV_TX_BUSY;
4474 				memcpy(skb->data, org_skb->data, org_skb->len);
4475 				memset(&skb->data[org_skb->len], 0,
4476 					50 - org_skb->len);
4477 				skb->len = 50;
4478 				copy_old_skb(org_skb, skb);
4479 			}
4480 		}
4481 	}
4482 
4483 	spin_lock_irq(&hw_priv->hwlock);
4484 
4485 	num = skb_shinfo(skb)->nr_frags + 1;
4486 	left = hw_alloc_pkt(hw, skb->len, num);
4487 	if (left) {
4488 		if (left < num ||
4489 		    (CHECKSUM_PARTIAL == skb->ip_summed &&
4490 		     skb->protocol == htons(ETH_P_IPV6))) {
4491 			struct sk_buff *org_skb = skb;
4492 
4493 			skb = netdev_alloc_skb(dev, org_skb->len);
4494 			if (!skb) {
4495 				rc = NETDEV_TX_BUSY;
4496 				goto unlock;
4497 			}
4498 			skb_copy_and_csum_dev(org_skb, skb->data);
4499 			org_skb->ip_summed = CHECKSUM_NONE;
4500 			skb->len = org_skb->len;
4501 			copy_old_skb(org_skb, skb);
4502 		}
4503 		send_packet(skb, dev);
4504 		if (left <= num)
4505 			netif_stop_queue(dev);
4506 	} else {
4507 		/* Stop the transmit queue until packet is allocated. */
4508 		netif_stop_queue(dev);
4509 		rc = NETDEV_TX_BUSY;
4510 	}
4511 unlock:
4512 	spin_unlock_irq(&hw_priv->hwlock);
4513 
4514 	return rc;
4515 }
4516 
4517 /**
4518  * netdev_tx_timeout - transmit timeout processing
4519  * @dev:	Network device.
4520  * @txqueue:	index of hanging queue
4521  *
4522  * This routine is called when the transmit timer expires.  That indicates the
4523  * hardware is not running correctly because transmit interrupts are not
4524  * triggered to free up resources so that the transmit routine can continue
4525  * sending out packets.  The hardware is reset to correct the problem.
4526  */
4527 static void netdev_tx_timeout(struct net_device *dev, unsigned int txqueue)
4528 {
4529 	static unsigned long last_reset;
4530 
4531 	struct dev_priv *priv = netdev_priv(dev);
4532 	struct dev_info *hw_priv = priv->adapter;
4533 	struct ksz_hw *hw = &hw_priv->hw;
4534 	int port;
4535 
4536 	if (hw->dev_count > 1) {
4537 		/*
4538 		 * Only reset the hardware if time between calls is long
4539 		 * enough.
4540 		 */
4541 		if (time_before_eq(jiffies, last_reset + dev->watchdog_timeo))
4542 			hw_priv = NULL;
4543 	}
4544 
4545 	last_reset = jiffies;
4546 	if (hw_priv) {
4547 		hw_dis_intr(hw);
4548 		hw_disable(hw);
4549 
4550 		transmit_cleanup(hw_priv, 0);
4551 		hw_reset_pkts(&hw->rx_desc_info);
4552 		hw_reset_pkts(&hw->tx_desc_info);
4553 		ksz_init_rx_buffers(hw_priv);
4554 
4555 		hw_reset(hw);
4556 
4557 		hw_set_desc_base(hw,
4558 			hw->tx_desc_info.ring_phys,
4559 			hw->rx_desc_info.ring_phys);
4560 		hw_set_addr(hw);
4561 		if (hw->all_multi)
4562 			hw_set_multicast(hw, hw->all_multi);
4563 		else if (hw->multi_list_size)
4564 			hw_set_grp_addr(hw);
4565 
4566 		if (hw->dev_count > 1) {
4567 			hw_set_add_addr(hw);
4568 			for (port = 0; port < SWITCH_PORT_NUM; port++) {
4569 				struct net_device *port_dev;
4570 
4571 				port_set_stp_state(hw, port,
4572 					STP_STATE_DISABLED);
4573 
4574 				port_dev = hw->port_info[port].pdev;
4575 				if (netif_running(port_dev))
4576 					port_set_stp_state(hw, port,
4577 						STP_STATE_SIMPLE);
4578 			}
4579 		}
4580 
4581 		hw_enable(hw);
4582 		hw_ena_intr(hw);
4583 	}
4584 
4585 	netif_trans_update(dev);
4586 	netif_wake_queue(dev);
4587 }
4588 
4589 static inline void csum_verified(struct sk_buff *skb)
4590 {
4591 	unsigned short protocol;
4592 	struct iphdr *iph;
4593 
4594 	protocol = skb->protocol;
4595 	skb_reset_network_header(skb);
4596 	iph = (struct iphdr *) skb_network_header(skb);
4597 	if (protocol == htons(ETH_P_8021Q)) {
4598 		protocol = iph->tot_len;
4599 		skb_set_network_header(skb, VLAN_HLEN);
4600 		iph = (struct iphdr *) skb_network_header(skb);
4601 	}
4602 	if (protocol == htons(ETH_P_IP)) {
4603 		if (iph->protocol == IPPROTO_TCP)
4604 			skb->ip_summed = CHECKSUM_UNNECESSARY;
4605 	}
4606 }
4607 
4608 static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
4609 	struct ksz_desc *desc, union desc_stat status)
4610 {
4611 	int packet_len;
4612 	struct dev_priv *priv = netdev_priv(dev);
4613 	struct dev_info *hw_priv = priv->adapter;
4614 	struct ksz_dma_buf *dma_buf;
4615 	struct sk_buff *skb;
4616 
4617 	/* Received length includes 4-byte CRC. */
4618 	packet_len = status.rx.frame_len - 4;
4619 
4620 	dma_buf = DMA_BUFFER(desc);
4621 	dma_sync_single_for_cpu(&hw_priv->pdev->dev, dma_buf->dma,
4622 				packet_len + 4, DMA_FROM_DEVICE);
4623 
4624 	do {
4625 		/* skb->data != skb->head */
4626 		skb = netdev_alloc_skb(dev, packet_len + 2);
4627 		if (!skb) {
4628 			dev->stats.rx_dropped++;
4629 			return -ENOMEM;
4630 		}
4631 
4632 		/*
4633 		 * Align socket buffer in 4-byte boundary for better
4634 		 * performance.
4635 		 */
4636 		skb_reserve(skb, 2);
4637 
4638 		skb_put_data(skb, dma_buf->skb->data, packet_len);
4639 	} while (0);
4640 
4641 	skb->protocol = eth_type_trans(skb, dev);
4642 
4643 	if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
4644 		csum_verified(skb);
4645 
4646 	/* Update receive statistics. */
4647 	dev->stats.rx_packets++;
4648 	dev->stats.rx_bytes += packet_len;
4649 
4650 	/* Notify upper layer for received packet. */
4651 	netif_rx(skb);
4652 
4653 	return 0;
4654 }
4655 
4656 static int dev_rcv_packets(struct dev_info *hw_priv)
4657 {
4658 	int next;
4659 	union desc_stat status;
4660 	struct ksz_hw *hw = &hw_priv->hw;
4661 	struct net_device *dev = hw->port_info[0].pdev;
4662 	struct ksz_desc_info *info = &hw->rx_desc_info;
4663 	int left = info->alloc;
4664 	struct ksz_desc *desc;
4665 	int received = 0;
4666 
4667 	next = info->next;
4668 	while (left--) {
4669 		/* Get next descriptor which is not hardware owned. */
4670 		desc = &info->ring[next];
4671 		status.data = le32_to_cpu(desc->phw->ctrl.data);
4672 		if (status.rx.hw_owned)
4673 			break;
4674 
4675 		/* Status valid only when last descriptor bit is set. */
4676 		if (status.rx.last_desc && status.rx.first_desc) {
4677 			if (rx_proc(dev, hw, desc, status))
4678 				goto release_packet;
4679 			received++;
4680 		}
4681 
4682 release_packet:
4683 		release_desc(desc);
4684 		next++;
4685 		next &= info->mask;
4686 	}
4687 	info->next = next;
4688 
4689 	return received;
4690 }
4691 
4692 static int port_rcv_packets(struct dev_info *hw_priv)
4693 {
4694 	int next;
4695 	union desc_stat status;
4696 	struct ksz_hw *hw = &hw_priv->hw;
4697 	struct net_device *dev = hw->port_info[0].pdev;
4698 	struct ksz_desc_info *info = &hw->rx_desc_info;
4699 	int left = info->alloc;
4700 	struct ksz_desc *desc;
4701 	int received = 0;
4702 
4703 	next = info->next;
4704 	while (left--) {
4705 		/* Get next descriptor which is not hardware owned. */
4706 		desc = &info->ring[next];
4707 		status.data = le32_to_cpu(desc->phw->ctrl.data);
4708 		if (status.rx.hw_owned)
4709 			break;
4710 
4711 		if (hw->dev_count > 1) {
4712 			/* Get received port number. */
4713 			int p = HW_TO_DEV_PORT(status.rx.src_port);
4714 
4715 			dev = hw->port_info[p].pdev;
4716 			if (!netif_running(dev))
4717 				goto release_packet;
4718 		}
4719 
4720 		/* Status valid only when last descriptor bit is set. */
4721 		if (status.rx.last_desc && status.rx.first_desc) {
4722 			if (rx_proc(dev, hw, desc, status))
4723 				goto release_packet;
4724 			received++;
4725 		}
4726 
4727 release_packet:
4728 		release_desc(desc);
4729 		next++;
4730 		next &= info->mask;
4731 	}
4732 	info->next = next;
4733 
4734 	return received;
4735 }
4736 
4737 static int dev_rcv_special(struct dev_info *hw_priv)
4738 {
4739 	int next;
4740 	union desc_stat status;
4741 	struct ksz_hw *hw = &hw_priv->hw;
4742 	struct net_device *dev = hw->port_info[0].pdev;
4743 	struct ksz_desc_info *info = &hw->rx_desc_info;
4744 	int left = info->alloc;
4745 	struct ksz_desc *desc;
4746 	int received = 0;
4747 
4748 	next = info->next;
4749 	while (left--) {
4750 		/* Get next descriptor which is not hardware owned. */
4751 		desc = &info->ring[next];
4752 		status.data = le32_to_cpu(desc->phw->ctrl.data);
4753 		if (status.rx.hw_owned)
4754 			break;
4755 
4756 		if (hw->dev_count > 1) {
4757 			/* Get received port number. */
4758 			int p = HW_TO_DEV_PORT(status.rx.src_port);
4759 
4760 			dev = hw->port_info[p].pdev;
4761 			if (!netif_running(dev))
4762 				goto release_packet;
4763 		}
4764 
4765 		/* Status valid only when last descriptor bit is set. */
4766 		if (status.rx.last_desc && status.rx.first_desc) {
4767 			/*
4768 			 * Receive without error.  With receive errors
4769 			 * disabled, packets with receive errors will be
4770 			 * dropped, so no need to check the error bit.
4771 			 */
4772 			if (!status.rx.error || (status.data &
4773 					KS_DESC_RX_ERROR_COND) ==
4774 					KS_DESC_RX_ERROR_TOO_LONG) {
4775 				if (rx_proc(dev, hw, desc, status))
4776 					goto release_packet;
4777 				received++;
4778 			} else {
4779 				struct dev_priv *priv = netdev_priv(dev);
4780 
4781 				/* Update receive error statistics. */
4782 				priv->port.counter[OID_COUNTER_RCV_ERROR]++;
4783 			}
4784 		}
4785 
4786 release_packet:
4787 		release_desc(desc);
4788 		next++;
4789 		next &= info->mask;
4790 	}
4791 	info->next = next;
4792 
4793 	return received;
4794 }
4795 
4796 static void rx_proc_task(struct tasklet_struct *t)
4797 {
4798 	struct dev_info *hw_priv = from_tasklet(hw_priv, t, rx_tasklet);
4799 	struct ksz_hw *hw = &hw_priv->hw;
4800 
4801 	if (!hw->enabled)
4802 		return;
4803 	if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
4804 
4805 		/* In case receive process is suspended because of overrun. */
4806 		hw_resume_rx(hw);
4807 
4808 		/* tasklets are interruptible. */
4809 		spin_lock_irq(&hw_priv->hwlock);
4810 		hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
4811 		spin_unlock_irq(&hw_priv->hwlock);
4812 	} else {
4813 		hw_ack_intr(hw, KS884X_INT_RX);
4814 		tasklet_schedule(&hw_priv->rx_tasklet);
4815 	}
4816 }
4817 
4818 static void tx_proc_task(struct tasklet_struct *t)
4819 {
4820 	struct dev_info *hw_priv = from_tasklet(hw_priv, t, tx_tasklet);
4821 	struct ksz_hw *hw = &hw_priv->hw;
4822 
4823 	hw_ack_intr(hw, KS884X_INT_TX_MASK);
4824 
4825 	tx_done(hw_priv);
4826 
4827 	/* tasklets are interruptible. */
4828 	spin_lock_irq(&hw_priv->hwlock);
4829 	hw_turn_on_intr(hw, KS884X_INT_TX);
4830 	spin_unlock_irq(&hw_priv->hwlock);
4831 }
4832 
4833 static inline void handle_rx_stop(struct ksz_hw *hw)
4834 {
4835 	/* Receive just has been stopped. */
4836 	if (0 == hw->rx_stop)
4837 		hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
4838 	else if (hw->rx_stop > 1) {
4839 		if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
4840 			hw_start_rx(hw);
4841 		} else {
4842 			hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
4843 			hw->rx_stop = 0;
4844 		}
4845 	} else
4846 		/* Receive just has been started. */
4847 		hw->rx_stop++;
4848 }
4849 
4850 /**
4851  * netdev_intr - interrupt handling
4852  * @irq:	Interrupt number.
4853  * @dev_id:	Network device.
4854  *
4855  * This function is called by upper network layer to signal interrupt.
4856  *
4857  * Return IRQ_HANDLED if interrupt is handled.
4858  */
4859 static irqreturn_t netdev_intr(int irq, void *dev_id)
4860 {
4861 	uint int_enable = 0;
4862 	struct net_device *dev = (struct net_device *) dev_id;
4863 	struct dev_priv *priv = netdev_priv(dev);
4864 	struct dev_info *hw_priv = priv->adapter;
4865 	struct ksz_hw *hw = &hw_priv->hw;
4866 
4867 	spin_lock(&hw_priv->hwlock);
4868 
4869 	hw_read_intr(hw, &int_enable);
4870 
4871 	/* Not our interrupt! */
4872 	if (!int_enable) {
4873 		spin_unlock(&hw_priv->hwlock);
4874 		return IRQ_NONE;
4875 	}
4876 
4877 	do {
4878 		hw_ack_intr(hw, int_enable);
4879 		int_enable &= hw->intr_mask;
4880 
4881 		if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
4882 			hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
4883 			tasklet_schedule(&hw_priv->tx_tasklet);
4884 		}
4885 
4886 		if (likely(int_enable & KS884X_INT_RX)) {
4887 			hw_dis_intr_bit(hw, KS884X_INT_RX);
4888 			tasklet_schedule(&hw_priv->rx_tasklet);
4889 		}
4890 
4891 		if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
4892 			dev->stats.rx_fifo_errors++;
4893 			hw_resume_rx(hw);
4894 		}
4895 
4896 		if (unlikely(int_enable & KS884X_INT_PHY)) {
4897 			struct ksz_port *port = &priv->port;
4898 
4899 			hw->features |= LINK_INT_WORKING;
4900 			port_get_link_speed(port);
4901 		}
4902 
4903 		if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
4904 			handle_rx_stop(hw);
4905 			break;
4906 		}
4907 
4908 		if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
4909 			u32 data;
4910 
4911 			hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
4912 			pr_info("Tx stopped\n");
4913 			data = readl(hw->io + KS_DMA_TX_CTRL);
4914 			if (!(data & DMA_TX_ENABLE))
4915 				pr_info("Tx disabled\n");
4916 			break;
4917 		}
4918 	} while (0);
4919 
4920 	hw_ena_intr(hw);
4921 
4922 	spin_unlock(&hw_priv->hwlock);
4923 
4924 	return IRQ_HANDLED;
4925 }
4926 
4927 /*
4928  * Linux network device functions
4929  */
4930 
4931 
4932 #ifdef CONFIG_NET_POLL_CONTROLLER
4933 static void netdev_netpoll(struct net_device *dev)
4934 {
4935 	struct dev_priv *priv = netdev_priv(dev);
4936 	struct dev_info *hw_priv = priv->adapter;
4937 
4938 	hw_dis_intr(&hw_priv->hw);
4939 	netdev_intr(dev->irq, dev);
4940 }
4941 #endif
4942 
4943 static void bridge_change(struct ksz_hw *hw)
4944 {
4945 	int port;
4946 	u8  member;
4947 	struct ksz_switch *sw = hw->ksz_switch;
4948 
4949 	/* No ports in forwarding state. */
4950 	if (!sw->member) {
4951 		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4952 		sw_block_addr(hw);
4953 	}
4954 	for (port = 0; port < SWITCH_PORT_NUM; port++) {
4955 		if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
4956 			member = HOST_MASK | sw->member;
4957 		else
4958 			member = HOST_MASK | (1 << port);
4959 		if (member != sw->port_cfg[port].member)
4960 			sw_cfg_port_base_vlan(hw, port, member);
4961 	}
4962 }
4963 
4964 /**
4965  * netdev_close - close network device
4966  * @dev:	Network device.
4967  *
4968  * This function process the close operation of network device.  This is caused
4969  * by the user command "ifconfig ethX down."
4970  *
4971  * Return 0 if successful; otherwise an error code indicating failure.
4972  */
4973 static int netdev_close(struct net_device *dev)
4974 {
4975 	struct dev_priv *priv = netdev_priv(dev);
4976 	struct dev_info *hw_priv = priv->adapter;
4977 	struct ksz_port *port = &priv->port;
4978 	struct ksz_hw *hw = &hw_priv->hw;
4979 	int pi;
4980 
4981 	netif_stop_queue(dev);
4982 
4983 	ksz_stop_timer(&priv->monitor_timer_info);
4984 
4985 	/* Need to shut the port manually in multiple device interfaces mode. */
4986 	if (hw->dev_count > 1) {
4987 		port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
4988 
4989 		/* Port is closed.  Need to change bridge setting. */
4990 		if (hw->features & STP_SUPPORT) {
4991 			pi = 1 << port->first_port;
4992 			if (hw->ksz_switch->member & pi) {
4993 				hw->ksz_switch->member &= ~pi;
4994 				bridge_change(hw);
4995 			}
4996 		}
4997 	}
4998 	if (port->first_port > 0)
4999 		hw_del_addr(hw, dev->dev_addr);
5000 	if (!hw_priv->wol_enable)
5001 		port_set_power_saving(port, true);
5002 
5003 	if (priv->multicast)
5004 		--hw->all_multi;
5005 	if (priv->promiscuous)
5006 		--hw->promiscuous;
5007 
5008 	hw_priv->opened--;
5009 	if (!(hw_priv->opened)) {
5010 		ksz_stop_timer(&hw_priv->mib_timer_info);
5011 		flush_work(&hw_priv->mib_read);
5012 
5013 		hw_dis_intr(hw);
5014 		hw_disable(hw);
5015 		hw_clr_multicast(hw);
5016 
5017 		/* Delay for receive task to stop scheduling itself. */
5018 		msleep(2000 / HZ);
5019 
5020 		tasklet_kill(&hw_priv->rx_tasklet);
5021 		tasklet_kill(&hw_priv->tx_tasklet);
5022 		free_irq(dev->irq, hw_priv->dev);
5023 
5024 		transmit_cleanup(hw_priv, 0);
5025 		hw_reset_pkts(&hw->rx_desc_info);
5026 		hw_reset_pkts(&hw->tx_desc_info);
5027 
5028 		/* Clean out static MAC table when the switch is shutdown. */
5029 		if (hw->features & STP_SUPPORT)
5030 			sw_clr_sta_mac_table(hw);
5031 	}
5032 
5033 	return 0;
5034 }
5035 
5036 static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5037 {
5038 	if (hw->ksz_switch) {
5039 		u32 data;
5040 
5041 		data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5042 		if (hw->features & RX_HUGE_FRAME)
5043 			data |= SWITCH_HUGE_PACKET;
5044 		else
5045 			data &= ~SWITCH_HUGE_PACKET;
5046 		writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5047 	}
5048 	if (hw->features & RX_HUGE_FRAME) {
5049 		hw->rx_cfg |= DMA_RX_ERROR;
5050 		hw_priv->dev_rcv = dev_rcv_special;
5051 	} else {
5052 		hw->rx_cfg &= ~DMA_RX_ERROR;
5053 		if (hw->dev_count > 1)
5054 			hw_priv->dev_rcv = port_rcv_packets;
5055 		else
5056 			hw_priv->dev_rcv = dev_rcv_packets;
5057 	}
5058 }
5059 
5060 static int prepare_hardware(struct net_device *dev)
5061 {
5062 	struct dev_priv *priv = netdev_priv(dev);
5063 	struct dev_info *hw_priv = priv->adapter;
5064 	struct ksz_hw *hw = &hw_priv->hw;
5065 	int rc = 0;
5066 
5067 	/* Remember the network device that requests interrupts. */
5068 	hw_priv->dev = dev;
5069 	rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5070 	if (rc)
5071 		return rc;
5072 	tasklet_setup(&hw_priv->rx_tasklet, rx_proc_task);
5073 	tasklet_setup(&hw_priv->tx_tasklet, tx_proc_task);
5074 
5075 	hw->promiscuous = 0;
5076 	hw->all_multi = 0;
5077 	hw->multi_list_size = 0;
5078 
5079 	hw_reset(hw);
5080 
5081 	hw_set_desc_base(hw,
5082 		hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5083 	hw_set_addr(hw);
5084 	hw_cfg_huge_frame(hw_priv, hw);
5085 	ksz_init_rx_buffers(hw_priv);
5086 	return 0;
5087 }
5088 
5089 static void set_media_state(struct net_device *dev, int media_state)
5090 {
5091 	struct dev_priv *priv = netdev_priv(dev);
5092 
5093 	if (media_state == priv->media_state)
5094 		netif_carrier_on(dev);
5095 	else
5096 		netif_carrier_off(dev);
5097 	netif_info(priv, link, dev, "link %s\n",
5098 		   media_state == priv->media_state ? "on" : "off");
5099 }
5100 
5101 /**
5102  * netdev_open - open network device
5103  * @dev:	Network device.
5104  *
5105  * This function process the open operation of network device.  This is caused
5106  * by the user command "ifconfig ethX up."
5107  *
5108  * Return 0 if successful; otherwise an error code indicating failure.
5109  */
5110 static int netdev_open(struct net_device *dev)
5111 {
5112 	struct dev_priv *priv = netdev_priv(dev);
5113 	struct dev_info *hw_priv = priv->adapter;
5114 	struct ksz_hw *hw = &hw_priv->hw;
5115 	struct ksz_port *port = &priv->port;
5116 	unsigned long next_jiffies;
5117 	int i;
5118 	int p;
5119 	int rc = 0;
5120 
5121 	next_jiffies = jiffies + HZ * 2;
5122 	priv->multicast = 0;
5123 	priv->promiscuous = 0;
5124 
5125 	/* Reset device statistics. */
5126 	memset(&dev->stats, 0, sizeof(struct net_device_stats));
5127 	memset((void *) port->counter, 0,
5128 		(sizeof(u64) * OID_COUNTER_LAST));
5129 
5130 	if (!(hw_priv->opened)) {
5131 		rc = prepare_hardware(dev);
5132 		if (rc)
5133 			return rc;
5134 		for (i = 0; i < hw->mib_port_cnt; i++) {
5135 			next_jiffies += HZ * 1;
5136 			hw_priv->counter[i].time = next_jiffies;
5137 			hw->port_mib[i].state = media_disconnected;
5138 			port_init_cnt(hw, i);
5139 		}
5140 		if (hw->ksz_switch)
5141 			hw->port_mib[HOST_PORT].state = media_connected;
5142 		else {
5143 			hw_add_wol_bcast(hw);
5144 			hw_cfg_wol_pme(hw, 0);
5145 			hw_clr_wol_pme_status(&hw_priv->hw);
5146 		}
5147 	}
5148 	port_set_power_saving(port, false);
5149 
5150 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5151 		/*
5152 		 * Initialize to invalid value so that link detection
5153 		 * is done.
5154 		 */
5155 		hw->port_info[p].partner = 0xFF;
5156 		hw->port_info[p].state = media_disconnected;
5157 	}
5158 
5159 	/* Need to open the port in multiple device interfaces mode. */
5160 	if (hw->dev_count > 1) {
5161 		port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5162 		if (port->first_port > 0)
5163 			hw_add_addr(hw, dev->dev_addr);
5164 	}
5165 
5166 	port_get_link_speed(port);
5167 	if (port->force_link)
5168 		port_force_link_speed(port);
5169 	else
5170 		port_set_link_speed(port);
5171 
5172 	if (!(hw_priv->opened)) {
5173 		hw_setup_intr(hw);
5174 		hw_enable(hw);
5175 		hw_ena_intr(hw);
5176 
5177 		if (hw->mib_port_cnt)
5178 			ksz_start_timer(&hw_priv->mib_timer_info,
5179 				hw_priv->mib_timer_info.period);
5180 	}
5181 
5182 	hw_priv->opened++;
5183 
5184 	ksz_start_timer(&priv->monitor_timer_info,
5185 		priv->monitor_timer_info.period);
5186 
5187 	priv->media_state = port->linked->state;
5188 
5189 	set_media_state(dev, media_connected);
5190 	netif_start_queue(dev);
5191 
5192 	return 0;
5193 }
5194 
5195 /* RX errors = rx_errors */
5196 /* RX dropped = rx_dropped */
5197 /* RX overruns = rx_fifo_errors */
5198 /* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5199 /* TX errors = tx_errors */
5200 /* TX dropped = tx_dropped */
5201 /* TX overruns = tx_fifo_errors */
5202 /* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5203 /* collisions = collisions */
5204 
5205 /**
5206  * netdev_query_statistics - query network device statistics
5207  * @dev:	Network device.
5208  *
5209  * This function returns the statistics of the network device.  The device
5210  * needs not be opened.
5211  *
5212  * Return network device statistics.
5213  */
5214 static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5215 {
5216 	struct dev_priv *priv = netdev_priv(dev);
5217 	struct ksz_port *port = &priv->port;
5218 	struct ksz_hw *hw = &priv->adapter->hw;
5219 	struct ksz_port_mib *mib;
5220 	int i;
5221 	int p;
5222 
5223 	dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5224 	dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
5225 
5226 	/* Reset to zero to add count later. */
5227 	dev->stats.multicast = 0;
5228 	dev->stats.collisions = 0;
5229 	dev->stats.rx_length_errors = 0;
5230 	dev->stats.rx_crc_errors = 0;
5231 	dev->stats.rx_frame_errors = 0;
5232 	dev->stats.tx_window_errors = 0;
5233 
5234 	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5235 		mib = &hw->port_mib[p];
5236 
5237 		dev->stats.multicast += (unsigned long)
5238 			mib->counter[MIB_COUNTER_RX_MULTICAST];
5239 
5240 		dev->stats.collisions += (unsigned long)
5241 			mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5242 
5243 		dev->stats.rx_length_errors += (unsigned long)(
5244 			mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5245 			mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5246 			mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5247 			mib->counter[MIB_COUNTER_RX_JABBER]);
5248 		dev->stats.rx_crc_errors += (unsigned long)
5249 			mib->counter[MIB_COUNTER_RX_CRC_ERR];
5250 		dev->stats.rx_frame_errors += (unsigned long)(
5251 			mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5252 			mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5253 
5254 		dev->stats.tx_window_errors += (unsigned long)
5255 			mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5256 	}
5257 
5258 	return &dev->stats;
5259 }
5260 
5261 /**
5262  * netdev_set_mac_address - set network device MAC address
5263  * @dev:	Network device.
5264  * @addr:	Buffer of MAC address.
5265  *
5266  * This function is used to set the MAC address of the network device.
5267  *
5268  * Return 0 to indicate success.
5269  */
5270 static int netdev_set_mac_address(struct net_device *dev, void *addr)
5271 {
5272 	struct dev_priv *priv = netdev_priv(dev);
5273 	struct dev_info *hw_priv = priv->adapter;
5274 	struct ksz_hw *hw = &hw_priv->hw;
5275 	struct sockaddr *mac = addr;
5276 	uint interrupt;
5277 
5278 	if (priv->port.first_port > 0)
5279 		hw_del_addr(hw, dev->dev_addr);
5280 	else {
5281 		hw->mac_override = 1;
5282 		memcpy(hw->override_addr, mac->sa_data, ETH_ALEN);
5283 	}
5284 
5285 	eth_hw_addr_set(dev, mac->sa_data);
5286 
5287 	interrupt = hw_block_intr(hw);
5288 
5289 	if (priv->port.first_port > 0)
5290 		hw_add_addr(hw, dev->dev_addr);
5291 	else
5292 		hw_set_addr(hw);
5293 	hw_restore_intr(hw, interrupt);
5294 
5295 	return 0;
5296 }
5297 
5298 static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5299 	struct ksz_hw *hw, int promiscuous)
5300 {
5301 	if (promiscuous != priv->promiscuous) {
5302 		u8 prev_state = hw->promiscuous;
5303 
5304 		if (promiscuous)
5305 			++hw->promiscuous;
5306 		else
5307 			--hw->promiscuous;
5308 		priv->promiscuous = promiscuous;
5309 
5310 		/* Turn on/off promiscuous mode. */
5311 		if (hw->promiscuous <= 1 && prev_state <= 1)
5312 			hw_set_promiscuous(hw, hw->promiscuous);
5313 
5314 		/*
5315 		 * Port is not in promiscuous mode, meaning it is released
5316 		 * from the bridge.
5317 		 */
5318 		if ((hw->features & STP_SUPPORT) && !promiscuous &&
5319 		    netif_is_bridge_port(dev)) {
5320 			struct ksz_switch *sw = hw->ksz_switch;
5321 			int port = priv->port.first_port;
5322 
5323 			port_set_stp_state(hw, port, STP_STATE_DISABLED);
5324 			port = 1 << port;
5325 			if (sw->member & port) {
5326 				sw->member &= ~port;
5327 				bridge_change(hw);
5328 			}
5329 		}
5330 	}
5331 }
5332 
5333 static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5334 	int multicast)
5335 {
5336 	if (multicast != priv->multicast) {
5337 		u8 all_multi = hw->all_multi;
5338 
5339 		if (multicast)
5340 			++hw->all_multi;
5341 		else
5342 			--hw->all_multi;
5343 		priv->multicast = multicast;
5344 
5345 		/* Turn on/off all multicast mode. */
5346 		if (hw->all_multi <= 1 && all_multi <= 1)
5347 			hw_set_multicast(hw, hw->all_multi);
5348 	}
5349 }
5350 
5351 /**
5352  * netdev_set_rx_mode
5353  * @dev:	Network device.
5354  *
5355  * This routine is used to set multicast addresses or put the network device
5356  * into promiscuous mode.
5357  */
5358 static void netdev_set_rx_mode(struct net_device *dev)
5359 {
5360 	struct dev_priv *priv = netdev_priv(dev);
5361 	struct dev_info *hw_priv = priv->adapter;
5362 	struct ksz_hw *hw = &hw_priv->hw;
5363 	struct netdev_hw_addr *ha;
5364 	int multicast = (dev->flags & IFF_ALLMULTI);
5365 
5366 	dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5367 
5368 	if (hw_priv->hw.dev_count > 1)
5369 		multicast |= (dev->flags & IFF_MULTICAST);
5370 	dev_set_multicast(priv, hw, multicast);
5371 
5372 	/* Cannot use different hashes in multiple device interfaces mode. */
5373 	if (hw_priv->hw.dev_count > 1)
5374 		return;
5375 
5376 	if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
5377 		int i = 0;
5378 
5379 		/* List too big to support so turn on all multicast mode. */
5380 		if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
5381 			if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5382 				hw->multi_list_size = MAX_MULTICAST_LIST;
5383 				++hw->all_multi;
5384 				hw_set_multicast(hw, hw->all_multi);
5385 			}
5386 			return;
5387 		}
5388 
5389 		netdev_for_each_mc_addr(ha, dev) {
5390 			if (i >= MAX_MULTICAST_LIST)
5391 				break;
5392 			memcpy(hw->multi_list[i++], ha->addr, ETH_ALEN);
5393 		}
5394 		hw->multi_list_size = (u8) i;
5395 		hw_set_grp_addr(hw);
5396 	} else {
5397 		if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5398 			--hw->all_multi;
5399 			hw_set_multicast(hw, hw->all_multi);
5400 		}
5401 		hw->multi_list_size = 0;
5402 		hw_clr_multicast(hw);
5403 	}
5404 }
5405 
5406 static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5407 {
5408 	struct dev_priv *priv = netdev_priv(dev);
5409 	struct dev_info *hw_priv = priv->adapter;
5410 	struct ksz_hw *hw = &hw_priv->hw;
5411 	int hw_mtu;
5412 
5413 	if (netif_running(dev))
5414 		return -EBUSY;
5415 
5416 	/* Cannot use different MTU in multiple device interfaces mode. */
5417 	if (hw->dev_count > 1)
5418 		if (dev != hw_priv->dev)
5419 			return 0;
5420 
5421 	hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5422 	if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5423 		hw->features |= RX_HUGE_FRAME;
5424 		hw_mtu = MAX_RX_BUF_SIZE;
5425 	} else {
5426 		hw->features &= ~RX_HUGE_FRAME;
5427 		hw_mtu = REGULAR_RX_BUF_SIZE;
5428 	}
5429 	hw_mtu = (hw_mtu + 3) & ~3;
5430 	hw_priv->mtu = hw_mtu;
5431 	WRITE_ONCE(dev->mtu, new_mtu);
5432 
5433 	return 0;
5434 }
5435 
5436 /**
5437  * netdev_ioctl - I/O control processing
5438  * @dev:	Network device.
5439  * @ifr:	Interface request structure.
5440  * @cmd:	I/O control code.
5441  *
5442  * This function is used to process I/O control calls.
5443  *
5444  * Return 0 to indicate success.
5445  */
5446 static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5447 {
5448 	struct dev_priv *priv = netdev_priv(dev);
5449 	struct dev_info *hw_priv = priv->adapter;
5450 	struct ksz_hw *hw = &hw_priv->hw;
5451 	struct ksz_port *port = &priv->port;
5452 	int result = 0;
5453 	struct mii_ioctl_data *data = if_mii(ifr);
5454 
5455 	if (down_interruptible(&priv->proc_sem))
5456 		return -ERESTARTSYS;
5457 
5458 	switch (cmd) {
5459 	/* Get address of MII PHY in use. */
5460 	case SIOCGMIIPHY:
5461 		data->phy_id = priv->id;
5462 		fallthrough;
5463 
5464 	/* Read MII PHY register. */
5465 	case SIOCGMIIREG:
5466 		if (data->phy_id != priv->id || data->reg_num >= 6)
5467 			result = -EIO;
5468 		else
5469 			hw_r_phy(hw, port->linked->port_id, data->reg_num,
5470 				&data->val_out);
5471 		break;
5472 
5473 	/* Write MII PHY register. */
5474 	case SIOCSMIIREG:
5475 		if (!capable(CAP_NET_ADMIN))
5476 			result = -EPERM;
5477 		else if (data->phy_id != priv->id || data->reg_num >= 6)
5478 			result = -EIO;
5479 		else
5480 			hw_w_phy(hw, port->linked->port_id, data->reg_num,
5481 				data->val_in);
5482 		break;
5483 
5484 	default:
5485 		result = -EOPNOTSUPP;
5486 	}
5487 
5488 	up(&priv->proc_sem);
5489 
5490 	return result;
5491 }
5492 
5493 /*
5494  * MII support
5495  */
5496 
5497 /**
5498  * mdio_read - read PHY register
5499  * @dev:	Network device.
5500  * @phy_id:	The PHY id.
5501  * @reg_num:	The register number.
5502  *
5503  * This function returns the PHY register value.
5504  *
5505  * Return the register value.
5506  */
5507 static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5508 {
5509 	struct dev_priv *priv = netdev_priv(dev);
5510 	struct ksz_port *port = &priv->port;
5511 	struct ksz_hw *hw = port->hw;
5512 	u16 val_out;
5513 
5514 	hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5515 	return val_out;
5516 }
5517 
5518 /**
5519  * mdio_write - set PHY register
5520  * @dev:	Network device.
5521  * @phy_id:	The PHY id.
5522  * @reg_num:	The register number.
5523  * @val:	The register value.
5524  *
5525  * This procedure sets the PHY register value.
5526  */
5527 static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5528 {
5529 	struct dev_priv *priv = netdev_priv(dev);
5530 	struct ksz_port *port = &priv->port;
5531 	struct ksz_hw *hw = port->hw;
5532 	int i;
5533 	int pi;
5534 
5535 	for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5536 		hw_w_phy(hw, pi, reg_num << 1, val);
5537 }
5538 
5539 /*
5540  * ethtool support
5541  */
5542 
5543 #define EEPROM_SIZE			0x40
5544 
5545 static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5546 
5547 #define ADVERTISED_ALL			\
5548 	(ADVERTISED_10baseT_Half |	\
5549 	ADVERTISED_10baseT_Full |	\
5550 	ADVERTISED_100baseT_Half |	\
5551 	ADVERTISED_100baseT_Full)
5552 
5553 /* These functions use the MII functions in mii.c. */
5554 
5555 /**
5556  * netdev_get_link_ksettings - get network device settings
5557  * @dev:	Network device.
5558  * @cmd:	Ethtool command.
5559  *
5560  * This function queries the PHY and returns its state in the ethtool command.
5561  *
5562  * Return 0 if successful; otherwise an error code.
5563  */
5564 static int netdev_get_link_ksettings(struct net_device *dev,
5565 				     struct ethtool_link_ksettings *cmd)
5566 {
5567 	struct dev_priv *priv = netdev_priv(dev);
5568 	struct dev_info *hw_priv = priv->adapter;
5569 
5570 	mutex_lock(&hw_priv->lock);
5571 	mii_ethtool_get_link_ksettings(&priv->mii_if, cmd);
5572 	ethtool_link_ksettings_add_link_mode(cmd, advertising, TP);
5573 	mutex_unlock(&hw_priv->lock);
5574 
5575 	/* Save advertised settings for workaround in next function. */
5576 	ethtool_convert_link_mode_to_legacy_u32(&priv->advertising,
5577 						cmd->link_modes.advertising);
5578 
5579 	return 0;
5580 }
5581 
5582 /**
5583  * netdev_set_link_ksettings - set network device settings
5584  * @dev:	Network device.
5585  * @cmd:	Ethtool command.
5586  *
5587  * This function sets the PHY according to the ethtool command.
5588  *
5589  * Return 0 if successful; otherwise an error code.
5590  */
5591 static int netdev_set_link_ksettings(struct net_device *dev,
5592 				     const struct ethtool_link_ksettings *cmd)
5593 {
5594 	struct dev_priv *priv = netdev_priv(dev);
5595 	struct dev_info *hw_priv = priv->adapter;
5596 	struct ksz_port *port = &priv->port;
5597 	struct ethtool_link_ksettings copy_cmd;
5598 	u32 speed = cmd->base.speed;
5599 	u32 advertising;
5600 	int rc;
5601 
5602 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
5603 						cmd->link_modes.advertising);
5604 
5605 	/*
5606 	 * ethtool utility does not change advertised setting if auto
5607 	 * negotiation is not specified explicitly.
5608 	 */
5609 	if (cmd->base.autoneg && priv->advertising == advertising) {
5610 		advertising |= ADVERTISED_ALL;
5611 		if (10 == speed)
5612 			advertising &=
5613 				~(ADVERTISED_100baseT_Full |
5614 				ADVERTISED_100baseT_Half);
5615 		else if (100 == speed)
5616 			advertising &=
5617 				~(ADVERTISED_10baseT_Full |
5618 				ADVERTISED_10baseT_Half);
5619 		if (0 == cmd->base.duplex)
5620 			advertising &=
5621 				~(ADVERTISED_100baseT_Full |
5622 				ADVERTISED_10baseT_Full);
5623 		else if (1 == cmd->base.duplex)
5624 			advertising &=
5625 				~(ADVERTISED_100baseT_Half |
5626 				ADVERTISED_10baseT_Half);
5627 	}
5628 	mutex_lock(&hw_priv->lock);
5629 	if (cmd->base.autoneg &&
5630 	    (advertising & ADVERTISED_ALL) == ADVERTISED_ALL) {
5631 		port->duplex = 0;
5632 		port->speed = 0;
5633 		port->force_link = 0;
5634 	} else {
5635 		port->duplex = cmd->base.duplex + 1;
5636 		if (1000 != speed)
5637 			port->speed = speed;
5638 		if (cmd->base.autoneg)
5639 			port->force_link = 0;
5640 		else
5641 			port->force_link = 1;
5642 	}
5643 
5644 	memcpy(&copy_cmd, cmd, sizeof(copy_cmd));
5645 	ethtool_convert_legacy_u32_to_link_mode(copy_cmd.link_modes.advertising,
5646 						advertising);
5647 	rc = mii_ethtool_set_link_ksettings(
5648 		&priv->mii_if,
5649 		(const struct ethtool_link_ksettings *)&copy_cmd);
5650 	mutex_unlock(&hw_priv->lock);
5651 	return rc;
5652 }
5653 
5654 /**
5655  * netdev_nway_reset - restart auto-negotiation
5656  * @dev:	Network device.
5657  *
5658  * This function restarts the PHY for auto-negotiation.
5659  *
5660  * Return 0 if successful; otherwise an error code.
5661  */
5662 static int netdev_nway_reset(struct net_device *dev)
5663 {
5664 	struct dev_priv *priv = netdev_priv(dev);
5665 	struct dev_info *hw_priv = priv->adapter;
5666 	int rc;
5667 
5668 	mutex_lock(&hw_priv->lock);
5669 	rc = mii_nway_restart(&priv->mii_if);
5670 	mutex_unlock(&hw_priv->lock);
5671 	return rc;
5672 }
5673 
5674 /**
5675  * netdev_get_link - get network device link status
5676  * @dev:	Network device.
5677  *
5678  * This function gets the link status from the PHY.
5679  *
5680  * Return true if PHY is linked and false otherwise.
5681  */
5682 static u32 netdev_get_link(struct net_device *dev)
5683 {
5684 	struct dev_priv *priv = netdev_priv(dev);
5685 	int rc;
5686 
5687 	rc = mii_link_ok(&priv->mii_if);
5688 	return rc;
5689 }
5690 
5691 /**
5692  * netdev_get_drvinfo - get network driver information
5693  * @dev:	Network device.
5694  * @info:	Ethtool driver info data structure.
5695  *
5696  * This procedure returns the driver information.
5697  */
5698 static void netdev_get_drvinfo(struct net_device *dev,
5699 	struct ethtool_drvinfo *info)
5700 {
5701 	struct dev_priv *priv = netdev_priv(dev);
5702 	struct dev_info *hw_priv = priv->adapter;
5703 
5704 	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
5705 	strscpy(info->version, DRV_VERSION, sizeof(info->version));
5706 	strscpy(info->bus_info, pci_name(hw_priv->pdev),
5707 		sizeof(info->bus_info));
5708 }
5709 
5710 static struct hw_regs {
5711 	int start;
5712 	int end;
5713 } hw_regs_range[] = {
5714 	{ KS_DMA_TX_CTRL,	KS884X_INTERRUPTS_STATUS },
5715 	{ KS_ADD_ADDR_0_LO,	KS_ADD_ADDR_F_HI },
5716 	{ KS884X_ADDR_0_OFFSET,	KS8841_WOL_FRAME_BYTE2_OFFSET },
5717 	{ KS884X_SIDER_P,	KS8842_SGCR7_P },
5718 	{ KS8842_MACAR1_P,	KS8842_TOSR8_P },
5719 	{ KS884X_P1MBCR_P,	KS8842_P3ERCR_P },
5720 	{ 0, 0 }
5721 };
5722 
5723 /**
5724  * netdev_get_regs_len - get length of register dump
5725  * @dev:	Network device.
5726  *
5727  * This function returns the length of the register dump.
5728  *
5729  * Return length of the register dump.
5730  */
5731 static int netdev_get_regs_len(struct net_device *dev)
5732 {
5733 	struct hw_regs *range = hw_regs_range;
5734 	int regs_len = 0x10 * sizeof(u32);
5735 
5736 	while (range->end > range->start) {
5737 		regs_len += (range->end - range->start + 3) / 4 * 4;
5738 		range++;
5739 	}
5740 	return regs_len;
5741 }
5742 
5743 /**
5744  * netdev_get_regs - get register dump
5745  * @dev:	Network device.
5746  * @regs:	Ethtool registers data structure.
5747  * @ptr:	Buffer to store the register values.
5748  *
5749  * This procedure dumps the register values in the provided buffer.
5750  */
5751 static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
5752 	void *ptr)
5753 {
5754 	struct dev_priv *priv = netdev_priv(dev);
5755 	struct dev_info *hw_priv = priv->adapter;
5756 	struct ksz_hw *hw = &hw_priv->hw;
5757 	int *buf = (int *) ptr;
5758 	struct hw_regs *range = hw_regs_range;
5759 	int len;
5760 
5761 	mutex_lock(&hw_priv->lock);
5762 	regs->version = 0;
5763 	for (len = 0; len < 0x40; len += 4) {
5764 		pci_read_config_dword(hw_priv->pdev, len, buf);
5765 		buf++;
5766 	}
5767 	while (range->end > range->start) {
5768 		for (len = range->start; len < range->end; len += 4) {
5769 			*buf = readl(hw->io + len);
5770 			buf++;
5771 		}
5772 		range++;
5773 	}
5774 	mutex_unlock(&hw_priv->lock);
5775 }
5776 
5777 #define WOL_SUPPORT			\
5778 	(WAKE_PHY | WAKE_MAGIC |	\
5779 	WAKE_UCAST | WAKE_MCAST |	\
5780 	WAKE_BCAST | WAKE_ARP)
5781 
5782 /**
5783  * netdev_get_wol - get Wake-on-LAN support
5784  * @dev:	Network device.
5785  * @wol:	Ethtool Wake-on-LAN data structure.
5786  *
5787  * This procedure returns Wake-on-LAN support.
5788  */
5789 static void netdev_get_wol(struct net_device *dev,
5790 	struct ethtool_wolinfo *wol)
5791 {
5792 	struct dev_priv *priv = netdev_priv(dev);
5793 	struct dev_info *hw_priv = priv->adapter;
5794 
5795 	wol->supported = hw_priv->wol_support;
5796 	wol->wolopts = hw_priv->wol_enable;
5797 	memset(&wol->sopass, 0, sizeof(wol->sopass));
5798 }
5799 
5800 /**
5801  * netdev_set_wol - set Wake-on-LAN support
5802  * @dev:	Network device.
5803  * @wol:	Ethtool Wake-on-LAN data structure.
5804  *
5805  * This function sets Wake-on-LAN support.
5806  *
5807  * Return 0 if successful; otherwise an error code.
5808  */
5809 static int netdev_set_wol(struct net_device *dev,
5810 	struct ethtool_wolinfo *wol)
5811 {
5812 	struct dev_priv *priv = netdev_priv(dev);
5813 	struct dev_info *hw_priv = priv->adapter;
5814 
5815 	/* Need to find a way to retrieve the device IP address. */
5816 	static const u8 net_addr[] = { 192, 168, 1, 1 };
5817 
5818 	if (wol->wolopts & ~hw_priv->wol_support)
5819 		return -EINVAL;
5820 
5821 	hw_priv->wol_enable = wol->wolopts;
5822 
5823 	/* Link wakeup cannot really be disabled. */
5824 	if (wol->wolopts)
5825 		hw_priv->wol_enable |= WAKE_PHY;
5826 	hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
5827 	return 0;
5828 }
5829 
5830 /**
5831  * netdev_get_msglevel - get debug message level
5832  * @dev:	Network device.
5833  *
5834  * This function returns current debug message level.
5835  *
5836  * Return current debug message flags.
5837  */
5838 static u32 netdev_get_msglevel(struct net_device *dev)
5839 {
5840 	struct dev_priv *priv = netdev_priv(dev);
5841 
5842 	return priv->msg_enable;
5843 }
5844 
5845 /**
5846  * netdev_set_msglevel - set debug message level
5847  * @dev:	Network device.
5848  * @value:	Debug message flags.
5849  *
5850  * This procedure sets debug message level.
5851  */
5852 static void netdev_set_msglevel(struct net_device *dev, u32 value)
5853 {
5854 	struct dev_priv *priv = netdev_priv(dev);
5855 
5856 	priv->msg_enable = value;
5857 }
5858 
5859 /**
5860  * netdev_get_eeprom_len - get EEPROM length
5861  * @dev:	Network device.
5862  *
5863  * This function returns the length of the EEPROM.
5864  *
5865  * Return length of the EEPROM.
5866  */
5867 static int netdev_get_eeprom_len(struct net_device *dev)
5868 {
5869 	return EEPROM_SIZE * 2;
5870 }
5871 
5872 #define EEPROM_MAGIC			0x10A18842
5873 
5874 /**
5875  * netdev_get_eeprom - get EEPROM data
5876  * @dev:	Network device.
5877  * @eeprom:	Ethtool EEPROM data structure.
5878  * @data:	Buffer to store the EEPROM data.
5879  *
5880  * This function dumps the EEPROM data in the provided buffer.
5881  *
5882  * Return 0 if successful; otherwise an error code.
5883  */
5884 static int netdev_get_eeprom(struct net_device *dev,
5885 	struct ethtool_eeprom *eeprom, u8 *data)
5886 {
5887 	struct dev_priv *priv = netdev_priv(dev);
5888 	struct dev_info *hw_priv = priv->adapter;
5889 	u8 *eeprom_byte = (u8 *) eeprom_data;
5890 	int i;
5891 	int len;
5892 
5893 	len = (eeprom->offset + eeprom->len + 1) / 2;
5894 	for (i = eeprom->offset / 2; i < len; i++)
5895 		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
5896 	eeprom->magic = EEPROM_MAGIC;
5897 	memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
5898 
5899 	return 0;
5900 }
5901 
5902 /**
5903  * netdev_set_eeprom - write EEPROM data
5904  * @dev:	Network device.
5905  * @eeprom:	Ethtool EEPROM data structure.
5906  * @data:	Data buffer.
5907  *
5908  * This function modifies the EEPROM data one byte at a time.
5909  *
5910  * Return 0 if successful; otherwise an error code.
5911  */
5912 static int netdev_set_eeprom(struct net_device *dev,
5913 	struct ethtool_eeprom *eeprom, u8 *data)
5914 {
5915 	struct dev_priv *priv = netdev_priv(dev);
5916 	struct dev_info *hw_priv = priv->adapter;
5917 	u16 eeprom_word[EEPROM_SIZE];
5918 	u8 *eeprom_byte = (u8 *) eeprom_word;
5919 	int i;
5920 	int len;
5921 
5922 	if (eeprom->magic != EEPROM_MAGIC)
5923 		return -EINVAL;
5924 
5925 	len = (eeprom->offset + eeprom->len + 1) / 2;
5926 	for (i = eeprom->offset / 2; i < len; i++)
5927 		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
5928 	memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
5929 	memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
5930 	for (i = 0; i < EEPROM_SIZE; i++)
5931 		if (eeprom_word[i] != eeprom_data[i]) {
5932 			eeprom_data[i] = eeprom_word[i];
5933 			eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
5934 	}
5935 
5936 	return 0;
5937 }
5938 
5939 /**
5940  * netdev_get_pauseparam - get flow control parameters
5941  * @dev:	Network device.
5942  * @pause:	Ethtool PAUSE settings data structure.
5943  *
5944  * This procedure returns the PAUSE control flow settings.
5945  */
5946 static void netdev_get_pauseparam(struct net_device *dev,
5947 	struct ethtool_pauseparam *pause)
5948 {
5949 	struct dev_priv *priv = netdev_priv(dev);
5950 	struct dev_info *hw_priv = priv->adapter;
5951 	struct ksz_hw *hw = &hw_priv->hw;
5952 
5953 	pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
5954 	if (!hw->ksz_switch) {
5955 		pause->rx_pause =
5956 			(hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
5957 		pause->tx_pause =
5958 			(hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
5959 	} else {
5960 		pause->rx_pause =
5961 			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
5962 				SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
5963 		pause->tx_pause =
5964 			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
5965 				SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
5966 	}
5967 }
5968 
5969 /**
5970  * netdev_set_pauseparam - set flow control parameters
5971  * @dev:	Network device.
5972  * @pause:	Ethtool PAUSE settings data structure.
5973  *
5974  * This function sets the PAUSE control flow settings.
5975  * Not implemented yet.
5976  *
5977  * Return 0 if successful; otherwise an error code.
5978  */
5979 static int netdev_set_pauseparam(struct net_device *dev,
5980 	struct ethtool_pauseparam *pause)
5981 {
5982 	struct dev_priv *priv = netdev_priv(dev);
5983 	struct dev_info *hw_priv = priv->adapter;
5984 	struct ksz_hw *hw = &hw_priv->hw;
5985 	struct ksz_port *port = &priv->port;
5986 
5987 	mutex_lock(&hw_priv->lock);
5988 	if (pause->autoneg) {
5989 		if (!pause->rx_pause && !pause->tx_pause)
5990 			port->flow_ctrl = PHY_NO_FLOW_CTRL;
5991 		else
5992 			port->flow_ctrl = PHY_FLOW_CTRL;
5993 		hw->overrides &= ~PAUSE_FLOW_CTRL;
5994 		port->force_link = 0;
5995 		if (hw->ksz_switch) {
5996 			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
5997 				SWITCH_RX_FLOW_CTRL, 1);
5998 			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
5999 				SWITCH_TX_FLOW_CTRL, 1);
6000 		}
6001 		port_set_link_speed(port);
6002 	} else {
6003 		hw->overrides |= PAUSE_FLOW_CTRL;
6004 		if (hw->ksz_switch) {
6005 			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6006 				SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6007 			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6008 				SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6009 		} else
6010 			set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6011 	}
6012 	mutex_unlock(&hw_priv->lock);
6013 
6014 	return 0;
6015 }
6016 
6017 /**
6018  * netdev_get_ringparam - get tx/rx ring parameters
6019  * @dev:	Network device.
6020  * @ring:	Ethtool RING settings data structure.
6021  * @kernel_ring:	Ethtool external RING settings data structure.
6022  * @extack:	Netlink handle.
6023  *
6024  * This procedure returns the TX/RX ring settings.
6025  */
6026 static void netdev_get_ringparam(struct net_device *dev,
6027 				 struct ethtool_ringparam *ring,
6028 				 struct kernel_ethtool_ringparam *kernel_ring,
6029 				 struct netlink_ext_ack *extack)
6030 {
6031 	struct dev_priv *priv = netdev_priv(dev);
6032 	struct dev_info *hw_priv = priv->adapter;
6033 	struct ksz_hw *hw = &hw_priv->hw;
6034 
6035 	ring->tx_max_pending = (1 << 9);
6036 	ring->tx_pending = hw->tx_desc_info.alloc;
6037 	ring->rx_max_pending = (1 << 9);
6038 	ring->rx_pending = hw->rx_desc_info.alloc;
6039 }
6040 
6041 #define STATS_LEN			(TOTAL_PORT_COUNTER_NUM)
6042 
6043 static struct {
6044 	char string[ETH_GSTRING_LEN];
6045 } ethtool_stats_keys[STATS_LEN] = {
6046 	{ "rx_lo_priority_octets" },
6047 	{ "rx_hi_priority_octets" },
6048 	{ "rx_undersize_packets" },
6049 	{ "rx_fragments" },
6050 	{ "rx_oversize_packets" },
6051 	{ "rx_jabbers" },
6052 	{ "rx_symbol_errors" },
6053 	{ "rx_crc_errors" },
6054 	{ "rx_align_errors" },
6055 	{ "rx_mac_ctrl_packets" },
6056 	{ "rx_pause_packets" },
6057 	{ "rx_bcast_packets" },
6058 	{ "rx_mcast_packets" },
6059 	{ "rx_ucast_packets" },
6060 	{ "rx_64_or_less_octet_packets" },
6061 	{ "rx_65_to_127_octet_packets" },
6062 	{ "rx_128_to_255_octet_packets" },
6063 	{ "rx_256_to_511_octet_packets" },
6064 	{ "rx_512_to_1023_octet_packets" },
6065 	{ "rx_1024_to_1522_octet_packets" },
6066 
6067 	{ "tx_lo_priority_octets" },
6068 	{ "tx_hi_priority_octets" },
6069 	{ "tx_late_collisions" },
6070 	{ "tx_pause_packets" },
6071 	{ "tx_bcast_packets" },
6072 	{ "tx_mcast_packets" },
6073 	{ "tx_ucast_packets" },
6074 	{ "tx_deferred" },
6075 	{ "tx_total_collisions" },
6076 	{ "tx_excessive_collisions" },
6077 	{ "tx_single_collisions" },
6078 	{ "tx_mult_collisions" },
6079 
6080 	{ "rx_discards" },
6081 	{ "tx_discards" },
6082 };
6083 
6084 /**
6085  * netdev_get_strings - get statistics identity strings
6086  * @dev:	Network device.
6087  * @stringset:	String set identifier.
6088  * @buf:	Buffer to store the strings.
6089  *
6090  * This procedure returns the strings used to identify the statistics.
6091  */
6092 static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6093 {
6094 	struct dev_priv *priv = netdev_priv(dev);
6095 	struct dev_info *hw_priv = priv->adapter;
6096 	struct ksz_hw *hw = &hw_priv->hw;
6097 
6098 	if (ETH_SS_STATS == stringset)
6099 		memcpy(buf, &ethtool_stats_keys,
6100 			ETH_GSTRING_LEN * hw->mib_cnt);
6101 }
6102 
6103 /**
6104  * netdev_get_sset_count - get statistics size
6105  * @dev:	Network device.
6106  * @sset:	The statistics set number.
6107  *
6108  * This function returns the size of the statistics to be reported.
6109  *
6110  * Return size of the statistics to be reported.
6111  */
6112 static int netdev_get_sset_count(struct net_device *dev, int sset)
6113 {
6114 	struct dev_priv *priv = netdev_priv(dev);
6115 	struct dev_info *hw_priv = priv->adapter;
6116 	struct ksz_hw *hw = &hw_priv->hw;
6117 
6118 	switch (sset) {
6119 	case ETH_SS_STATS:
6120 		return hw->mib_cnt;
6121 	default:
6122 		return -EOPNOTSUPP;
6123 	}
6124 }
6125 
6126 /**
6127  * netdev_get_ethtool_stats - get network device statistics
6128  * @dev:	Network device.
6129  * @stats:	Ethtool statistics data structure.
6130  * @data:	Buffer to store the statistics.
6131  *
6132  * This procedure returns the statistics.
6133  */
6134 static void netdev_get_ethtool_stats(struct net_device *dev,
6135 	struct ethtool_stats *stats, u64 *data)
6136 {
6137 	struct dev_priv *priv = netdev_priv(dev);
6138 	struct dev_info *hw_priv = priv->adapter;
6139 	struct ksz_hw *hw = &hw_priv->hw;
6140 	struct ksz_port *port = &priv->port;
6141 	int n_stats = stats->n_stats;
6142 	int i;
6143 	int n;
6144 	int p;
6145 	u64 counter[TOTAL_PORT_COUNTER_NUM];
6146 
6147 	mutex_lock(&hw_priv->lock);
6148 	n = SWITCH_PORT_NUM;
6149 	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6150 		if (media_connected == hw->port_mib[p].state) {
6151 			hw_priv->counter[p].read = 1;
6152 
6153 			/* Remember first port that requests read. */
6154 			if (n == SWITCH_PORT_NUM)
6155 				n = p;
6156 		}
6157 	}
6158 	mutex_unlock(&hw_priv->lock);
6159 
6160 	if (n < SWITCH_PORT_NUM)
6161 		schedule_work(&hw_priv->mib_read);
6162 
6163 	if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6164 		p = n;
6165 		wait_event_interruptible_timeout(
6166 			hw_priv->counter[p].counter,
6167 			2 == hw_priv->counter[p].read,
6168 			HZ * 1);
6169 	} else
6170 		for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6171 			if (0 == i) {
6172 				wait_event_interruptible_timeout(
6173 					hw_priv->counter[p].counter,
6174 					2 == hw_priv->counter[p].read,
6175 					HZ * 2);
6176 			} else if (hw->port_mib[p].cnt_ptr) {
6177 				wait_event_interruptible_timeout(
6178 					hw_priv->counter[p].counter,
6179 					2 == hw_priv->counter[p].read,
6180 					HZ * 1);
6181 			}
6182 		}
6183 
6184 	get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6185 	n = hw->mib_cnt;
6186 	if (n > n_stats)
6187 		n = n_stats;
6188 	n_stats -= n;
6189 	for (i = 0; i < n; i++)
6190 		*data++ = counter[i];
6191 }
6192 
6193 /**
6194  * netdev_set_features - set receive checksum support
6195  * @dev:	Network device.
6196  * @features:	New device features (offloads).
6197  *
6198  * This function sets receive checksum support setting.
6199  *
6200  * Return 0 if successful; otherwise an error code.
6201  */
6202 static int netdev_set_features(struct net_device *dev,
6203 	netdev_features_t features)
6204 {
6205 	struct dev_priv *priv = netdev_priv(dev);
6206 	struct dev_info *hw_priv = priv->adapter;
6207 	struct ksz_hw *hw = &hw_priv->hw;
6208 
6209 	mutex_lock(&hw_priv->lock);
6210 
6211 	/* see note in hw_setup() */
6212 	if (features & NETIF_F_RXCSUM)
6213 		hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP;
6214 	else
6215 		hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
6216 
6217 	if (hw->enabled)
6218 		writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6219 
6220 	mutex_unlock(&hw_priv->lock);
6221 
6222 	return 0;
6223 }
6224 
6225 static const struct ethtool_ops netdev_ethtool_ops = {
6226 	.nway_reset		= netdev_nway_reset,
6227 	.get_link		= netdev_get_link,
6228 	.get_drvinfo		= netdev_get_drvinfo,
6229 	.get_regs_len		= netdev_get_regs_len,
6230 	.get_regs		= netdev_get_regs,
6231 	.get_wol		= netdev_get_wol,
6232 	.set_wol		= netdev_set_wol,
6233 	.get_msglevel		= netdev_get_msglevel,
6234 	.set_msglevel		= netdev_set_msglevel,
6235 	.get_eeprom_len		= netdev_get_eeprom_len,
6236 	.get_eeprom		= netdev_get_eeprom,
6237 	.set_eeprom		= netdev_set_eeprom,
6238 	.get_pauseparam		= netdev_get_pauseparam,
6239 	.set_pauseparam		= netdev_set_pauseparam,
6240 	.get_ringparam		= netdev_get_ringparam,
6241 	.get_strings		= netdev_get_strings,
6242 	.get_sset_count		= netdev_get_sset_count,
6243 	.get_ethtool_stats	= netdev_get_ethtool_stats,
6244 	.get_link_ksettings	= netdev_get_link_ksettings,
6245 	.set_link_ksettings	= netdev_set_link_ksettings,
6246 };
6247 
6248 /*
6249  * Hardware monitoring
6250  */
6251 
6252 static void update_link(struct net_device *dev, struct dev_priv *priv,
6253 	struct ksz_port *port)
6254 {
6255 	if (priv->media_state != port->linked->state) {
6256 		priv->media_state = port->linked->state;
6257 		if (netif_running(dev))
6258 			set_media_state(dev, media_connected);
6259 	}
6260 }
6261 
6262 static void mib_read_work(struct work_struct *work)
6263 {
6264 	struct dev_info *hw_priv =
6265 		container_of(work, struct dev_info, mib_read);
6266 	struct ksz_hw *hw = &hw_priv->hw;
6267 	unsigned long next_jiffies;
6268 	struct ksz_port_mib *mib;
6269 	int i;
6270 
6271 	next_jiffies = jiffies;
6272 	for (i = 0; i < hw->mib_port_cnt; i++) {
6273 		mib = &hw->port_mib[i];
6274 
6275 		/* Reading MIB counters or requested to read. */
6276 		if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6277 
6278 			/* Need to process receive interrupt. */
6279 			if (port_r_cnt(hw, i))
6280 				break;
6281 			hw_priv->counter[i].read = 0;
6282 
6283 			/* Finish reading counters. */
6284 			if (0 == mib->cnt_ptr) {
6285 				hw_priv->counter[i].read = 2;
6286 				wake_up_interruptible(
6287 					&hw_priv->counter[i].counter);
6288 			}
6289 		} else if (time_after_eq(jiffies, hw_priv->counter[i].time)) {
6290 			/* Only read MIB counters when the port is connected. */
6291 			if (media_connected == mib->state)
6292 				hw_priv->counter[i].read = 1;
6293 			next_jiffies += HZ * 1 * hw->mib_port_cnt;
6294 			hw_priv->counter[i].time = next_jiffies;
6295 
6296 		/* Port is just disconnected. */
6297 		} else if (mib->link_down) {
6298 			mib->link_down = 0;
6299 
6300 			/* Read counters one last time after link is lost. */
6301 			hw_priv->counter[i].read = 1;
6302 		}
6303 	}
6304 }
6305 
6306 static void mib_monitor(struct timer_list *t)
6307 {
6308 	struct dev_info *hw_priv = timer_container_of(hw_priv, t,
6309 						      mib_timer_info.timer);
6310 
6311 	mib_read_work(&hw_priv->mib_read);
6312 
6313 	/* This is used to verify Wake-on-LAN is working. */
6314 	if (hw_priv->pme_wait) {
6315 		if (time_is_before_eq_jiffies(hw_priv->pme_wait)) {
6316 			hw_clr_wol_pme_status(&hw_priv->hw);
6317 			hw_priv->pme_wait = 0;
6318 		}
6319 	} else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6320 
6321 		/* PME is asserted.  Wait 2 seconds to clear it. */
6322 		hw_priv->pme_wait = jiffies + HZ * 2;
6323 	}
6324 
6325 	ksz_update_timer(&hw_priv->mib_timer_info);
6326 }
6327 
6328 /**
6329  * dev_monitor - periodic monitoring
6330  * @t:	timer list containing a network device pointer.
6331  *
6332  * This routine is run in a kernel timer to monitor the network device.
6333  */
6334 static void dev_monitor(struct timer_list *t)
6335 {
6336 	struct dev_priv *priv = timer_container_of(priv, t,
6337 						   monitor_timer_info.timer);
6338 	struct net_device *dev = priv->mii_if.dev;
6339 	struct dev_info *hw_priv = priv->adapter;
6340 	struct ksz_hw *hw = &hw_priv->hw;
6341 	struct ksz_port *port = &priv->port;
6342 
6343 	if (!(hw->features & LINK_INT_WORKING))
6344 		port_get_link_speed(port);
6345 	update_link(dev, priv, port);
6346 
6347 	ksz_update_timer(&priv->monitor_timer_info);
6348 }
6349 
6350 /*
6351  * Linux network device interface functions
6352  */
6353 
6354 /* Driver exported variables */
6355 
6356 static int msg_enable;
6357 
6358 static char *macaddr = ":";
6359 static char *mac1addr = ":";
6360 
6361 /*
6362  * This enables multiple network device mode for KSZ8842, which contains a
6363  * switch with two physical ports.  Some users like to take control of the
6364  * ports for running Spanning Tree Protocol.  The driver will create an
6365  * additional eth? device for the other port.
6366  *
6367  * Some limitations are the network devices cannot have different MTU and
6368  * multicast hash tables.
6369  */
6370 static int multi_dev;
6371 
6372 /*
6373  * As most users select multiple network device mode to use Spanning Tree
6374  * Protocol, this enables a feature in which most unicast and multicast packets
6375  * are forwarded inside the switch and not passed to the host.  Only packets
6376  * that need the host's attention are passed to it.  This prevents the host
6377  * wasting CPU time to examine each and every incoming packets and do the
6378  * forwarding itself.
6379  *
6380  * As the hack requires the private bridge header, the driver cannot compile
6381  * with just the kernel headers.
6382  *
6383  * Enabling STP support also turns on multiple network device mode.
6384  */
6385 static int stp;
6386 
6387 /*
6388  * This enables fast aging in the KSZ8842 switch.  Not sure what situation
6389  * needs that.  However, fast aging is used to flush the dynamic MAC table when
6390  * STP support is enabled.
6391  */
6392 static int fast_aging;
6393 
6394 /**
6395  * netdev_init - initialize network device.
6396  * @dev:	Network device.
6397  *
6398  * This function initializes the network device.
6399  *
6400  * Return 0 if successful; otherwise an error code indicating failure.
6401  */
6402 static int __init netdev_init(struct net_device *dev)
6403 {
6404 	struct dev_priv *priv = netdev_priv(dev);
6405 
6406 	/* 500 ms timeout */
6407 	ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6408 		dev_monitor);
6409 
6410 	/* 500 ms timeout */
6411 	dev->watchdog_timeo = HZ / 2;
6412 
6413 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM;
6414 
6415 	/*
6416 	 * Hardware does not really support IPv6 checksum generation, but
6417 	 * driver actually runs faster with this on.
6418 	 */
6419 	dev->hw_features |= NETIF_F_IPV6_CSUM;
6420 
6421 	dev->features |= dev->hw_features;
6422 
6423 	sema_init(&priv->proc_sem, 1);
6424 
6425 	priv->mii_if.phy_id_mask = 0x1;
6426 	priv->mii_if.reg_num_mask = 0x7;
6427 	priv->mii_if.dev = dev;
6428 	priv->mii_if.mdio_read = mdio_read;
6429 	priv->mii_if.mdio_write = mdio_write;
6430 	priv->mii_if.phy_id = priv->port.first_port + 1;
6431 
6432 	priv->msg_enable = netif_msg_init(msg_enable,
6433 		(NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6434 
6435 	return 0;
6436 }
6437 
6438 static const struct net_device_ops netdev_ops = {
6439 	.ndo_init		= netdev_init,
6440 	.ndo_open		= netdev_open,
6441 	.ndo_stop		= netdev_close,
6442 	.ndo_get_stats		= netdev_query_statistics,
6443 	.ndo_start_xmit		= netdev_tx,
6444 	.ndo_tx_timeout		= netdev_tx_timeout,
6445 	.ndo_change_mtu		= netdev_change_mtu,
6446 	.ndo_set_features	= netdev_set_features,
6447 	.ndo_set_mac_address	= netdev_set_mac_address,
6448 	.ndo_validate_addr	= eth_validate_addr,
6449 	.ndo_eth_ioctl		= netdev_ioctl,
6450 	.ndo_set_rx_mode	= netdev_set_rx_mode,
6451 #ifdef CONFIG_NET_POLL_CONTROLLER
6452 	.ndo_poll_controller	= netdev_netpoll,
6453 #endif
6454 };
6455 
6456 static void netdev_free(struct net_device *dev)
6457 {
6458 	if (dev->watchdog_timeo)
6459 		unregister_netdev(dev);
6460 
6461 	free_netdev(dev);
6462 }
6463 
6464 struct platform_info {
6465 	struct dev_info dev_info;
6466 	struct net_device *netdev[SWITCH_PORT_NUM];
6467 };
6468 
6469 static int net_device_present;
6470 
6471 static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6472 {
6473 	int i;
6474 	int j;
6475 	int got_num;
6476 	int num;
6477 
6478 	i = j = num = got_num = 0;
6479 	while (j < ETH_ALEN) {
6480 		if (macaddr[i]) {
6481 			int digit;
6482 
6483 			got_num = 1;
6484 			digit = hex_to_bin(macaddr[i]);
6485 			if (digit >= 0)
6486 				num = num * 16 + digit;
6487 			else if (':' == macaddr[i])
6488 				got_num = 2;
6489 			else
6490 				break;
6491 		} else if (got_num)
6492 			got_num = 2;
6493 		else
6494 			break;
6495 		if (2 == got_num) {
6496 			if (MAIN_PORT == port) {
6497 				hw_priv->hw.override_addr[j++] = (u8) num;
6498 				hw_priv->hw.override_addr[5] +=
6499 					hw_priv->hw.id;
6500 			} else {
6501 				hw_priv->hw.ksz_switch->other_addr[j++] =
6502 					(u8) num;
6503 				hw_priv->hw.ksz_switch->other_addr[5] +=
6504 					hw_priv->hw.id;
6505 			}
6506 			num = got_num = 0;
6507 		}
6508 		i++;
6509 	}
6510 	if (ETH_ALEN == j) {
6511 		if (MAIN_PORT == port)
6512 			hw_priv->hw.mac_override = 1;
6513 	}
6514 }
6515 
6516 #define KS884X_DMA_MASK			(~0x0UL)
6517 
6518 static void read_other_addr(struct ksz_hw *hw)
6519 {
6520 	int i;
6521 	u16 data[3];
6522 	struct ksz_switch *sw = hw->ksz_switch;
6523 
6524 	for (i = 0; i < 3; i++)
6525 		data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6526 	if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6527 		sw->other_addr[5] = (u8) data[0];
6528 		sw->other_addr[4] = (u8)(data[0] >> 8);
6529 		sw->other_addr[3] = (u8) data[1];
6530 		sw->other_addr[2] = (u8)(data[1] >> 8);
6531 		sw->other_addr[1] = (u8) data[2];
6532 		sw->other_addr[0] = (u8)(data[2] >> 8);
6533 	}
6534 }
6535 
6536 #ifndef PCI_VENDOR_ID_MICREL_KS
6537 #define PCI_VENDOR_ID_MICREL_KS		0x16c6
6538 #endif
6539 
6540 static int pcidev_init(struct pci_dev *pdev, const struct pci_device_id *id)
6541 {
6542 	struct net_device *dev;
6543 	struct dev_priv *priv;
6544 	struct dev_info *hw_priv;
6545 	struct ksz_hw *hw;
6546 	struct platform_info *info;
6547 	struct ksz_port *port;
6548 	unsigned long reg_base;
6549 	unsigned long reg_len;
6550 	int cnt;
6551 	int i;
6552 	int mib_port_count;
6553 	int pi;
6554 	int port_count;
6555 	int result;
6556 	char banner[sizeof(version)];
6557 	struct ksz_switch *sw = NULL;
6558 
6559 	result = pcim_enable_device(pdev);
6560 	if (result)
6561 		return result;
6562 
6563 	result = -ENODEV;
6564 
6565 	if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)) ||
6566 	    dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)))
6567 		return result;
6568 
6569 	reg_base = pci_resource_start(pdev, 0);
6570 	reg_len = pci_resource_len(pdev, 0);
6571 	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6572 		return result;
6573 
6574 	if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6575 		return result;
6576 	pci_set_master(pdev);
6577 
6578 	result = -ENOMEM;
6579 
6580 	info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
6581 	if (!info)
6582 		goto pcidev_init_dev_err;
6583 
6584 	hw_priv = &info->dev_info;
6585 	hw_priv->pdev = pdev;
6586 
6587 	hw = &hw_priv->hw;
6588 
6589 	hw->io = ioremap(reg_base, reg_len);
6590 	if (!hw->io)
6591 		goto pcidev_init_io_err;
6592 
6593 	cnt = hw_init(hw);
6594 	if (!cnt) {
6595 		if (msg_enable & NETIF_MSG_PROBE)
6596 			pr_alert("chip not detected\n");
6597 		result = -ENODEV;
6598 		goto pcidev_init_alloc_err;
6599 	}
6600 
6601 	snprintf(banner, sizeof(banner), "%s", version);
6602 	banner[13] = cnt + '0';		/* Replace x in "Micrel KSZ884x" */
6603 	dev_info(&hw_priv->pdev->dev, "%s\n", banner);
6604 	dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
6605 
6606 	/* Assume device is KSZ8841. */
6607 	hw->dev_count = 1;
6608 	port_count = 1;
6609 	mib_port_count = 1;
6610 	hw->addr_list_size = 0;
6611 	hw->mib_cnt = PORT_COUNTER_NUM;
6612 	hw->mib_port_cnt = 1;
6613 
6614 	/* KSZ8842 has a switch with multiple ports. */
6615 	if (2 == cnt) {
6616 		if (fast_aging)
6617 			hw->overrides |= FAST_AGING;
6618 
6619 		hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
6620 
6621 		/* Multiple network device interfaces are required. */
6622 		if (multi_dev) {
6623 			hw->dev_count = SWITCH_PORT_NUM;
6624 			hw->addr_list_size = SWITCH_PORT_NUM - 1;
6625 		}
6626 
6627 		/* Single network device has multiple ports. */
6628 		if (1 == hw->dev_count) {
6629 			port_count = SWITCH_PORT_NUM;
6630 			mib_port_count = SWITCH_PORT_NUM;
6631 		}
6632 		hw->mib_port_cnt = TOTAL_PORT_NUM;
6633 		hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
6634 		if (!hw->ksz_switch)
6635 			goto pcidev_init_alloc_err;
6636 
6637 		sw = hw->ksz_switch;
6638 	}
6639 	for (i = 0; i < hw->mib_port_cnt; i++)
6640 		hw->port_mib[i].mib_start = 0;
6641 
6642 	hw->parent = hw_priv;
6643 
6644 	/* Default MTU is 1500. */
6645 	hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
6646 
6647 	if (ksz_alloc_mem(hw_priv))
6648 		goto pcidev_init_mem_err;
6649 
6650 	hw_priv->hw.id = net_device_present;
6651 
6652 	spin_lock_init(&hw_priv->hwlock);
6653 	mutex_init(&hw_priv->lock);
6654 
6655 	for (i = 0; i < TOTAL_PORT_NUM; i++)
6656 		init_waitqueue_head(&hw_priv->counter[i].counter);
6657 
6658 	if (macaddr[0] != ':')
6659 		get_mac_addr(hw_priv, macaddr, MAIN_PORT);
6660 
6661 	/* Read MAC address and initialize override address if not overridden. */
6662 	hw_read_addr(hw);
6663 
6664 	/* Multiple device interfaces mode requires a second MAC address. */
6665 	if (hw->dev_count > 1) {
6666 		memcpy(sw->other_addr, hw->override_addr, ETH_ALEN);
6667 		read_other_addr(hw);
6668 		if (mac1addr[0] != ':')
6669 			get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
6670 	}
6671 
6672 	hw_setup(hw);
6673 	if (hw->ksz_switch)
6674 		sw_setup(hw);
6675 	else {
6676 		hw_priv->wol_support = WOL_SUPPORT;
6677 		hw_priv->wol_enable = 0;
6678 	}
6679 
6680 	INIT_WORK(&hw_priv->mib_read, mib_read_work);
6681 
6682 	/* 500 ms timeout */
6683 	ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
6684 		mib_monitor);
6685 
6686 	for (i = 0; i < hw->dev_count; i++) {
6687 		dev = alloc_etherdev(sizeof(struct dev_priv));
6688 		if (!dev)
6689 			goto pcidev_init_reg_err;
6690 		SET_NETDEV_DEV(dev, &pdev->dev);
6691 		info->netdev[i] = dev;
6692 
6693 		priv = netdev_priv(dev);
6694 		priv->adapter = hw_priv;
6695 		priv->id = net_device_present++;
6696 
6697 		port = &priv->port;
6698 		port->port_cnt = port_count;
6699 		port->mib_port_cnt = mib_port_count;
6700 		port->first_port = i;
6701 		port->flow_ctrl = PHY_FLOW_CTRL;
6702 
6703 		port->hw = hw;
6704 		port->linked = &hw->port_info[port->first_port];
6705 
6706 		for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
6707 			hw->port_info[pi].port_id = pi;
6708 			hw->port_info[pi].pdev = dev;
6709 			hw->port_info[pi].state = media_disconnected;
6710 		}
6711 
6712 		dev->mem_start = (unsigned long) hw->io;
6713 		dev->mem_end = dev->mem_start + reg_len - 1;
6714 		dev->irq = pdev->irq;
6715 		if (MAIN_PORT == i)
6716 			eth_hw_addr_set(dev, hw_priv->hw.override_addr);
6717 		else {
6718 			u8 addr[ETH_ALEN];
6719 
6720 			ether_addr_copy(addr, sw->other_addr);
6721 			if (ether_addr_equal(sw->other_addr, hw->override_addr))
6722 				addr[5] += port->first_port;
6723 			eth_hw_addr_set(dev, addr);
6724 		}
6725 
6726 		dev->netdev_ops = &netdev_ops;
6727 		dev->ethtool_ops = &netdev_ethtool_ops;
6728 
6729 		/* MTU range: 60 - 1894 */
6730 		dev->min_mtu = ETH_ZLEN;
6731 		dev->max_mtu = MAX_RX_BUF_SIZE -
6732 			       (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
6733 
6734 		if (register_netdev(dev))
6735 			goto pcidev_init_reg_err;
6736 		port_set_power_saving(port, true);
6737 	}
6738 
6739 	pci_dev_get(hw_priv->pdev);
6740 	pci_set_drvdata(pdev, info);
6741 	return 0;
6742 
6743 pcidev_init_reg_err:
6744 	for (i = 0; i < hw->dev_count; i++) {
6745 		if (info->netdev[i]) {
6746 			netdev_free(info->netdev[i]);
6747 			info->netdev[i] = NULL;
6748 		}
6749 	}
6750 
6751 pcidev_init_mem_err:
6752 	ksz_free_mem(hw_priv);
6753 	kfree(hw->ksz_switch);
6754 
6755 pcidev_init_alloc_err:
6756 	iounmap(hw->io);
6757 
6758 pcidev_init_io_err:
6759 	kfree(info);
6760 
6761 pcidev_init_dev_err:
6762 	release_mem_region(reg_base, reg_len);
6763 
6764 	return result;
6765 }
6766 
6767 static void pcidev_exit(struct pci_dev *pdev)
6768 {
6769 	int i;
6770 	struct platform_info *info = pci_get_drvdata(pdev);
6771 	struct dev_info *hw_priv = &info->dev_info;
6772 
6773 	release_mem_region(pci_resource_start(pdev, 0),
6774 		pci_resource_len(pdev, 0));
6775 	for (i = 0; i < hw_priv->hw.dev_count; i++) {
6776 		if (info->netdev[i])
6777 			netdev_free(info->netdev[i]);
6778 	}
6779 	if (hw_priv->hw.io)
6780 		iounmap(hw_priv->hw.io);
6781 	ksz_free_mem(hw_priv);
6782 	kfree(hw_priv->hw.ksz_switch);
6783 	pci_dev_put(hw_priv->pdev);
6784 	kfree(info);
6785 }
6786 
6787 static int __maybe_unused pcidev_resume(struct device *dev_d)
6788 {
6789 	int i;
6790 	struct platform_info *info = dev_get_drvdata(dev_d);
6791 	struct dev_info *hw_priv = &info->dev_info;
6792 	struct ksz_hw *hw = &hw_priv->hw;
6793 
6794 	device_wakeup_disable(dev_d);
6795 
6796 	if (hw_priv->wol_enable)
6797 		hw_cfg_wol_pme(hw, 0);
6798 	for (i = 0; i < hw->dev_count; i++) {
6799 		if (info->netdev[i]) {
6800 			struct net_device *dev = info->netdev[i];
6801 
6802 			if (netif_running(dev)) {
6803 				netdev_open(dev);
6804 				netif_device_attach(dev);
6805 			}
6806 		}
6807 	}
6808 	return 0;
6809 }
6810 
6811 static int __maybe_unused pcidev_suspend(struct device *dev_d)
6812 {
6813 	int i;
6814 	struct platform_info *info = dev_get_drvdata(dev_d);
6815 	struct dev_info *hw_priv = &info->dev_info;
6816 	struct ksz_hw *hw = &hw_priv->hw;
6817 
6818 	/* Need to find a way to retrieve the device IP address. */
6819 	static const u8 net_addr[] = { 192, 168, 1, 1 };
6820 
6821 	for (i = 0; i < hw->dev_count; i++) {
6822 		if (info->netdev[i]) {
6823 			struct net_device *dev = info->netdev[i];
6824 
6825 			if (netif_running(dev)) {
6826 				netif_device_detach(dev);
6827 				netdev_close(dev);
6828 			}
6829 		}
6830 	}
6831 	if (hw_priv->wol_enable) {
6832 		hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
6833 		hw_cfg_wol_pme(hw, 1);
6834 	}
6835 
6836 	device_wakeup_enable(dev_d);
6837 	return 0;
6838 }
6839 
6840 static char pcidev_name[] = "ksz884xp";
6841 
6842 static const struct pci_device_id pcidev_table[] = {
6843 	{ PCI_VENDOR_ID_MICREL_KS, 0x8841,
6844 		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
6845 	{ PCI_VENDOR_ID_MICREL_KS, 0x8842,
6846 		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
6847 	{ 0 }
6848 };
6849 
6850 MODULE_DEVICE_TABLE(pci, pcidev_table);
6851 
6852 static SIMPLE_DEV_PM_OPS(pcidev_pm_ops, pcidev_suspend, pcidev_resume);
6853 
6854 static struct pci_driver pci_device_driver = {
6855 	.driver.pm	= &pcidev_pm_ops,
6856 	.name		= pcidev_name,
6857 	.id_table	= pcidev_table,
6858 	.probe		= pcidev_init,
6859 	.remove		= pcidev_exit
6860 };
6861 
6862 module_pci_driver(pci_device_driver);
6863 
6864 MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
6865 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
6866 MODULE_LICENSE("GPL");
6867 
6868 module_param_named(message, msg_enable, int, 0);
6869 MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
6870 
6871 module_param(macaddr, charp, 0);
6872 module_param(mac1addr, charp, 0);
6873 module_param(fast_aging, int, 0);
6874 module_param(multi_dev, int, 0);
6875 module_param(stp, int, 0);
6876 MODULE_PARM_DESC(macaddr, "MAC address");
6877 MODULE_PARM_DESC(mac1addr, "Second MAC address");
6878 MODULE_PARM_DESC(fast_aging, "Fast aging");
6879 MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
6880 MODULE_PARM_DESC(stp, "STP support");
6881