1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 *
4 * hfcpci.c low level driver for CCD's hfc-pci based cards
5 *
6 * Author Werner Cornelius (werner@isdn4linux.de)
7 * based on existing driver for CCD hfc ISA cards
8 * type approval valid for HFC-S PCI A based card
9 *
10 * Copyright 1999 by Werner Cornelius (werner@isdn-development.de)
11 * Copyright 2008 by Karsten Keil <kkeil@novell.com>
12 *
13 * Module options:
14 *
15 * debug:
16 * NOTE: only one poll value must be given for all cards
17 * See hfc_pci.h for debug flags.
18 *
19 * poll:
20 * NOTE: only one poll value must be given for all cards
21 * Give the number of samples for each fifo process.
22 * By default 128 is used. Decrease to reduce delay, increase to
23 * reduce cpu load. If unsure, don't mess with it!
24 * A value of 128 will use controller's interrupt. Other values will
25 * use kernel timer, because the controller will not allow lower values
26 * than 128.
27 * Also note that the value depends on the kernel timer frequency.
28 * If kernel uses a frequency of 1000 Hz, steps of 8 samples are possible.
29 * If the kernel uses 100 Hz, steps of 80 samples are possible.
30 * If the kernel uses 300 Hz, steps of about 26 samples are possible.
31 */
32
33 #include <linux/interrupt.h>
34 #include <linux/module.h>
35 #include <linux/pci.h>
36 #include <linux/delay.h>
37 #include <linux/mISDNhw.h>
38 #include <linux/slab.h>
39
40 #include "hfc_pci.h"
41
42 static const char *hfcpci_revision = "2.0";
43
44 static int HFC_cnt;
45 static uint debug;
46 static uint poll, tics;
47 static struct timer_list hfc_tl;
48 static unsigned long hfc_jiffies;
49
50 MODULE_AUTHOR("Karsten Keil");
51 MODULE_DESCRIPTION("mISDN driver for CCD's hfc-pci based cards");
52 MODULE_LICENSE("GPL");
53 module_param(debug, uint, S_IRUGO | S_IWUSR);
54 module_param(poll, uint, S_IRUGO | S_IWUSR);
55
56 enum {
57 HFC_CCD_2BD0,
58 HFC_CCD_B000,
59 HFC_CCD_B006,
60 HFC_CCD_B007,
61 HFC_CCD_B008,
62 HFC_CCD_B009,
63 HFC_CCD_B00A,
64 HFC_CCD_B00B,
65 HFC_CCD_B00C,
66 HFC_CCD_B100,
67 HFC_CCD_B700,
68 HFC_CCD_B701,
69 HFC_ASUS_0675,
70 HFC_BERKOM_A1T,
71 HFC_BERKOM_TCONCEPT,
72 HFC_ANIGMA_MC145575,
73 HFC_ZOLTRIX_2BD0,
74 HFC_DIGI_DF_M_IOM2_E,
75 HFC_DIGI_DF_M_E,
76 HFC_DIGI_DF_M_IOM2_A,
77 HFC_DIGI_DF_M_A,
78 HFC_ABOCOM_2BD1,
79 HFC_SITECOM_DC105V2,
80 };
81
82 struct hfcPCI_hw {
83 unsigned char cirm;
84 unsigned char ctmt;
85 unsigned char clkdel;
86 unsigned char states;
87 unsigned char conn;
88 unsigned char mst_m;
89 unsigned char int_m1;
90 unsigned char int_m2;
91 unsigned char sctrl;
92 unsigned char sctrl_r;
93 unsigned char sctrl_e;
94 unsigned char trm;
95 unsigned char fifo_en;
96 unsigned char bswapped;
97 unsigned char protocol;
98 int nt_timer;
99 unsigned char __iomem *pci_io; /* start of PCI IO memory */
100 dma_addr_t dmahandle;
101 void *fifos; /* FIFO memory */
102 int last_bfifo_cnt[2];
103 /* marker saving last b-fifo frame count */
104 struct timer_list timer;
105 };
106
107 #define HFC_CFG_MASTER 1
108 #define HFC_CFG_SLAVE 2
109 #define HFC_CFG_PCM 3
110 #define HFC_CFG_2HFC 4
111 #define HFC_CFG_SLAVEHFC 5
112 #define HFC_CFG_NEG_F0 6
113 #define HFC_CFG_SW_DD_DU 7
114
115 #define FLG_HFC_TIMER_T1 16
116 #define FLG_HFC_TIMER_T3 17
117
118 #define NT_T1_COUNT 1120 /* number of 3.125ms interrupts (3.5s) */
119 #define NT_T3_COUNT 31 /* number of 3.125ms interrupts (97 ms) */
120 #define CLKDEL_TE 0x0e /* CLKDEL in TE mode */
121 #define CLKDEL_NT 0x6c /* CLKDEL in NT mode */
122
123
124 struct hfc_pci {
125 u_char subtype;
126 u_char chanlimit;
127 u_char initdone;
128 u_long cfg;
129 u_int irq;
130 u_int irqcnt;
131 struct pci_dev *pdev;
132 struct hfcPCI_hw hw;
133 spinlock_t lock; /* card lock */
134 struct dchannel dch;
135 struct bchannel bch[2];
136 };
137
138 /* Interface functions */
139 static void
enable_hwirq(struct hfc_pci * hc)140 enable_hwirq(struct hfc_pci *hc)
141 {
142 hc->hw.int_m2 |= HFCPCI_IRQ_ENABLE;
143 Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2);
144 }
145
146 static void
disable_hwirq(struct hfc_pci * hc)147 disable_hwirq(struct hfc_pci *hc)
148 {
149 hc->hw.int_m2 &= ~((u_char)HFCPCI_IRQ_ENABLE);
150 Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2);
151 }
152
153 /*
154 * free hardware resources used by driver
155 */
156 static void
release_io_hfcpci(struct hfc_pci * hc)157 release_io_hfcpci(struct hfc_pci *hc)
158 {
159 /* disable memory mapped ports + busmaster */
160 pci_write_config_word(hc->pdev, PCI_COMMAND, 0);
161 del_timer(&hc->hw.timer);
162 dma_free_coherent(&hc->pdev->dev, 0x8000, hc->hw.fifos,
163 hc->hw.dmahandle);
164 iounmap(hc->hw.pci_io);
165 }
166
167 /*
168 * set mode (NT or TE)
169 */
170 static void
hfcpci_setmode(struct hfc_pci * hc)171 hfcpci_setmode(struct hfc_pci *hc)
172 {
173 if (hc->hw.protocol == ISDN_P_NT_S0) {
174 hc->hw.clkdel = CLKDEL_NT; /* ST-Bit delay for NT-Mode */
175 hc->hw.sctrl |= SCTRL_MODE_NT; /* NT-MODE */
176 hc->hw.states = 1; /* G1 */
177 } else {
178 hc->hw.clkdel = CLKDEL_TE; /* ST-Bit delay for TE-Mode */
179 hc->hw.sctrl &= ~SCTRL_MODE_NT; /* TE-MODE */
180 hc->hw.states = 2; /* F2 */
181 }
182 Write_hfc(hc, HFCPCI_CLKDEL, hc->hw.clkdel);
183 Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | hc->hw.states);
184 udelay(10);
185 Write_hfc(hc, HFCPCI_STATES, hc->hw.states | 0x40); /* Deactivate */
186 Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl);
187 }
188
189 /*
190 * function called to reset the HFC PCI chip. A complete software reset of chip
191 * and fifos is done.
192 */
193 static void
reset_hfcpci(struct hfc_pci * hc)194 reset_hfcpci(struct hfc_pci *hc)
195 {
196 u_char val;
197 int cnt = 0;
198
199 printk(KERN_DEBUG "reset_hfcpci: entered\n");
200 val = Read_hfc(hc, HFCPCI_CHIP_ID);
201 printk(KERN_INFO "HFC_PCI: resetting HFC ChipId(%x)\n", val);
202 /* enable memory mapped ports, disable busmaster */
203 pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO);
204 disable_hwirq(hc);
205 /* enable memory ports + busmaster */
206 pci_write_config_word(hc->pdev, PCI_COMMAND,
207 PCI_ENA_MEMIO + PCI_ENA_MASTER);
208 val = Read_hfc(hc, HFCPCI_STATUS);
209 printk(KERN_DEBUG "HFC-PCI status(%x) before reset\n", val);
210 hc->hw.cirm = HFCPCI_RESET; /* Reset On */
211 Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
212 set_current_state(TASK_UNINTERRUPTIBLE);
213 mdelay(10); /* Timeout 10ms */
214 hc->hw.cirm = 0; /* Reset Off */
215 Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
216 val = Read_hfc(hc, HFCPCI_STATUS);
217 printk(KERN_DEBUG "HFC-PCI status(%x) after reset\n", val);
218 while (cnt < 50000) { /* max 50000 us */
219 udelay(5);
220 cnt += 5;
221 val = Read_hfc(hc, HFCPCI_STATUS);
222 if (!(val & 2))
223 break;
224 }
225 printk(KERN_DEBUG "HFC-PCI status(%x) after %dus\n", val, cnt);
226
227 hc->hw.fifo_en = 0x30; /* only D fifos enabled */
228
229 hc->hw.bswapped = 0; /* no exchange */
230 hc->hw.ctmt = HFCPCI_TIM3_125 | HFCPCI_AUTO_TIMER;
231 hc->hw.trm = HFCPCI_BTRANS_THRESMASK; /* no echo connect , threshold */
232 hc->hw.sctrl = 0x40; /* set tx_lo mode, error in datasheet ! */
233 hc->hw.sctrl_r = 0;
234 hc->hw.sctrl_e = HFCPCI_AUTO_AWAKE; /* S/T Auto awake */
235 hc->hw.mst_m = 0;
236 if (test_bit(HFC_CFG_MASTER, &hc->cfg))
237 hc->hw.mst_m |= HFCPCI_MASTER; /* HFC Master Mode */
238 if (test_bit(HFC_CFG_NEG_F0, &hc->cfg))
239 hc->hw.mst_m |= HFCPCI_F0_NEGATIV;
240 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
241 Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
242 Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e);
243 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
244
245 hc->hw.int_m1 = HFCPCI_INTS_DTRANS | HFCPCI_INTS_DREC |
246 HFCPCI_INTS_L1STATE | HFCPCI_INTS_TIMER;
247 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
248
249 /* Clear already pending ints */
250 val = Read_hfc(hc, HFCPCI_INT_S1);
251
252 /* set NT/TE mode */
253 hfcpci_setmode(hc);
254
255 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
256 Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
257
258 /*
259 * Init GCI/IOM2 in master mode
260 * Slots 0 and 1 are set for B-chan 1 and 2
261 * D- and monitor/CI channel are not enabled
262 * STIO1 is used as output for data, B1+B2 from ST->IOM+HFC
263 * STIO2 is used as data input, B1+B2 from IOM->ST
264 * ST B-channel send disabled -> continuous 1s
265 * The IOM slots are always enabled
266 */
267 if (test_bit(HFC_CFG_PCM, &hc->cfg)) {
268 /* set data flow directions: connect B1,B2: HFC to/from PCM */
269 hc->hw.conn = 0x09;
270 } else {
271 hc->hw.conn = 0x36; /* set data flow directions */
272 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) {
273 Write_hfc(hc, HFCPCI_B1_SSL, 0xC0);
274 Write_hfc(hc, HFCPCI_B2_SSL, 0xC1);
275 Write_hfc(hc, HFCPCI_B1_RSL, 0xC0);
276 Write_hfc(hc, HFCPCI_B2_RSL, 0xC1);
277 } else {
278 Write_hfc(hc, HFCPCI_B1_SSL, 0x80);
279 Write_hfc(hc, HFCPCI_B2_SSL, 0x81);
280 Write_hfc(hc, HFCPCI_B1_RSL, 0x80);
281 Write_hfc(hc, HFCPCI_B2_RSL, 0x81);
282 }
283 }
284 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
285 val = Read_hfc(hc, HFCPCI_INT_S2);
286 }
287
288 /*
289 * Timer function called when kernel timer expires
290 */
291 static void
hfcpci_Timer(struct timer_list * t)292 hfcpci_Timer(struct timer_list *t)
293 {
294 struct hfc_pci *hc = from_timer(hc, t, hw.timer);
295 hc->hw.timer.expires = jiffies + 75;
296 /* WD RESET */
297 /*
298 * WriteReg(hc, HFCD_DATA, HFCD_CTMT, hc->hw.ctmt | 0x80);
299 * add_timer(&hc->hw.timer);
300 */
301 }
302
303
304 /*
305 * select a b-channel entry matching and active
306 */
307 static struct bchannel *
Sel_BCS(struct hfc_pci * hc,int channel)308 Sel_BCS(struct hfc_pci *hc, int channel)
309 {
310 if (test_bit(FLG_ACTIVE, &hc->bch[0].Flags) &&
311 (hc->bch[0].nr & channel))
312 return &hc->bch[0];
313 else if (test_bit(FLG_ACTIVE, &hc->bch[1].Flags) &&
314 (hc->bch[1].nr & channel))
315 return &hc->bch[1];
316 else
317 return NULL;
318 }
319
320 /*
321 * clear the desired B-channel rx fifo
322 */
323 static void
hfcpci_clear_fifo_rx(struct hfc_pci * hc,int fifo)324 hfcpci_clear_fifo_rx(struct hfc_pci *hc, int fifo)
325 {
326 u_char fifo_state;
327 struct bzfifo *bzr;
328
329 if (fifo) {
330 bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2;
331 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2RX;
332 } else {
333 bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1;
334 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1RX;
335 }
336 if (fifo_state)
337 hc->hw.fifo_en ^= fifo_state;
338 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
339 hc->hw.last_bfifo_cnt[fifo] = 0;
340 bzr->f1 = MAX_B_FRAMES;
341 bzr->f2 = bzr->f1; /* init F pointers to remain constant */
342 bzr->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1);
343 bzr->za[MAX_B_FRAMES].z2 = cpu_to_le16(
344 le16_to_cpu(bzr->za[MAX_B_FRAMES].z1));
345 if (fifo_state)
346 hc->hw.fifo_en |= fifo_state;
347 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
348 }
349
350 /*
351 * clear the desired B-channel tx fifo
352 */
hfcpci_clear_fifo_tx(struct hfc_pci * hc,int fifo)353 static void hfcpci_clear_fifo_tx(struct hfc_pci *hc, int fifo)
354 {
355 u_char fifo_state;
356 struct bzfifo *bzt;
357
358 if (fifo) {
359 bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
360 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2TX;
361 } else {
362 bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
363 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1TX;
364 }
365 if (fifo_state)
366 hc->hw.fifo_en ^= fifo_state;
367 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
368 if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL)
369 printk(KERN_DEBUG "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) "
370 "z1(%x) z2(%x) state(%x)\n",
371 fifo, bzt->f1, bzt->f2,
372 le16_to_cpu(bzt->za[MAX_B_FRAMES].z1),
373 le16_to_cpu(bzt->za[MAX_B_FRAMES].z2),
374 fifo_state);
375 bzt->f2 = MAX_B_FRAMES;
376 bzt->f1 = bzt->f2; /* init F pointers to remain constant */
377 bzt->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1);
378 bzt->za[MAX_B_FRAMES].z2 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 2);
379 if (fifo_state)
380 hc->hw.fifo_en |= fifo_state;
381 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
382 if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL)
383 printk(KERN_DEBUG
384 "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) z1(%x) z2(%x)\n",
385 fifo, bzt->f1, bzt->f2,
386 le16_to_cpu(bzt->za[MAX_B_FRAMES].z1),
387 le16_to_cpu(bzt->za[MAX_B_FRAMES].z2));
388 }
389
390 /*
391 * read a complete B-frame out of the buffer
392 */
393 static void
hfcpci_empty_bfifo(struct bchannel * bch,struct bzfifo * bz,u_char * bdata,int count)394 hfcpci_empty_bfifo(struct bchannel *bch, struct bzfifo *bz,
395 u_char *bdata, int count)
396 {
397 u_char *ptr, *ptr1, new_f2;
398 int maxlen, new_z2;
399 struct zt *zp;
400
401 if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO))
402 printk(KERN_DEBUG "hfcpci_empty_fifo\n");
403 zp = &bz->za[bz->f2]; /* point to Z-Regs */
404 new_z2 = le16_to_cpu(zp->z2) + count; /* new position in fifo */
405 if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
406 new_z2 -= B_FIFO_SIZE; /* buffer wrap */
407 new_f2 = (bz->f2 + 1) & MAX_B_FRAMES;
408 if ((count > MAX_DATA_SIZE + 3) || (count < 4) ||
409 (*(bdata + (le16_to_cpu(zp->z1) - B_SUB_VAL)))) {
410 if (bch->debug & DEBUG_HW)
411 printk(KERN_DEBUG "hfcpci_empty_fifo: incoming packet "
412 "invalid length %d or crc\n", count);
413 #ifdef ERROR_STATISTIC
414 bch->err_inv++;
415 #endif
416 bz->za[new_f2].z2 = cpu_to_le16(new_z2);
417 bz->f2 = new_f2; /* next buffer */
418 } else {
419 bch->rx_skb = mI_alloc_skb(count - 3, GFP_ATOMIC);
420 if (!bch->rx_skb) {
421 printk(KERN_WARNING "HFCPCI: receive out of memory\n");
422 return;
423 }
424 count -= 3;
425 ptr = skb_put(bch->rx_skb, count);
426
427 if (le16_to_cpu(zp->z2) + count <= B_FIFO_SIZE + B_SUB_VAL)
428 maxlen = count; /* complete transfer */
429 else
430 maxlen = B_FIFO_SIZE + B_SUB_VAL -
431 le16_to_cpu(zp->z2); /* maximum */
432
433 ptr1 = bdata + (le16_to_cpu(zp->z2) - B_SUB_VAL);
434 /* start of data */
435 memcpy(ptr, ptr1, maxlen); /* copy data */
436 count -= maxlen;
437
438 if (count) { /* rest remaining */
439 ptr += maxlen;
440 ptr1 = bdata; /* start of buffer */
441 memcpy(ptr, ptr1, count); /* rest */
442 }
443 bz->za[new_f2].z2 = cpu_to_le16(new_z2);
444 bz->f2 = new_f2; /* next buffer */
445 recv_Bchannel(bch, MISDN_ID_ANY, false);
446 }
447 }
448
449 /*
450 * D-channel receive procedure
451 */
452 static int
receive_dmsg(struct hfc_pci * hc)453 receive_dmsg(struct hfc_pci *hc)
454 {
455 struct dchannel *dch = &hc->dch;
456 int maxlen;
457 int rcnt, total;
458 int count = 5;
459 u_char *ptr, *ptr1;
460 struct dfifo *df;
461 struct zt *zp;
462
463 df = &((union fifo_area *)(hc->hw.fifos))->d_chan.d_rx;
464 while (((df->f1 & D_FREG_MASK) != (df->f2 & D_FREG_MASK)) && count--) {
465 zp = &df->za[df->f2 & D_FREG_MASK];
466 rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2);
467 if (rcnt < 0)
468 rcnt += D_FIFO_SIZE;
469 rcnt++;
470 if (dch->debug & DEBUG_HW_DCHANNEL)
471 printk(KERN_DEBUG
472 "hfcpci recd f1(%d) f2(%d) z1(%x) z2(%x) cnt(%d)\n",
473 df->f1, df->f2,
474 le16_to_cpu(zp->z1),
475 le16_to_cpu(zp->z2),
476 rcnt);
477
478 if ((rcnt > MAX_DFRAME_LEN + 3) || (rcnt < 4) ||
479 (df->data[le16_to_cpu(zp->z1)])) {
480 if (dch->debug & DEBUG_HW)
481 printk(KERN_DEBUG
482 "empty_fifo hfcpci packet inv. len "
483 "%d or crc %d\n",
484 rcnt,
485 df->data[le16_to_cpu(zp->z1)]);
486 #ifdef ERROR_STATISTIC
487 cs->err_rx++;
488 #endif
489 df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) |
490 (MAX_D_FRAMES + 1); /* next buffer */
491 df->za[df->f2 & D_FREG_MASK].z2 =
492 cpu_to_le16((le16_to_cpu(zp->z2) + rcnt) &
493 (D_FIFO_SIZE - 1));
494 } else {
495 dch->rx_skb = mI_alloc_skb(rcnt - 3, GFP_ATOMIC);
496 if (!dch->rx_skb) {
497 printk(KERN_WARNING
498 "HFC-PCI: D receive out of memory\n");
499 break;
500 }
501 total = rcnt;
502 rcnt -= 3;
503 ptr = skb_put(dch->rx_skb, rcnt);
504
505 if (le16_to_cpu(zp->z2) + rcnt <= D_FIFO_SIZE)
506 maxlen = rcnt; /* complete transfer */
507 else
508 maxlen = D_FIFO_SIZE - le16_to_cpu(zp->z2);
509 /* maximum */
510
511 ptr1 = df->data + le16_to_cpu(zp->z2);
512 /* start of data */
513 memcpy(ptr, ptr1, maxlen); /* copy data */
514 rcnt -= maxlen;
515
516 if (rcnt) { /* rest remaining */
517 ptr += maxlen;
518 ptr1 = df->data; /* start of buffer */
519 memcpy(ptr, ptr1, rcnt); /* rest */
520 }
521 df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) |
522 (MAX_D_FRAMES + 1); /* next buffer */
523 df->za[df->f2 & D_FREG_MASK].z2 = cpu_to_le16((
524 le16_to_cpu(zp->z2) + total) & (D_FIFO_SIZE - 1));
525 recv_Dchannel(dch);
526 }
527 }
528 return 1;
529 }
530
531 /*
532 * check for transparent receive data and read max one 'poll' size if avail
533 */
534 static void
hfcpci_empty_fifo_trans(struct bchannel * bch,struct bzfifo * rxbz,struct bzfifo * txbz,u_char * bdata)535 hfcpci_empty_fifo_trans(struct bchannel *bch, struct bzfifo *rxbz,
536 struct bzfifo *txbz, u_char *bdata)
537 {
538 __le16 *z1r, *z2r, *z1t, *z2t;
539 int new_z2, fcnt_rx, fcnt_tx, maxlen;
540 u_char *ptr, *ptr1;
541
542 z1r = &rxbz->za[MAX_B_FRAMES].z1; /* pointer to z reg */
543 z2r = z1r + 1;
544 z1t = &txbz->za[MAX_B_FRAMES].z1;
545 z2t = z1t + 1;
546
547 fcnt_rx = le16_to_cpu(*z1r) - le16_to_cpu(*z2r);
548 if (!fcnt_rx)
549 return; /* no data avail */
550
551 if (fcnt_rx <= 0)
552 fcnt_rx += B_FIFO_SIZE; /* bytes actually buffered */
553 new_z2 = le16_to_cpu(*z2r) + fcnt_rx; /* new position in fifo */
554 if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
555 new_z2 -= B_FIFO_SIZE; /* buffer wrap */
556
557 fcnt_tx = le16_to_cpu(*z2t) - le16_to_cpu(*z1t);
558 if (fcnt_tx <= 0)
559 fcnt_tx += B_FIFO_SIZE;
560 /* fcnt_tx contains available bytes in tx-fifo */
561 fcnt_tx = B_FIFO_SIZE - fcnt_tx;
562 /* remaining bytes to send (bytes in tx-fifo) */
563
564 if (test_bit(FLG_RX_OFF, &bch->Flags)) {
565 bch->dropcnt += fcnt_rx;
566 *z2r = cpu_to_le16(new_z2);
567 return;
568 }
569 maxlen = bchannel_get_rxbuf(bch, fcnt_rx);
570 if (maxlen < 0) {
571 pr_warn("B%d: No bufferspace for %d bytes\n", bch->nr, fcnt_rx);
572 } else {
573 ptr = skb_put(bch->rx_skb, fcnt_rx);
574 if (le16_to_cpu(*z2r) + fcnt_rx <= B_FIFO_SIZE + B_SUB_VAL)
575 maxlen = fcnt_rx; /* complete transfer */
576 else
577 maxlen = B_FIFO_SIZE + B_SUB_VAL - le16_to_cpu(*z2r);
578 /* maximum */
579
580 ptr1 = bdata + (le16_to_cpu(*z2r) - B_SUB_VAL);
581 /* start of data */
582 memcpy(ptr, ptr1, maxlen); /* copy data */
583 fcnt_rx -= maxlen;
584
585 if (fcnt_rx) { /* rest remaining */
586 ptr += maxlen;
587 ptr1 = bdata; /* start of buffer */
588 memcpy(ptr, ptr1, fcnt_rx); /* rest */
589 }
590 recv_Bchannel(bch, fcnt_tx, false); /* bch, id, !force */
591 }
592 *z2r = cpu_to_le16(new_z2); /* new position */
593 }
594
595 /*
596 * B-channel main receive routine
597 */
598 static void
main_rec_hfcpci(struct bchannel * bch)599 main_rec_hfcpci(struct bchannel *bch)
600 {
601 struct hfc_pci *hc = bch->hw;
602 int rcnt, real_fifo;
603 int receive = 0, count = 5;
604 struct bzfifo *txbz, *rxbz;
605 u_char *bdata;
606 struct zt *zp;
607
608 if ((bch->nr & 2) && (!hc->hw.bswapped)) {
609 rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2;
610 txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
611 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b2;
612 real_fifo = 1;
613 } else {
614 rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1;
615 txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
616 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b1;
617 real_fifo = 0;
618 }
619 Begin:
620 count--;
621 if (rxbz->f1 != rxbz->f2) {
622 if (bch->debug & DEBUG_HW_BCHANNEL)
623 printk(KERN_DEBUG "hfcpci rec ch(%x) f1(%d) f2(%d)\n",
624 bch->nr, rxbz->f1, rxbz->f2);
625 zp = &rxbz->za[rxbz->f2];
626
627 rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2);
628 if (rcnt < 0)
629 rcnt += B_FIFO_SIZE;
630 rcnt++;
631 if (bch->debug & DEBUG_HW_BCHANNEL)
632 printk(KERN_DEBUG
633 "hfcpci rec ch(%x) z1(%x) z2(%x) cnt(%d)\n",
634 bch->nr, le16_to_cpu(zp->z1),
635 le16_to_cpu(zp->z2), rcnt);
636 hfcpci_empty_bfifo(bch, rxbz, bdata, rcnt);
637 rcnt = rxbz->f1 - rxbz->f2;
638 if (rcnt < 0)
639 rcnt += MAX_B_FRAMES + 1;
640 if (hc->hw.last_bfifo_cnt[real_fifo] > rcnt + 1) {
641 rcnt = 0;
642 hfcpci_clear_fifo_rx(hc, real_fifo);
643 }
644 hc->hw.last_bfifo_cnt[real_fifo] = rcnt;
645 if (rcnt > 1)
646 receive = 1;
647 else
648 receive = 0;
649 } else if (test_bit(FLG_TRANSPARENT, &bch->Flags)) {
650 hfcpci_empty_fifo_trans(bch, rxbz, txbz, bdata);
651 return;
652 } else
653 receive = 0;
654 if (count && receive)
655 goto Begin;
656
657 }
658
659 /*
660 * D-channel send routine
661 */
662 static void
hfcpci_fill_dfifo(struct hfc_pci * hc)663 hfcpci_fill_dfifo(struct hfc_pci *hc)
664 {
665 struct dchannel *dch = &hc->dch;
666 int fcnt;
667 int count, new_z1, maxlen;
668 struct dfifo *df;
669 u_char *src, *dst, new_f1;
670
671 if ((dch->debug & DEBUG_HW_DCHANNEL) && !(dch->debug & DEBUG_HW_DFIFO))
672 printk(KERN_DEBUG "%s\n", __func__);
673
674 if (!dch->tx_skb)
675 return;
676 count = dch->tx_skb->len - dch->tx_idx;
677 if (count <= 0)
678 return;
679 df = &((union fifo_area *) (hc->hw.fifos))->d_chan.d_tx;
680
681 if (dch->debug & DEBUG_HW_DFIFO)
682 printk(KERN_DEBUG "%s:f1(%d) f2(%d) z1(f1)(%x)\n", __func__,
683 df->f1, df->f2,
684 le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1));
685 fcnt = df->f1 - df->f2; /* frame count actually buffered */
686 if (fcnt < 0)
687 fcnt += (MAX_D_FRAMES + 1); /* if wrap around */
688 if (fcnt > (MAX_D_FRAMES - 1)) {
689 if (dch->debug & DEBUG_HW_DCHANNEL)
690 printk(KERN_DEBUG
691 "hfcpci_fill_Dfifo more as 14 frames\n");
692 #ifdef ERROR_STATISTIC
693 cs->err_tx++;
694 #endif
695 return;
696 }
697 /* now determine free bytes in FIFO buffer */
698 maxlen = le16_to_cpu(df->za[df->f2 & D_FREG_MASK].z2) -
699 le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) - 1;
700 if (maxlen <= 0)
701 maxlen += D_FIFO_SIZE; /* count now contains available bytes */
702
703 if (dch->debug & DEBUG_HW_DCHANNEL)
704 printk(KERN_DEBUG "hfcpci_fill_Dfifo count(%d/%d)\n",
705 count, maxlen);
706 if (count > maxlen) {
707 if (dch->debug & DEBUG_HW_DCHANNEL)
708 printk(KERN_DEBUG "hfcpci_fill_Dfifo no fifo mem\n");
709 return;
710 }
711 new_z1 = (le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) + count) &
712 (D_FIFO_SIZE - 1);
713 new_f1 = ((df->f1 + 1) & D_FREG_MASK) | (D_FREG_MASK + 1);
714 src = dch->tx_skb->data + dch->tx_idx; /* source pointer */
715 dst = df->data + le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1);
716 maxlen = D_FIFO_SIZE - le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1);
717 /* end fifo */
718 if (maxlen > count)
719 maxlen = count; /* limit size */
720 memcpy(dst, src, maxlen); /* first copy */
721
722 count -= maxlen; /* remaining bytes */
723 if (count) {
724 dst = df->data; /* start of buffer */
725 src += maxlen; /* new position */
726 memcpy(dst, src, count);
727 }
728 df->za[new_f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1);
729 /* for next buffer */
730 df->za[df->f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1);
731 /* new pos actual buffer */
732 df->f1 = new_f1; /* next frame */
733 dch->tx_idx = dch->tx_skb->len;
734 }
735
736 /*
737 * B-channel send routine
738 */
739 static void
hfcpci_fill_fifo(struct bchannel * bch)740 hfcpci_fill_fifo(struct bchannel *bch)
741 {
742 struct hfc_pci *hc = bch->hw;
743 int maxlen, fcnt;
744 int count, new_z1;
745 struct bzfifo *bz;
746 u_char *bdata;
747 u_char new_f1, *src, *dst;
748 __le16 *z1t, *z2t;
749
750 if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO))
751 printk(KERN_DEBUG "%s\n", __func__);
752 if ((!bch->tx_skb) || bch->tx_skb->len == 0) {
753 if (!test_bit(FLG_FILLEMPTY, &bch->Flags) &&
754 !test_bit(FLG_TRANSPARENT, &bch->Flags))
755 return;
756 count = HFCPCI_FILLEMPTY;
757 } else {
758 count = bch->tx_skb->len - bch->tx_idx;
759 }
760 if ((bch->nr & 2) && (!hc->hw.bswapped)) {
761 bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
762 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b2;
763 } else {
764 bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
765 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b1;
766 }
767
768 if (test_bit(FLG_TRANSPARENT, &bch->Flags)) {
769 z1t = &bz->za[MAX_B_FRAMES].z1;
770 z2t = z1t + 1;
771 if (bch->debug & DEBUG_HW_BCHANNEL)
772 printk(KERN_DEBUG "hfcpci_fill_fifo_trans ch(%x) "
773 "cnt(%d) z1(%x) z2(%x)\n", bch->nr, count,
774 le16_to_cpu(*z1t), le16_to_cpu(*z2t));
775 fcnt = le16_to_cpu(*z2t) - le16_to_cpu(*z1t);
776 if (fcnt <= 0)
777 fcnt += B_FIFO_SIZE;
778 if (test_bit(FLG_FILLEMPTY, &bch->Flags)) {
779 /* fcnt contains available bytes in fifo */
780 if (count > fcnt)
781 count = fcnt;
782 new_z1 = le16_to_cpu(*z1t) + count;
783 /* new buffer Position */
784 if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
785 new_z1 -= B_FIFO_SIZE; /* buffer wrap */
786 dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL);
787 maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t);
788 /* end of fifo */
789 if (bch->debug & DEBUG_HW_BFIFO)
790 printk(KERN_DEBUG "hfcpci_FFt fillempty "
791 "fcnt(%d) maxl(%d) nz1(%x) dst(%p)\n",
792 fcnt, maxlen, new_z1, dst);
793 if (maxlen > count)
794 maxlen = count; /* limit size */
795 memset(dst, bch->fill[0], maxlen); /* first copy */
796 count -= maxlen; /* remaining bytes */
797 if (count) {
798 dst = bdata; /* start of buffer */
799 memset(dst, bch->fill[0], count);
800 }
801 *z1t = cpu_to_le16(new_z1); /* now send data */
802 return;
803 }
804 /* fcnt contains available bytes in fifo */
805 fcnt = B_FIFO_SIZE - fcnt;
806 /* remaining bytes to send (bytes in fifo) */
807
808 next_t_frame:
809 count = bch->tx_skb->len - bch->tx_idx;
810 /* maximum fill shall be poll*2 */
811 if (count > (poll << 1) - fcnt)
812 count = (poll << 1) - fcnt;
813 if (count <= 0)
814 return;
815 /* data is suitable for fifo */
816 new_z1 = le16_to_cpu(*z1t) + count;
817 /* new buffer Position */
818 if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
819 new_z1 -= B_FIFO_SIZE; /* buffer wrap */
820 src = bch->tx_skb->data + bch->tx_idx;
821 /* source pointer */
822 dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL);
823 maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t);
824 /* end of fifo */
825 if (bch->debug & DEBUG_HW_BFIFO)
826 printk(KERN_DEBUG "hfcpci_FFt fcnt(%d) "
827 "maxl(%d) nz1(%x) dst(%p)\n",
828 fcnt, maxlen, new_z1, dst);
829 fcnt += count;
830 bch->tx_idx += count;
831 if (maxlen > count)
832 maxlen = count; /* limit size */
833 memcpy(dst, src, maxlen); /* first copy */
834 count -= maxlen; /* remaining bytes */
835 if (count) {
836 dst = bdata; /* start of buffer */
837 src += maxlen; /* new position */
838 memcpy(dst, src, count);
839 }
840 *z1t = cpu_to_le16(new_z1); /* now send data */
841 if (bch->tx_idx < bch->tx_skb->len)
842 return;
843 dev_kfree_skb_any(bch->tx_skb);
844 if (get_next_bframe(bch))
845 goto next_t_frame;
846 return;
847 }
848 if (bch->debug & DEBUG_HW_BCHANNEL)
849 printk(KERN_DEBUG
850 "%s: ch(%x) f1(%d) f2(%d) z1(f1)(%x)\n",
851 __func__, bch->nr, bz->f1, bz->f2,
852 bz->za[bz->f1].z1);
853 fcnt = bz->f1 - bz->f2; /* frame count actually buffered */
854 if (fcnt < 0)
855 fcnt += (MAX_B_FRAMES + 1); /* if wrap around */
856 if (fcnt > (MAX_B_FRAMES - 1)) {
857 if (bch->debug & DEBUG_HW_BCHANNEL)
858 printk(KERN_DEBUG
859 "hfcpci_fill_Bfifo more as 14 frames\n");
860 return;
861 }
862 /* now determine free bytes in FIFO buffer */
863 maxlen = le16_to_cpu(bz->za[bz->f2].z2) -
864 le16_to_cpu(bz->za[bz->f1].z1) - 1;
865 if (maxlen <= 0)
866 maxlen += B_FIFO_SIZE; /* count now contains available bytes */
867
868 if (bch->debug & DEBUG_HW_BCHANNEL)
869 printk(KERN_DEBUG "hfcpci_fill_fifo ch(%x) count(%d/%d)\n",
870 bch->nr, count, maxlen);
871
872 if (maxlen < count) {
873 if (bch->debug & DEBUG_HW_BCHANNEL)
874 printk(KERN_DEBUG "hfcpci_fill_fifo no fifo mem\n");
875 return;
876 }
877 new_z1 = le16_to_cpu(bz->za[bz->f1].z1) + count;
878 /* new buffer Position */
879 if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
880 new_z1 -= B_FIFO_SIZE; /* buffer wrap */
881
882 new_f1 = ((bz->f1 + 1) & MAX_B_FRAMES);
883 src = bch->tx_skb->data + bch->tx_idx; /* source pointer */
884 dst = bdata + (le16_to_cpu(bz->za[bz->f1].z1) - B_SUB_VAL);
885 maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(bz->za[bz->f1].z1);
886 /* end fifo */
887 if (maxlen > count)
888 maxlen = count; /* limit size */
889 memcpy(dst, src, maxlen); /* first copy */
890
891 count -= maxlen; /* remaining bytes */
892 if (count) {
893 dst = bdata; /* start of buffer */
894 src += maxlen; /* new position */
895 memcpy(dst, src, count);
896 }
897 bz->za[new_f1].z1 = cpu_to_le16(new_z1); /* for next buffer */
898 bz->f1 = new_f1; /* next frame */
899 dev_kfree_skb_any(bch->tx_skb);
900 get_next_bframe(bch);
901 }
902
903
904
905 /*
906 * handle L1 state changes TE
907 */
908
909 static void
ph_state_te(struct dchannel * dch)910 ph_state_te(struct dchannel *dch)
911 {
912 if (dch->debug)
913 printk(KERN_DEBUG "%s: TE newstate %x\n",
914 __func__, dch->state);
915 switch (dch->state) {
916 case 0:
917 l1_event(dch->l1, HW_RESET_IND);
918 break;
919 case 3:
920 l1_event(dch->l1, HW_DEACT_IND);
921 break;
922 case 5:
923 case 8:
924 l1_event(dch->l1, ANYSIGNAL);
925 break;
926 case 6:
927 l1_event(dch->l1, INFO2);
928 break;
929 case 7:
930 l1_event(dch->l1, INFO4_P8);
931 break;
932 }
933 }
934
935 /*
936 * handle L1 state changes NT
937 */
938
939 static void
handle_nt_timer3(struct dchannel * dch)940 handle_nt_timer3(struct dchannel *dch) {
941 struct hfc_pci *hc = dch->hw;
942
943 test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
944 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
945 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
946 hc->hw.nt_timer = 0;
947 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
948 if (test_bit(HFC_CFG_MASTER, &hc->cfg))
949 hc->hw.mst_m |= HFCPCI_MASTER;
950 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
951 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
952 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
953 }
954
955 static void
ph_state_nt(struct dchannel * dch)956 ph_state_nt(struct dchannel *dch)
957 {
958 struct hfc_pci *hc = dch->hw;
959
960 if (dch->debug)
961 printk(KERN_DEBUG "%s: NT newstate %x\n",
962 __func__, dch->state);
963 switch (dch->state) {
964 case 2:
965 if (hc->hw.nt_timer < 0) {
966 hc->hw.nt_timer = 0;
967 test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
968 test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
969 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
970 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
971 /* Clear already pending ints */
972 (void) Read_hfc(hc, HFCPCI_INT_S1);
973 Write_hfc(hc, HFCPCI_STATES, 4 | HFCPCI_LOAD_STATE);
974 udelay(10);
975 Write_hfc(hc, HFCPCI_STATES, 4);
976 dch->state = 4;
977 } else if (hc->hw.nt_timer == 0) {
978 hc->hw.int_m1 |= HFCPCI_INTS_TIMER;
979 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
980 hc->hw.nt_timer = NT_T1_COUNT;
981 hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER;
982 hc->hw.ctmt |= HFCPCI_TIM3_125;
983 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt |
984 HFCPCI_CLTIMER);
985 test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
986 test_and_set_bit(FLG_HFC_TIMER_T1, &dch->Flags);
987 /* allow G2 -> G3 transition */
988 Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3);
989 } else {
990 Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3);
991 }
992 break;
993 case 1:
994 hc->hw.nt_timer = 0;
995 test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
996 test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
997 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
998 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
999 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
1000 hc->hw.mst_m &= ~HFCPCI_MASTER;
1001 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1002 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
1003 _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
1004 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
1005 break;
1006 case 4:
1007 hc->hw.nt_timer = 0;
1008 test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
1009 test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1010 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1011 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1012 break;
1013 case 3:
1014 if (!test_and_set_bit(FLG_HFC_TIMER_T3, &dch->Flags)) {
1015 if (!test_and_clear_bit(FLG_L2_ACTIVATED,
1016 &dch->Flags)) {
1017 handle_nt_timer3(dch);
1018 break;
1019 }
1020 test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1021 hc->hw.int_m1 |= HFCPCI_INTS_TIMER;
1022 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1023 hc->hw.nt_timer = NT_T3_COUNT;
1024 hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER;
1025 hc->hw.ctmt |= HFCPCI_TIM3_125;
1026 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt |
1027 HFCPCI_CLTIMER);
1028 }
1029 break;
1030 }
1031 }
1032
1033 static void
ph_state(struct dchannel * dch)1034 ph_state(struct dchannel *dch)
1035 {
1036 struct hfc_pci *hc = dch->hw;
1037
1038 if (hc->hw.protocol == ISDN_P_NT_S0) {
1039 if (test_bit(FLG_HFC_TIMER_T3, &dch->Flags) &&
1040 hc->hw.nt_timer < 0)
1041 handle_nt_timer3(dch);
1042 else
1043 ph_state_nt(dch);
1044 } else
1045 ph_state_te(dch);
1046 }
1047
1048 /*
1049 * Layer 1 callback function
1050 */
1051 static int
hfc_l1callback(struct dchannel * dch,u_int cmd)1052 hfc_l1callback(struct dchannel *dch, u_int cmd)
1053 {
1054 struct hfc_pci *hc = dch->hw;
1055
1056 switch (cmd) {
1057 case INFO3_P8:
1058 case INFO3_P10:
1059 if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1060 hc->hw.mst_m |= HFCPCI_MASTER;
1061 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1062 break;
1063 case HW_RESET_REQ:
1064 Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | 3);
1065 /* HFC ST 3 */
1066 udelay(6);
1067 Write_hfc(hc, HFCPCI_STATES, 3); /* HFC ST 2 */
1068 if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1069 hc->hw.mst_m |= HFCPCI_MASTER;
1070 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1071 Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE |
1072 HFCPCI_DO_ACTION);
1073 l1_event(dch->l1, HW_POWERUP_IND);
1074 break;
1075 case HW_DEACT_REQ:
1076 hc->hw.mst_m &= ~HFCPCI_MASTER;
1077 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1078 skb_queue_purge(&dch->squeue);
1079 if (dch->tx_skb) {
1080 dev_kfree_skb(dch->tx_skb);
1081 dch->tx_skb = NULL;
1082 }
1083 dch->tx_idx = 0;
1084 if (dch->rx_skb) {
1085 dev_kfree_skb(dch->rx_skb);
1086 dch->rx_skb = NULL;
1087 }
1088 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
1089 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
1090 del_timer(&dch->timer);
1091 break;
1092 case HW_POWERUP_REQ:
1093 Write_hfc(hc, HFCPCI_STATES, HFCPCI_DO_ACTION);
1094 break;
1095 case PH_ACTIVATE_IND:
1096 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
1097 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
1098 GFP_ATOMIC);
1099 break;
1100 case PH_DEACTIVATE_IND:
1101 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
1102 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
1103 GFP_ATOMIC);
1104 break;
1105 default:
1106 if (dch->debug & DEBUG_HW)
1107 printk(KERN_DEBUG "%s: unknown command %x\n",
1108 __func__, cmd);
1109 return -1;
1110 }
1111 return 0;
1112 }
1113
1114 /*
1115 * Interrupt handler
1116 */
1117 static inline void
tx_birq(struct bchannel * bch)1118 tx_birq(struct bchannel *bch)
1119 {
1120 if (bch->tx_skb && bch->tx_idx < bch->tx_skb->len)
1121 hfcpci_fill_fifo(bch);
1122 else {
1123 dev_kfree_skb_any(bch->tx_skb);
1124 if (get_next_bframe(bch))
1125 hfcpci_fill_fifo(bch);
1126 }
1127 }
1128
1129 static inline void
tx_dirq(struct dchannel * dch)1130 tx_dirq(struct dchannel *dch)
1131 {
1132 if (dch->tx_skb && dch->tx_idx < dch->tx_skb->len)
1133 hfcpci_fill_dfifo(dch->hw);
1134 else {
1135 dev_kfree_skb(dch->tx_skb);
1136 if (get_next_dframe(dch))
1137 hfcpci_fill_dfifo(dch->hw);
1138 }
1139 }
1140
1141 static irqreturn_t
hfcpci_int(int intno,void * dev_id)1142 hfcpci_int(int intno, void *dev_id)
1143 {
1144 struct hfc_pci *hc = dev_id;
1145 u_char exval;
1146 struct bchannel *bch;
1147 u_char val, stat;
1148
1149 spin_lock(&hc->lock);
1150 if (!(hc->hw.int_m2 & 0x08)) {
1151 spin_unlock(&hc->lock);
1152 return IRQ_NONE; /* not initialised */
1153 }
1154 stat = Read_hfc(hc, HFCPCI_STATUS);
1155 if (HFCPCI_ANYINT & stat) {
1156 val = Read_hfc(hc, HFCPCI_INT_S1);
1157 if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1158 printk(KERN_DEBUG
1159 "HFC-PCI: stat(%02x) s1(%02x)\n", stat, val);
1160 } else {
1161 /* shared */
1162 spin_unlock(&hc->lock);
1163 return IRQ_NONE;
1164 }
1165 hc->irqcnt++;
1166
1167 if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1168 printk(KERN_DEBUG "HFC-PCI irq %x\n", val);
1169 val &= hc->hw.int_m1;
1170 if (val & 0x40) { /* state machine irq */
1171 exval = Read_hfc(hc, HFCPCI_STATES) & 0xf;
1172 if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1173 printk(KERN_DEBUG "ph_state chg %d->%d\n",
1174 hc->dch.state, exval);
1175 hc->dch.state = exval;
1176 schedule_event(&hc->dch, FLG_PHCHANGE);
1177 val &= ~0x40;
1178 }
1179 if (val & 0x80) { /* timer irq */
1180 if (hc->hw.protocol == ISDN_P_NT_S0) {
1181 if ((--hc->hw.nt_timer) < 0)
1182 schedule_event(&hc->dch, FLG_PHCHANGE);
1183 }
1184 val &= ~0x80;
1185 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt | HFCPCI_CLTIMER);
1186 }
1187 if (val & 0x08) { /* B1 rx */
1188 bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
1189 if (bch)
1190 main_rec_hfcpci(bch);
1191 else if (hc->dch.debug)
1192 printk(KERN_DEBUG "hfcpci spurious 0x08 IRQ\n");
1193 }
1194 if (val & 0x10) { /* B2 rx */
1195 bch = Sel_BCS(hc, 2);
1196 if (bch)
1197 main_rec_hfcpci(bch);
1198 else if (hc->dch.debug)
1199 printk(KERN_DEBUG "hfcpci spurious 0x10 IRQ\n");
1200 }
1201 if (val & 0x01) { /* B1 tx */
1202 bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
1203 if (bch)
1204 tx_birq(bch);
1205 else if (hc->dch.debug)
1206 printk(KERN_DEBUG "hfcpci spurious 0x01 IRQ\n");
1207 }
1208 if (val & 0x02) { /* B2 tx */
1209 bch = Sel_BCS(hc, 2);
1210 if (bch)
1211 tx_birq(bch);
1212 else if (hc->dch.debug)
1213 printk(KERN_DEBUG "hfcpci spurious 0x02 IRQ\n");
1214 }
1215 if (val & 0x20) /* D rx */
1216 receive_dmsg(hc);
1217 if (val & 0x04) { /* D tx */
1218 if (test_and_clear_bit(FLG_BUSY_TIMER, &hc->dch.Flags))
1219 del_timer(&hc->dch.timer);
1220 tx_dirq(&hc->dch);
1221 }
1222 spin_unlock(&hc->lock);
1223 return IRQ_HANDLED;
1224 }
1225
1226 /*
1227 * timer callback for D-chan busy resolution. Currently no function
1228 */
1229 static void
hfcpci_dbusy_timer(struct timer_list * t)1230 hfcpci_dbusy_timer(struct timer_list *t)
1231 {
1232 }
1233
1234 /*
1235 * activate/deactivate hardware for selected channels and mode
1236 */
1237 static int
mode_hfcpci(struct bchannel * bch,int bc,int protocol)1238 mode_hfcpci(struct bchannel *bch, int bc, int protocol)
1239 {
1240 struct hfc_pci *hc = bch->hw;
1241 int fifo2;
1242 u_char rx_slot = 0, tx_slot = 0, pcm_mode;
1243
1244 if (bch->debug & DEBUG_HW_BCHANNEL)
1245 printk(KERN_DEBUG
1246 "HFCPCI bchannel protocol %x-->%x ch %x-->%x\n",
1247 bch->state, protocol, bch->nr, bc);
1248
1249 fifo2 = bc;
1250 pcm_mode = (bc >> 24) & 0xff;
1251 if (pcm_mode) { /* PCM SLOT USE */
1252 if (!test_bit(HFC_CFG_PCM, &hc->cfg))
1253 printk(KERN_WARNING
1254 "%s: pcm channel id without HFC_CFG_PCM\n",
1255 __func__);
1256 rx_slot = (bc >> 8) & 0xff;
1257 tx_slot = (bc >> 16) & 0xff;
1258 bc = bc & 0xff;
1259 } else if (test_bit(HFC_CFG_PCM, &hc->cfg) && (protocol > ISDN_P_NONE))
1260 printk(KERN_WARNING "%s: no pcm channel id but HFC_CFG_PCM\n",
1261 __func__);
1262 if (hc->chanlimit > 1) {
1263 hc->hw.bswapped = 0; /* B1 and B2 normal mode */
1264 hc->hw.sctrl_e &= ~0x80;
1265 } else {
1266 if (bc & 2) {
1267 if (protocol != ISDN_P_NONE) {
1268 hc->hw.bswapped = 1; /* B1 and B2 exchanged */
1269 hc->hw.sctrl_e |= 0x80;
1270 } else {
1271 hc->hw.bswapped = 0; /* B1 and B2 normal mode */
1272 hc->hw.sctrl_e &= ~0x80;
1273 }
1274 fifo2 = 1;
1275 } else {
1276 hc->hw.bswapped = 0; /* B1 and B2 normal mode */
1277 hc->hw.sctrl_e &= ~0x80;
1278 }
1279 }
1280 switch (protocol) {
1281 case (-1): /* used for init */
1282 bch->state = -1;
1283 bch->nr = bc;
1284 fallthrough;
1285 case (ISDN_P_NONE):
1286 if (bch->state == ISDN_P_NONE)
1287 return 0;
1288 if (bc & 2) {
1289 hc->hw.sctrl &= ~SCTRL_B2_ENA;
1290 hc->hw.sctrl_r &= ~SCTRL_B2_ENA;
1291 } else {
1292 hc->hw.sctrl &= ~SCTRL_B1_ENA;
1293 hc->hw.sctrl_r &= ~SCTRL_B1_ENA;
1294 }
1295 if (fifo2 & 2) {
1296 hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B2;
1297 hc->hw.int_m1 &= ~(HFCPCI_INTS_B2TRANS |
1298 HFCPCI_INTS_B2REC);
1299 } else {
1300 hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B1;
1301 hc->hw.int_m1 &= ~(HFCPCI_INTS_B1TRANS |
1302 HFCPCI_INTS_B1REC);
1303 }
1304 #ifdef REVERSE_BITORDER
1305 if (bch->nr & 2)
1306 hc->hw.cirm &= 0x7f;
1307 else
1308 hc->hw.cirm &= 0xbf;
1309 #endif
1310 bch->state = ISDN_P_NONE;
1311 bch->nr = bc;
1312 test_and_clear_bit(FLG_HDLC, &bch->Flags);
1313 test_and_clear_bit(FLG_TRANSPARENT, &bch->Flags);
1314 break;
1315 case (ISDN_P_B_RAW):
1316 bch->state = protocol;
1317 bch->nr = bc;
1318 hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0);
1319 hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0);
1320 if (bc & 2) {
1321 hc->hw.sctrl |= SCTRL_B2_ENA;
1322 hc->hw.sctrl_r |= SCTRL_B2_ENA;
1323 #ifdef REVERSE_BITORDER
1324 hc->hw.cirm |= 0x80;
1325 #endif
1326 } else {
1327 hc->hw.sctrl |= SCTRL_B1_ENA;
1328 hc->hw.sctrl_r |= SCTRL_B1_ENA;
1329 #ifdef REVERSE_BITORDER
1330 hc->hw.cirm |= 0x40;
1331 #endif
1332 }
1333 if (fifo2 & 2) {
1334 hc->hw.fifo_en |= HFCPCI_FIFOEN_B2;
1335 if (!tics)
1336 hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS |
1337 HFCPCI_INTS_B2REC);
1338 hc->hw.ctmt |= 2;
1339 hc->hw.conn &= ~0x18;
1340 } else {
1341 hc->hw.fifo_en |= HFCPCI_FIFOEN_B1;
1342 if (!tics)
1343 hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS |
1344 HFCPCI_INTS_B1REC);
1345 hc->hw.ctmt |= 1;
1346 hc->hw.conn &= ~0x03;
1347 }
1348 test_and_set_bit(FLG_TRANSPARENT, &bch->Flags);
1349 break;
1350 case (ISDN_P_B_HDLC):
1351 bch->state = protocol;
1352 bch->nr = bc;
1353 hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0);
1354 hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0);
1355 if (bc & 2) {
1356 hc->hw.sctrl |= SCTRL_B2_ENA;
1357 hc->hw.sctrl_r |= SCTRL_B2_ENA;
1358 } else {
1359 hc->hw.sctrl |= SCTRL_B1_ENA;
1360 hc->hw.sctrl_r |= SCTRL_B1_ENA;
1361 }
1362 if (fifo2 & 2) {
1363 hc->hw.last_bfifo_cnt[1] = 0;
1364 hc->hw.fifo_en |= HFCPCI_FIFOEN_B2;
1365 hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS |
1366 HFCPCI_INTS_B2REC);
1367 hc->hw.ctmt &= ~2;
1368 hc->hw.conn &= ~0x18;
1369 } else {
1370 hc->hw.last_bfifo_cnt[0] = 0;
1371 hc->hw.fifo_en |= HFCPCI_FIFOEN_B1;
1372 hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS |
1373 HFCPCI_INTS_B1REC);
1374 hc->hw.ctmt &= ~1;
1375 hc->hw.conn &= ~0x03;
1376 }
1377 test_and_set_bit(FLG_HDLC, &bch->Flags);
1378 break;
1379 default:
1380 printk(KERN_DEBUG "prot not known %x\n", protocol);
1381 return -ENOPROTOOPT;
1382 }
1383 if (test_bit(HFC_CFG_PCM, &hc->cfg)) {
1384 if ((protocol == ISDN_P_NONE) ||
1385 (protocol == -1)) { /* init case */
1386 rx_slot = 0;
1387 tx_slot = 0;
1388 } else {
1389 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) {
1390 rx_slot |= 0xC0;
1391 tx_slot |= 0xC0;
1392 } else {
1393 rx_slot |= 0x80;
1394 tx_slot |= 0x80;
1395 }
1396 }
1397 if (bc & 2) {
1398 hc->hw.conn &= 0xc7;
1399 hc->hw.conn |= 0x08;
1400 printk(KERN_DEBUG "%s: Write_hfc: B2_SSL 0x%x\n",
1401 __func__, tx_slot);
1402 printk(KERN_DEBUG "%s: Write_hfc: B2_RSL 0x%x\n",
1403 __func__, rx_slot);
1404 Write_hfc(hc, HFCPCI_B2_SSL, tx_slot);
1405 Write_hfc(hc, HFCPCI_B2_RSL, rx_slot);
1406 } else {
1407 hc->hw.conn &= 0xf8;
1408 hc->hw.conn |= 0x01;
1409 printk(KERN_DEBUG "%s: Write_hfc: B1_SSL 0x%x\n",
1410 __func__, tx_slot);
1411 printk(KERN_DEBUG "%s: Write_hfc: B1_RSL 0x%x\n",
1412 __func__, rx_slot);
1413 Write_hfc(hc, HFCPCI_B1_SSL, tx_slot);
1414 Write_hfc(hc, HFCPCI_B1_RSL, rx_slot);
1415 }
1416 }
1417 Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e);
1418 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1419 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
1420 Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl);
1421 Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
1422 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
1423 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1424 #ifdef REVERSE_BITORDER
1425 Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
1426 #endif
1427 return 0;
1428 }
1429
1430 static int
set_hfcpci_rxtest(struct bchannel * bch,int protocol,int chan)1431 set_hfcpci_rxtest(struct bchannel *bch, int protocol, int chan)
1432 {
1433 struct hfc_pci *hc = bch->hw;
1434
1435 if (bch->debug & DEBUG_HW_BCHANNEL)
1436 printk(KERN_DEBUG
1437 "HFCPCI bchannel test rx protocol %x-->%x ch %x-->%x\n",
1438 bch->state, protocol, bch->nr, chan);
1439 if (bch->nr != chan) {
1440 printk(KERN_DEBUG
1441 "HFCPCI rxtest wrong channel parameter %x/%x\n",
1442 bch->nr, chan);
1443 return -EINVAL;
1444 }
1445 switch (protocol) {
1446 case (ISDN_P_B_RAW):
1447 bch->state = protocol;
1448 hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0);
1449 if (chan & 2) {
1450 hc->hw.sctrl_r |= SCTRL_B2_ENA;
1451 hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX;
1452 if (!tics)
1453 hc->hw.int_m1 |= HFCPCI_INTS_B2REC;
1454 hc->hw.ctmt |= 2;
1455 hc->hw.conn &= ~0x18;
1456 #ifdef REVERSE_BITORDER
1457 hc->hw.cirm |= 0x80;
1458 #endif
1459 } else {
1460 hc->hw.sctrl_r |= SCTRL_B1_ENA;
1461 hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX;
1462 if (!tics)
1463 hc->hw.int_m1 |= HFCPCI_INTS_B1REC;
1464 hc->hw.ctmt |= 1;
1465 hc->hw.conn &= ~0x03;
1466 #ifdef REVERSE_BITORDER
1467 hc->hw.cirm |= 0x40;
1468 #endif
1469 }
1470 break;
1471 case (ISDN_P_B_HDLC):
1472 bch->state = protocol;
1473 hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0);
1474 if (chan & 2) {
1475 hc->hw.sctrl_r |= SCTRL_B2_ENA;
1476 hc->hw.last_bfifo_cnt[1] = 0;
1477 hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX;
1478 hc->hw.int_m1 |= HFCPCI_INTS_B2REC;
1479 hc->hw.ctmt &= ~2;
1480 hc->hw.conn &= ~0x18;
1481 } else {
1482 hc->hw.sctrl_r |= SCTRL_B1_ENA;
1483 hc->hw.last_bfifo_cnt[0] = 0;
1484 hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX;
1485 hc->hw.int_m1 |= HFCPCI_INTS_B1REC;
1486 hc->hw.ctmt &= ~1;
1487 hc->hw.conn &= ~0x03;
1488 }
1489 break;
1490 default:
1491 printk(KERN_DEBUG "prot not known %x\n", protocol);
1492 return -ENOPROTOOPT;
1493 }
1494 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1495 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
1496 Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
1497 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
1498 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1499 #ifdef REVERSE_BITORDER
1500 Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
1501 #endif
1502 return 0;
1503 }
1504
1505 static void
deactivate_bchannel(struct bchannel * bch)1506 deactivate_bchannel(struct bchannel *bch)
1507 {
1508 struct hfc_pci *hc = bch->hw;
1509 u_long flags;
1510
1511 spin_lock_irqsave(&hc->lock, flags);
1512 mISDN_clear_bchannel(bch);
1513 mode_hfcpci(bch, bch->nr, ISDN_P_NONE);
1514 spin_unlock_irqrestore(&hc->lock, flags);
1515 }
1516
1517 /*
1518 * Layer 1 B-channel hardware access
1519 */
1520 static int
channel_bctrl(struct bchannel * bch,struct mISDN_ctrl_req * cq)1521 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
1522 {
1523 return mISDN_ctrl_bchannel(bch, cq);
1524 }
1525 static int
hfc_bctrl(struct mISDNchannel * ch,u_int cmd,void * arg)1526 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1527 {
1528 struct bchannel *bch = container_of(ch, struct bchannel, ch);
1529 struct hfc_pci *hc = bch->hw;
1530 int ret = -EINVAL;
1531 u_long flags;
1532
1533 if (bch->debug & DEBUG_HW)
1534 printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1535 switch (cmd) {
1536 case HW_TESTRX_RAW:
1537 spin_lock_irqsave(&hc->lock, flags);
1538 ret = set_hfcpci_rxtest(bch, ISDN_P_B_RAW, (int)(long)arg);
1539 spin_unlock_irqrestore(&hc->lock, flags);
1540 break;
1541 case HW_TESTRX_HDLC:
1542 spin_lock_irqsave(&hc->lock, flags);
1543 ret = set_hfcpci_rxtest(bch, ISDN_P_B_HDLC, (int)(long)arg);
1544 spin_unlock_irqrestore(&hc->lock, flags);
1545 break;
1546 case HW_TESTRX_OFF:
1547 spin_lock_irqsave(&hc->lock, flags);
1548 mode_hfcpci(bch, bch->nr, ISDN_P_NONE);
1549 spin_unlock_irqrestore(&hc->lock, flags);
1550 ret = 0;
1551 break;
1552 case CLOSE_CHANNEL:
1553 test_and_clear_bit(FLG_OPEN, &bch->Flags);
1554 deactivate_bchannel(bch);
1555 ch->protocol = ISDN_P_NONE;
1556 ch->peer = NULL;
1557 module_put(THIS_MODULE);
1558 ret = 0;
1559 break;
1560 case CONTROL_CHANNEL:
1561 ret = channel_bctrl(bch, arg);
1562 break;
1563 default:
1564 printk(KERN_WARNING "%s: unknown prim(%x)\n",
1565 __func__, cmd);
1566 }
1567 return ret;
1568 }
1569
1570 /*
1571 * Layer2 -> Layer 1 Dchannel data
1572 */
1573 static int
hfcpci_l2l1D(struct mISDNchannel * ch,struct sk_buff * skb)1574 hfcpci_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
1575 {
1576 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
1577 struct dchannel *dch = container_of(dev, struct dchannel, dev);
1578 struct hfc_pci *hc = dch->hw;
1579 int ret = -EINVAL;
1580 struct mISDNhead *hh = mISDN_HEAD_P(skb);
1581 unsigned int id;
1582 u_long flags;
1583
1584 switch (hh->prim) {
1585 case PH_DATA_REQ:
1586 spin_lock_irqsave(&hc->lock, flags);
1587 ret = dchannel_senddata(dch, skb);
1588 if (ret > 0) { /* direct TX */
1589 id = hh->id; /* skb can be freed */
1590 hfcpci_fill_dfifo(dch->hw);
1591 ret = 0;
1592 spin_unlock_irqrestore(&hc->lock, flags);
1593 queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
1594 } else
1595 spin_unlock_irqrestore(&hc->lock, flags);
1596 return ret;
1597 case PH_ACTIVATE_REQ:
1598 spin_lock_irqsave(&hc->lock, flags);
1599 if (hc->hw.protocol == ISDN_P_NT_S0) {
1600 ret = 0;
1601 if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1602 hc->hw.mst_m |= HFCPCI_MASTER;
1603 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1604 if (test_bit(FLG_ACTIVE, &dch->Flags)) {
1605 spin_unlock_irqrestore(&hc->lock, flags);
1606 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
1607 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
1608 break;
1609 }
1610 test_and_set_bit(FLG_L2_ACTIVATED, &dch->Flags);
1611 Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE |
1612 HFCPCI_DO_ACTION | 1);
1613 } else
1614 ret = l1_event(dch->l1, hh->prim);
1615 spin_unlock_irqrestore(&hc->lock, flags);
1616 break;
1617 case PH_DEACTIVATE_REQ:
1618 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
1619 spin_lock_irqsave(&hc->lock, flags);
1620 if (hc->hw.protocol == ISDN_P_NT_S0) {
1621 struct sk_buff_head free_queue;
1622
1623 __skb_queue_head_init(&free_queue);
1624 /* prepare deactivation */
1625 Write_hfc(hc, HFCPCI_STATES, 0x40);
1626 skb_queue_splice_init(&dch->squeue, &free_queue);
1627 if (dch->tx_skb) {
1628 __skb_queue_tail(&free_queue, dch->tx_skb);
1629 dch->tx_skb = NULL;
1630 }
1631 dch->tx_idx = 0;
1632 if (dch->rx_skb) {
1633 __skb_queue_tail(&free_queue, dch->rx_skb);
1634 dch->rx_skb = NULL;
1635 }
1636 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
1637 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
1638 del_timer(&dch->timer);
1639 #ifdef FIXME
1640 if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
1641 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
1642 #endif
1643 hc->hw.mst_m &= ~HFCPCI_MASTER;
1644 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1645 ret = 0;
1646 spin_unlock_irqrestore(&hc->lock, flags);
1647 __skb_queue_purge(&free_queue);
1648 } else {
1649 ret = l1_event(dch->l1, hh->prim);
1650 spin_unlock_irqrestore(&hc->lock, flags);
1651 }
1652 break;
1653 }
1654 if (!ret)
1655 dev_kfree_skb(skb);
1656 return ret;
1657 }
1658
1659 /*
1660 * Layer2 -> Layer 1 Bchannel data
1661 */
1662 static int
hfcpci_l2l1B(struct mISDNchannel * ch,struct sk_buff * skb)1663 hfcpci_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
1664 {
1665 struct bchannel *bch = container_of(ch, struct bchannel, ch);
1666 struct hfc_pci *hc = bch->hw;
1667 int ret = -EINVAL;
1668 struct mISDNhead *hh = mISDN_HEAD_P(skb);
1669 unsigned long flags;
1670
1671 switch (hh->prim) {
1672 case PH_DATA_REQ:
1673 spin_lock_irqsave(&hc->lock, flags);
1674 ret = bchannel_senddata(bch, skb);
1675 if (ret > 0) { /* direct TX */
1676 hfcpci_fill_fifo(bch);
1677 ret = 0;
1678 }
1679 spin_unlock_irqrestore(&hc->lock, flags);
1680 return ret;
1681 case PH_ACTIVATE_REQ:
1682 spin_lock_irqsave(&hc->lock, flags);
1683 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags))
1684 ret = mode_hfcpci(bch, bch->nr, ch->protocol);
1685 else
1686 ret = 0;
1687 spin_unlock_irqrestore(&hc->lock, flags);
1688 if (!ret)
1689 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
1690 NULL, GFP_KERNEL);
1691 break;
1692 case PH_DEACTIVATE_REQ:
1693 deactivate_bchannel(bch);
1694 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0,
1695 NULL, GFP_KERNEL);
1696 ret = 0;
1697 break;
1698 }
1699 if (!ret)
1700 dev_kfree_skb(skb);
1701 return ret;
1702 }
1703
1704 /*
1705 * called for card init message
1706 */
1707
1708 static void
inithfcpci(struct hfc_pci * hc)1709 inithfcpci(struct hfc_pci *hc)
1710 {
1711 printk(KERN_DEBUG "inithfcpci: entered\n");
1712 timer_setup(&hc->dch.timer, hfcpci_dbusy_timer, 0);
1713 hc->chanlimit = 2;
1714 mode_hfcpci(&hc->bch[0], 1, -1);
1715 mode_hfcpci(&hc->bch[1], 2, -1);
1716 }
1717
1718
1719 static int
init_card(struct hfc_pci * hc)1720 init_card(struct hfc_pci *hc)
1721 {
1722 int cnt = 3;
1723 u_long flags;
1724
1725 printk(KERN_DEBUG "init_card: entered\n");
1726
1727
1728 spin_lock_irqsave(&hc->lock, flags);
1729 disable_hwirq(hc);
1730 spin_unlock_irqrestore(&hc->lock, flags);
1731 if (request_irq(hc->irq, hfcpci_int, IRQF_SHARED, "HFC PCI", hc)) {
1732 printk(KERN_WARNING
1733 "mISDN: couldn't get interrupt %d\n", hc->irq);
1734 return -EIO;
1735 }
1736 spin_lock_irqsave(&hc->lock, flags);
1737 reset_hfcpci(hc);
1738 while (cnt) {
1739 inithfcpci(hc);
1740 /*
1741 * Finally enable IRQ output
1742 * this is only allowed, if an IRQ routine is already
1743 * established for this HFC, so don't do that earlier
1744 */
1745 enable_hwirq(hc);
1746 spin_unlock_irqrestore(&hc->lock, flags);
1747 /* Timeout 80ms */
1748 set_current_state(TASK_UNINTERRUPTIBLE);
1749 schedule_timeout((80 * HZ) / 1000);
1750 printk(KERN_INFO "HFC PCI: IRQ %d count %d\n",
1751 hc->irq, hc->irqcnt);
1752 /* now switch timer interrupt off */
1753 spin_lock_irqsave(&hc->lock, flags);
1754 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1755 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1756 /* reinit mode reg */
1757 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1758 if (!hc->irqcnt) {
1759 printk(KERN_WARNING
1760 "HFC PCI: IRQ(%d) getting no interrupts "
1761 "during init %d\n", hc->irq, 4 - cnt);
1762 if (cnt == 1)
1763 break;
1764 else {
1765 reset_hfcpci(hc);
1766 cnt--;
1767 }
1768 } else {
1769 spin_unlock_irqrestore(&hc->lock, flags);
1770 hc->initdone = 1;
1771 return 0;
1772 }
1773 }
1774 disable_hwirq(hc);
1775 spin_unlock_irqrestore(&hc->lock, flags);
1776 free_irq(hc->irq, hc);
1777 return -EIO;
1778 }
1779
1780 static int
channel_ctrl(struct hfc_pci * hc,struct mISDN_ctrl_req * cq)1781 channel_ctrl(struct hfc_pci *hc, struct mISDN_ctrl_req *cq)
1782 {
1783 int ret = 0;
1784 u_char slot;
1785
1786 switch (cq->op) {
1787 case MISDN_CTRL_GETOP:
1788 cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
1789 MISDN_CTRL_DISCONNECT | MISDN_CTRL_L1_TIMER3;
1790 break;
1791 case MISDN_CTRL_LOOP:
1792 /* channel 0 disabled loop */
1793 if (cq->channel < 0 || cq->channel > 2) {
1794 ret = -EINVAL;
1795 break;
1796 }
1797 if (cq->channel & 1) {
1798 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1799 slot = 0xC0;
1800 else
1801 slot = 0x80;
1802 printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n",
1803 __func__, slot);
1804 Write_hfc(hc, HFCPCI_B1_SSL, slot);
1805 Write_hfc(hc, HFCPCI_B1_RSL, slot);
1806 hc->hw.conn = (hc->hw.conn & ~7) | 6;
1807 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1808 }
1809 if (cq->channel & 2) {
1810 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1811 slot = 0xC1;
1812 else
1813 slot = 0x81;
1814 printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n",
1815 __func__, slot);
1816 Write_hfc(hc, HFCPCI_B2_SSL, slot);
1817 Write_hfc(hc, HFCPCI_B2_RSL, slot);
1818 hc->hw.conn = (hc->hw.conn & ~0x38) | 0x30;
1819 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1820 }
1821 if (cq->channel & 3)
1822 hc->hw.trm |= 0x80; /* enable IOM-loop */
1823 else {
1824 hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09;
1825 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1826 hc->hw.trm &= 0x7f; /* disable IOM-loop */
1827 }
1828 Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
1829 break;
1830 case MISDN_CTRL_CONNECT:
1831 if (cq->channel == cq->p1) {
1832 ret = -EINVAL;
1833 break;
1834 }
1835 if (cq->channel < 1 || cq->channel > 2 ||
1836 cq->p1 < 1 || cq->p1 > 2) {
1837 ret = -EINVAL;
1838 break;
1839 }
1840 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1841 slot = 0xC0;
1842 else
1843 slot = 0x80;
1844 printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n",
1845 __func__, slot);
1846 Write_hfc(hc, HFCPCI_B1_SSL, slot);
1847 Write_hfc(hc, HFCPCI_B2_RSL, slot);
1848 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1849 slot = 0xC1;
1850 else
1851 slot = 0x81;
1852 printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n",
1853 __func__, slot);
1854 Write_hfc(hc, HFCPCI_B2_SSL, slot);
1855 Write_hfc(hc, HFCPCI_B1_RSL, slot);
1856 hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x36;
1857 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1858 hc->hw.trm |= 0x80;
1859 Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
1860 break;
1861 case MISDN_CTRL_DISCONNECT:
1862 hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09;
1863 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1864 hc->hw.trm &= 0x7f; /* disable IOM-loop */
1865 break;
1866 case MISDN_CTRL_L1_TIMER3:
1867 ret = l1_event(hc->dch.l1, HW_TIMER3_VALUE | (cq->p1 & 0xff));
1868 break;
1869 default:
1870 printk(KERN_WARNING "%s: unknown Op %x\n",
1871 __func__, cq->op);
1872 ret = -EINVAL;
1873 break;
1874 }
1875 return ret;
1876 }
1877
1878 static int
open_dchannel(struct hfc_pci * hc,struct mISDNchannel * ch,struct channel_req * rq)1879 open_dchannel(struct hfc_pci *hc, struct mISDNchannel *ch,
1880 struct channel_req *rq)
1881 {
1882 int err = 0;
1883
1884 if (debug & DEBUG_HW_OPEN)
1885 printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
1886 hc->dch.dev.id, __builtin_return_address(0));
1887 if (rq->protocol == ISDN_P_NONE)
1888 return -EINVAL;
1889 if (rq->adr.channel == 1) {
1890 /* TODO: E-Channel */
1891 return -EINVAL;
1892 }
1893 if (!hc->initdone) {
1894 if (rq->protocol == ISDN_P_TE_S0) {
1895 err = create_l1(&hc->dch, hfc_l1callback);
1896 if (err)
1897 return err;
1898 }
1899 hc->hw.protocol = rq->protocol;
1900 ch->protocol = rq->protocol;
1901 err = init_card(hc);
1902 if (err)
1903 return err;
1904 } else {
1905 if (rq->protocol != ch->protocol) {
1906 if (hc->hw.protocol == ISDN_P_TE_S0)
1907 l1_event(hc->dch.l1, CLOSE_CHANNEL);
1908 if (rq->protocol == ISDN_P_TE_S0) {
1909 err = create_l1(&hc->dch, hfc_l1callback);
1910 if (err)
1911 return err;
1912 }
1913 hc->hw.protocol = rq->protocol;
1914 ch->protocol = rq->protocol;
1915 hfcpci_setmode(hc);
1916 }
1917 }
1918
1919 if (((ch->protocol == ISDN_P_NT_S0) && (hc->dch.state == 3)) ||
1920 ((ch->protocol == ISDN_P_TE_S0) && (hc->dch.state == 7))) {
1921 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
1922 0, NULL, GFP_KERNEL);
1923 }
1924 rq->ch = ch;
1925 if (!try_module_get(THIS_MODULE))
1926 printk(KERN_WARNING "%s:cannot get module\n", __func__);
1927 return 0;
1928 }
1929
1930 static int
open_bchannel(struct hfc_pci * hc,struct channel_req * rq)1931 open_bchannel(struct hfc_pci *hc, struct channel_req *rq)
1932 {
1933 struct bchannel *bch;
1934
1935 if (rq->adr.channel == 0 || rq->adr.channel > 2)
1936 return -EINVAL;
1937 if (rq->protocol == ISDN_P_NONE)
1938 return -EINVAL;
1939 bch = &hc->bch[rq->adr.channel - 1];
1940 if (test_and_set_bit(FLG_OPEN, &bch->Flags))
1941 return -EBUSY; /* b-channel can be only open once */
1942 bch->ch.protocol = rq->protocol;
1943 rq->ch = &bch->ch; /* TODO: E-channel */
1944 if (!try_module_get(THIS_MODULE))
1945 printk(KERN_WARNING "%s:cannot get module\n", __func__);
1946 return 0;
1947 }
1948
1949 /*
1950 * device control function
1951 */
1952 static int
hfc_dctrl(struct mISDNchannel * ch,u_int cmd,void * arg)1953 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1954 {
1955 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
1956 struct dchannel *dch = container_of(dev, struct dchannel, dev);
1957 struct hfc_pci *hc = dch->hw;
1958 struct channel_req *rq;
1959 int err = 0;
1960
1961 if (dch->debug & DEBUG_HW)
1962 printk(KERN_DEBUG "%s: cmd:%x %p\n",
1963 __func__, cmd, arg);
1964 switch (cmd) {
1965 case OPEN_CHANNEL:
1966 rq = arg;
1967 if ((rq->protocol == ISDN_P_TE_S0) ||
1968 (rq->protocol == ISDN_P_NT_S0))
1969 err = open_dchannel(hc, ch, rq);
1970 else
1971 err = open_bchannel(hc, rq);
1972 break;
1973 case CLOSE_CHANNEL:
1974 if (debug & DEBUG_HW_OPEN)
1975 printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
1976 __func__, hc->dch.dev.id,
1977 __builtin_return_address(0));
1978 module_put(THIS_MODULE);
1979 break;
1980 case CONTROL_CHANNEL:
1981 err = channel_ctrl(hc, arg);
1982 break;
1983 default:
1984 if (dch->debug & DEBUG_HW)
1985 printk(KERN_DEBUG "%s: unknown command %x\n",
1986 __func__, cmd);
1987 return -EINVAL;
1988 }
1989 return err;
1990 }
1991
1992 static int
setup_hw(struct hfc_pci * hc)1993 setup_hw(struct hfc_pci *hc)
1994 {
1995 void *buffer;
1996
1997 printk(KERN_INFO "mISDN: HFC-PCI driver %s\n", hfcpci_revision);
1998 hc->hw.cirm = 0;
1999 hc->dch.state = 0;
2000 pci_set_master(hc->pdev);
2001 if (!hc->irq) {
2002 printk(KERN_WARNING "HFC-PCI: No IRQ for PCI card found\n");
2003 return -EINVAL;
2004 }
2005 hc->hw.pci_io =
2006 (char __iomem *)(unsigned long)hc->pdev->resource[1].start;
2007
2008 if (!hc->hw.pci_io) {
2009 printk(KERN_WARNING "HFC-PCI: No IO-Mem for PCI card found\n");
2010 return -ENOMEM;
2011 }
2012 /* Allocate memory for FIFOS */
2013 /* the memory needs to be on a 32k boundary within the first 4G */
2014 if (dma_set_mask(&hc->pdev->dev, 0xFFFF8000)) {
2015 printk(KERN_WARNING
2016 "HFC-PCI: No usable DMA configuration!\n");
2017 return -EIO;
2018 }
2019 buffer = dma_alloc_coherent(&hc->pdev->dev, 0x8000, &hc->hw.dmahandle,
2020 GFP_KERNEL);
2021 /* We silently assume the address is okay if nonzero */
2022 if (!buffer) {
2023 printk(KERN_WARNING
2024 "HFC-PCI: Error allocating memory for FIFO!\n");
2025 return -ENOMEM;
2026 }
2027 hc->hw.fifos = buffer;
2028 pci_write_config_dword(hc->pdev, 0x80, hc->hw.dmahandle);
2029 hc->hw.pci_io = ioremap((ulong) hc->hw.pci_io, 256);
2030 if (unlikely(!hc->hw.pci_io)) {
2031 printk(KERN_WARNING
2032 "HFC-PCI: Error in ioremap for PCI!\n");
2033 dma_free_coherent(&hc->pdev->dev, 0x8000, hc->hw.fifos,
2034 hc->hw.dmahandle);
2035 return -ENOMEM;
2036 }
2037
2038 printk(KERN_INFO
2039 "HFC-PCI: defined at mem %#lx fifo %p(%pad) IRQ %d HZ %d\n",
2040 (u_long) hc->hw.pci_io, hc->hw.fifos,
2041 &hc->hw.dmahandle, hc->irq, HZ);
2042
2043 /* enable memory mapped ports, disable busmaster */
2044 pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO);
2045 hc->hw.int_m2 = 0;
2046 disable_hwirq(hc);
2047 hc->hw.int_m1 = 0;
2048 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
2049 /* At this point the needed PCI config is done */
2050 /* fifos are still not enabled */
2051 timer_setup(&hc->hw.timer, hfcpci_Timer, 0);
2052 /* default PCM master */
2053 test_and_set_bit(HFC_CFG_MASTER, &hc->cfg);
2054 return 0;
2055 }
2056
2057 static void
release_card(struct hfc_pci * hc)2058 release_card(struct hfc_pci *hc) {
2059 u_long flags;
2060
2061 spin_lock_irqsave(&hc->lock, flags);
2062 hc->hw.int_m2 = 0; /* interrupt output off ! */
2063 disable_hwirq(hc);
2064 mode_hfcpci(&hc->bch[0], 1, ISDN_P_NONE);
2065 mode_hfcpci(&hc->bch[1], 2, ISDN_P_NONE);
2066 if (hc->dch.timer.function != NULL) {
2067 del_timer(&hc->dch.timer);
2068 hc->dch.timer.function = NULL;
2069 }
2070 spin_unlock_irqrestore(&hc->lock, flags);
2071 if (hc->hw.protocol == ISDN_P_TE_S0)
2072 l1_event(hc->dch.l1, CLOSE_CHANNEL);
2073 if (hc->initdone)
2074 free_irq(hc->irq, hc);
2075 release_io_hfcpci(hc); /* must release after free_irq! */
2076 mISDN_unregister_device(&hc->dch.dev);
2077 mISDN_freebchannel(&hc->bch[1]);
2078 mISDN_freebchannel(&hc->bch[0]);
2079 mISDN_freedchannel(&hc->dch);
2080 pci_set_drvdata(hc->pdev, NULL);
2081 kfree(hc);
2082 }
2083
2084 static int
setup_card(struct hfc_pci * card)2085 setup_card(struct hfc_pci *card)
2086 {
2087 int err = -EINVAL;
2088 u_int i;
2089 char name[MISDN_MAX_IDLEN];
2090
2091 card->dch.debug = debug;
2092 spin_lock_init(&card->lock);
2093 mISDN_initdchannel(&card->dch, MAX_DFRAME_LEN_L1, ph_state);
2094 card->dch.hw = card;
2095 card->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
2096 card->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
2097 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
2098 card->dch.dev.D.send = hfcpci_l2l1D;
2099 card->dch.dev.D.ctrl = hfc_dctrl;
2100 card->dch.dev.nrbchan = 2;
2101 for (i = 0; i < 2; i++) {
2102 card->bch[i].nr = i + 1;
2103 set_channelmap(i + 1, card->dch.dev.channelmap);
2104 card->bch[i].debug = debug;
2105 mISDN_initbchannel(&card->bch[i], MAX_DATA_MEM, poll >> 1);
2106 card->bch[i].hw = card;
2107 card->bch[i].ch.send = hfcpci_l2l1B;
2108 card->bch[i].ch.ctrl = hfc_bctrl;
2109 card->bch[i].ch.nr = i + 1;
2110 list_add(&card->bch[i].ch.list, &card->dch.dev.bchannels);
2111 }
2112 err = setup_hw(card);
2113 if (err)
2114 goto error;
2115 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-pci.%d", HFC_cnt + 1);
2116 err = mISDN_register_device(&card->dch.dev, &card->pdev->dev, name);
2117 if (err)
2118 goto error;
2119 HFC_cnt++;
2120 printk(KERN_INFO "HFC %d cards installed\n", HFC_cnt);
2121 return 0;
2122 error:
2123 mISDN_freebchannel(&card->bch[1]);
2124 mISDN_freebchannel(&card->bch[0]);
2125 mISDN_freedchannel(&card->dch);
2126 kfree(card);
2127 return err;
2128 }
2129
2130 /* private data in the PCI devices list */
2131 struct _hfc_map {
2132 u_int subtype;
2133 u_int flag;
2134 char *name;
2135 };
2136
2137 static const struct _hfc_map hfc_map[] =
2138 {
2139 {HFC_CCD_2BD0, 0, "CCD/Billion/Asuscom 2BD0"},
2140 {HFC_CCD_B000, 0, "Billion B000"},
2141 {HFC_CCD_B006, 0, "Billion B006"},
2142 {HFC_CCD_B007, 0, "Billion B007"},
2143 {HFC_CCD_B008, 0, "Billion B008"},
2144 {HFC_CCD_B009, 0, "Billion B009"},
2145 {HFC_CCD_B00A, 0, "Billion B00A"},
2146 {HFC_CCD_B00B, 0, "Billion B00B"},
2147 {HFC_CCD_B00C, 0, "Billion B00C"},
2148 {HFC_CCD_B100, 0, "Seyeon B100"},
2149 {HFC_CCD_B700, 0, "Primux II S0 B700"},
2150 {HFC_CCD_B701, 0, "Primux II S0 NT B701"},
2151 {HFC_ABOCOM_2BD1, 0, "Abocom/Magitek 2BD1"},
2152 {HFC_ASUS_0675, 0, "Asuscom/Askey 675"},
2153 {HFC_BERKOM_TCONCEPT, 0, "German telekom T-Concept"},
2154 {HFC_BERKOM_A1T, 0, "German telekom A1T"},
2155 {HFC_ANIGMA_MC145575, 0, "Motorola MC145575"},
2156 {HFC_ZOLTRIX_2BD0, 0, "Zoltrix 2BD0"},
2157 {HFC_DIGI_DF_M_IOM2_E, 0,
2158 "Digi International DataFire Micro V IOM2 (Europe)"},
2159 {HFC_DIGI_DF_M_E, 0,
2160 "Digi International DataFire Micro V (Europe)"},
2161 {HFC_DIGI_DF_M_IOM2_A, 0,
2162 "Digi International DataFire Micro V IOM2 (North America)"},
2163 {HFC_DIGI_DF_M_A, 0,
2164 "Digi International DataFire Micro V (North America)"},
2165 {HFC_SITECOM_DC105V2, 0, "Sitecom Connectivity DC-105 ISDN TA"},
2166 {},
2167 };
2168
2169 static const struct pci_device_id hfc_ids[] =
2170 {
2171 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_2BD0),
2172 (unsigned long) &hfc_map[0] },
2173 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B000),
2174 (unsigned long) &hfc_map[1] },
2175 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B006),
2176 (unsigned long) &hfc_map[2] },
2177 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B007),
2178 (unsigned long) &hfc_map[3] },
2179 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B008),
2180 (unsigned long) &hfc_map[4] },
2181 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B009),
2182 (unsigned long) &hfc_map[5] },
2183 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00A),
2184 (unsigned long) &hfc_map[6] },
2185 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00B),
2186 (unsigned long) &hfc_map[7] },
2187 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00C),
2188 (unsigned long) &hfc_map[8] },
2189 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B100),
2190 (unsigned long) &hfc_map[9] },
2191 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B700),
2192 (unsigned long) &hfc_map[10] },
2193 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B701),
2194 (unsigned long) &hfc_map[11] },
2195 { PCI_VDEVICE(ABOCOM, PCI_DEVICE_ID_ABOCOM_2BD1),
2196 (unsigned long) &hfc_map[12] },
2197 { PCI_VDEVICE(ASUSTEK, PCI_DEVICE_ID_ASUSTEK_0675),
2198 (unsigned long) &hfc_map[13] },
2199 { PCI_VDEVICE(BERKOM, PCI_DEVICE_ID_BERKOM_T_CONCEPT),
2200 (unsigned long) &hfc_map[14] },
2201 { PCI_VDEVICE(BERKOM, PCI_DEVICE_ID_BERKOM_A1T),
2202 (unsigned long) &hfc_map[15] },
2203 { PCI_VDEVICE(ANIGMA, PCI_DEVICE_ID_ANIGMA_MC145575),
2204 (unsigned long) &hfc_map[16] },
2205 { PCI_VDEVICE(ZOLTRIX, PCI_DEVICE_ID_ZOLTRIX_2BD0),
2206 (unsigned long) &hfc_map[17] },
2207 { PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_E),
2208 (unsigned long) &hfc_map[18] },
2209 { PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_E),
2210 (unsigned long) &hfc_map[19] },
2211 { PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_A),
2212 (unsigned long) &hfc_map[20] },
2213 { PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_A),
2214 (unsigned long) &hfc_map[21] },
2215 { PCI_VDEVICE(SITECOM, PCI_DEVICE_ID_SITECOM_DC105V2),
2216 (unsigned long) &hfc_map[22] },
2217 {},
2218 };
2219
2220 static int
hfc_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2221 hfc_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2222 {
2223 int err = -ENOMEM;
2224 struct hfc_pci *card;
2225 struct _hfc_map *m = (struct _hfc_map *)ent->driver_data;
2226
2227 card = kzalloc(sizeof(struct hfc_pci), GFP_KERNEL);
2228 if (!card) {
2229 printk(KERN_ERR "No kmem for HFC card\n");
2230 return err;
2231 }
2232 card->pdev = pdev;
2233 card->subtype = m->subtype;
2234 err = pci_enable_device(pdev);
2235 if (err) {
2236 kfree(card);
2237 return err;
2238 }
2239
2240 printk(KERN_INFO "mISDN_hfcpci: found adapter %s at %s\n",
2241 m->name, pci_name(pdev));
2242
2243 card->irq = pdev->irq;
2244 pci_set_drvdata(pdev, card);
2245 err = setup_card(card);
2246 if (err)
2247 pci_set_drvdata(pdev, NULL);
2248 return err;
2249 }
2250
2251 static void
hfc_remove_pci(struct pci_dev * pdev)2252 hfc_remove_pci(struct pci_dev *pdev)
2253 {
2254 struct hfc_pci *card = pci_get_drvdata(pdev);
2255
2256 if (card)
2257 release_card(card);
2258 else
2259 if (debug)
2260 printk(KERN_DEBUG "%s: drvdata already removed\n",
2261 __func__);
2262 }
2263
2264
2265 static struct pci_driver hfc_driver = {
2266 .name = "hfcpci",
2267 .probe = hfc_probe,
2268 .remove = hfc_remove_pci,
2269 .id_table = hfc_ids,
2270 };
2271
2272 static int
_hfcpci_softirq(struct device * dev,void * unused)2273 _hfcpci_softirq(struct device *dev, void *unused)
2274 {
2275 struct hfc_pci *hc = dev_get_drvdata(dev);
2276 struct bchannel *bch;
2277 if (hc == NULL)
2278 return 0;
2279
2280 if (hc->hw.int_m2 & HFCPCI_IRQ_ENABLE) {
2281 spin_lock_irq(&hc->lock);
2282 bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
2283 if (bch && bch->state == ISDN_P_B_RAW) { /* B1 rx&tx */
2284 main_rec_hfcpci(bch);
2285 tx_birq(bch);
2286 }
2287 bch = Sel_BCS(hc, hc->hw.bswapped ? 1 : 2);
2288 if (bch && bch->state == ISDN_P_B_RAW) { /* B2 rx&tx */
2289 main_rec_hfcpci(bch);
2290 tx_birq(bch);
2291 }
2292 spin_unlock_irq(&hc->lock);
2293 }
2294 return 0;
2295 }
2296
2297 static void
hfcpci_softirq(struct timer_list * unused)2298 hfcpci_softirq(struct timer_list *unused)
2299 {
2300 WARN_ON_ONCE(driver_for_each_device(&hfc_driver.driver, NULL, NULL,
2301 _hfcpci_softirq) != 0);
2302
2303 /* if next event would be in the past ... */
2304 if ((s32)(hfc_jiffies + tics - jiffies) <= 0)
2305 hfc_jiffies = jiffies + 1;
2306 else
2307 hfc_jiffies += tics;
2308 hfc_tl.expires = hfc_jiffies;
2309 add_timer(&hfc_tl);
2310 }
2311
2312 static int __init
HFC_init(void)2313 HFC_init(void)
2314 {
2315 int err;
2316
2317 if (!poll)
2318 poll = HFCPCI_BTRANS_THRESHOLD;
2319
2320 if (poll != HFCPCI_BTRANS_THRESHOLD) {
2321 tics = (poll * HZ) / 8000;
2322 if (tics < 1)
2323 tics = 1;
2324 poll = (tics * 8000) / HZ;
2325 if (poll > 256 || poll < 8) {
2326 printk(KERN_ERR "%s: Wrong poll value %d not in range "
2327 "of 8..256.\n", __func__, poll);
2328 err = -EINVAL;
2329 return err;
2330 }
2331 }
2332 if (poll != HFCPCI_BTRANS_THRESHOLD) {
2333 printk(KERN_INFO "%s: Using alternative poll value of %d\n",
2334 __func__, poll);
2335 timer_setup(&hfc_tl, hfcpci_softirq, 0);
2336 hfc_tl.expires = jiffies + tics;
2337 hfc_jiffies = hfc_tl.expires;
2338 add_timer(&hfc_tl);
2339 } else
2340 tics = 0; /* indicate the use of controller's timer */
2341
2342 err = pci_register_driver(&hfc_driver);
2343 if (err) {
2344 if (timer_pending(&hfc_tl))
2345 del_timer(&hfc_tl);
2346 }
2347
2348 return err;
2349 }
2350
2351 static void __exit
HFC_cleanup(void)2352 HFC_cleanup(void)
2353 {
2354 del_timer_sync(&hfc_tl);
2355
2356 pci_unregister_driver(&hfc_driver);
2357 }
2358
2359 module_init(HFC_init);
2360 module_exit(HFC_cleanup);
2361
2362 MODULE_DEVICE_TABLE(pci, hfc_ids);
2363