1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * KVM Microsoft Hyper-V emulation
4 *
5 * derived from arch/x86/kvm/x86.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com>
12 *
13 * Authors:
14 * Avi Kivity <avi@qumranet.com>
15 * Yaniv Kamay <yaniv@qumranet.com>
16 * Amit Shah <amit.shah@qumranet.com>
17 * Ben-Ami Yassour <benami@il.ibm.com>
18 * Andrey Smetanin <asmetanin@virtuozzo.com>
19 */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include "x86.h"
23 #include "lapic.h"
24 #include "ioapic.h"
25 #include "cpuid.h"
26 #include "hyperv.h"
27 #include "mmu.h"
28 #include "xen.h"
29
30 #include <linux/cpu.h>
31 #include <linux/kvm_host.h>
32 #include <linux/highmem.h>
33 #include <linux/sched/cputime.h>
34 #include <linux/spinlock.h>
35 #include <linux/eventfd.h>
36
37 #include <asm/apicdef.h>
38 #include <asm/mshyperv.h>
39 #include <trace/events/kvm.h>
40
41 #include "trace.h"
42 #include "irq.h"
43 #include "fpu.h"
44
45 #define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, HV_VCPUS_PER_SPARSE_BANK)
46
47 /*
48 * As per Hyper-V TLFS, extended hypercalls start from 0x8001
49 * (HvExtCallQueryCapabilities). Response of this hypercalls is a 64 bit value
50 * where each bit tells which extended hypercall is available besides
51 * HvExtCallQueryCapabilities.
52 *
53 * 0x8001 - First extended hypercall, HvExtCallQueryCapabilities, no bit
54 * assigned.
55 *
56 * 0x8002 - Bit 0
57 * 0x8003 - Bit 1
58 * ..
59 * 0x8041 - Bit 63
60 *
61 * Therefore, HV_EXT_CALL_MAX = 0x8001 + 64
62 */
63 #define HV_EXT_CALL_MAX (HV_EXT_CALL_QUERY_CAPABILITIES + 64)
64
65 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
66 bool vcpu_kick);
67
synic_read_sint(struct kvm_vcpu_hv_synic * synic,int sint)68 static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
69 {
70 return atomic64_read(&synic->sint[sint]);
71 }
72
synic_get_sint_vector(u64 sint_value)73 static inline int synic_get_sint_vector(u64 sint_value)
74 {
75 if (sint_value & HV_SYNIC_SINT_MASKED)
76 return -1;
77 return sint_value & HV_SYNIC_SINT_VECTOR_MASK;
78 }
79
synic_has_vector_connected(struct kvm_vcpu_hv_synic * synic,int vector)80 static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic,
81 int vector)
82 {
83 int i;
84
85 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
86 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
87 return true;
88 }
89 return false;
90 }
91
synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic * synic,int vector)92 static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic,
93 int vector)
94 {
95 int i;
96 u64 sint_value;
97
98 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
99 sint_value = synic_read_sint(synic, i);
100 if (synic_get_sint_vector(sint_value) == vector &&
101 sint_value & HV_SYNIC_SINT_AUTO_EOI)
102 return true;
103 }
104 return false;
105 }
106
synic_update_vector(struct kvm_vcpu_hv_synic * synic,int vector)107 static void synic_update_vector(struct kvm_vcpu_hv_synic *synic,
108 int vector)
109 {
110 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
111 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
112 bool auto_eoi_old, auto_eoi_new;
113
114 if (vector < HV_SYNIC_FIRST_VALID_VECTOR)
115 return;
116
117 if (synic_has_vector_connected(synic, vector))
118 __set_bit(vector, synic->vec_bitmap);
119 else
120 __clear_bit(vector, synic->vec_bitmap);
121
122 auto_eoi_old = !bitmap_empty(synic->auto_eoi_bitmap, 256);
123
124 if (synic_has_vector_auto_eoi(synic, vector))
125 __set_bit(vector, synic->auto_eoi_bitmap);
126 else
127 __clear_bit(vector, synic->auto_eoi_bitmap);
128
129 auto_eoi_new = !bitmap_empty(synic->auto_eoi_bitmap, 256);
130
131 if (auto_eoi_old == auto_eoi_new)
132 return;
133
134 if (!enable_apicv)
135 return;
136
137 down_write(&vcpu->kvm->arch.apicv_update_lock);
138
139 if (auto_eoi_new)
140 hv->synic_auto_eoi_used++;
141 else
142 hv->synic_auto_eoi_used--;
143
144 /*
145 * Inhibit APICv if any vCPU is using SynIC's AutoEOI, which relies on
146 * the hypervisor to manually inject IRQs.
147 */
148 __kvm_set_or_clear_apicv_inhibit(vcpu->kvm,
149 APICV_INHIBIT_REASON_HYPERV,
150 !!hv->synic_auto_eoi_used);
151
152 up_write(&vcpu->kvm->arch.apicv_update_lock);
153 }
154
synic_set_sint(struct kvm_vcpu_hv_synic * synic,int sint,u64 data,bool host)155 static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint,
156 u64 data, bool host)
157 {
158 int vector, old_vector;
159 bool masked;
160
161 vector = data & HV_SYNIC_SINT_VECTOR_MASK;
162 masked = data & HV_SYNIC_SINT_MASKED;
163
164 /*
165 * Valid vectors are 16-255, however, nested Hyper-V attempts to write
166 * default '0x10000' value on boot and this should not #GP. We need to
167 * allow zero-initing the register from host as well.
168 */
169 if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked)
170 return 1;
171 /*
172 * Guest may configure multiple SINTs to use the same vector, so
173 * we maintain a bitmap of vectors handled by synic, and a
174 * bitmap of vectors with auto-eoi behavior. The bitmaps are
175 * updated here, and atomically queried on fast paths.
176 */
177 old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK;
178
179 atomic64_set(&synic->sint[sint], data);
180
181 synic_update_vector(synic, old_vector);
182
183 synic_update_vector(synic, vector);
184
185 /* Load SynIC vectors into EOI exit bitmap */
186 kvm_make_request(KVM_REQ_SCAN_IOAPIC, hv_synic_to_vcpu(synic));
187 return 0;
188 }
189
get_vcpu_by_vpidx(struct kvm * kvm,u32 vpidx)190 static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx)
191 {
192 struct kvm_vcpu *vcpu = NULL;
193 unsigned long i;
194
195 if (vpidx >= KVM_MAX_VCPUS)
196 return NULL;
197
198 vcpu = kvm_get_vcpu(kvm, vpidx);
199 if (vcpu && kvm_hv_get_vpindex(vcpu) == vpidx)
200 return vcpu;
201 kvm_for_each_vcpu(i, vcpu, kvm)
202 if (kvm_hv_get_vpindex(vcpu) == vpidx)
203 return vcpu;
204 return NULL;
205 }
206
synic_get(struct kvm * kvm,u32 vpidx)207 static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx)
208 {
209 struct kvm_vcpu *vcpu;
210 struct kvm_vcpu_hv_synic *synic;
211
212 vcpu = get_vcpu_by_vpidx(kvm, vpidx);
213 if (!vcpu || !to_hv_vcpu(vcpu))
214 return NULL;
215 synic = to_hv_synic(vcpu);
216 return (synic->active) ? synic : NULL;
217 }
218
kvm_hv_notify_acked_sint(struct kvm_vcpu * vcpu,u32 sint)219 static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint)
220 {
221 struct kvm *kvm = vcpu->kvm;
222 struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
223 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
224 struct kvm_vcpu_hv_stimer *stimer;
225 int gsi, idx;
226
227 trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint);
228
229 /* Try to deliver pending Hyper-V SynIC timers messages */
230 for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) {
231 stimer = &hv_vcpu->stimer[idx];
232 if (stimer->msg_pending && stimer->config.enable &&
233 !stimer->config.direct_mode &&
234 stimer->config.sintx == sint)
235 stimer_mark_pending(stimer, false);
236 }
237
238 idx = srcu_read_lock(&kvm->irq_srcu);
239 gsi = atomic_read(&synic->sint_to_gsi[sint]);
240 if (gsi != -1)
241 kvm_notify_acked_gsi(kvm, gsi);
242 srcu_read_unlock(&kvm->irq_srcu, idx);
243 }
244
synic_exit(struct kvm_vcpu_hv_synic * synic,u32 msr)245 static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr)
246 {
247 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
248 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
249
250 hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC;
251 hv_vcpu->exit.u.synic.msr = msr;
252 hv_vcpu->exit.u.synic.control = synic->control;
253 hv_vcpu->exit.u.synic.evt_page = synic->evt_page;
254 hv_vcpu->exit.u.synic.msg_page = synic->msg_page;
255
256 kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
257 }
258
synic_set_msr(struct kvm_vcpu_hv_synic * synic,u32 msr,u64 data,bool host)259 static int synic_set_msr(struct kvm_vcpu_hv_synic *synic,
260 u32 msr, u64 data, bool host)
261 {
262 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
263 int ret;
264
265 if (!synic->active && (!host || data))
266 return 1;
267
268 trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host);
269
270 ret = 0;
271 switch (msr) {
272 case HV_X64_MSR_SCONTROL:
273 synic->control = data;
274 if (!host)
275 synic_exit(synic, msr);
276 break;
277 case HV_X64_MSR_SVERSION:
278 if (!host) {
279 ret = 1;
280 break;
281 }
282 synic->version = data;
283 break;
284 case HV_X64_MSR_SIEFP:
285 if ((data & HV_SYNIC_SIEFP_ENABLE) && !host &&
286 !synic->dont_zero_synic_pages)
287 if (kvm_clear_guest(vcpu->kvm,
288 data & PAGE_MASK, PAGE_SIZE)) {
289 ret = 1;
290 break;
291 }
292 synic->evt_page = data;
293 if (!host)
294 synic_exit(synic, msr);
295 break;
296 case HV_X64_MSR_SIMP:
297 if ((data & HV_SYNIC_SIMP_ENABLE) && !host &&
298 !synic->dont_zero_synic_pages)
299 if (kvm_clear_guest(vcpu->kvm,
300 data & PAGE_MASK, PAGE_SIZE)) {
301 ret = 1;
302 break;
303 }
304 synic->msg_page = data;
305 if (!host)
306 synic_exit(synic, msr);
307 break;
308 case HV_X64_MSR_EOM: {
309 int i;
310
311 if (!synic->active)
312 break;
313
314 for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
315 kvm_hv_notify_acked_sint(vcpu, i);
316 break;
317 }
318 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
319 ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host);
320 break;
321 default:
322 ret = 1;
323 break;
324 }
325 return ret;
326 }
327
kvm_hv_is_syndbg_enabled(struct kvm_vcpu * vcpu)328 static bool kvm_hv_is_syndbg_enabled(struct kvm_vcpu *vcpu)
329 {
330 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
331
332 return hv_vcpu->cpuid_cache.syndbg_cap_eax &
333 HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
334 }
335
kvm_hv_syndbg_complete_userspace(struct kvm_vcpu * vcpu)336 static int kvm_hv_syndbg_complete_userspace(struct kvm_vcpu *vcpu)
337 {
338 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
339
340 if (vcpu->run->hyperv.u.syndbg.msr == HV_X64_MSR_SYNDBG_CONTROL)
341 hv->hv_syndbg.control.status =
342 vcpu->run->hyperv.u.syndbg.status;
343 return 1;
344 }
345
syndbg_exit(struct kvm_vcpu * vcpu,u32 msr)346 static void syndbg_exit(struct kvm_vcpu *vcpu, u32 msr)
347 {
348 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
349 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
350
351 hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNDBG;
352 hv_vcpu->exit.u.syndbg.msr = msr;
353 hv_vcpu->exit.u.syndbg.control = syndbg->control.control;
354 hv_vcpu->exit.u.syndbg.send_page = syndbg->control.send_page;
355 hv_vcpu->exit.u.syndbg.recv_page = syndbg->control.recv_page;
356 hv_vcpu->exit.u.syndbg.pending_page = syndbg->control.pending_page;
357 vcpu->arch.complete_userspace_io =
358 kvm_hv_syndbg_complete_userspace;
359
360 kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
361 }
362
syndbg_set_msr(struct kvm_vcpu * vcpu,u32 msr,u64 data,bool host)363 static int syndbg_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
364 {
365 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
366
367 if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
368 return 1;
369
370 trace_kvm_hv_syndbg_set_msr(vcpu->vcpu_id,
371 to_hv_vcpu(vcpu)->vp_index, msr, data);
372 switch (msr) {
373 case HV_X64_MSR_SYNDBG_CONTROL:
374 syndbg->control.control = data;
375 if (!host)
376 syndbg_exit(vcpu, msr);
377 break;
378 case HV_X64_MSR_SYNDBG_STATUS:
379 syndbg->control.status = data;
380 break;
381 case HV_X64_MSR_SYNDBG_SEND_BUFFER:
382 syndbg->control.send_page = data;
383 break;
384 case HV_X64_MSR_SYNDBG_RECV_BUFFER:
385 syndbg->control.recv_page = data;
386 break;
387 case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
388 syndbg->control.pending_page = data;
389 if (!host)
390 syndbg_exit(vcpu, msr);
391 break;
392 case HV_X64_MSR_SYNDBG_OPTIONS:
393 syndbg->options = data;
394 break;
395 default:
396 break;
397 }
398
399 return 0;
400 }
401
syndbg_get_msr(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)402 static int syndbg_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
403 {
404 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
405
406 if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
407 return 1;
408
409 switch (msr) {
410 case HV_X64_MSR_SYNDBG_CONTROL:
411 *pdata = syndbg->control.control;
412 break;
413 case HV_X64_MSR_SYNDBG_STATUS:
414 *pdata = syndbg->control.status;
415 break;
416 case HV_X64_MSR_SYNDBG_SEND_BUFFER:
417 *pdata = syndbg->control.send_page;
418 break;
419 case HV_X64_MSR_SYNDBG_RECV_BUFFER:
420 *pdata = syndbg->control.recv_page;
421 break;
422 case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
423 *pdata = syndbg->control.pending_page;
424 break;
425 case HV_X64_MSR_SYNDBG_OPTIONS:
426 *pdata = syndbg->options;
427 break;
428 default:
429 break;
430 }
431
432 trace_kvm_hv_syndbg_get_msr(vcpu->vcpu_id, kvm_hv_get_vpindex(vcpu), msr, *pdata);
433
434 return 0;
435 }
436
synic_get_msr(struct kvm_vcpu_hv_synic * synic,u32 msr,u64 * pdata,bool host)437 static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata,
438 bool host)
439 {
440 int ret;
441
442 if (!synic->active && !host)
443 return 1;
444
445 ret = 0;
446 switch (msr) {
447 case HV_X64_MSR_SCONTROL:
448 *pdata = synic->control;
449 break;
450 case HV_X64_MSR_SVERSION:
451 *pdata = synic->version;
452 break;
453 case HV_X64_MSR_SIEFP:
454 *pdata = synic->evt_page;
455 break;
456 case HV_X64_MSR_SIMP:
457 *pdata = synic->msg_page;
458 break;
459 case HV_X64_MSR_EOM:
460 *pdata = 0;
461 break;
462 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
463 *pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]);
464 break;
465 default:
466 ret = 1;
467 break;
468 }
469 return ret;
470 }
471
synic_set_irq(struct kvm_vcpu_hv_synic * synic,u32 sint)472 static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint)
473 {
474 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
475 struct kvm_lapic_irq irq;
476 int ret, vector;
477
478 if (KVM_BUG_ON(!lapic_in_kernel(vcpu), vcpu->kvm))
479 return -EINVAL;
480
481 if (sint >= ARRAY_SIZE(synic->sint))
482 return -EINVAL;
483
484 vector = synic_get_sint_vector(synic_read_sint(synic, sint));
485 if (vector < 0)
486 return -ENOENT;
487
488 memset(&irq, 0, sizeof(irq));
489 irq.shorthand = APIC_DEST_SELF;
490 irq.dest_mode = APIC_DEST_PHYSICAL;
491 irq.delivery_mode = APIC_DM_FIXED;
492 irq.vector = vector;
493 irq.level = 1;
494
495 ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL);
496 trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret);
497 return ret;
498 }
499
kvm_hv_synic_set_irq(struct kvm * kvm,u32 vpidx,u32 sint)500 int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint)
501 {
502 struct kvm_vcpu_hv_synic *synic;
503
504 synic = synic_get(kvm, vpidx);
505 if (!synic)
506 return -EINVAL;
507
508 return synic_set_irq(synic, sint);
509 }
510
kvm_hv_synic_send_eoi(struct kvm_vcpu * vcpu,int vector)511 void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector)
512 {
513 struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
514 int i;
515
516 trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector);
517
518 for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
519 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
520 kvm_hv_notify_acked_sint(vcpu, i);
521 }
522
kvm_hv_set_sint_gsi(struct kvm * kvm,u32 vpidx,u32 sint,int gsi)523 static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi)
524 {
525 struct kvm_vcpu_hv_synic *synic;
526
527 synic = synic_get(kvm, vpidx);
528 if (!synic)
529 return -EINVAL;
530
531 if (sint >= ARRAY_SIZE(synic->sint_to_gsi))
532 return -EINVAL;
533
534 atomic_set(&synic->sint_to_gsi[sint], gsi);
535 return 0;
536 }
537
kvm_hv_irq_routing_update(struct kvm * kvm)538 void kvm_hv_irq_routing_update(struct kvm *kvm)
539 {
540 struct kvm_irq_routing_table *irq_rt;
541 struct kvm_kernel_irq_routing_entry *e;
542 u32 gsi;
543
544 irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu,
545 lockdep_is_held(&kvm->irq_lock));
546
547 for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) {
548 hlist_for_each_entry(e, &irq_rt->map[gsi], link) {
549 if (e->type == KVM_IRQ_ROUTING_HV_SINT)
550 kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu,
551 e->hv_sint.sint, gsi);
552 }
553 }
554 }
555
synic_init(struct kvm_vcpu_hv_synic * synic)556 static void synic_init(struct kvm_vcpu_hv_synic *synic)
557 {
558 int i;
559
560 memset(synic, 0, sizeof(*synic));
561 synic->version = HV_SYNIC_VERSION_1;
562 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
563 atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED);
564 atomic_set(&synic->sint_to_gsi[i], -1);
565 }
566 }
567
get_time_ref_counter(struct kvm * kvm)568 static u64 get_time_ref_counter(struct kvm *kvm)
569 {
570 struct kvm_hv *hv = to_kvm_hv(kvm);
571 struct kvm_vcpu *vcpu;
572 u64 tsc;
573
574 /*
575 * Fall back to get_kvmclock_ns() when TSC page hasn't been set up,
576 * is broken, disabled or being updated.
577 */
578 if (hv->hv_tsc_page_status != HV_TSC_PAGE_SET)
579 return div_u64(get_kvmclock_ns(kvm), 100);
580
581 vcpu = kvm_get_vcpu(kvm, 0);
582 tsc = kvm_read_l1_tsc(vcpu, rdtsc());
583 return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64)
584 + hv->tsc_ref.tsc_offset;
585 }
586
stimer_mark_pending(struct kvm_vcpu_hv_stimer * stimer,bool vcpu_kick)587 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
588 bool vcpu_kick)
589 {
590 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
591
592 set_bit(stimer->index,
593 to_hv_vcpu(vcpu)->stimer_pending_bitmap);
594 kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
595 if (vcpu_kick)
596 kvm_vcpu_kick(vcpu);
597 }
598
stimer_cleanup(struct kvm_vcpu_hv_stimer * stimer)599 static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer)
600 {
601 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
602
603 trace_kvm_hv_stimer_cleanup(hv_stimer_to_vcpu(stimer)->vcpu_id,
604 stimer->index);
605
606 hrtimer_cancel(&stimer->timer);
607 clear_bit(stimer->index,
608 to_hv_vcpu(vcpu)->stimer_pending_bitmap);
609 stimer->msg_pending = false;
610 stimer->exp_time = 0;
611 }
612
stimer_timer_callback(struct hrtimer * timer)613 static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer)
614 {
615 struct kvm_vcpu_hv_stimer *stimer;
616
617 stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer);
618 trace_kvm_hv_stimer_callback(hv_stimer_to_vcpu(stimer)->vcpu_id,
619 stimer->index);
620 stimer_mark_pending(stimer, true);
621
622 return HRTIMER_NORESTART;
623 }
624
625 /*
626 * stimer_start() assumptions:
627 * a) stimer->count is not equal to 0
628 * b) stimer->config has HV_STIMER_ENABLE flag
629 */
stimer_start(struct kvm_vcpu_hv_stimer * stimer)630 static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
631 {
632 u64 time_now;
633 ktime_t ktime_now;
634
635 time_now = get_time_ref_counter(hv_stimer_to_vcpu(stimer)->kvm);
636 ktime_now = ktime_get();
637
638 if (stimer->config.periodic) {
639 if (stimer->exp_time) {
640 if (time_now >= stimer->exp_time) {
641 u64 remainder;
642
643 div64_u64_rem(time_now - stimer->exp_time,
644 stimer->count, &remainder);
645 stimer->exp_time =
646 time_now + (stimer->count - remainder);
647 }
648 } else
649 stimer->exp_time = time_now + stimer->count;
650
651 trace_kvm_hv_stimer_start_periodic(
652 hv_stimer_to_vcpu(stimer)->vcpu_id,
653 stimer->index,
654 time_now, stimer->exp_time);
655
656 hrtimer_start(&stimer->timer,
657 ktime_add_ns(ktime_now,
658 100 * (stimer->exp_time - time_now)),
659 HRTIMER_MODE_ABS);
660 return 0;
661 }
662 stimer->exp_time = stimer->count;
663 if (time_now >= stimer->count) {
664 /*
665 * Expire timer according to Hypervisor Top-Level Functional
666 * specification v4(15.3.1):
667 * "If a one shot is enabled and the specified count is in
668 * the past, it will expire immediately."
669 */
670 stimer_mark_pending(stimer, false);
671 return 0;
672 }
673
674 trace_kvm_hv_stimer_start_one_shot(hv_stimer_to_vcpu(stimer)->vcpu_id,
675 stimer->index,
676 time_now, stimer->count);
677
678 hrtimer_start(&stimer->timer,
679 ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)),
680 HRTIMER_MODE_ABS);
681 return 0;
682 }
683
stimer_set_config(struct kvm_vcpu_hv_stimer * stimer,u64 config,bool host)684 static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config,
685 bool host)
686 {
687 union hv_stimer_config new_config = {.as_uint64 = config},
688 old_config = {.as_uint64 = stimer->config.as_uint64};
689 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
690 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
691 struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
692
693 if (!synic->active && (!host || config))
694 return 1;
695
696 if (unlikely(!host && hv_vcpu->enforce_cpuid && new_config.direct_mode &&
697 !(hv_vcpu->cpuid_cache.features_edx &
698 HV_STIMER_DIRECT_MODE_AVAILABLE)))
699 return 1;
700
701 trace_kvm_hv_stimer_set_config(hv_stimer_to_vcpu(stimer)->vcpu_id,
702 stimer->index, config, host);
703
704 stimer_cleanup(stimer);
705 if (old_config.enable &&
706 !new_config.direct_mode && new_config.sintx == 0)
707 new_config.enable = 0;
708 stimer->config.as_uint64 = new_config.as_uint64;
709
710 if (stimer->config.enable)
711 stimer_mark_pending(stimer, false);
712
713 return 0;
714 }
715
stimer_set_count(struct kvm_vcpu_hv_stimer * stimer,u64 count,bool host)716 static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count,
717 bool host)
718 {
719 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
720 struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
721
722 if (!synic->active && (!host || count))
723 return 1;
724
725 trace_kvm_hv_stimer_set_count(hv_stimer_to_vcpu(stimer)->vcpu_id,
726 stimer->index, count, host);
727
728 stimer_cleanup(stimer);
729 stimer->count = count;
730 if (!host) {
731 if (stimer->count == 0)
732 stimer->config.enable = 0;
733 else if (stimer->config.auto_enable)
734 stimer->config.enable = 1;
735 }
736
737 if (stimer->config.enable)
738 stimer_mark_pending(stimer, false);
739
740 return 0;
741 }
742
stimer_get_config(struct kvm_vcpu_hv_stimer * stimer,u64 * pconfig)743 static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig)
744 {
745 *pconfig = stimer->config.as_uint64;
746 return 0;
747 }
748
stimer_get_count(struct kvm_vcpu_hv_stimer * stimer,u64 * pcount)749 static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount)
750 {
751 *pcount = stimer->count;
752 return 0;
753 }
754
synic_deliver_msg(struct kvm_vcpu_hv_synic * synic,u32 sint,struct hv_message * src_msg,bool no_retry)755 static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint,
756 struct hv_message *src_msg, bool no_retry)
757 {
758 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
759 int msg_off = offsetof(struct hv_message_page, sint_message[sint]);
760 gfn_t msg_page_gfn;
761 struct hv_message_header hv_hdr;
762 int r;
763
764 if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE))
765 return -ENOENT;
766
767 msg_page_gfn = synic->msg_page >> PAGE_SHIFT;
768
769 /*
770 * Strictly following the spec-mandated ordering would assume setting
771 * .msg_pending before checking .message_type. However, this function
772 * is only called in vcpu context so the entire update is atomic from
773 * guest POV and thus the exact order here doesn't matter.
774 */
775 r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type,
776 msg_off + offsetof(struct hv_message,
777 header.message_type),
778 sizeof(hv_hdr.message_type));
779 if (r < 0)
780 return r;
781
782 if (hv_hdr.message_type != HVMSG_NONE) {
783 if (no_retry)
784 return 0;
785
786 hv_hdr.message_flags.msg_pending = 1;
787 r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn,
788 &hv_hdr.message_flags,
789 msg_off +
790 offsetof(struct hv_message,
791 header.message_flags),
792 sizeof(hv_hdr.message_flags));
793 if (r < 0)
794 return r;
795 return -EAGAIN;
796 }
797
798 r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off,
799 sizeof(src_msg->header) +
800 src_msg->header.payload_size);
801 if (r < 0)
802 return r;
803
804 r = synic_set_irq(synic, sint);
805 if (r < 0)
806 return r;
807 if (r == 0)
808 return -EFAULT;
809 return 0;
810 }
811
stimer_send_msg(struct kvm_vcpu_hv_stimer * stimer)812 static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
813 {
814 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
815 struct hv_message *msg = &stimer->msg;
816 struct hv_timer_message_payload *payload =
817 (struct hv_timer_message_payload *)&msg->u.payload;
818
819 /*
820 * To avoid piling up periodic ticks, don't retry message
821 * delivery for them (within "lazy" lost ticks policy).
822 */
823 bool no_retry = stimer->config.periodic;
824
825 payload->expiration_time = stimer->exp_time;
826 payload->delivery_time = get_time_ref_counter(vcpu->kvm);
827 return synic_deliver_msg(to_hv_synic(vcpu),
828 stimer->config.sintx, msg,
829 no_retry);
830 }
831
stimer_notify_direct(struct kvm_vcpu_hv_stimer * stimer)832 static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer)
833 {
834 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
835 struct kvm_lapic_irq irq = {
836 .delivery_mode = APIC_DM_FIXED,
837 .vector = stimer->config.apic_vector
838 };
839
840 if (lapic_in_kernel(vcpu))
841 return !kvm_apic_set_irq(vcpu, &irq, NULL);
842 return 0;
843 }
844
stimer_expiration(struct kvm_vcpu_hv_stimer * stimer)845 static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer)
846 {
847 int r, direct = stimer->config.direct_mode;
848
849 stimer->msg_pending = true;
850 if (!direct)
851 r = stimer_send_msg(stimer);
852 else
853 r = stimer_notify_direct(stimer);
854 trace_kvm_hv_stimer_expiration(hv_stimer_to_vcpu(stimer)->vcpu_id,
855 stimer->index, direct, r);
856 if (!r) {
857 stimer->msg_pending = false;
858 if (!(stimer->config.periodic))
859 stimer->config.enable = 0;
860 }
861 }
862
kvm_hv_process_stimers(struct kvm_vcpu * vcpu)863 void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
864 {
865 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
866 struct kvm_vcpu_hv_stimer *stimer;
867 u64 time_now, exp_time;
868 int i;
869
870 if (!hv_vcpu)
871 return;
872
873 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
874 if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) {
875 stimer = &hv_vcpu->stimer[i];
876 if (stimer->config.enable) {
877 exp_time = stimer->exp_time;
878
879 if (exp_time) {
880 time_now =
881 get_time_ref_counter(vcpu->kvm);
882 if (time_now >= exp_time)
883 stimer_expiration(stimer);
884 }
885
886 if ((stimer->config.enable) &&
887 stimer->count) {
888 if (!stimer->msg_pending)
889 stimer_start(stimer);
890 } else
891 stimer_cleanup(stimer);
892 }
893 }
894 }
895
kvm_hv_vcpu_uninit(struct kvm_vcpu * vcpu)896 void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu)
897 {
898 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
899 int i;
900
901 if (!hv_vcpu)
902 return;
903
904 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
905 stimer_cleanup(&hv_vcpu->stimer[i]);
906
907 kfree(hv_vcpu);
908 vcpu->arch.hyperv = NULL;
909 }
910
kvm_hv_assist_page_enabled(struct kvm_vcpu * vcpu)911 bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu)
912 {
913 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
914
915 if (!hv_vcpu)
916 return false;
917
918 if (!(hv_vcpu->hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE))
919 return false;
920 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
921 }
922 EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled);
923
kvm_hv_get_assist_page(struct kvm_vcpu * vcpu)924 int kvm_hv_get_assist_page(struct kvm_vcpu *vcpu)
925 {
926 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
927
928 if (!hv_vcpu || !kvm_hv_assist_page_enabled(vcpu))
929 return -EFAULT;
930
931 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data,
932 &hv_vcpu->vp_assist_page, sizeof(struct hv_vp_assist_page));
933 }
934 EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page);
935
stimer_prepare_msg(struct kvm_vcpu_hv_stimer * stimer)936 static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer)
937 {
938 struct hv_message *msg = &stimer->msg;
939 struct hv_timer_message_payload *payload =
940 (struct hv_timer_message_payload *)&msg->u.payload;
941
942 memset(&msg->header, 0, sizeof(msg->header));
943 msg->header.message_type = HVMSG_TIMER_EXPIRED;
944 msg->header.payload_size = sizeof(*payload);
945
946 payload->timer_index = stimer->index;
947 payload->expiration_time = 0;
948 payload->delivery_time = 0;
949 }
950
stimer_init(struct kvm_vcpu_hv_stimer * stimer,int timer_index)951 static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index)
952 {
953 memset(stimer, 0, sizeof(*stimer));
954 stimer->index = timer_index;
955 hrtimer_setup(&stimer->timer, stimer_timer_callback, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
956 stimer_prepare_msg(stimer);
957 }
958
kvm_hv_vcpu_init(struct kvm_vcpu * vcpu)959 int kvm_hv_vcpu_init(struct kvm_vcpu *vcpu)
960 {
961 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
962 int i;
963
964 if (hv_vcpu)
965 return 0;
966
967 hv_vcpu = kzalloc(sizeof(struct kvm_vcpu_hv), GFP_KERNEL_ACCOUNT);
968 if (!hv_vcpu)
969 return -ENOMEM;
970
971 vcpu->arch.hyperv = hv_vcpu;
972 hv_vcpu->vcpu = vcpu;
973
974 synic_init(&hv_vcpu->synic);
975
976 bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
977 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
978 stimer_init(&hv_vcpu->stimer[i], i);
979
980 hv_vcpu->vp_index = vcpu->vcpu_idx;
981
982 for (i = 0; i < HV_NR_TLB_FLUSH_FIFOS; i++) {
983 INIT_KFIFO(hv_vcpu->tlb_flush_fifo[i].entries);
984 spin_lock_init(&hv_vcpu->tlb_flush_fifo[i].write_lock);
985 }
986
987 return 0;
988 }
989
kvm_hv_activate_synic(struct kvm_vcpu * vcpu,bool dont_zero_synic_pages)990 int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages)
991 {
992 struct kvm_vcpu_hv_synic *synic;
993 int r;
994
995 r = kvm_hv_vcpu_init(vcpu);
996 if (r)
997 return r;
998
999 synic = to_hv_synic(vcpu);
1000
1001 synic->active = true;
1002 synic->dont_zero_synic_pages = dont_zero_synic_pages;
1003 synic->control = HV_SYNIC_CONTROL_ENABLE;
1004 return 0;
1005 }
1006
kvm_hv_msr_partition_wide(u32 msr)1007 static bool kvm_hv_msr_partition_wide(u32 msr)
1008 {
1009 bool r = false;
1010
1011 switch (msr) {
1012 case HV_X64_MSR_GUEST_OS_ID:
1013 case HV_X64_MSR_HYPERCALL:
1014 case HV_X64_MSR_REFERENCE_TSC:
1015 case HV_X64_MSR_TIME_REF_COUNT:
1016 case HV_X64_MSR_CRASH_CTL:
1017 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1018 case HV_X64_MSR_RESET:
1019 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1020 case HV_X64_MSR_TSC_EMULATION_CONTROL:
1021 case HV_X64_MSR_TSC_EMULATION_STATUS:
1022 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
1023 case HV_X64_MSR_SYNDBG_OPTIONS:
1024 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1025 r = true;
1026 break;
1027 }
1028
1029 return r;
1030 }
1031
kvm_hv_msr_get_crash_data(struct kvm * kvm,u32 index,u64 * pdata)1032 static int kvm_hv_msr_get_crash_data(struct kvm *kvm, u32 index, u64 *pdata)
1033 {
1034 struct kvm_hv *hv = to_kvm_hv(kvm);
1035 size_t size = ARRAY_SIZE(hv->hv_crash_param);
1036
1037 if (WARN_ON_ONCE(index >= size))
1038 return -EINVAL;
1039
1040 *pdata = hv->hv_crash_param[array_index_nospec(index, size)];
1041 return 0;
1042 }
1043
kvm_hv_msr_get_crash_ctl(struct kvm * kvm,u64 * pdata)1044 static int kvm_hv_msr_get_crash_ctl(struct kvm *kvm, u64 *pdata)
1045 {
1046 struct kvm_hv *hv = to_kvm_hv(kvm);
1047
1048 *pdata = hv->hv_crash_ctl;
1049 return 0;
1050 }
1051
kvm_hv_msr_set_crash_ctl(struct kvm * kvm,u64 data)1052 static int kvm_hv_msr_set_crash_ctl(struct kvm *kvm, u64 data)
1053 {
1054 struct kvm_hv *hv = to_kvm_hv(kvm);
1055
1056 hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY;
1057
1058 return 0;
1059 }
1060
kvm_hv_msr_set_crash_data(struct kvm * kvm,u32 index,u64 data)1061 static int kvm_hv_msr_set_crash_data(struct kvm *kvm, u32 index, u64 data)
1062 {
1063 struct kvm_hv *hv = to_kvm_hv(kvm);
1064 size_t size = ARRAY_SIZE(hv->hv_crash_param);
1065
1066 if (WARN_ON_ONCE(index >= size))
1067 return -EINVAL;
1068
1069 hv->hv_crash_param[array_index_nospec(index, size)] = data;
1070 return 0;
1071 }
1072
1073 /*
1074 * The kvmclock and Hyper-V TSC page use similar formulas, and converting
1075 * between them is possible:
1076 *
1077 * kvmclock formula:
1078 * nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32)
1079 * + system_time
1080 *
1081 * Hyper-V formula:
1082 * nsec/100 = ticks * scale / 2^64 + offset
1083 *
1084 * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula.
1085 * By dividing the kvmclock formula by 100 and equating what's left we get:
1086 * ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1087 * scale / 2^64 = tsc_to_system_mul * 2^(tsc_shift-32) / 100
1088 * scale = tsc_to_system_mul * 2^(32+tsc_shift) / 100
1089 *
1090 * Now expand the kvmclock formula and divide by 100:
1091 * nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32)
1092 * - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32)
1093 * + system_time
1094 * nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1095 * - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1096 * + system_time / 100
1097 *
1098 * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64:
1099 * nsec/100 = ticks * scale / 2^64
1100 * - tsc_timestamp * scale / 2^64
1101 * + system_time / 100
1102 *
1103 * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out:
1104 * offset = system_time / 100 - tsc_timestamp * scale / 2^64
1105 *
1106 * These two equivalencies are implemented in this function.
1107 */
compute_tsc_page_parameters(struct pvclock_vcpu_time_info * hv_clock,struct ms_hyperv_tsc_page * tsc_ref)1108 static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock,
1109 struct ms_hyperv_tsc_page *tsc_ref)
1110 {
1111 u64 max_mul;
1112
1113 if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT))
1114 return false;
1115
1116 /*
1117 * check if scale would overflow, if so we use the time ref counter
1118 * tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64
1119 * tsc_to_system_mul / 100 >= 2^(32-tsc_shift)
1120 * tsc_to_system_mul >= 100 * 2^(32-tsc_shift)
1121 */
1122 max_mul = 100ull << (32 - hv_clock->tsc_shift);
1123 if (hv_clock->tsc_to_system_mul >= max_mul)
1124 return false;
1125
1126 /*
1127 * Otherwise compute the scale and offset according to the formulas
1128 * derived above.
1129 */
1130 tsc_ref->tsc_scale =
1131 mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift),
1132 hv_clock->tsc_to_system_mul,
1133 100);
1134
1135 tsc_ref->tsc_offset = hv_clock->system_time;
1136 do_div(tsc_ref->tsc_offset, 100);
1137 tsc_ref->tsc_offset -=
1138 mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64);
1139 return true;
1140 }
1141
1142 /*
1143 * Don't touch TSC page values if the guest has opted for TSC emulation after
1144 * migration. KVM doesn't fully support reenlightenment notifications and TSC
1145 * access emulation and Hyper-V is known to expect the values in TSC page to
1146 * stay constant before TSC access emulation is disabled from guest side
1147 * (HV_X64_MSR_TSC_EMULATION_STATUS). KVM userspace is expected to preserve TSC
1148 * frequency and guest visible TSC value across migration (and prevent it when
1149 * TSC scaling is unsupported).
1150 */
tsc_page_update_unsafe(struct kvm_hv * hv)1151 static inline bool tsc_page_update_unsafe(struct kvm_hv *hv)
1152 {
1153 return (hv->hv_tsc_page_status != HV_TSC_PAGE_GUEST_CHANGED) &&
1154 hv->hv_tsc_emulation_control;
1155 }
1156
kvm_hv_setup_tsc_page(struct kvm * kvm,struct pvclock_vcpu_time_info * hv_clock)1157 void kvm_hv_setup_tsc_page(struct kvm *kvm,
1158 struct pvclock_vcpu_time_info *hv_clock)
1159 {
1160 struct kvm_hv *hv = to_kvm_hv(kvm);
1161 u32 tsc_seq;
1162 u64 gfn;
1163
1164 BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence));
1165 BUILD_BUG_ON(offsetof(struct ms_hyperv_tsc_page, tsc_sequence) != 0);
1166
1167 mutex_lock(&hv->hv_lock);
1168
1169 if (hv->hv_tsc_page_status == HV_TSC_PAGE_BROKEN ||
1170 hv->hv_tsc_page_status == HV_TSC_PAGE_SET ||
1171 hv->hv_tsc_page_status == HV_TSC_PAGE_UNSET)
1172 goto out_unlock;
1173
1174 if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1175 goto out_unlock;
1176
1177 gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1178 /*
1179 * Because the TSC parameters only vary when there is a
1180 * change in the master clock, do not bother with caching.
1181 */
1182 if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn),
1183 &tsc_seq, sizeof(tsc_seq))))
1184 goto out_err;
1185
1186 if (tsc_seq && tsc_page_update_unsafe(hv)) {
1187 if (kvm_read_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
1188 goto out_err;
1189
1190 hv->hv_tsc_page_status = HV_TSC_PAGE_SET;
1191 goto out_unlock;
1192 }
1193
1194 /*
1195 * While we're computing and writing the parameters, force the
1196 * guest to use the time reference count MSR.
1197 */
1198 hv->tsc_ref.tsc_sequence = 0;
1199 if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
1200 &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
1201 goto out_err;
1202
1203 if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref))
1204 goto out_err;
1205
1206 /* Ensure sequence is zero before writing the rest of the struct. */
1207 smp_wmb();
1208 if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
1209 goto out_err;
1210
1211 /*
1212 * Now switch to the TSC page mechanism by writing the sequence.
1213 */
1214 tsc_seq++;
1215 if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0)
1216 tsc_seq = 1;
1217
1218 /* Write the struct entirely before the non-zero sequence. */
1219 smp_wmb();
1220
1221 hv->tsc_ref.tsc_sequence = tsc_seq;
1222 if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
1223 &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
1224 goto out_err;
1225
1226 hv->hv_tsc_page_status = HV_TSC_PAGE_SET;
1227 goto out_unlock;
1228
1229 out_err:
1230 hv->hv_tsc_page_status = HV_TSC_PAGE_BROKEN;
1231 out_unlock:
1232 mutex_unlock(&hv->hv_lock);
1233 }
1234
kvm_hv_request_tsc_page_update(struct kvm * kvm)1235 void kvm_hv_request_tsc_page_update(struct kvm *kvm)
1236 {
1237 struct kvm_hv *hv = to_kvm_hv(kvm);
1238
1239 mutex_lock(&hv->hv_lock);
1240
1241 if (hv->hv_tsc_page_status == HV_TSC_PAGE_SET &&
1242 !tsc_page_update_unsafe(hv))
1243 hv->hv_tsc_page_status = HV_TSC_PAGE_HOST_CHANGED;
1244
1245 mutex_unlock(&hv->hv_lock);
1246 }
1247
hv_check_msr_access(struct kvm_vcpu_hv * hv_vcpu,u32 msr)1248 static bool hv_check_msr_access(struct kvm_vcpu_hv *hv_vcpu, u32 msr)
1249 {
1250 if (!hv_vcpu->enforce_cpuid)
1251 return true;
1252
1253 switch (msr) {
1254 case HV_X64_MSR_GUEST_OS_ID:
1255 case HV_X64_MSR_HYPERCALL:
1256 return hv_vcpu->cpuid_cache.features_eax &
1257 HV_MSR_HYPERCALL_AVAILABLE;
1258 case HV_X64_MSR_VP_RUNTIME:
1259 return hv_vcpu->cpuid_cache.features_eax &
1260 HV_MSR_VP_RUNTIME_AVAILABLE;
1261 case HV_X64_MSR_TIME_REF_COUNT:
1262 return hv_vcpu->cpuid_cache.features_eax &
1263 HV_MSR_TIME_REF_COUNT_AVAILABLE;
1264 case HV_X64_MSR_VP_INDEX:
1265 return hv_vcpu->cpuid_cache.features_eax &
1266 HV_MSR_VP_INDEX_AVAILABLE;
1267 case HV_X64_MSR_RESET:
1268 return hv_vcpu->cpuid_cache.features_eax &
1269 HV_MSR_RESET_AVAILABLE;
1270 case HV_X64_MSR_REFERENCE_TSC:
1271 return hv_vcpu->cpuid_cache.features_eax &
1272 HV_MSR_REFERENCE_TSC_AVAILABLE;
1273 case HV_X64_MSR_SCONTROL:
1274 case HV_X64_MSR_SVERSION:
1275 case HV_X64_MSR_SIEFP:
1276 case HV_X64_MSR_SIMP:
1277 case HV_X64_MSR_EOM:
1278 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1279 return hv_vcpu->cpuid_cache.features_eax &
1280 HV_MSR_SYNIC_AVAILABLE;
1281 case HV_X64_MSR_STIMER0_CONFIG:
1282 case HV_X64_MSR_STIMER1_CONFIG:
1283 case HV_X64_MSR_STIMER2_CONFIG:
1284 case HV_X64_MSR_STIMER3_CONFIG:
1285 case HV_X64_MSR_STIMER0_COUNT:
1286 case HV_X64_MSR_STIMER1_COUNT:
1287 case HV_X64_MSR_STIMER2_COUNT:
1288 case HV_X64_MSR_STIMER3_COUNT:
1289 return hv_vcpu->cpuid_cache.features_eax &
1290 HV_MSR_SYNTIMER_AVAILABLE;
1291 case HV_X64_MSR_EOI:
1292 case HV_X64_MSR_ICR:
1293 case HV_X64_MSR_TPR:
1294 case HV_X64_MSR_VP_ASSIST_PAGE:
1295 return hv_vcpu->cpuid_cache.features_eax &
1296 HV_MSR_APIC_ACCESS_AVAILABLE;
1297 case HV_X64_MSR_TSC_FREQUENCY:
1298 case HV_X64_MSR_APIC_FREQUENCY:
1299 return hv_vcpu->cpuid_cache.features_eax &
1300 HV_ACCESS_FREQUENCY_MSRS;
1301 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1302 case HV_X64_MSR_TSC_EMULATION_CONTROL:
1303 case HV_X64_MSR_TSC_EMULATION_STATUS:
1304 return hv_vcpu->cpuid_cache.features_eax &
1305 HV_ACCESS_REENLIGHTENMENT;
1306 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
1307 return hv_vcpu->cpuid_cache.features_eax &
1308 HV_ACCESS_TSC_INVARIANT;
1309 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1310 case HV_X64_MSR_CRASH_CTL:
1311 return hv_vcpu->cpuid_cache.features_edx &
1312 HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
1313 case HV_X64_MSR_SYNDBG_OPTIONS:
1314 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1315 return hv_vcpu->cpuid_cache.features_edx &
1316 HV_FEATURE_DEBUG_MSRS_AVAILABLE;
1317 default:
1318 break;
1319 }
1320
1321 return false;
1322 }
1323
1324 #define KVM_HV_WIN2016_GUEST_ID 0x1040a00003839
1325 #define KVM_HV_WIN2016_GUEST_ID_MASK (~GENMASK_ULL(23, 16)) /* mask out the service version */
1326
1327 /*
1328 * Hyper-V enabled Windows Server 2016 SMP VMs fail to boot in !XSAVES && XSAVEC
1329 * configuration.
1330 * Such configuration can result from, for example, AMD Erratum 1386 workaround.
1331 *
1332 * Print a notice so users aren't left wondering what's suddenly gone wrong.
1333 */
__kvm_hv_xsaves_xsavec_maybe_warn(struct kvm_vcpu * vcpu)1334 static void __kvm_hv_xsaves_xsavec_maybe_warn(struct kvm_vcpu *vcpu)
1335 {
1336 struct kvm *kvm = vcpu->kvm;
1337 struct kvm_hv *hv = to_kvm_hv(kvm);
1338
1339 /* Check again under the hv_lock. */
1340 if (hv->xsaves_xsavec_checked)
1341 return;
1342
1343 if ((hv->hv_guest_os_id & KVM_HV_WIN2016_GUEST_ID_MASK) !=
1344 KVM_HV_WIN2016_GUEST_ID)
1345 return;
1346
1347 hv->xsaves_xsavec_checked = true;
1348
1349 /* UP configurations aren't affected */
1350 if (atomic_read(&kvm->online_vcpus) < 2)
1351 return;
1352
1353 if (guest_cpuid_has(vcpu, X86_FEATURE_XSAVES) ||
1354 !guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVEC))
1355 return;
1356
1357 pr_notice_ratelimited("Booting SMP Windows KVM VM with !XSAVES && XSAVEC. "
1358 "If it fails to boot try disabling XSAVEC in the VM config.\n");
1359 }
1360
kvm_hv_xsaves_xsavec_maybe_warn(struct kvm_vcpu * vcpu)1361 void kvm_hv_xsaves_xsavec_maybe_warn(struct kvm_vcpu *vcpu)
1362 {
1363 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1364
1365 if (!vcpu->arch.hyperv_enabled ||
1366 hv->xsaves_xsavec_checked)
1367 return;
1368
1369 mutex_lock(&hv->hv_lock);
1370 __kvm_hv_xsaves_xsavec_maybe_warn(vcpu);
1371 mutex_unlock(&hv->hv_lock);
1372 }
1373
kvm_hv_set_msr_pw(struct kvm_vcpu * vcpu,u32 msr,u64 data,bool host)1374 static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data,
1375 bool host)
1376 {
1377 struct kvm *kvm = vcpu->kvm;
1378 struct kvm_hv *hv = to_kvm_hv(kvm);
1379
1380 if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr)))
1381 return 1;
1382
1383 switch (msr) {
1384 case HV_X64_MSR_GUEST_OS_ID:
1385 hv->hv_guest_os_id = data;
1386 /* setting guest os id to zero disables hypercall page */
1387 if (!hv->hv_guest_os_id)
1388 hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1389 break;
1390 case HV_X64_MSR_HYPERCALL: {
1391 u8 instructions[9];
1392 int i = 0;
1393 u64 addr;
1394
1395 /* if guest os id is not set hypercall should remain disabled */
1396 if (!hv->hv_guest_os_id)
1397 break;
1398 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1399 hv->hv_hypercall = data;
1400 break;
1401 }
1402
1403 /*
1404 * If Xen and Hyper-V hypercalls are both enabled, disambiguate
1405 * the same way Xen itself does, by setting the bit 31 of EAX
1406 * which is RsvdZ in the 32-bit Hyper-V hypercall ABI and just
1407 * going to be clobbered on 64-bit.
1408 */
1409 if (kvm_xen_hypercall_enabled(kvm)) {
1410 /* orl $0x80000000, %eax */
1411 instructions[i++] = 0x0d;
1412 instructions[i++] = 0x00;
1413 instructions[i++] = 0x00;
1414 instructions[i++] = 0x00;
1415 instructions[i++] = 0x80;
1416 }
1417
1418 /* vmcall/vmmcall */
1419 kvm_x86_call(patch_hypercall)(vcpu, instructions + i);
1420 i += 3;
1421
1422 /* ret */
1423 ((unsigned char *)instructions)[i++] = 0xc3;
1424
1425 addr = data & HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_MASK;
1426 if (kvm_vcpu_write_guest(vcpu, addr, instructions, i))
1427 return 1;
1428 hv->hv_hypercall = data;
1429 break;
1430 }
1431 case HV_X64_MSR_REFERENCE_TSC:
1432 hv->hv_tsc_page = data;
1433 if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE) {
1434 if (!host)
1435 hv->hv_tsc_page_status = HV_TSC_PAGE_GUEST_CHANGED;
1436 else
1437 hv->hv_tsc_page_status = HV_TSC_PAGE_HOST_CHANGED;
1438 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1439 } else {
1440 hv->hv_tsc_page_status = HV_TSC_PAGE_UNSET;
1441 }
1442 break;
1443 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1444 return kvm_hv_msr_set_crash_data(kvm,
1445 msr - HV_X64_MSR_CRASH_P0,
1446 data);
1447 case HV_X64_MSR_CRASH_CTL:
1448 if (host)
1449 return kvm_hv_msr_set_crash_ctl(kvm, data);
1450
1451 if (data & HV_CRASH_CTL_CRASH_NOTIFY) {
1452 vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
1453 hv->hv_crash_param[0],
1454 hv->hv_crash_param[1],
1455 hv->hv_crash_param[2],
1456 hv->hv_crash_param[3],
1457 hv->hv_crash_param[4]);
1458
1459 /* Send notification about crash to user space */
1460 kvm_make_request(KVM_REQ_HV_CRASH, vcpu);
1461 }
1462 break;
1463 case HV_X64_MSR_RESET:
1464 if (data == 1) {
1465 vcpu_debug(vcpu, "hyper-v reset requested\n");
1466 kvm_make_request(KVM_REQ_HV_RESET, vcpu);
1467 }
1468 break;
1469 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1470 hv->hv_reenlightenment_control = data;
1471 break;
1472 case HV_X64_MSR_TSC_EMULATION_CONTROL:
1473 hv->hv_tsc_emulation_control = data;
1474 break;
1475 case HV_X64_MSR_TSC_EMULATION_STATUS:
1476 if (data && !host)
1477 return 1;
1478
1479 hv->hv_tsc_emulation_status = data;
1480 break;
1481 case HV_X64_MSR_TIME_REF_COUNT:
1482 /* read-only, but still ignore it if host-initiated */
1483 if (!host)
1484 return 1;
1485 break;
1486 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
1487 /* Only bit 0 is supported */
1488 if (data & ~HV_EXPOSE_INVARIANT_TSC)
1489 return 1;
1490
1491 /* The feature can't be disabled from the guest */
1492 if (!host && hv->hv_invtsc_control && !data)
1493 return 1;
1494
1495 hv->hv_invtsc_control = data;
1496 break;
1497 case HV_X64_MSR_SYNDBG_OPTIONS:
1498 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1499 return syndbg_set_msr(vcpu, msr, data, host);
1500 default:
1501 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
1502 return 1;
1503 }
1504 return 0;
1505 }
1506
1507 /* Calculate cpu time spent by current task in 100ns units */
current_task_runtime_100ns(void)1508 static u64 current_task_runtime_100ns(void)
1509 {
1510 u64 utime, stime;
1511
1512 task_cputime_adjusted(current, &utime, &stime);
1513
1514 return div_u64(utime + stime, 100);
1515 }
1516
kvm_hv_set_msr(struct kvm_vcpu * vcpu,u32 msr,u64 data,bool host)1517 static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1518 {
1519 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1520
1521 if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr)))
1522 return 1;
1523
1524 switch (msr) {
1525 case HV_X64_MSR_VP_INDEX: {
1526 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1527 u32 new_vp_index = (u32)data;
1528
1529 if (!host || new_vp_index >= KVM_MAX_VCPUS)
1530 return 1;
1531
1532 if (new_vp_index == hv_vcpu->vp_index)
1533 return 0;
1534
1535 /*
1536 * The VP index is initialized to vcpu_index by
1537 * kvm_hv_vcpu_postcreate so they initially match. Now the
1538 * VP index is changing, adjust num_mismatched_vp_indexes if
1539 * it now matches or no longer matches vcpu_idx.
1540 */
1541 if (hv_vcpu->vp_index == vcpu->vcpu_idx)
1542 atomic_inc(&hv->num_mismatched_vp_indexes);
1543 else if (new_vp_index == vcpu->vcpu_idx)
1544 atomic_dec(&hv->num_mismatched_vp_indexes);
1545
1546 hv_vcpu->vp_index = new_vp_index;
1547 break;
1548 }
1549 case HV_X64_MSR_VP_ASSIST_PAGE: {
1550 u64 gfn;
1551 unsigned long addr;
1552
1553 if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) {
1554 hv_vcpu->hv_vapic = data;
1555 if (kvm_lapic_set_pv_eoi(vcpu, 0, 0))
1556 return 1;
1557 break;
1558 }
1559 gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT;
1560 addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
1561 if (kvm_is_error_hva(addr))
1562 return 1;
1563
1564 /*
1565 * Clear apic_assist portion of struct hv_vp_assist_page
1566 * only, there can be valuable data in the rest which needs
1567 * to be preserved e.g. on migration.
1568 */
1569 if (__put_user(0, (u32 __user *)addr))
1570 return 1;
1571 hv_vcpu->hv_vapic = data;
1572 kvm_vcpu_mark_page_dirty(vcpu, gfn);
1573 if (kvm_lapic_set_pv_eoi(vcpu,
1574 gfn_to_gpa(gfn) | KVM_MSR_ENABLED,
1575 sizeof(struct hv_vp_assist_page)))
1576 return 1;
1577 break;
1578 }
1579 case HV_X64_MSR_EOI:
1580 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1581 case HV_X64_MSR_ICR:
1582 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1583 case HV_X64_MSR_TPR:
1584 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1585 case HV_X64_MSR_VP_RUNTIME:
1586 if (!host)
1587 return 1;
1588 hv_vcpu->runtime_offset = data - current_task_runtime_100ns();
1589 break;
1590 case HV_X64_MSR_SCONTROL:
1591 case HV_X64_MSR_SVERSION:
1592 case HV_X64_MSR_SIEFP:
1593 case HV_X64_MSR_SIMP:
1594 case HV_X64_MSR_EOM:
1595 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1596 return synic_set_msr(to_hv_synic(vcpu), msr, data, host);
1597 case HV_X64_MSR_STIMER0_CONFIG:
1598 case HV_X64_MSR_STIMER1_CONFIG:
1599 case HV_X64_MSR_STIMER2_CONFIG:
1600 case HV_X64_MSR_STIMER3_CONFIG: {
1601 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1602
1603 return stimer_set_config(to_hv_stimer(vcpu, timer_index),
1604 data, host);
1605 }
1606 case HV_X64_MSR_STIMER0_COUNT:
1607 case HV_X64_MSR_STIMER1_COUNT:
1608 case HV_X64_MSR_STIMER2_COUNT:
1609 case HV_X64_MSR_STIMER3_COUNT: {
1610 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1611
1612 return stimer_set_count(to_hv_stimer(vcpu, timer_index),
1613 data, host);
1614 }
1615 case HV_X64_MSR_TSC_FREQUENCY:
1616 case HV_X64_MSR_APIC_FREQUENCY:
1617 /* read-only, but still ignore it if host-initiated */
1618 if (!host)
1619 return 1;
1620 break;
1621 default:
1622 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
1623 return 1;
1624 }
1625
1626 return 0;
1627 }
1628
kvm_hv_get_msr_pw(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)1629 static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1630 bool host)
1631 {
1632 u64 data = 0;
1633 struct kvm *kvm = vcpu->kvm;
1634 struct kvm_hv *hv = to_kvm_hv(kvm);
1635
1636 if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr)))
1637 return 1;
1638
1639 switch (msr) {
1640 case HV_X64_MSR_GUEST_OS_ID:
1641 data = hv->hv_guest_os_id;
1642 break;
1643 case HV_X64_MSR_HYPERCALL:
1644 data = hv->hv_hypercall;
1645 break;
1646 case HV_X64_MSR_TIME_REF_COUNT:
1647 data = get_time_ref_counter(kvm);
1648 break;
1649 case HV_X64_MSR_REFERENCE_TSC:
1650 data = hv->hv_tsc_page;
1651 break;
1652 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1653 return kvm_hv_msr_get_crash_data(kvm,
1654 msr - HV_X64_MSR_CRASH_P0,
1655 pdata);
1656 case HV_X64_MSR_CRASH_CTL:
1657 return kvm_hv_msr_get_crash_ctl(kvm, pdata);
1658 case HV_X64_MSR_RESET:
1659 data = 0;
1660 break;
1661 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1662 data = hv->hv_reenlightenment_control;
1663 break;
1664 case HV_X64_MSR_TSC_EMULATION_CONTROL:
1665 data = hv->hv_tsc_emulation_control;
1666 break;
1667 case HV_X64_MSR_TSC_EMULATION_STATUS:
1668 data = hv->hv_tsc_emulation_status;
1669 break;
1670 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
1671 data = hv->hv_invtsc_control;
1672 break;
1673 case HV_X64_MSR_SYNDBG_OPTIONS:
1674 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1675 return syndbg_get_msr(vcpu, msr, pdata, host);
1676 default:
1677 kvm_pr_unimpl_rdmsr(vcpu, msr);
1678 return 1;
1679 }
1680
1681 *pdata = data;
1682 return 0;
1683 }
1684
kvm_hv_get_msr(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)1685 static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1686 bool host)
1687 {
1688 u64 data = 0;
1689 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1690
1691 if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr)))
1692 return 1;
1693
1694 switch (msr) {
1695 case HV_X64_MSR_VP_INDEX:
1696 data = hv_vcpu->vp_index;
1697 break;
1698 case HV_X64_MSR_EOI:
1699 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1700 case HV_X64_MSR_ICR:
1701 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1702 case HV_X64_MSR_TPR:
1703 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1704 case HV_X64_MSR_VP_ASSIST_PAGE:
1705 data = hv_vcpu->hv_vapic;
1706 break;
1707 case HV_X64_MSR_VP_RUNTIME:
1708 data = current_task_runtime_100ns() + hv_vcpu->runtime_offset;
1709 break;
1710 case HV_X64_MSR_SCONTROL:
1711 case HV_X64_MSR_SVERSION:
1712 case HV_X64_MSR_SIEFP:
1713 case HV_X64_MSR_SIMP:
1714 case HV_X64_MSR_EOM:
1715 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1716 return synic_get_msr(to_hv_synic(vcpu), msr, pdata, host);
1717 case HV_X64_MSR_STIMER0_CONFIG:
1718 case HV_X64_MSR_STIMER1_CONFIG:
1719 case HV_X64_MSR_STIMER2_CONFIG:
1720 case HV_X64_MSR_STIMER3_CONFIG: {
1721 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1722
1723 return stimer_get_config(to_hv_stimer(vcpu, timer_index),
1724 pdata);
1725 }
1726 case HV_X64_MSR_STIMER0_COUNT:
1727 case HV_X64_MSR_STIMER1_COUNT:
1728 case HV_X64_MSR_STIMER2_COUNT:
1729 case HV_X64_MSR_STIMER3_COUNT: {
1730 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1731
1732 return stimer_get_count(to_hv_stimer(vcpu, timer_index),
1733 pdata);
1734 }
1735 case HV_X64_MSR_TSC_FREQUENCY:
1736 data = (u64)vcpu->arch.virtual_tsc_khz * 1000;
1737 break;
1738 case HV_X64_MSR_APIC_FREQUENCY:
1739 data = div64_u64(1000000000ULL,
1740 vcpu->kvm->arch.apic_bus_cycle_ns);
1741 break;
1742 default:
1743 kvm_pr_unimpl_rdmsr(vcpu, msr);
1744 return 1;
1745 }
1746 *pdata = data;
1747 return 0;
1748 }
1749
kvm_hv_set_msr_common(struct kvm_vcpu * vcpu,u32 msr,u64 data,bool host)1750 int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1751 {
1752 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1753
1754 if (!host && !vcpu->arch.hyperv_enabled)
1755 return 1;
1756
1757 if (kvm_hv_vcpu_init(vcpu))
1758 return 1;
1759
1760 if (kvm_hv_msr_partition_wide(msr)) {
1761 int r;
1762
1763 mutex_lock(&hv->hv_lock);
1764 r = kvm_hv_set_msr_pw(vcpu, msr, data, host);
1765 mutex_unlock(&hv->hv_lock);
1766 return r;
1767 } else
1768 return kvm_hv_set_msr(vcpu, msr, data, host);
1769 }
1770
kvm_hv_get_msr_common(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)1771 int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
1772 {
1773 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1774
1775 if (!host && !vcpu->arch.hyperv_enabled)
1776 return 1;
1777
1778 if (kvm_hv_vcpu_init(vcpu))
1779 return 1;
1780
1781 if (kvm_hv_msr_partition_wide(msr)) {
1782 int r;
1783
1784 mutex_lock(&hv->hv_lock);
1785 r = kvm_hv_get_msr_pw(vcpu, msr, pdata, host);
1786 mutex_unlock(&hv->hv_lock);
1787 return r;
1788 } else
1789 return kvm_hv_get_msr(vcpu, msr, pdata, host);
1790 }
1791
sparse_set_to_vcpu_mask(struct kvm * kvm,u64 * sparse_banks,u64 valid_bank_mask,unsigned long * vcpu_mask)1792 static void sparse_set_to_vcpu_mask(struct kvm *kvm, u64 *sparse_banks,
1793 u64 valid_bank_mask, unsigned long *vcpu_mask)
1794 {
1795 struct kvm_hv *hv = to_kvm_hv(kvm);
1796 bool has_mismatch = atomic_read(&hv->num_mismatched_vp_indexes);
1797 u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
1798 struct kvm_vcpu *vcpu;
1799 int bank, sbank = 0;
1800 unsigned long i;
1801 u64 *bitmap;
1802
1803 BUILD_BUG_ON(sizeof(vp_bitmap) >
1804 sizeof(*vcpu_mask) * BITS_TO_LONGS(KVM_MAX_VCPUS));
1805
1806 /*
1807 * If vp_index == vcpu_idx for all vCPUs, fill vcpu_mask directly, else
1808 * fill a temporary buffer and manually test each vCPU's VP index.
1809 */
1810 if (likely(!has_mismatch))
1811 bitmap = (u64 *)vcpu_mask;
1812 else
1813 bitmap = vp_bitmap;
1814
1815 /*
1816 * Each set of 64 VPs is packed into sparse_banks, with valid_bank_mask
1817 * having a '1' for each bank that exists in sparse_banks. Sets must
1818 * be in ascending order, i.e. bank0..bankN.
1819 */
1820 memset(bitmap, 0, sizeof(vp_bitmap));
1821 for_each_set_bit(bank, (unsigned long *)&valid_bank_mask,
1822 KVM_HV_MAX_SPARSE_VCPU_SET_BITS)
1823 bitmap[bank] = sparse_banks[sbank++];
1824
1825 if (likely(!has_mismatch))
1826 return;
1827
1828 bitmap_zero(vcpu_mask, KVM_MAX_VCPUS);
1829 kvm_for_each_vcpu(i, vcpu, kvm) {
1830 if (test_bit(kvm_hv_get_vpindex(vcpu), (unsigned long *)vp_bitmap))
1831 __set_bit(i, vcpu_mask);
1832 }
1833 }
1834
hv_is_vp_in_sparse_set(u32 vp_id,u64 valid_bank_mask,u64 sparse_banks[])1835 static bool hv_is_vp_in_sparse_set(u32 vp_id, u64 valid_bank_mask, u64 sparse_banks[])
1836 {
1837 int valid_bit_nr = vp_id / HV_VCPUS_PER_SPARSE_BANK;
1838 unsigned long sbank;
1839
1840 if (!test_bit(valid_bit_nr, (unsigned long *)&valid_bank_mask))
1841 return false;
1842
1843 /*
1844 * The index into the sparse bank is the number of preceding bits in
1845 * the valid mask. Optimize for VMs with <64 vCPUs by skipping the
1846 * fancy math if there can't possibly be preceding bits.
1847 */
1848 if (valid_bit_nr)
1849 sbank = hweight64(valid_bank_mask & GENMASK_ULL(valid_bit_nr - 1, 0));
1850 else
1851 sbank = 0;
1852
1853 return test_bit(vp_id % HV_VCPUS_PER_SPARSE_BANK,
1854 (unsigned long *)&sparse_banks[sbank]);
1855 }
1856
1857 struct kvm_hv_hcall {
1858 /* Hypercall input data */
1859 u64 param;
1860 u64 ingpa;
1861 u64 outgpa;
1862 u16 code;
1863 u16 var_cnt;
1864 u16 rep_cnt;
1865 u16 rep_idx;
1866 bool fast;
1867 bool rep;
1868 sse128_t xmm[HV_HYPERCALL_MAX_XMM_REGISTERS];
1869
1870 /*
1871 * Current read offset when KVM reads hypercall input data gradually,
1872 * either offset in bytes from 'ingpa' for regular hypercalls or the
1873 * number of already consumed 'XMM halves' for 'fast' hypercalls.
1874 */
1875 union {
1876 gpa_t data_offset;
1877 int consumed_xmm_halves;
1878 };
1879 };
1880
1881
kvm_hv_get_hc_data(struct kvm * kvm,struct kvm_hv_hcall * hc,u16 orig_cnt,u16 cnt_cap,u64 * data)1882 static int kvm_hv_get_hc_data(struct kvm *kvm, struct kvm_hv_hcall *hc,
1883 u16 orig_cnt, u16 cnt_cap, u64 *data)
1884 {
1885 /*
1886 * Preserve the original count when ignoring entries via a "cap", KVM
1887 * still needs to validate the guest input (though the non-XMM path
1888 * punts on the checks).
1889 */
1890 u16 cnt = min(orig_cnt, cnt_cap);
1891 int i, j;
1892
1893 if (hc->fast) {
1894 /*
1895 * Each XMM holds two sparse banks, but do not count halves that
1896 * have already been consumed for hypercall parameters.
1897 */
1898 if (orig_cnt > 2 * HV_HYPERCALL_MAX_XMM_REGISTERS - hc->consumed_xmm_halves)
1899 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1900
1901 for (i = 0; i < cnt; i++) {
1902 j = i + hc->consumed_xmm_halves;
1903 if (j % 2)
1904 data[i] = sse128_hi(hc->xmm[j / 2]);
1905 else
1906 data[i] = sse128_lo(hc->xmm[j / 2]);
1907 }
1908 return 0;
1909 }
1910
1911 return kvm_read_guest(kvm, hc->ingpa + hc->data_offset, data,
1912 cnt * sizeof(*data));
1913 }
1914
kvm_get_sparse_vp_set(struct kvm * kvm,struct kvm_hv_hcall * hc,u64 * sparse_banks)1915 static u64 kvm_get_sparse_vp_set(struct kvm *kvm, struct kvm_hv_hcall *hc,
1916 u64 *sparse_banks)
1917 {
1918 if (hc->var_cnt > HV_MAX_SPARSE_VCPU_BANKS)
1919 return -EINVAL;
1920
1921 /* Cap var_cnt to ignore banks that cannot contain a legal VP index. */
1922 return kvm_hv_get_hc_data(kvm, hc, hc->var_cnt, KVM_HV_MAX_SPARSE_VCPU_SET_BITS,
1923 sparse_banks);
1924 }
1925
kvm_hv_get_tlb_flush_entries(struct kvm * kvm,struct kvm_hv_hcall * hc,u64 entries[])1926 static int kvm_hv_get_tlb_flush_entries(struct kvm *kvm, struct kvm_hv_hcall *hc, u64 entries[])
1927 {
1928 return kvm_hv_get_hc_data(kvm, hc, hc->rep_cnt, hc->rep_cnt, entries);
1929 }
1930
hv_tlb_flush_enqueue(struct kvm_vcpu * vcpu,struct kvm_vcpu_hv_tlb_flush_fifo * tlb_flush_fifo,u64 * entries,int count)1931 static void hv_tlb_flush_enqueue(struct kvm_vcpu *vcpu,
1932 struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo,
1933 u64 *entries, int count)
1934 {
1935 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1936 u64 flush_all_entry = KVM_HV_TLB_FLUSHALL_ENTRY;
1937
1938 if (!hv_vcpu)
1939 return;
1940
1941 spin_lock(&tlb_flush_fifo->write_lock);
1942
1943 /*
1944 * All entries should fit on the fifo leaving one free for 'flush all'
1945 * entry in case another request comes in. In case there's not enough
1946 * space, just put 'flush all' entry there.
1947 */
1948 if (count && entries && count < kfifo_avail(&tlb_flush_fifo->entries)) {
1949 WARN_ON(kfifo_in(&tlb_flush_fifo->entries, entries, count) != count);
1950 goto out_unlock;
1951 }
1952
1953 /*
1954 * Note: full fifo always contains 'flush all' entry, no need to check the
1955 * return value.
1956 */
1957 kfifo_in(&tlb_flush_fifo->entries, &flush_all_entry, 1);
1958
1959 out_unlock:
1960 spin_unlock(&tlb_flush_fifo->write_lock);
1961 }
1962
kvm_hv_vcpu_flush_tlb(struct kvm_vcpu * vcpu)1963 int kvm_hv_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
1964 {
1965 struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo;
1966 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1967 u64 entries[KVM_HV_TLB_FLUSH_FIFO_SIZE];
1968 int i, j, count;
1969 gva_t gva;
1970
1971 if (!tdp_enabled || !hv_vcpu)
1972 return -EINVAL;
1973
1974 tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(vcpu, is_guest_mode(vcpu));
1975
1976 count = kfifo_out(&tlb_flush_fifo->entries, entries, KVM_HV_TLB_FLUSH_FIFO_SIZE);
1977
1978 for (i = 0; i < count; i++) {
1979 if (entries[i] == KVM_HV_TLB_FLUSHALL_ENTRY)
1980 goto out_flush_all;
1981
1982 /*
1983 * Lower 12 bits of 'address' encode the number of additional
1984 * pages to flush.
1985 */
1986 gva = entries[i] & PAGE_MASK;
1987 for (j = 0; j < (entries[i] & ~PAGE_MASK) + 1; j++)
1988 kvm_x86_call(flush_tlb_gva)(vcpu, gva + j * PAGE_SIZE);
1989
1990 ++vcpu->stat.tlb_flush;
1991 }
1992 return 0;
1993
1994 out_flush_all:
1995 kfifo_reset_out(&tlb_flush_fifo->entries);
1996
1997 /* Fall back to full flush. */
1998 return -ENOSPC;
1999 }
2000
kvm_hv_flush_tlb(struct kvm_vcpu * vcpu,struct kvm_hv_hcall * hc)2001 static u64 kvm_hv_flush_tlb(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
2002 {
2003 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
2004 u64 *sparse_banks = hv_vcpu->sparse_banks;
2005 struct kvm *kvm = vcpu->kvm;
2006 struct hv_tlb_flush_ex flush_ex;
2007 struct hv_tlb_flush flush;
2008 DECLARE_BITMAP(vcpu_mask, KVM_MAX_VCPUS);
2009 struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo;
2010 /*
2011 * Normally, there can be no more than 'KVM_HV_TLB_FLUSH_FIFO_SIZE'
2012 * entries on the TLB flush fifo. The last entry, however, needs to be
2013 * always left free for 'flush all' entry which gets placed when
2014 * there is not enough space to put all the requested entries.
2015 */
2016 u64 __tlb_flush_entries[KVM_HV_TLB_FLUSH_FIFO_SIZE - 1];
2017 u64 *tlb_flush_entries;
2018 u64 valid_bank_mask;
2019 struct kvm_vcpu *v;
2020 unsigned long i;
2021 bool all_cpus;
2022
2023 /*
2024 * The Hyper-V TLFS doesn't allow more than HV_MAX_SPARSE_VCPU_BANKS
2025 * sparse banks. Fail the build if KVM's max allowed number of
2026 * vCPUs (>4096) exceeds this limit.
2027 */
2028 BUILD_BUG_ON(KVM_HV_MAX_SPARSE_VCPU_SET_BITS > HV_MAX_SPARSE_VCPU_BANKS);
2029
2030 /*
2031 * 'Slow' hypercall's first parameter is the address in guest's memory
2032 * where hypercall parameters are placed. This is either a GPA or a
2033 * nested GPA when KVM is handling the call from L2 ('direct' TLB
2034 * flush). Translate the address here so the memory can be uniformly
2035 * read with kvm_read_guest().
2036 */
2037 if (!hc->fast && is_guest_mode(vcpu)) {
2038 hc->ingpa = translate_nested_gpa(vcpu, hc->ingpa, 0, NULL);
2039 if (unlikely(hc->ingpa == INVALID_GPA))
2040 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2041 }
2042
2043 if (hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST ||
2044 hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE) {
2045 if (hc->fast) {
2046 flush.address_space = hc->ingpa;
2047 flush.flags = hc->outgpa;
2048 flush.processor_mask = sse128_lo(hc->xmm[0]);
2049 hc->consumed_xmm_halves = 1;
2050 } else {
2051 if (unlikely(kvm_read_guest(kvm, hc->ingpa,
2052 &flush, sizeof(flush))))
2053 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2054 hc->data_offset = sizeof(flush);
2055 }
2056
2057 trace_kvm_hv_flush_tlb(flush.processor_mask,
2058 flush.address_space, flush.flags,
2059 is_guest_mode(vcpu));
2060
2061 valid_bank_mask = BIT_ULL(0);
2062 sparse_banks[0] = flush.processor_mask;
2063
2064 /*
2065 * Work around possible WS2012 bug: it sends hypercalls
2066 * with processor_mask = 0x0 and HV_FLUSH_ALL_PROCESSORS clear,
2067 * while also expecting us to flush something and crashing if
2068 * we don't. Let's treat processor_mask == 0 same as
2069 * HV_FLUSH_ALL_PROCESSORS.
2070 */
2071 all_cpus = (flush.flags & HV_FLUSH_ALL_PROCESSORS) ||
2072 flush.processor_mask == 0;
2073 } else {
2074 if (hc->fast) {
2075 flush_ex.address_space = hc->ingpa;
2076 flush_ex.flags = hc->outgpa;
2077 memcpy(&flush_ex.hv_vp_set,
2078 &hc->xmm[0], sizeof(hc->xmm[0]));
2079 hc->consumed_xmm_halves = 2;
2080 } else {
2081 if (unlikely(kvm_read_guest(kvm, hc->ingpa, &flush_ex,
2082 sizeof(flush_ex))))
2083 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2084 hc->data_offset = sizeof(flush_ex);
2085 }
2086
2087 trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask,
2088 flush_ex.hv_vp_set.format,
2089 flush_ex.address_space,
2090 flush_ex.flags, is_guest_mode(vcpu));
2091
2092 valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask;
2093 all_cpus = flush_ex.hv_vp_set.format !=
2094 HV_GENERIC_SET_SPARSE_4K;
2095
2096 if (hc->var_cnt != hweight64(valid_bank_mask))
2097 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2098
2099 if (!all_cpus) {
2100 if (!hc->var_cnt)
2101 goto ret_success;
2102
2103 if (kvm_get_sparse_vp_set(kvm, hc, sparse_banks))
2104 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2105 }
2106
2107 /*
2108 * Hyper-V TLFS doesn't explicitly forbid non-empty sparse vCPU
2109 * banks (and, thus, non-zero 'var_cnt') for the 'all vCPUs'
2110 * case (HV_GENERIC_SET_ALL). Always adjust data_offset and
2111 * consumed_xmm_halves to make sure TLB flush entries are read
2112 * from the correct offset.
2113 */
2114 if (hc->fast)
2115 hc->consumed_xmm_halves += hc->var_cnt;
2116 else
2117 hc->data_offset += hc->var_cnt * sizeof(sparse_banks[0]);
2118 }
2119
2120 if (hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE ||
2121 hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX ||
2122 hc->rep_cnt > ARRAY_SIZE(__tlb_flush_entries)) {
2123 tlb_flush_entries = NULL;
2124 } else {
2125 if (kvm_hv_get_tlb_flush_entries(kvm, hc, __tlb_flush_entries))
2126 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2127 tlb_flush_entries = __tlb_flush_entries;
2128 }
2129
2130 /*
2131 * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't
2132 * analyze it here, flush TLB regardless of the specified address space.
2133 */
2134 if (all_cpus && !is_guest_mode(vcpu)) {
2135 kvm_for_each_vcpu(i, v, kvm) {
2136 tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(v, false);
2137 hv_tlb_flush_enqueue(v, tlb_flush_fifo,
2138 tlb_flush_entries, hc->rep_cnt);
2139 }
2140
2141 kvm_make_all_cpus_request(kvm, KVM_REQ_HV_TLB_FLUSH);
2142 } else if (!is_guest_mode(vcpu)) {
2143 sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask, vcpu_mask);
2144
2145 for_each_set_bit(i, vcpu_mask, KVM_MAX_VCPUS) {
2146 v = kvm_get_vcpu(kvm, i);
2147 if (!v)
2148 continue;
2149 tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(v, false);
2150 hv_tlb_flush_enqueue(v, tlb_flush_fifo,
2151 tlb_flush_entries, hc->rep_cnt);
2152 }
2153
2154 kvm_make_vcpus_request_mask(kvm, KVM_REQ_HV_TLB_FLUSH, vcpu_mask);
2155 } else {
2156 struct kvm_vcpu_hv *hv_v;
2157
2158 bitmap_zero(vcpu_mask, KVM_MAX_VCPUS);
2159
2160 kvm_for_each_vcpu(i, v, kvm) {
2161 hv_v = to_hv_vcpu(v);
2162
2163 /*
2164 * The following check races with nested vCPUs entering/exiting
2165 * and/or migrating between L1's vCPUs, however the only case when
2166 * KVM *must* flush the TLB is when the target L2 vCPU keeps
2167 * running on the same L1 vCPU from the moment of the request until
2168 * kvm_hv_flush_tlb() returns. TLB is fully flushed in all other
2169 * cases, e.g. when the target L2 vCPU migrates to a different L1
2170 * vCPU or when the corresponding L1 vCPU temporary switches to a
2171 * different L2 vCPU while the request is being processed.
2172 */
2173 if (!hv_v || hv_v->nested.vm_id != hv_vcpu->nested.vm_id)
2174 continue;
2175
2176 if (!all_cpus &&
2177 !hv_is_vp_in_sparse_set(hv_v->nested.vp_id, valid_bank_mask,
2178 sparse_banks))
2179 continue;
2180
2181 __set_bit(i, vcpu_mask);
2182 tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(v, true);
2183 hv_tlb_flush_enqueue(v, tlb_flush_fifo,
2184 tlb_flush_entries, hc->rep_cnt);
2185 }
2186
2187 kvm_make_vcpus_request_mask(kvm, KVM_REQ_HV_TLB_FLUSH, vcpu_mask);
2188 }
2189
2190 ret_success:
2191 /* We always do full TLB flush, set 'Reps completed' = 'Rep Count' */
2192 return (u64)HV_STATUS_SUCCESS |
2193 ((u64)hc->rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET);
2194 }
2195
kvm_hv_send_ipi_to_many(struct kvm * kvm,u32 vector,u64 * sparse_banks,u64 valid_bank_mask)2196 static void kvm_hv_send_ipi_to_many(struct kvm *kvm, u32 vector,
2197 u64 *sparse_banks, u64 valid_bank_mask)
2198 {
2199 struct kvm_lapic_irq irq = {
2200 .delivery_mode = APIC_DM_FIXED,
2201 .vector = vector
2202 };
2203 struct kvm_vcpu *vcpu;
2204 unsigned long i;
2205
2206 kvm_for_each_vcpu(i, vcpu, kvm) {
2207 if (sparse_banks &&
2208 !hv_is_vp_in_sparse_set(kvm_hv_get_vpindex(vcpu),
2209 valid_bank_mask, sparse_banks))
2210 continue;
2211
2212 /* We fail only when APIC is disabled */
2213 kvm_apic_set_irq(vcpu, &irq, NULL);
2214 }
2215 }
2216
kvm_hv_send_ipi(struct kvm_vcpu * vcpu,struct kvm_hv_hcall * hc)2217 static u64 kvm_hv_send_ipi(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
2218 {
2219 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
2220 u64 *sparse_banks = hv_vcpu->sparse_banks;
2221 struct kvm *kvm = vcpu->kvm;
2222 struct hv_send_ipi_ex send_ipi_ex;
2223 struct hv_send_ipi send_ipi;
2224 u64 valid_bank_mask;
2225 u32 vector;
2226 bool all_cpus;
2227
2228 if (!lapic_in_kernel(vcpu))
2229 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2230
2231 if (hc->code == HVCALL_SEND_IPI) {
2232 if (!hc->fast) {
2233 if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi,
2234 sizeof(send_ipi))))
2235 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2236 sparse_banks[0] = send_ipi.cpu_mask;
2237 vector = send_ipi.vector;
2238 } else {
2239 /* 'reserved' part of hv_send_ipi should be 0 */
2240 if (unlikely(hc->ingpa >> 32 != 0))
2241 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2242 sparse_banks[0] = hc->outgpa;
2243 vector = (u32)hc->ingpa;
2244 }
2245 all_cpus = false;
2246 valid_bank_mask = BIT_ULL(0);
2247
2248 trace_kvm_hv_send_ipi(vector, sparse_banks[0]);
2249 } else {
2250 if (!hc->fast) {
2251 if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi_ex,
2252 sizeof(send_ipi_ex))))
2253 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2254 } else {
2255 send_ipi_ex.vector = (u32)hc->ingpa;
2256 send_ipi_ex.vp_set.format = hc->outgpa;
2257 send_ipi_ex.vp_set.valid_bank_mask = sse128_lo(hc->xmm[0]);
2258 }
2259
2260 trace_kvm_hv_send_ipi_ex(send_ipi_ex.vector,
2261 send_ipi_ex.vp_set.format,
2262 send_ipi_ex.vp_set.valid_bank_mask);
2263
2264 vector = send_ipi_ex.vector;
2265 valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask;
2266 all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL;
2267
2268 if (hc->var_cnt != hweight64(valid_bank_mask))
2269 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2270
2271 if (all_cpus)
2272 goto check_and_send_ipi;
2273
2274 if (!hc->var_cnt)
2275 goto ret_success;
2276
2277 if (!hc->fast)
2278 hc->data_offset = offsetof(struct hv_send_ipi_ex,
2279 vp_set.bank_contents);
2280 else
2281 hc->consumed_xmm_halves = 1;
2282
2283 if (kvm_get_sparse_vp_set(kvm, hc, sparse_banks))
2284 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2285 }
2286
2287 check_and_send_ipi:
2288 if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR))
2289 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2290
2291 if (all_cpus)
2292 kvm_hv_send_ipi_to_many(kvm, vector, NULL, 0);
2293 else
2294 kvm_hv_send_ipi_to_many(kvm, vector, sparse_banks, valid_bank_mask);
2295
2296 ret_success:
2297 return HV_STATUS_SUCCESS;
2298 }
2299
kvm_hv_set_cpuid(struct kvm_vcpu * vcpu,bool hyperv_enabled)2300 void kvm_hv_set_cpuid(struct kvm_vcpu *vcpu, bool hyperv_enabled)
2301 {
2302 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
2303 struct kvm_cpuid_entry2 *entry;
2304
2305 vcpu->arch.hyperv_enabled = hyperv_enabled;
2306
2307 if (!hv_vcpu) {
2308 /*
2309 * KVM should have already allocated kvm_vcpu_hv if Hyper-V is
2310 * enabled in CPUID.
2311 */
2312 WARN_ON_ONCE(vcpu->arch.hyperv_enabled);
2313 return;
2314 }
2315
2316 memset(&hv_vcpu->cpuid_cache, 0, sizeof(hv_vcpu->cpuid_cache));
2317
2318 if (!vcpu->arch.hyperv_enabled)
2319 return;
2320
2321 entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_FEATURES);
2322 if (entry) {
2323 hv_vcpu->cpuid_cache.features_eax = entry->eax;
2324 hv_vcpu->cpuid_cache.features_ebx = entry->ebx;
2325 hv_vcpu->cpuid_cache.features_edx = entry->edx;
2326 }
2327
2328 entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_ENLIGHTMENT_INFO);
2329 if (entry) {
2330 hv_vcpu->cpuid_cache.enlightenments_eax = entry->eax;
2331 hv_vcpu->cpuid_cache.enlightenments_ebx = entry->ebx;
2332 }
2333
2334 entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES);
2335 if (entry)
2336 hv_vcpu->cpuid_cache.syndbg_cap_eax = entry->eax;
2337
2338 entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_NESTED_FEATURES);
2339 if (entry) {
2340 hv_vcpu->cpuid_cache.nested_eax = entry->eax;
2341 hv_vcpu->cpuid_cache.nested_ebx = entry->ebx;
2342 }
2343 }
2344
kvm_hv_set_enforce_cpuid(struct kvm_vcpu * vcpu,bool enforce)2345 int kvm_hv_set_enforce_cpuid(struct kvm_vcpu *vcpu, bool enforce)
2346 {
2347 struct kvm_vcpu_hv *hv_vcpu;
2348 int ret = 0;
2349
2350 if (!to_hv_vcpu(vcpu)) {
2351 if (enforce) {
2352 ret = kvm_hv_vcpu_init(vcpu);
2353 if (ret)
2354 return ret;
2355 } else {
2356 return 0;
2357 }
2358 }
2359
2360 hv_vcpu = to_hv_vcpu(vcpu);
2361 hv_vcpu->enforce_cpuid = enforce;
2362
2363 return ret;
2364 }
2365
kvm_hv_hypercall_set_result(struct kvm_vcpu * vcpu,u64 result)2366 static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
2367 {
2368 bool longmode;
2369
2370 longmode = is_64_bit_hypercall(vcpu);
2371 if (longmode)
2372 kvm_rax_write(vcpu, result);
2373 else {
2374 kvm_rdx_write(vcpu, result >> 32);
2375 kvm_rax_write(vcpu, result & 0xffffffff);
2376 }
2377 }
2378
kvm_hv_hypercall_complete(struct kvm_vcpu * vcpu,u64 result)2379 static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result)
2380 {
2381 u32 tlb_lock_count = 0;
2382 int ret;
2383
2384 if (hv_result_success(result) && is_guest_mode(vcpu) &&
2385 kvm_hv_is_tlb_flush_hcall(vcpu) &&
2386 kvm_read_guest(vcpu->kvm, to_hv_vcpu(vcpu)->nested.pa_page_gpa,
2387 &tlb_lock_count, sizeof(tlb_lock_count)))
2388 result = HV_STATUS_INVALID_HYPERCALL_INPUT;
2389
2390 trace_kvm_hv_hypercall_done(result);
2391 kvm_hv_hypercall_set_result(vcpu, result);
2392 ++vcpu->stat.hypercalls;
2393
2394 ret = kvm_skip_emulated_instruction(vcpu);
2395
2396 if (tlb_lock_count)
2397 kvm_x86_ops.nested_ops->hv_inject_synthetic_vmexit_post_tlb_flush(vcpu);
2398
2399 return ret;
2400 }
2401
kvm_hv_hypercall_complete_userspace(struct kvm_vcpu * vcpu)2402 static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
2403 {
2404 return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result);
2405 }
2406
kvm_hvcall_signal_event(struct kvm_vcpu * vcpu,struct kvm_hv_hcall * hc)2407 static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
2408 {
2409 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
2410 struct eventfd_ctx *eventfd;
2411
2412 if (unlikely(!hc->fast)) {
2413 int ret;
2414 gpa_t gpa = hc->ingpa;
2415
2416 if ((gpa & (__alignof__(hc->ingpa) - 1)) ||
2417 offset_in_page(gpa) + sizeof(hc->ingpa) > PAGE_SIZE)
2418 return HV_STATUS_INVALID_ALIGNMENT;
2419
2420 ret = kvm_vcpu_read_guest(vcpu, gpa,
2421 &hc->ingpa, sizeof(hc->ingpa));
2422 if (ret < 0)
2423 return HV_STATUS_INVALID_ALIGNMENT;
2424 }
2425
2426 /*
2427 * Per spec, bits 32-47 contain the extra "flag number". However, we
2428 * have no use for it, and in all known usecases it is zero, so just
2429 * report lookup failure if it isn't.
2430 */
2431 if (hc->ingpa & 0xffff00000000ULL)
2432 return HV_STATUS_INVALID_PORT_ID;
2433 /* remaining bits are reserved-zero */
2434 if (hc->ingpa & ~KVM_HYPERV_CONN_ID_MASK)
2435 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2436
2437 /* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */
2438 rcu_read_lock();
2439 eventfd = idr_find(&hv->conn_to_evt, hc->ingpa);
2440 rcu_read_unlock();
2441 if (!eventfd)
2442 return HV_STATUS_INVALID_PORT_ID;
2443
2444 eventfd_signal(eventfd);
2445 return HV_STATUS_SUCCESS;
2446 }
2447
is_xmm_fast_hypercall(struct kvm_hv_hcall * hc)2448 static bool is_xmm_fast_hypercall(struct kvm_hv_hcall *hc)
2449 {
2450 switch (hc->code) {
2451 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
2452 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
2453 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
2454 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
2455 case HVCALL_SEND_IPI_EX:
2456 return true;
2457 }
2458
2459 return false;
2460 }
2461
kvm_hv_hypercall_read_xmm(struct kvm_hv_hcall * hc)2462 static void kvm_hv_hypercall_read_xmm(struct kvm_hv_hcall *hc)
2463 {
2464 int reg;
2465
2466 kvm_fpu_get();
2467 for (reg = 0; reg < HV_HYPERCALL_MAX_XMM_REGISTERS; reg++)
2468 _kvm_read_sse_reg(reg, &hc->xmm[reg]);
2469 kvm_fpu_put();
2470 }
2471
hv_check_hypercall_access(struct kvm_vcpu_hv * hv_vcpu,u16 code)2472 static bool hv_check_hypercall_access(struct kvm_vcpu_hv *hv_vcpu, u16 code)
2473 {
2474 if (!hv_vcpu->enforce_cpuid)
2475 return true;
2476
2477 switch (code) {
2478 case HVCALL_NOTIFY_LONG_SPIN_WAIT:
2479 return hv_vcpu->cpuid_cache.enlightenments_ebx &&
2480 hv_vcpu->cpuid_cache.enlightenments_ebx != U32_MAX;
2481 case HVCALL_POST_MESSAGE:
2482 return hv_vcpu->cpuid_cache.features_ebx & HV_POST_MESSAGES;
2483 case HVCALL_SIGNAL_EVENT:
2484 return hv_vcpu->cpuid_cache.features_ebx & HV_SIGNAL_EVENTS;
2485 case HVCALL_POST_DEBUG_DATA:
2486 case HVCALL_RETRIEVE_DEBUG_DATA:
2487 case HVCALL_RESET_DEBUG_SESSION:
2488 /*
2489 * Return 'true' when SynDBG is disabled so the resulting code
2490 * will be HV_STATUS_INVALID_HYPERCALL_CODE.
2491 */
2492 return !kvm_hv_is_syndbg_enabled(hv_vcpu->vcpu) ||
2493 hv_vcpu->cpuid_cache.features_ebx & HV_DEBUGGING;
2494 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
2495 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
2496 if (!(hv_vcpu->cpuid_cache.enlightenments_eax &
2497 HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED))
2498 return false;
2499 fallthrough;
2500 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
2501 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
2502 return hv_vcpu->cpuid_cache.enlightenments_eax &
2503 HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
2504 case HVCALL_SEND_IPI_EX:
2505 if (!(hv_vcpu->cpuid_cache.enlightenments_eax &
2506 HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED))
2507 return false;
2508 fallthrough;
2509 case HVCALL_SEND_IPI:
2510 return hv_vcpu->cpuid_cache.enlightenments_eax &
2511 HV_X64_CLUSTER_IPI_RECOMMENDED;
2512 case HV_EXT_CALL_QUERY_CAPABILITIES ... HV_EXT_CALL_MAX:
2513 return hv_vcpu->cpuid_cache.features_ebx &
2514 HV_ENABLE_EXTENDED_HYPERCALLS;
2515 default:
2516 break;
2517 }
2518
2519 return true;
2520 }
2521
kvm_hv_hypercall(struct kvm_vcpu * vcpu)2522 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
2523 {
2524 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
2525 struct kvm_hv_hcall hc;
2526 u64 ret = HV_STATUS_SUCCESS;
2527
2528 /*
2529 * hypercall generates UD from non zero cpl and real mode
2530 * per HYPER-V spec
2531 */
2532 if (kvm_x86_call(get_cpl)(vcpu) != 0 || !is_protmode(vcpu)) {
2533 kvm_queue_exception(vcpu, UD_VECTOR);
2534 return 1;
2535 }
2536
2537 #ifdef CONFIG_X86_64
2538 if (is_64_bit_hypercall(vcpu)) {
2539 hc.param = kvm_rcx_read(vcpu);
2540 hc.ingpa = kvm_rdx_read(vcpu);
2541 hc.outgpa = kvm_r8_read(vcpu);
2542 } else
2543 #endif
2544 {
2545 hc.param = ((u64)kvm_rdx_read(vcpu) << 32) |
2546 (kvm_rax_read(vcpu) & 0xffffffff);
2547 hc.ingpa = ((u64)kvm_rbx_read(vcpu) << 32) |
2548 (kvm_rcx_read(vcpu) & 0xffffffff);
2549 hc.outgpa = ((u64)kvm_rdi_read(vcpu) << 32) |
2550 (kvm_rsi_read(vcpu) & 0xffffffff);
2551 }
2552
2553 hc.code = hc.param & 0xffff;
2554 hc.var_cnt = (hc.param & HV_HYPERCALL_VARHEAD_MASK) >> HV_HYPERCALL_VARHEAD_OFFSET;
2555 hc.fast = !!(hc.param & HV_HYPERCALL_FAST_BIT);
2556 hc.rep_cnt = (hc.param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff;
2557 hc.rep_idx = (hc.param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff;
2558 hc.rep = !!(hc.rep_cnt || hc.rep_idx);
2559
2560 trace_kvm_hv_hypercall(hc.code, hc.fast, hc.var_cnt, hc.rep_cnt,
2561 hc.rep_idx, hc.ingpa, hc.outgpa);
2562
2563 if (unlikely(!hv_check_hypercall_access(hv_vcpu, hc.code))) {
2564 ret = HV_STATUS_ACCESS_DENIED;
2565 goto hypercall_complete;
2566 }
2567
2568 if (unlikely(hc.param & HV_HYPERCALL_RSVD_MASK)) {
2569 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2570 goto hypercall_complete;
2571 }
2572
2573 if (hc.fast && is_xmm_fast_hypercall(&hc)) {
2574 if (unlikely(hv_vcpu->enforce_cpuid &&
2575 !(hv_vcpu->cpuid_cache.features_edx &
2576 HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE))) {
2577 kvm_queue_exception(vcpu, UD_VECTOR);
2578 return 1;
2579 }
2580
2581 kvm_hv_hypercall_read_xmm(&hc);
2582 }
2583
2584 switch (hc.code) {
2585 case HVCALL_NOTIFY_LONG_SPIN_WAIT:
2586 if (unlikely(hc.rep || hc.var_cnt)) {
2587 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2588 break;
2589 }
2590 kvm_vcpu_on_spin(vcpu, true);
2591 break;
2592 case HVCALL_SIGNAL_EVENT:
2593 if (unlikely(hc.rep || hc.var_cnt)) {
2594 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2595 break;
2596 }
2597 ret = kvm_hvcall_signal_event(vcpu, &hc);
2598 if (ret != HV_STATUS_INVALID_PORT_ID)
2599 break;
2600 fallthrough; /* maybe userspace knows this conn_id */
2601 case HVCALL_POST_MESSAGE:
2602 /* don't bother userspace if it has no way to handle it */
2603 if (unlikely(hc.rep || hc.var_cnt || !to_hv_synic(vcpu)->active)) {
2604 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2605 break;
2606 }
2607 goto hypercall_userspace_exit;
2608 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
2609 if (unlikely(hc.var_cnt)) {
2610 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2611 break;
2612 }
2613 fallthrough;
2614 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
2615 if (unlikely(!hc.rep_cnt || hc.rep_idx)) {
2616 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2617 break;
2618 }
2619 ret = kvm_hv_flush_tlb(vcpu, &hc);
2620 break;
2621 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
2622 if (unlikely(hc.var_cnt)) {
2623 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2624 break;
2625 }
2626 fallthrough;
2627 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
2628 if (unlikely(hc.rep)) {
2629 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2630 break;
2631 }
2632 ret = kvm_hv_flush_tlb(vcpu, &hc);
2633 break;
2634 case HVCALL_SEND_IPI:
2635 if (unlikely(hc.var_cnt)) {
2636 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2637 break;
2638 }
2639 fallthrough;
2640 case HVCALL_SEND_IPI_EX:
2641 if (unlikely(hc.rep)) {
2642 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2643 break;
2644 }
2645 ret = kvm_hv_send_ipi(vcpu, &hc);
2646 break;
2647 case HVCALL_POST_DEBUG_DATA:
2648 case HVCALL_RETRIEVE_DEBUG_DATA:
2649 if (unlikely(hc.fast)) {
2650 ret = HV_STATUS_INVALID_PARAMETER;
2651 break;
2652 }
2653 fallthrough;
2654 case HVCALL_RESET_DEBUG_SESSION: {
2655 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
2656
2657 if (!kvm_hv_is_syndbg_enabled(vcpu)) {
2658 ret = HV_STATUS_INVALID_HYPERCALL_CODE;
2659 break;
2660 }
2661
2662 if (!(syndbg->options & HV_X64_SYNDBG_OPTION_USE_HCALLS)) {
2663 ret = HV_STATUS_OPERATION_DENIED;
2664 break;
2665 }
2666 goto hypercall_userspace_exit;
2667 }
2668 case HV_EXT_CALL_QUERY_CAPABILITIES ... HV_EXT_CALL_MAX:
2669 if (unlikely(hc.fast)) {
2670 ret = HV_STATUS_INVALID_PARAMETER;
2671 break;
2672 }
2673 goto hypercall_userspace_exit;
2674 default:
2675 ret = HV_STATUS_INVALID_HYPERCALL_CODE;
2676 break;
2677 }
2678
2679 hypercall_complete:
2680 return kvm_hv_hypercall_complete(vcpu, ret);
2681
2682 hypercall_userspace_exit:
2683 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
2684 vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
2685 vcpu->run->hyperv.u.hcall.input = hc.param;
2686 vcpu->run->hyperv.u.hcall.params[0] = hc.ingpa;
2687 vcpu->run->hyperv.u.hcall.params[1] = hc.outgpa;
2688 vcpu->arch.complete_userspace_io = kvm_hv_hypercall_complete_userspace;
2689 return 0;
2690 }
2691
kvm_hv_init_vm(struct kvm * kvm)2692 void kvm_hv_init_vm(struct kvm *kvm)
2693 {
2694 struct kvm_hv *hv = to_kvm_hv(kvm);
2695
2696 mutex_init(&hv->hv_lock);
2697 idr_init(&hv->conn_to_evt);
2698 }
2699
kvm_hv_destroy_vm(struct kvm * kvm)2700 void kvm_hv_destroy_vm(struct kvm *kvm)
2701 {
2702 struct kvm_hv *hv = to_kvm_hv(kvm);
2703 struct eventfd_ctx *eventfd;
2704 int i;
2705
2706 idr_for_each_entry(&hv->conn_to_evt, eventfd, i)
2707 eventfd_ctx_put(eventfd);
2708 idr_destroy(&hv->conn_to_evt);
2709 }
2710
kvm_hv_eventfd_assign(struct kvm * kvm,u32 conn_id,int fd)2711 static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd)
2712 {
2713 struct kvm_hv *hv = to_kvm_hv(kvm);
2714 struct eventfd_ctx *eventfd;
2715 int ret;
2716
2717 eventfd = eventfd_ctx_fdget(fd);
2718 if (IS_ERR(eventfd))
2719 return PTR_ERR(eventfd);
2720
2721 mutex_lock(&hv->hv_lock);
2722 ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1,
2723 GFP_KERNEL_ACCOUNT);
2724 mutex_unlock(&hv->hv_lock);
2725
2726 if (ret >= 0)
2727 return 0;
2728
2729 if (ret == -ENOSPC)
2730 ret = -EEXIST;
2731 eventfd_ctx_put(eventfd);
2732 return ret;
2733 }
2734
kvm_hv_eventfd_deassign(struct kvm * kvm,u32 conn_id)2735 static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id)
2736 {
2737 struct kvm_hv *hv = to_kvm_hv(kvm);
2738 struct eventfd_ctx *eventfd;
2739
2740 mutex_lock(&hv->hv_lock);
2741 eventfd = idr_remove(&hv->conn_to_evt, conn_id);
2742 mutex_unlock(&hv->hv_lock);
2743
2744 if (!eventfd)
2745 return -ENOENT;
2746
2747 synchronize_srcu(&kvm->srcu);
2748 eventfd_ctx_put(eventfd);
2749 return 0;
2750 }
2751
kvm_vm_ioctl_hv_eventfd(struct kvm * kvm,struct kvm_hyperv_eventfd * args)2752 int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args)
2753 {
2754 if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) ||
2755 (args->conn_id & ~KVM_HYPERV_CONN_ID_MASK))
2756 return -EINVAL;
2757
2758 if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN)
2759 return kvm_hv_eventfd_deassign(kvm, args->conn_id);
2760 return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd);
2761 }
2762
kvm_get_hv_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)2763 int kvm_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid,
2764 struct kvm_cpuid_entry2 __user *entries)
2765 {
2766 uint16_t evmcs_ver = 0;
2767 struct kvm_cpuid_entry2 cpuid_entries[] = {
2768 { .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS },
2769 { .function = HYPERV_CPUID_INTERFACE },
2770 { .function = HYPERV_CPUID_VERSION },
2771 { .function = HYPERV_CPUID_FEATURES },
2772 { .function = HYPERV_CPUID_ENLIGHTMENT_INFO },
2773 { .function = HYPERV_CPUID_IMPLEMENT_LIMITS },
2774 { .function = HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS },
2775 { .function = HYPERV_CPUID_SYNDBG_INTERFACE },
2776 { .function = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES },
2777 { .function = HYPERV_CPUID_NESTED_FEATURES },
2778 };
2779 int i, nent = ARRAY_SIZE(cpuid_entries);
2780
2781 if (kvm_x86_ops.nested_ops->get_evmcs_version)
2782 evmcs_ver = kvm_x86_ops.nested_ops->get_evmcs_version(vcpu);
2783
2784 if (cpuid->nent < nent)
2785 return -E2BIG;
2786
2787 if (cpuid->nent > nent)
2788 cpuid->nent = nent;
2789
2790 for (i = 0; i < nent; i++) {
2791 struct kvm_cpuid_entry2 *ent = &cpuid_entries[i];
2792 u32 signature[3];
2793
2794 switch (ent->function) {
2795 case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS:
2796 memcpy(signature, "Linux KVM Hv", 12);
2797
2798 ent->eax = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
2799 ent->ebx = signature[0];
2800 ent->ecx = signature[1];
2801 ent->edx = signature[2];
2802 break;
2803
2804 case HYPERV_CPUID_INTERFACE:
2805 ent->eax = HYPERV_CPUID_SIGNATURE_EAX;
2806 break;
2807
2808 case HYPERV_CPUID_VERSION:
2809 /*
2810 * We implement some Hyper-V 2016 functions so let's use
2811 * this version.
2812 */
2813 ent->eax = 0x00003839;
2814 ent->ebx = 0x000A0000;
2815 break;
2816
2817 case HYPERV_CPUID_FEATURES:
2818 ent->eax |= HV_MSR_VP_RUNTIME_AVAILABLE;
2819 ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE;
2820 ent->eax |= HV_MSR_SYNIC_AVAILABLE;
2821 ent->eax |= HV_MSR_SYNTIMER_AVAILABLE;
2822 ent->eax |= HV_MSR_APIC_ACCESS_AVAILABLE;
2823 ent->eax |= HV_MSR_HYPERCALL_AVAILABLE;
2824 ent->eax |= HV_MSR_VP_INDEX_AVAILABLE;
2825 ent->eax |= HV_MSR_RESET_AVAILABLE;
2826 ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE;
2827 ent->eax |= HV_ACCESS_FREQUENCY_MSRS;
2828 ent->eax |= HV_ACCESS_REENLIGHTENMENT;
2829 ent->eax |= HV_ACCESS_TSC_INVARIANT;
2830
2831 ent->ebx |= HV_POST_MESSAGES;
2832 ent->ebx |= HV_SIGNAL_EVENTS;
2833 ent->ebx |= HV_ENABLE_EXTENDED_HYPERCALLS;
2834
2835 ent->edx |= HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE;
2836 ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE;
2837 ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
2838
2839 ent->ebx |= HV_DEBUGGING;
2840 ent->edx |= HV_X64_GUEST_DEBUGGING_AVAILABLE;
2841 ent->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
2842 ent->edx |= HV_FEATURE_EXT_GVA_RANGES_FLUSH;
2843
2844 /*
2845 * Direct Synthetic timers only make sense with in-kernel
2846 * LAPIC
2847 */
2848 if (!vcpu || lapic_in_kernel(vcpu))
2849 ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE;
2850
2851 break;
2852
2853 case HYPERV_CPUID_ENLIGHTMENT_INFO:
2854 ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
2855 ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
2856 ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
2857 if (!vcpu || lapic_in_kernel(vcpu))
2858 ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED;
2859 ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED;
2860 if (evmcs_ver)
2861 ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
2862 if (!cpu_smt_possible())
2863 ent->eax |= HV_X64_NO_NONARCH_CORESHARING;
2864
2865 ent->eax |= HV_DEPRECATING_AEOI_RECOMMENDED;
2866 /*
2867 * Default number of spinlock retry attempts, matches
2868 * HyperV 2016.
2869 */
2870 ent->ebx = 0x00000FFF;
2871
2872 break;
2873
2874 case HYPERV_CPUID_IMPLEMENT_LIMITS:
2875 /* Maximum number of virtual processors */
2876 ent->eax = KVM_MAX_VCPUS;
2877 /*
2878 * Maximum number of logical processors, matches
2879 * HyperV 2016.
2880 */
2881 ent->ebx = 64;
2882
2883 break;
2884
2885 case HYPERV_CPUID_NESTED_FEATURES:
2886 ent->eax = evmcs_ver;
2887 ent->eax |= HV_X64_NESTED_DIRECT_FLUSH;
2888 ent->eax |= HV_X64_NESTED_MSR_BITMAP;
2889 ent->ebx |= HV_X64_NESTED_EVMCS1_PERF_GLOBAL_CTRL;
2890 break;
2891
2892 case HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS:
2893 memcpy(signature, "Linux KVM Hv", 12);
2894
2895 ent->eax = 0;
2896 ent->ebx = signature[0];
2897 ent->ecx = signature[1];
2898 ent->edx = signature[2];
2899 break;
2900
2901 case HYPERV_CPUID_SYNDBG_INTERFACE:
2902 memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
2903 ent->eax = signature[0];
2904 break;
2905
2906 case HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES:
2907 ent->eax |= HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
2908 break;
2909
2910 default:
2911 break;
2912 }
2913 }
2914
2915 if (copy_to_user(entries, cpuid_entries,
2916 nent * sizeof(struct kvm_cpuid_entry2)))
2917 return -EFAULT;
2918
2919 return 0;
2920 }
2921