1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * drivers/net/phy/micrel.c
4 *
5 * Driver for Micrel PHYs
6 *
7 * Author: David J. Choi
8 *
9 * Copyright (c) 2010-2013 Micrel, Inc.
10 * Copyright (c) 2014 Johan Hovold <johan@kernel.org>
11 *
12 * Support : Micrel Phys:
13 * Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814
14 * 100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041
15 * ksz8021, ksz8031, ksz8051,
16 * ksz8081, ksz8091,
17 * ksz8061,
18 * Switch : ksz8873, ksz886x
19 * ksz9477, lan8804
20 */
21
22 #include <linux/bitfield.h>
23 #include <linux/ethtool_netlink.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/phy.h>
27 #include <linux/micrel_phy.h>
28 #include <linux/of.h>
29 #include <linux/clk.h>
30 #include <linux/delay.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/ptp_clock.h>
33 #include <linux/ptp_classify.h>
34 #include <linux/net_tstamp.h>
35 #include <linux/gpio/consumer.h>
36
37 /* Operation Mode Strap Override */
38 #define MII_KSZPHY_OMSO 0x16
39 #define KSZPHY_OMSO_FACTORY_TEST BIT(15)
40 #define KSZPHY_OMSO_B_CAST_OFF BIT(9)
41 #define KSZPHY_OMSO_NAND_TREE_ON BIT(5)
42 #define KSZPHY_OMSO_RMII_OVERRIDE BIT(1)
43 #define KSZPHY_OMSO_MII_OVERRIDE BIT(0)
44
45 /* general Interrupt control/status reg in vendor specific block. */
46 #define MII_KSZPHY_INTCS 0x1B
47 #define KSZPHY_INTCS_JABBER BIT(15)
48 #define KSZPHY_INTCS_RECEIVE_ERR BIT(14)
49 #define KSZPHY_INTCS_PAGE_RECEIVE BIT(13)
50 #define KSZPHY_INTCS_PARELLEL BIT(12)
51 #define KSZPHY_INTCS_LINK_PARTNER_ACK BIT(11)
52 #define KSZPHY_INTCS_LINK_DOWN BIT(10)
53 #define KSZPHY_INTCS_REMOTE_FAULT BIT(9)
54 #define KSZPHY_INTCS_LINK_UP BIT(8)
55 #define KSZPHY_INTCS_ALL (KSZPHY_INTCS_LINK_UP |\
56 KSZPHY_INTCS_LINK_DOWN)
57 #define KSZPHY_INTCS_LINK_DOWN_STATUS BIT(2)
58 #define KSZPHY_INTCS_LINK_UP_STATUS BIT(0)
59 #define KSZPHY_INTCS_STATUS (KSZPHY_INTCS_LINK_DOWN_STATUS |\
60 KSZPHY_INTCS_LINK_UP_STATUS)
61
62 /* LinkMD Control/Status */
63 #define KSZ8081_LMD 0x1d
64 #define KSZ8081_LMD_ENABLE_TEST BIT(15)
65 #define KSZ8081_LMD_STAT_NORMAL 0
66 #define KSZ8081_LMD_STAT_OPEN 1
67 #define KSZ8081_LMD_STAT_SHORT 2
68 #define KSZ8081_LMD_STAT_FAIL 3
69 #define KSZ8081_LMD_STAT_MASK GENMASK(14, 13)
70 /* Short cable (<10 meter) has been detected by LinkMD */
71 #define KSZ8081_LMD_SHORT_INDICATOR BIT(12)
72 #define KSZ8081_LMD_DELTA_TIME_MASK GENMASK(8, 0)
73
74 #define KSZ9x31_LMD 0x12
75 #define KSZ9x31_LMD_VCT_EN BIT(15)
76 #define KSZ9x31_LMD_VCT_DIS_TX BIT(14)
77 #define KSZ9x31_LMD_VCT_PAIR(n) (((n) & 0x3) << 12)
78 #define KSZ9x31_LMD_VCT_SEL_RESULT 0
79 #define KSZ9x31_LMD_VCT_SEL_THRES_HI BIT(10)
80 #define KSZ9x31_LMD_VCT_SEL_THRES_LO BIT(11)
81 #define KSZ9x31_LMD_VCT_SEL_MASK GENMASK(11, 10)
82 #define KSZ9x31_LMD_VCT_ST_NORMAL 0
83 #define KSZ9x31_LMD_VCT_ST_OPEN 1
84 #define KSZ9x31_LMD_VCT_ST_SHORT 2
85 #define KSZ9x31_LMD_VCT_ST_FAIL 3
86 #define KSZ9x31_LMD_VCT_ST_MASK GENMASK(9, 8)
87 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID BIT(7)
88 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG BIT(6)
89 #define KSZ9x31_LMD_VCT_DATA_MASK100 BIT(5)
90 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP BIT(4)
91 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK GENMASK(3, 2)
92 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK GENMASK(1, 0)
93 #define KSZ9x31_LMD_VCT_DATA_MASK GENMASK(7, 0)
94
95 #define KSZPHY_WIRE_PAIR_MASK 0x3
96
97 #define LAN8814_CABLE_DIAG 0x12
98 #define LAN8814_CABLE_DIAG_STAT_MASK GENMASK(9, 8)
99 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK GENMASK(7, 0)
100 #define LAN8814_PAIR_BIT_SHIFT 12
101
102 #define LAN8814_WIRE_PAIR_MASK 0xF
103
104 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */
105 #define LAN8814_INTC 0x18
106 #define LAN8814_INTS 0x1B
107
108 #define LAN8814_INT_LINK_DOWN BIT(2)
109 #define LAN8814_INT_LINK_UP BIT(0)
110 #define LAN8814_INT_LINK (LAN8814_INT_LINK_UP |\
111 LAN8814_INT_LINK_DOWN)
112
113 #define LAN8814_INTR_CTRL_REG 0x34
114 #define LAN8814_INTR_CTRL_REG_POLARITY BIT(1)
115 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE BIT(0)
116
117 #define LAN8814_EEE_STATE 0x38
118 #define LAN8814_EEE_STATE_MASK2P5P BIT(10)
119
120 #define LAN8814_PD_CONTROLS 0x9d
121 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK GENMASK(3, 0)
122 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL 0xb
123
124 /* Represents 1ppm adjustment in 2^32 format with
125 * each nsec contains 4 clock cycles.
126 * The value is calculated as following: (1/1000000)/((2^-32)/4)
127 */
128 #define LAN8814_1PPM_FORMAT 17179
129
130 /* Represents 1ppm adjustment in 2^32 format with
131 * each nsec contains 8 clock cycles.
132 * The value is calculated as following: (1/1000000)/((2^-32)/8)
133 */
134 #define LAN8841_1PPM_FORMAT 34360
135
136 #define PTP_RX_VERSION 0x0248
137 #define PTP_TX_VERSION 0x0288
138 #define PTP_MAX_VERSION(x) (((x) & GENMASK(7, 0)) << 8)
139 #define PTP_MIN_VERSION(x) ((x) & GENMASK(7, 0))
140
141 #define PTP_RX_MOD 0x024F
142 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
143 #define PTP_RX_TIMESTAMP_EN 0x024D
144 #define PTP_TX_TIMESTAMP_EN 0x028D
145
146 #define PTP_TIMESTAMP_EN_SYNC_ BIT(0)
147 #define PTP_TIMESTAMP_EN_DREQ_ BIT(1)
148 #define PTP_TIMESTAMP_EN_PDREQ_ BIT(2)
149 #define PTP_TIMESTAMP_EN_PDRES_ BIT(3)
150
151 #define PTP_TX_PARSE_L2_ADDR_EN 0x0284
152 #define PTP_RX_PARSE_L2_ADDR_EN 0x0244
153
154 #define PTP_TX_PARSE_IP_ADDR_EN 0x0285
155 #define PTP_RX_PARSE_IP_ADDR_EN 0x0245
156 #define LTC_HARD_RESET 0x023F
157 #define LTC_HARD_RESET_ BIT(0)
158
159 #define TSU_HARD_RESET 0x02C1
160 #define TSU_HARD_RESET_ BIT(0)
161
162 #define PTP_CMD_CTL 0x0200
163 #define PTP_CMD_CTL_PTP_DISABLE_ BIT(0)
164 #define PTP_CMD_CTL_PTP_ENABLE_ BIT(1)
165 #define PTP_CMD_CTL_PTP_CLOCK_READ_ BIT(3)
166 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_ BIT(4)
167 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_ BIT(5)
168 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_ BIT(6)
169
170 #define PTP_COMMON_INT_ENA 0x0204
171 #define PTP_COMMON_INT_ENA_GPIO_CAP_EN BIT(2)
172
173 #define PTP_CLOCK_SET_SEC_HI 0x0205
174 #define PTP_CLOCK_SET_SEC_MID 0x0206
175 #define PTP_CLOCK_SET_SEC_LO 0x0207
176 #define PTP_CLOCK_SET_NS_HI 0x0208
177 #define PTP_CLOCK_SET_NS_LO 0x0209
178
179 #define PTP_CLOCK_READ_SEC_HI 0x0229
180 #define PTP_CLOCK_READ_SEC_MID 0x022A
181 #define PTP_CLOCK_READ_SEC_LO 0x022B
182 #define PTP_CLOCK_READ_NS_HI 0x022C
183 #define PTP_CLOCK_READ_NS_LO 0x022D
184
185 #define PTP_GPIO_SEL 0x0230
186 #define PTP_GPIO_SEL_GPIO_SEL(pin) ((pin) << 8)
187 #define PTP_GPIO_CAP_MAP_LO 0x0232
188
189 #define PTP_GPIO_CAP_EN 0x0233
190 #define PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) BIT(gpio)
191 #define PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8)
192
193 #define PTP_GPIO_RE_LTC_SEC_HI_CAP 0x0235
194 #define PTP_GPIO_RE_LTC_SEC_LO_CAP 0x0236
195 #define PTP_GPIO_RE_LTC_NS_HI_CAP 0x0237
196 #define PTP_GPIO_RE_LTC_NS_LO_CAP 0x0238
197 #define PTP_GPIO_FE_LTC_SEC_HI_CAP 0x0239
198 #define PTP_GPIO_FE_LTC_SEC_LO_CAP 0x023A
199 #define PTP_GPIO_FE_LTC_NS_HI_CAP 0x023B
200 #define PTP_GPIO_FE_LTC_NS_LO_CAP 0x023C
201
202 #define PTP_GPIO_CAP_STS 0x023D
203 #define PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(gpio) BIT(gpio)
204 #define PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(gpio) (BIT(gpio) << 8)
205
206 #define PTP_OPERATING_MODE 0x0241
207 #define PTP_OPERATING_MODE_STANDALONE_ BIT(0)
208
209 #define PTP_TX_MOD 0x028F
210 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ BIT(12)
211 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
212
213 #define PTP_RX_PARSE_CONFIG 0x0242
214 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_ BIT(0)
215 #define PTP_RX_PARSE_CONFIG_IPV4_EN_ BIT(1)
216 #define PTP_RX_PARSE_CONFIG_IPV6_EN_ BIT(2)
217
218 #define PTP_TX_PARSE_CONFIG 0x0282
219 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_ BIT(0)
220 #define PTP_TX_PARSE_CONFIG_IPV4_EN_ BIT(1)
221 #define PTP_TX_PARSE_CONFIG_IPV6_EN_ BIT(2)
222
223 #define PTP_CLOCK_RATE_ADJ_HI 0x020C
224 #define PTP_CLOCK_RATE_ADJ_LO 0x020D
225 #define PTP_CLOCK_RATE_ADJ_DIR_ BIT(15)
226
227 #define PTP_LTC_STEP_ADJ_HI 0x0212
228 #define PTP_LTC_STEP_ADJ_LO 0x0213
229 #define PTP_LTC_STEP_ADJ_DIR_ BIT(15)
230
231 #define LAN8814_INTR_STS_REG 0x0033
232 #define LAN8814_INTR_STS_REG_1588_TSU0_ BIT(0)
233 #define LAN8814_INTR_STS_REG_1588_TSU1_ BIT(1)
234 #define LAN8814_INTR_STS_REG_1588_TSU2_ BIT(2)
235 #define LAN8814_INTR_STS_REG_1588_TSU3_ BIT(3)
236
237 #define PTP_CAP_INFO 0x022A
238 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val) (((reg_val) & 0x0f00) >> 8)
239 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val) ((reg_val) & 0x000f)
240
241 #define PTP_TX_EGRESS_SEC_HI 0x0296
242 #define PTP_TX_EGRESS_SEC_LO 0x0297
243 #define PTP_TX_EGRESS_NS_HI 0x0294
244 #define PTP_TX_EGRESS_NS_LO 0x0295
245 #define PTP_TX_MSG_HEADER2 0x0299
246
247 #define PTP_RX_INGRESS_SEC_HI 0x0256
248 #define PTP_RX_INGRESS_SEC_LO 0x0257
249 #define PTP_RX_INGRESS_NS_HI 0x0254
250 #define PTP_RX_INGRESS_NS_LO 0x0255
251 #define PTP_RX_MSG_HEADER2 0x0259
252
253 #define PTP_TSU_INT_EN 0x0200
254 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ BIT(3)
255 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_ BIT(2)
256 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_ BIT(1)
257 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_ BIT(0)
258
259 #define PTP_TSU_INT_STS 0x0201
260 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_ BIT(3)
261 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_ BIT(2)
262 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_ BIT(1)
263 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_ BIT(0)
264
265 #define LAN8814_LED_CTRL_1 0x0
266 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_ BIT(6)
267
268 /* PHY Control 1 */
269 #define MII_KSZPHY_CTRL_1 0x1e
270 #define KSZ8081_CTRL1_MDIX_STAT BIT(4)
271
272 /* PHY Control 2 / PHY Control (if no PHY Control 1) */
273 #define MII_KSZPHY_CTRL_2 0x1f
274 #define MII_KSZPHY_CTRL MII_KSZPHY_CTRL_2
275 /* bitmap of PHY register to set interrupt mode */
276 #define KSZ8081_CTRL2_HP_MDIX BIT(15)
277 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT BIT(14)
278 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX BIT(13)
279 #define KSZ8081_CTRL2_FORCE_LINK BIT(11)
280 #define KSZ8081_CTRL2_POWER_SAVING BIT(10)
281 #define KSZPHY_CTRL_INT_ACTIVE_HIGH BIT(9)
282 #define KSZPHY_RMII_REF_CLK_SEL BIT(7)
283
284 /* Write/read to/from extended registers */
285 #define MII_KSZPHY_EXTREG 0x0b
286 #define KSZPHY_EXTREG_WRITE 0x8000
287
288 #define MII_KSZPHY_EXTREG_WRITE 0x0c
289 #define MII_KSZPHY_EXTREG_READ 0x0d
290
291 /* Extended registers */
292 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW 0x104
293 #define MII_KSZPHY_RX_DATA_PAD_SKEW 0x105
294 #define MII_KSZPHY_TX_DATA_PAD_SKEW 0x106
295
296 #define PS_TO_REG 200
297 #define FIFO_SIZE 8
298
299 #define LAN8814_PTP_GPIO_NUM 24
300 #define LAN8814_PTP_PEROUT_NUM 2
301 #define LAN8814_PTP_EXTTS_NUM 3
302
303 #define LAN8814_BUFFER_TIME 2
304
305 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13
306 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12
307 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11
308 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10
309 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9
310 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8
311 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7
312 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6
313 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5
314 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4
315 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3
316 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2
317 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1
318 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0
319
320 #define LAN8814_GPIO_EN1 0x20
321 #define LAN8814_GPIO_EN2 0x21
322 #define LAN8814_GPIO_DIR1 0x22
323 #define LAN8814_GPIO_DIR2 0x23
324 #define LAN8814_GPIO_BUF1 0x24
325 #define LAN8814_GPIO_BUF2 0x25
326
327 #define LAN8814_GPIO_EN_ADDR(pin) \
328 ((pin) > 15 ? LAN8814_GPIO_EN1 : LAN8814_GPIO_EN2)
329 #define LAN8814_GPIO_EN_BIT(pin) BIT(pin)
330 #define LAN8814_GPIO_DIR_ADDR(pin) \
331 ((pin) > 15 ? LAN8814_GPIO_DIR1 : LAN8814_GPIO_DIR2)
332 #define LAN8814_GPIO_DIR_BIT(pin) BIT(pin)
333 #define LAN8814_GPIO_BUF_ADDR(pin) \
334 ((pin) > 15 ? LAN8814_GPIO_BUF1 : LAN8814_GPIO_BUF2)
335 #define LAN8814_GPIO_BUF_BIT(pin) BIT(pin)
336
337 #define LAN8814_EVENT_A 0
338 #define LAN8814_EVENT_B 1
339
340 #define LAN8814_PTP_GENERAL_CONFIG 0x0201
341 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event) \
342 ((event) ? GENMASK(11, 8) : GENMASK(7, 4))
343 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, value) \
344 (((value) & GENMASK(3, 0)) << (4 + ((event) << 2)))
345 #define LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event) \
346 ((event) ? BIT(2) : BIT(0))
347 #define LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event) \
348 ((event) ? BIT(3) : BIT(1))
349
350 #define LAN8814_PTP_CLOCK_TARGET_SEC_HI(event) ((event) ? 0x21F : 0x215)
351 #define LAN8814_PTP_CLOCK_TARGET_SEC_LO(event) ((event) ? 0x220 : 0x216)
352 #define LAN8814_PTP_CLOCK_TARGET_NS_HI(event) ((event) ? 0x221 : 0x217)
353 #define LAN8814_PTP_CLOCK_TARGET_NS_LO(event) ((event) ? 0x222 : 0x218)
354
355 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event) ((event) ? 0x223 : 0x219)
356 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event) ((event) ? 0x224 : 0x21A)
357 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event) ((event) ? 0x225 : 0x21B)
358 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event) ((event) ? 0x226 : 0x21C)
359
360 /* Delay used to get the second part from the LTC */
361 #define LAN8841_GET_SEC_LTC_DELAY (500 * NSEC_PER_MSEC)
362
363 struct kszphy_hw_stat {
364 const char *string;
365 u8 reg;
366 u8 bits;
367 };
368
369 static struct kszphy_hw_stat kszphy_hw_stats[] = {
370 { "phy_receive_errors", 21, 16},
371 { "phy_idle_errors", 10, 8 },
372 };
373
374 struct kszphy_type {
375 u32 led_mode_reg;
376 u16 interrupt_level_mask;
377 u16 cable_diag_reg;
378 unsigned long pair_mask;
379 u16 disable_dll_tx_bit;
380 u16 disable_dll_rx_bit;
381 u16 disable_dll_mask;
382 bool has_broadcast_disable;
383 bool has_nand_tree_disable;
384 bool has_rmii_ref_clk_sel;
385 };
386
387 /* Shared structure between the PHYs of the same package. */
388 struct lan8814_shared_priv {
389 struct phy_device *phydev;
390 struct ptp_clock *ptp_clock;
391 struct ptp_clock_info ptp_clock_info;
392 struct ptp_pin_desc *pin_config;
393
394 /* Lock for ptp_clock */
395 struct mutex shared_lock;
396 };
397
398 struct lan8814_ptp_rx_ts {
399 struct list_head list;
400 u32 seconds;
401 u32 nsec;
402 u16 seq_id;
403 };
404
405 struct kszphy_ptp_priv {
406 struct mii_timestamper mii_ts;
407 struct phy_device *phydev;
408
409 struct sk_buff_head tx_queue;
410 struct sk_buff_head rx_queue;
411
412 struct list_head rx_ts_list;
413 /* Lock for Rx ts fifo */
414 spinlock_t rx_ts_lock;
415
416 int hwts_tx_type;
417 enum hwtstamp_rx_filters rx_filter;
418 int layer;
419 int version;
420
421 struct ptp_clock *ptp_clock;
422 struct ptp_clock_info ptp_clock_info;
423 /* Lock for ptp_clock */
424 struct mutex ptp_lock;
425 struct ptp_pin_desc *pin_config;
426
427 s64 seconds;
428 /* Lock for accessing seconds */
429 spinlock_t seconds_lock;
430 };
431
432 struct kszphy_priv {
433 struct kszphy_ptp_priv ptp_priv;
434 const struct kszphy_type *type;
435 int led_mode;
436 u16 vct_ctrl1000;
437 bool rmii_ref_clk_sel;
438 bool rmii_ref_clk_sel_val;
439 u64 stats[ARRAY_SIZE(kszphy_hw_stats)];
440 };
441
442 static const struct kszphy_type lan8814_type = {
443 .led_mode_reg = ~LAN8814_LED_CTRL_1,
444 .cable_diag_reg = LAN8814_CABLE_DIAG,
445 .pair_mask = LAN8814_WIRE_PAIR_MASK,
446 };
447
448 static const struct kszphy_type ksz886x_type = {
449 .cable_diag_reg = KSZ8081_LMD,
450 .pair_mask = KSZPHY_WIRE_PAIR_MASK,
451 };
452
453 static const struct kszphy_type ksz8021_type = {
454 .led_mode_reg = MII_KSZPHY_CTRL_2,
455 .has_broadcast_disable = true,
456 .has_nand_tree_disable = true,
457 .has_rmii_ref_clk_sel = true,
458 };
459
460 static const struct kszphy_type ksz8041_type = {
461 .led_mode_reg = MII_KSZPHY_CTRL_1,
462 };
463
464 static const struct kszphy_type ksz8051_type = {
465 .led_mode_reg = MII_KSZPHY_CTRL_2,
466 .has_nand_tree_disable = true,
467 };
468
469 static const struct kszphy_type ksz8081_type = {
470 .led_mode_reg = MII_KSZPHY_CTRL_2,
471 .has_broadcast_disable = true,
472 .has_nand_tree_disable = true,
473 .has_rmii_ref_clk_sel = true,
474 };
475
476 static const struct kszphy_type ks8737_type = {
477 .interrupt_level_mask = BIT(14),
478 };
479
480 static const struct kszphy_type ksz9021_type = {
481 .interrupt_level_mask = BIT(14),
482 };
483
484 static const struct kszphy_type ksz9131_type = {
485 .interrupt_level_mask = BIT(14),
486 .disable_dll_tx_bit = BIT(12),
487 .disable_dll_rx_bit = BIT(12),
488 .disable_dll_mask = BIT_MASK(12),
489 };
490
491 static const struct kszphy_type lan8841_type = {
492 .disable_dll_tx_bit = BIT(14),
493 .disable_dll_rx_bit = BIT(14),
494 .disable_dll_mask = BIT_MASK(14),
495 .cable_diag_reg = LAN8814_CABLE_DIAG,
496 .pair_mask = LAN8814_WIRE_PAIR_MASK,
497 };
498
kszphy_extended_write(struct phy_device * phydev,u32 regnum,u16 val)499 static int kszphy_extended_write(struct phy_device *phydev,
500 u32 regnum, u16 val)
501 {
502 phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum);
503 return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val);
504 }
505
kszphy_extended_read(struct phy_device * phydev,u32 regnum)506 static int kszphy_extended_read(struct phy_device *phydev,
507 u32 regnum)
508 {
509 phy_write(phydev, MII_KSZPHY_EXTREG, regnum);
510 return phy_read(phydev, MII_KSZPHY_EXTREG_READ);
511 }
512
kszphy_ack_interrupt(struct phy_device * phydev)513 static int kszphy_ack_interrupt(struct phy_device *phydev)
514 {
515 /* bit[7..0] int status, which is a read and clear register. */
516 int rc;
517
518 rc = phy_read(phydev, MII_KSZPHY_INTCS);
519
520 return (rc < 0) ? rc : 0;
521 }
522
kszphy_config_intr(struct phy_device * phydev)523 static int kszphy_config_intr(struct phy_device *phydev)
524 {
525 const struct kszphy_type *type = phydev->drv->driver_data;
526 int temp, err;
527 u16 mask;
528
529 if (type && type->interrupt_level_mask)
530 mask = type->interrupt_level_mask;
531 else
532 mask = KSZPHY_CTRL_INT_ACTIVE_HIGH;
533
534 /* set the interrupt pin active low */
535 temp = phy_read(phydev, MII_KSZPHY_CTRL);
536 if (temp < 0)
537 return temp;
538 temp &= ~mask;
539 phy_write(phydev, MII_KSZPHY_CTRL, temp);
540
541 /* enable / disable interrupts */
542 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
543 err = kszphy_ack_interrupt(phydev);
544 if (err)
545 return err;
546
547 err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL);
548 } else {
549 err = phy_write(phydev, MII_KSZPHY_INTCS, 0);
550 if (err)
551 return err;
552
553 err = kszphy_ack_interrupt(phydev);
554 }
555
556 return err;
557 }
558
kszphy_handle_interrupt(struct phy_device * phydev)559 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev)
560 {
561 int irq_status;
562
563 irq_status = phy_read(phydev, MII_KSZPHY_INTCS);
564 if (irq_status < 0) {
565 phy_error(phydev);
566 return IRQ_NONE;
567 }
568
569 if (!(irq_status & KSZPHY_INTCS_STATUS))
570 return IRQ_NONE;
571
572 phy_trigger_machine(phydev);
573
574 return IRQ_HANDLED;
575 }
576
kszphy_rmii_clk_sel(struct phy_device * phydev,bool val)577 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val)
578 {
579 int ctrl;
580
581 ctrl = phy_read(phydev, MII_KSZPHY_CTRL);
582 if (ctrl < 0)
583 return ctrl;
584
585 if (val)
586 ctrl |= KSZPHY_RMII_REF_CLK_SEL;
587 else
588 ctrl &= ~KSZPHY_RMII_REF_CLK_SEL;
589
590 return phy_write(phydev, MII_KSZPHY_CTRL, ctrl);
591 }
592
kszphy_setup_led(struct phy_device * phydev,u32 reg,int val)593 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val)
594 {
595 int rc, temp, shift;
596
597 switch (reg) {
598 case MII_KSZPHY_CTRL_1:
599 shift = 14;
600 break;
601 case MII_KSZPHY_CTRL_2:
602 shift = 4;
603 break;
604 default:
605 return -EINVAL;
606 }
607
608 temp = phy_read(phydev, reg);
609 if (temp < 0) {
610 rc = temp;
611 goto out;
612 }
613
614 temp &= ~(3 << shift);
615 temp |= val << shift;
616 rc = phy_write(phydev, reg, temp);
617 out:
618 if (rc < 0)
619 phydev_err(phydev, "failed to set led mode\n");
620
621 return rc;
622 }
623
624 /* Disable PHY address 0 as the broadcast address, so that it can be used as a
625 * unique (non-broadcast) address on a shared bus.
626 */
kszphy_broadcast_disable(struct phy_device * phydev)627 static int kszphy_broadcast_disable(struct phy_device *phydev)
628 {
629 int ret;
630
631 ret = phy_read(phydev, MII_KSZPHY_OMSO);
632 if (ret < 0)
633 goto out;
634
635 ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF);
636 out:
637 if (ret)
638 phydev_err(phydev, "failed to disable broadcast address\n");
639
640 return ret;
641 }
642
kszphy_nand_tree_disable(struct phy_device * phydev)643 static int kszphy_nand_tree_disable(struct phy_device *phydev)
644 {
645 int ret;
646
647 ret = phy_read(phydev, MII_KSZPHY_OMSO);
648 if (ret < 0)
649 goto out;
650
651 if (!(ret & KSZPHY_OMSO_NAND_TREE_ON))
652 return 0;
653
654 ret = phy_write(phydev, MII_KSZPHY_OMSO,
655 ret & ~KSZPHY_OMSO_NAND_TREE_ON);
656 out:
657 if (ret)
658 phydev_err(phydev, "failed to disable NAND tree mode\n");
659
660 return ret;
661 }
662
663 /* Some config bits need to be set again on resume, handle them here. */
kszphy_config_reset(struct phy_device * phydev)664 static int kszphy_config_reset(struct phy_device *phydev)
665 {
666 struct kszphy_priv *priv = phydev->priv;
667 int ret;
668
669 if (priv->rmii_ref_clk_sel) {
670 ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val);
671 if (ret) {
672 phydev_err(phydev,
673 "failed to set rmii reference clock\n");
674 return ret;
675 }
676 }
677
678 if (priv->type && priv->led_mode >= 0)
679 kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode);
680
681 return 0;
682 }
683
kszphy_config_init(struct phy_device * phydev)684 static int kszphy_config_init(struct phy_device *phydev)
685 {
686 struct kszphy_priv *priv = phydev->priv;
687 const struct kszphy_type *type;
688
689 if (!priv)
690 return 0;
691
692 type = priv->type;
693
694 if (type && type->has_broadcast_disable)
695 kszphy_broadcast_disable(phydev);
696
697 if (type && type->has_nand_tree_disable)
698 kszphy_nand_tree_disable(phydev);
699
700 return kszphy_config_reset(phydev);
701 }
702
ksz8041_fiber_mode(struct phy_device * phydev)703 static int ksz8041_fiber_mode(struct phy_device *phydev)
704 {
705 struct device_node *of_node = phydev->mdio.dev.of_node;
706
707 return of_property_read_bool(of_node, "micrel,fiber-mode");
708 }
709
ksz8041_config_init(struct phy_device * phydev)710 static int ksz8041_config_init(struct phy_device *phydev)
711 {
712 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
713
714 /* Limit supported and advertised modes in fiber mode */
715 if (ksz8041_fiber_mode(phydev)) {
716 phydev->dev_flags |= MICREL_PHY_FXEN;
717 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
718 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
719
720 linkmode_and(phydev->supported, phydev->supported, mask);
721 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
722 phydev->supported);
723 linkmode_and(phydev->advertising, phydev->advertising, mask);
724 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
725 phydev->advertising);
726 phydev->autoneg = AUTONEG_DISABLE;
727 }
728
729 return kszphy_config_init(phydev);
730 }
731
ksz8041_config_aneg(struct phy_device * phydev)732 static int ksz8041_config_aneg(struct phy_device *phydev)
733 {
734 /* Skip auto-negotiation in fiber mode */
735 if (phydev->dev_flags & MICREL_PHY_FXEN) {
736 phydev->speed = SPEED_100;
737 return 0;
738 }
739
740 return genphy_config_aneg(phydev);
741 }
742
ksz8051_ksz8795_match_phy_device(struct phy_device * phydev,const bool ksz_8051)743 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev,
744 const bool ksz_8051)
745 {
746 int ret;
747
748 if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK))
749 return 0;
750
751 ret = phy_read(phydev, MII_BMSR);
752 if (ret < 0)
753 return ret;
754
755 /* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same
756 * exact PHY ID. However, they can be told apart by the extended
757 * capability registers presence. The KSZ8051 PHY has them while
758 * the switch does not.
759 */
760 ret &= BMSR_ERCAP;
761 if (ksz_8051)
762 return ret;
763 else
764 return !ret;
765 }
766
ksz8051_match_phy_device(struct phy_device * phydev)767 static int ksz8051_match_phy_device(struct phy_device *phydev)
768 {
769 return ksz8051_ksz8795_match_phy_device(phydev, true);
770 }
771
ksz8081_config_init(struct phy_device * phydev)772 static int ksz8081_config_init(struct phy_device *phydev)
773 {
774 /* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line
775 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a
776 * pull-down is missing, the factory test mode should be cleared by
777 * manually writing a 0.
778 */
779 phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST);
780
781 return kszphy_config_init(phydev);
782 }
783
ksz8081_config_mdix(struct phy_device * phydev,u8 ctrl)784 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl)
785 {
786 u16 val;
787
788 switch (ctrl) {
789 case ETH_TP_MDI:
790 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX;
791 break;
792 case ETH_TP_MDI_X:
793 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX |
794 KSZ8081_CTRL2_MDI_MDI_X_SELECT;
795 break;
796 case ETH_TP_MDI_AUTO:
797 val = 0;
798 break;
799 default:
800 return 0;
801 }
802
803 return phy_modify(phydev, MII_KSZPHY_CTRL_2,
804 KSZ8081_CTRL2_HP_MDIX |
805 KSZ8081_CTRL2_MDI_MDI_X_SELECT |
806 KSZ8081_CTRL2_DISABLE_AUTO_MDIX,
807 KSZ8081_CTRL2_HP_MDIX | val);
808 }
809
ksz8081_config_aneg(struct phy_device * phydev)810 static int ksz8081_config_aneg(struct phy_device *phydev)
811 {
812 int ret;
813
814 ret = genphy_config_aneg(phydev);
815 if (ret)
816 return ret;
817
818 /* The MDI-X configuration is automatically changed by the PHY after
819 * switching from autoneg off to on. So, take MDI-X configuration under
820 * own control and set it after autoneg configuration was done.
821 */
822 return ksz8081_config_mdix(phydev, phydev->mdix_ctrl);
823 }
824
ksz8081_mdix_update(struct phy_device * phydev)825 static int ksz8081_mdix_update(struct phy_device *phydev)
826 {
827 int ret;
828
829 ret = phy_read(phydev, MII_KSZPHY_CTRL_2);
830 if (ret < 0)
831 return ret;
832
833 if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) {
834 if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT)
835 phydev->mdix_ctrl = ETH_TP_MDI_X;
836 else
837 phydev->mdix_ctrl = ETH_TP_MDI;
838 } else {
839 phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
840 }
841
842 ret = phy_read(phydev, MII_KSZPHY_CTRL_1);
843 if (ret < 0)
844 return ret;
845
846 if (ret & KSZ8081_CTRL1_MDIX_STAT)
847 phydev->mdix = ETH_TP_MDI;
848 else
849 phydev->mdix = ETH_TP_MDI_X;
850
851 return 0;
852 }
853
ksz8081_read_status(struct phy_device * phydev)854 static int ksz8081_read_status(struct phy_device *phydev)
855 {
856 int ret;
857
858 ret = ksz8081_mdix_update(phydev);
859 if (ret < 0)
860 return ret;
861
862 return genphy_read_status(phydev);
863 }
864
ksz8061_config_init(struct phy_device * phydev)865 static int ksz8061_config_init(struct phy_device *phydev)
866 {
867 int ret;
868
869 /* Chip can be powered down by the bootstrap code. */
870 ret = phy_read(phydev, MII_BMCR);
871 if (ret < 0)
872 return ret;
873 if (ret & BMCR_PDOWN) {
874 ret = phy_write(phydev, MII_BMCR, ret & ~BMCR_PDOWN);
875 if (ret < 0)
876 return ret;
877 usleep_range(1000, 2000);
878 }
879
880 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
881 if (ret)
882 return ret;
883
884 return kszphy_config_init(phydev);
885 }
886
ksz8795_match_phy_device(struct phy_device * phydev)887 static int ksz8795_match_phy_device(struct phy_device *phydev)
888 {
889 return ksz8051_ksz8795_match_phy_device(phydev, false);
890 }
891
ksz9021_load_values_from_of(struct phy_device * phydev,const struct device_node * of_node,u16 reg,const char * field1,const char * field2,const char * field3,const char * field4)892 static int ksz9021_load_values_from_of(struct phy_device *phydev,
893 const struct device_node *of_node,
894 u16 reg,
895 const char *field1, const char *field2,
896 const char *field3, const char *field4)
897 {
898 int val1 = -1;
899 int val2 = -2;
900 int val3 = -3;
901 int val4 = -4;
902 int newval;
903 int matches = 0;
904
905 if (!of_property_read_u32(of_node, field1, &val1))
906 matches++;
907
908 if (!of_property_read_u32(of_node, field2, &val2))
909 matches++;
910
911 if (!of_property_read_u32(of_node, field3, &val3))
912 matches++;
913
914 if (!of_property_read_u32(of_node, field4, &val4))
915 matches++;
916
917 if (!matches)
918 return 0;
919
920 if (matches < 4)
921 newval = kszphy_extended_read(phydev, reg);
922 else
923 newval = 0;
924
925 if (val1 != -1)
926 newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0);
927
928 if (val2 != -2)
929 newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4);
930
931 if (val3 != -3)
932 newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8);
933
934 if (val4 != -4)
935 newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12);
936
937 return kszphy_extended_write(phydev, reg, newval);
938 }
939
ksz9021_config_init(struct phy_device * phydev)940 static int ksz9021_config_init(struct phy_device *phydev)
941 {
942 const struct device_node *of_node;
943 const struct device *dev_walker;
944
945 /* The Micrel driver has a deprecated option to place phy OF
946 * properties in the MAC node. Walk up the tree of devices to
947 * find a device with an OF node.
948 */
949 dev_walker = &phydev->mdio.dev;
950 do {
951 of_node = dev_walker->of_node;
952 dev_walker = dev_walker->parent;
953
954 } while (!of_node && dev_walker);
955
956 if (of_node) {
957 ksz9021_load_values_from_of(phydev, of_node,
958 MII_KSZPHY_CLK_CONTROL_PAD_SKEW,
959 "txen-skew-ps", "txc-skew-ps",
960 "rxdv-skew-ps", "rxc-skew-ps");
961 ksz9021_load_values_from_of(phydev, of_node,
962 MII_KSZPHY_RX_DATA_PAD_SKEW,
963 "rxd0-skew-ps", "rxd1-skew-ps",
964 "rxd2-skew-ps", "rxd3-skew-ps");
965 ksz9021_load_values_from_of(phydev, of_node,
966 MII_KSZPHY_TX_DATA_PAD_SKEW,
967 "txd0-skew-ps", "txd1-skew-ps",
968 "txd2-skew-ps", "txd3-skew-ps");
969 }
970 return 0;
971 }
972
973 #define KSZ9031_PS_TO_REG 60
974
975 /* Extended registers */
976 /* MMD Address 0x0 */
977 #define MII_KSZ9031RN_FLP_BURST_TX_LO 3
978 #define MII_KSZ9031RN_FLP_BURST_TX_HI 4
979
980 /* MMD Address 0x2 */
981 #define MII_KSZ9031RN_CONTROL_PAD_SKEW 4
982 #define MII_KSZ9031RN_RX_CTL_M GENMASK(7, 4)
983 #define MII_KSZ9031RN_TX_CTL_M GENMASK(3, 0)
984
985 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW 5
986 #define MII_KSZ9031RN_RXD3 GENMASK(15, 12)
987 #define MII_KSZ9031RN_RXD2 GENMASK(11, 8)
988 #define MII_KSZ9031RN_RXD1 GENMASK(7, 4)
989 #define MII_KSZ9031RN_RXD0 GENMASK(3, 0)
990
991 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW 6
992 #define MII_KSZ9031RN_TXD3 GENMASK(15, 12)
993 #define MII_KSZ9031RN_TXD2 GENMASK(11, 8)
994 #define MII_KSZ9031RN_TXD1 GENMASK(7, 4)
995 #define MII_KSZ9031RN_TXD0 GENMASK(3, 0)
996
997 #define MII_KSZ9031RN_CLK_PAD_SKEW 8
998 #define MII_KSZ9031RN_GTX_CLK GENMASK(9, 5)
999 #define MII_KSZ9031RN_RX_CLK GENMASK(4, 0)
1000
1001 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To
1002 * provide different RGMII options we need to configure delay offset
1003 * for each pad relative to build in delay.
1004 */
1005 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of
1006 * 1.80ns
1007 */
1008 #define RX_ID 0x7
1009 #define RX_CLK_ID 0x19
1010
1011 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the
1012 * internal 1.2ns delay.
1013 */
1014 #define RX_ND 0xc
1015 #define RX_CLK_ND 0x0
1016
1017 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */
1018 #define TX_ID 0x0
1019 #define TX_CLK_ID 0x1f
1020
1021 /* set tx and tx_clk to "No delay adjustment" to keep 0ns
1022 * dealy
1023 */
1024 #define TX_ND 0x7
1025 #define TX_CLK_ND 0xf
1026
1027 /* MMD Address 0x1C */
1028 #define MII_KSZ9031RN_EDPD 0x23
1029 #define MII_KSZ9031RN_EDPD_ENABLE BIT(0)
1030
ksz9031_of_load_skew_values(struct phy_device * phydev,const struct device_node * of_node,u16 reg,size_t field_sz,const char * field[],u8 numfields,bool * update)1031 static int ksz9031_of_load_skew_values(struct phy_device *phydev,
1032 const struct device_node *of_node,
1033 u16 reg, size_t field_sz,
1034 const char *field[], u8 numfields,
1035 bool *update)
1036 {
1037 int val[4] = {-1, -2, -3, -4};
1038 int matches = 0;
1039 u16 mask;
1040 u16 maxval;
1041 u16 newval;
1042 int i;
1043
1044 for (i = 0; i < numfields; i++)
1045 if (!of_property_read_u32(of_node, field[i], val + i))
1046 matches++;
1047
1048 if (!matches)
1049 return 0;
1050
1051 *update |= true;
1052
1053 if (matches < numfields)
1054 newval = phy_read_mmd(phydev, 2, reg);
1055 else
1056 newval = 0;
1057
1058 maxval = (field_sz == 4) ? 0xf : 0x1f;
1059 for (i = 0; i < numfields; i++)
1060 if (val[i] != -(i + 1)) {
1061 mask = 0xffff;
1062 mask ^= maxval << (field_sz * i);
1063 newval = (newval & mask) |
1064 (((val[i] / KSZ9031_PS_TO_REG) & maxval)
1065 << (field_sz * i));
1066 }
1067
1068 return phy_write_mmd(phydev, 2, reg, newval);
1069 }
1070
1071 /* Center KSZ9031RNX FLP timing at 16ms. */
ksz9031_center_flp_timing(struct phy_device * phydev)1072 static int ksz9031_center_flp_timing(struct phy_device *phydev)
1073 {
1074 int result;
1075
1076 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI,
1077 0x0006);
1078 if (result)
1079 return result;
1080
1081 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO,
1082 0x1A80);
1083 if (result)
1084 return result;
1085
1086 return genphy_restart_aneg(phydev);
1087 }
1088
1089 /* Enable energy-detect power-down mode */
ksz9031_enable_edpd(struct phy_device * phydev)1090 static int ksz9031_enable_edpd(struct phy_device *phydev)
1091 {
1092 int reg;
1093
1094 reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD);
1095 if (reg < 0)
1096 return reg;
1097 return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD,
1098 reg | MII_KSZ9031RN_EDPD_ENABLE);
1099 }
1100
ksz9031_config_rgmii_delay(struct phy_device * phydev)1101 static int ksz9031_config_rgmii_delay(struct phy_device *phydev)
1102 {
1103 u16 rx, tx, rx_clk, tx_clk;
1104 int ret;
1105
1106 switch (phydev->interface) {
1107 case PHY_INTERFACE_MODE_RGMII:
1108 tx = TX_ND;
1109 tx_clk = TX_CLK_ND;
1110 rx = RX_ND;
1111 rx_clk = RX_CLK_ND;
1112 break;
1113 case PHY_INTERFACE_MODE_RGMII_ID:
1114 tx = TX_ID;
1115 tx_clk = TX_CLK_ID;
1116 rx = RX_ID;
1117 rx_clk = RX_CLK_ID;
1118 break;
1119 case PHY_INTERFACE_MODE_RGMII_RXID:
1120 tx = TX_ND;
1121 tx_clk = TX_CLK_ND;
1122 rx = RX_ID;
1123 rx_clk = RX_CLK_ID;
1124 break;
1125 case PHY_INTERFACE_MODE_RGMII_TXID:
1126 tx = TX_ID;
1127 tx_clk = TX_CLK_ID;
1128 rx = RX_ND;
1129 rx_clk = RX_CLK_ND;
1130 break;
1131 default:
1132 return 0;
1133 }
1134
1135 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW,
1136 FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) |
1137 FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx));
1138 if (ret < 0)
1139 return ret;
1140
1141 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW,
1142 FIELD_PREP(MII_KSZ9031RN_RXD3, rx) |
1143 FIELD_PREP(MII_KSZ9031RN_RXD2, rx) |
1144 FIELD_PREP(MII_KSZ9031RN_RXD1, rx) |
1145 FIELD_PREP(MII_KSZ9031RN_RXD0, rx));
1146 if (ret < 0)
1147 return ret;
1148
1149 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW,
1150 FIELD_PREP(MII_KSZ9031RN_TXD3, tx) |
1151 FIELD_PREP(MII_KSZ9031RN_TXD2, tx) |
1152 FIELD_PREP(MII_KSZ9031RN_TXD1, tx) |
1153 FIELD_PREP(MII_KSZ9031RN_TXD0, tx));
1154 if (ret < 0)
1155 return ret;
1156
1157 return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW,
1158 FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) |
1159 FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk));
1160 }
1161
ksz9031_config_init(struct phy_device * phydev)1162 static int ksz9031_config_init(struct phy_device *phydev)
1163 {
1164 const struct device_node *of_node;
1165 static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"};
1166 static const char *rx_data_skews[4] = {
1167 "rxd0-skew-ps", "rxd1-skew-ps",
1168 "rxd2-skew-ps", "rxd3-skew-ps"
1169 };
1170 static const char *tx_data_skews[4] = {
1171 "txd0-skew-ps", "txd1-skew-ps",
1172 "txd2-skew-ps", "txd3-skew-ps"
1173 };
1174 static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"};
1175 const struct device *dev_walker;
1176 int result;
1177
1178 result = ksz9031_enable_edpd(phydev);
1179 if (result < 0)
1180 return result;
1181
1182 /* The Micrel driver has a deprecated option to place phy OF
1183 * properties in the MAC node. Walk up the tree of devices to
1184 * find a device with an OF node.
1185 */
1186 dev_walker = &phydev->mdio.dev;
1187 do {
1188 of_node = dev_walker->of_node;
1189 dev_walker = dev_walker->parent;
1190 } while (!of_node && dev_walker);
1191
1192 if (of_node) {
1193 bool update = false;
1194
1195 if (phy_interface_is_rgmii(phydev)) {
1196 result = ksz9031_config_rgmii_delay(phydev);
1197 if (result < 0)
1198 return result;
1199 }
1200
1201 ksz9031_of_load_skew_values(phydev, of_node,
1202 MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1203 clk_skews, 2, &update);
1204
1205 ksz9031_of_load_skew_values(phydev, of_node,
1206 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1207 control_skews, 2, &update);
1208
1209 ksz9031_of_load_skew_values(phydev, of_node,
1210 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1211 rx_data_skews, 4, &update);
1212
1213 ksz9031_of_load_skew_values(phydev, of_node,
1214 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1215 tx_data_skews, 4, &update);
1216
1217 if (update && !phy_interface_is_rgmii(phydev))
1218 phydev_warn(phydev,
1219 "*-skew-ps values should be used only with RGMII PHY modes\n");
1220
1221 /* Silicon Errata Sheet (DS80000691D or DS80000692D):
1222 * When the device links in the 1000BASE-T slave mode only,
1223 * the optional 125MHz reference output clock (CLK125_NDO)
1224 * has wide duty cycle variation.
1225 *
1226 * The optional CLK125_NDO clock does not meet the RGMII
1227 * 45/55 percent (min/max) duty cycle requirement and therefore
1228 * cannot be used directly by the MAC side for clocking
1229 * applications that have setup/hold time requirements on
1230 * rising and falling clock edges.
1231 *
1232 * Workaround:
1233 * Force the phy to be the master to receive a stable clock
1234 * which meets the duty cycle requirement.
1235 */
1236 if (of_property_read_bool(of_node, "micrel,force-master")) {
1237 result = phy_read(phydev, MII_CTRL1000);
1238 if (result < 0)
1239 goto err_force_master;
1240
1241 /* enable master mode, config & prefer master */
1242 result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER;
1243 result = phy_write(phydev, MII_CTRL1000, result);
1244 if (result < 0)
1245 goto err_force_master;
1246 }
1247 }
1248
1249 return ksz9031_center_flp_timing(phydev);
1250
1251 err_force_master:
1252 phydev_err(phydev, "failed to force the phy to master mode\n");
1253 return result;
1254 }
1255
1256 #define KSZ9131_SKEW_5BIT_MAX 2400
1257 #define KSZ9131_SKEW_4BIT_MAX 800
1258 #define KSZ9131_OFFSET 700
1259 #define KSZ9131_STEP 100
1260
ksz9131_of_load_skew_values(struct phy_device * phydev,struct device_node * of_node,u16 reg,size_t field_sz,char * field[],u8 numfields)1261 static int ksz9131_of_load_skew_values(struct phy_device *phydev,
1262 struct device_node *of_node,
1263 u16 reg, size_t field_sz,
1264 char *field[], u8 numfields)
1265 {
1266 int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET),
1267 -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)};
1268 int skewval, skewmax = 0;
1269 int matches = 0;
1270 u16 maxval;
1271 u16 newval;
1272 u16 mask;
1273 int i;
1274
1275 /* psec properties in dts should mean x pico seconds */
1276 if (field_sz == 5)
1277 skewmax = KSZ9131_SKEW_5BIT_MAX;
1278 else
1279 skewmax = KSZ9131_SKEW_4BIT_MAX;
1280
1281 for (i = 0; i < numfields; i++)
1282 if (!of_property_read_s32(of_node, field[i], &skewval)) {
1283 if (skewval < -KSZ9131_OFFSET)
1284 skewval = -KSZ9131_OFFSET;
1285 else if (skewval > skewmax)
1286 skewval = skewmax;
1287
1288 val[i] = skewval + KSZ9131_OFFSET;
1289 matches++;
1290 }
1291
1292 if (!matches)
1293 return 0;
1294
1295 if (matches < numfields)
1296 newval = phy_read_mmd(phydev, 2, reg);
1297 else
1298 newval = 0;
1299
1300 maxval = (field_sz == 4) ? 0xf : 0x1f;
1301 for (i = 0; i < numfields; i++)
1302 if (val[i] != -(i + 1 + KSZ9131_OFFSET)) {
1303 mask = 0xffff;
1304 mask ^= maxval << (field_sz * i);
1305 newval = (newval & mask) |
1306 (((val[i] / KSZ9131_STEP) & maxval)
1307 << (field_sz * i));
1308 }
1309
1310 return phy_write_mmd(phydev, 2, reg, newval);
1311 }
1312
1313 #define KSZ9131RN_MMD_COMMON_CTRL_REG 2
1314 #define KSZ9131RN_RXC_DLL_CTRL 76
1315 #define KSZ9131RN_TXC_DLL_CTRL 77
1316 #define KSZ9131RN_DLL_ENABLE_DELAY 0
1317
ksz9131_config_rgmii_delay(struct phy_device * phydev)1318 static int ksz9131_config_rgmii_delay(struct phy_device *phydev)
1319 {
1320 const struct kszphy_type *type = phydev->drv->driver_data;
1321 u16 rxcdll_val, txcdll_val;
1322 int ret;
1323
1324 switch (phydev->interface) {
1325 case PHY_INTERFACE_MODE_RGMII:
1326 rxcdll_val = type->disable_dll_rx_bit;
1327 txcdll_val = type->disable_dll_tx_bit;
1328 break;
1329 case PHY_INTERFACE_MODE_RGMII_ID:
1330 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1331 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1332 break;
1333 case PHY_INTERFACE_MODE_RGMII_RXID:
1334 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1335 txcdll_val = type->disable_dll_tx_bit;
1336 break;
1337 case PHY_INTERFACE_MODE_RGMII_TXID:
1338 rxcdll_val = type->disable_dll_rx_bit;
1339 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1340 break;
1341 default:
1342 return 0;
1343 }
1344
1345 ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1346 KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask,
1347 rxcdll_val);
1348 if (ret < 0)
1349 return ret;
1350
1351 return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1352 KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask,
1353 txcdll_val);
1354 }
1355
1356 /* Silicon Errata DS80000693B
1357 *
1358 * When LEDs are configured in Individual Mode, LED1 is ON in a no-link
1359 * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves
1360 * according to the datasheet (off if there is no link).
1361 */
ksz9131_led_errata(struct phy_device * phydev)1362 static int ksz9131_led_errata(struct phy_device *phydev)
1363 {
1364 int reg;
1365
1366 reg = phy_read_mmd(phydev, 2, 0);
1367 if (reg < 0)
1368 return reg;
1369
1370 if (!(reg & BIT(4)))
1371 return 0;
1372
1373 return phy_set_bits(phydev, 0x1e, BIT(9));
1374 }
1375
ksz9131_config_init(struct phy_device * phydev)1376 static int ksz9131_config_init(struct phy_device *phydev)
1377 {
1378 struct device_node *of_node;
1379 char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"};
1380 char *rx_data_skews[4] = {
1381 "rxd0-skew-psec", "rxd1-skew-psec",
1382 "rxd2-skew-psec", "rxd3-skew-psec"
1383 };
1384 char *tx_data_skews[4] = {
1385 "txd0-skew-psec", "txd1-skew-psec",
1386 "txd2-skew-psec", "txd3-skew-psec"
1387 };
1388 char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"};
1389 const struct device *dev_walker;
1390 int ret;
1391
1392 phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1393
1394 dev_walker = &phydev->mdio.dev;
1395 do {
1396 of_node = dev_walker->of_node;
1397 dev_walker = dev_walker->parent;
1398 } while (!of_node && dev_walker);
1399
1400 if (!of_node)
1401 return 0;
1402
1403 if (phy_interface_is_rgmii(phydev)) {
1404 ret = ksz9131_config_rgmii_delay(phydev);
1405 if (ret < 0)
1406 return ret;
1407 }
1408
1409 ret = ksz9131_of_load_skew_values(phydev, of_node,
1410 MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1411 clk_skews, 2);
1412 if (ret < 0)
1413 return ret;
1414
1415 ret = ksz9131_of_load_skew_values(phydev, of_node,
1416 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1417 control_skews, 2);
1418 if (ret < 0)
1419 return ret;
1420
1421 ret = ksz9131_of_load_skew_values(phydev, of_node,
1422 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1423 rx_data_skews, 4);
1424 if (ret < 0)
1425 return ret;
1426
1427 ret = ksz9131_of_load_skew_values(phydev, of_node,
1428 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1429 tx_data_skews, 4);
1430 if (ret < 0)
1431 return ret;
1432
1433 ret = ksz9131_led_errata(phydev);
1434 if (ret < 0)
1435 return ret;
1436
1437 return 0;
1438 }
1439
1440 #define MII_KSZ9131_AUTO_MDIX 0x1C
1441 #define MII_KSZ9131_AUTO_MDI_SET BIT(7)
1442 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF BIT(6)
1443 #define MII_KSZ9131_DIG_AXAN_STS 0x14
1444 #define MII_KSZ9131_DIG_AXAN_STS_LINK_DET BIT(14)
1445 #define MII_KSZ9131_DIG_AXAN_STS_A_SELECT BIT(12)
1446
ksz9131_mdix_update(struct phy_device * phydev)1447 static int ksz9131_mdix_update(struct phy_device *phydev)
1448 {
1449 int ret;
1450
1451 if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO) {
1452 phydev->mdix = phydev->mdix_ctrl;
1453 } else {
1454 ret = phy_read(phydev, MII_KSZ9131_DIG_AXAN_STS);
1455 if (ret < 0)
1456 return ret;
1457
1458 if (ret & MII_KSZ9131_DIG_AXAN_STS_LINK_DET) {
1459 if (ret & MII_KSZ9131_DIG_AXAN_STS_A_SELECT)
1460 phydev->mdix = ETH_TP_MDI;
1461 else
1462 phydev->mdix = ETH_TP_MDI_X;
1463 } else {
1464 phydev->mdix = ETH_TP_MDI_INVALID;
1465 }
1466 }
1467
1468 return 0;
1469 }
1470
ksz9131_config_mdix(struct phy_device * phydev,u8 ctrl)1471 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl)
1472 {
1473 u16 val;
1474
1475 switch (ctrl) {
1476 case ETH_TP_MDI:
1477 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1478 MII_KSZ9131_AUTO_MDI_SET;
1479 break;
1480 case ETH_TP_MDI_X:
1481 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF;
1482 break;
1483 case ETH_TP_MDI_AUTO:
1484 val = 0;
1485 break;
1486 default:
1487 return 0;
1488 }
1489
1490 return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX,
1491 MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1492 MII_KSZ9131_AUTO_MDI_SET, val);
1493 }
1494
ksz9131_read_status(struct phy_device * phydev)1495 static int ksz9131_read_status(struct phy_device *phydev)
1496 {
1497 int ret;
1498
1499 ret = ksz9131_mdix_update(phydev);
1500 if (ret < 0)
1501 return ret;
1502
1503 return genphy_read_status(phydev);
1504 }
1505
ksz9131_config_aneg(struct phy_device * phydev)1506 static int ksz9131_config_aneg(struct phy_device *phydev)
1507 {
1508 int ret;
1509
1510 ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl);
1511 if (ret)
1512 return ret;
1513
1514 return genphy_config_aneg(phydev);
1515 }
1516
ksz9477_get_features(struct phy_device * phydev)1517 static int ksz9477_get_features(struct phy_device *phydev)
1518 {
1519 int ret;
1520
1521 ret = genphy_read_abilities(phydev);
1522 if (ret)
1523 return ret;
1524
1525 /* The "EEE control and capability 1" (Register 3.20) seems to be
1526 * influenced by the "EEE advertisement 1" (Register 7.60). Changes
1527 * on the 7.60 will affect 3.20. So, we need to construct our own list
1528 * of caps.
1529 * KSZ8563R should have 100BaseTX/Full only.
1530 */
1531 linkmode_and(phydev->supported_eee, phydev->supported,
1532 PHY_EEE_CAP1_FEATURES);
1533
1534 return 0;
1535 }
1536
1537 #define KSZ8873MLL_GLOBAL_CONTROL_4 0x06
1538 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX BIT(6)
1539 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED BIT(4)
ksz8873mll_read_status(struct phy_device * phydev)1540 static int ksz8873mll_read_status(struct phy_device *phydev)
1541 {
1542 int regval;
1543
1544 /* dummy read */
1545 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1546
1547 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1548
1549 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX)
1550 phydev->duplex = DUPLEX_HALF;
1551 else
1552 phydev->duplex = DUPLEX_FULL;
1553
1554 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED)
1555 phydev->speed = SPEED_10;
1556 else
1557 phydev->speed = SPEED_100;
1558
1559 phydev->link = 1;
1560 phydev->pause = phydev->asym_pause = 0;
1561
1562 return 0;
1563 }
1564
ksz9031_get_features(struct phy_device * phydev)1565 static int ksz9031_get_features(struct phy_device *phydev)
1566 {
1567 int ret;
1568
1569 ret = genphy_read_abilities(phydev);
1570 if (ret < 0)
1571 return ret;
1572
1573 /* Silicon Errata Sheet (DS80000691D or DS80000692D):
1574 * Whenever the device's Asymmetric Pause capability is set to 1,
1575 * link-up may fail after a link-up to link-down transition.
1576 *
1577 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue
1578 *
1579 * Workaround:
1580 * Do not enable the Asymmetric Pause capability bit.
1581 */
1582 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
1583
1584 /* We force setting the Pause capability as the core will force the
1585 * Asymmetric Pause capability to 1 otherwise.
1586 */
1587 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
1588
1589 return 0;
1590 }
1591
ksz9031_read_status(struct phy_device * phydev)1592 static int ksz9031_read_status(struct phy_device *phydev)
1593 {
1594 int err;
1595 int regval;
1596
1597 err = genphy_read_status(phydev);
1598 if (err)
1599 return err;
1600
1601 /* Make sure the PHY is not broken. Read idle error count,
1602 * and reset the PHY if it is maxed out.
1603 */
1604 regval = phy_read(phydev, MII_STAT1000);
1605 if ((regval & 0xFF) == 0xFF) {
1606 phy_init_hw(phydev);
1607 phydev->link = 0;
1608 if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev))
1609 phydev->drv->config_intr(phydev);
1610 return genphy_config_aneg(phydev);
1611 }
1612
1613 return 0;
1614 }
1615
ksz9x31_cable_test_start(struct phy_device * phydev)1616 static int ksz9x31_cable_test_start(struct phy_device *phydev)
1617 {
1618 struct kszphy_priv *priv = phydev->priv;
1619 int ret;
1620
1621 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1622 * Prior to running the cable diagnostics, Auto-negotiation should
1623 * be disabled, full duplex set and the link speed set to 1000Mbps
1624 * via the Basic Control Register.
1625 */
1626 ret = phy_modify(phydev, MII_BMCR,
1627 BMCR_SPEED1000 | BMCR_FULLDPLX |
1628 BMCR_ANENABLE | BMCR_SPEED100,
1629 BMCR_SPEED1000 | BMCR_FULLDPLX);
1630 if (ret)
1631 return ret;
1632
1633 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1634 * The Master-Slave configuration should be set to Slave by writing
1635 * a value of 0x1000 to the Auto-Negotiation Master Slave Control
1636 * Register.
1637 */
1638 ret = phy_read(phydev, MII_CTRL1000);
1639 if (ret < 0)
1640 return ret;
1641
1642 /* Cache these bits, they need to be restored once LinkMD finishes. */
1643 priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1644 ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1645 ret |= CTL1000_ENABLE_MASTER;
1646
1647 return phy_write(phydev, MII_CTRL1000, ret);
1648 }
1649
ksz9x31_cable_test_result_trans(u16 status)1650 static int ksz9x31_cable_test_result_trans(u16 status)
1651 {
1652 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1653 case KSZ9x31_LMD_VCT_ST_NORMAL:
1654 return ETHTOOL_A_CABLE_RESULT_CODE_OK;
1655 case KSZ9x31_LMD_VCT_ST_OPEN:
1656 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
1657 case KSZ9x31_LMD_VCT_ST_SHORT:
1658 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
1659 case KSZ9x31_LMD_VCT_ST_FAIL:
1660 fallthrough;
1661 default:
1662 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
1663 }
1664 }
1665
ksz9x31_cable_test_failed(u16 status)1666 static bool ksz9x31_cable_test_failed(u16 status)
1667 {
1668 int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status);
1669
1670 return stat == KSZ9x31_LMD_VCT_ST_FAIL;
1671 }
1672
ksz9x31_cable_test_fault_length_valid(u16 status)1673 static bool ksz9x31_cable_test_fault_length_valid(u16 status)
1674 {
1675 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1676 case KSZ9x31_LMD_VCT_ST_OPEN:
1677 fallthrough;
1678 case KSZ9x31_LMD_VCT_ST_SHORT:
1679 return true;
1680 }
1681 return false;
1682 }
1683
ksz9x31_cable_test_fault_length(struct phy_device * phydev,u16 stat)1684 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat)
1685 {
1686 int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat);
1687
1688 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1689 *
1690 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity
1691 */
1692 if (phydev_id_compare(phydev, PHY_ID_KSZ9131))
1693 dt = clamp(dt - 22, 0, 255);
1694
1695 return (dt * 400) / 10;
1696 }
1697
ksz9x31_cable_test_wait_for_completion(struct phy_device * phydev)1698 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev)
1699 {
1700 int val, ret;
1701
1702 ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val,
1703 !(val & KSZ9x31_LMD_VCT_EN),
1704 30000, 100000, true);
1705
1706 return ret < 0 ? ret : 0;
1707 }
1708
ksz9x31_cable_test_get_pair(int pair)1709 static int ksz9x31_cable_test_get_pair(int pair)
1710 {
1711 static const int ethtool_pair[] = {
1712 ETHTOOL_A_CABLE_PAIR_A,
1713 ETHTOOL_A_CABLE_PAIR_B,
1714 ETHTOOL_A_CABLE_PAIR_C,
1715 ETHTOOL_A_CABLE_PAIR_D,
1716 };
1717
1718 return ethtool_pair[pair];
1719 }
1720
ksz9x31_cable_test_one_pair(struct phy_device * phydev,int pair)1721 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair)
1722 {
1723 int ret, val;
1724
1725 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1726 * To test each individual cable pair, set the cable pair in the Cable
1727 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable
1728 * Diagnostic Register, along with setting the Cable Diagnostics Test
1729 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit
1730 * will self clear when the test is concluded.
1731 */
1732 ret = phy_write(phydev, KSZ9x31_LMD,
1733 KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair));
1734 if (ret)
1735 return ret;
1736
1737 ret = ksz9x31_cable_test_wait_for_completion(phydev);
1738 if (ret)
1739 return ret;
1740
1741 val = phy_read(phydev, KSZ9x31_LMD);
1742 if (val < 0)
1743 return val;
1744
1745 if (ksz9x31_cable_test_failed(val))
1746 return -EAGAIN;
1747
1748 ret = ethnl_cable_test_result(phydev,
1749 ksz9x31_cable_test_get_pair(pair),
1750 ksz9x31_cable_test_result_trans(val));
1751 if (ret)
1752 return ret;
1753
1754 if (!ksz9x31_cable_test_fault_length_valid(val))
1755 return 0;
1756
1757 return ethnl_cable_test_fault_length(phydev,
1758 ksz9x31_cable_test_get_pair(pair),
1759 ksz9x31_cable_test_fault_length(phydev, val));
1760 }
1761
ksz9x31_cable_test_get_status(struct phy_device * phydev,bool * finished)1762 static int ksz9x31_cable_test_get_status(struct phy_device *phydev,
1763 bool *finished)
1764 {
1765 struct kszphy_priv *priv = phydev->priv;
1766 unsigned long pair_mask = 0xf;
1767 int retries = 20;
1768 int pair, ret, rv;
1769
1770 *finished = false;
1771
1772 /* Try harder if link partner is active */
1773 while (pair_mask && retries--) {
1774 for_each_set_bit(pair, &pair_mask, 4) {
1775 ret = ksz9x31_cable_test_one_pair(phydev, pair);
1776 if (ret == -EAGAIN)
1777 continue;
1778 if (ret < 0)
1779 return ret;
1780 clear_bit(pair, &pair_mask);
1781 }
1782 /* If link partner is in autonegotiation mode it will send 2ms
1783 * of FLPs with at least 6ms of silence.
1784 * Add 2ms sleep to have better chances to hit this silence.
1785 */
1786 if (pair_mask)
1787 usleep_range(2000, 3000);
1788 }
1789
1790 /* Report remaining unfinished pair result as unknown. */
1791 for_each_set_bit(pair, &pair_mask, 4) {
1792 ret = ethnl_cable_test_result(phydev,
1793 ksz9x31_cable_test_get_pair(pair),
1794 ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC);
1795 }
1796
1797 *finished = true;
1798
1799 /* Restore cached bits from before LinkMD got started. */
1800 rv = phy_modify(phydev, MII_CTRL1000,
1801 CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER,
1802 priv->vct_ctrl1000);
1803 if (rv)
1804 return rv;
1805
1806 return ret;
1807 }
1808
ksz8873mll_config_aneg(struct phy_device * phydev)1809 static int ksz8873mll_config_aneg(struct phy_device *phydev)
1810 {
1811 return 0;
1812 }
1813
ksz886x_config_mdix(struct phy_device * phydev,u8 ctrl)1814 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl)
1815 {
1816 u16 val;
1817
1818 switch (ctrl) {
1819 case ETH_TP_MDI:
1820 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX;
1821 break;
1822 case ETH_TP_MDI_X:
1823 /* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit
1824 * counter intuitive, the "-X" in "1 = Force MDI" in the data
1825 * sheet seems to be missing:
1826 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins)
1827 * 0 = Normal operation (transmit on TX+/TX- pins)
1828 */
1829 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI;
1830 break;
1831 case ETH_TP_MDI_AUTO:
1832 val = 0;
1833 break;
1834 default:
1835 return 0;
1836 }
1837
1838 return phy_modify(phydev, MII_BMCR,
1839 KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI |
1840 KSZ886X_BMCR_DISABLE_AUTO_MDIX,
1841 KSZ886X_BMCR_HP_MDIX | val);
1842 }
1843
ksz886x_config_aneg(struct phy_device * phydev)1844 static int ksz886x_config_aneg(struct phy_device *phydev)
1845 {
1846 int ret;
1847
1848 ret = genphy_config_aneg(phydev);
1849 if (ret)
1850 return ret;
1851
1852 if (phydev->autoneg != AUTONEG_ENABLE) {
1853 /* When autonegotation is disabled, we need to manually force
1854 * the link state. If we don't do this, the PHY will keep
1855 * sending Fast Link Pulses (FLPs) which are part of the
1856 * autonegotiation process. This is not desired when
1857 * autonegotiation is off.
1858 */
1859 ret = phy_set_bits(phydev, MII_KSZPHY_CTRL,
1860 KSZ886X_CTRL_FORCE_LINK);
1861 if (ret)
1862 return ret;
1863 } else {
1864 /* If we had previously forced the link state, we need to
1865 * clear KSZ886X_CTRL_FORCE_LINK bit now. Otherwise, the PHY
1866 * will not perform autonegotiation.
1867 */
1868 ret = phy_clear_bits(phydev, MII_KSZPHY_CTRL,
1869 KSZ886X_CTRL_FORCE_LINK);
1870 if (ret)
1871 return ret;
1872 }
1873
1874 /* The MDI-X configuration is automatically changed by the PHY after
1875 * switching from autoneg off to on. So, take MDI-X configuration under
1876 * own control and set it after autoneg configuration was done.
1877 */
1878 return ksz886x_config_mdix(phydev, phydev->mdix_ctrl);
1879 }
1880
ksz886x_mdix_update(struct phy_device * phydev)1881 static int ksz886x_mdix_update(struct phy_device *phydev)
1882 {
1883 int ret;
1884
1885 ret = phy_read(phydev, MII_BMCR);
1886 if (ret < 0)
1887 return ret;
1888
1889 if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) {
1890 if (ret & KSZ886X_BMCR_FORCE_MDI)
1891 phydev->mdix_ctrl = ETH_TP_MDI_X;
1892 else
1893 phydev->mdix_ctrl = ETH_TP_MDI;
1894 } else {
1895 phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1896 }
1897
1898 ret = phy_read(phydev, MII_KSZPHY_CTRL);
1899 if (ret < 0)
1900 return ret;
1901
1902 /* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */
1903 if (ret & KSZ886X_CTRL_MDIX_STAT)
1904 phydev->mdix = ETH_TP_MDI_X;
1905 else
1906 phydev->mdix = ETH_TP_MDI;
1907
1908 return 0;
1909 }
1910
ksz886x_read_status(struct phy_device * phydev)1911 static int ksz886x_read_status(struct phy_device *phydev)
1912 {
1913 int ret;
1914
1915 ret = ksz886x_mdix_update(phydev);
1916 if (ret < 0)
1917 return ret;
1918
1919 return genphy_read_status(phydev);
1920 }
1921
1922 struct ksz9477_errata_write {
1923 u8 dev_addr;
1924 u8 reg_addr;
1925 u16 val;
1926 };
1927
1928 static const struct ksz9477_errata_write ksz9477_errata_writes[] = {
1929 /* Register settings are needed to improve PHY receive performance */
1930 {0x01, 0x6f, 0xdd0b},
1931 {0x01, 0x8f, 0x6032},
1932 {0x01, 0x9d, 0x248c},
1933 {0x01, 0x75, 0x0060},
1934 {0x01, 0xd3, 0x7777},
1935 {0x1c, 0x06, 0x3008},
1936 {0x1c, 0x08, 0x2000},
1937
1938 /* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */
1939 {0x1c, 0x04, 0x00d0},
1940
1941 /* Register settings are required to meet data sheet supply current specifications */
1942 {0x1c, 0x13, 0x6eff},
1943 {0x1c, 0x14, 0xe6ff},
1944 {0x1c, 0x15, 0x6eff},
1945 {0x1c, 0x16, 0xe6ff},
1946 {0x1c, 0x17, 0x00ff},
1947 {0x1c, 0x18, 0x43ff},
1948 {0x1c, 0x19, 0xc3ff},
1949 {0x1c, 0x1a, 0x6fff},
1950 {0x1c, 0x1b, 0x07ff},
1951 {0x1c, 0x1c, 0x0fff},
1952 {0x1c, 0x1d, 0xe7ff},
1953 {0x1c, 0x1e, 0xefff},
1954 {0x1c, 0x20, 0xeeee},
1955 };
1956
ksz9477_phy_errata(struct phy_device * phydev)1957 static int ksz9477_phy_errata(struct phy_device *phydev)
1958 {
1959 int err;
1960 int i;
1961
1962 /* Apply PHY settings to address errata listed in
1963 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
1964 * Silicon Errata and Data Sheet Clarification documents.
1965 *
1966 * Document notes: Before configuring the PHY MMD registers, it is
1967 * necessary to set the PHY to 100 Mbps speed with auto-negotiation
1968 * disabled by writing to register 0xN100-0xN101. After writing the
1969 * MMD registers, and after all errata workarounds that involve PHY
1970 * register settings, write register 0xN100-0xN101 again to enable
1971 * and restart auto-negotiation.
1972 */
1973 err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX);
1974 if (err)
1975 return err;
1976
1977 for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) {
1978 const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i];
1979
1980 err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val);
1981 if (err)
1982 return err;
1983 }
1984
1985 err = genphy_restart_aneg(phydev);
1986 if (err)
1987 return err;
1988
1989 return err;
1990 }
1991
ksz9477_config_init(struct phy_device * phydev)1992 static int ksz9477_config_init(struct phy_device *phydev)
1993 {
1994 int err;
1995
1996 /* Only KSZ9897 family of switches needs this fix. */
1997 if ((phydev->phy_id & 0xf) == 1) {
1998 err = ksz9477_phy_errata(phydev);
1999 if (err)
2000 return err;
2001 }
2002
2003 /* According to KSZ9477 Errata DS80000754C (Module 4) all EEE modes
2004 * in this switch shall be regarded as broken.
2005 */
2006 if (phydev->dev_flags & MICREL_NO_EEE)
2007 linkmode_fill(phydev->eee_broken_modes);
2008
2009 return kszphy_config_init(phydev);
2010 }
2011
kszphy_get_sset_count(struct phy_device * phydev)2012 static int kszphy_get_sset_count(struct phy_device *phydev)
2013 {
2014 return ARRAY_SIZE(kszphy_hw_stats);
2015 }
2016
kszphy_get_strings(struct phy_device * phydev,u8 * data)2017 static void kszphy_get_strings(struct phy_device *phydev, u8 *data)
2018 {
2019 int i;
2020
2021 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++)
2022 ethtool_puts(&data, kszphy_hw_stats[i].string);
2023 }
2024
kszphy_get_stat(struct phy_device * phydev,int i)2025 static u64 kszphy_get_stat(struct phy_device *phydev, int i)
2026 {
2027 struct kszphy_hw_stat stat = kszphy_hw_stats[i];
2028 struct kszphy_priv *priv = phydev->priv;
2029 int val;
2030 u64 ret;
2031
2032 val = phy_read(phydev, stat.reg);
2033 if (val < 0) {
2034 ret = U64_MAX;
2035 } else {
2036 val = val & ((1 << stat.bits) - 1);
2037 priv->stats[i] += val;
2038 ret = priv->stats[i];
2039 }
2040
2041 return ret;
2042 }
2043
kszphy_get_stats(struct phy_device * phydev,struct ethtool_stats * stats,u64 * data)2044 static void kszphy_get_stats(struct phy_device *phydev,
2045 struct ethtool_stats *stats, u64 *data)
2046 {
2047 int i;
2048
2049 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++)
2050 data[i] = kszphy_get_stat(phydev, i);
2051 }
2052
kszphy_suspend(struct phy_device * phydev)2053 static int kszphy_suspend(struct phy_device *phydev)
2054 {
2055 /* Disable PHY Interrupts */
2056 if (phy_interrupt_is_valid(phydev)) {
2057 phydev->interrupts = PHY_INTERRUPT_DISABLED;
2058 if (phydev->drv->config_intr)
2059 phydev->drv->config_intr(phydev);
2060 }
2061
2062 return genphy_suspend(phydev);
2063 }
2064
kszphy_parse_led_mode(struct phy_device * phydev)2065 static void kszphy_parse_led_mode(struct phy_device *phydev)
2066 {
2067 const struct kszphy_type *type = phydev->drv->driver_data;
2068 const struct device_node *np = phydev->mdio.dev.of_node;
2069 struct kszphy_priv *priv = phydev->priv;
2070 int ret;
2071
2072 if (type && type->led_mode_reg) {
2073 ret = of_property_read_u32(np, "micrel,led-mode",
2074 &priv->led_mode);
2075
2076 if (ret)
2077 priv->led_mode = -1;
2078
2079 if (priv->led_mode > 3) {
2080 phydev_err(phydev, "invalid led mode: 0x%02x\n",
2081 priv->led_mode);
2082 priv->led_mode = -1;
2083 }
2084 } else {
2085 priv->led_mode = -1;
2086 }
2087 }
2088
kszphy_resume(struct phy_device * phydev)2089 static int kszphy_resume(struct phy_device *phydev)
2090 {
2091 int ret;
2092
2093 genphy_resume(phydev);
2094
2095 /* After switching from power-down to normal mode, an internal global
2096 * reset is automatically generated. Wait a minimum of 1 ms before
2097 * read/write access to the PHY registers.
2098 */
2099 usleep_range(1000, 2000);
2100
2101 ret = kszphy_config_reset(phydev);
2102 if (ret)
2103 return ret;
2104
2105 /* Enable PHY Interrupts */
2106 if (phy_interrupt_is_valid(phydev)) {
2107 phydev->interrupts = PHY_INTERRUPT_ENABLED;
2108 if (phydev->drv->config_intr)
2109 phydev->drv->config_intr(phydev);
2110 }
2111
2112 return 0;
2113 }
2114
ksz9477_resume(struct phy_device * phydev)2115 static int ksz9477_resume(struct phy_device *phydev)
2116 {
2117 int ret;
2118
2119 /* No need to initialize registers if not powered down. */
2120 ret = phy_read(phydev, MII_BMCR);
2121 if (ret < 0)
2122 return ret;
2123 if (!(ret & BMCR_PDOWN))
2124 return 0;
2125
2126 genphy_resume(phydev);
2127
2128 /* After switching from power-down to normal mode, an internal global
2129 * reset is automatically generated. Wait a minimum of 1 ms before
2130 * read/write access to the PHY registers.
2131 */
2132 usleep_range(1000, 2000);
2133
2134 /* Only KSZ9897 family of switches needs this fix. */
2135 if ((phydev->phy_id & 0xf) == 1) {
2136 ret = ksz9477_phy_errata(phydev);
2137 if (ret)
2138 return ret;
2139 }
2140
2141 /* Enable PHY Interrupts */
2142 if (phy_interrupt_is_valid(phydev)) {
2143 phydev->interrupts = PHY_INTERRUPT_ENABLED;
2144 if (phydev->drv->config_intr)
2145 phydev->drv->config_intr(phydev);
2146 }
2147
2148 return 0;
2149 }
2150
ksz8061_resume(struct phy_device * phydev)2151 static int ksz8061_resume(struct phy_device *phydev)
2152 {
2153 int ret;
2154
2155 /* This function can be called twice when the Ethernet device is on. */
2156 ret = phy_read(phydev, MII_BMCR);
2157 if (ret < 0)
2158 return ret;
2159 if (!(ret & BMCR_PDOWN))
2160 return 0;
2161
2162 genphy_resume(phydev);
2163 usleep_range(1000, 2000);
2164
2165 /* Re-program the value after chip is reset. */
2166 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
2167 if (ret)
2168 return ret;
2169
2170 /* Enable PHY Interrupts */
2171 if (phy_interrupt_is_valid(phydev)) {
2172 phydev->interrupts = PHY_INTERRUPT_ENABLED;
2173 if (phydev->drv->config_intr)
2174 phydev->drv->config_intr(phydev);
2175 }
2176
2177 return 0;
2178 }
2179
kszphy_probe(struct phy_device * phydev)2180 static int kszphy_probe(struct phy_device *phydev)
2181 {
2182 const struct kszphy_type *type = phydev->drv->driver_data;
2183 const struct device_node *np = phydev->mdio.dev.of_node;
2184 struct kszphy_priv *priv;
2185 struct clk *clk;
2186
2187 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
2188 if (!priv)
2189 return -ENOMEM;
2190
2191 phydev->priv = priv;
2192
2193 priv->type = type;
2194
2195 kszphy_parse_led_mode(phydev);
2196
2197 clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, "rmii-ref");
2198 /* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */
2199 if (!IS_ERR_OR_NULL(clk)) {
2200 unsigned long rate = clk_get_rate(clk);
2201 bool rmii_ref_clk_sel_25_mhz;
2202
2203 if (type)
2204 priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel;
2205 rmii_ref_clk_sel_25_mhz = of_property_read_bool(np,
2206 "micrel,rmii-reference-clock-select-25-mhz");
2207
2208 if (rate > 24500000 && rate < 25500000) {
2209 priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz;
2210 } else if (rate > 49500000 && rate < 50500000) {
2211 priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz;
2212 } else {
2213 phydev_err(phydev, "Clock rate out of range: %ld\n",
2214 rate);
2215 return -EINVAL;
2216 }
2217 } else if (!clk) {
2218 /* unnamed clock from the generic ethernet-phy binding */
2219 clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, NULL);
2220 if (IS_ERR(clk))
2221 return PTR_ERR(clk);
2222 }
2223
2224 if (ksz8041_fiber_mode(phydev))
2225 phydev->port = PORT_FIBRE;
2226
2227 /* Support legacy board-file configuration */
2228 if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) {
2229 priv->rmii_ref_clk_sel = true;
2230 priv->rmii_ref_clk_sel_val = true;
2231 }
2232
2233 return 0;
2234 }
2235
lan8814_cable_test_start(struct phy_device * phydev)2236 static int lan8814_cable_test_start(struct phy_device *phydev)
2237 {
2238 /* If autoneg is enabled, we won't be able to test cross pair
2239 * short. In this case, the PHY will "detect" a link and
2240 * confuse the internal state machine - disable auto neg here.
2241 * Set the speed to 1000mbit and full duplex.
2242 */
2243 return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100,
2244 BMCR_SPEED1000 | BMCR_FULLDPLX);
2245 }
2246
ksz886x_cable_test_start(struct phy_device * phydev)2247 static int ksz886x_cable_test_start(struct phy_device *phydev)
2248 {
2249 if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA)
2250 return -EOPNOTSUPP;
2251
2252 /* If autoneg is enabled, we won't be able to test cross pair
2253 * short. In this case, the PHY will "detect" a link and
2254 * confuse the internal state machine - disable auto neg here.
2255 * If autoneg is disabled, we should set the speed to 10mbit.
2256 */
2257 return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100);
2258 }
2259
ksz886x_cable_test_result_trans(u16 status,u16 mask)2260 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask)
2261 {
2262 switch (FIELD_GET(mask, status)) {
2263 case KSZ8081_LMD_STAT_NORMAL:
2264 return ETHTOOL_A_CABLE_RESULT_CODE_OK;
2265 case KSZ8081_LMD_STAT_SHORT:
2266 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
2267 case KSZ8081_LMD_STAT_OPEN:
2268 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
2269 case KSZ8081_LMD_STAT_FAIL:
2270 fallthrough;
2271 default:
2272 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
2273 }
2274 }
2275
ksz886x_cable_test_failed(u16 status,u16 mask)2276 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask)
2277 {
2278 return FIELD_GET(mask, status) ==
2279 KSZ8081_LMD_STAT_FAIL;
2280 }
2281
ksz886x_cable_test_fault_length_valid(u16 status,u16 mask)2282 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask)
2283 {
2284 switch (FIELD_GET(mask, status)) {
2285 case KSZ8081_LMD_STAT_OPEN:
2286 fallthrough;
2287 case KSZ8081_LMD_STAT_SHORT:
2288 return true;
2289 }
2290 return false;
2291 }
2292
ksz886x_cable_test_fault_length(struct phy_device * phydev,u16 status,u16 data_mask)2293 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev,
2294 u16 status, u16 data_mask)
2295 {
2296 int dt;
2297
2298 /* According to the data sheet the distance to the fault is
2299 * DELTA_TIME * 0.4 meters for ksz phys.
2300 * (DELTA_TIME - 22) * 0.8 for lan8814 phy.
2301 */
2302 dt = FIELD_GET(data_mask, status);
2303
2304 if (phydev_id_compare(phydev, PHY_ID_LAN8814))
2305 return ((dt - 22) * 800) / 10;
2306 else
2307 return (dt * 400) / 10;
2308 }
2309
ksz886x_cable_test_wait_for_completion(struct phy_device * phydev)2310 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev)
2311 {
2312 const struct kszphy_type *type = phydev->drv->driver_data;
2313 int val, ret;
2314
2315 ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val,
2316 !(val & KSZ8081_LMD_ENABLE_TEST),
2317 30000, 100000, true);
2318
2319 return ret < 0 ? ret : 0;
2320 }
2321
lan8814_cable_test_one_pair(struct phy_device * phydev,int pair)2322 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair)
2323 {
2324 static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A,
2325 ETHTOOL_A_CABLE_PAIR_B,
2326 ETHTOOL_A_CABLE_PAIR_C,
2327 ETHTOOL_A_CABLE_PAIR_D,
2328 };
2329 u32 fault_length;
2330 int ret;
2331 int val;
2332
2333 val = KSZ8081_LMD_ENABLE_TEST;
2334 val = val | (pair << LAN8814_PAIR_BIT_SHIFT);
2335
2336 ret = phy_write(phydev, LAN8814_CABLE_DIAG, val);
2337 if (ret < 0)
2338 return ret;
2339
2340 ret = ksz886x_cable_test_wait_for_completion(phydev);
2341 if (ret)
2342 return ret;
2343
2344 val = phy_read(phydev, LAN8814_CABLE_DIAG);
2345 if (val < 0)
2346 return val;
2347
2348 if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK))
2349 return -EAGAIN;
2350
2351 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2352 ksz886x_cable_test_result_trans(val,
2353 LAN8814_CABLE_DIAG_STAT_MASK
2354 ));
2355 if (ret)
2356 return ret;
2357
2358 if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK))
2359 return 0;
2360
2361 fault_length = ksz886x_cable_test_fault_length(phydev, val,
2362 LAN8814_CABLE_DIAG_VCT_DATA_MASK);
2363
2364 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2365 }
2366
ksz886x_cable_test_one_pair(struct phy_device * phydev,int pair)2367 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair)
2368 {
2369 static const int ethtool_pair[] = {
2370 ETHTOOL_A_CABLE_PAIR_A,
2371 ETHTOOL_A_CABLE_PAIR_B,
2372 };
2373 int ret, val, mdix;
2374 u32 fault_length;
2375
2376 /* There is no way to choice the pair, like we do one ksz9031.
2377 * We can workaround this limitation by using the MDI-X functionality.
2378 */
2379 if (pair == 0)
2380 mdix = ETH_TP_MDI;
2381 else
2382 mdix = ETH_TP_MDI_X;
2383
2384 switch (phydev->phy_id & MICREL_PHY_ID_MASK) {
2385 case PHY_ID_KSZ8081:
2386 ret = ksz8081_config_mdix(phydev, mdix);
2387 break;
2388 case PHY_ID_KSZ886X:
2389 ret = ksz886x_config_mdix(phydev, mdix);
2390 break;
2391 default:
2392 ret = -ENODEV;
2393 }
2394
2395 if (ret)
2396 return ret;
2397
2398 /* Now we are ready to fire. This command will send a 100ns pulse
2399 * to the pair.
2400 */
2401 ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST);
2402 if (ret)
2403 return ret;
2404
2405 ret = ksz886x_cable_test_wait_for_completion(phydev);
2406 if (ret)
2407 return ret;
2408
2409 val = phy_read(phydev, KSZ8081_LMD);
2410 if (val < 0)
2411 return val;
2412
2413 if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK))
2414 return -EAGAIN;
2415
2416 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2417 ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK));
2418 if (ret)
2419 return ret;
2420
2421 if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK))
2422 return 0;
2423
2424 fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK);
2425
2426 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2427 }
2428
ksz886x_cable_test_get_status(struct phy_device * phydev,bool * finished)2429 static int ksz886x_cable_test_get_status(struct phy_device *phydev,
2430 bool *finished)
2431 {
2432 const struct kszphy_type *type = phydev->drv->driver_data;
2433 unsigned long pair_mask = type->pair_mask;
2434 int retries = 20;
2435 int ret = 0;
2436 int pair;
2437
2438 *finished = false;
2439
2440 /* Try harder if link partner is active */
2441 while (pair_mask && retries--) {
2442 for_each_set_bit(pair, &pair_mask, 4) {
2443 if (type->cable_diag_reg == LAN8814_CABLE_DIAG)
2444 ret = lan8814_cable_test_one_pair(phydev, pair);
2445 else
2446 ret = ksz886x_cable_test_one_pair(phydev, pair);
2447 if (ret == -EAGAIN)
2448 continue;
2449 if (ret < 0)
2450 return ret;
2451 clear_bit(pair, &pair_mask);
2452 }
2453 /* If link partner is in autonegotiation mode it will send 2ms
2454 * of FLPs with at least 6ms of silence.
2455 * Add 2ms sleep to have better chances to hit this silence.
2456 */
2457 if (pair_mask)
2458 msleep(2);
2459 }
2460
2461 *finished = true;
2462
2463 return ret;
2464 }
2465
2466 #define LAN_EXT_PAGE_ACCESS_CONTROL 0x16
2467 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA 0x17
2468 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC 0x4000
2469
2470 #define LAN8814_QSGMII_SOFT_RESET 0x43
2471 #define LAN8814_QSGMII_SOFT_RESET_BIT BIT(0)
2472 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG 0x13
2473 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA BIT(3)
2474 #define LAN8814_ALIGN_SWAP 0x4a
2475 #define LAN8814_ALIGN_TX_A_B_SWAP 0x1
2476 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0)
2477
2478 #define LAN8804_ALIGN_SWAP 0x4a
2479 #define LAN8804_ALIGN_TX_A_B_SWAP 0x1
2480 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0)
2481 #define LAN8814_CLOCK_MANAGEMENT 0xd
2482 #define LAN8814_LINK_QUALITY 0x8e
2483
lanphy_read_page_reg(struct phy_device * phydev,int page,u32 addr)2484 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr)
2485 {
2486 int data;
2487
2488 phy_lock_mdio_bus(phydev);
2489 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2490 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2491 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2492 (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC));
2493 data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA);
2494 phy_unlock_mdio_bus(phydev);
2495
2496 return data;
2497 }
2498
lanphy_write_page_reg(struct phy_device * phydev,int page,u16 addr,u16 val)2499 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr,
2500 u16 val)
2501 {
2502 phy_lock_mdio_bus(phydev);
2503 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2504 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2505 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2506 page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC);
2507
2508 val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val);
2509 if (val != 0)
2510 phydev_err(phydev, "Error: phy_write has returned error %d\n",
2511 val);
2512 phy_unlock_mdio_bus(phydev);
2513 return val;
2514 }
2515
lan8814_config_ts_intr(struct phy_device * phydev,bool enable)2516 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable)
2517 {
2518 u16 val = 0;
2519
2520 if (enable)
2521 val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ |
2522 PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ |
2523 PTP_TSU_INT_EN_PTP_RX_TS_EN_ |
2524 PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_;
2525
2526 return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val);
2527 }
2528
lan8814_ptp_rx_ts_get(struct phy_device * phydev,u32 * seconds,u32 * nano_seconds,u16 * seq_id)2529 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev,
2530 u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2531 {
2532 *seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI);
2533 *seconds = (*seconds << 16) |
2534 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO);
2535
2536 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI);
2537 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2538 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO);
2539
2540 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2);
2541 }
2542
lan8814_ptp_tx_ts_get(struct phy_device * phydev,u32 * seconds,u32 * nano_seconds,u16 * seq_id)2543 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev,
2544 u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2545 {
2546 *seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI);
2547 *seconds = *seconds << 16 |
2548 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO);
2549
2550 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI);
2551 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2552 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO);
2553
2554 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2);
2555 }
2556
lan8814_ts_info(struct mii_timestamper * mii_ts,struct kernel_ethtool_ts_info * info)2557 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct kernel_ethtool_ts_info *info)
2558 {
2559 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2560 struct phy_device *phydev = ptp_priv->phydev;
2561 struct lan8814_shared_priv *shared = phydev->shared->priv;
2562
2563 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
2564 SOF_TIMESTAMPING_RX_HARDWARE |
2565 SOF_TIMESTAMPING_RAW_HARDWARE;
2566
2567 info->phc_index = ptp_clock_index(shared->ptp_clock);
2568
2569 info->tx_types =
2570 (1 << HWTSTAMP_TX_OFF) |
2571 (1 << HWTSTAMP_TX_ON) |
2572 (1 << HWTSTAMP_TX_ONESTEP_SYNC);
2573
2574 info->rx_filters =
2575 (1 << HWTSTAMP_FILTER_NONE) |
2576 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2577 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
2578 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
2579 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2580
2581 return 0;
2582 }
2583
lan8814_flush_fifo(struct phy_device * phydev,bool egress)2584 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress)
2585 {
2586 int i;
2587
2588 for (i = 0; i < FIFO_SIZE; ++i)
2589 lanphy_read_page_reg(phydev, 5,
2590 egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2);
2591
2592 /* Read to clear overflow status bit */
2593 lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
2594 }
2595
lan8814_hwtstamp(struct mii_timestamper * mii_ts,struct kernel_hwtstamp_config * config,struct netlink_ext_ack * extack)2596 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts,
2597 struct kernel_hwtstamp_config *config,
2598 struct netlink_ext_ack *extack)
2599 {
2600 struct kszphy_ptp_priv *ptp_priv =
2601 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2602 struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2603 int txcfg = 0, rxcfg = 0;
2604 int pkt_ts_enable;
2605 int tx_mod;
2606
2607 ptp_priv->hwts_tx_type = config->tx_type;
2608 ptp_priv->rx_filter = config->rx_filter;
2609
2610 switch (config->rx_filter) {
2611 case HWTSTAMP_FILTER_NONE:
2612 ptp_priv->layer = 0;
2613 ptp_priv->version = 0;
2614 break;
2615 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2616 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2617 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2618 ptp_priv->layer = PTP_CLASS_L4;
2619 ptp_priv->version = PTP_CLASS_V2;
2620 break;
2621 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2622 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2623 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2624 ptp_priv->layer = PTP_CLASS_L2;
2625 ptp_priv->version = PTP_CLASS_V2;
2626 break;
2627 case HWTSTAMP_FILTER_PTP_V2_EVENT:
2628 case HWTSTAMP_FILTER_PTP_V2_SYNC:
2629 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2630 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
2631 ptp_priv->version = PTP_CLASS_V2;
2632 break;
2633 default:
2634 return -ERANGE;
2635 }
2636
2637 if (ptp_priv->layer & PTP_CLASS_L2) {
2638 rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_;
2639 txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_;
2640 } else if (ptp_priv->layer & PTP_CLASS_L4) {
2641 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
2642 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
2643 }
2644 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg);
2645 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg);
2646
2647 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
2648 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
2649 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
2650 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
2651
2652 tx_mod = lanphy_read_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD);
2653 if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) {
2654 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD,
2655 tx_mod | PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
2656 } else if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ON) {
2657 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD,
2658 tx_mod & ~PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
2659 }
2660
2661 if (config->rx_filter != HWTSTAMP_FILTER_NONE)
2662 lan8814_config_ts_intr(ptp_priv->phydev, true);
2663 else
2664 lan8814_config_ts_intr(ptp_priv->phydev, false);
2665
2666 /* In case of multiple starts and stops, these needs to be cleared */
2667 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2668 list_del(&rx_ts->list);
2669 kfree(rx_ts);
2670 }
2671 skb_queue_purge(&ptp_priv->rx_queue);
2672 skb_queue_purge(&ptp_priv->tx_queue);
2673
2674 lan8814_flush_fifo(ptp_priv->phydev, false);
2675 lan8814_flush_fifo(ptp_priv->phydev, true);
2676
2677 return 0;
2678 }
2679
lan8814_txtstamp(struct mii_timestamper * mii_ts,struct sk_buff * skb,int type)2680 static void lan8814_txtstamp(struct mii_timestamper *mii_ts,
2681 struct sk_buff *skb, int type)
2682 {
2683 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2684
2685 switch (ptp_priv->hwts_tx_type) {
2686 case HWTSTAMP_TX_ONESTEP_SYNC:
2687 if (ptp_msg_is_sync(skb, type)) {
2688 kfree_skb(skb);
2689 return;
2690 }
2691 fallthrough;
2692 case HWTSTAMP_TX_ON:
2693 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2694 skb_queue_tail(&ptp_priv->tx_queue, skb);
2695 break;
2696 case HWTSTAMP_TX_OFF:
2697 default:
2698 kfree_skb(skb);
2699 break;
2700 }
2701 }
2702
lan8814_get_sig_rx(struct sk_buff * skb,u16 * sig)2703 static bool lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig)
2704 {
2705 struct ptp_header *ptp_header;
2706 u32 type;
2707
2708 skb_push(skb, ETH_HLEN);
2709 type = ptp_classify_raw(skb);
2710 ptp_header = ptp_parse_header(skb, type);
2711 skb_pull_inline(skb, ETH_HLEN);
2712
2713 if (!ptp_header)
2714 return false;
2715
2716 *sig = (__force u16)(ntohs(ptp_header->sequence_id));
2717 return true;
2718 }
2719
lan8814_match_rx_skb(struct kszphy_ptp_priv * ptp_priv,struct sk_buff * skb)2720 static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv,
2721 struct sk_buff *skb)
2722 {
2723 struct skb_shared_hwtstamps *shhwtstamps;
2724 struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2725 unsigned long flags;
2726 bool ret = false;
2727 u16 skb_sig;
2728
2729 if (!lan8814_get_sig_rx(skb, &skb_sig))
2730 return ret;
2731
2732 /* Iterate over all RX timestamps and match it with the received skbs */
2733 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
2734 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2735 /* Check if we found the signature we were looking for. */
2736 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
2737 continue;
2738
2739 shhwtstamps = skb_hwtstamps(skb);
2740 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2741 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds,
2742 rx_ts->nsec);
2743 list_del(&rx_ts->list);
2744 kfree(rx_ts);
2745
2746 ret = true;
2747 break;
2748 }
2749 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
2750
2751 if (ret)
2752 netif_rx(skb);
2753 return ret;
2754 }
2755
lan8814_rxtstamp(struct mii_timestamper * mii_ts,struct sk_buff * skb,int type)2756 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type)
2757 {
2758 struct kszphy_ptp_priv *ptp_priv =
2759 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2760
2761 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
2762 type == PTP_CLASS_NONE)
2763 return false;
2764
2765 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
2766 return false;
2767
2768 /* If we failed to match then add it to the queue for when the timestamp
2769 * will come
2770 */
2771 if (!lan8814_match_rx_skb(ptp_priv, skb))
2772 skb_queue_tail(&ptp_priv->rx_queue, skb);
2773
2774 return true;
2775 }
2776
lan8814_ptp_clock_set(struct phy_device * phydev,time64_t sec,u32 nsec)2777 static void lan8814_ptp_clock_set(struct phy_device *phydev,
2778 time64_t sec, u32 nsec)
2779 {
2780 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, lower_16_bits(sec));
2781 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, upper_16_bits(sec));
2782 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_HI, upper_32_bits(sec));
2783 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, lower_16_bits(nsec));
2784 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, upper_16_bits(nsec));
2785
2786 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_);
2787 }
2788
lan8814_ptp_clock_get(struct phy_device * phydev,time64_t * sec,u32 * nsec)2789 static void lan8814_ptp_clock_get(struct phy_device *phydev,
2790 time64_t *sec, u32 *nsec)
2791 {
2792 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_);
2793
2794 *sec = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_HI);
2795 *sec <<= 16;
2796 *sec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID);
2797 *sec <<= 16;
2798 *sec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO);
2799
2800 *nsec = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI);
2801 *nsec <<= 16;
2802 *nsec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO);
2803 }
2804
lan8814_ptpci_gettime64(struct ptp_clock_info * ptpci,struct timespec64 * ts)2805 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci,
2806 struct timespec64 *ts)
2807 {
2808 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2809 ptp_clock_info);
2810 struct phy_device *phydev = shared->phydev;
2811 u32 nano_seconds;
2812 time64_t seconds;
2813
2814 mutex_lock(&shared->shared_lock);
2815 lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds);
2816 mutex_unlock(&shared->shared_lock);
2817 ts->tv_sec = seconds;
2818 ts->tv_nsec = nano_seconds;
2819
2820 return 0;
2821 }
2822
lan8814_ptpci_settime64(struct ptp_clock_info * ptpci,const struct timespec64 * ts)2823 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci,
2824 const struct timespec64 *ts)
2825 {
2826 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2827 ptp_clock_info);
2828 struct phy_device *phydev = shared->phydev;
2829
2830 mutex_lock(&shared->shared_lock);
2831 lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec);
2832 mutex_unlock(&shared->shared_lock);
2833
2834 return 0;
2835 }
2836
lan8814_ptp_set_target(struct phy_device * phydev,int event,s64 start_sec,u32 start_nsec)2837 static void lan8814_ptp_set_target(struct phy_device *phydev, int event,
2838 s64 start_sec, u32 start_nsec)
2839 {
2840 /* Set the start time */
2841 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_SEC_LO(event),
2842 lower_16_bits(start_sec));
2843 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_SEC_HI(event),
2844 upper_16_bits(start_sec));
2845
2846 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_NS_LO(event),
2847 lower_16_bits(start_nsec));
2848 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_NS_HI(event),
2849 upper_16_bits(start_nsec) & 0x3fff);
2850 }
2851
lan8814_ptp_update_target(struct phy_device * phydev,time64_t sec)2852 static void lan8814_ptp_update_target(struct phy_device *phydev, time64_t sec)
2853 {
2854 lan8814_ptp_set_target(phydev, LAN8814_EVENT_A,
2855 sec + LAN8814_BUFFER_TIME, 0);
2856 lan8814_ptp_set_target(phydev, LAN8814_EVENT_B,
2857 sec + LAN8814_BUFFER_TIME, 0);
2858 }
2859
lan8814_ptp_clock_step(struct phy_device * phydev,s64 time_step_ns)2860 static void lan8814_ptp_clock_step(struct phy_device *phydev,
2861 s64 time_step_ns)
2862 {
2863 u32 nano_seconds_step;
2864 u64 abs_time_step_ns;
2865 time64_t set_seconds;
2866 u32 nano_seconds;
2867 u32 remainder;
2868 s32 seconds;
2869
2870 if (time_step_ns > 15000000000LL) {
2871 /* convert to clock set */
2872 lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds);
2873 set_seconds += div_u64_rem(time_step_ns, 1000000000LL,
2874 &remainder);
2875 nano_seconds += remainder;
2876 if (nano_seconds >= 1000000000) {
2877 set_seconds++;
2878 nano_seconds -= 1000000000;
2879 }
2880 lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds);
2881 lan8814_ptp_update_target(phydev, set_seconds);
2882 return;
2883 } else if (time_step_ns < -15000000000LL) {
2884 /* convert to clock set */
2885 time_step_ns = -time_step_ns;
2886
2887 lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds);
2888 set_seconds -= div_u64_rem(time_step_ns, 1000000000LL,
2889 &remainder);
2890 nano_seconds_step = remainder;
2891 if (nano_seconds < nano_seconds_step) {
2892 set_seconds--;
2893 nano_seconds += 1000000000;
2894 }
2895 nano_seconds -= nano_seconds_step;
2896 lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds);
2897 lan8814_ptp_update_target(phydev, set_seconds);
2898 return;
2899 }
2900
2901 /* do clock step */
2902 if (time_step_ns >= 0) {
2903 abs_time_step_ns = (u64)time_step_ns;
2904 seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000,
2905 &remainder);
2906 nano_seconds = remainder;
2907 } else {
2908 abs_time_step_ns = (u64)(-time_step_ns);
2909 seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000,
2910 &remainder));
2911 nano_seconds = remainder;
2912 if (nano_seconds > 0) {
2913 /* subtracting nano seconds is not allowed
2914 * convert to subtracting from seconds,
2915 * and adding to nanoseconds
2916 */
2917 seconds--;
2918 nano_seconds = (1000000000 - nano_seconds);
2919 }
2920 }
2921
2922 if (nano_seconds > 0) {
2923 /* add 8 ns to cover the likely normal increment */
2924 nano_seconds += 8;
2925 }
2926
2927 if (nano_seconds >= 1000000000) {
2928 /* carry into seconds */
2929 seconds++;
2930 nano_seconds -= 1000000000;
2931 }
2932
2933 while (seconds) {
2934 u32 nsec;
2935
2936 if (seconds > 0) {
2937 u32 adjustment_value = (u32)seconds;
2938 u16 adjustment_value_lo, adjustment_value_hi;
2939
2940 if (adjustment_value > 0xF)
2941 adjustment_value = 0xF;
2942
2943 adjustment_value_lo = adjustment_value & 0xffff;
2944 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
2945
2946 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2947 adjustment_value_lo);
2948 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2949 PTP_LTC_STEP_ADJ_DIR_ |
2950 adjustment_value_hi);
2951 seconds -= ((s32)adjustment_value);
2952
2953 lan8814_ptp_clock_get(phydev, &set_seconds, &nsec);
2954 set_seconds -= adjustment_value;
2955 lan8814_ptp_update_target(phydev, set_seconds);
2956 } else {
2957 u32 adjustment_value = (u32)(-seconds);
2958 u16 adjustment_value_lo, adjustment_value_hi;
2959
2960 if (adjustment_value > 0xF)
2961 adjustment_value = 0xF;
2962
2963 adjustment_value_lo = adjustment_value & 0xffff;
2964 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
2965
2966 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2967 adjustment_value_lo);
2968 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2969 adjustment_value_hi);
2970 seconds += ((s32)adjustment_value);
2971
2972 lan8814_ptp_clock_get(phydev, &set_seconds, &nsec);
2973 set_seconds += adjustment_value;
2974 lan8814_ptp_update_target(phydev, set_seconds);
2975 }
2976 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
2977 PTP_CMD_CTL_PTP_LTC_STEP_SEC_);
2978 }
2979 if (nano_seconds) {
2980 u16 nano_seconds_lo;
2981 u16 nano_seconds_hi;
2982
2983 nano_seconds_lo = nano_seconds & 0xffff;
2984 nano_seconds_hi = (nano_seconds >> 16) & 0x3fff;
2985
2986 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2987 nano_seconds_lo);
2988 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2989 PTP_LTC_STEP_ADJ_DIR_ |
2990 nano_seconds_hi);
2991 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
2992 PTP_CMD_CTL_PTP_LTC_STEP_NSEC_);
2993 }
2994 }
2995
lan8814_ptpci_adjtime(struct ptp_clock_info * ptpci,s64 delta)2996 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta)
2997 {
2998 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2999 ptp_clock_info);
3000 struct phy_device *phydev = shared->phydev;
3001
3002 mutex_lock(&shared->shared_lock);
3003 lan8814_ptp_clock_step(phydev, delta);
3004 mutex_unlock(&shared->shared_lock);
3005
3006 return 0;
3007 }
3008
lan8814_ptpci_adjfine(struct ptp_clock_info * ptpci,long scaled_ppm)3009 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm)
3010 {
3011 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3012 ptp_clock_info);
3013 struct phy_device *phydev = shared->phydev;
3014 u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi;
3015 bool positive = true;
3016 u32 kszphy_rate_adj;
3017
3018 if (scaled_ppm < 0) {
3019 scaled_ppm = -scaled_ppm;
3020 positive = false;
3021 }
3022
3023 kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16);
3024 kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16;
3025
3026 kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff;
3027 kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff;
3028
3029 if (positive)
3030 kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_;
3031
3032 mutex_lock(&shared->shared_lock);
3033 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi);
3034 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo);
3035 mutex_unlock(&shared->shared_lock);
3036
3037 return 0;
3038 }
3039
lan8814_ptp_set_reload(struct phy_device * phydev,int event,s64 period_sec,u32 period_nsec)3040 static void lan8814_ptp_set_reload(struct phy_device *phydev, int event,
3041 s64 period_sec, u32 period_nsec)
3042 {
3043 lanphy_write_page_reg(phydev, 4,
3044 LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event),
3045 lower_16_bits(period_sec));
3046 lanphy_write_page_reg(phydev, 4,
3047 LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event),
3048 upper_16_bits(period_sec));
3049
3050 lanphy_write_page_reg(phydev, 4,
3051 LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event),
3052 lower_16_bits(period_nsec));
3053 lanphy_write_page_reg(phydev, 4,
3054 LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event),
3055 upper_16_bits(period_nsec) & 0x3fff);
3056 }
3057
lan8814_ptp_enable_event(struct phy_device * phydev,int event,int pulse_width)3058 static void lan8814_ptp_enable_event(struct phy_device *phydev, int event,
3059 int pulse_width)
3060 {
3061 u16 val;
3062
3063 val = lanphy_read_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG);
3064 /* Set the pulse width of the event */
3065 val &= ~(LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event));
3066 /* Make sure that the target clock will be incremented each time when
3067 * local time reaches or pass it
3068 */
3069 val |= LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, pulse_width);
3070 val &= ~(LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event));
3071 /* Set the polarity high */
3072 val |= LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event);
3073 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG, val);
3074 }
3075
lan8814_ptp_disable_event(struct phy_device * phydev,int event)3076 static void lan8814_ptp_disable_event(struct phy_device *phydev, int event)
3077 {
3078 u16 val;
3079
3080 /* Set target to too far in the future, effectively disabling it */
3081 lan8814_ptp_set_target(phydev, event, 0xFFFFFFFF, 0);
3082
3083 /* And then reload once it recheas the target */
3084 val = lanphy_read_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG);
3085 val |= LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event);
3086 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG, val);
3087 }
3088
lan8814_ptp_perout_off(struct phy_device * phydev,int pin)3089 static void lan8814_ptp_perout_off(struct phy_device *phydev, int pin)
3090 {
3091 u16 val;
3092
3093 /* Disable gpio alternate function,
3094 * 1: select as gpio,
3095 * 0: select alt func
3096 */
3097 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin));
3098 val |= LAN8814_GPIO_EN_BIT(pin);
3099 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), val);
3100
3101 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin));
3102 val &= ~LAN8814_GPIO_DIR_BIT(pin);
3103 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), val);
3104
3105 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin));
3106 val &= ~LAN8814_GPIO_BUF_BIT(pin);
3107 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin), val);
3108 }
3109
lan8814_ptp_perout_on(struct phy_device * phydev,int pin)3110 static void lan8814_ptp_perout_on(struct phy_device *phydev, int pin)
3111 {
3112 int val;
3113
3114 /* Set as gpio output */
3115 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin));
3116 val |= LAN8814_GPIO_DIR_BIT(pin);
3117 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), val);
3118
3119 /* Enable gpio 0:for alternate function, 1:gpio */
3120 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin));
3121 val &= ~LAN8814_GPIO_EN_BIT(pin);
3122 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), val);
3123
3124 /* Set buffer type to push pull */
3125 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin));
3126 val |= LAN8814_GPIO_BUF_BIT(pin);
3127 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin), val);
3128 }
3129
lan8814_ptp_perout(struct ptp_clock_info * ptpci,struct ptp_clock_request * rq,int on)3130 static int lan8814_ptp_perout(struct ptp_clock_info *ptpci,
3131 struct ptp_clock_request *rq, int on)
3132 {
3133 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3134 ptp_clock_info);
3135 struct phy_device *phydev = shared->phydev;
3136 struct timespec64 ts_on, ts_period;
3137 s64 on_nsec, period_nsec;
3138 int pulse_width;
3139 int pin, event;
3140
3141 /* Reject requests with unsupported flags */
3142 if (rq->perout.flags & ~PTP_PEROUT_DUTY_CYCLE)
3143 return -EOPNOTSUPP;
3144
3145 mutex_lock(&shared->shared_lock);
3146 event = rq->perout.index;
3147 pin = ptp_find_pin(shared->ptp_clock, PTP_PF_PEROUT, event);
3148 if (pin < 0 || pin >= LAN8814_PTP_PEROUT_NUM) {
3149 mutex_unlock(&shared->shared_lock);
3150 return -EBUSY;
3151 }
3152
3153 if (!on) {
3154 lan8814_ptp_perout_off(phydev, pin);
3155 lan8814_ptp_disable_event(phydev, event);
3156 mutex_unlock(&shared->shared_lock);
3157 return 0;
3158 }
3159
3160 ts_on.tv_sec = rq->perout.on.sec;
3161 ts_on.tv_nsec = rq->perout.on.nsec;
3162 on_nsec = timespec64_to_ns(&ts_on);
3163
3164 ts_period.tv_sec = rq->perout.period.sec;
3165 ts_period.tv_nsec = rq->perout.period.nsec;
3166 period_nsec = timespec64_to_ns(&ts_period);
3167
3168 if (period_nsec < 200) {
3169 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n",
3170 phydev_name(phydev));
3171 mutex_unlock(&shared->shared_lock);
3172 return -EOPNOTSUPP;
3173 }
3174
3175 if (on_nsec >= period_nsec) {
3176 pr_warn_ratelimited("%s: pulse width must be smaller than period\n",
3177 phydev_name(phydev));
3178 mutex_unlock(&shared->shared_lock);
3179 return -EINVAL;
3180 }
3181
3182 switch (on_nsec) {
3183 case 200000000:
3184 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS;
3185 break;
3186 case 100000000:
3187 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS;
3188 break;
3189 case 50000000:
3190 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS;
3191 break;
3192 case 10000000:
3193 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS;
3194 break;
3195 case 5000000:
3196 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS;
3197 break;
3198 case 1000000:
3199 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS;
3200 break;
3201 case 500000:
3202 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US;
3203 break;
3204 case 100000:
3205 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US;
3206 break;
3207 case 50000:
3208 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US;
3209 break;
3210 case 10000:
3211 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US;
3212 break;
3213 case 5000:
3214 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US;
3215 break;
3216 case 1000:
3217 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US;
3218 break;
3219 case 500:
3220 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS;
3221 break;
3222 case 100:
3223 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
3224 break;
3225 default:
3226 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n",
3227 phydev_name(phydev));
3228 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
3229 break;
3230 }
3231
3232 /* Configure to pulse every period */
3233 lan8814_ptp_enable_event(phydev, event, pulse_width);
3234 lan8814_ptp_set_target(phydev, event, rq->perout.start.sec,
3235 rq->perout.start.nsec);
3236 lan8814_ptp_set_reload(phydev, event, rq->perout.period.sec,
3237 rq->perout.period.nsec);
3238 lan8814_ptp_perout_on(phydev, pin);
3239 mutex_unlock(&shared->shared_lock);
3240
3241 return 0;
3242 }
3243
lan8814_ptp_extts_on(struct phy_device * phydev,int pin,u32 flags)3244 static void lan8814_ptp_extts_on(struct phy_device *phydev, int pin, u32 flags)
3245 {
3246 u16 tmp;
3247
3248 /* Set as gpio input */
3249 tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin));
3250 tmp &= ~LAN8814_GPIO_DIR_BIT(pin);
3251 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), tmp);
3252
3253 /* Map the pin to ltc pin 0 of the capture map registers */
3254 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO);
3255 tmp |= pin;
3256 lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO, tmp);
3257
3258 /* Enable capture on the edges of the ltc pin */
3259 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_EN);
3260 if (flags & PTP_RISING_EDGE)
3261 tmp |= PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(0);
3262 if (flags & PTP_FALLING_EDGE)
3263 tmp |= PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(0);
3264 lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_EN, tmp);
3265
3266 /* Enable interrupt top interrupt */
3267 tmp = lanphy_read_page_reg(phydev, 4, PTP_COMMON_INT_ENA);
3268 tmp |= PTP_COMMON_INT_ENA_GPIO_CAP_EN;
3269 lanphy_write_page_reg(phydev, 4, PTP_COMMON_INT_ENA, tmp);
3270 }
3271
lan8814_ptp_extts_off(struct phy_device * phydev,int pin)3272 static void lan8814_ptp_extts_off(struct phy_device *phydev, int pin)
3273 {
3274 u16 tmp;
3275
3276 /* Set as gpio out */
3277 tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin));
3278 tmp |= LAN8814_GPIO_DIR_BIT(pin);
3279 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), tmp);
3280
3281 /* Enable alternate, 0:for alternate function, 1:gpio */
3282 tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin));
3283 tmp &= ~LAN8814_GPIO_EN_BIT(pin);
3284 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), tmp);
3285
3286 /* Clear the mapping of pin to registers 0 of the capture registers */
3287 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO);
3288 tmp &= ~GENMASK(3, 0);
3289 lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO, tmp);
3290
3291 /* Disable capture on both of the edges */
3292 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_EN);
3293 tmp &= ~PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin);
3294 tmp &= ~PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin);
3295 lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_EN, tmp);
3296
3297 /* Disable interrupt top interrupt */
3298 tmp = lanphy_read_page_reg(phydev, 4, PTP_COMMON_INT_ENA);
3299 tmp &= ~PTP_COMMON_INT_ENA_GPIO_CAP_EN;
3300 lanphy_write_page_reg(phydev, 4, PTP_COMMON_INT_ENA, tmp);
3301 }
3302
lan8814_ptp_extts(struct ptp_clock_info * ptpci,struct ptp_clock_request * rq,int on)3303 static int lan8814_ptp_extts(struct ptp_clock_info *ptpci,
3304 struct ptp_clock_request *rq, int on)
3305 {
3306 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3307 ptp_clock_info);
3308 struct phy_device *phydev = shared->phydev;
3309 int pin;
3310
3311 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
3312 PTP_EXTTS_EDGES |
3313 PTP_STRICT_FLAGS))
3314 return -EOPNOTSUPP;
3315
3316 pin = ptp_find_pin(shared->ptp_clock, PTP_PF_EXTTS,
3317 rq->extts.index);
3318 if (pin == -1 || pin != LAN8814_PTP_EXTTS_NUM)
3319 return -EINVAL;
3320
3321 mutex_lock(&shared->shared_lock);
3322 if (on)
3323 lan8814_ptp_extts_on(phydev, pin, rq->extts.flags);
3324 else
3325 lan8814_ptp_extts_off(phydev, pin);
3326
3327 mutex_unlock(&shared->shared_lock);
3328
3329 return 0;
3330 }
3331
lan8814_ptpci_enable(struct ptp_clock_info * ptpci,struct ptp_clock_request * rq,int on)3332 static int lan8814_ptpci_enable(struct ptp_clock_info *ptpci,
3333 struct ptp_clock_request *rq, int on)
3334 {
3335 switch (rq->type) {
3336 case PTP_CLK_REQ_PEROUT:
3337 return lan8814_ptp_perout(ptpci, rq, on);
3338 case PTP_CLK_REQ_EXTTS:
3339 return lan8814_ptp_extts(ptpci, rq, on);
3340 default:
3341 return -EINVAL;
3342 }
3343 }
3344
lan8814_ptpci_verify(struct ptp_clock_info * ptp,unsigned int pin,enum ptp_pin_function func,unsigned int chan)3345 static int lan8814_ptpci_verify(struct ptp_clock_info *ptp, unsigned int pin,
3346 enum ptp_pin_function func, unsigned int chan)
3347 {
3348 switch (func) {
3349 case PTP_PF_NONE:
3350 case PTP_PF_PEROUT:
3351 /* Only pins 0 and 1 can generate perout signals. And for pin 0
3352 * there is only chan 0 (event A) and for pin 1 there is only
3353 * chan 1 (event B)
3354 */
3355 if (pin >= LAN8814_PTP_PEROUT_NUM || pin != chan)
3356 return -1;
3357 break;
3358 case PTP_PF_EXTTS:
3359 if (pin != LAN8814_PTP_EXTTS_NUM)
3360 return -1;
3361 break;
3362 default:
3363 return -1;
3364 }
3365
3366 return 0;
3367 }
3368
lan8814_get_sig_tx(struct sk_buff * skb,u16 * sig)3369 static bool lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig)
3370 {
3371 struct ptp_header *ptp_header;
3372 u32 type;
3373
3374 type = ptp_classify_raw(skb);
3375 ptp_header = ptp_parse_header(skb, type);
3376
3377 if (!ptp_header)
3378 return false;
3379
3380 *sig = (__force u16)(ntohs(ptp_header->sequence_id));
3381 return true;
3382 }
3383
lan8814_match_tx_skb(struct kszphy_ptp_priv * ptp_priv,u32 seconds,u32 nsec,u16 seq_id)3384 static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv,
3385 u32 seconds, u32 nsec, u16 seq_id)
3386 {
3387 struct skb_shared_hwtstamps shhwtstamps;
3388 struct sk_buff *skb, *skb_tmp;
3389 unsigned long flags;
3390 bool ret = false;
3391 u16 skb_sig;
3392
3393 spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags);
3394 skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) {
3395 if (!lan8814_get_sig_tx(skb, &skb_sig))
3396 continue;
3397
3398 if (memcmp(&skb_sig, &seq_id, sizeof(seq_id)))
3399 continue;
3400
3401 __skb_unlink(skb, &ptp_priv->tx_queue);
3402 ret = true;
3403 break;
3404 }
3405 spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags);
3406
3407 if (ret) {
3408 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
3409 shhwtstamps.hwtstamp = ktime_set(seconds, nsec);
3410 skb_complete_tx_timestamp(skb, &shhwtstamps);
3411 }
3412 }
3413
lan8814_dequeue_tx_skb(struct kszphy_ptp_priv * ptp_priv)3414 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv)
3415 {
3416 struct phy_device *phydev = ptp_priv->phydev;
3417 u32 seconds, nsec;
3418 u16 seq_id;
3419
3420 lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id);
3421 lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id);
3422 }
3423
lan8814_get_tx_ts(struct kszphy_ptp_priv * ptp_priv)3424 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv)
3425 {
3426 struct phy_device *phydev = ptp_priv->phydev;
3427 u32 reg;
3428
3429 do {
3430 lan8814_dequeue_tx_skb(ptp_priv);
3431
3432 /* If other timestamps are available in the FIFO,
3433 * process them.
3434 */
3435 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
3436 } while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0);
3437 }
3438
lan8814_match_skb(struct kszphy_ptp_priv * ptp_priv,struct lan8814_ptp_rx_ts * rx_ts)3439 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv,
3440 struct lan8814_ptp_rx_ts *rx_ts)
3441 {
3442 struct skb_shared_hwtstamps *shhwtstamps;
3443 struct sk_buff *skb, *skb_tmp;
3444 unsigned long flags;
3445 bool ret = false;
3446 u16 skb_sig;
3447
3448 spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags);
3449 skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) {
3450 if (!lan8814_get_sig_rx(skb, &skb_sig))
3451 continue;
3452
3453 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
3454 continue;
3455
3456 __skb_unlink(skb, &ptp_priv->rx_queue);
3457
3458 ret = true;
3459 break;
3460 }
3461 spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags);
3462
3463 if (ret) {
3464 shhwtstamps = skb_hwtstamps(skb);
3465 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3466 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec);
3467 netif_rx(skb);
3468 }
3469
3470 return ret;
3471 }
3472
lan8814_match_rx_ts(struct kszphy_ptp_priv * ptp_priv,struct lan8814_ptp_rx_ts * rx_ts)3473 static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv,
3474 struct lan8814_ptp_rx_ts *rx_ts)
3475 {
3476 unsigned long flags;
3477
3478 /* If we failed to match the skb add it to the queue for when
3479 * the frame will come
3480 */
3481 if (!lan8814_match_skb(ptp_priv, rx_ts)) {
3482 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
3483 list_add(&rx_ts->list, &ptp_priv->rx_ts_list);
3484 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
3485 } else {
3486 kfree(rx_ts);
3487 }
3488 }
3489
lan8814_get_rx_ts(struct kszphy_ptp_priv * ptp_priv)3490 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv)
3491 {
3492 struct phy_device *phydev = ptp_priv->phydev;
3493 struct lan8814_ptp_rx_ts *rx_ts;
3494 u32 reg;
3495
3496 do {
3497 rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL);
3498 if (!rx_ts)
3499 return;
3500
3501 lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec,
3502 &rx_ts->seq_id);
3503 lan8814_match_rx_ts(ptp_priv, rx_ts);
3504
3505 /* If other timestamps are available in the FIFO,
3506 * process them.
3507 */
3508 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
3509 } while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0);
3510 }
3511
lan8814_handle_ptp_interrupt(struct phy_device * phydev,u16 status)3512 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status)
3513 {
3514 struct kszphy_priv *priv = phydev->priv;
3515 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
3516
3517 if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_)
3518 lan8814_get_tx_ts(ptp_priv);
3519
3520 if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_)
3521 lan8814_get_rx_ts(ptp_priv);
3522
3523 if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) {
3524 lan8814_flush_fifo(phydev, true);
3525 skb_queue_purge(&ptp_priv->tx_queue);
3526 }
3527
3528 if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) {
3529 lan8814_flush_fifo(phydev, false);
3530 skb_queue_purge(&ptp_priv->rx_queue);
3531 }
3532 }
3533
lan8814_gpio_process_cap(struct lan8814_shared_priv * shared)3534 static int lan8814_gpio_process_cap(struct lan8814_shared_priv *shared)
3535 {
3536 struct phy_device *phydev = shared->phydev;
3537 struct ptp_clock_event ptp_event = {0};
3538 unsigned long nsec;
3539 s64 sec;
3540 u16 tmp;
3541
3542 /* This is 0 because whatever was the input pin it was mapped it to
3543 * ltc gpio pin 0
3544 */
3545 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_SEL);
3546 tmp |= PTP_GPIO_SEL_GPIO_SEL(0);
3547 lanphy_write_page_reg(phydev, 4, PTP_GPIO_SEL, tmp);
3548
3549 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_STS);
3550 if (!(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(0)) &&
3551 !(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(0)))
3552 return -1;
3553
3554 if (tmp & BIT(0)) {
3555 sec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_SEC_HI_CAP);
3556 sec <<= 16;
3557 sec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_SEC_LO_CAP);
3558
3559 nsec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff;
3560 nsec <<= 16;
3561 nsec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_LO_CAP);
3562 } else {
3563 sec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_SEC_HI_CAP);
3564 sec <<= 16;
3565 sec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_SEC_LO_CAP);
3566
3567 nsec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff;
3568 nsec <<= 16;
3569 nsec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_LO_CAP);
3570 }
3571
3572 ptp_event.index = 0;
3573 ptp_event.timestamp = ktime_set(sec, nsec);
3574 ptp_event.type = PTP_CLOCK_EXTTS;
3575 ptp_clock_event(shared->ptp_clock, &ptp_event);
3576
3577 return 0;
3578 }
3579
lan8814_handle_gpio_interrupt(struct phy_device * phydev,u16 status)3580 static int lan8814_handle_gpio_interrupt(struct phy_device *phydev, u16 status)
3581 {
3582 struct lan8814_shared_priv *shared = phydev->shared->priv;
3583 int ret;
3584
3585 mutex_lock(&shared->shared_lock);
3586 ret = lan8814_gpio_process_cap(shared);
3587 mutex_unlock(&shared->shared_lock);
3588
3589 return ret;
3590 }
3591
lan8804_config_init(struct phy_device * phydev)3592 static int lan8804_config_init(struct phy_device *phydev)
3593 {
3594 int val;
3595
3596 /* MDI-X setting for swap A,B transmit */
3597 val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP);
3598 val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK;
3599 val |= LAN8804_ALIGN_TX_A_B_SWAP;
3600 lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val);
3601
3602 /* Make sure that the PHY will not stop generating the clock when the
3603 * link partner goes down
3604 */
3605 lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e);
3606 lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY);
3607
3608 return 0;
3609 }
3610
lan8804_handle_interrupt(struct phy_device * phydev)3611 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev)
3612 {
3613 int status;
3614
3615 status = phy_read(phydev, LAN8814_INTS);
3616 if (status < 0) {
3617 phy_error(phydev);
3618 return IRQ_NONE;
3619 }
3620
3621 if (status > 0)
3622 phy_trigger_machine(phydev);
3623
3624 return IRQ_HANDLED;
3625 }
3626
3627 #define LAN8804_OUTPUT_CONTROL 25
3628 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER BIT(14)
3629 #define LAN8804_CONTROL 31
3630 #define LAN8804_CONTROL_INTR_POLARITY BIT(14)
3631
lan8804_config_intr(struct phy_device * phydev)3632 static int lan8804_config_intr(struct phy_device *phydev)
3633 {
3634 int err;
3635
3636 /* This is an internal PHY of lan966x and is not possible to change the
3637 * polarity on the GIC found in lan966x, therefore change the polarity
3638 * of the interrupt in the PHY from being active low instead of active
3639 * high.
3640 */
3641 phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY);
3642
3643 /* By default interrupt buffer is open-drain in which case the interrupt
3644 * can be active only low. Therefore change the interrupt buffer to be
3645 * push-pull to be able to change interrupt polarity
3646 */
3647 phy_write(phydev, LAN8804_OUTPUT_CONTROL,
3648 LAN8804_OUTPUT_CONTROL_INTR_BUFFER);
3649
3650 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3651 err = phy_read(phydev, LAN8814_INTS);
3652 if (err < 0)
3653 return err;
3654
3655 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
3656 if (err)
3657 return err;
3658 } else {
3659 err = phy_write(phydev, LAN8814_INTC, 0);
3660 if (err)
3661 return err;
3662
3663 err = phy_read(phydev, LAN8814_INTS);
3664 if (err < 0)
3665 return err;
3666 }
3667
3668 return 0;
3669 }
3670
lan8814_handle_interrupt(struct phy_device * phydev)3671 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev)
3672 {
3673 int ret = IRQ_NONE;
3674 int irq_status;
3675
3676 irq_status = phy_read(phydev, LAN8814_INTS);
3677 if (irq_status < 0) {
3678 phy_error(phydev);
3679 return IRQ_NONE;
3680 }
3681
3682 if (irq_status & LAN8814_INT_LINK) {
3683 phy_trigger_machine(phydev);
3684 ret = IRQ_HANDLED;
3685 }
3686
3687 while (true) {
3688 irq_status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
3689 if (!irq_status)
3690 break;
3691
3692 lan8814_handle_ptp_interrupt(phydev, irq_status);
3693 ret = IRQ_HANDLED;
3694 }
3695
3696 if (!lan8814_handle_gpio_interrupt(phydev, irq_status))
3697 ret = IRQ_HANDLED;
3698
3699 return ret;
3700 }
3701
lan8814_ack_interrupt(struct phy_device * phydev)3702 static int lan8814_ack_interrupt(struct phy_device *phydev)
3703 {
3704 /* bit[12..0] int status, which is a read and clear register. */
3705 int rc;
3706
3707 rc = phy_read(phydev, LAN8814_INTS);
3708
3709 return (rc < 0) ? rc : 0;
3710 }
3711
lan8814_config_intr(struct phy_device * phydev)3712 static int lan8814_config_intr(struct phy_device *phydev)
3713 {
3714 int err;
3715
3716 lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG,
3717 LAN8814_INTR_CTRL_REG_POLARITY |
3718 LAN8814_INTR_CTRL_REG_INTR_ENABLE);
3719
3720 /* enable / disable interrupts */
3721 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3722 err = lan8814_ack_interrupt(phydev);
3723 if (err)
3724 return err;
3725
3726 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
3727 } else {
3728 err = phy_write(phydev, LAN8814_INTC, 0);
3729 if (err)
3730 return err;
3731
3732 err = lan8814_ack_interrupt(phydev);
3733 }
3734
3735 return err;
3736 }
3737
lan8814_ptp_init(struct phy_device * phydev)3738 static void lan8814_ptp_init(struct phy_device *phydev)
3739 {
3740 struct kszphy_priv *priv = phydev->priv;
3741 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
3742 u32 temp;
3743
3744 if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) ||
3745 !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
3746 return;
3747
3748 lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_);
3749
3750 temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD);
3751 temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
3752 lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp);
3753
3754 temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD);
3755 temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
3756 lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp);
3757
3758 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0);
3759 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0);
3760
3761 /* Removing default registers configs related to L2 and IP */
3762 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0);
3763 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0);
3764 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0);
3765 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0);
3766
3767 /* Disable checking for minorVersionPTP field */
3768 lanphy_write_page_reg(phydev, 5, PTP_RX_VERSION,
3769 PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0));
3770 lanphy_write_page_reg(phydev, 5, PTP_TX_VERSION,
3771 PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0));
3772
3773 skb_queue_head_init(&ptp_priv->tx_queue);
3774 skb_queue_head_init(&ptp_priv->rx_queue);
3775 INIT_LIST_HEAD(&ptp_priv->rx_ts_list);
3776 spin_lock_init(&ptp_priv->rx_ts_lock);
3777
3778 ptp_priv->phydev = phydev;
3779
3780 ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp;
3781 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
3782 ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp;
3783 ptp_priv->mii_ts.ts_info = lan8814_ts_info;
3784
3785 phydev->mii_ts = &ptp_priv->mii_ts;
3786
3787 /* Timestamp selected by default to keep legacy API */
3788 phydev->default_timestamp = true;
3789 }
3790
lan8814_ptp_probe_once(struct phy_device * phydev)3791 static int lan8814_ptp_probe_once(struct phy_device *phydev)
3792 {
3793 struct lan8814_shared_priv *shared = phydev->shared->priv;
3794
3795 /* Initialise shared lock for clock*/
3796 mutex_init(&shared->shared_lock);
3797
3798 shared->pin_config = devm_kmalloc_array(&phydev->mdio.dev,
3799 LAN8814_PTP_GPIO_NUM,
3800 sizeof(*shared->pin_config),
3801 GFP_KERNEL);
3802 if (!shared->pin_config)
3803 return -ENOMEM;
3804
3805 for (int i = 0; i < LAN8814_PTP_GPIO_NUM; i++) {
3806 struct ptp_pin_desc *ptp_pin = &shared->pin_config[i];
3807
3808 memset(ptp_pin, 0, sizeof(*ptp_pin));
3809 snprintf(ptp_pin->name,
3810 sizeof(ptp_pin->name), "lan8814_ptp_pin_%02d", i);
3811 ptp_pin->index = i;
3812 ptp_pin->func = PTP_PF_NONE;
3813 }
3814
3815 shared->ptp_clock_info.owner = THIS_MODULE;
3816 snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name);
3817 shared->ptp_clock_info.max_adj = 31249999;
3818 shared->ptp_clock_info.n_alarm = 0;
3819 shared->ptp_clock_info.n_ext_ts = LAN8814_PTP_EXTTS_NUM;
3820 shared->ptp_clock_info.n_pins = LAN8814_PTP_GPIO_NUM;
3821 shared->ptp_clock_info.pps = 0;
3822 shared->ptp_clock_info.pin_config = shared->pin_config;
3823 shared->ptp_clock_info.n_per_out = LAN8814_PTP_PEROUT_NUM;
3824 shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine;
3825 shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime;
3826 shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64;
3827 shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64;
3828 shared->ptp_clock_info.getcrosststamp = NULL;
3829 shared->ptp_clock_info.enable = lan8814_ptpci_enable;
3830 shared->ptp_clock_info.verify = lan8814_ptpci_verify;
3831
3832 shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info,
3833 &phydev->mdio.dev);
3834 if (IS_ERR(shared->ptp_clock)) {
3835 phydev_err(phydev, "ptp_clock_register failed %lu\n",
3836 PTR_ERR(shared->ptp_clock));
3837 return -EINVAL;
3838 }
3839
3840 /* Check if PHC support is missing at the configuration level */
3841 if (!shared->ptp_clock)
3842 return 0;
3843
3844 phydev_dbg(phydev, "successfully registered ptp clock\n");
3845
3846 shared->phydev = phydev;
3847
3848 /* The EP.4 is shared between all the PHYs in the package and also it
3849 * can be accessed by any of the PHYs
3850 */
3851 lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_);
3852 lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE,
3853 PTP_OPERATING_MODE_STANDALONE_);
3854
3855 /* Enable ptp to run LTC clock for ptp and gpio 1PPS operation */
3856 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_ENABLE_);
3857
3858 return 0;
3859 }
3860
lan8814_setup_led(struct phy_device * phydev,int val)3861 static void lan8814_setup_led(struct phy_device *phydev, int val)
3862 {
3863 int temp;
3864
3865 temp = lanphy_read_page_reg(phydev, 5, LAN8814_LED_CTRL_1);
3866
3867 if (val)
3868 temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
3869 else
3870 temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
3871
3872 lanphy_write_page_reg(phydev, 5, LAN8814_LED_CTRL_1, temp);
3873 }
3874
lan8814_config_init(struct phy_device * phydev)3875 static int lan8814_config_init(struct phy_device *phydev)
3876 {
3877 struct kszphy_priv *lan8814 = phydev->priv;
3878 int val;
3879
3880 /* Reset the PHY */
3881 val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET);
3882 val |= LAN8814_QSGMII_SOFT_RESET_BIT;
3883 lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val);
3884
3885 /* Disable ANEG with QSGMII PCS Host side */
3886 val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG);
3887 val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA;
3888 lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val);
3889
3890 /* MDI-X setting for swap A,B transmit */
3891 val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP);
3892 val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK;
3893 val |= LAN8814_ALIGN_TX_A_B_SWAP;
3894 lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val);
3895
3896 if (lan8814->led_mode >= 0)
3897 lan8814_setup_led(phydev, lan8814->led_mode);
3898
3899 return 0;
3900 }
3901
3902 /* It is expected that there will not be any 'lan8814_take_coma_mode'
3903 * function called in suspend. Because the GPIO line can be shared, so if one of
3904 * the phys goes back in coma mode, then all the other PHYs will go, which is
3905 * wrong.
3906 */
lan8814_release_coma_mode(struct phy_device * phydev)3907 static int lan8814_release_coma_mode(struct phy_device *phydev)
3908 {
3909 struct gpio_desc *gpiod;
3910
3911 gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode",
3912 GPIOD_OUT_HIGH_OPEN_DRAIN |
3913 GPIOD_FLAGS_BIT_NONEXCLUSIVE);
3914 if (IS_ERR(gpiod))
3915 return PTR_ERR(gpiod);
3916
3917 gpiod_set_consumer_name(gpiod, "LAN8814 coma mode");
3918 gpiod_set_value_cansleep(gpiod, 0);
3919
3920 return 0;
3921 }
3922
lan8814_clear_2psp_bit(struct phy_device * phydev)3923 static void lan8814_clear_2psp_bit(struct phy_device *phydev)
3924 {
3925 u16 val;
3926
3927 /* It was noticed that when traffic is passing through the PHY and the
3928 * cable is removed then the LED was still one even though there is no
3929 * link
3930 */
3931 val = lanphy_read_page_reg(phydev, 2, LAN8814_EEE_STATE);
3932 val &= ~LAN8814_EEE_STATE_MASK2P5P;
3933 lanphy_write_page_reg(phydev, 2, LAN8814_EEE_STATE, val);
3934 }
3935
lan8814_update_meas_time(struct phy_device * phydev)3936 static void lan8814_update_meas_time(struct phy_device *phydev)
3937 {
3938 u16 val;
3939
3940 /* By setting the measure time to a value of 0xb this will allow cables
3941 * longer than 100m to be used. This configuration can be used
3942 * regardless of the mode of operation of the PHY
3943 */
3944 val = lanphy_read_page_reg(phydev, 1, LAN8814_PD_CONTROLS);
3945 val &= ~LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK;
3946 val |= LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL;
3947 lanphy_write_page_reg(phydev, 1, LAN8814_PD_CONTROLS, val);
3948 }
3949
lan8814_probe(struct phy_device * phydev)3950 static int lan8814_probe(struct phy_device *phydev)
3951 {
3952 const struct kszphy_type *type = phydev->drv->driver_data;
3953 struct kszphy_priv *priv;
3954 u16 addr;
3955 int err;
3956
3957 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
3958 if (!priv)
3959 return -ENOMEM;
3960
3961 phydev->priv = priv;
3962
3963 priv->type = type;
3964
3965 kszphy_parse_led_mode(phydev);
3966
3967 /* Strap-in value for PHY address, below register read gives starting
3968 * phy address value
3969 */
3970 addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F;
3971 devm_phy_package_join(&phydev->mdio.dev, phydev,
3972 addr, sizeof(struct lan8814_shared_priv));
3973
3974 if (phy_package_init_once(phydev)) {
3975 err = lan8814_release_coma_mode(phydev);
3976 if (err)
3977 return err;
3978
3979 err = lan8814_ptp_probe_once(phydev);
3980 if (err)
3981 return err;
3982 }
3983
3984 lan8814_ptp_init(phydev);
3985
3986 /* Errata workarounds */
3987 lan8814_clear_2psp_bit(phydev);
3988 lan8814_update_meas_time(phydev);
3989
3990 return 0;
3991 }
3992
3993 #define LAN8841_MMD_TIMER_REG 0
3994 #define LAN8841_MMD0_REGISTER_17 17
3995 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x) ((x) & 0x3)
3996 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS BIT(3)
3997 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG 2
3998 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK BIT(14)
3999 #define LAN8841_MMD_ANALOG_REG 28
4000 #define LAN8841_ANALOG_CONTROL_1 1
4001 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x) (((x) & 0x3) << 5)
4002 #define LAN8841_ANALOG_CONTROL_10 13
4003 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x) ((x) & 0x3)
4004 #define LAN8841_ANALOG_CONTROL_11 14
4005 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x) (((x) & 0x7) << 12)
4006 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT 69
4007 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc
4008 #define LAN8841_BTRX_POWER_DOWN 70
4009 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A BIT(0)
4010 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A BIT(1)
4011 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B BIT(2)
4012 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B BIT(3)
4013 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C BIT(5)
4014 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D BIT(7)
4015 #define LAN8841_ADC_CHANNEL_MASK 198
4016 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN 370
4017 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN 371
4018 #define LAN8841_PTP_RX_VERSION 374
4019 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN 434
4020 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN 435
4021 #define LAN8841_PTP_TX_VERSION 438
4022 #define LAN8841_PTP_CMD_CTL 256
4023 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE BIT(2)
4024 #define LAN8841_PTP_CMD_CTL_PTP_DISABLE BIT(1)
4025 #define LAN8841_PTP_CMD_CTL_PTP_RESET BIT(0)
4026 #define LAN8841_PTP_RX_PARSE_CONFIG 368
4027 #define LAN8841_PTP_TX_PARSE_CONFIG 432
4028 #define LAN8841_PTP_RX_MODE 381
4029 #define LAN8841_PTP_INSERT_TS_EN BIT(0)
4030 #define LAN8841_PTP_INSERT_TS_32BIT BIT(1)
4031
lan8841_config_init(struct phy_device * phydev)4032 static int lan8841_config_init(struct phy_device *phydev)
4033 {
4034 int ret;
4035
4036 ret = ksz9131_config_init(phydev);
4037 if (ret)
4038 return ret;
4039
4040 /* Initialize the HW by resetting everything */
4041 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4042 LAN8841_PTP_CMD_CTL,
4043 LAN8841_PTP_CMD_CTL_PTP_RESET,
4044 LAN8841_PTP_CMD_CTL_PTP_RESET);
4045
4046 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4047 LAN8841_PTP_CMD_CTL,
4048 LAN8841_PTP_CMD_CTL_PTP_ENABLE,
4049 LAN8841_PTP_CMD_CTL_PTP_ENABLE);
4050
4051 /* Don't process any frames */
4052 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4053 LAN8841_PTP_RX_PARSE_CONFIG, 0);
4054 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4055 LAN8841_PTP_TX_PARSE_CONFIG, 0);
4056 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4057 LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0);
4058 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4059 LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0);
4060 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4061 LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0);
4062 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4063 LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0);
4064
4065 /* Disable checking for minorVersionPTP field */
4066 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4067 LAN8841_PTP_RX_VERSION, 0xff00);
4068 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4069 LAN8841_PTP_TX_VERSION, 0xff00);
4070
4071 /* 100BT Clause 40 improvenent errata */
4072 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4073 LAN8841_ANALOG_CONTROL_1,
4074 LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2));
4075 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4076 LAN8841_ANALOG_CONTROL_10,
4077 LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1));
4078
4079 /* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap
4080 * Magnetics
4081 */
4082 ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4083 LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG);
4084 if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) {
4085 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4086 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT,
4087 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL);
4088 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4089 LAN8841_BTRX_POWER_DOWN,
4090 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A |
4091 LAN8841_BTRX_POWER_DOWN_BTRX_CH_A |
4092 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B |
4093 LAN8841_BTRX_POWER_DOWN_BTRX_CH_B |
4094 LAN8841_BTRX_POWER_DOWN_BTRX_CH_C |
4095 LAN8841_BTRX_POWER_DOWN_BTRX_CH_D);
4096 }
4097
4098 /* LDO Adjustment errata */
4099 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4100 LAN8841_ANALOG_CONTROL_11,
4101 LAN8841_ANALOG_CONTROL_11_LDO_REF(1));
4102
4103 /* 100BT RGMII latency tuning errata */
4104 phy_write_mmd(phydev, MDIO_MMD_PMAPMD,
4105 LAN8841_ADC_CHANNEL_MASK, 0x0);
4106 phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG,
4107 LAN8841_MMD0_REGISTER_17,
4108 LAN8841_MMD0_REGISTER_17_DROP_OPT(2) |
4109 LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS);
4110
4111 return 0;
4112 }
4113
4114 #define LAN8841_OUTPUT_CTRL 25
4115 #define LAN8841_OUTPUT_CTRL_INT_BUFFER BIT(14)
4116 #define LAN8841_INT_PTP BIT(9)
4117
lan8841_config_intr(struct phy_device * phydev)4118 static int lan8841_config_intr(struct phy_device *phydev)
4119 {
4120 int err;
4121
4122 phy_modify(phydev, LAN8841_OUTPUT_CTRL,
4123 LAN8841_OUTPUT_CTRL_INT_BUFFER, 0);
4124
4125 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
4126 err = phy_read(phydev, LAN8814_INTS);
4127 if (err < 0)
4128 return err;
4129
4130 /* Enable / disable interrupts. It is OK to enable PTP interrupt
4131 * even if it PTP is not enabled. Because the underneath blocks
4132 * will not enable the PTP so we will never get the PTP
4133 * interrupt.
4134 */
4135 err = phy_write(phydev, LAN8814_INTC,
4136 LAN8814_INT_LINK | LAN8841_INT_PTP);
4137 } else {
4138 err = phy_write(phydev, LAN8814_INTC, 0);
4139 if (err)
4140 return err;
4141
4142 err = phy_read(phydev, LAN8814_INTS);
4143 if (err < 0)
4144 return err;
4145
4146 /* Getting a positive value doesn't mean that is an error, it
4147 * just indicates what was the status. Therefore make sure to
4148 * clear the value and say that there is no error.
4149 */
4150 err = 0;
4151 }
4152
4153 return err;
4154 }
4155
4156 #define LAN8841_PTP_TX_EGRESS_SEC_LO 453
4157 #define LAN8841_PTP_TX_EGRESS_SEC_HI 452
4158 #define LAN8841_PTP_TX_EGRESS_NS_LO 451
4159 #define LAN8841_PTP_TX_EGRESS_NS_HI 450
4160 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID BIT(15)
4161 #define LAN8841_PTP_TX_MSG_HEADER2 455
4162
lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv * ptp_priv,u32 * sec,u32 * nsec,u16 * seq)4163 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv,
4164 u32 *sec, u32 *nsec, u16 *seq)
4165 {
4166 struct phy_device *phydev = ptp_priv->phydev;
4167
4168 *nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI);
4169 if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID))
4170 return false;
4171
4172 *nsec = ((*nsec & 0x3fff) << 16);
4173 *nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO);
4174
4175 *sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI);
4176 *sec = *sec << 16;
4177 *sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO);
4178
4179 *seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
4180
4181 return true;
4182 }
4183
lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv * ptp_priv)4184 static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv)
4185 {
4186 u32 sec, nsec;
4187 u16 seq;
4188
4189 while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq))
4190 lan8814_match_tx_skb(ptp_priv, sec, nsec, seq);
4191 }
4192
4193 #define LAN8841_PTP_INT_STS 259
4194 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT BIT(13)
4195 #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT BIT(12)
4196 #define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT BIT(2)
4197
lan8841_ptp_flush_fifo(struct kszphy_ptp_priv * ptp_priv)4198 static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv)
4199 {
4200 struct phy_device *phydev = ptp_priv->phydev;
4201 int i;
4202
4203 for (i = 0; i < FIFO_SIZE; ++i)
4204 phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
4205
4206 phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
4207 }
4208
4209 #define LAN8841_PTP_GPIO_CAP_STS 506
4210 #define LAN8841_PTP_GPIO_SEL 327
4211 #define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio) ((gpio) << 8)
4212 #define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP 498
4213 #define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP 499
4214 #define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP 500
4215 #define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP 501
4216 #define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP 502
4217 #define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP 503
4218 #define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP 504
4219 #define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP 505
4220
lan8841_gpio_process_cap(struct kszphy_ptp_priv * ptp_priv)4221 static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv)
4222 {
4223 struct phy_device *phydev = ptp_priv->phydev;
4224 struct ptp_clock_event ptp_event = {0};
4225 int pin, ret, tmp;
4226 s32 sec, nsec;
4227
4228 pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0);
4229 if (pin == -1)
4230 return;
4231
4232 tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS);
4233 if (tmp < 0)
4234 return;
4235
4236 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL,
4237 LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin));
4238 if (ret)
4239 return;
4240
4241 mutex_lock(&ptp_priv->ptp_lock);
4242 if (tmp & BIT(pin)) {
4243 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP);
4244 sec <<= 16;
4245 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP);
4246
4247 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff;
4248 nsec <<= 16;
4249 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP);
4250 } else {
4251 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP);
4252 sec <<= 16;
4253 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP);
4254
4255 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff;
4256 nsec <<= 16;
4257 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP);
4258 }
4259 mutex_unlock(&ptp_priv->ptp_lock);
4260 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0);
4261 if (ret)
4262 return;
4263
4264 ptp_event.index = 0;
4265 ptp_event.timestamp = ktime_set(sec, nsec);
4266 ptp_event.type = PTP_CLOCK_EXTTS;
4267 ptp_clock_event(ptp_priv->ptp_clock, &ptp_event);
4268 }
4269
lan8841_handle_ptp_interrupt(struct phy_device * phydev)4270 static void lan8841_handle_ptp_interrupt(struct phy_device *phydev)
4271 {
4272 struct kszphy_priv *priv = phydev->priv;
4273 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
4274 u16 status;
4275
4276 do {
4277 status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
4278
4279 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT)
4280 lan8841_ptp_process_tx_ts(ptp_priv);
4281
4282 if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT)
4283 lan8841_gpio_process_cap(ptp_priv);
4284
4285 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) {
4286 lan8841_ptp_flush_fifo(ptp_priv);
4287 skb_queue_purge(&ptp_priv->tx_queue);
4288 }
4289
4290 } while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT |
4291 LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT |
4292 LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT));
4293 }
4294
4295 #define LAN8841_INTS_PTP BIT(9)
4296
lan8841_handle_interrupt(struct phy_device * phydev)4297 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev)
4298 {
4299 irqreturn_t ret = IRQ_NONE;
4300 int irq_status;
4301
4302 irq_status = phy_read(phydev, LAN8814_INTS);
4303 if (irq_status < 0) {
4304 phy_error(phydev);
4305 return IRQ_NONE;
4306 }
4307
4308 if (irq_status & LAN8814_INT_LINK) {
4309 phy_trigger_machine(phydev);
4310 ret = IRQ_HANDLED;
4311 }
4312
4313 if (irq_status & LAN8841_INTS_PTP) {
4314 lan8841_handle_ptp_interrupt(phydev);
4315 ret = IRQ_HANDLED;
4316 }
4317
4318 return ret;
4319 }
4320
lan8841_ts_info(struct mii_timestamper * mii_ts,struct kernel_ethtool_ts_info * info)4321 static int lan8841_ts_info(struct mii_timestamper *mii_ts,
4322 struct kernel_ethtool_ts_info *info)
4323 {
4324 struct kszphy_ptp_priv *ptp_priv;
4325
4326 ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
4327
4328 info->phc_index = ptp_priv->ptp_clock ?
4329 ptp_clock_index(ptp_priv->ptp_clock) : -1;
4330 if (info->phc_index == -1)
4331 return 0;
4332
4333 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
4334 SOF_TIMESTAMPING_RX_HARDWARE |
4335 SOF_TIMESTAMPING_RAW_HARDWARE;
4336
4337 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
4338 (1 << HWTSTAMP_TX_ON) |
4339 (1 << HWTSTAMP_TX_ONESTEP_SYNC);
4340
4341 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
4342 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
4343 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
4344 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
4345
4346 return 0;
4347 }
4348
4349 #define LAN8841_PTP_INT_EN 260
4350 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN BIT(13)
4351 #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN BIT(12)
4352
lan8841_ptp_enable_processing(struct kszphy_ptp_priv * ptp_priv,bool enable)4353 static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv,
4354 bool enable)
4355 {
4356 struct phy_device *phydev = ptp_priv->phydev;
4357
4358 if (enable) {
4359 /* Enable interrupts on the TX side */
4360 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4361 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
4362 LAN8841_PTP_INT_EN_PTP_TX_TS_EN,
4363 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
4364 LAN8841_PTP_INT_EN_PTP_TX_TS_EN);
4365
4366 /* Enable the modification of the frame on RX side,
4367 * this will add the ns and 2 bits of sec in the reserved field
4368 * of the PTP header
4369 */
4370 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4371 LAN8841_PTP_RX_MODE,
4372 LAN8841_PTP_INSERT_TS_EN |
4373 LAN8841_PTP_INSERT_TS_32BIT,
4374 LAN8841_PTP_INSERT_TS_EN |
4375 LAN8841_PTP_INSERT_TS_32BIT);
4376
4377 ptp_schedule_worker(ptp_priv->ptp_clock, 0);
4378 } else {
4379 /* Disable interrupts on the TX side */
4380 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4381 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
4382 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0);
4383
4384 /* Disable modification of the RX frames */
4385 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4386 LAN8841_PTP_RX_MODE,
4387 LAN8841_PTP_INSERT_TS_EN |
4388 LAN8841_PTP_INSERT_TS_32BIT, 0);
4389
4390 ptp_cancel_worker_sync(ptp_priv->ptp_clock);
4391 }
4392 }
4393
4394 #define LAN8841_PTP_RX_TIMESTAMP_EN 379
4395 #define LAN8841_PTP_TX_TIMESTAMP_EN 443
4396 #define LAN8841_PTP_TX_MOD 445
4397
lan8841_hwtstamp(struct mii_timestamper * mii_ts,struct kernel_hwtstamp_config * config,struct netlink_ext_ack * extack)4398 static int lan8841_hwtstamp(struct mii_timestamper *mii_ts,
4399 struct kernel_hwtstamp_config *config,
4400 struct netlink_ext_ack *extack)
4401 {
4402 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
4403 struct phy_device *phydev = ptp_priv->phydev;
4404 int txcfg = 0, rxcfg = 0;
4405 int pkt_ts_enable;
4406
4407 ptp_priv->hwts_tx_type = config->tx_type;
4408 ptp_priv->rx_filter = config->rx_filter;
4409
4410 switch (config->rx_filter) {
4411 case HWTSTAMP_FILTER_NONE:
4412 ptp_priv->layer = 0;
4413 ptp_priv->version = 0;
4414 break;
4415 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
4416 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
4417 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
4418 ptp_priv->layer = PTP_CLASS_L4;
4419 ptp_priv->version = PTP_CLASS_V2;
4420 break;
4421 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
4422 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
4423 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
4424 ptp_priv->layer = PTP_CLASS_L2;
4425 ptp_priv->version = PTP_CLASS_V2;
4426 break;
4427 case HWTSTAMP_FILTER_PTP_V2_EVENT:
4428 case HWTSTAMP_FILTER_PTP_V2_SYNC:
4429 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
4430 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
4431 ptp_priv->version = PTP_CLASS_V2;
4432 break;
4433 default:
4434 return -ERANGE;
4435 }
4436
4437 /* Setup parsing of the frames and enable the timestamping for ptp
4438 * frames
4439 */
4440 if (ptp_priv->layer & PTP_CLASS_L2) {
4441 rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_;
4442 txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_;
4443 } else if (ptp_priv->layer & PTP_CLASS_L4) {
4444 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
4445 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
4446 }
4447
4448 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg);
4449 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg);
4450
4451 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
4452 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
4453 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
4454 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
4455
4456 /* Enable / disable of the TX timestamp in the SYNC frames */
4457 phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD,
4458 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_,
4459 ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ?
4460 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0);
4461
4462 /* Now enable/disable the timestamping */
4463 lan8841_ptp_enable_processing(ptp_priv,
4464 config->rx_filter != HWTSTAMP_FILTER_NONE);
4465
4466 skb_queue_purge(&ptp_priv->tx_queue);
4467
4468 lan8841_ptp_flush_fifo(ptp_priv);
4469
4470 return 0;
4471 }
4472
lan8841_rxtstamp(struct mii_timestamper * mii_ts,struct sk_buff * skb,int type)4473 static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts,
4474 struct sk_buff *skb, int type)
4475 {
4476 struct kszphy_ptp_priv *ptp_priv =
4477 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
4478 struct ptp_header *header = ptp_parse_header(skb, type);
4479 struct skb_shared_hwtstamps *shhwtstamps;
4480 struct timespec64 ts;
4481 unsigned long flags;
4482 u32 ts_header;
4483
4484 if (!header)
4485 return false;
4486
4487 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
4488 type == PTP_CLASS_NONE)
4489 return false;
4490
4491 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
4492 return false;
4493
4494 spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
4495 ts.tv_sec = ptp_priv->seconds;
4496 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
4497 ts_header = __be32_to_cpu(header->reserved2);
4498
4499 shhwtstamps = skb_hwtstamps(skb);
4500 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
4501
4502 /* Check for any wrap arounds for the second part */
4503 if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3)
4504 ts.tv_sec -= GENMASK(1, 0) + 1;
4505 else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0)
4506 ts.tv_sec += 1;
4507
4508 shhwtstamps->hwtstamp =
4509 ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30,
4510 ts_header & GENMASK(29, 0));
4511 header->reserved2 = 0;
4512
4513 netif_rx(skb);
4514
4515 return true;
4516 }
4517
4518 #define LAN8841_EVENT_A 0
4519 #define LAN8841_EVENT_B 1
4520 #define LAN8841_PTP_LTC_TARGET_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 278 : 288)
4521 #define LAN8841_PTP_LTC_TARGET_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 279 : 289)
4522 #define LAN8841_PTP_LTC_TARGET_NS_HI(event) ((event) == LAN8841_EVENT_A ? 280 : 290)
4523 #define LAN8841_PTP_LTC_TARGET_NS_LO(event) ((event) == LAN8841_EVENT_A ? 281 : 291)
4524
lan8841_ptp_set_target(struct kszphy_ptp_priv * ptp_priv,u8 event,s64 sec,u32 nsec)4525 static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event,
4526 s64 sec, u32 nsec)
4527 {
4528 struct phy_device *phydev = ptp_priv->phydev;
4529 int ret;
4530
4531 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event),
4532 upper_16_bits(sec));
4533 if (ret)
4534 return ret;
4535
4536 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event),
4537 lower_16_bits(sec));
4538 if (ret)
4539 return ret;
4540
4541 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff,
4542 upper_16_bits(nsec));
4543 if (ret)
4544 return ret;
4545
4546 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event),
4547 lower_16_bits(nsec));
4548 }
4549
4550 #define LAN8841_BUFFER_TIME 2
4551
lan8841_ptp_update_target(struct kszphy_ptp_priv * ptp_priv,const struct timespec64 * ts)4552 static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv,
4553 const struct timespec64 *ts)
4554 {
4555 return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A,
4556 ts->tv_sec + LAN8841_BUFFER_TIME, 0);
4557 }
4558
4559 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 282 : 292)
4560 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 283 : 293)
4561 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) ((event) == LAN8841_EVENT_A ? 284 : 294)
4562 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event) ((event) == LAN8841_EVENT_A ? 285 : 295)
4563
lan8841_ptp_set_reload(struct kszphy_ptp_priv * ptp_priv,u8 event,s64 sec,u32 nsec)4564 static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event,
4565 s64 sec, u32 nsec)
4566 {
4567 struct phy_device *phydev = ptp_priv->phydev;
4568 int ret;
4569
4570 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event),
4571 upper_16_bits(sec));
4572 if (ret)
4573 return ret;
4574
4575 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event),
4576 lower_16_bits(sec));
4577 if (ret)
4578 return ret;
4579
4580 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff,
4581 upper_16_bits(nsec));
4582 if (ret)
4583 return ret;
4584
4585 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event),
4586 lower_16_bits(nsec));
4587 }
4588
4589 #define LAN8841_PTP_LTC_SET_SEC_HI 262
4590 #define LAN8841_PTP_LTC_SET_SEC_MID 263
4591 #define LAN8841_PTP_LTC_SET_SEC_LO 264
4592 #define LAN8841_PTP_LTC_SET_NS_HI 265
4593 #define LAN8841_PTP_LTC_SET_NS_LO 266
4594 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD BIT(4)
4595
lan8841_ptp_settime64(struct ptp_clock_info * ptp,const struct timespec64 * ts)4596 static int lan8841_ptp_settime64(struct ptp_clock_info *ptp,
4597 const struct timespec64 *ts)
4598 {
4599 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4600 ptp_clock_info);
4601 struct phy_device *phydev = ptp_priv->phydev;
4602 unsigned long flags;
4603 int ret;
4604
4605 /* Set the value to be stored */
4606 mutex_lock(&ptp_priv->ptp_lock);
4607 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec));
4608 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec));
4609 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff);
4610 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec));
4611 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff);
4612
4613 /* Set the command to load the LTC */
4614 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4615 LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD);
4616 ret = lan8841_ptp_update_target(ptp_priv, ts);
4617 mutex_unlock(&ptp_priv->ptp_lock);
4618
4619 spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
4620 ptp_priv->seconds = ts->tv_sec;
4621 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
4622
4623 return ret;
4624 }
4625
4626 #define LAN8841_PTP_LTC_RD_SEC_HI 358
4627 #define LAN8841_PTP_LTC_RD_SEC_MID 359
4628 #define LAN8841_PTP_LTC_RD_SEC_LO 360
4629 #define LAN8841_PTP_LTC_RD_NS_HI 361
4630 #define LAN8841_PTP_LTC_RD_NS_LO 362
4631 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ BIT(3)
4632
lan8841_ptp_gettime64(struct ptp_clock_info * ptp,struct timespec64 * ts)4633 static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp,
4634 struct timespec64 *ts)
4635 {
4636 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4637 ptp_clock_info);
4638 struct phy_device *phydev = ptp_priv->phydev;
4639 time64_t s;
4640 s64 ns;
4641
4642 mutex_lock(&ptp_priv->ptp_lock);
4643 /* Issue the command to read the LTC */
4644 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4645 LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
4646
4647 /* Read the LTC */
4648 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
4649 s <<= 16;
4650 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
4651 s <<= 16;
4652 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
4653
4654 ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff;
4655 ns <<= 16;
4656 ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO);
4657 mutex_unlock(&ptp_priv->ptp_lock);
4658
4659 set_normalized_timespec64(ts, s, ns);
4660 return 0;
4661 }
4662
lan8841_ptp_getseconds(struct ptp_clock_info * ptp,struct timespec64 * ts)4663 static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp,
4664 struct timespec64 *ts)
4665 {
4666 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4667 ptp_clock_info);
4668 struct phy_device *phydev = ptp_priv->phydev;
4669 time64_t s;
4670
4671 mutex_lock(&ptp_priv->ptp_lock);
4672 /* Issue the command to read the LTC */
4673 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4674 LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
4675
4676 /* Read the LTC */
4677 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
4678 s <<= 16;
4679 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
4680 s <<= 16;
4681 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
4682 mutex_unlock(&ptp_priv->ptp_lock);
4683
4684 set_normalized_timespec64(ts, s, 0);
4685 }
4686
4687 #define LAN8841_PTP_LTC_STEP_ADJ_LO 276
4688 #define LAN8841_PTP_LTC_STEP_ADJ_HI 275
4689 #define LAN8841_PTP_LTC_STEP_ADJ_DIR BIT(15)
4690 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS BIT(5)
4691 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS BIT(6)
4692
lan8841_ptp_adjtime(struct ptp_clock_info * ptp,s64 delta)4693 static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
4694 {
4695 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4696 ptp_clock_info);
4697 struct phy_device *phydev = ptp_priv->phydev;
4698 struct timespec64 ts;
4699 bool add = true;
4700 u32 nsec;
4701 s32 sec;
4702 int ret;
4703
4704 /* The HW allows up to 15 sec to adjust the time, but here we limit to
4705 * 10 sec the adjustment. The reason is, in case the adjustment is 14
4706 * sec and 999999999 nsec, then we add 8ns to compansate the actual
4707 * increment so the value can be bigger than 15 sec. Therefore limit the
4708 * possible adjustments so we will not have these corner cases
4709 */
4710 if (delta > 10000000000LL || delta < -10000000000LL) {
4711 /* The timeadjustment is too big, so fall back using set time */
4712 u64 now;
4713
4714 ptp->gettime64(ptp, &ts);
4715
4716 now = ktime_to_ns(timespec64_to_ktime(ts));
4717 ts = ns_to_timespec64(now + delta);
4718
4719 ptp->settime64(ptp, &ts);
4720 return 0;
4721 }
4722
4723 sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec);
4724 if (delta < 0 && nsec != 0) {
4725 /* It is not allowed to adjust low the nsec part, therefore
4726 * subtract more from second part and add to nanosecond such
4727 * that would roll over, so the second part will increase
4728 */
4729 sec--;
4730 nsec = NSEC_PER_SEC - nsec;
4731 }
4732
4733 /* Calculate the adjustments and the direction */
4734 if (delta < 0)
4735 add = false;
4736
4737 if (nsec > 0)
4738 /* add 8 ns to cover the likely normal increment */
4739 nsec += 8;
4740
4741 if (nsec >= NSEC_PER_SEC) {
4742 /* carry into seconds */
4743 sec++;
4744 nsec -= NSEC_PER_SEC;
4745 }
4746
4747 mutex_lock(&ptp_priv->ptp_lock);
4748 if (sec) {
4749 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec);
4750 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
4751 add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0);
4752 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4753 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS);
4754 }
4755
4756 if (nsec) {
4757 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO,
4758 nsec & 0xffff);
4759 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
4760 (nsec >> 16) & 0x3fff);
4761 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4762 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS);
4763 }
4764 mutex_unlock(&ptp_priv->ptp_lock);
4765
4766 /* Update the target clock */
4767 ptp->gettime64(ptp, &ts);
4768 mutex_lock(&ptp_priv->ptp_lock);
4769 ret = lan8841_ptp_update_target(ptp_priv, &ts);
4770 mutex_unlock(&ptp_priv->ptp_lock);
4771
4772 return ret;
4773 }
4774
4775 #define LAN8841_PTP_LTC_RATE_ADJ_HI 269
4776 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR BIT(15)
4777 #define LAN8841_PTP_LTC_RATE_ADJ_LO 270
4778
lan8841_ptp_adjfine(struct ptp_clock_info * ptp,long scaled_ppm)4779 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
4780 {
4781 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4782 ptp_clock_info);
4783 struct phy_device *phydev = ptp_priv->phydev;
4784 bool faster = true;
4785 u32 rate;
4786
4787 if (!scaled_ppm)
4788 return 0;
4789
4790 if (scaled_ppm < 0) {
4791 scaled_ppm = -scaled_ppm;
4792 faster = false;
4793 }
4794
4795 rate = LAN8841_1PPM_FORMAT * (upper_16_bits(scaled_ppm));
4796 rate += (LAN8841_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16;
4797
4798 mutex_lock(&ptp_priv->ptp_lock);
4799 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI,
4800 faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff)
4801 : upper_16_bits(rate) & 0x3fff);
4802 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate));
4803 mutex_unlock(&ptp_priv->ptp_lock);
4804
4805 return 0;
4806 }
4807
lan8841_ptp_verify(struct ptp_clock_info * ptp,unsigned int pin,enum ptp_pin_function func,unsigned int chan)4808 static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin,
4809 enum ptp_pin_function func, unsigned int chan)
4810 {
4811 switch (func) {
4812 case PTP_PF_NONE:
4813 case PTP_PF_PEROUT:
4814 case PTP_PF_EXTTS:
4815 break;
4816 default:
4817 return -1;
4818 }
4819
4820 return 0;
4821 }
4822
4823 #define LAN8841_PTP_GPIO_NUM 10
4824 #define LAN8841_GPIO_EN 128
4825 #define LAN8841_GPIO_DIR 129
4826 #define LAN8841_GPIO_BUF 130
4827
lan8841_ptp_perout_off(struct kszphy_ptp_priv * ptp_priv,int pin)4828 static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin)
4829 {
4830 struct phy_device *phydev = ptp_priv->phydev;
4831 int ret;
4832
4833 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4834 if (ret)
4835 return ret;
4836
4837 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
4838 if (ret)
4839 return ret;
4840
4841 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4842 }
4843
lan8841_ptp_perout_on(struct kszphy_ptp_priv * ptp_priv,int pin)4844 static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin)
4845 {
4846 struct phy_device *phydev = ptp_priv->phydev;
4847 int ret;
4848
4849 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4850 if (ret)
4851 return ret;
4852
4853 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
4854 if (ret)
4855 return ret;
4856
4857 return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4858 }
4859
4860 #define LAN8841_GPIO_DATA_SEL1 131
4861 #define LAN8841_GPIO_DATA_SEL2 132
4862 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK GENMASK(2, 0)
4863 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A 1
4864 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B 2
4865 #define LAN8841_PTP_GENERAL_CONFIG 257
4866 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A BIT(1)
4867 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B BIT(3)
4868 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK GENMASK(7, 4)
4869 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK GENMASK(11, 8)
4870 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A 4
4871 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B 7
4872
lan8841_ptp_remove_event(struct kszphy_ptp_priv * ptp_priv,int pin,u8 event)4873 static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin,
4874 u8 event)
4875 {
4876 struct phy_device *phydev = ptp_priv->phydev;
4877 u16 tmp;
4878 int ret;
4879
4880 /* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO
4881 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
4882 * depending on the pin, it requires to read a different register
4883 */
4884 if (pin < 5) {
4885 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin);
4886 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp);
4887 } else {
4888 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5));
4889 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp);
4890 }
4891 if (ret)
4892 return ret;
4893
4894 /* Disable the event */
4895 if (event == LAN8841_EVENT_A)
4896 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4897 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK;
4898 else
4899 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4900 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK;
4901 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp);
4902 }
4903
lan8841_ptp_enable_event(struct kszphy_ptp_priv * ptp_priv,int pin,u8 event,int pulse_width)4904 static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin,
4905 u8 event, int pulse_width)
4906 {
4907 struct phy_device *phydev = ptp_priv->phydev;
4908 u16 tmp;
4909 int ret;
4910
4911 /* Enable the event */
4912 if (event == LAN8841_EVENT_A)
4913 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
4914 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4915 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK,
4916 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4917 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A);
4918 else
4919 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
4920 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4921 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK,
4922 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4923 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B);
4924 if (ret)
4925 return ret;
4926
4927 /* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO
4928 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
4929 * depending on the pin, it requires to read a different register
4930 */
4931 if (event == LAN8841_EVENT_A)
4932 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A;
4933 else
4934 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B;
4935
4936 if (pin < 5)
4937 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1,
4938 tmp << (3 * pin));
4939 else
4940 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2,
4941 tmp << (3 * (pin - 5)));
4942
4943 return ret;
4944 }
4945
4946 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13
4947 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12
4948 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11
4949 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10
4950 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9
4951 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8
4952 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7
4953 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6
4954 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5
4955 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4
4956 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3
4957 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2
4958 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1
4959 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0
4960
lan8841_ptp_perout(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)4961 static int lan8841_ptp_perout(struct ptp_clock_info *ptp,
4962 struct ptp_clock_request *rq, int on)
4963 {
4964 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4965 ptp_clock_info);
4966 struct phy_device *phydev = ptp_priv->phydev;
4967 struct timespec64 ts_on, ts_period;
4968 s64 on_nsec, period_nsec;
4969 int pulse_width;
4970 int pin;
4971 int ret;
4972
4973 if (rq->perout.flags & ~PTP_PEROUT_DUTY_CYCLE)
4974 return -EOPNOTSUPP;
4975
4976 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index);
4977 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
4978 return -EINVAL;
4979
4980 if (!on) {
4981 ret = lan8841_ptp_perout_off(ptp_priv, pin);
4982 if (ret)
4983 return ret;
4984
4985 return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin);
4986 }
4987
4988 ts_on.tv_sec = rq->perout.on.sec;
4989 ts_on.tv_nsec = rq->perout.on.nsec;
4990 on_nsec = timespec64_to_ns(&ts_on);
4991
4992 ts_period.tv_sec = rq->perout.period.sec;
4993 ts_period.tv_nsec = rq->perout.period.nsec;
4994 period_nsec = timespec64_to_ns(&ts_period);
4995
4996 if (period_nsec < 200) {
4997 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n",
4998 phydev_name(phydev));
4999 return -EOPNOTSUPP;
5000 }
5001
5002 if (on_nsec >= period_nsec) {
5003 pr_warn_ratelimited("%s: pulse width must be smaller than period\n",
5004 phydev_name(phydev));
5005 return -EINVAL;
5006 }
5007
5008 switch (on_nsec) {
5009 case 200000000:
5010 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS;
5011 break;
5012 case 100000000:
5013 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS;
5014 break;
5015 case 50000000:
5016 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS;
5017 break;
5018 case 10000000:
5019 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS;
5020 break;
5021 case 5000000:
5022 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS;
5023 break;
5024 case 1000000:
5025 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS;
5026 break;
5027 case 500000:
5028 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US;
5029 break;
5030 case 100000:
5031 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US;
5032 break;
5033 case 50000:
5034 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US;
5035 break;
5036 case 10000:
5037 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US;
5038 break;
5039 case 5000:
5040 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US;
5041 break;
5042 case 1000:
5043 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US;
5044 break;
5045 case 500:
5046 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS;
5047 break;
5048 case 100:
5049 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
5050 break;
5051 default:
5052 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n",
5053 phydev_name(phydev));
5054 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
5055 break;
5056 }
5057
5058 mutex_lock(&ptp_priv->ptp_lock);
5059 ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec,
5060 rq->perout.start.nsec);
5061 mutex_unlock(&ptp_priv->ptp_lock);
5062 if (ret)
5063 return ret;
5064
5065 ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec,
5066 rq->perout.period.nsec);
5067 if (ret)
5068 return ret;
5069
5070 ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A,
5071 pulse_width);
5072 if (ret)
5073 return ret;
5074
5075 ret = lan8841_ptp_perout_on(ptp_priv, pin);
5076 if (ret)
5077 lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A);
5078
5079 return ret;
5080 }
5081
5082 #define LAN8841_PTP_GPIO_CAP_EN 496
5083 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) (BIT(gpio))
5084 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8)
5085 #define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN BIT(2)
5086
lan8841_ptp_extts_on(struct kszphy_ptp_priv * ptp_priv,int pin,u32 flags)5087 static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin,
5088 u32 flags)
5089 {
5090 struct phy_device *phydev = ptp_priv->phydev;
5091 u16 tmp = 0;
5092 int ret;
5093
5094 /* Set GPIO to be intput */
5095 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
5096 if (ret)
5097 return ret;
5098
5099 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
5100 if (ret)
5101 return ret;
5102
5103 /* Enable capture on the edges of the pin */
5104 if (flags & PTP_RISING_EDGE)
5105 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin);
5106 if (flags & PTP_FALLING_EDGE)
5107 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin);
5108 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp);
5109 if (ret)
5110 return ret;
5111
5112 /* Enable interrupt */
5113 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
5114 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
5115 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN);
5116 }
5117
lan8841_ptp_extts_off(struct kszphy_ptp_priv * ptp_priv,int pin)5118 static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin)
5119 {
5120 struct phy_device *phydev = ptp_priv->phydev;
5121 int ret;
5122
5123 /* Set GPIO to be output */
5124 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
5125 if (ret)
5126 return ret;
5127
5128 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
5129 if (ret)
5130 return ret;
5131
5132 /* Disable capture on both of the edges */
5133 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN,
5134 LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) |
5135 LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin),
5136 0);
5137 if (ret)
5138 return ret;
5139
5140 /* Disable interrupt */
5141 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
5142 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
5143 0);
5144 }
5145
lan8841_ptp_extts(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)5146 static int lan8841_ptp_extts(struct ptp_clock_info *ptp,
5147 struct ptp_clock_request *rq, int on)
5148 {
5149 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5150 ptp_clock_info);
5151 int pin;
5152 int ret;
5153
5154 /* Reject requests with unsupported flags */
5155 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
5156 PTP_EXTTS_EDGES |
5157 PTP_STRICT_FLAGS))
5158 return -EOPNOTSUPP;
5159
5160 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index);
5161 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
5162 return -EINVAL;
5163
5164 mutex_lock(&ptp_priv->ptp_lock);
5165 if (on)
5166 ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags);
5167 else
5168 ret = lan8841_ptp_extts_off(ptp_priv, pin);
5169 mutex_unlock(&ptp_priv->ptp_lock);
5170
5171 return ret;
5172 }
5173
lan8841_ptp_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)5174 static int lan8841_ptp_enable(struct ptp_clock_info *ptp,
5175 struct ptp_clock_request *rq, int on)
5176 {
5177 switch (rq->type) {
5178 case PTP_CLK_REQ_EXTTS:
5179 return lan8841_ptp_extts(ptp, rq, on);
5180 case PTP_CLK_REQ_PEROUT:
5181 return lan8841_ptp_perout(ptp, rq, on);
5182 default:
5183 return -EOPNOTSUPP;
5184 }
5185
5186 return 0;
5187 }
5188
lan8841_ptp_do_aux_work(struct ptp_clock_info * ptp)5189 static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp)
5190 {
5191 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5192 ptp_clock_info);
5193 struct timespec64 ts;
5194 unsigned long flags;
5195
5196 lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts);
5197
5198 spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
5199 ptp_priv->seconds = ts.tv_sec;
5200 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
5201
5202 return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY);
5203 }
5204
5205 static struct ptp_clock_info lan8841_ptp_clock_info = {
5206 .owner = THIS_MODULE,
5207 .name = "lan8841 ptp",
5208 .max_adj = 31249999,
5209 .gettime64 = lan8841_ptp_gettime64,
5210 .settime64 = lan8841_ptp_settime64,
5211 .adjtime = lan8841_ptp_adjtime,
5212 .adjfine = lan8841_ptp_adjfine,
5213 .verify = lan8841_ptp_verify,
5214 .enable = lan8841_ptp_enable,
5215 .do_aux_work = lan8841_ptp_do_aux_work,
5216 .n_per_out = LAN8841_PTP_GPIO_NUM,
5217 .n_ext_ts = LAN8841_PTP_GPIO_NUM,
5218 .n_pins = LAN8841_PTP_GPIO_NUM,
5219 };
5220
5221 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3
5222 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0)
5223
lan8841_probe(struct phy_device * phydev)5224 static int lan8841_probe(struct phy_device *phydev)
5225 {
5226 struct kszphy_ptp_priv *ptp_priv;
5227 struct kszphy_priv *priv;
5228 int err;
5229
5230 err = kszphy_probe(phydev);
5231 if (err)
5232 return err;
5233
5234 if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
5235 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) &
5236 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN)
5237 phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID;
5238
5239 /* Register the clock */
5240 if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
5241 return 0;
5242
5243 priv = phydev->priv;
5244 ptp_priv = &priv->ptp_priv;
5245
5246 ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev,
5247 LAN8841_PTP_GPIO_NUM,
5248 sizeof(*ptp_priv->pin_config),
5249 GFP_KERNEL);
5250 if (!ptp_priv->pin_config)
5251 return -ENOMEM;
5252
5253 for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) {
5254 struct ptp_pin_desc *p = &ptp_priv->pin_config[i];
5255
5256 snprintf(p->name, sizeof(p->name), "pin%d", i);
5257 p->index = i;
5258 p->func = PTP_PF_NONE;
5259 }
5260
5261 ptp_priv->ptp_clock_info = lan8841_ptp_clock_info;
5262 ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config;
5263 ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info,
5264 &phydev->mdio.dev);
5265 if (IS_ERR(ptp_priv->ptp_clock)) {
5266 phydev_err(phydev, "ptp_clock_register failed: %lu\n",
5267 PTR_ERR(ptp_priv->ptp_clock));
5268 return -EINVAL;
5269 }
5270
5271 if (!ptp_priv->ptp_clock)
5272 return 0;
5273
5274 /* Initialize the SW */
5275 skb_queue_head_init(&ptp_priv->tx_queue);
5276 ptp_priv->phydev = phydev;
5277 mutex_init(&ptp_priv->ptp_lock);
5278 spin_lock_init(&ptp_priv->seconds_lock);
5279
5280 ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp;
5281 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
5282 ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp;
5283 ptp_priv->mii_ts.ts_info = lan8841_ts_info;
5284
5285 phydev->mii_ts = &ptp_priv->mii_ts;
5286
5287 /* Timestamp selected by default to keep legacy API */
5288 phydev->default_timestamp = true;
5289
5290 return 0;
5291 }
5292
lan8841_suspend(struct phy_device * phydev)5293 static int lan8841_suspend(struct phy_device *phydev)
5294 {
5295 struct kszphy_priv *priv = phydev->priv;
5296 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
5297
5298 if (ptp_priv->ptp_clock)
5299 ptp_cancel_worker_sync(ptp_priv->ptp_clock);
5300
5301 return genphy_suspend(phydev);
5302 }
5303
5304 static struct phy_driver ksphy_driver[] = {
5305 {
5306 .phy_id = PHY_ID_KS8737,
5307 .phy_id_mask = MICREL_PHY_ID_MASK,
5308 .name = "Micrel KS8737",
5309 /* PHY_BASIC_FEATURES */
5310 .driver_data = &ks8737_type,
5311 .probe = kszphy_probe,
5312 .config_init = kszphy_config_init,
5313 .config_intr = kszphy_config_intr,
5314 .handle_interrupt = kszphy_handle_interrupt,
5315 .suspend = kszphy_suspend,
5316 .resume = kszphy_resume,
5317 }, {
5318 .phy_id = PHY_ID_KSZ8021,
5319 .phy_id_mask = 0x00ffffff,
5320 .name = "Micrel KSZ8021 or KSZ8031",
5321 /* PHY_BASIC_FEATURES */
5322 .driver_data = &ksz8021_type,
5323 .probe = kszphy_probe,
5324 .config_init = kszphy_config_init,
5325 .config_intr = kszphy_config_intr,
5326 .handle_interrupt = kszphy_handle_interrupt,
5327 .get_sset_count = kszphy_get_sset_count,
5328 .get_strings = kszphy_get_strings,
5329 .get_stats = kszphy_get_stats,
5330 .suspend = kszphy_suspend,
5331 .resume = kszphy_resume,
5332 }, {
5333 .phy_id = PHY_ID_KSZ8031,
5334 .phy_id_mask = 0x00ffffff,
5335 .name = "Micrel KSZ8031",
5336 /* PHY_BASIC_FEATURES */
5337 .driver_data = &ksz8021_type,
5338 .probe = kszphy_probe,
5339 .config_init = kszphy_config_init,
5340 .config_intr = kszphy_config_intr,
5341 .handle_interrupt = kszphy_handle_interrupt,
5342 .get_sset_count = kszphy_get_sset_count,
5343 .get_strings = kszphy_get_strings,
5344 .get_stats = kszphy_get_stats,
5345 .suspend = kszphy_suspend,
5346 .resume = kszphy_resume,
5347 }, {
5348 .phy_id = PHY_ID_KSZ8041,
5349 .phy_id_mask = MICREL_PHY_ID_MASK,
5350 .name = "Micrel KSZ8041",
5351 /* PHY_BASIC_FEATURES */
5352 .driver_data = &ksz8041_type,
5353 .probe = kszphy_probe,
5354 .config_init = ksz8041_config_init,
5355 .config_aneg = ksz8041_config_aneg,
5356 .config_intr = kszphy_config_intr,
5357 .handle_interrupt = kszphy_handle_interrupt,
5358 .get_sset_count = kszphy_get_sset_count,
5359 .get_strings = kszphy_get_strings,
5360 .get_stats = kszphy_get_stats,
5361 /* No suspend/resume callbacks because of errata DS80000700A,
5362 * receiver error following software power down.
5363 */
5364 }, {
5365 .phy_id = PHY_ID_KSZ8041RNLI,
5366 .phy_id_mask = MICREL_PHY_ID_MASK,
5367 .name = "Micrel KSZ8041RNLI",
5368 /* PHY_BASIC_FEATURES */
5369 .driver_data = &ksz8041_type,
5370 .probe = kszphy_probe,
5371 .config_init = kszphy_config_init,
5372 .config_intr = kszphy_config_intr,
5373 .handle_interrupt = kszphy_handle_interrupt,
5374 .get_sset_count = kszphy_get_sset_count,
5375 .get_strings = kszphy_get_strings,
5376 .get_stats = kszphy_get_stats,
5377 .suspend = kszphy_suspend,
5378 .resume = kszphy_resume,
5379 }, {
5380 .name = "Micrel KSZ8051",
5381 /* PHY_BASIC_FEATURES */
5382 .driver_data = &ksz8051_type,
5383 .probe = kszphy_probe,
5384 .config_init = kszphy_config_init,
5385 .config_intr = kszphy_config_intr,
5386 .handle_interrupt = kszphy_handle_interrupt,
5387 .get_sset_count = kszphy_get_sset_count,
5388 .get_strings = kszphy_get_strings,
5389 .get_stats = kszphy_get_stats,
5390 .match_phy_device = ksz8051_match_phy_device,
5391 .suspend = kszphy_suspend,
5392 .resume = kszphy_resume,
5393 }, {
5394 .phy_id = PHY_ID_KSZ8001,
5395 .name = "Micrel KSZ8001 or KS8721",
5396 .phy_id_mask = 0x00fffffc,
5397 /* PHY_BASIC_FEATURES */
5398 .driver_data = &ksz8041_type,
5399 .probe = kszphy_probe,
5400 .config_init = kszphy_config_init,
5401 .config_intr = kszphy_config_intr,
5402 .handle_interrupt = kszphy_handle_interrupt,
5403 .get_sset_count = kszphy_get_sset_count,
5404 .get_strings = kszphy_get_strings,
5405 .get_stats = kszphy_get_stats,
5406 .suspend = kszphy_suspend,
5407 .resume = kszphy_resume,
5408 }, {
5409 .phy_id = PHY_ID_KSZ8081,
5410 .name = "Micrel KSZ8081 or KSZ8091",
5411 .phy_id_mask = MICREL_PHY_ID_MASK,
5412 .flags = PHY_POLL_CABLE_TEST,
5413 /* PHY_BASIC_FEATURES */
5414 .driver_data = &ksz8081_type,
5415 .probe = kszphy_probe,
5416 .config_init = ksz8081_config_init,
5417 .soft_reset = genphy_soft_reset,
5418 .config_aneg = ksz8081_config_aneg,
5419 .read_status = ksz8081_read_status,
5420 .config_intr = kszphy_config_intr,
5421 .handle_interrupt = kszphy_handle_interrupt,
5422 .get_sset_count = kszphy_get_sset_count,
5423 .get_strings = kszphy_get_strings,
5424 .get_stats = kszphy_get_stats,
5425 .suspend = kszphy_suspend,
5426 .resume = kszphy_resume,
5427 .cable_test_start = ksz886x_cable_test_start,
5428 .cable_test_get_status = ksz886x_cable_test_get_status,
5429 }, {
5430 .phy_id = PHY_ID_KSZ8061,
5431 .name = "Micrel KSZ8061",
5432 .phy_id_mask = MICREL_PHY_ID_MASK,
5433 /* PHY_BASIC_FEATURES */
5434 .probe = kszphy_probe,
5435 .config_init = ksz8061_config_init,
5436 .soft_reset = genphy_soft_reset,
5437 .config_intr = kszphy_config_intr,
5438 .handle_interrupt = kszphy_handle_interrupt,
5439 .suspend = kszphy_suspend,
5440 .resume = ksz8061_resume,
5441 }, {
5442 .phy_id = PHY_ID_KSZ9021,
5443 .phy_id_mask = 0x000ffffe,
5444 .name = "Micrel KSZ9021 Gigabit PHY",
5445 /* PHY_GBIT_FEATURES */
5446 .driver_data = &ksz9021_type,
5447 .probe = kszphy_probe,
5448 .get_features = ksz9031_get_features,
5449 .config_init = ksz9021_config_init,
5450 .config_intr = kszphy_config_intr,
5451 .handle_interrupt = kszphy_handle_interrupt,
5452 .get_sset_count = kszphy_get_sset_count,
5453 .get_strings = kszphy_get_strings,
5454 .get_stats = kszphy_get_stats,
5455 .suspend = kszphy_suspend,
5456 .resume = kszphy_resume,
5457 .read_mmd = genphy_read_mmd_unsupported,
5458 .write_mmd = genphy_write_mmd_unsupported,
5459 }, {
5460 .phy_id = PHY_ID_KSZ9031,
5461 .phy_id_mask = MICREL_PHY_ID_MASK,
5462 .name = "Micrel KSZ9031 Gigabit PHY",
5463 .flags = PHY_POLL_CABLE_TEST,
5464 .driver_data = &ksz9021_type,
5465 .probe = kszphy_probe,
5466 .get_features = ksz9031_get_features,
5467 .config_init = ksz9031_config_init,
5468 .soft_reset = genphy_soft_reset,
5469 .read_status = ksz9031_read_status,
5470 .config_intr = kszphy_config_intr,
5471 .handle_interrupt = kszphy_handle_interrupt,
5472 .get_sset_count = kszphy_get_sset_count,
5473 .get_strings = kszphy_get_strings,
5474 .get_stats = kszphy_get_stats,
5475 .suspend = kszphy_suspend,
5476 .resume = kszphy_resume,
5477 .cable_test_start = ksz9x31_cable_test_start,
5478 .cable_test_get_status = ksz9x31_cable_test_get_status,
5479 }, {
5480 .phy_id = PHY_ID_LAN8814,
5481 .phy_id_mask = MICREL_PHY_ID_MASK,
5482 .name = "Microchip INDY Gigabit Quad PHY",
5483 .flags = PHY_POLL_CABLE_TEST,
5484 .config_init = lan8814_config_init,
5485 .driver_data = &lan8814_type,
5486 .probe = lan8814_probe,
5487 .soft_reset = genphy_soft_reset,
5488 .read_status = ksz9031_read_status,
5489 .get_sset_count = kszphy_get_sset_count,
5490 .get_strings = kszphy_get_strings,
5491 .get_stats = kszphy_get_stats,
5492 .suspend = genphy_suspend,
5493 .resume = kszphy_resume,
5494 .config_intr = lan8814_config_intr,
5495 .handle_interrupt = lan8814_handle_interrupt,
5496 .cable_test_start = lan8814_cable_test_start,
5497 .cable_test_get_status = ksz886x_cable_test_get_status,
5498 }, {
5499 .phy_id = PHY_ID_LAN8804,
5500 .phy_id_mask = MICREL_PHY_ID_MASK,
5501 .name = "Microchip LAN966X Gigabit PHY",
5502 .config_init = lan8804_config_init,
5503 .driver_data = &ksz9021_type,
5504 .probe = kszphy_probe,
5505 .soft_reset = genphy_soft_reset,
5506 .read_status = ksz9031_read_status,
5507 .get_sset_count = kszphy_get_sset_count,
5508 .get_strings = kszphy_get_strings,
5509 .get_stats = kszphy_get_stats,
5510 .suspend = genphy_suspend,
5511 .resume = kszphy_resume,
5512 .config_intr = lan8804_config_intr,
5513 .handle_interrupt = lan8804_handle_interrupt,
5514 }, {
5515 .phy_id = PHY_ID_LAN8841,
5516 .phy_id_mask = MICREL_PHY_ID_MASK,
5517 .name = "Microchip LAN8841 Gigabit PHY",
5518 .flags = PHY_POLL_CABLE_TEST,
5519 .driver_data = &lan8841_type,
5520 .config_init = lan8841_config_init,
5521 .probe = lan8841_probe,
5522 .soft_reset = genphy_soft_reset,
5523 .config_intr = lan8841_config_intr,
5524 .handle_interrupt = lan8841_handle_interrupt,
5525 .get_sset_count = kszphy_get_sset_count,
5526 .get_strings = kszphy_get_strings,
5527 .get_stats = kszphy_get_stats,
5528 .suspend = lan8841_suspend,
5529 .resume = genphy_resume,
5530 .cable_test_start = lan8814_cable_test_start,
5531 .cable_test_get_status = ksz886x_cable_test_get_status,
5532 }, {
5533 .phy_id = PHY_ID_KSZ9131,
5534 .phy_id_mask = MICREL_PHY_ID_MASK,
5535 .name = "Microchip KSZ9131 Gigabit PHY",
5536 /* PHY_GBIT_FEATURES */
5537 .flags = PHY_POLL_CABLE_TEST,
5538 .driver_data = &ksz9131_type,
5539 .probe = kszphy_probe,
5540 .soft_reset = genphy_soft_reset,
5541 .config_init = ksz9131_config_init,
5542 .config_intr = kszphy_config_intr,
5543 .config_aneg = ksz9131_config_aneg,
5544 .read_status = ksz9131_read_status,
5545 .handle_interrupt = kszphy_handle_interrupt,
5546 .get_sset_count = kszphy_get_sset_count,
5547 .get_strings = kszphy_get_strings,
5548 .get_stats = kszphy_get_stats,
5549 .suspend = kszphy_suspend,
5550 .resume = kszphy_resume,
5551 .cable_test_start = ksz9x31_cable_test_start,
5552 .cable_test_get_status = ksz9x31_cable_test_get_status,
5553 .get_features = ksz9477_get_features,
5554 }, {
5555 .phy_id = PHY_ID_KSZ8873MLL,
5556 .phy_id_mask = MICREL_PHY_ID_MASK,
5557 .name = "Micrel KSZ8873MLL Switch",
5558 /* PHY_BASIC_FEATURES */
5559 .config_init = kszphy_config_init,
5560 .config_aneg = ksz8873mll_config_aneg,
5561 .read_status = ksz8873mll_read_status,
5562 .suspend = genphy_suspend,
5563 .resume = genphy_resume,
5564 }, {
5565 .phy_id = PHY_ID_KSZ886X,
5566 .phy_id_mask = MICREL_PHY_ID_MASK,
5567 .name = "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch",
5568 .driver_data = &ksz886x_type,
5569 /* PHY_BASIC_FEATURES */
5570 .flags = PHY_POLL_CABLE_TEST,
5571 .config_init = kszphy_config_init,
5572 .config_aneg = ksz886x_config_aneg,
5573 .read_status = ksz886x_read_status,
5574 .suspend = genphy_suspend,
5575 .resume = genphy_resume,
5576 .cable_test_start = ksz886x_cable_test_start,
5577 .cable_test_get_status = ksz886x_cable_test_get_status,
5578 }, {
5579 .name = "Micrel KSZ87XX Switch",
5580 /* PHY_BASIC_FEATURES */
5581 .config_init = kszphy_config_init,
5582 .match_phy_device = ksz8795_match_phy_device,
5583 .suspend = genphy_suspend,
5584 .resume = genphy_resume,
5585 }, {
5586 .phy_id = PHY_ID_KSZ9477,
5587 .phy_id_mask = MICREL_PHY_ID_MASK,
5588 .name = "Microchip KSZ9477",
5589 /* PHY_GBIT_FEATURES */
5590 .config_init = ksz9477_config_init,
5591 .config_intr = kszphy_config_intr,
5592 .handle_interrupt = kszphy_handle_interrupt,
5593 .suspend = genphy_suspend,
5594 .resume = ksz9477_resume,
5595 .get_features = ksz9477_get_features,
5596 } };
5597
5598 module_phy_driver(ksphy_driver);
5599
5600 MODULE_DESCRIPTION("Micrel PHY driver");
5601 MODULE_AUTHOR("David J. Choi");
5602 MODULE_LICENSE("GPL");
5603
5604 static struct mdio_device_id __maybe_unused micrel_tbl[] = {
5605 { PHY_ID_KSZ9021, 0x000ffffe },
5606 { PHY_ID_KSZ9031, MICREL_PHY_ID_MASK },
5607 { PHY_ID_KSZ9131, MICREL_PHY_ID_MASK },
5608 { PHY_ID_KSZ8001, 0x00fffffc },
5609 { PHY_ID_KS8737, MICREL_PHY_ID_MASK },
5610 { PHY_ID_KSZ8021, 0x00ffffff },
5611 { PHY_ID_KSZ8031, 0x00ffffff },
5612 { PHY_ID_KSZ8041, MICREL_PHY_ID_MASK },
5613 { PHY_ID_KSZ8051, MICREL_PHY_ID_MASK },
5614 { PHY_ID_KSZ8061, MICREL_PHY_ID_MASK },
5615 { PHY_ID_KSZ8081, MICREL_PHY_ID_MASK },
5616 { PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK },
5617 { PHY_ID_KSZ886X, MICREL_PHY_ID_MASK },
5618 { PHY_ID_KSZ9477, MICREL_PHY_ID_MASK },
5619 { PHY_ID_LAN8814, MICREL_PHY_ID_MASK },
5620 { PHY_ID_LAN8804, MICREL_PHY_ID_MASK },
5621 { PHY_ID_LAN8841, MICREL_PHY_ID_MASK },
5622 { }
5623 };
5624
5625 MODULE_DEVICE_TABLE(mdio, micrel_tbl);
5626